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Abstract

In locally advanced cervical cancer (LACC), brachytherapy (BT) remains the

gold standard for boosting to curative doses in radiotherapy. Progress to-

wards balancing target and routine tissue dosimetry for better clinical out-

comes has been made possible by magnetic resonance imaging (MRI)-guided

imaging data for treatment planning and by improving traditional BT ap-

plicator geometry. However, further evolving the original “one size fits all”

approach towards truly personalized BT delivery requires improvements along

the entire BT care pathway. From the pre-insertion applicator selection to the

post-insertion treatment plan optimization, many factors need to be optimized

for each patient for the best possible tumour and morbidity outcomes. The

expanding collection and sharing of data, increased computational power in

machine learning (ML) and artificial intelligence (AI), deep learning (DL) are

rapidly transforming society, and offer the potential for similar transformation

within health care. The success of these algorithms is founded on their judi-

cious capability for detecting complex patterns even in heterogeneous datasets.

This thesis aims to develop ML and DL-based models and free-form de-

formation methods for building predictive models to guide BT processes and

decisions for consistently better personalization in LACC. First, an automated

segmentation algorithm is proposed to delineate the uterus from the back-

ground on MRI using a deep convolutional neural network (CNN) architecture

(Inception-V4) along with auto-encoders. After automated uterus segmenta-
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tion, a modified version of another deep CNN model i.e. U-net is utilized

to predict the at-BT uterus shape from pre-BT MRI. Finally, a shape-based

non-rigid registration (free form deformation) algorithm is proposed to mea-

sure or quantify the amount of complex and large deformations of the uterus

structure due to BT applicator insertion. The study deals with the very chal-

lenging and complex problem of predicting the large anatomical deformations

from pelvic MR-images due to BT applicator insertion. The proposed method

achieved an average Dice Coefficient of 94.8% and a Hausdorff distance of 3.06

mm, whereas the U-net yielded 92.4% and 6.7 mm for the Dice score and

Hausdorff Distance metrics, respectively in the uterus segmentation task. The

quantitative evaluations demonstrated that the proposed method performed

significantly better than U-net in terms of both Dice Coefficient and Hausdorff

Distance. After that, a pre-trained modified U-net is proposed to predict the

at-BT uterus position from only the pre-BT MRI. This method yielded an

average Dice score of 89.5% and a Hausdorff distance of 3.6 mm in predicting

the uterine deformation automatically. Large anatomy deformations before

and at the time of BT insertion were observed for most patients due to the

insertion of the BT applicator. In order to quantify this deformation, a free-

form deformation model-based non-rigid registration method is proposed. The

applicator’s presence introduces a median uterine surface point-to-point dis-

placement of 25.0 [10.0 - 62.5] mm and a median uterine cavity point-to-point

displacement of 40.0 [12.0 - 68.0] mm from the pre-BT position.

The challenge in implementing this algorithm was the inter-patient anatom-

ical dissimilarity and extreme intra-patient uterine deformation from pre-BT

to at-BT in the dataset. Increasing the size of our training dataset, with

the inclusion of more heterogeneous images with anatomical variability, will

improve the prediction accuracy of this DL-based algorithm. Our proposed
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DL-based model, despite being trained on heterogeneous and complex defor-

mations, can successfully predict uterine distortion automatically due to ap-

plicator insertion using only the pre-BT MRI, which can guide the clinicians

in selecting the most suitable applicator component and configuration ahead

of the actual insertion procedure. These promise better, faster, and more

streamlined clinical/technical decision-making before BT applicator insertion

and plan optimization, potentially enabling more consistent application of BT

personalization for LACC and improved dosimetric outcomes.
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Chapter 1

Introduction

With an estimated worldwide incidence of 570,000 cases and 311,000 deaths

in 2018, cervical cancer ranks as the fourth most frequently diagnosed cancer

and the fourth leading cause of cancer death in women [1]. It is projected that

1,450 cases of cervical cancer will be diagnosed in Canada in 2022, making

it the 15th most commonly diagnosed cancer among females in Canada [2].

More than 70% of Stage 1 cervical cancers diagnosed in females are in the age

group between 18–39 years [1]. Globally, cervical cancer management is still

a challenge. Despite the availability of screening, vaccination, and cutting-

edge treatment technologies, the survival rate is from this disease is poor in

many parts of the world. The first line of treatment for cervical cancer is

surgery [3]. In cases where surgery is not possible, the treatment for locally

advanced cervical cancer (LACC) involves a multimodal approach that in-

cludes a combination of external beam radiotherapy (EBRT) with concurrent

chemotherapy followed by brachytherapy (BT) [4, 5]. The EBRT treatment

is applied to the pelvic lymph nodes, parametria, and primary tumour, to a

dose adequate to control the microscopic disease. EBRT aims x-rays (radia-

tion source) at the cancer from a machine outside the body, When EBRT is
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of a radioactive source very close to or inside the tumour to help deliver a

high radiation dose to the tumour. In North America, BT for cervical cancer

consists of two approaches: high-dose-rate (HDR) treatments delivered daily

or weekly) or pulsed-dose-rate (PDR), a low-dose hourly treatment delivered

over a few days. Both treatments appear to be equivalent in terms of sur-

vival outcomes based on existing retrospective and prospective studies [11,12].

BT for cervical cancer can be performed using intracavitary (IC), intersti-

tial (IS), or a combination technique (IC/IS). Figure 1.2 (a and b) shows the

two most commonly used IC/IS applicators. The vaginal component, which

mainly includes the ovoids (Figure 1.2 (a and c)) and ring (Figure 1.2 (b

and d)), sits in the upper part of the vagina, i.e., close to the cervix, and

the tandem passes through the internal orifice of the cervix uteri (os) into

the intrauterine canal (Figure 1.2 (c and d)). The radioactive source travels

through these applicators to treat the upper vagina, cervix, and uterus [4]. IS

catheters (small tubes) are placed in and around the residual disease, anchored

using the vaginal component, to achieve better lateral dose coverage [3]. The

choice of the applicator and the technique depends primarily on the disease

extent and patient anatomy. A treatment strategy is based on information

obtained from imaging, mainly magnetic resonance imaging (MRI), acquired

post-EBRT [13,14].

One of the technical advancements in cervical cancer treatment involves

using MRI guidance for better visualization of the tumour and surrounding

critical structures. This leads to better dose optimization and could improve

treatment outcomes. Two MRI scans are performed: one close to or at the end

of EBRT (pre-BT) and one after BT applicator insertion (at-BT) as shown

in Figure 1.3. Before selecting and inserting an applicator, the physicians

make several educated predictions, mainly based on the pre-BT MR images,
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Figure 1.2: Figure shows two commonly used Intracavitary/Interstitial IC/IS
applicators: (a) tandem and ovoid and (b) tandem and ring, both with IS
option (Elekta, Stockholm, Sweden). (c) and (d) show the placement of these
two applicators in patients, respectively.

to determine the most plausible uterine/cervix deformation resulting from a

given intrauterine tandem. However, with large distortions caused by the

applicators, such speculation to guide implant strategy is far from accurate and

cannot systematically prevent suboptimal dosimetry post-insertion. Hence,

this thesis aims to build predictive models to guide BT processes and decisions

and improve BT’s efficiency and quality in LACC.

This thesis deals with the challenging problem of using deep-

learning for predicting the large anatomical deformations from
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Figure 1.3: MRIs taken (a) prior to BT (pre-BT) applicator (intrauterine
tandem and intravaginal ring; middle) insertion and (b) large/ complex uterine
deformation post-applicator insertion (at-BT).

pelvic MR images due to the insertion of a BT applicator to guide

technical/clinical decisions in LACC BT.

The large and complex deformations similar to Figure 1.3 cause prob-

lems for most intensity-based registration methods. In particular, the liter-

ature includes very few investigations of deformable image registration (DIR)

procedures to handle uterus deformation for defining new dose accumulation

models [13, 15, 16]. Deformations observed during EBRT and BT are often

more unpredictable and challenging for DIR. Some intensity-based registra-

tion methods can register organs with such large deformations with the help

of manually or automatically segmented MR images [17]. Studies have demon-

strated that feature-based registration methods can also register large defor-

mations in the abdominal and pelvic regions. However, none of the existing

registration methods considered sliding between tissues [18,19]. This complex

problem can be simplified by aligning segmented tissues separately and gener-

ating a transformed dose distribution for each tissue independently. However,

handling multiple-dose distributions for one treatment is not practical and not
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supported by the treatment planning systems [20].

Machine learning (ML) techniques are used in various aspects of medicine,

including radiation oncology. Ample evidence from recent publications ex-

plores its utility and future use in EBRT [21, 22]. ML has been applied for

BT procedures ranging from decision-making to treatment completion. ML

techniques have improved efficiency and accuracy by reducing human errors

and saving time in certain aspects. Besides direct use in BT, ML contributes

to contemporary advancements in radiology and associated sciences that can

affect BT decisions and treatment. Existing imaging-related studies using Ar-

tificial Intelligence (AI) and Deep Learning (DL) can generally be divided into

image enhancement, image registration, and image segmentation tasks in med-

ical imaging. ML techniques may consolidate it further by reducing human

effort and time. Prospective validation over more extensive studies and the

incorporation of ML for a larger patient population would help improve the

efficiency and acceptance of BT. The need for developers and researchers to

rigorously validate ML-based tools and models, for users to understand how

to operate them appropriately, and for organizations to develop guidelines for

their use and maintenance is essential [23, 24].

Manual segmentation in regions without clear organ boundaries is com-

plex, tedious, and time-consuming for clinicians; hence the need for automated

delineation of the areas is of great interest. This study proposes a novel au-

tomated segmentation approach to delineate the uterus from MRI using a

deep convolutional neural network (CNN) architecture. The proposed method

incorporates autoencoder algorithms to detect the segmentation contours di-

rectly from the pre-BT MR images. Previous unsupervised approaches, such

as principal component analysis using linear reconstruction [25], are unsuitable

since they cannot preserve the highly nonlinear relationships when projected
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to low-dimensional space. The proposed automated segmentation algorithm

using autoencoders could be used for segmenting the closed region as well as

open regions or open contours [26]. After segmenting the uterus automati-

cally by CNN, the uterine deformation is predicted using a modified version of

U-Net model. We proposed a novel approach to predict the deformed uterus

structure using deep learning: a problem that has not yet been proposed in any

of the studies before. This thesis also proposes a shape-based nonrigid regis-

tration method to handle complex and large deformations in the cervix-uterus

structure for LACC patients treated with BT. The uterus, uterine canal, os,

and vaginal canal were segmented manually on both the pre-BT MRI and at-

BT MRI. As the BT applicator is inserted through the vagina into the uterus,

both get deformed post-applicator insertion (i.e., at-BT). One of the main

aims of this study is to predict this deformation. To achieve this, we must

accurately register structures like the uterus, uterine canal, and vaginal canal

on the pre-BT and at-BT images.

