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Abstract

The deployment of computation-intensive applications, such as digital signal pro-

cessing (DSP) and machine-learning (ML), on resource-constrained applications is

spurring research that aims to increase the power efficiency of the arithmetic circuits

that perform a huge amount of computation. Approximate computing is one of the

emerging strategies to reach this objective. Neural networks (NNs) involve extensive

multiply-and-accumulate computations, especially in the training process, where iter-

ative computations incur significant energy consumption. DSP applications, such as

image processing, also demands intensive arithmetic computations. In this research

project, we focus on the design of hardware-efficient floating-point (FP) multipliers

for the energy-efficient implementation of error-tolerant computation-intensive appli-

cations using approximate computing techniques.

As an alternative to the conventional FP representation, the logarithmic represen-

tation of FP numbers has been considered for the acceleration of NNs. We show that

the FP representation is naturally suited for the binary logarithm of numbers and,

thus, logarithmic arithmetic. In this thesis, two logarithmic approximation methods

are proposed to generate double-sided error distributions that mitigate the accumula-

tive effect of errors introduced in both the logarithm conversion and the anti-logarithm

conversion. Hardware-efficient logarithmic FP multipliers are then proposed by using

simple operators, such as adders and multiplexers, to replace complex conventional

FP multipliers. The radix-4 logarithm is considered to further reduce the hardware

complexity. The proposed multipliers provide superior trade-offs between accuracy

and hardware, with up to 30.8% higher accuracy than a recent logarithmic FP design
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or up to 68× less energy than the conventional FP multiplier. Using the proposed

FP logarithmic multipliers in JPEG image compression achieves higher image quality

than the recent multiplier design with up to 4.7 dB larger peak signal noise ratio. For

training in benchmark NN applications, including a 922-neuron model for the MNIST

dataset, the proposed FP multipliers can slightly improve the classification accuracy

while achieving 4.2× less energy and 2.2× smaller area than a state-of-the-art design.
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Preface

This dissertation presents original work in the field of approximate computing by

Zijing Niu.

The review of approximate multipliers in Chapter 2 was partially published as

T. Zhang, Z. Niu and J. Han, “A Brief Review of Logarithmic Multiplier Designs,”

IEEE 23rd Latin American Test Symposium (LATS), 2022, pp. 1-4. T. Zhang and I

collaboratively reviewed literature and drafted the article.

One of the logarithmic multiplier designs, presented in Chapter 3 to Chapter 6,

was published in GLSVLSI’21, Proceedings of the 31st IEEE/ACM Great Lakes Sym-

posium on VLSI, 2021, as “A Logarithmic Floating-Point Multiplier for the Efficient

Training of Neural Networks.” Z. Niu, H. Jiang, M. Ansari, B. Cockburn, L. Liu,

and J. Han. I devised the logarithmic multiplier, carried out the simulations and

circuit synthesis, and composed the article. I also presented the article at the confer-

ence. Dr. H. Jiang provided an original idea of improving the logarithmic multiplier

designs and revised the manuscript. Dr. J. Han supervised this work and revised

the manuscript together with Dr. B. Cockburn, Dr. M. Ansari and Dr. L. Liu.

The other logarithmic multiplier designs, presented in Chapter 3 to Chapter 6, are

presented in a manuscript in preparation for submission. I devised the logarithmic

multiplier designs, performed the error analysis and circuit synthesis, implemented

error-tolerant applications, including neural networks and JPEG compression, using

the proposed designs and completed the manuscript. T. Zhang provided many tech-

nical suggestions for improving the design and manuscript. H. Jiang provided the

MATLAB code for JPEG compression and useful suggestions for the simulation of
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neural network applications. Dr. J. Han and Dr. B. Cockburn provided valuable

suggestions to improve the structure and the technical content of the manuscript.
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Chapter 1

Introduction

1.1 Motivation

Due to further scaling of complementary metal–oxide semiconductor (CMOS) tech-

nology, power density has significantly increased in integrated circuits. The sub-

stantial increase in energy becomes a limiting factor for computation-intensive ap-

plications, such as machine learning (ML) and digital signal processing (DSP), in

resource-constrained devices [7][8]. The computations in many important recent ap-

plications involves massive multiply-accumulate (MAC) operations, which requires

a significant amount of energy. This challenge motivates the development of more

efficient arithmetic circuit implementations for emerging computing systems.

Many computation-intensive applications, such as image processing and neural net-

works (NNs), that produce results for human perception, can successfully tolerate a

degree of computational error [9]. Approximate computing (AC) has emerged as a

promising strategy to improve the energy efficiency in such systems [10]. In particular,

AC has extensively been exploited in hardware implementations, including approxi-

mate arithmetic circuit designs, voltage over-scaling and precision scaling techniques

[11], [12].

Floating-point (FP) arithmetic is often favored in applications that require suffi-

cient relative accuracy over a wide dynamic range. Moreover, since FP MAC circuits,

especially the multipliers therein, dominate the power dissipation and circuit area,
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efficient FP multiplier design has been of interest [1]–[3], [13]–[15]. Nevertheless, FP

multipliers are relatively underexplored compared to their fixed-point counterparts

and only a few of them have been applied to applications, such as image processing

and, particularly, the training process of NNs. Bit width reduction of the FP repre-

sentation for the training of NNs increase efficiency [16][17]. However, it can cause

a significant deterioration on accuracy. Therefore, designs of approximate FP multi-

pliers are promising to further improve the hardware performance for error-tolerant

applications.

As an alternative to the conventional FP representation, logarithmic representa-

tions of FP numbers have been considered for the acceleration of NNs. For example,

Lognet shows that logarithmic computation can enable more accurate encoding of

weights and activations that results in higher classification accuracies at low resolu-

tions [18]. A state-of-the-art 4-bit training strategy for deep NNs was developed for

the logarithmic radix-4 representation [19]. Hence, efficient FP logarithmic multipli-

ers (LMs) have become promising for NN training. Significant progress has been made

in exploiting reduced-precision integers for inference, while 8-bit FP numbers [20] and

logarithmic 4-bit FP numbers [19] have shown their effectiveness in the training of

deep NNs.

1.2 Thesis Contributions

In this research project, we propose five energy-efficient FP LMs for error-tolerant,

computation-intensive applications. Two novel approximation methods are described

for the logarithm and anti-logarithm conversions that generate double-sided error

distributions. The multiplier designs consist of simple operators, such as adders and

multiplexers, which lead to lower power consumption and area cost compared to

the conventional FP multipliers. Finally, the application-level performance of the

proposed FP multipliers is evaluated for an image processing application and several

benchmark NNs. It was also found that the classification accuracy can be slightly
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improved in some cases with a significant reduction in energy consumption.

The novel contributions in this work are summarized as follows:

• Two novel approximation methods that generate double-sided error distribu-

tions in logarithm and anti-logarithm conversions to minimize the accumulation

error.

• Five FP LMs are designed with circuit optimizations. Especially, a radix-4

logarithm (R4L) is developed for further reducing the hardware complexity.

• A detailed and comprehensive error evaluation is presented for four different FP

precision formats. In particular, the relation between the FP precision format

and the error behavior of the multipliers is analyzed.

• The proposed designs are evaluated in the JPEG compression and the training

process of NNs to improve the hardware efficiency.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, the background

and the related work are reviewed. Chapter 3 introduces the proposed logarithmic

approximation methods and logarithmic multiplications. A detailed error analysis

for the approximation error and the proposed logarithmic multiplications are also

presented. Circuit designs of five proposed FP multipliers and the radix-4 logarithm

hardware reduction approach are illustrated in Chapter 4. Their performance in

accuracy and hardware are also shown. Chapter 5 presents case studies for error-

tolerant applications. Finally, conclusions are provided in Chapter 6.
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Chapter 2

Background

In this chapter, the theory that underlies logarithm approximation, various approxi-

mate multipliers and the background on the error-tolerant applications are introduced.

2.1 Theory of Logarithm Approximation

Let Z be a number in the binary representation Z = 2e(1 + k), where k (0 ≤ k < 1)

denotes the fractional part and e is the exponent. Mitchell first proposed a simple

method for a logarithmic conversion, given by [21]:

log2 Z
∼= e+ k. (2.1)

If log2 (1 + k) is approximated by l, then Mitchell’s anti-logarithm approximation

can be expressed as:

2l ∼= l + 1, (2.2)

where 0 ≤ l < 1.

Mitchell’s approximation offers both high speed and low hardware cost. However, it

always underestimates the true logarithm, which cause negative errors to accumulate

in MAC operations. To produce a double-sided error distribution, a nearest-one

logarithmic approximation finds the nearest power of two for Z [6]. When Z − 2e <

2e+1 − Z, it uses the same logarithm as Mitchell’s method; otherwise, Z is given by

Z = 2e+1(1− y), where 0 ≤ y < 0.25, and thus the logarithm is approximated as:
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log2 Z
∼= e+ 1− y. (2.3)

2.2 Review of Approximate Multipliers

2.2.1 Approximate Logarithmic Multipliers (LMs)

Mitchell’s approximation has been the basis for many proposed LMs. Operand decom-

position improves the accuracy of Mitchell’s approximation by dividing the two inputs

into four inputs to reduce the number of ‘1’s in the inputs [22]. An improved operand

decomposition algorithm further reduces the energy consumption in LMs [23]. The

iterative LM (ILM) improves the accuracy through a pipelined implementation with

an error correction circuit that leads to iterative calculations of compensation terms

[24]. A truncated ILM further reduces the hardware complexity [25]. A low-cost

two-stage ILM compensates for errors in the addition of approximate logarithms [26].

To further improve the hardware efficiency, Mitchell’s algorithm has been com-

bined with other approximation techniques and optimized implementations of compo-

nents. A customizable signed LM utilizes logarithmic approximation and truncation

of operands, in which the one’s complement representation is adopted to imprecisely

handle negative numbers [27]. A cost-efficient two-stage logarithmic design uses a

truncated LM in an iterative structure [26]. In both the non-iterative and iterative

LMs, approximate adders are used to add the mantissas to reduce energy and improve

accuracy [28]. A set-one adder (SOA) sets the lower significant bits as ‘1’s to compen-

sate the accumulated errors in sums generated in Mitchell’s LM. The lower significant

sum bits are computed using OR gates in the lower-part-or adder (LOA) and are set

as one of the inputs in the approximate mirror adder (MAA3) [4] [5]. A two-stage

LM employs different trimming strategies in the least significant parts of the input

operands and the mantissas of the trimmed operands, which leads to lower energy

and area cost [29]. A dynamic range LM relies on a truncation scheme to dynamically
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compensate for the accumulated errors generated by Mitchell’s approximation [30].

Unlike Mitchell’s approximation-based LMs, an improved LM uses the nearest-one

logarithmic approximation method to produce double-sided error distributions [6]. A

nearest-one detector (NOD) was proposed to first detect the nearest power of two

and then produce the approximate logarithm.

2.2.2 Approximate Floating-Point Multipliers

Truncation and voltage over-scaling techniques are commonly used for approximate

FP multipliers [31]–[35]. A configurable approximate FP multiplier utilizes the K-

nearest neighbor (kNN) algorithm to determine the truncation bits of a given input

that can minimize energy and area [13]. Using Mitchell’s approximation, a logarithmic

approximate FP multiplier (LAM) improves the energy efficiency of NN training [3].

Moreover, configurable FP multipliers have been studied to provide different levels of

accuracy in real-time [2] [14]. In [2], a configurable floating-point unit (CFPU) avoids

multiplication by discarding one mantissa or adding and shifting two mantissas. The

multiplication is also replaced with addition in a runtime configurable FP multiplier,

using an accuracy tuning method [14]. However, neither of these two configurable

FP multipliers completely eliminates multiplication since exact multiplication is still

required when the error rate exceeds a pre-determined value.

Approximate fixed-point multipliers are required for the mantissa multiplication.

For example, an approximate modified Booth encoding (AMBE) algorithm generates

the partial products and then uses an inexact 4-2 compressor to optimize the mantissa

multiplier [1]. This design also adopts bit truncation in the partial products to gen-

erate variable accuracy. Three approximate FP units are developed by proposing an

approximate speculative multiplier and using gate-level pruning with an approximate

speculative adder [15].
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2.3 Error-Tolerant Applications

This section presents a brief background for the error-tolerant applications that in-

volve intensive computations and discusses the usage of the hardware-efficient floating-

point multipliers in these applications.

2.3.1 JPEG Compression

Joint Photographic Experts Group (JPEG) is a worldwide standard for the compres-

sion of digital images. The JPEG lossy compression algorithm uses the discrete cosine

transform (DCT) for the encoding and decoding processes [36]. The DCT operation

converts each image pixel from the spatial domain into the frequency domain. The

high-frequency information is then discarded by using a quantization matrix. The im-

age quality can be user-defined by setting a compression quality factor, which ranges

from 1 to 100.

In the JPEG compression, an input image is first partitioned into blocks of 8 × 8

pixels for the DCT coding. Let the pixel of the input image be i[x, y], an 8× 8 DCT

coefficient matrix, denoted by I[p, q], for each 8× 8 pixel block is obtained by [37]:

I[p, q] =
C[p]C[q]

4

7∑︂
x=0

7∑︂
y=0

i[x, y] cos
(2x+ 1)pπ

16
cos

(2y + 1)qπ

16
(2.4)

where 0 ≤ p, q ≤ 7, and C[p] (or C[q]) is expressed as:

C[p] =

{︄
1√
2
, p = 0,

1, 1 ≤ p ≤ 7.
(2.5)

Then, the quantization is done by multiplying each DCT coefficient matrix, I[p, q],

with an quantization matrix that is determined by the compression quality factor

(Q[p, q]). Thus, the quantized coefficient matrix is given by:

Iqt[p, q] = round(
I[p, q]

Q[p, q]
). (2.6)

By computing the de-quantization and the inverse discrete cosine transform (IDCT):
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Idqt[p, q] = Iqt[p, q]×Q[p, q], (2.7)

the input image is reconstructed as:

j[x, y] =
7∑︂

p=0

7∑︂
q=0

C[p]C[q]

4
Idqt[p, q] cos

(2x+ 1)pπ

16
cos

(2y + 1)qπ

16
(2.8)

where 0 ≤ x, y ≤ 7. Finally, the reconstructed input image is obtained when the

above operations are applied to all of the image blocks.

The JPEG compression algorithm involves considerable multiplications with real

numbers, which leads to the use of approximate floating-point arithmetic that pro-

vides acceptable quality loss. Although fixed-point arithmetic can be used in the

encoding and decoding processes, additional effort and time are required for the

implementation and the wider range of floating-point representation provides bet-

ter quality image recovery. Therefore, approximate floating-point multipliers can be

beneficial for improving the hardware efficiency of the JPEG compression algorithm.

2.3.2 Neural Networks

NNs are computational models that possess attractive characteristics of the biological

NNs of the brain [38]. NNs perform tasks based on the machine learning algorithm

that is able to learn from data. One of the most common tasks is classification, by

which the input data is decided to belong to one among several possible categories.

To solve the task, NNs process the data by artificial neurons and update the weights

and biases through the training process consisting of feed-forward propagation and

back propagation [39]. In the feed-forward process, the state of neurons in NNs is

computed based on the output of neurons in the previous layer and is propagated to

the following layer for further computation. As the basic unit of NNs, each neuron

computes the sum of multiplication products of the inputs and their corresponding

weights for the current layer. The sum is added with a bias and then passed to the

activation function, which introduces non-linearity to the learning process. The basic

computation for a neuron in the forward propagation can be expressed as:
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alk = σ(
n∑︂

i=1

wl
ikx

l−1
i + blk) (2.9)

where alk denotes the output value of the k-th neuron in the l-th layer, wl
ik indicates

the weight that connects the i-th neurons of the (l − 1)-th layer, denoted by xl−1
i ,

with the k-th neuron in the l-th layer, and blk represents the bias value for the k-th

neuron in the l-th layer. The sum is performed over the n neurons in the (l − 1)-th

layer. σ() indicates the activation function that maps the sum obtained in the range

from −1 to 1 or from 0 to 1 [39]. Particularly, for the input layer, x0
i represents the

input data.

The outputs of neurons in the output layer are inspected by comparing with the

target outputs. A loss function, denoted by L, is used to evaluate the training loss

in the results of the feed-forward propagation. Since the training process aims to

generate the weights and biases that are capable of performing the classification, the

loss value needs to be minimized through the back-propagation. The gradient descent

algorithm is usually adopted to minimize the loss function by scaling a small change

in the weights and biases that lead to reduction in the loss value. The derivatives of

L with respect to each weight and bias, i.e., ∂L
∂w

and ∂L
∂b
, are computed first. For the

k-th neuron in the l-th layer, the gradient of its output, denoted by δlk, is essential

for computing ∂L
∂w

and ∂L
∂b
, given by:

δlk =
∂L

∂zlk
=

∂L

∂alk
σ

′
(zlk) (2.10)

where zlk =
∑︁n

i=1w
l
ikx

l−1
i + blk. δlk is expressed differently for the output layer and

the hidden layers. ∂L
∂alk

is computed directly with respect to the loss function for the

output layer; however, when the l-th layer is a hidden layer, ∂L
∂alk

is computed using

the gradients in the next following layers, e.g., the (l + 1)-th layer. Thus, δlk for a

hidden layer is expressed as:

δlk = (
m∑︂
k=1

wl+1
kj σl+1

j )σ(zlk), (2.11)
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where wl+1
kj is the weight that connects the k-th neurons in the l-th layer with the

j-th neuron in the (l + 1)-th layer. The sum is performed in the m neurons in the

(l+1)-th layer. Thus, δk is computed recursively for each hidden layer in a backward

direction. Therefore, the gradients of a weight and a bias, wl
ik and blk, are given by:

∂L

∂wl
ik

= δlka
l−1
i , (2.12)

∂L

∂blk
= δlk. (2.13)

The computation shown above is for a single input sample. Depending on different

gradient descent optimization methods, such as the mini-batch gradient descent [40],

the stochastic gradient descent [41], among others, the weights and biases are updated

using a learning rate (η) and their gradients obtained from the u input samples. Let

W
′
v and B

′
v denote the gradients of the weights and biases for a single input sample

in a NN model, the weights and biases are updated by:

W → W − η

u

u∑︂
v=1

W
′

v, (2.14)

B → B − η

u

u∑︂
v=1

B
′

v, (2.15)

The training process requires a massive number of MAC computations in the it-

erative forward-propagation and back-propagation algorithms. These delicate com-

putations, especially for the gradients, are performed by using the floating-point rep-

resentation due to the wider range of numeric precision compared to the fixed-point

representation. Therefore, the use of hardware-efficient floating-point arithmetic is

advantageous for the training of NNs.
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Chapter 3

Representation, Formulation and
Approximation for Multiplication

3.1 FP Representation and Multiplication

3.1.1 IEEE 754 FP Representation

The IEEE 754 standard defines the most commonly used formats for FP numbers.

This format contains a 1-bit sign S, a w-bit exponent E and a q-bit mantissa M [42].

Fig. 3.1 shows the IEEE 754 representation of a single-precision FP number.

Figure 3.1: The IEEE-754 single-precision format.

In this format, a number N can be expressed in a base-2 scientific notation as

follows:

N = (−1)S · 2E−bias · (1 + x), (3.1)

where S is either 0 for a positive number or 1 for a negative number. To ensure

unsigned integers in the exponent field, a bias (2(w−1)− 1), such as 127 for the single-

precision, is added to the actual exponent value. E−bias denotes the actual exponent
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value of N . With the hidden ‘1’, x is the fractional part of the FP number, and hence

0 ≤ x < 1.

3.1.2 Floating-Point Multiplication

In the IEEE 754 format, the FP multiplication involves three processes, including an

XOR operation for the sign bits, the addition of the exponents, and the multiplication

of the mantissa bits. Note that X is used to denote the actual mantissa, 1+x, in the

following formulation. Consider P = A×B, which is computed as follows:

SP = SA ⊕ SB, (3.2)

XAB = (1 + xA)× (1 + xB), (3.3)

EP =

{︄
EA + EB − bias, XAB < 2,

EA + EB − bias+ 1, otherwise,
(3.4)

XP =

{︄
XAB, XAB < 2,

XAB/2, otherwise,
(3.5)

where the sign bit, exponent and mantissa of A, B and P are respectively denoted

with the corresponding subscripts. The exponent and mantissa of product P relate

to the comparison of the obtained mantissa XAB with 2. Note that (3.2) is valid for

the sign computation of the proposed design, so it will not be discussed hereafter.

3.1.3 Logarithmic Floating-Point Multiplication

For P = A × B in the logarithm domain, the binary logarithmic multiplication

converts the multiplication in (3.3) to an addition operation.

Assume that the logarithm, i.e., log2(1 + x), is approximated by a term denoted

by α(x), then log2(XAB) is expressed as:

log2(XAB) = log2(1 + xA) + log2(1 + xB) ∼= α(xA) + α(xB). (3.6)

Assume the anti-logarithm for 2(α(xA)+α(xB)) is approximated by a term denoted by

β(α(xA) + α(xB)), then XAB is expressed as:

XAB
∼= 2(α(xA)+α(xB)) ∼= β(α(xA) + α(xB)). (3.7)
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Finally, EP and XP are obtained as in (3.4) and (3.5). Note that α() and β() are

used for ease of presentation.

3.2 Logarithmic Approximation and Mathemati-

cal Formulations for Multiplication

Since Mitchell’s approximation method computes underestimated products that lead

to error accumulation in the MAC output, two novel approximation methods that

produce a double-sided error distribution are proposed.

3.2.1 Logarithmic Multiplication 1

Logarithmic FP Representation

The proposed approximation method-1 is based on the conversion of a logarithmic

FP representation that differs from the IEEE 754 format. An FP number N is

first converted into the format using its nearest power of two as per (2.3) and the

corresponding mantissa. Since the IEEE 754 FP format provides the largest power of

two smaller than N , by comparing the fraction x in (3.1) with 0.5, the nearest power

of two can be determined for N .

If x ≥ 0.5, N is closer to 2E−bias+1 than 2E−bias (or equally away for the equal sign).

The exponent E is incremented by 1 and, accordingly, the mantissa becomes 1+x
2
. In

contrast, the exponent and mantissa of N remain the same as in (3.1) when x < 0.5.

Let the converted exponent of N be denoted by E
′
and the converted mantissa by

X
′
. Then E

′
and X

′
are given by:

E
′
=

{︄
E, x < 0.5,

E + 1, x ≥ 0.5,
(3.8)

X
′
= 1 + x

′
=

{︄
1 + x, x < 0.5,
1+x
2
, x ≥ 0.5,

(3.9)

where 0.75 ≤ X
′
< 1.5.
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Logarithm and Anti-logarithm Approximation

To better introduce the approximation method and its usage in multiplication, dif-

ferent notations are used. Consider the logarithm of 1 + k, i.e., log2(1 + k) and the

anti-logarithm of l, i.e., 2l.