This study was performed on paired pre-BT and at-BT MRI im-

ages from 120 LACC patients treated with EBRT, followed by a BT

boost. The ultimate goal of this work is to develop a fast and con-

sistent method that would allow for the prediction of the geometric

changes experienced by the uterus in cervical cancer patients due

to the BT applicator insertion.

1.1 Motivation

The main aim of radiation therapy (RT) is to deliver a clinically effective dose

to the target while minimizing the damage to the surrounding healthy tis-

sues. Medical image processing is an integrated part of patient management
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in modern RT. Image registration is used to find the spatial correspondence

mapping between two image sets acquired at different times throughout the

treatment [27, 28]. Accurate and reliable image registration techniques can

improve the patient setup, estimate the dose delivered, and assess the possible

anatomical deformations during the treatment. Fast image registration and

organ deformation evaluation is required to improve the radiotherapy treat-

ment for cervical cancer patients [29]. However, registration of images in the

pelvic region is very challenging due to the extreme organ displacements due

to the insertion of the BT applicator and the large differences in bladder and

rectum filling and positions during EBRT [30]. Several methods can handle

the large deformations in the pelvic area [17, 18].

During cervical cancer treatment, target (tumor) volumes change position

and shape due to organ motion, tumor regression, patient positioning, and

applicator insertion in EBRT and BT. To address this challenging task, in-

novative deep learning (DL)-driven method was developed to predict uterine

shape and location when deformed from its natural anatomy by the presence

of a BT applicator. This technique uses only the pre-BT MRI - a problem that

has not been reported by any other study.

Symmetric image registration methods were used to register intensity-

manipulated images of prostate cancer patients, but their extension to images

of cervical cancer patients is limited by the complexity and the large magnitude

of uterus deformation [31].

Auto-contouring of different organs of interest aims to reduce delineation

time and effort and to improve inter-observer consistency. Generating contours

directly from deep learning techniques has emerged as a promising method

of addressing automatic segmentation. DL-based contouring typically trains

a convolutional neural network (CNN) directly from the data without any
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need to identify the image features. Improved computing power and training

of neural networks have made DL methods readily available for contouring

purposes. Automated multi-organ segmentation is of great interest in medical

image processing.

Insertion of BT applicators can dramatically alter the geometry of healthy

tissues and target tumour structures (see Figure 1.3). Also, because of tumour

regression during irradiation and variability in implant insertion and packing

techniques, the bladder and rectum are likely to differ in shape and location

relative to the applicators from insertion to insertion. This makes the problem

even more challenging. The deformation of complex organs is still not entirely

handled by DIR, which limits the ability to define accurate dose accumulation

and toxicity models. In particular, the literature mentioned a few investi-

gations into DIR methods to handle the deformation for defining new dose

accumulation models [15, 16]. There are no significant studies that quantified

the deformation between BT images for cervical cancer. The primary goal of

this thesis is to improve the BT treatment which is of great interest.

This thesis aims to evaluate and optimize existing DIR methods to esti-

mate the deformation in the most challenging scenarios seen in cervical cancer

BT, precisely that of registering the patient anatomy between pre-BT and

at-BT images. Modelling the deformations throughout treatment for LACC

can significantly impact dose monitoring and planning optimization. We pro-

pose a deformable registration method using free-form deformation to map the

uterus structure, the uterine canal, and the vaginal canal with and without

an inserted BT applicator. The quantification of uterus deformations dur-

ing LACC treatment and their effect in terms of a local dose is currently an

unsolved problem [32].
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1.2 Challenges

The problem of predicting anatomical deformation due to applicator insertion

is a very rare and difficult problem in the medical imaging field. The chal-

lenge in implementing our proposed algorithm was the inter-patient anatom-

ical dissimilarity and extreme intra-patient uterine deformation from pre-BT

to at-BT in the dataset. Increasing the size of our training dataset, including

more heterogeneous images with anatomical variability, will improve the pre-

diction accuracy of this DL-based algorithm. In most cases, the uterus moves

or changes its position from left to right. A few of the most challenging and

unusual cases or datasets are shown in Figure 1.4 and Figure 1.5, where the

uterus changes uniquely for each patient. The main limitation of our dataset is

that, we only have 2D MRI images of pelvic region (pre-BT and at-BT MRIs)

to predict the uterine deformation due to applicator insertion in LACC BT.

It is very challenging to develop a simulation model of the internal organs of

pelvic region for one patient only from 2D MRI slice.

We propose to build predictive models to guide BT processes and decisions

that can improve BT efficiency and quality in LACC. No previous study has

quantified the deformation between pre- and post-applicator insertion images

acquired for cervical cancer BT. Despite being trained on heterogeneous and

complex deformations, our proposed DL-based model can successfully predict

uterine distortion due to applicator insertion using only the pre-BT MRI.

Furthermore, this approach can guide clinicians in selecting the most suitable

applicator component and configuration ahead of the insertion procedure.
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1.3 Thesis Objectives

During cervical cancer treatment, target volumes change position and shape

due to organ motion, tumour regression, patient positioning, and applicator

insertion. To address this challenging task, we developed innovative DL-driven

method to predict uterine shape and location when deformed from its natural

anatomy by the presence of a BT applicator. This technique uses only pre-BT

MRI — a problem that any other study has not yet reported.

The objectives of this thesis are:

• To perform a robust, intensity-based automatic image registration method

to align the lumbar and pelvic spine (bone structure), the only rigid/fixed

anatomy, in all the paired pre-BT and at-BT MRIs.

• To automatically delineate the uterus structure on MRI using a pre-

trained deep convolutional neural network based on the Inception V4

architecture augmented with a multi-layer autoencoder.

• To automatically predict the large/complex deformations of the uterus

using a modified version of U-net architecture. The predicted deforma-

tion is estimated using a free-form deformation algorithm.

• To demonstrate that DL can be used successfully to predict anatomical

deformation to improve applicator component selection and configura-

tion before the actual insertion procedure.

• To develop user-friendly software that clinicians can use for BT treat-

ment planning and procedure.
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1.4 Thesis Methodology

The overall framework to achieve our thesis goals contained several steps.

First, compute optimal deformation parameters for the training data set as

follows:

1. Perform a robust image registration to align the bone structures between

all the pre-BT and at-BT MR-images in the dataset;

2. Train a deep-learning network to segment the uterus structure in all

using all pre-BT Images automatically;

3. Predict the at-BT uterus shape and position using a convolutional neural

network;

4. Measure or quantify the amount of uterine deformation due to BT ap-

plicator insertion;

1.4.1 Patient Information and Imaging Dataset

Pre- and at-BT MRI images of 120 cervical cancer patients treated between

2018-2019 were used to train all the parameters. All patients received EBRT

followed by an IC or IC/IS BT boost using an interstitial ring and tandem

applicator (Elekta, Stockholm, Sweden). The T2-weighted 2-D sagittal MRI

were acquired on a 1.5T MRI scanner (Siemens Healthcare, Oakville, Ontario,

(Headquarters: Erlangen, Germany).

1.4.2 Manual Segmentation/Ground Truth

Image pairs (pre- and at-BT) were imported into Oncentra (OcB), a BT treat-

ment planning software (Elekta, Stockholm, Sweden). The uterus structure,

uterine canal, vaginal canal, and external os were delineated manually by a
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single Radiation Oncologist on the pre-BT images and a single Medical Physi-

cist on the at-BT images. All contours were drawn on a single MRI slice on

which the uterine and vaginal canals were visible. Figure 1.6 shows the pre-

and at-BT MR image pairs along with the manually segmented contours of

the regions of interest. The approximate time for delineation was 10 mins for

the pre-BT and 5 mins for the at-BT images.

(a) Pre-BT MRI (b) At-BT MRI

Figure 1.6: T2 weighted sagittal MR images of the same patient taken at (a)
pre-BT and (b) at-BT. Both images show the 4 regions of interest used in this
study. Green - uterus, yellow - uterine canal, blue - vaginal canal, and red -
external os.

1.5 Clinical relevance

Predicting deformation from the natural anatomy before BT to anatomy in

the presence of an intrauterine BT applicator is challenging as the uterus

and surrounding organs deform uniquely relative to each other and for every

patient. However, the applicator model and its geometry are fixed. Therefore,

in clinical practice, radiation oncologists make several informed predictions

before BT applicator selection and insertion. These predictions are based
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on pre-BT MRI, gauging potential uterine deformation, the final selection of

tandem relative to tumour targets, the size of the intravaginal applicator, and

the radial and deep positions of the IS catheters. An implant strategy is then

formulated for anatomic and geometric fit, which also considers anticipated

dosimetry. The possibility of correctly predicting uterine distortion using deep

learning methods is the first milestone towards achieving these technical BT

parameters with improved accuracy and ease.

Due to applicator insertion for personalised BT treatments, the proposed

DL-based framework can be incorporated as an automatic prediction tool for

uterine deformation. In addition, it promises more streamlined clinical/technical

decision-making before BT applicator insertion resulting in improved dosimet-

ric outcomes.

1.6 Thesis Contributions

1.6.1 Contributions

• In this thesis, pelvic MRI data sets of pre-BT and at-BT from 120 pa-

tients were examined. The bony anatomy (lumbar and pelvic spine)

was registered using the intensity-based automatic image registration

method. Along with the bone structure, the position of the uterus was

also aligned, which helps to measure the uterus deformation more accu-

rately;

• A novel automated segmentation algorithm to delineate the uterus from

MRI using a deep CNN augmented with autoencoder was developed

successfully.

• Uterus deformation is predicted using a modified version of U-net ar-
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chitecture. In this step, at-BT uterine deformation was predicted using

only the pre-BT MRI image.

• Finally, the expected deformation is estimated or quantified using a non-

rigid shape-based registration method with a free-form deformation al-

gorithm.
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Chapter 2

Background

This chapter reviews various applications of artificial intelligence, machine

learning, and deep learning in cervical cancer brachytherapy treatment. We

will review the utilization of deformable image registration methods in brachyther-

apy and their limitations. Finally, we will address the problem of predicting

uterine deformation in cervical cancer brachytherapy caused by the presence

of the BT applicator. This particular application is almost non-existent in the

literature, and no previous study has addressed this problem before - which

makes this still an open problem in cervical cancer treatment and radiation

oncology.

2.1 Application of Artificial Intelligence

in Brachytherapy

The advancement of artificial intelligence (AI) in medicine and, more specifi-

cally, in modern radiation oncology (RO) will impact all aspects of RO. More

specifically, Machine learning (ML) and Deep learning (DL) are currently be-

ing incorporated into various aspects of medicine, including oncology. For
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example, these techniques have applications in developing more efficient ex-

ternal beam radiotherapy machines. However, the discussion on its role in

brachytherapy is sparse in today’s literature. The main goal of this literature

review is to summarize the available applications and discuss the potential uses

of ML/DL in BT, including future directions. ML has been applied for BT

procedures from decision-making to treatment completion. ML has improved

efficiency and accuracy by reducing human errors and saving time. Besides

direct use in BT, ML contributes to contemporary advancements in radiology

and associated sciences that can affect BT decisions and treatment. Incorpo-

rating ML technologies for a larger patient population would help improve the

efficiency and acceptance of BT.