Due to the conversion in representation as per (3.9), the logarithm is applied to

X
′
. Thus the range of 1 + k is [0.75, 1.5) and the logarithm approximation method-

1 is applied over the domain −0.25 ≤ k < 0.5. Since l is obtained as the sum of

the two approximate logarithms, its range is [−0.5, 1). Therefore, the anti-logarithm

approximation method-1, as described in (2.2), is applied over the region of −0.5 ≤

l < 1.

The logarithm approximation method-1 of the function log2(1 + k) is shown in

Fig. 3.2, where it is compared with Mitchell’s method and the exact function. Note

that method-1 computes the same underestimated results as Mitchell’s method when

both input operands are closer to 2E−bias. However, the input operands closer to

2E−bias+1 are converted to overestimated logarithm values. As shown in Fig. 3.3, the

anti-logarithm approximation method-1 produces the same overestimated results as

Mitchell’s method when l is in the range of [0, 1), whereas it underestimates the results

when l is negative. As a result, the proposed approximation method-1 can compute

either underestimated or overestimated results depending on the input operands.

Approximation Error Analysis

Denote the error introduced in the logarithm approximation by ε1(k). Then ε1(k) for

the proposed logarithm approximation method-1 is expressed as:

ε1(k) = log2(1 + k)− k, (3.10)

where −0.25 ≤ k < 0.5. When −0.25 ≤ k < 0, the approximate logarithm, i.e.,

α(k) = k, is in the range of −0.25 ≤ k < 0 (recall that α(k) denote the approximate

result for computing the logarithm of k using a logarithm approximation), thus ε1(k)
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Figure 3.2: Approximations of log2(1 + k).

Figure 3.3: Approximations of 2l.
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is in the range of [−0.1650,−0.0044), where the negative error indicates an overes-

timated result. When 0 ≤ k < 0.5, 0 ≤ α(k) < 0.5), ε1(k) is within the range of

[0, 0.0860), where the positive error indicates an underestimated result.

When adding the approximate logarithms of ki and kj, i.e., α(ki) and α(kj), the

accumulated errors can be reduced due to the double-sided error distribution for ε1(k).

Consider ε1(ki) and ε1(kj) to be the logarithm approximation errors for ki and kj,

respectively. There are three scenarios when adding α(ki) and α(kj), depending on

the ranges of ki and kj:

• If −0.25 ≤ ki, kj < 0, −0.5 ≤ α(ki) + α(kj) < 0, then negative errors are

accumulated, resulting in −0.3300 ≤ ε1(ki) + ε1(kj) < −0.0088.

• If 0 ≤ ki, kj < 0.5, 0 ≤ α(ki) +α(kj) < 1, then 0 ≤ ε1(ki) + ε1(kj) < 0.1720 due

to the accumulated positive errors.

• If −0.25 ≤ ki(kj) < 0 and 0 ≤ kj(ki) < 0.5, then −0.25 ≤ α(ki) + α(kj) < 0.5,

and the range of ε1(ki) + ε1(kj) is reduced to [−0.1650, 0.0816).

Let ε2(l) denote the error introduced in the anti-logarithm approximation. Since

l = α(ki) + α(kj) according to (3.7), we have −0.5 ≤ l < 1. Then ε2(l) for the

proposed method-1 is given by:

ε2(l) = 2l − (l + 1). (3.11)

Positive errors, i.e., 0.0030 ≤ ε2(l) < 0.2071, are generated when −0.5 ≤ l < 0,

whereas non-positive errors are produced when 0 ≤ l < 1 since −0.0860 ≤ ε2(l) < 0.

Errors introduced in the logarithm conversion and the anti-logarithm conversion

are accumulated, contributing to the overall approximation error, denoted by εtot.

εtot is computed as:

εtot = ε1(ki) + ε1(kj) + ε2(l), (3.12)

where l = α(ki) + α(kj).
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The sum of the two approximate logarithms, α(ki) + α(kj), is involved in the two

conversion processes, as it outputs from the logarithm conversion and is propagated as

the input to the anti-logarithm conversion (l), according to (3.6) and (3.7). Therefore,

εtot is analyzed with respect to α(ki) +α(kj) to show the overall accumulation effect.

For the proposed approximation method-1, depending on the range of α(ki) + α(kj),

εtot can be analyzed for the following three scenarios:

• When −0.5 ≤ α(ki)+α(kj) < 0, −0.3300 ≤ ε1(ki)+ε1(kj) < −0.0088, 0.0030 ≤

ε2(l) < 0.2071.

• When 0 ≤ α(ki)+α(kj) < 1, 0 ≤ ε1(ki)+ε1(kj) < 0.1720, −0.0860 ≤ ε2(l) < 0.

• When −0.25 ≤ α(ki) + α(kj) < 0.5, −0.1650 ≤ ε1(ki) + ε1(kj) < 0.0816,

−0.0855 ≤ ε2(l) < 0.0908.

For all the three scenarios shown above, ε1(ki) + ε1(kj), ε2(l), and εtot are plotted

in Fig. 3.4 with respect to α(ki) + α(kj). Note that ki and kj are sampled with

a step size of 0.01. As shown in Fig. 3.4, the proposed approximation method-

1 always produces errors with opposite signs in the two conversions, which largely

reduces the accumulation effect. A value of α(ki) + α(kj) can lead to multiple values

of ε1(ki) + ε1(kj) since multiple combinations of α(ki) and α(kj) can lead to the

same sum. Fig. 3.5 shows the overall approximation error with respect to the four

sub-regions that divide the range of [−0.5, 1). The εtot under the first and third

scenarios and under the second and third scenarios are averaged, respectively, for

−0.25 ≤ α(ki) + α(kj) < 0 and for 0 ≤ α(ki) + α(kj) < 0.5. As shown in Fig. 3.5,

the overall approximation error is small, especially when α(ki)+α(kj) is in the range

of [0, 0.5), due to the offset of errors with opposite signs in the two conversions. The

approximation method-1 produces double-sided error distribution since εtot can be

positive or negative.
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Figure 3.4: ε1(ki) + ε1(kj), ε2(l), and εtot with respect to α(ki) + α(kj) under the
three situations for the proposed approximation method-1.
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Figure 3.5: Overall approximation error of the logarithm and anti-logarithm
conversions for the proposed approximation method-1.

Mathematical Formulations

For the logarithmic N using the logarithmic FP representation, the exponent is given

as (3.8) and the logarithm is approximated as follows:

log2(X
′
) = log2(1 + x

′
) ∼=

{︄
x, x < 0.5,
1+x
2
− 1, x ≥ 0.5.

(3.13)

For P = A×B in the logarithm domain, the exponent is still computed by addition,

whereas the multiplication for the mantissa is converted to addition. Let X
′
AB =

X
′
A ×X

′
B = (1 + x

′
A)× (1 + x

′
B), and hence the logarithm of X

′
AB is given by:

log2(X
′

AB) = log2(1 + x
′

A) + log2(1 + x
′

B)
∼= ˆ︁XA + ˆ︁XB, (3.14)

where ˆ︁XA and ˆ︁XB denote the approximate logarithms obtained by (3.13).

Using the anti-logarithm approximation method-1, X
′
AB is obtained as:

X
′

AB
∼= 2

ˆ︁XA+ ˆ︁XB ∼= 1 + ˆ︁XA + ˆ︁XB. (3.15)
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According to (3.13), we obtain −0.5 ≤ ˆ︁XA + ˆ︁XB < 1, and thus, 0.5 ≤ X
′
AB < 2.

WhenX
′
AB < 1 (or ˆ︁XA+ ˆ︁XB < 0), X

′
AB cannot be directly represented as the mantissa

for the product P . In this case, X
′
AB is multiplied by 2 and, accordingly, the exponent

is reduced by 1.

Finally, the proposed logarithmic FP multiplication-1 is given by:

EP =

{︄
E

′
A + E

′
B − bias, ˆ︁XA + ˆ︁XB ≥ 0,

E
′
A + E

′
B − bias− 1, otherwise,

(3.16)

XP =

{︄
1 + ˆ︁XA + ˆ︁XB, ˆ︁XA + ˆ︁XB ≥ 0,

(1 + ˆ︁XA + ˆ︁XB)× 2, otherwise.
(3.17)

Note that E
′
A and E

′
B are the converted exponents, and ˆ︁XA and ˆ︁XB are the approx-

imate logarithms given in the converted mantissas, for A and B, respectively.

3.2.2 Logarithmic Multiplication 2

Logarithm and Anti-logarithm Approximation

Consider a given number N , when x ≥ 0.5, log2N = (E+1)+(1+x
2
− 1) according to

(3.13). By cancelling out the ‘+1’ and ‘−1’, we obtain log2N = E+ 1+x
2
, which leads

to the logarithm approximation method-2 given by (3.18). Note that the conversions

for the original exponent and the mantissa in (3.8) and (3.9) are avoided.

log2(1 + k) ∼=

{︄
k, 0 ≤ k < 0.5,
(1+k)

2
, 0.5 ≤ k < 1,

(3.18)

where the range of the approximate logarithm is [0, 1). Thus, the range of l is [0, 2)

(l is the sum of the two approximate logarithms). Consider using Mitchell’s anti-

logarithm method, as shown in Fig. 3.3, when 1.5 ≤ l < 2, larger approximate results

will be produced in both the logarithm and anti-logarithm processes, which will lead

to large error accumulation. Therefore, we propose to reduce the anti-logarithm

value by subtracting certain values to ensure positive errors. The subtracted value

is selected from our experiments for computing the overall accumulative error with

various subtracted values. This process is shown in the following approximation error
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analysis. 0.5 and 0.25 are used for the range of [1.5, 1.75) and [1.75, 2), respectively.

The anti-logarithm approximation used in this method is given by:

2l ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l + 1, l < 1,

2× l, 1 ≤ l < 1.5,

2× l − 0.5, 1.5 ≤ l < 1.75,

2× l − 0.25, 1.75 ≤ l < 2,

(3.19)

The logarithm approximation method-2 is shown in Fig. 3.2. When the mantis-

sas of both input operands are smaller than 0.5, method-2 computes the same un-

derestimated logarithm approximation as Mitchell’s method; otherwise, it computes

overestimated results. As shown in Fig. 3.3, the same overestimated anti-logarithm

approximation as Mitchell’s method is produced when 0 ≤ l < 1.5, whereas underes-

timated anti-logarithm approximations are generated when 1.5 ≤ l < 2.

Approximation Error Analysis

ε1(k) for the proposed logarithm approximation method-2 is expressed as:

ε1(k) =

{︄
log2(1 + k)− k, 0 ≤ k < 0.5,

log2(1 + k)− (1+k)
2

, 0.5 ≤ k < 1,
(3.20)

where 0 ≤ k < 1. When 0 ≤ k ∈< 0.5, the approximate logarithm, i.e., α(k) = k,

is in the range of [0, 0.5), ε1(k) is in the range of [0, 0.0860), where the positive

errors indicate overestimated results. When 0.5 ≤ k < 1, the approximate loga-

rithm, i.e., α(k) = (1+k)
2

, is in the range of [0.75, 1), ε1(k) is within the range of

[−0.1650,−0.0022), where the negative errors indicate underestimated results.

Similar to the proposed method-1, the accumulation effect can be reduced when

adding the approximate logarithms for ki and kj, i.e., α(ki) and α(kj), due to the

double-sided error distribution. There are three scenarios when adding α(ki) and

α(kj) depending on the ranges of ki and kj:

• If 0 ≤ ki, kj < 0.5, 0 ≤ α(ki) + α(kj) < 1, positive errors are accumulated,

resulting in 0 ≤ ε1(ki) + ε1(kj) < 0.1720.
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• If 0.5 ≤ ki, kj < 1, 1.5 ≤ α(ki)+α(kj) < 2, −0.3300 ≤ ε1(ki)+ε1(kj) < −0.0044

due to the accumulated negative errors.