2.1.1 AI in Brachytherapy Pre-Planning

Pre-planning is an essential component in BT that includes review of the clin-

ical situation, assessment of volume to be treated, approach and technique to

be used for implanting the tumor, choice of applicator and planning a prescrip-

tion, depending on the surrounding vital structures. AI can play a significant

role in this case. We know that DL can perform fully automatic segmentation

from MRI images with good accuracy and in a clinically feasible time [33]. AI

has been utilized in low dose rate (LDR) seed BT of prostate cancer. In the

literature [34], authors used ML to extract dosimetrically optimal pre-planning

methods which were comparable in quality to those by expert planners, but

with a significant reduction in planning time (0.84±0.57 minutes vs 17.88±8.76

minutes, p = 0.020). There are preliminary reports that DL methods using

previous experiences can guide selection of suitable applicators for high dose

rate (HDR) BT in cancer cervix [34]. This has been validated in the choice of

interstitial over intracavitary applicators based on geometric characteristics of
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data such as shape and volume of high-risk clinical target volume. ML/DL al-

gorithms can help in decision-making and augmenting a physician’s judgment

leading to more consistency, obviating many logistic issues and last-minute

unwanted plan changes in the operating room, with no compromise in plan

quality [35].

Accurate prediction of clinical outcomes of cervical cancer could help adjust

or optimize the treatment of cervical cancer and benefit the patients. Statisti-

cal models, various medical images, and machine learning have been used for

outcome prediction with promising results. Compared to conventional statis-

tical models, machine learning has demonstrated advantages in dealing with

the complexity of large-scale data and discovering prognostic factors. It has

great potential in clinical application and in improving cervical cancer man-

agement. However, the limitations of prediction studies and models include

simplification, insufficient data, overfitting, and the lack of interpretability. In

many applications, more work is needed to make clinical outcome prediction

more accurate, reliable, and practical for clinical use. More specifically, deep

learning (DL) networks have been applied extensively in many fields due to the

introduction of fast and inexpensive computer hardware (GPU) and the avail-

ability of large annotated databases. As a result, DL has gradually emerged in

BT treatment [36], focussing on organ delineation, applicator reconstruction,

dose calculation and treatment planning systems [37, 38].

2.1.2 AI in assisting procedure in BT operating room

Diagnostic ultrasonography (USG) is a powerful tool in real-time BT for guid-

ing interstitial needle insertion. (3D) USG image analysis has shown great

potential in USG-based clinical application of BT [39]. Application of novel

DL in automated imaging analysis tasks (lesion classification, organ segmenta-
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tion, object detection, registration, measurements, quality assessment) help in

treatment planning procedure in BT operating room. AI application of USG

in future may provide real-time guidance in operating room to identify tar-

get as well as critical structures in patients under going implants for BT [39].

Besides USG, endoscopy is an under explored modality for seed or catheter

placement. There are case reports of using AI-driven navigation system for

real-time localization of the airways and lung nodules using fluoroscopic im-

ages [40]. LDR seeds may be placed via endoscopic routes in several sites such

as pancreas, lungs; usage of AI here may help in more accurate placement of

radioactive applicators with more efficacy. Whether these scenarios translate

into real- world applications of AI in guiding BT procedures will become clear

only with wider availability and time. At present, the limited experience with

USG and endoscopy in the hands of RO professionals indicates that this AI

approach, although promising, would be slow to be adopted [40].

2.2 Organ Delineation Using

Deep Learning

In BT, organ delineation and segmentation undoubtedly play an essential role

in the treatment plan. In clinical practice, manual segmentation is still the

primary method. However, automatic segmentation from medical images plays

an increasingly important role in helping clinicians delineate tumour areas

and organs at risk (or normal tissue). Many segmentation methods have been

proposed in the literature, which differ according to their application and

imaging modality.
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2.2.1 Automatic Segmentation in Cervical Cancer using

Deep Learning

Brachytherapy (BT) is an essential part of the curative intent therapy and

closely associated with improvements in clinical outcomes. Three-dimensional

(3D) image-based BT allows individual treatment planning based on the vol-

umetric image of patient and is considered as a significant technical advance-

ment and widely adopted for the treatment of cervical cancer. The application

of 3D image-based BT enables the practitioner to prescribe dose to the target

volume as well as determine and potentially limit dose to the organs at risk

(OARs), which is more advantageous than the conventional two-dimensional

(2D) image-based approach. Numerous studies demonstrate improved treat-

ment plan quality and clinical outcomes of 3D image-based BT for cervical

cancer. Magnetic resonance imaging (MRI) is the preferred imaging modality

for treatment planning of cervical cancer BT due to its superior soft tissue vi-

sualization relative to computed tomography (CT). However, there are many

obstacles for routinely performing the MRI-based BT in many radiation oncol-

ogy departments, including limited availability, high cost, and long scanning

time [41]. Therefore, CT-based BT of cervical cancer is widely used in treat-

ment centers worldwide, especially in the developing countries.

In [41], the authors proposed a novel 3D CNN architecture that is based

on the popular 3D U-Net architecture30 with incorporation of residual con-

nection, dilated convolution and deep supervision (henceforth referred to as

DSD-UNET). The proposed network is trained and evaluated for automatic

segmentation of high-risk clinical target volume (HR-CTV) and OARs in the

planning CT of cervical cancer BT. Performance of the DSD-UNET is then

compared with that of the conventional 3D U-Net. One of the limitations of

this work is the relatively small dataset size. This is due to the limited number
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of patients with cervical cancer that received CT-based BT in our clinic and

the lack of common dataset that is suitable for this segmentation task. To ease

this problem, data augmentation strategy was applied in the model training.

Dropout was deployed in the network to reduce the risk of overfitting intro-

duced by data augmentation. However, due to the intrinsic characteristics

of deep learning method, larger dataset usually leads to the improvements of

performance and generalization. Therefore, we plan to collect more suitable

image data in the future study. Then more accurate and reliable segmenta-

tion result could be expected. The most inferior segmentation performance

for the DSD-UNET model was observed on the segmentation of sigmoid, with

the lowest mean DSC value of 64.5% and higher mean HD value of 19.6 mm

among all structures.

Accurate prostate segmentation is key to biopsy needle placement, BT

treatment planning, and motion management. Lei [42] et al. used CNN to

develop an automated, accurate, and stable segmentation method to delineate

the clinical target volume using transrectal ultrasound images of the prostate

during BT. However, manual segmentation during these interventions is time-

consuming and subject to inter- and intra-observer variation. To address these

drawbacks, the authors proposed a DL-based multidirectional approach which

integrates deep supervision into a 3D patch-based V-Net for prostate segmen-

tation. This 3D supervision mechanism deals with optimization difficulties

when training a deep network with limited training data. During the segmen-

tation stage, the patches are extracted from the newly acquired ultrasound

image as the input of the well-trained network, and the well-trained network

adaptively labels the prostate tissue. The final segmented prostate volume is

reconstructed using patch fusion and refined through contour refinement pro-

cessing. The Dice similarity coefficient (DSC) and Hausdorff distance (HD)
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were 0.92± 0.03 and 3.94± 1.55, respectively.

Qin Nannan [43] et al. completed the automatic delineation of clinical

target areas and organs at risk in BT of cervical cancer by building a U-net

network. The average value of the Dice similarity coefficient of the automati-

cally delineated target area was 0.89, and the average Hausdorff distance was

within 5.3 mm, which proves that it can be used in the clinic and can signifi-

cantly improve contouring efficiency.

2.3 Applicator Segmentation and

Reconstruction

Applicator design is critical during BT treatment as they assist in placing the

radioactive source at the desired location to deliver the prescription dose at

the tumour locations. Hence, it is imperative to accurately design these ap-

plicators as part of the treatment plan to deal with source distribution and

dose optimization. Currently, clinicians segment the BT needles and applica-

tors manually during the treatment, which is time-consuming and error-prone.

So, a modified deep U-Net is used to segment the pixels belonging to the BT

needles. In addition, VGG-16–based deep CNN is combined with the segmen-

tation network to predict the locations of the needle tips [44]. This helps to

improve the efficiency and quality of BT treatments.

Applicator reconstruction is the process of localizing the radiation source

paths defined by the applicator channels in the planning images. It is another

critical step during the procedure of BT treatment planning. The potential

dwell positions are placed on the digitized applicator channels and correspond-

ing dwell times are determined to meet the dosimetric objectives. Applicator

reconstruction accuracy has a significant impact on the dosimetric result of
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the treatment plan due to the steep dose gradients of BT treatment. A small

uncertainty in the digitization of applicator channels would translate into a

relatively large dosimetric uncertainty. In general, applicator reconstruction

is performed manually by the medical physicist. The digitization process is

subjective and time-consuming. Thus there is a strong need to achieve fully

automatic applicator reconstruction in 3D image-based BT to ensure treat-

ment planning accuracy and efficiency. The applicator library integrated in

the treatment planning system is the clinically available tool for automatic

applicator digitization, which can significantly reduce the reconstruction un-

certainty and improve efficiency. It allows channel digitization based on the

manual registration of virtual applicator model with predefined source paths

to its appearance in the planning images [45]. However, the applicator library-

based reconstruction method is not fully automatic due to the manual align-

ment of applicator model. Moreover, applications of this method are limited

to only those applicators included in the library. Electromagnetic tracking

technique has been recently utilized for catheter digitization in BT. Although

this method has highly accurate digitization result, additional hardware and

complex procedure may hamper its widespread application.

Segmentation results for all parts of the tandem and ovoid applicator using

the DSD-UNET model were assessed. It is observed that outstanding segmen-

tation accuracies were achieved for all parts of the applicator. The mean DSC

and JI (Jaccard Index) values for all the applicator components were higher

than 88.0% and 80.0%, respectively. In particular, automatic segmentations

of the intrauterine tube and ovoid tubes achieved superior performances com-

pared with those of the other applicator components (average DSC value of

92.1%, average JI value of 86.8%, average HD value of 2.3 mm). The best

segmentation accuracy was observed on the segmentation of intrauterine tube
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(DSC = 92.6%, JI = 87.7% and HD = 1.9 mm). Quantitative evaluation

results show that the proposed DSD-UNET method outperformed the 3D U-

Net and could segment the HR-CTV, bladder, and rectum with relatively good

accuracy.