• If 0 ≤ ki(kj) < 0.5 and 0.5 ≤ kj(ki) < 1, 0.75 ≤ α(ki) + α(kj) < 1.5, the range

of ε1(ki) + ε1(kj) is reduced to [−0.1650, 0.0838).

Using Mitchell’s anti-logarithm approximation method, negative errors are gen-

erated both when 0 ≤ l < 1 and 1 ≤ l < 2 with −0.0860 ≤ ε2(l) < 0 and

−0.1721 ≤ ε2(l) < 0, respectively. While analyzing εtot as per (3.12), we observed

that, when 1.5 ≤ α(ki)+α(kj) < 2, the negative errors are accumulated in the two con-

versions due to −0.3300 ≤ ε1(ki)+ε1(kj) < −0.0044 and −0.1721 ≤ ε2(l) < −0.0076.

As shown in Fig. 3.6(a), εtot is plotted when 1.5 ≤ α(ki) + α(kj) < 2, which in-

dicates the accumulation of negative errors leads to large εtot. Therefore, to reduce

the accumulation effect for the range of [1.5, 2), we propose to reduce the approxi-

mate anti-logarithm value by simply subtracting certain values from it, which ensures

generating positive errors, i.e., ε2(l) > 0. Denote the subtracted value by δ, the anti-

logarithm approximation for the range of [1.5, 2) is expressed as 2× l− δ and ε2(l) is

computed as:

ε2(l) = 2l − (2× l − δ), (3.21)

where 1.5 ≤ l < 2.

The value of δ is selected to reduce the error accumulation effect as much as

possible while introducing a small hardware overhead. As shown in Fig. 3.6a, the

absolute value of ε1(ki) + ε1(kj) decreases with α(ki) + α(kj) in the range of [1.5, 2),

indicating that δ should be decreasing with α(ki)+α(kj) to produce the positive ε2(l)

that can offset errors of the negative ε1(ki) + ε1(kj) as much as possible. A trade-off

is assessed when determining δ. Using different δ with excessively small intervals

in the range of [1.5, 2) can substantially increase the hardware overhead, whereas

subtracting one single value in the range of [1.5, 2) can be ineffectual or aggravate the

error accumulation. We consider to use δ for the two sub-regions of [1.5, 2) divided
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by 1.75. By computing εtot with various values of δ, δ is determined to be 0.5 and

0.25 for the range of [1.5, 1.75) and [1.75, 2), respectively. Therefore, the proposed

anti-logarithm approximation is given by (3.19).
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approximation method.

Figure 3.6: ε1(ki) + ε1(kj), ε2(l), and εtot for 1.5 ≤ α(ki) + α(kj) < 2.

ε2(l) for the proposed method-2 is given by:

ε2(l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2l − (l + 1), 0 ≤ l < 1,

2l − l × 2, 1 ≤ l < 1.5,

2l − (2× l − 0.5), 1.5 ≤ l < 1.75,

2l − (2× l − 0.25), 1.75 ≤ l < 2,

(3.22)

where 0 ≤ l < 2. As shown in in Fig. 3.6b, for 1.5 ≤ α(ki) +α(kj) < 2, positive ε2(l)

is produced to cancel out the negative α(ki) + α(kj). εtot can then be analyzed for

the following four scenarios:

• when 0 ≤ α(ki) + α(kj) < 1, 0 ≤ ε1(ki) + ε1(kj) < 0.1720, −0.0860 ≤ ε2(l) < 0.

• when 1.5 ≤ α(ki)+α(kj) < 1.75, −0.3300 ≤ ε1(ki)+ε1(kj) < −0.1418, 0.3278 ≤

ε2(l) < 0.3603.

• when 1.75 ≤ α(ki) + α(kj) < 2, −0.135 ≤ ε1(ki) + ε1(kj) < −0.0044, 0.1135 ≤

ε2(l) < 0.2423.
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• when 0.75 ≤ α(ki)+α(kj) < 1.5, −0.1650 ≤ ε1(ki)+ε1(kj) < 0.0838, −0.1711 ≤

ε2(l) < 0.

Negative errors are generated both when 0 ≤ l < 1 and 1 ≤ l < 1.5 with −0.0860 ≤

ε2(l) < 0 and −0.1721 ≤ ε2(l) < 0, respectively. When 1.5 ≤ l < 1.75 and 1.75 ≤

l < 2, positive errors are generated with 0.3278 ≤ ε2(l) < 0.3603 and 0.1135 ≤

ε2(l) < 0.2423, respectively. The overall approximation error is shown in Fig. 3.7

with respect to four sub-regions that divide the range of [−0.5, 1). The εtot in the

first and fourth scenarios are averaged for 0.75 ≤ α(ki)+α(kj) < 1. As shown in Fig.

3.7, a double-sided error distribution is generated by the approximation method-2.

Figure 3.7: Overall accumulated errors of the logarithm and anti-logarithm
conversions for the proposed approximation method-2.

Mathematical Formulations

Using the proposed logarithm approximation method-2, as per (3.18) and the anti-

logarithm approximation, as per (3.19), XAB is obtained. When ˆ︁XA + ˆ︁XB ≥ 1, XAB

is divided by 2 to fit in the range of [1, 2) and, accordingly, a carry to EA + EB is
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added to ensure the correct result.

Finally, the logarithmic FP multiplication in the proposed multiplication-2 is given

by:

EP =

{︄
EA + EB − bias+ 1, ˆ︁XA + ˆ︁XB ≥ 1

EA + EB − bias, otherwise,
(3.23)

XP =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + ˆ︁XA + ˆ︁XB, ˆ︁XA + ˆ︁XB < 1,ˆ︁XA + ˆ︁XB, 1 ≤ ˆ︁XA + ˆ︁XB < 1.5,ˆ︁XA + ˆ︁XB − 0.25, 1.5 ≤ ˆ︁XA + ˆ︁XB < 1.75,ˆ︁XA + ˆ︁XB − 0.125, 1.75 ≤ ˆ︁XA + ˆ︁XB < 2.

(3.24)

3.3 Theoretical Error Analysis

The two proposed FP logarithmic multiplication methods introduce approximation

errors in both the logarithm conversion and anti-logarithm conversion. The error

distance is analyzed with the exponent ignored for simplicity.

According to (3.2)-(3.5), the result of exact multiplication is given by Pex = (1 +

xA)× (1+xB) = 1+xA+xB+xAxB. The products for the proposed multiplication-1

and multiplication-2 algorithms, denoted as Pap1 and Pap2, are given by:

P1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 + xA + xB, xA, xB < 0.5, (3.25a)

1 + 2xA + xB, xA < 0.5, xB ≥ 0.5, (3.25b)

1 + xA + 2xB, xA ≥ 0.5, xB < 0.5, (3.25c)

2xA + 2xB, xA, xB ≥ 0.5, (3.25d)
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P2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + xA + xB, xA, xB < 0.5, (3.26a)

3 + 2xA + xB

2
or 1 + 2xA + xB,

xA < 0.5, xB ≥ 0.5, (3.26b)

3 + xA + 2xB

2
or 1 + xA + 2xB,

xA ≥ 0.5, xB < 0.5, (3.26c)

1.5 + xA + xB or 1.75 + xA + xB,

xA, xB ≥ 0.5. (3.26d)

By comparing the equations under different conditions, the error, Err = Pex−Pap,

can be derived as follows:

Err1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xAxB, xA, xB < 0.5, (3.27a)

xA(xB − 1), xA < 0.5, xB ≥ 0.5, (3.27b)

xB(xA − 1), xA ≥ 0.5, xB < 0.5, (3.27c)

(1− xA)(1− xB), xA, xB ≥ 0.5, (3.27d)

Err2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xAxB, xA, xB < 0.5, (3.28a)

xB + 2xAxB − 1

2
or xA(xB − 1),

xA < 0.5, xB ≥ 0.5, (3.28b)

xA + 2xAxB − 1

2
or xB(xA − 1),

xA ≥ 0.5, xB < 0.5, (3.28c)

xAxB − 0.5 or xAxB − 0.75,

xA, xB ≥ 0.5. (3.28d)

The contour maps ofErr1 and Err2 are shown in Fig. 3.8 and Fig. 3.9, respectively.

The largest positive Err1 is 0.25 when both xA and xB are 0.5, as shown in Fig. 3.8(d),
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while the negative Err1 that has the maximum absolute value is close to -0.25 when

either one of xA and xB approaches 0.5 while the other one equals 0.5, as seen in Fig.

3.8(b) and Fig. 3.8(c). Err1 is larger than 0 when xA, xB < 0.5 or xA, xB ≥ 0.5 and

it is less than 0 under the other two conditions. The negative Err2 has the largest

absolute value of -0.5 when both xA and xB are 0.5, while the largest positive Err2

is close to 0.5 when both xA and xB approach 1. Specifically, When xA, xB < 0.5,

Err2 is the same as Err1 as shown in Fig. 3.8(a). For each of the other three

scenarios as shown in (3.28b)-(3.28d), Err2 is given by two expressions. Fig. 3.9(a)

and Fig. 3.9(b) present the contour maps for the first equation of (3.28b) and (3.28c),

respectively. In these two cases, the largest positive Err2 is very close to 0.5 when

one of xA and xB approaches 0.5 and another one approaches 1; the negative Err2

with the maximum absolute value is -0.25 when one of xA and xB is 0 and the other

is 0.5. Err2 is expressed by the second equations of (3.28b) and (3.28c), the same as

the multiplication-1, as shown in Fig. 3.8(b) and Fig. 3.8(c). When xA, xB ≥ 0.5,

the contour maps for Err2 are presented in Fig. 3.9(c) and Fig. 3.9(d).

Therefore the maximum |Err| is 0.25 and 0.5 for the multiplication-1 and the

multiplication-2, respectively. In comparison, the LAM [3] that uses Mitchell’s ap-

proximation has the largest absolute error of 0.25 and always underestimates the

product. However, the average errors for the multiplication-1 and the multiplication-

2 can be reduced since the positive errors and negative errors tend to cancel each

other in a sum of products.
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(a) xA, xB < 0.5 (b) xA < 0.5, xB ≥ 0.5

(c) xA ≥ 0.5, xB < 0.5 (d) xA, xB ≥ 0.5

Figure 3.8: The contour maps of the theoretical error (error = exact - approximate)
with respect to xA and xB for the multiplication-1 algorithm.
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(a) xA < 0.5, xB ≥ 0.5, xB+2xAxB−1
2 (b) xA ≥ 0.5, xB < 0.5, xA+2xAxB−1

2

(c) xA, xB ≥ 0.5, xAxB − 0.5 (d) xA, xB ≥ 0.5, xAxB − 0.75

Figure 3.9: The contour maps of the theoretical error (error = exact - approximate)
with respect to xA and xB for the multiplication-2 algorithm.
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Chapter 4

Circuit Designs of Floating-Point
Logarithmic Multipliers

In this chapter, a generic circuit architecture is first introduced for the proposed FP

LMs. The circuit design for these multipliers is then presented in detail. Lastly,

the radix-4 logarithm (R4L) is considered to further reduce the hardware cost of the

proposed designs.

4.1 A Generic Circuit Architecture

Fig. 4.1 presents the generic circuit architecture for the proposed FP LMs according

to their mathematical formulations. Taking advantage of the IEEE 754 FP format,

the sign S, the exponent E, and the mantissa M of the FP number can be obtained

directly. The w-bit E is given by E[w − 1]E[w − 2] · · ·E[0]. 1.M is used to denote

the actual mantissa. Here, M contains q bits, e.g., 23 bits for single-precision, after

the binary point and the hidden ‘1’, and is given as M [q − 1]M [q − 2] · · ·M [1]M [0].

Note that 1.M represents 1 + x in (3.1).

The sign bit of the product, SP , is obtained using an XOR gate with two input

signs, SA and SB. For the multiplier that uses the approximation method-1, the

exponents (EA and EB) and the mantissas (1.MA and 1.MB) are converted into the

nearest-one FP representation, whereas for the approximation method-2, the con-

version is not required. The converted exponents or original exponents serve as the
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inputs of the adder, denoted by E ′
A and E ′

B, and the sum is denoted by E ′
P . The

converted mantissas are propagated to the logarithm approximation block to com-

pute the approximate logarithms, denoted as M ′
A and M ′

B. Since the multiplication is

replaced by the addition operation in the logarithm domain, M ′
A and M ′

B are added

to obtain the sum, denoted by M ′
P , which is then used in the anti-logarithm approx-

imation block to compute its anti-logarithm. In the following adjustment block, the

approximate anti-logarithm will be normalized to the range of [1, 2) if needed, and

E ′
P will be adjusted accordingly, resulting in EP and MP . EP is added with the bias

to comply with the IEEE standard and any exception (such as overflow, underflow,

and “not a number”) is reported. The two inputs are checked for exceptions at the

beginning of the computation. Note that the rounding unit is not required in the

inexact design since it is already inherently imprecise.

For the proposed multiplier designs, instead of being implemented directly accord-

ing to the equations, the circuits are simplified to reduce the hardware complexity

and latency. Specifically, some arithmetic operations are replaced with simpler oper-

ations. By merging multiple computations, the circuit blocks in the same color, as

shown in Fig. 4.1, are integrated into a single block. In particular, the representation

conversion blocks of the exponent and the mantissa are shown in dashed boxes since

the conversion is not always required.

4.2 FP Logarithmic Multiplier-1

4.2.1 Logarithm approximation and addition of approximate
logarithms

As shown in Fig. 4.2, for the two given mantissas, MA and MB are used as the in-

puts for the two FP logarithm estimators (FP-LEs), which compute the approximate

logarithm of the mantissa. For FPLM-1, both the representation conversion and log-

arithm approximation for the mantissa are implemented by an FP-LE. Simple wire

routing is used to implement the FP-LE, as shown in Fig. 4.2. The nearest power
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Pack/exception result
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′  𝐸𝐵

′  

q

Logarithm Approximation

Value Adjustment
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𝐸𝐴 𝑤 − 1 ⋯𝐸𝐴[0] 𝐸𝐵 𝑤 − 1 ⋯𝐸𝐵[0] 𝑀𝐵 𝑞 − 1 ⋯𝑀𝐵[0] 1 1 𝑀𝐴 𝑞 − 1 ⋯𝑀𝐴[0] 

Adder

Anti-logarithm Approximation

𝐸𝑃 𝑤 − 1 ⋯𝐸𝑃[0] 𝑀𝑃 𝑞 − 1 ⋯𝑀𝑃[0] 𝑆𝑃 
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𝐸𝑃
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𝑀𝐴
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𝑀𝑃 𝐸𝑃 

𝐴 𝐵 

Representation Conversion for M

Value Adjustment

𝑀𝑃
′  

Representation Conversion for E

Figure 4.1: The generic circuit architecture for proposed designs.
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of two for each FP number can be determined by simply checking the leading bit

of the explicit mantissa (without the hidden 1), M [q − 1], and hence a 2-to-1 mul-

tiplexer is used to obtain the approximate logarithm, M ′. According to (3.13), the

left shifter for implementing the division by 2 is replaced by wire routing. Therefore,

(1 + x)/2 is implemented as 0.1M [q − 1] · · ·M [1]. When M [q − 1] = 1, the approxi-

mate logarithm, (1 + x)/2− 1, is obtained as a negative number in 2’s complement,

i.e., M ′ = 1.1M [q − 1] · · ·M [1]; otherwise, M ′ is 0.M [q − 1] · · ·M [0]. In the case of

M [q − 1] = 1, the LSB of M ′, M [0], is discarded to keep M ′ in q + 1 bits.

M ′
A and M ′

B are then summed using a q + 1-bit adder.

Pack/exception result

𝐸𝐴 𝑤 − 1 ⋯𝐸𝐴[0] 𝐸𝐵 𝑤 − 1 ⋯𝐸𝐵[0] 𝑀𝐵 𝑞 − 1 ⋯𝑀𝐵[0] 1 1 𝑀𝐴 𝑞 − 1 ⋯𝑀𝐴[0] 

Adder

𝐸𝑃 𝑤 − 1 ⋯𝐸𝑃[0] 𝑀𝑃 𝑞 − 1 ⋯𝑀𝑃[0] 
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0
𝑀[2] 𝑀[1] 𝑀[0] 

1
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1
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MUX

0

1

q

q

𝑀𝑃
′  

𝑀𝑃
′  𝑞  

𝑀𝑃
′  𝑞 − 1 ⋯𝑀𝑃
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𝐶𝑎𝑟𝑟𝑦_𝐸 Adder

Figure 4.2: The circuit design of the first proposed floating-point logarithmic
multiplier, FPLM-1.
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4.2.2 Anti-logarithm approximation and value adjustment

The anti-logarithm approximation and value adjustment are implemented together

using a multiplexer, as shown in Fig. 4.2. The q + 1-bit M ′
P obtained from the

adder is the input for this block. For FPLM-1, as per (3.17), since ˆ︁XA + ˆ︁XB can

be negative in some cases, the MSB of M ′
P , i.e., M

′
P [q] is the sign bit of M ′

P in 2’s

complement. When ˆ︁XA + ˆ︁XB < 0, M ′
P [q] = 1; otherwise, M ′

P [q] = 0. Therefore,

M ′
P [q] is used as the selection signal for the multiplexer. 1+ ˆ︁XA+ ˆ︁XB is implemented

as 0.M ′
P [q − 1] · · ·M ′

P [0] or 1.M ′
P [q − 1] · · ·M ′

P [0] when M ′
P [q] = 1 or M ′

P [q] = 0,

respectively. According to (3.17), −0.5 ≤ ˆ︁XA + ˆ︁XB < 1, meaning that M ′
P [q− 1] = 1

when M ′
P [q] = 1. Therefore, in the case of M ′

P [q] = 1, 1.M ′
P [q − 2] · · ·M ′

P [0]0 is

obtained by performing the ×2 operation on 0.M ′
P [q − 1] · · ·M ′

P [0].

4.2.3 Addition of exponents and value adjustment

The circuits for the exponent conversion, addition and value adjustment, shown as

the green blocks in Fig. 4.1, are implemented together by integrating and simplifying

multiple computations. For FPLM-1, according to (3.8), the exponents of the two

operands are converted first, practically depending on MA[q−1] and MB[q−1]. Then

the converted exponents are added subsequently to obtain E ′
P , which is subtracted

by 1 if M ′
P [q] = 1, as per (3.16). The required circuits to implement these operations

are simplified to one adder with a carry-in bit, Carry E, that is determined by the

modified value of EA and EB. WhenMA[q−1]MB[q−1] are ‘00’ or ‘11’,M ′
P [q] can only

be ‘0’ or ‘1’, respectively; otherwise, M ′
P [q] can be ‘0’ or ‘1’ in either case. According

to (3.13) and (3.16), when both mantissa values are smaller than 0.5 (MA[q−1]MB[q−

1] = 00), ˆ︁XA + ˆ︁XB ≥ 0 (M ′
P [q] = 0), which means E ′

A + E ′
B is not modified; hence,

Carry E = 0. When both mantissas are greater than or equal to 0.5 (MA[q−1]MB[q−

1] = 11), ˆ︁XA + ˆ︁XB < 0 (M ′
P [q] = 1), which means that E ′

A + E ′
B is subtracted by 1,

i.e., EA + 1 + EB + 1− 1 = EA + EB + 1; therefore, Carry E = 1.

Therefore, the Carry E for FPLM-1 is obtained by using (4.1). As shown in Fig.
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4.2, four logic gates are used to generate Carry E.

Carry E = (M ′
P [q] + (MA[q − 1] +MB[q − 1] ) )

· (MA[q − 1] ·MB[q − 1] ) .

(4.1)

4.3 FP Logarithmic Multiplier-2

4.3.1 Logarithm approximation and addition of approximate
logarithms

As shown in Fig. 4.3, for FPLM-2, the FP-LE implements the logarithm approxima-

tion for the mantissa without the conversion to the nearest-one FP representation.

As per (3.18), (1 + x)/2 is implemented as 0.1M [q − 1] · · ·M [1] when M [q − 1] =

1, by performing the division by 2 operation with wire routing; x is obtained as

0.M [q − 1] · · ·M [0] when M [q − 1] = 0. In both cases, the hidden bit is 0, which has

no effect on the addition result. Thus, M ′ is obtained without the hidden bit and a

q-bit adder is used for the addition of M ′
A and M ′

B with a carry-out signal, Cout, as

shown in Fig. 4.3. In the case of M [q − 1] = 1, the LSB of M ′, M [0], is discarded to

keep M ′ as q bits.

4.3.2 Anti-logarithm approximation and value adjustment

According to (3.24), x′
A+x′

B, is obtained as Cout.M
′
P [q−1] · · ·M ′

P [0]. When x′
A+x′

B <

1, which means Cout = 0, the mantissa, 1+x′
A+x′

B, is obtained as 1.M ′
P [q−1] · · ·M ′

P [0].

When 1 ≤ x′
A+x′

B < 1.5, meaning that CoutM
′
P [q− 1] = 10, x′

A+x′
B is also obtained

as 1.M ′
P [q−1] · · ·M ′

P [0]. When 1.5 ≤ x′
A+x′

B < 1.75, CoutM
′
P [q−1]M ′

P [q−2] = 110,

x′
A+x′

B−0.25 is implemented by 1.01M ′
P [q−3] · · ·M ′

P [0]. When 1.75 ≤ x′
A+x′

B < 2,

CoutM
′
P [q − 1]M ′

P [q − 2] = 111, x′
A + x′

B − 0.125 is implemented by 1.101M ′
P [q −

4] · · ·M ′
P [0] or 1.110M

′
P [q−4] · · ·M ′

P [0] if M
′
P [q−3] is 0 or 1, respectively. Therefore,

MP [q − 4] · · ·MP [0] is obtained as M ′
P [q − 4] · · ·M ′

P [0] and MP [q − 1] · · ·MP [q − 3]

is determined by M ′
P [q − 1] · · ·M ′

P [q − 3] and Cout. The circuit for computing MP is
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Figure 4.3: The circuit design of the second proposed floating-point logarithmic
multiplier, FPLM-2.
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shown in Fig. 4.3.

4.3.3 Addition of exponents and value adjustment

For FPLM-2, according to (3.23), EA and EB are summed and increased by 1 if

Cout = 1. Therefore, as shown in Fig. 4.3, Cout is directly used to generate Carry E.

4.4 Designs using the Radix-4 Logarithm

The radix-4 logarithm (R4L) was introduced to reduce the hardware complexity of

the FP logarithm multipliers by exploiting the relation between the base 2 and base

4 logarithms. The base 2 logarithm of a given number N , is two times its base 4

logarithm, i.e., log2N = 2 log4N . This indicates that the base 4 logarithm can be

stored with a smaller bit-width than the base 2 logarithm in a hardware implementa-

tion. Therefore, we propose to convert the approximate logarithm of the mantissa to

a radix-4 logarithm in an intermediate computation process to reduce the hardware

cost of an FP LM. The radix-4 logarithm conversion is only used for the mantissa

since applying to the exponent leads to large errors.