2.4 Dealing with Large Deformations in

Cervical Cancer BT Imaging

The first step toward estimating the total EBRT + BT dose distribution is

correctly aligning the underlying anatomy. This task is particularly challeng-

ing for cervical cancer treatments due to the large and complex deformations

caused by tumour shrinkage, bladder filling changes, and insertion of a BT

applicator [29]. Anatomical deformations can be predicted to a large extent

by statistical or biomechanical deformable models [46, 47]. Image registration

can be categorized into two groups: rigid and non-rigid. Non-rigid image

registration is also known as deformable image registration (DIR). In rigid

image registration (RIR), all pixels can move or rotate uniformly so that every

pixel-to-pixel relationship remains the same before and after transformation.

Although there is no boundary to implementing DIR in the radiation ther-

apy (RT) field, the application of DIR could be categorized into four major

areas: dose accumulation, mathematical modelling, automatic segmentation,

and functional imaging. The result of deformable image registration is a defor-

mation vector field which describes the correspondence between the fixed and

moving images. The known correspondence information between the two im-

age sets is essential for validating DIR algorithms. DIR mainly deals with tasks

such as complex non-linear and local distortion management, multi-modality

image registration and multi-dimensional image registration, all of which make
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automatic image registration particularly challenging.

Manual delineation of clinical target volumes remains a time-consuming

task in radiation oncology. However, some research works propose auto-

delineating tumour volume using atlas-based registration techniques [48, 49].

In [50], distance metrics can provide sufficient information to automate the

delineation of high-risk target volumes. Using deep auto-encoders [51] pro-

vide a venue for good generalization even when a few patient images are used

for training. In [52], a deep learning approach in which the model is trained

on anatomic structure distance map information has been shown to produce

patient-specific high-risk clinical target volumes.

DIR methods are mainly used to register the images between EBRT and

BT. But no such method is described in the earlier literature for measuring

or predicting the anatomy deformation during the BT treatment in cervical

cancer. Therefore, we are trying to solve this unique problem in radiation

therapy.

2.5 Various Non-rigid Image Registration

Image registration aims at finding the optimal transform that best aligns struc-

tures in two input (2D) or volume data (3D) images. It is an important part

of image analysis and used in several disciplines. In the medical field, image

registration is a key component in several areas including the fusion of morpho-

logic and functional images, intervention planning, computeraided diagnosis

(CAD) and treatment follow-up [53], atlas building [54], radiation therapy [55],

model-based segmentation [56], and computational model building [57]. The

choice of deformation model is of great importance for the registration process

as it entails an important compromise between computational efficiency and
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richness of description. It also reflects the class of transformations that are

desirable or acceptable, and therefore limits the solution to a large extent.

The parameters that registration estimates through the optimization strategy

correspond to the degrees of freedom of the deformation model. Increasing the

dimensionality of the state space results in enriching the descriptive power of

the model. This model enrichment may be accompanied by an increase in the

model’s complexity which, in turns, results in a more challenging and compu-

tationally demanding inference. Furthermore, the choice of the deformation

model implies an assumption regarding the nature of the deformation to be

recovered.

In general, an important drawback of registration is that when source and

target volumes are interchanged, the obtained transformation is not the in-

verse of the previous solution. In order to tackle this shortcoming, Chris-

tensen and Johnson [58] proposed to simultaneously estimate both forward

and backward transformations, while penalizing inconsistent transformations

by adding a constraint to the objective function. Linear elasticity was used as

regularization constraint and 3D Fourier series were used to parameterize the

transformation.

Stefanescu et al. presented a way to perform adaptive smoothing by taking

into account knowledge regarding the elasticity of tissues in [59]. A non-

stationary diffusion filter was used to smooth less inside areas where greater

deformations were expected and smooth more inside objects where coherence

should be preserved. The authors also proposed to take into account the

local image gradient content during smoothing. In areas with large image

gradients where the local confidence for the established correspondences is

higher, smoothing is scaled down. On the contrary, smoothing is scaled up in

homogeneous areas.
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2.6 Diffeomorphic Image Registration

Image registration is an essential task used in many medical image analy-

sis applications such as assessing disease progression over time, merging and

comparing different image modalities, and shape analysis. By maximizing the

image similarity, such as intensity correlation, image registration provides the

correspondence and non-linear transformation between pairs of images. Dif-

feomorphic image registration offers more desirable properties such as smooth

deformation, topology preservation, and transformation invertibility. Diffeo-

morphic mapping is the underlying technology for mapping and analyzing

information measured in human anatomical coordinate systems which have

been measured via Medical imaging [60]. Diffeomorphic mapping is a broad

term that actually refers to a number of different algorithms, processes, and

methods. It is attached to many operations and has many applications for

analysis and visualization. It can be used to relate various sources of infor-

mation which are indexed as a function of spatial position as the key index

variable. Large deformation diffeomorphic metric mapping (LDDMM) is a

specific suite of algorithms used for diffeomorphic mapping and manipulating

dense imagery based on diffeomorphic metric mapping within the academic

discipline of computational anatomy, to be distinguished from its precursor

based on diffeomorphic mapping [61]. LDDMM delivers a non-linear smooth

transformation with a favorable topology-preserving one-to-one mapping prop-

erty [61].

Successful segmentation algorithms built on automatic to semi-automatic

algorithms making use of some form of expert prior knowledge are likely to

overcome the mentioned difficulties. The LDDMM algorithm provides non-

rigid registration between two grayscale anatomical images, which can be used

develop automated segmentation methods. Given a template image, target im-
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age, and template segmentation, the non-rigid mapping of the template image

to the target image can be used to propagate the template segmentation, gen-

erating a target segmentation. In [62], authors proposed semi-automated gan-

glia segmentation method using LDDMM. The semi-automated segmentation

scheme is minimal and does not require expertise in brain anatomy. The user

is necessary for four tasks: (1) automated thresholding-based segmentation of

the ventricles, (2) landmarking of the ventricular surfaces, (3) definition of the

bounding box to delineate the image region for matching, and (4) identification

of average caudate intensities for intensity equalization. The automated and

the manual segmentations are found to differ on the exterior boundary of the

caudate. Due to the elongated, narrow shape of the caudate nucleus, the ratio

of the number of voxels on the surface of the caudate to the total number of

caudate voxels is very high, on average being 71%. Therefore, the partial vol-

ume effects are likely to be a heavy influence in calculation of the L1 distance

which measures the difference in voxel labeling between the automated and

the manual segmentation, especially since there are a large number of these on

the exterior of the caudate that are not exactly matched due to regularization

constraints placed in computing dense diffeomorphic transformations.

Another multistructure framework has been introduced in [63], with con-

current subcortical and cortical shape matching to guide the overall image

registration using diffeomorphic image registration. The significant advan-

tage of being flexible enough to allow use of computed features derived from

MRI images, such as white matter tract-based labels and diffusion tensor met-

rics or additional modalities such as BOLD functional images, susceptibility

weighted images, magnetization transfer images, or quantitative relaxation-

based maps. A multicontrast LDDMM approach specific to the problem of

diffusion tensor image registration has also been proposed. At first, the im-
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ages are aligned using affine registration and intensity normalization on the

Freesurfer tissue segmentation images of the template and target images. To

limit computational and memory requirements, a bounding box is constructed

around the template brain. After that diffeomorphic image registration was

applied. Tensor based Morphometry was applied to investigate how well the

multistructure and MRI-only registration methods can detect the expected

differences between a group of demented patients and cognitively normal pa-

tients. This approach of using multiple structure segmentations to drive local

whole brain registration shows for the first time that, as expected, incorpo-

ration of individual segmentations into the registration further improves local

registration accuracy. This work showed that a group-wise average atlas built

with multistructure registration accounts for greater intersubject variability

and providesmore sensitive tensor-based morphometry measurements.One lim-

itation of this method is large amount of computational resources required for

multistructure registration.

2.7 Modeling Soft Tissue Deformations

Large tissue deformation frequently occurs during many medical interventions.

An accurate simulation of these procedures necessitates considering these tis-

sue displacements by modelling tissue deformation as it interacts with medical

tools. Deformation modelling has been an active topic in computer graph-

ics for fitting noisy data and the simulation of clothing, facial expressions,

human/animal characters, surgical simulators, etc. Although most of those

methods are based on mass-spring models because of their simplicity and com-

putational requirements, others use the Finite Element Method (FEM) to deal

with the complexity of soft tissue material properties. The main limitation of
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applying these methods to our problem is that we do not have the 3D images

and the corresponding ground truth segmentation. The main reason we con-

centrated on a 2D dataset is that clinicians currently rely on the 2D MRI data

for the BT treatment. Current research on deformable models focuses mainly

on the object’s surface [64] using geometric or non-physical models for com-

puter animations. Because of these limitations, they are not accurate enough

for medical applications. Other approaches using physics-based models can

approximate the non-linear behaviour of soft tissue more accurately. How-

ever, their high computational and storage requirements are problematic for

clinical applications. These models include mass-spring models (MSM) [65,66],

boundary element method (BEM) [64], meshless method [67] and the widely

used Finite Element Method (FEM) [68]. Most of these methods consider soft-

tissue deformations based on the theory of elasticity and employ constitutive

equations to account for the complex mechanical behaviour of soft tissues.

Plantefeve proposes a co-rotational FEM [69] algorithm based on linear

co-rotational elasticity to accommodate the non-linear deformation of soft tis-

sues. However, it can only handle geometric rather than material nonlinearity

as it uses a linear material deformation law. Another algorithm proposed

by Miller [70] uses the total Lagrangian explicit dynamics FEM to account

for both geometric and material nonlinearities involved in soft tissue defor-

mation. However, this method does not allow changes in model topology in

the simulation since it applies pre-computation for spatial derivatives. The

main disadvantages of FEM algorithms are that they require a large amount

of data to represent the mesh used in nodal connectivity and other parameters.

Therefore, they usually need longer computational time, the need to initialize

physical property parameters etc.

A new neural network methodology for modelling soft tissue deformation
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for surgical simulation by Jinao et al. [71]. It formulates soft tissue defor-

mation and its dynamics as the neural propagation and dynamics of cellular

neural networks for real-time, realistic, and stable simulation of soft tissue

deformation. Two CNN models are developed based on 3-D volumetric tissue

models to carry out soft tissue deformation via neural propagation and dynam-

ics by combining bioelectric energy propagation of soft tissues with non-rigid

mechanics of motion. One CNN model is developed by formulating the cell

current source as the strain energy density and the local connectivity of cells

as the Laplace operator to describe the process of soft tissue deformation as

the bioelectric propagation of mechanical load in soft tissues. The other CNN

model is developed based on non-rigid mechanics of motion to govern the

model dynamics of soft tissue deformation. The proposed methodology not

only satisfies the real-time computational requirement of surgical simulation

due to the collective and simultaneous activities of cells but also achieves the

physical behaviour of soft tissue deformation due to the neural propagation

of mechanical load. Furthermore, it performs stable model dynamics for soft

tissue simulation but with similar computational efficiency to explicit time

integration. The integration with a haptic device is achieved for interactive

soft tissue deformation with haptic feedback. Both methods and experiments

tested a volumetric kidney model on a lamb kidney to measure the force-

displacement data. A digital force gauge was used to apply a compressive

force to the lamb kidney, and its displacement was controlled and recorded by

a micrometre barrel. The kidney specimen was placed in a plastic tray with oil

applied to the interface of the plastic tray and tissue to minimize friction. The

trials were also conducted using haptic feedback on a virtual human kidney

model. The computation time was increased with the increase in the number

of points. A stable and reliable deformable model to simulate the dynamics of
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soft tissues is a challenging area of research. In this paper, Duan [72] propose

a soft tissue simulator of the liver and gallbladder to deform the organs and

interact with virtual surgical instruments accurately based on a mass-spring

model (MSM). This paper presented a soft tissue simulator that uses a fast

tetrahedral mass-spring formulation to calculate soft tissue deformation based

on explicit integration. The model parameters are selected using soft tissue

properties. Again, to model solid 3D objects like the liver and biliary system,

a tetrahedral mesh modelling with both the surface and internal structure is

implemented. Firstly, they simulated the porcine liver deformation with the

obtained MSM and compared it with the non-linear FEM. Different mesh mod-

els and parameters were tested, and the deformation of the MSM was always

close to the FEM reference. Secondly, the MSM was applied to the porcine

liver and gallbladder system. The simulation was directly compared with the

actual tissue deformation, and good approximations were also obtained for the

model consisting of multiple different materials. Finally, a real-time simula-

tion was developed based on the obtained MSM. They did not consider any

fraction force between the instrument and soft tissues and the GPU techniques

to speed up the MSM-based physical engine in this work.

Most of these physical-based simulation methods for soft tissue deformation

models 3D data or any newly harvested porcine liver/gallbladder are a little

challenging to use and beyond the scope of our project. For that reason,

we concentrated our effort on 2D data and the problem of simulating the

deformation of the uterus.

35



2.7.1 Physical methods to simulate deformable

materials

In the last decades, the computer graphics community has developed a wide

variety of physically based models to address the challenge of simulating nat-

ural elements and deformable materials. For the latter, constitutive laws are

used for the computation of the symmetric internal stress tensor, and a conser-

vation law gives the final partial differential equation (PDE) that governs the

dynamics of the material [73]. A majority of simulation methods in computer

graphics use 2D and 3D meshes [74]. Most of these approaches are based on

mass-spring systems, or the more mathematically motivated Finite Element

Modeling (FEM), Finite Difference (FD) or Finite Volume (FVM) Methods,

in conjunction with elasticity theory [74]. In mesh based approaches, complex

physical effects, such as melting, solidifying, splitting or fusion, pose great

challenges in terms of restructuring. Additionally, under large deformations

the original meshes may become arbitrarily ill-conditioned. For the simula-

tion of these complex physical phenomena, efficient and consistent surface and

volume representations are needed, which allow simple restructuring. Most

of the physical models are derived from continuum mechanics, which allows

the specification of common material properties such as Young’s Modulus and

Poisson’s Ratio [74].

However, continuous systems have infinite degrees of freedom, making their

description difficult for geometric and dynamic aspects. In mathematical

terms, we are dealing with infinite basis functions, maybe uncountable. One

possibility to simplify the problem is considering finite-dimensional representa-

tion with enough flexibility to represent the solution with the desired precision.

In the context of mechanical systems, the finite element method (FEM) is the

traditional way to perform this task. When simulating a deformable body, the
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3D/2D object’s geometry is usually represented by mesh-based methods that

support FEM-based techniques [75].

2.7.2 Mass Spring Model (MSM)

Another possibility for elastic object simulation is to apply discrete models

based on mass-spring models (MSM). In this case, the object’s geometry is

represented by a mesh, and its nodes are treated like mass points while each

edge acts like a spring connecting two adjacent nodes. MSM are simple to im-

plement and can be faster than continuous ones, so, more suitable for real-time

applications. Therefore, MSM techniques have been used to model deformable

objects for woven cloth simulation, and soft organic tissues, like muscles, faces

or abdomen in virtual surgery applications [76–78].

However, the main limitation of the MSM is the difficulty of designing

them to represent the mechanical behaviour of deformable bodies with enough

accuracy [79]. The relation between mass-spring models and the continuum

elasticity theory was examined in references [79, 80]. The conclusion is that

methods that are based on continuum mechanics are, in general, more realistic

than their discrete counterparts. This happens because mechanical systems

depend on their macroscopic parameters (Young’s module and Poisson’s ra-

tio) and constitutive equations that characterize the nature of the materials

that make up the bodies. However, there is no general physically based or

systematic method in the literature to determine the mesh topology or MSM

parameters from known constitutive behaviour [80].

Mass-spring models (MSM) are frequently used to model deformable ob-

jects for computer graphics applications due to their simplicity and compu-

tational efficiency. However, the model parameters are not related to the

constitutive laws of elastic material in an obvious way. The MSM parameters
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computation from a model based on continuum mechanics is a possibility to

address this problem.

2.7.3 Application of MSM in Brachytherapy

A stable and accurate deformable model to simulate the dynamics of soft tis-

sues is a challenging area of research. Real-time and precise simulation of soft

tissue deformation is still a significant challenge. A realistic estimation of stiff-

ness parameters (Young’s modulus, shear modulus, bulk modulus, viscosity) is

required for the simulation models. The reliable approximation of these input

parameters is difficult. FEMs and MSMs are most suitable when we have the

appropriate data and the accurate values of the parameters responsible for the

anatomy deformation.

As our original problem predicts uterine deformation, various factors affect

soft tissue deformation. The elasticity property of the uterus, surrounding fluid

density, and the presence of other organs affect the deformation massively

from patient to patient. We have seen from our data that every patient’s

anatomy is different and deforms uniquely. So, predicting this deformation

before applicator insertion is challenging even for expert clinicians. For that

reason, we wanted to utilize deep learning methods and see if DL networks

can discover the hidden information from the MRI data, with which we can

come up with a method to predict the anatomy deformation in cervical cancer

brachytherapy.
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2.8 Limitations of Various DIR Algorithms in

Brachytherapy

Large organ displacements, deformations, and volume variations occur be-

tween the pre-BT and at-BT anatomies. The quantification of the total deliv-

ered dose during BT needs to be investigated for LACC to understand better

and predict OAR (organs at risk) toxicity risks [81]. A limited number of DIR

methods have been proposed for registering pre-BT and at-BT images [14].

In [20], the authors proposed a workflow to map pre- and during BT anatomy

where each organ was independently aligned using the symmetric thin plate

spline robust point matching (sTPS-RPM) proposed in [18,19]. The studies re-

ported few details about the impact of the BT applicator insertion and how to

predict the deformation created by the applicator insertion. The biomechan-

ical model-based DIR algorithm MORFEUS proposed by Brock [82] relies on

contours only. It allows the generation of a dense deformation vector field

(DVF) from the reference image to the moving image coordinates. Triangular

surface meshes of the organ delineations are generated, and a deformable mesh

registration method is used to determine boundary conditions. Using FEM, all

structures of interest are built to solve the displacements of all the volumetric

mesh nodes to generate a dense DVF. This method was applied to an MRI

of the thorax and abdominal regions at a normal inhalation and exhalation

breath hold. The amount of anatomy deformation that occurred is much less

than the one encountered in BT deformation. More complex biomechanical

models still need to be investigated to simulate more complex behaviour such

as sliding, and applicator insertion/removal [14]. One of the unknowns in many

of these algorithms is the biomechanical model’s parameters that go beyond

the simple linear elastic model used in most FEM algorithms. To date, no
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accurate biomechanical model-based approach has been proposed to predict the

anatomy deformation due to applicator insertion. The main limitation of some

of the intensity-based DIR methods is they cannot handle complex deforma-

tion as it relies on the intensity information alone, like the well-known Demons

algorithm [83]. A deformable female pelvis phantom (uterus and bladder) was

created based on a patient’s CT data using 3D printing [84] technology. Then

the applicator was inserted into the phantom to simulate BT. After that, a

hybrid intensity and structure-based DIR was used. The main limitation of

all DIR or non-rigid registration methods is that they require both pre-BT

(moving image) and at-BT (fixed image) images to deform the anatomy. The

ability of the DIR method to separately quantify the deformation of the cervix

and uterus is of high interest in radiation treatment [14], and no research has

addressed the challenging task of predicting the deformed anatomy due to the

applicator insertion [14]. Several publications have reported DIR techniques

to fuse multimodality images to assess dosimetric changes. The novelty of

this study is that it addresses the challenging task of predicting the deformed

anatomy following applicator insertion from the natural anatomy before BT.

When applied to the clinic, this unique method will be able to predict the

deformed anatomy employing just the pre-BT image, a problem that has not

been addressed yet by any other study.

40



Chapter 3

Automated Intensity-based

Image Registration

3.1 Overview

Image registration, also known as image fusion, can be defined as the process

of aligning two or more images. An image registration method aims to find

the optimal transformation that best aligns the structures of interest in the

input images. In our application, image registration aims to automatically

establish correspondences between different images displaying views of objects

or organs. These images may be acquired at different times, from different

devices or perspectives, or even reveal different types of information. Many

applications require nonlinear (i.e., not necessarily linear) alignment strategies;

hence, nonlinear registration enters into play. There is a large number of

application areas requiring image registration, and image registration has an

impact on basically every imaging technique. Furthermore, the growing variety

of medical imaging datasets has progressed with the parallel development of

many image registration techniques. Therefore, image registration techniques
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may be classified in various manners.

Medical image registration algorithms can be divided into three steps:

• Determine transformation between the source image and target image;

• Measure the similarity degree of the source image and target image;

• Adopt some optimization methods, making the similarity measure degree

better and faster to reach the optimal value.

Image registration aims to apply a transformation operator g between two

images I1 and I2 that optimized a similarity function E in order to find the

optimal operator gopt:

gopt : I1 → I2 = min(E(I1–g(I2))) (3.1)

3.2 Image Registration Methodology

Image registration applications can be divided into four main groups according

to the manner the image was acquired:

• Different viewpoints (multi-view analysis): Images of the same scene are

acquired from different viewpoints. The aim is to gain a larger 2D view

or a 3D representation of the scanned scene.

• Different times (multi-temporal analysis): Images of the same scene are

acquired at different times, often regularly, and possibly under different

conditions. The aim is to find and evaluate changes in the scene between

consecutive image acquisitions.

• Different sensors (multi-modal analysis): Images of the same scene are

acquired by different sensors. The aim is to integrate the information

42



from different source streams to gain a more complex and detailed scene

representation.

• Scene to model registration: Images of a scene and a model of the scene

are registered. The model can be a computer representation of the scene,

for instance, maps or digital elevation models (DEM), another scene with

similar content (another patient) etc. The aim is to localize the acquired

image in the scene/model and/or to compare them.