The R4L approach is specified in Algorithm 1. The approximate logarithms for

the two mantissas, denoted by mA and mB, are obtained by applying the logarithm

approximation to the mantissa that is concatenated with the hidden ‘1’. Note that

the & operator indicates concatenation. mA and mB are converted to the radix-4

logarithm by simply discarding their LSB, resulting in mA[q : 1] and mB[q : 1]. The

bit-width of the resulting approximate logarithm is reduced, which leads to a smaller

hardware cost for the adder. Then the result, sum, is concatenated with ‘0’ to ensure

the correctness of the anti-logarithm approximation. When q is 1, the addition can

be implemented with just an OR gate. The output, MP , is obtained after normalizing

the anti-logarithm result to make it lie in the range of [0, 1).

The R4L approach was applied to the proposed FPLM-1, FPLM-2, and the conven-

tional logarithmic multiplier that uses Mitchell’s approximation [21] to reduce their
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Algorithm 1 A Radix-4 Logarithm (R4L) Approach

Require: Mantissas: MA and MB; Bit-width of mantissa: q; Logarithm approximation
method: α(); Anti-logarithm approximation method: β();

Ensure: Mantissa of the product: MP .
if q ≥ 1 then

mA ← α(‘1’ & MA)
mB ← α(‘1’ & MB)
if q > 1 then

sum← ADD(mA[q : 1], mB[q : 1])
else

sum← OR(mA[1], mB[1])
end if
h← β(sum & ‘0’)
MP ← NORM(h)

else
MP ← 0

end if

hardware complexity. The obtained multiplier designs are denoted as FPLM-1-r4,

FPLM-2-r4, and CLM-r4.

4.5 Optimization for Reduced Bit-Width in the

Mantissa

With a reduced mantissa bit-width, the circuit can be further optimized. Consider

an FP number with the FP8 format, which has a 2-bit mantissa. Its mantissa can

only represent four binary numbers, i.e., 00, 01, 10, and 11.

For FPLM-1, the circuits for the FP-LE and the anti-logarithm approximation

with value adjustment can be simplified. According to (3.13), M ′ can be given by:

M ′ = {M [1], M [1], M [1] ·M [0] +M [1]}, (4.2)

where the braces represent concatenation.

Accordingly, MP is expressed as:

MP = {M ′
P [2] ·M

′
P [1] +M ′

P [2] ·M ′
P [0], M

′
P [2] ·M

′
P [0]}. (4.3)
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For FPLM-2, the circuits of the FP-LE and the anti-logarithm approximation with

value adjustment, are simplified in the FP8 format. According to (3.18), M ′ is given

by:

M ′ = {M [1], M [1] +M [0]}. (4.4)

The 2-bit M ′
P and Cout, obtained from the addition, compute MP as per (3.19).

MP for FPLM-2 in the FP8 format is then expressed as:

MP = {Cout ·M ′
P [1] ·M

′
P [1], Cout ·M ′

P [1] ·M
′
P [0] + Cout ·M ′

P [1]}. (4.5)

For the reduced mantissa bit-width, FPLM-1-r4, FPLM-2-r4, and CLM-r4 are also

simplified, as shown in Fig. 4.4. Particularly, for FPLM-1-r4, when both MA[1] and

MB[1] are 1, MP along with its hidden bit is obtained as 0. Compared with the

result of MP obtained without using the R4L approach, an error of −1 is produced

in this case. This error is eliminated by simply not clearing the hidden bit of MP to

0. No extra circuit is required since MP is computed directly as the explicit mantissa

with the hidden bit 1. As shown in Fig. 4.4a, since MP is computed independently,

the adder is saved for FPLM-1-r4. The simplified circuit designs for FPLM-2-r4 and

CLM-r4 of FP8 format are the same, as shown in Fig. 4.4b.
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Figure 4.4: The simplified multiplier designs for the FP8 format.
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Chapter 5

Performance Evaluation

In this chapter, the performance of the five proposed multipliers (FPLM-1, FPLM-

2, FPLM-1-r4, FPLM-2-r4, and CLM-r4) is evaluated by comparing them with the

conventional FP multiplier (FPM) and LAM [3], in terms of accuracy and circuit

performance.

5.1 Accuracy Evaluation

5.1.1 Error Assessment

Two error metrics are considered to evaluate the error characteristics of the proposed

FP LMs.

• The mean relative error distance (MRED) is the average value of all possible

relative absolute error distances.

• The average error (AE) is the average difference that can be positive or negative

between the exact and approximate products.

Four FP precision levels are considered for the evaluation of each multiplier: 32-

bit single-precision, 16-bit half-precision, Brain FP (bfloat16) and 8-bit FP (FP8)

format. The FP8 is chosen in the form of (1, 5, 2) bits for the sign, exponent and

mantissa since it was found to perform the best with respect to classification accuracy

after the simulation of using various FP8 formats [20]. The product obtained by the
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single-precision exact FP multiplier is used as the benchmark since the truncation of

mantissa bits inherently introduces errors for the 16-bit and 8-bit implementations.

A sample of 107 random cases from uniform and standard normal distributions (µ=0

and σ=1) were generated to obtain the results in Table 5.1. Note that the uniformly

distributed random cases are generated over the interval of [1, 2) for assessing the

errors introduced in the mantissa computation.

The results in Table 5.1 show that, for the single- and half-precisions, the FPLM-1 is

the most accurate design with the lowest MRED and |AE| for both two distributions.

For the bfloat16 format, FPLM-2-r4 achieves the smallest |AE| with respect to the

uniform distribution, while FPLM-1 is the most accurate for MRED. Compared to

the LAM, FPLM-1 performs up to 30.8% more accurately for the bfloat16 format

with respect to MRED, and achieves a smaller |AE| by up to 2.58 × 103 times for

single-precision. FPLM-2 achieves up to 20.1% smaller MRED and 70.5% smaller

|AE| for the bfloat16 format. The smaller |AE|s show the advantage of the double-

sided error distribution obtained for the proposed designs. Note that for the 32-bit

precision, the error metrics that are shown as identical have a difference less than

10−6. For the 16-bit precision, FPLM-1-r4 and CLM-r4 produce larger errors than

FPLM-1 and LAM, respectively, whereas FPLM-2-r4 is slightly more accurate than

FPLM-2. This is due to the relation between its error distribution and the bit-width,

as explained in the next section. For FP8, all of the multipliers produce large errors.

FPLM-2 is the most accurate multiplier, achieving up to a 16.1% smaller MRED and

up to 45.9% smaller |AE| than LAM.

5.1.2 The Relation between FP Precisions and Error Behav-
ior

According to Table 5.1, the comparison results are the same for 32- and 16-bit preci-

sions, while being different for the FP8 format. Fig. 5.1 shows the MREDs obtained

when varying the mantissa width for FP LMs and the FPM with the single-precision.
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Table 5.1: Error Metrics for the Multipliers

Multipliers Uniform Distribution Normal Distribution

Single-Precision

MRED |AE| MRED |AE|(×10−5)

FPLM-1 0.0288 3.2× 10−5 0.0288 0.83

FPLM-2 0.0368 0.0416 0.0373 1.09

FPLM-1-r4 0.0288 3.2× 10−5 0.0288 0.83

FPLM-2-r4 0.0368 0.0416 0.0373 1.09

CLM-r4 0.0384 0.0833 0.0381 1.24

LAM [3] 0.0384 0.0833 0.0381 1.24

Half-Precision

MRED |AE| MRED |AE|(×10−5)

FPLM-1 0.0289 0.0021 0.0310 0.81

FPLM-2 0.0365 0.0399 0.0394 1.10

FPLM-1-r4 0.0290 0.0043 0.0311 0.82

FPLM-2-r4 0.0362 0.0382 0.0392 1.10

CLM-r4 0.0397 0.0862 0.0416 1.27

LAM [3] 0.0391 0.0847 0.0409 1.26

Bfloat16

MRED |AE| MRED |AE|(×10−5)

FPLM-1 0.0302 0.0175 0.0300 0.73

FPLM-2 0.0348 0.0280 0.0361 1.16

FPLM-1-r4 0.0330 0.0351 0.0326 0.74

FPLM-2-r4 0.0341 0.0143 0.0359 0.98

CLM-r4 0.0488 0.1066 0.0485 1.45

LAM [3] 0.0436 0.0950 0.0433 1.32

FP8

MRED |AE| MRED |AE|(×10−5)

FPLM-1 0.2311 0.5626 0.2159 3.54

FPLM-2 0.1626 0.3750 0.1586 2.61

FPLM-1-r4 0.4367 1.0000 0.4232 8.69

FPLM-2-r4 0.3201 0.7500 0.3078 5.74

CLM-r4 0.3201 0.7500 0.3078 5.74

LAM [3] 0.1914 0.4375 0.1891 4.83

43



The MREDs for widths decreasing from 10 bits to 2 bits are presented due to the

small accuracy drop from 23 bits to 11 bits. The bars and the lines with the marker

show the MREDs for the FPM and all FP LMs, respectively. For the FPM, by con-

sidering single-precision as the baseline format, the reduction of the bit-width leads

to accuracy loss in the product. The FP LMs only introduce errors in the mantissa

computation and still computes an accurate exponent of the product. Therefore, we

investigated the relation between the mantissa width and the error behavior with the

same exponent width as in the single-precision, i.e., 8 bits. As shown in Fig. 5.1,

the line with the circle marker shows the MREDs produced by the FPM for the uni-

form distribution. The lines with the triangle marker show the MREDs for the five

proposed FPLMs and the LAM with respect to the uniform distribution. The FPM

produces insignificant errors when the mantissa width is reduced from 10 bits to 7

bits, whereas its MRED greatly increases when the mantissa width is smaller than

7 bits. The MRED rapidly increases for all the LMs with decreases in the mantissa

width from 6 bits to 2 bits. The FPLM-1-r4 has the largest error increase and the

FPLM-2 becomes the most accurate, which produces smaller errors than the FPM

when the mantissa width is lower than 5 bits.

The average multiplication results of 104 uniformly distributed random numbers

within [1, 2) are plotted with respect to the reduced mantissa widths, as shown in

Fig. 5.2 and Fig. 5.3 for 7 bits and 4 bits to 2 bits due to the limit in space. To

clarify the trends, the average values of products for each of the 50 samples were

computed after arranging the products in the ascending order. As shown in 5.2 with

decreasing mantissa width, the FPM generates increasingly smaller products (see

the blue dots) compared to the single-precision baseline results (see the black dots).

Meanwhile, since the LAM always results in smaller products (see the cyan plus sign)

than the FPM, the error distances between the LAM and the baseline result will

increase with a decreased mantissa widths. However, the FPLM-1 (see the green

circles) and the FPLM-2 (see the orange squares) can produce both underestimated
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and overestimated products. When the mantissa width is lower than 7-bit, the over-

estimated products have smaller error distances to the baseline products compared

to the underestimated products, which eventually reduces the overall error distances.