There are four steps that every image registration algorithm must do. They

are:

• Feature detection: A domain expert detects salient and distinctive ob-

jects (closed boundary areas, edges, contours, line intersections, corners,

etc.) in both the reference and sensed images.

• Feature matching : It establishes the correlation between the features in

the reference and sensed images. The matching approach is based on the

content of the picture or the symbolic description of the control point

set.

• Estimating the transform model : The parameters and mapping functions

are calculated, which align the detected picture with the reference image.

• Image resampling and transformation: The sensed image is transformed

using a mapping function. The appropriate interpolation technique com-

putes image values in non-integer coordinates.

Image registration methods can be classified into area-based and feature-

based methods. Therefore, various image registration methods are briefly dis-

cussed here.
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• Rigid registration: In rigid image registration, the objects that need to

be aligned can be translated and rotated with respect to one another to

achieve correspondence. In rigid image registration, the rotated images

are superimposed, and registration is achieved.

• Nonrigid registration: Nonrigid image registration refers to a class of

algorithms where the images to be registered have geometric differences

that cannot be accounted for by similarity (global translation, rotation,

and scaling) transformations. These methods are capable of aligning

images where correspondence cannot be achieved without localized de-

formations and can, therefore, better accommodate anatomical, physio-

logical and pathological variability between patients.

• Deformable image registration (DIR): Deformable image registra-

tion (DIR) involves estimating the geometric transformation between

two images to map them onto a common coordinate system (CCS). The

process is nonlinear because the estimated transformation does not in-

clude only rigid transformations (i.e., translation and/or rotation) but

also deformations (e.g., shrinking or stretching). DIR has been exten-

sively studied for radiation therapy (RT) applications, and its integration

into clinical practice is currently the object of intensive research.

• Pixel Based Method: For registration, a cross-correlation statistical

methodology is employed in this procedure. It is frequently used for

template matching or pattern recognition, which involves finding the

location and orientation of a template or pattern in an image. Cross-

correlation is a measure of similarity or a match metric.

• Point Mapping Method: Control points for point matching are cru-

cial. Corners, intersection lines, points of locally greatest curvature on
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contour lines, centres of windows with locally maximum curvature, and

centres of gravity of closed-boundary areas are all control points.

• Contour-Based Image Registration: To produce the contour of an

image, the mean for a given collection of colours is computed. Then each

RGB pixel in an image is categorized as having a colour in a specific range

or not during the segmentation process. In addition, the Euclidean dis-

tance is necessary to determine similarity. The locus of points is a sphere

with a radius equal to the threshold value, and every point situated in-

side or on the sphere’s surface meets the stated colour requirement. A

binary, segmented image is produced by coding these two sets of points

in the image with black and white. A Gaussian filter is used to eliminate

noise following the segmentation process. Thresholds blurred the image,

and then the contour of the image was obtained.

• Image Registration Using Mutual Information: Registration of

multispectral/multisensory pictures is a difficult task. In general, such

images have varying grey-level properties, and basic approaches based

on area correlation cannot be easily used. Fortunately, it was discovered

that the entropy remains constant even though the histogram changes.

Even after randomly shuffling the image pixels, the entropy of the image

stays constant.

In the current clinical setting, medical imaging is a vital component of

many applications. Since information gained from two images in the clinical

track of events is usually complementary, proper integration of valuable data

obtained from the separate images is often desired. The first step in this

integration process is to bring the modalities involved into spatial alignment.

After registration, a fusion step is required for the integrated display of the
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3.4 Our Methodology

3.4.1 Intensity-based Image Registration

Using an intensity-based semi-automatic image registration method the pre-

BT and at-BT images were aligned according to the bony anatomy (lum-

bar and pelvic spine). This method automatically aligns two MR images

to a common coordinate system. It does not find features or uses control

points. Intensity-based registration is often well-suited for medical and re-

motely sensed imagery. The distortion between the two images includes trans-

lation and rotation. We used an affine transformation to register the images.

Optimization-based registration works best when a good initial condition can

be given for the registration. In the registration process, the fixed image was

the at-BT sagittal MR image, while the moving image was the pre-BT sagittal

MR image. Intensity-based automatic image registration is an iterative pro-

cess. It requires a pair of images, a metric, an optimizer, and a transformation

type.

3.4.2 Affine Transformation

In the registration process, the fixed image was the at-BT sagittal MR image,

while the moving image was the pre-BT sagittal MR image. The process be-

gins with the specified transform type (affine transformation in this case) and

an internally determined transformation matrix. An affine transformation is

any transformation that preserves collinearity (i.e., all points lying on a line

initially still lie on a line after transformation) and ratios of distances (e.g.,

the midpoint of a line segment remains the midpoint after transformation).

Affine indicates a particular class of projective transformations that do not

move objects from the affine space to the plane at infinity or conversely. In-
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stead, it helps to modify the geometric structure of the image. For example,

satellite imagery uses affine transformations to correct wide-angle lens distor-

tion, panorama stitching, and image registration. Transforming and fusing the

images to a large, flat coordinate system is desirable to eliminate distortion.

This enables more accessible interactions and calculations that don’t require

accounting for image distortion. Geometric contraction, expansion, dilation,

reflection, rotation, shear, similarity transformations, spiral similarities, and

translation are all affine transformations, as are their combinations. In general,

an affine transformation is a composition of rotations, translations, dilations,

and shears.

We have chosen to perform affine transformation as we are trying to align

the bone structure to preserve collinearity and distance between points. The

transformation and the transformation matrix determined the specific image

transformation applied to the moving image with bilinear interpolation to

transform the moving image.

While an affine transformation preserves proportions on lines, it does not

necessarily preserve angles or lengths. Any triangle can be transformed into

any other by an affine transformation, so all triangles are affine and, in this

sense, affine is a generalization of congruent and similar. A particular example

combining rotation and expansion is the rotation-enlargement transformation,
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Separating the equation,

x
′

= s(cosα)x+ s(sinα)y − s(x0cosα + y0sinα) (3.3)
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y
′

= −s(sinα)x+ s(cosα)y + s(x0sinα− y0cosα) (3.4)

This can be also written as,

x
′

= ax− by + c (3.5)

y
′

= bx+ ay + d (3.6)

where

a = s(cosα) (3.7)

b = −s(sinα) (3.8)

s =
√
a2 + b2 (3.9)

α = tan−1(− b

a
) (3.10)

An affine transformation of Rn is a map F : Rn → Rn of the form

F (p) = Ap+ q (3.11)

for all p in Rn, where A is a linear transformation of Rn. If det(A) > 0,

the transformation is orientation-preserving; if det(A) < 0, it is orientation-

reversing.

3.4.3 Similarity Metric

It is a common task in image analysis to compare two images’ similarities.

This comparison may be limited to a particular region of each image. Image

Similarity Metrics are methods that produce a quantitative evaluation of the
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similarity between two images or two image regions. These techniques are used

as a base for registration methods because they provide the information that

indicates when the registration process is going in the right direction. Many

Image Similarity Metrics have been proposed in the medical image and com-

puter vision community. There is no right image similarity metric but a set of

appropriate metrics for particular applications. Metrics are probably the most

critical element of a registration problem. The metric defines the goal of the

process by measuring how well the reference image matches the target image

after the transform has been applied. Some metrics have a rather large capture

region, which means that the optimizer can find his way to a maximum even if

the misalignment is high. Typically large capture regions are associated with

low precision for the maximum. Other metrics can provide high accuracy for

the final registration but usually require to be initialized close to the optimal

value. Unfortunately, there are no clear rules about how to select a metric

other than trying some of them in different conditions. In some cases, one

can use a particular metric to get an initial approximation of the transforma-

tion and switch to another more sensitive metric to achieve better precision.

Some well-known similarity metrics are Mutual Information (MI), Normalized

Correlation (NC), Structural Similarity Index (SSIM), and Sum of Squared

Differences (SSD) between intensity values. The metric used in our approach

is MI. More specifically, we use Mattes Mutual Information [85]. Mutual in-

formation metrics are techniques for measuring how related two variables are.

These algorithms use the joint probability distribution of a sampling of pixels

from two images to measure the certainty that the values of one set of pixels

map to similar values in the other image. This information is a quantitative

measure of how similar the images are. High mutual information implies a

large reduction in the uncertainty (entropy) between the two distributions,
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signalling that the images are better aligned.

Entropy can be written as,

H =
∑

i,j

−pij log2 pij (3.12)

pij is the probability of event i and j.

Mutual Information can be explained as,

I(A,B) = H(B)–H(B|A) (3.13)

I(A,B) = H(A) +H(B)–H(A,B) (3.14)

The Mattes mutual information algorithm uses a single set of pixel locations

for the duration of the optimization instead of drawing a new set at each

iteration. The number of samples used to compute the probability density

estimates and the number of bins used to calculate the entropy are both user

selectable. The marginal and joint probability density function is evaluated at

the uniformly spaced bins using the samples. Entropy values are computed by

summing over the bins. Zero-order and third-order B-spline kernels are used

to calculate the probability density functions of the fixed and moving images,

respectively.

3.4.4 Optimizer

The goal of image registration algorithms is to optimize the similarity mea-

surements. The optimizer is the component that drives the execution of the

registration. It is usually desirable to fine-tune the parameters of the opti-

mizer. Each optimizer has particular parameters that must be interpreted in

the context of its implementation optimization strategy. The optimizer used
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in this example is a variant of gradient descent that attempts to prevent it

from taking too large steps. At each iteration, this optimizer will take a step

along the direction of the derivative.

In this case, the optimizer (gradient descent) defines the methodology for

optimizing the similarity metric. The registration is improved by adjusting the

optimizer and metric configuration properties. The Initial-Radius property of

the optimizer controls the initial step size used in parameter space to refine the

geometric transformation. The parameter is fine-tuned to obtain a noticeable

improvement in the alignment of the rigid/bone structure in the images. Along

with the bone structure, the position of the uterus was also aligned, which helps

to measure the uterus deformation more accurately.

Finally, the optimizer checks for a stop condition. A stop condition is

anything that warrants the termination of the process. In most cases, the

process stops when it reaches a point of diminishing returns or when it reaches

the specified maximum number of iterations. If there is no stop condition, the

optimizer adjusts the transformation matrix to begin the next iteration.

Figure 3.2: Automated image registration algorithm to align spine between
pre-BT and at-BT MRI
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3.5 Comparison with Other Methods

3.5.1 Optical Flow

Optical flow is a method for motion analysis and image registration that aims

to compute displacement of intensity patterns. Optical flow is used in many

different settings in the computer vision problems, such as video recognition

and video compression. Optical flow methods are based on computing esti-

mates of the motion of the image intensities over time. This method can be

used to detect and delineate independently moving objects, even in the pres-

ence of camera motion. Of course, optical-flow-based techniques are compu-

tationally complex, and hence require fast hardware and software solutions to

implement. Since optical flow is fundamentally a differential quantity, estima-

tion of it is highly susceptible to noise. The motion of human bodies can also be

analyzed with optical flow. There are many methods of estimating the optical

flow between two frames, including differential-based, region-based, energy-

based, and phase-based methods [86]. Large displacement is a fundamental

area of concern, responsible for the failure of many optical flow algorithms.