This trend is prominent especially when the mantissa width is from 4-bit to 2-bit, as

shown in Fig. 5.2(d) to Fig. 5.2(f), where the overestimated products are closer to the

baseline products. The FPLM-2 is more accurate when the mantissa width is from

5-bit to 2-bit since it produces a larger number of larger overestimated products than

FPLM-1. FPLM-1-r4, FPLM-2-r4, and CLM-r4 show similar error behavior and

smaller products compared to FPLM-1, FPLM-2, and LAM, respectively, whereas

smaller products lead to larger error distances to the baseline products. Particularly,

the error for FPLM-1-r4 rapidly rises when the mantissa width is 4-bit and becomes

larger than CLM-r4 from 3-bit to 2-bit due to the increasing error distances for the

larger inputs. When the mantissa width is larger than 6-bit, the FPLM-2-r4 is more

accurate than the FPLM-2 since it computes a larger number of smaller errors for

overestimated products. However, when the mantissa width is smaller than 7-bit, the

error caused by the width truncation becomes dominant, leading to a larger number

of underestimated products compared to the baseline results.

When the mantissa width is only 2-bit, the error behavior of the proposed mul-

tipliers is different from the LAM due to the additional error caused by the limited

mantissa width. The truncation of the LSB for the FPLM-1 and the FPLM-2 intro-

duces a relatively large error during the logarithm approximation, as shown in Fig.

5.2(f). When the mantissa is 1.75, its logarithm approximation is -0.25 and 0.75 for

FPLM-1 and FPLM-2, respectively, which are the same as their approximate loga-

rithm for the mantissa of 1.5. As a result, the multiplications for the mantissa of 1.75

produce the same results as that for the mantissa of 1.5. Due to the anti-logarithm

approximation, the FPLM-1 produces more products that have the same value as

the FPLM-2, as shown in Fig. 5.2(f). This leads to a significant error increase for

FPLM-1 when the mantissa width is 2-bit. As shown in Fig. 5.3(f), the FPLM-1-r4
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and FPLM-2-r4 have similar error behaviors, but with larger error distances. Due

to many same products computed by the FPLM-1-r4, its underestimated errors are

large when the mantissa width is 2-bit. The FPLM-2 and the CLM-r4 compute the

same products due to the extremely small mantissa width.
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Figure 5.1: MREDs of the multipliers as a function of the mantissa width.
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(a) For 7-bit mantissa.
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(b) For 6-bit mantissa.
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(c) For 5-bit mantissa.
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(d) For 4-bit mantissa.
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(e) For 3-bit mantissa.
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(f) For 2-bit mantissa.

Figure 5.2: Average product of each sample set (50 samples per set) for FPLM-1,
FPLM-2, LAM [3] and FPM with reduced mantissa width (from 7-bit to 2-bit)

compared to the single-precision FPM (mantissa width of 23-bit).
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(a) For 7-bit mantissa.
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(b) For 6-bit mantissa.
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(c) For 5-bit mantissa.
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(d) For 4-bit mantissa.
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(e) For 3-bit mantissa.

0 20 40 60 80 100 120 140 160 180 200

Sample sets (50 samples per set)

1

1.5

2

2.5

3

3.5

4

A
v
e
ra

g
e
 m

u
lt
ip

lic
a
ti
o
n
 p

ro
d
u
c
t 
p
e
r 

s
a
m

p
le

 s
e
t

FPLM-1-r4 *(q=2)

FPLM-2-r4 *

CLM-r4 *

FPM *

FPM (q=23)

(f) For 2-bit mantissa.

Figure 5.3: Average product of each sample set (50 samples per set) for FPLM-1-r4,
FPLM-2-r4, CLM-r4 and FPM with reduced mantissa width (from 7-bit to 2-bit)

compared to the single-precision FPM (mantissa width of 23-bit).
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5.2 Hardware Evaluation

The five proposed FPLMs and the LAM in [3] were implemented in Verilog and an

FPM was obtained using the Synopsys DesignWare IP library (DW fp mult). All of

the designs were synthesized using the Synopsys Design Compiler (DC) for STM’s

CMOS 28-nm process with a supply voltage of 1.0V and a die temperature of 25◦C.

All of the designs in the four precision formats were evaluated at a clock frequency

of 250-MHz.

As shown in Table 5.2, for the 32-bit and 16-bit implementations, the proposed

CLM-r4 is the most energy-efficient and smallest design. It incurs a smaller power-

delay product (PDP) by 68× and a smaller area by 18× compared to the FPM for

the single-precision implementation. The other four proposed designs have a larger

hardware cost compared to the LAM while being more accurate. For the FP8 format,

FPLM-1-r4 achieves a 19% less PDP and a 6.8% smaller area compared to LAM. The

FPLM-2 consumes slightly smaller power and area compared to LAM while being 16%

more accurate. FPLM-2-r4 and CLM-r4 are also more energy-efficient and smaller

than LAM. It is important to note that, according to [34], the power of the accurate

FP multiplier is dominated by the mantissa multiplication, accounting for over 80%,

and the rounding unit for nearly 18%. Therefore, the reduction in power and area can

be largely attributed to the elimination of the mantissa multiplier and the rounding

unit in the proposed designs.
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Table 5.2: Circuit Measurements of the FP Multipliers

Power (µW ) Area (µm2) Delay (ns) PDP (fJ)

Single-Precision

FPM 643.4 2666 3.54 2277.6

FPLM-1 30.8 240.5 2.36 72.8

FPLM-2 25.8 211.9 2.20 56.9

FPLM-1-r4 29.9 234.1 2.27 67.9

FPLM-2-r4 22.8 198.6 2.11 48.2

CLM-r4 17.3 146.7 1.92 33.2

LAM 17.7 149.3 1.98 35.0

Half-Precision

FPM 157.5 868.8 3.03 477.2

FPLM-1 15.1 119.9 1.25 18.9

FPLM-2 13.4 108.3 1.05 14.1

FPLM-1-r4 14.2 113.4 1.18 16.7

FPLM-2-r4 12.7 103.1 0.98 12.4

CLM-r4 9.5 78.6 0.91 8.7

LAM 9.9 81.2 0.97 9.6

Bfloat16

FPM 107.8 724.6 2.90 312.6

FPLM-1 15.0 123.3 1.23 18.5

FPLM-2 14.1 115.7 1.05 14.8

FPLM-1-r4 14.1 116.8 1.16 16.3

FPLM-2-r4 13.4 110.4 0.98 13.1

CLM-r4 11.2 93.8 0.91 10.2

LAM 11.6 96.4 0.97 11.2

FP8

FPM 41.0 327.5 2.10 86.14

FPLM-1 7.25 55.1 0.49 3.55

FPLM-2 7.14 54.1 0.48 3.42

FPLM-1-r4 6.73 50.9 0.40 2.69

FPLM-2-r4 6.81 52.0 0.40 2.72

CLM-r4 6.81 52.0 0.40 2.72

LAM 7.23 54.6 0.46 3.32
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Chapter 6

Application Evaluations

6.1 JPEG Compression

6.1.1 Experimental Setup

The five proposed FP LMs are evaluated in JPEG compression for the four precision

levels. The required matrix multiplications in the DCT and IDCT are implemented

using the FP LMs. The quality of the compressed image is assessed by comparing it

with the original image using the peak signal to noise ratio (PSNR).

The PSNR is based on the mean-square error (MSE), which represents the cumu-

lative error between the compressed and the original image, as given by:

PSNR = 10 log10(
R2

MSE
), (6.1)

where R is the maximum fluctuation in the input image data. A higher PSNR value

indicates a higher image quality.

The JPEG compression of a 256×256-pixel “Lena” image is performed with the

standard quantization matrix, Q, as given by:
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Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)

The compression quality factor is set to 50 in the experiment.

6.1.2 Evaluation Results

The reconstructed images using different FP multipliers for the four precision levels

are shown in Table 6.1 and the PSNRs are reported in Table 6.2.

As can be seen in Table 6.1, for 32-bit and 16-bit precision formats, images pro-

cessed by FPLM-1, FPLM-2, FPLM-1-r4, and FPLM-2-r4 show similar quality as

the accurate result, while images compressed using the LAM and CLM-r4 show a

significant loss of quality. This indicates that the double-sided error distributions

used in FPLM-1, FPLM-2, FPLM-1-r4, and FPLM-2-r4 can notably reduce the error

accumulation in the multiple matrix multiplications in the DCT and IDCT. For the

FP8 format, all reconstructed images show considerably lower quality due to the large

errors produced by all of the FP multipliers. The PSNRs shown in Table 6.2 also

confirm these results. Specifically, among the FP LMs, FPLM-1 achieves the highest

PSNR for the single- and half-precisions, followed by FPLM-1-r4; FPLM-2 performs

the best for the bfloat16 and FP8 formats, followed by FPLM-1. For 32-bit and 16-

bit precisions, images processed by FPLM-1, FPLM-2, FPLM-1-r4, and FPLM-2-r4

show similar qualities as the accurate result, while images compressed using the LAM

and CLM-r4 show significant losses in quality. This suggests that the double-sided

error distributions produced by FPLM-1, FPLM-2, FPLM-1-r4, and FPLM-2-r4 can

notably reduce error accumulation in the multiple matrix multiplications of the DCT
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and IDCT. For the FP8 format, all reconstructed images show considerably lower

quality due to the large errors produced by using FP LMs.

Overall, compared with LAM, the proposed FPLM-1, FPLM-2, FPLM-1-r4, and

FPLM-2-r4 designs produce higher image qualities with a larger PSNR by up to 4.7dB;

CLM-r4 offers higher energy and area savings with a very similar image quality. It

is also shown that the obtained PSNRs follow the error analysis results for the FP

LMs.

6.2 Neural Network Applications

6.2.1 Experimental Setup

The FP LMs are used in the training phase of a multi-layer perceptron (MLP) to

illustrate their performance in NNs with respect to the classification accuracy and

hardware performance. They are evaluated against the FPM considered as the base-

line arithmetic unit, and the LAM [3]. In the experiments, the exact multiplication is

replaced with approximate designs in both the training and inference phase by using

the Pytorch framework [43]. The same multiplier is used both in the training phase

and in the inference engine. Specifically, for each neuron, the approximate design is

used to compute its output in the forward propagation, and the gradients of its weight

and input in the backward propagation; the gradient of its output is computed by

using exact multiplier, so the partial derivative operation is not modified in this case.

It is noted that the training process is affected by many factors, which are explored

for determining the training procedure for our experiments as discussed below.

Datasets and Network Models

Three classification datasets, fourclass [44], HARS [45] and MNIST [46], were used for

the evaluation. A small MLP network was used in training for the fourclass dataset.

The MLP networks used for the HARS and MNIST are (561, 40, 6) and (784, 128,

10) models, respectively. The activation function for the hidden layer is the Rectified
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Table 6.1: JPEG compression using FP multipliers for the four precisions.

Single-Precision Half-Precision Bfloat16 FP8

FPM

FPLM-1

FPLM-2

LAM

FPLM-1-r4

FPLM-2-r4

CLM-r4
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Table 6.2: PSNR (dB) for JPEG Compression using FP LMs with Different
Precisions

Single-Precision Half-Precision Bfloat16 FP8

FPM 33.92 33.91 33.71 17.43

FPLM-1 31.91 31.90 31.56 17.39

FPLM-2 31.86 31.87 31.44 17.48

FPLM-1-r4 31.91 31.90 31.15 15.50

FPLM-2-r4 31.86 31.87 30.99 15.77

CLM-r4 27.22 27.16 26.17 15.77

LAM 27.22 27.17 26.60 17.43

Linear Unit (ReLU) function; for the output layer is the sigmoid function and the

softmax function for the fourclass and the other two datasets, respectively. The

ReLU is considered here since it is simple to implement and mitigates the vanishing

gradients problem [47]. The cross entropy loss function is adopted for calculating the

loss [48].

Hyperparameter Configurations

To fairly evaluate the effect of approximate multiplication on training, for each dataset

the same training procedure is used for all the models using different FP multipliers.