It occurs as a result of motion of an object moving at a high speed or due

to a low frame-rate. The majority of the algorithms fail to tackle with large

displacement because the energy function may be trapped into an incorrect

local minimum. In our dataset, we also have very large organ displacements

and variations in patient anatomy. For those cases optical flow based algo-

rithms were not able to perform very good compared to our proposed image

registration method.
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3.5.2 Elastix

Elastix is an image registration toolbox built upon the Insight Segmentation

and Registration Toolkit (ITK) [87]. It is entirely open-source and provides a

wide range of algorithms employed in image registration problems. Its compo-

nents are designed to be modular to ease a fast and reliable creation of various

registration pipelines tailored for case-specific applications. The software con-

sists of a collection of algorithms that are commonly used to solve medical

image registration problems. The modular design of elastix allows the user

to quickly configure, test, and compare different registration methods for a

specific application. The command-line interface enables automated process-

ing of large numbers of data sets, by means of scripting. The usage of elastix

for comparing different registration methods is illustrated with three example

experiments, in which individual components of the registration method are

varied.

3.6 Results

Table 3.1: Evaluation of Intensity-based image registration method.
Structural Similarity Index Measure (SSIM) between two images are
reported. SSIM between fixed image and registered image, fixed image and

moving image are reported.
A value closer to 1 indicates better image similarity.

Fixed & Registered Fixed & Moving

Intensity-based 0.45 0.25
Optical Flow 0.25 0.25

Elastix 0.16 0.25

Table 3.1 displays Structural Similarity Index Measure (SSIM) between

two images. SSIM between fixed image and registered image, fixed image and

moving image are reported here. From the results, we can conclude that our
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Table 3.2: Evaluation of Intensity-based image registration method. Mutual
Information (MI) between two images are reported. MI between fixed
image and registered image, fixed image and moving image are reported.
The larger the value, the greater the relationship between the two images.

Fixed & Registered Fixed & Moving

Intensity-based 0.75 0.35
Optical Flow 0.45 0.35

Elastix 0.36 0.35

method, i.e. Intensity-based Image Registration out-performed all the other

methods.

In Table 3.2, Mutual Information (MI) between two images are displayed.

For example, MI between fixed and registered images, and fixed and moving

images are reported. The larger the value, the greater the relationship between

the two images.

In this section, the visual results of the intensity-based image registration

method are shown in Fig. 3.3, 3.4, 3.5, 3.6. For each of these examples, one

can observe that the alignment of the bone structure (lumbar and spline) is

different between the moving image (pre-BT) and fixed image (at-BT). As

the only rigid/fixed part (point of reference) between these two image pairs

is the bone structure, we had to align the bone so that the other organs,

especially the uterus, are correctly aligned for further experiments. To align

the bone structure, the moving image (pre-BT) is transformed (translation

and rotation) vertically and horizontally to match the fixed image (at-BT).

As there is large deformation in the anatomy for every patient between pre-

BT and at-BT images, the problem of registering these images is challenging.

Nevertheless, this automated registration method worked well in aligning the

fixed anatomy.
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Figure 3.3: To align the bone structure, the moving image is transformed
vertically and horizontally to align with the fixed image

Figure 3.4: Another example of the registration method where the organs
change shape and position drastically

Figure 3.5: There is a large uterine deformation in this example which makes
the registration problem harder to solve as the only point of reference is the
bony anatomy
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Figure 3.6: Another example of the registration method where the uterus is
retroverted
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3.7 Discussion

From the results shown in Table 3.1 and Table 3.2, we can conclude that in

both measures, SSIM and MI, our method performed better than the other

reported methods. Although registering only the bone structures between pre-

BT and at-BT images is a very challenging task. A value closer to 1 indicates

better image similarity. The larger the value, the greater the relationship

between the two images. The SSIM between the fixed image and the moving

image is 0.25. After registering the moving image to the fixed image, the SSIM

between the fixed and registered image is 0.45. As the other organs in these

images are very different and there is a drastic change in the other anatomy

apart from the bone structure, the SSIM cannot be higher than the values

we obtained. This registration method helped in aligning the position of the

bone, as well as the uterus. This step is very useful for further computations

as we needed to align the uterus properly to predict the uterus deformation

from pre-BT to at-BT position.
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Chapter 4

Automated Uterus

Segmentation Using CNN

4.1 Overview

Medical image segmentation is essential in computer-aided diagnosis systems

in different applications. The vast investment and development of medical

imaging modalities such as microscopy, X-ray, ultrasound, computed tomog-

raphy (CT), magnetic resonance imaging (MRI), and positron emission to-

mography attract researchers to implement new medical image-processing al-

gorithms. Medical image segmentation involves the extraction of regions of

interest (ROIs) from image data. The main goal of segmenting this data is

to identify areas of the anatomy required for a particular study. Medical im-

age segmentation can be time-consuming, and recent advances in ML software

techniques are making it easier for routine tasks to be completed. One of the

key benefits of medical image segmentation is that it allows for a more pre-

cise analysis of anatomical data by isolating only necessary areas. For specific

procedures, such as implant design, it is essential to segment specific struc-
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tures, such as the hip or knee. In addition, segmentation offers the benefit of

removing any unwanted details from a scan, such as air and allowing different

tissues, such as bone and soft tissues, to be isolated. When combined with

different software processing options, researchers and clinicians can generate a

series of segmented masks ready for further analysis. Medical image segmen-

tation has automatic or semiautomatic detection of two-dimensional (2D) or

three-dimensional (3D) images.

4.2 Various Medical Image Segmentation

Methods

Deep learning has become the mainstream of medical image segmentation

methods. In particular, for automatic medical image segmentation with dif-

ferent modalities of images (MRI, CT), great advances have been made using

various DL models. Image segmentation aims to simplify or change the rep-

resentation of images, making them easier to understand and analyze. The

emergence of DL has made it possible to segment medical images efficiently

and effectively, even for small datasets. Segmentation algorithms based on

convolutional neural networks (CNNs) have already become the standard ap-

proach in image segmentation tasks. Their excellent segmentation ability has

been demonstrated experimentally and theoretically and can be further ap-

plied to medical images. The majority of segmentation methods follow the

structure of the FCN [88] networks and U-Net [89]. The Fully Convolutional

Network (FCN) has been increasingly used in different medical image segmen-

tation problems. The FCN was introduced in the image segmentation domain

as an alternative to image patches. Using FCN, the image could be analyzed

globally instead of using localized patches. Thus, there is no need to select rep-
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resentative patches, eliminate redundant calculations where patches overlap,

and scale up more efficiently with image resolution. Moreover, there can be a

fusion of different scales by adding links that combine the final prediction layer

with lower layers with finer strides. Since convolution layers replace all the

fully connected layers, the FCN can take inputs of arbitrary sizes and produce

correspondingly-sized outputs with efficient inference and learning. Unlike

patch-based methods, this architecture’s loss function is computed over the

entire image segmentation result. The most common FCN used in medical

imaging applications is the U-Net [89]. The U-Net architecture consists of

a contracting path to capture context and a symmetric expanding path that

enables precise localization. In general, the FCN architectures can be used for

tasks involving pixel-wise loss functions such as reconstruction, synthesis, and

other image-to-image tasks.

In our problem, we utilized the CNNs to automatically segment the region

of interest, i.e. the uterus from the MRI images. Manual segmentation by an

expert radiologist is the widely accepted ground truth/gold standard. But this

manual segmentation is a very time-consuming, tedious task, usually involving

lengthy procedures, and the results depend on human expertise. Moreover,

these results vary from expert to expert and generally are not reproducible by

the same expert. Thus automatic segmentation and reproducible segmentation

methods are very much in demand nowadays.

We proposed an automated segmentation approach to delineate uterus

structure on MRI using a pre-trained deep convolutional neural network (CNN)

based Inception V4 augmented with a multi-layer autoencoder. A detailed

step-by-step explanation is given below.
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4.3 Uterus Segmentation using Deep CNN

Inception-V4

4.3.1 Proposed Deep ConvNet Architecture

Here we utilized the Inception-V4 [90] pre-trained on ImageNet Large Scale

Visual Recognition Competition (ILSVRC) datasets and updated the network

parameters for our MRI dataset. The original Inception V4 network archi-

tecture is shown in Fig. 4.1, which we fine-tuned according to our problem

formulation. The first convolutional layer and the last fully connected layers

are modified by changing the initial weights according to our problem. The

Inception-V4 was trained on RGB colour images with three channels differ-

ent from the MRI dataset used in this study consisting of grey-scale values.

Therefore, the three channels of CNN were reduced to 1 channel. The Ima-

geNet version of the algorithms comes with a softmax layer as the last layer

with 1000 categories. However, it does not include an approach to predict

the object boundaries; therefore, the task of predicting segmentation contour

(i.e., 400x1 vector) should be developed for the proposed problem. As such,

the pre-trained network’s last layer (softmax layer) is truncated and replaced

with a new softmax layer with a dimension of 400. In the proposed neural net

approach, the mean squared error (MSE) is used as the loss function, and the

Adam version of the stochastic gradient descent is used as the optimizer [91].

4.3.2 Utilizing Transfer Learning

Transfer learning is a highly popular technique nowadays in which a DL net-

work trained on a large dataset from one domain is used to retrain or fine-tune

the DL network with a smaller dataset associated with another domain. How-
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ever, the limited size of the annotated medical image datasets and the current

trend of using deeper and larger structures increase the risk of overtraining and

make transfer learning more appealing in medical imaging. In transfer learn-

ing, the neural network is trained in two stages: 1) Pre-training, where the

network is generally trained on a large-scale benchmark dataset representing a

wide diversity of labels/categories (e.g., ImageNet); and 2) Fine-tuning, where

the pre-trained network is further trained on the specific target task of interest,

which may have fewer labelled examples than the pre-training dataset. The

pre-training step helps the network learn general features that can be reused

on the target task.

This two-stage paradigm has become extremely popular in many settings,

particularly in medical imaging. In the context of transfer learning, standard

architectures designed for ImageNet with corresponding pre-trained weights

are fine-tuned on medical tasks.

4.3.3 Dimensionality Reduction Using Autoencoders

Autoencoders and their deep version are traditionally dimensionality reduction

methods that have achieved great success via the powerful representability of

neural networks. Autoencoders belong to a particular family of dimensionality

reduction methods implemented using ANN. It aims to learn a compressed rep-

resentation for input by minimizing its reconstruction error [92]. Furthermore,

it demonstrates a good ability to learn meaningful features from data [92]. An

autoencoder generally consists of two parts: an encoder that transforms the

input to a hidden code and a decoder that reconstructs the input from hidden

code.