The optimizer, i.e., stochastic gradient descent [41], with default parameters and

the initialization method that is default in the Pytorch framework, is utilized with

no learning rate decay, the same splits for train/validation/test set sizes, the same

maximum number of training epochs, and the same early stopping criterion. An NN

was trained by employing approximate multipliers with four FP precisions and using

the same training procedure. In all cases, the mini-batch training strategy [40] is

used; the batch size for the MNIST, HARS and fourclass are set to 128, 300 and 100,

respectively. In addition, five trials were done using different random initialization

for each training simulation.
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Early Stopping Criterion

The stopping criterion has an important impact on obtaining the trained parameters,

i.e., weights and biases, and thereby affects the classification accuracy. The selection

of the early stopping criterion is usually in an ad-hoc fashion and significantly involves

the consideration of a trade-off between the training time and generalization error [49].

In order to obtain optimal generalization performance and to avoid overfitting, an

early stopping strategy terminates the training if the validation loss does not improve

for a number of (t) epochs or the set maximum number of epochs is reached. The

trained parameters is then obtained at the epoch that achieves the lowest validation

loss. The maximum number of training epochs for the three datasets are set to

30k epochs; at each epoch, the entire training set is shuffled. Note that the actual

training time is much shorter due to the early stopping criterion. We exploited this

early stopping criterion for adapting to each dataset and each precision format since

the validation loss can be different in various cases with respect to the number of

epochs and the local minima before reaching the global minimum [49]. We observed

in our experiment that, given t < 100, the early stopping criterion is likely to be

satisfied for the three datasets whereas the training is stuck in a local minimum.

Among the three datasets, it is also observed that the dataset of a smaller size is

easier to get stuck. Therefore, based on our observation, t is set to 100, 200, and 1000

for MNIST, HARS, and fourclass, respectively, which helps achieve an acceptable

trade-off between training time and validation loss.

6.2.2 Evaluation Results

Classification Accuracy Analysis

The benchmark NNs that use FPMs for training are considered as baseline models.

The comparison of the average classification accuracy of five trials is shown in Table

6.3 with the baseline NN classification accuracies for the four precisions to indicate

the relative approximation error of the FP LMs. The result of each trial is shown in
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Fig. 6.1, Fig. 6.2, and Fig. 6.3 for the MNIST, HARS and Fourclass, respectively.

No FP LM dominates across all the datasets and the precision formats. For each

trial, the classification accuracy fluctuates for each specific multiplier for different

datasets, FP precision formats, and random initialization. However, the differences

are subtle, especially for 32-bit and 16-bit precisions. As shown in Fig. 6.1(a)-(c) and

Fig. 6.2(a)-(c) For each trial, the difference in classification accuracy is < 1% in most

cases for these multipliers. Considering the average results, as shown in Table 6.3, the

difference is even smaller (< 0.4%) for MNIST and HARS. This average difference

is slightly larger for fourclass (< 2%) in the 32-bit and 16-bit precision formats. For

the FP8 format, the FPLM-1-r4 degrades the most across all the datasets due to its

large error, which also leads to the largest accuracy difference of 2% − 4%. Among

other multipliers, the difference is smaller than 2% for all the datasets. Overall, the

evaluation result indicates that NNs using the five proposed multipliers and LAM

can lead to very close classification accuracies for MNIST and HARS with the 32-bit

and 16-bit precision formats, while the accuracies of classifying a small dataset, i.e.,

fourclass, or using the FP8 format have slightly larger differences.

For the MNIST dataset, CLM-r4 achieves the highest average classification accu-

racy in the single-precision and bfloat16 formats, followed by FPLM-2-r4 and FPLM-

2, respectively. The FPLM-2-r4 performs the best in the half-precision format, fol-

lowed by the FPLM-1. It is interesting to observe that all of the multipliers slightly

improve the classification accuracy for the single-precision format. For the HARS,

the FPLM-1 performs the best at single- and half-precision, while CLM-r4 results

in the best accuracy in the bfloat16 format. For fourclass, the FPLM-1 is the most

accurate in the single-precision and the bfloat16 formats, while CLM-r4 and LAM

achieves the same best accuracy in the half-precision format. For the FP8 format,

the FPLM-2 outperforms the other multipliers for both MNIST and fourclass while

it improves the classification accuracy for all the datasets; the FPLM-1 achieves the

best for HARS with an improved accuracy.
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The classification accuracy is not strictly consistent with the error analysis results

for the FP LMs. It indicates that a smaller multiplication error does not always lead

to a higher classification accuracy. However, for the FP8 format, the performance

of using different LMs loosely follows the error analysis results for the multipliers in

Table 5.1. This is possible since the iterative computation in the training process

including forward and backward propagations depends on many different factors.

These factors vary for each dataset, network structure and random initialization.

Hardware Evaluation

An artificial neuron was implemented to assess the overall hardware cost of NNs. The

FP adder used in the neuron was obtained using the Synopsys DesignWare IP library

(DW fp add).

The simulation results in Table 6.4 are obtained at a clock frequency of 125 MHz. It

is shown that a neuron using the CLM-r4 dissipates the least energy with the smallest

area for the 32-bit and 16-bit precisions, which is up to 6.1× smaller in energy with

an area up to 6.2× smaller than the neuron using FPMs. For the FP8 format, the

FPLM-1-r4 is the most energy-efficient and the smallest design while the FPLM-2,

FPLM-2-r4, and CLM-r4 all perform better than the LAM. In general, the hardware

improvements are smaller than that in Table 5.2 since they are limited by the FP

adder, which has larger hardware overhead.
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Figure 6.1: Comparison of the classification accuracy of the MNIST dataset with
LMs for four precision levels: a negative percentage means a decrease and a positive

percentage means an increase in the accuracy with respect to using accurate
multipliers.
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(c) For bfloat16 format.
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Figure 6.2: Comparison of the classification accuracy of the HARS dataset with
LMs for four precision levels: a negative percentage means a decrease and a positive

percentage means an increase in the accuracy with respect to using accurate
multipliers.
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Figure 6.3: Comparison of the classification accuracy of the Fourclass dataset with
LMs for four precision levels: a negative percentage means a decrease and a positive

percentage means an increase in the accuracy with respect to using accurate
multipliers.
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Table 6.3: Average classification accuracy of three datasets with LMs for four
precision levels

Single-Precision Half-Precision Bfloat16 FP8

MNIST

FPM 97.85 96.75 97.91 96.52

FPLM-1 97.88 96.62 97.88 96.28

FPLM-2 97.89 96.37 97.90 96.55

LAM 97.87 96.46 97.89 96.52

FPLM-1-r4 97.89 96.55 97.87 94.34

FPLM-2-r4 97.91 96.68 97.89 96.18

CLM-r4 97.93 96.59 97.91 96.18

HARS

FPM 96.07 95.52 96.01 94.38

FPLM-1 95.96 95.34 95.96 94.47

FPLM-2 95.67 95.05 95.71 93.97

LAM 95.94 95.22 95.99 94.38

FPLM-1-r4 95.78 94.98 95.79 90.94

FPLM-2-r4 95.59 95.11 95.65 93.80

CLM-r4 95.94 95.29 96.00 93.80

Fourclass

FPM 99.42 99.54 99.42 92.48

FPLM-1 98.96 98.38 99.19 93.29

FPLM-2 97.68 98.61 97.11 93.64

LAM 98.49 99.19 98.49 92.48

FPLM-1-r4 98.84 98.03 98.72 89.82

FPLM-2-r4 97.57 98.49 98.15 91.67

CLM-r4 98.49 99.19 98.49 91.67
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Table 6.4: Circuit Assessment of the Artificial Neuron

Power(µW ) Area(µm2) Delay(ns) PDP(fJ)

Single-Precision

FPM 773.3 6362.35 7.70 5954.41

FPLM-1 155.6 1200.49 7.63 1187.22

FPLM-2 149.4 1148.27 7.43 1110.04

FPLM-1-r4 153.3 1180.58 7.58 1162.01

FPLM-2-r4 147.1 1127.71 7.29 1072.35

CLM-r4 134.8 1022.93 7.17 966.51

LAM 135.3 1025.87 7.24 979.57

Half-Precision

FPM 207.5 2025.14 6.34 1315.55

FPLM-1 75.97 554.39 4.58 347.94

FPLM-2 74.41 533.5 4.37 325.17

FPLM-1-r4 73.29 536.27 4.46 326.87

FPLM-2-r4 71.93 517.67 4.26 306.42

CLM-r4 67.68 472.3 4.17 282.22

LAM 69.49 485.52 4.28 297.41

Bfloat16

FPM 144.2 1075.11 6.53 941.62

FPLM-1 59.18 537.09 4.45 263.35

FPLM-2 57.93 522.4 4.27 247.36

FPLM-1-r4 57.69 526.32 4.38 252.68

FPLM-2-r4 56.93 514.89 4.21 239.67

CLM-r4 54.17 483.23 4.13 223.72

LAM 54.83 486.17 4.20 230.28

FP8

FPM 56.64 760.18 4.48 253.74

FPLM-1 29.64 256.87 2.91 86.25

FPLM-2 28.48 251.65 2.87 81.73

FPLM-1-r4 25.03 221.29 2.71 67.83

FPLM-2-r4 27.79 240.55 2.79 77.53

CLM-r4 27.79 240.55 2.79 77.53

LAM 29.97 256.55 2.86 85.71
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Chapter 7

Conclusions

This thesis starts with an introduction to the growing challenge for computation-

intensive applications and the motivation that uses approximate computing tech-

niques for designing hardware-efficient multipliers. Approximate multiplier designs

are reviewed with a discussion of computationally-demanding arithmetic operations

in image processing and NN applications in Chapter 2.

In Chapter 3, two novel approximation methods are proposed for the logarithm

and anti-logarithm conversions. Double-sided error distributions are produced in

both approximation methods, which helps to reduce the error accumulation in MAC

operations. A detailed analysis of the approximation error is presented for the pro-

posed two approximation methods, which shows an analytical scheme for examining

errors in logarithm approximation.

The circuit designs for the proposed FP logarithmic multipliers are discussed in

Chapter 4. The circuits are optimized for the approximation methods and the radix-

4 logarithm is used to further reduce the hardware complexity. In Chapter 5, the

performance evaluations show that the five proposed multipliers provide different

trade-offs between accuracy and hardware performance. For the 32-bit and 16-bit

precisions, the proposed FPLM-1 multiplier is the most accurate design with up to

30.8% smaller MRED and 103× smaller average error compared to LAM. CLM-r4 is

the most energy-efficient multiplier and the smallest design with up to 68× smaller
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PDP and up to 18× smaller area compared to the conventional FP multiplier. For

the FP8 format, FPLM-1-r4 is the most energy-efficient and the smallest design.

From the experimental results, the double-sided error distribution benefits from error

cancellation in low-precision computations.

Finally, the use of the proposed FP logarithmic multipliers in image processing

and NN applications is explored in Chapter 6. Using the proposed FP logarithmic

multipliers in JPEG image compression achieves higher image quality than LAM, with

a larger PSNR by up to 4.7dB. Compared to NNs implemented using a conventional

FP multiplier, the evaluation for several benchmark NNs shows up to 6.1× and 6.2×

reduction in energy consumption and area cost, respectively, while achieving very close

classification accuracies. Moreover, higher classification accuracies can be obtained

by using the proposed designs compared to the use of the conventional FP multiplier.

We also found that no single FP logarithmic multiplier performed the best across all

the datasets with different precisions. Therefore, designing FP logarithmic multipliers

from the application’s perspective could be more efficient. To select an appropriate FP

logarithmic multiplier for an NN application, the impact of FP logarithmic multipliers

on the training process of NNs remains an important topic for future research.
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