As soon as the image is reconstructed, you compare the reconstructed

image with the original image, compute the difference, and calculate the loss
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which can then be minimized.

The Loss is calculated by:

L(θ, ϕ) =
1

n

∑

i

(xi − fθ(gφ(x
i)))2 (4.1)

The hidden layer size is smaller than the input layer in autoencoders and

is 50 in our case. By reducing the hidden layer size, we force the network to

learn the important features of the dataset. The main reason for using au-

toencoders in our problem is to reduce the dimensionality and reconstruct the

original contour from the hidden representation. The non-linearity property

of the autoencoders captures the spatial information regarding the shape and

sharp edges of the segmentation contour. Before computing the hidden rep-

resentation, we impose the non-linear activation function, rectified linear unit

(ReLU), to introduce non-linearities in the linear output.

In our implementation, at first, we used a multi-layer autoencoder. We

trained it with the segmentation contour, i.e. the 400x1 vector (200 x-coordinates

and 200 y-coordinates), and the bottleneck dimension is 50x1. Then the CNN

is trained with the target as the bottleneck vector of the autoencoder (i.e.

50x1 latent representation). After CNN’s prediction, we attach the decoder

part of the autoencoder. CNN’s prediction (i.e. the 50x1 vector) is passed

through the decoder to reconstruct the original 400x1 vector, which produces

the segmentation contour. We train both the models end-to-end as shown in

Figure 4.2. In the autoencoders, we impose the non-linear activation function

ReLU to capture complicated properties such as shape and size related to the

underlying segmented structure.
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4.4 Uterus Segmentation using Deep

U-Net

4.4.1 U-net Architecture

The application of deep learning technology in medical imaging has attracted

extensive attention. How to automatically recognize and segment the lesions

in medical images has become an issue that concerns many researchers. Ron-

neberger et al. [89] proposed U-Net at the MICCAI conference in 2015 to tackle

this problem, a breakthrough of deep learning in medical imaging segmenta-

tion. U-Net is a Fully Convolutional Network (FCN) applied to biomedical

image segmentation, composed of the encoder, the bottleneck module, and

the decoder. The widely used U-Net meets the requirements of medical image

segmentation for its U-shaped structure combined with context information,

fast training speed, and a small amount of data used. The original U-Net

architecture is illustrated in Fig. 4.3. We compared our proposed method

(Inception-V4 with autoencoders) with U-net for the segmentation task. The

proposed network uses four depth levels with two convolutional layers in each

depth level and the bridge of the network. In our implementation, we used

32, 64, 128, 256, and 512 channels in the feature maps at levels 1, 2, 3, 4,

and the bridge, respectively. This architecture consists of three sections: con-

traction, bottleneck, and expansion. Each block in contraction takes an input

and applies two 3 × 3 convolution layers, followed by a 2 × 2 max pooling.

The number of kernels or feature maps after each block doubles so that the

architecture can learn the complex structures effectively. The bottom-most

layer mediates between the contraction layer and the expansion layer. It uses

two 3× 3 CNN layers followed by a 2× 2 up-convolution layer.

We compared the proposed method with the current state-of-the-art method:
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U-net. The network architecture without input/output MRI images is illus-

trated in Fig. 4.4. The U-Net combines the location information from the

down-sampling path with the contextual information in the up-sampling path

to obtain general information combining localisation and context, which is

necessary to predict a good segmentation map.

Figure 4.3: Illustration of U-Net convolution network structure. The left side
of the U-shape is the encoding stage, also called the contraction path and
the right side of the U-shape, also called the expansion part, consists of the
decoding stage and the up-sampling process
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Figure 4.4: Illustration of U-Net convolution network structure for our problem
formulation
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4.5 Results

4.5.1 Data Preprocessing

Step 1: Originally, all the MR images and the corresponding contours were

in a DICOM format in the standard DICOM patient-based coordi-

nate system. We had to convert the DICOM voxel to the patient

coordinate system. In conjunction with the Pixel Spacing Attribute,

the Image Plane Attributes describe the position and orientation of

the image slices relative to the patient-based coordinate system. The

Image Position (Patient) specifies the image’s origin concerning the

patient-based coordinate system in each image frame. Image Orien-

tation (Patient) attribute values specify the orientation of the image

frame rows and columns. The mapping of pixel location (i, j) is cal-

culated as shown in Figure 4.5 [93]:

Figure 4.5: Transformation from DICOM to patient-coordinate system

Step 2: The number of corresponding contour points in the pre-BT image and
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at-BT image were different. Therefore, we performed a uniform sam-

pling of contour points to generate the same number for each dataset.

Each contour is sampled to 200 points using the spline interpolation,

and the sampling is performed by transforming the contours to the

polar coordinate system [94].

Step 3: Originally each 2D MR image was of size 320x320 pixels. Therefore,

the images must be resized to fit the input shape of the network. The

input to the proposed network is a 2D MR image of size 299x299,

and the output is the segmentation contour, i.e., the contour’s stacked

(x; y) coordinate points. We used 200 pairs of (x; y) points and

stacked them to form a vector of size 400x1. Each input image and

the segmentation mask for U-net is resized to 256x256.

4.5.2 Data Augmentation

Data augmentation creates new samples based on existing samples in a dataset

or according to a generative model. These new samples can then be combined

with the original samples to increase the variability in data points in a dataset.

This class of techniques has become a common practice in DL-based applica-

tions since it is highly effective for increasing the size of training sets, reducing

the chance of overfitting and eliminating the unbalance issue in datasets is

critical for achieving generalized models and testing results.

Common data augmentation techniques adopted in medical image analysis

applications [89] include cropping, translation, rotation, flipping, and scaling

of images. Here we rotated the MR images with different degrees (5, 10, 15,

20, 25, 30) clockwise and anti-clockwise to generate more training examples

to train the DL models. At the same time, the same operation applied to

an MR image is used for corresponding mask images. In this way, each aug-
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mented image pair’s relationship between the MR image and the output mask

is preserved.

4.5.3 Implementation Details

We input a 299x299x1 grayscale MRI image into the InceptionV4 to predict a

50x1 response vector using an autoencoder. The training was performed using

250 epochs and a batch size of 6. The last layer is a dense layer that uses

the MSE between the actual and the predicted value as the loss function and

is illustrated in Eq. 4.2. Adam’s version of the stochastic gradient descent

[91] is used as the optimizer. All the experiments with the neural network

were implemented using Keras API [95] with TensorFlow and on two NVIDIA

GeForce GTX 1080 GPU processors. It took around 5 hours to train the

network. The prediction took 4 ms per image.

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2 (4.2)

4.5.4 Quantitative Evaluation Metrics

For evaluation, we used Dice Coefficient (DC), and the Hausdorff Distance

(HD) between the ground truth segmentation and the segmentation obtained

using the automated methods. Also, RMSE is used to measure the difference

between the source and segmented images. The smaller the value of RMSE, the

better the segmentation performance. A higher DC value is associated with a

better segmentation result. The lower value of Hausdorff distance corresponds

to better segmentation.
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4.5.5 Uterus Segmentation Results -

Our Proposed Method vs U-Net

Table 4.1 reports the DC and the HD between manual segmentation and the

segmentation by automated methods. The proposed CNN with autoencoder

performed significantly better than the current state-of-the-art method U-net

in terms of Hausdorff distance and dice score.

Table 4.1: Evaluation of automated segmentation results by the proposed
method and U-net in terms of Dice Coefficient (DC) and Hausdorff Distance
(HD) in comparison to expert manual segmentation. The Mean ± Standard
Deviation values are reported for each metric. The higher the Dice coefficient

or the lower the Hausdorff distance the better the results.

Dice Coefficient (%) Hausdorff Distance (mm)

Our Method 94.8± 2.3 3.06± 2.5
U-Net 92.4± 4.0 6.7± 3.6

The MSE loss curves (training and validation curves) with different epochs

for CNN with autoencoders are shown in Figure 4.6.

In Figure 4.7, the highest accuracy (97%), 50th percentile (93%), 25th

percentile (90%) and the lowest accuracy (86%) of Dice scores achieved by

the proposed method are shown visually, where the green, yellow and red

contours depict the segmentation results by the proposed method (CNN with

autoencoder), U-net approach and manual ground truth, respectively.

Here are some unusual results that are produced by our DL

method and U-net.

4.6 Discussion

Deep Learning has pushed the limits of what was possible in Image process-

ing. DL methods such as CNN mainly improve prediction performance using
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(a) Highest DC: CNN - 0.97 [U-Net - 0.94] (b) CNN - 0.95 [U-Net - 0.92]

(c) CNN - 0.93 [U-Net - 0.88] (d) CNN - 0.91 [U-Net - 0.92]

(e) CNN - 0.90 [U-Net - 0.88] (f) Lowest DC: CNN - 0.85 [U-Net - 0.84]

Figure 4.7: The automated segmentation results of CNN with autoencoders
and U-net (in square brackets) with different Dice score (DC) values. The red,
green, and yellow contours represent the ground truth, segmentation by CNN
with autoencoders and U-net, respectively.
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(a) CNN - 0.90 [U-net - 0.60] (b) CNN - 0.78 [U-net - 76]

(c) CNN - 0.90 [U-net - 0.85] (d) CNN - 0.86 [U-net - 0.78]

Figure 4.8: Unusual results predicted by DL methods. Segmentation results
of CNN with autoencoders and U-net (in square brackets) with different Dice
score (DC) values. The red, green, and yellow contours represent the ground
truth, segmentation by CNN with autoencoders and U-net, respectively.
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classify increases, feature extraction becomes more and more cumbersome.

It is up to the /clinician’s judgment and a lengthy trial and error process to

decide which features best describe different classes of objects. Moreover, each

feature definition requires dealing with many parameters, all of which must be

fine-tuned manually.

DL introduced the concept of end-to-end learning, where the machine is

just given a dataset of images which have been annotated with labels. A

DL model is ’trained’ on the given data, where neural networks discover the

underlying patterns in the data and automatically work out the most descrip-

tive and salient features with respect to each specific class of object. It has

been well-established that deep neural networks perform far better than tra-

ditional algorithms, albeit with trade-offs concerning computing requirements

and training time.

For our dataset, CNN with autoencoder performed better than U-net. The

proposed approach incorporates an autoencoder to detect the segmentation

contours directly from the raw MR images. Previous unsupervised approaches,

such as principal component analysis-based linear reconstruction, are not suit-

able [26] since they cannot preserve the highly nonlinear relationships when

projected to low-dimensional space. Therefore, we imposed a robust struc-

tured regression approach to the proposed model by applying an autoencoder.

The proposed automated segmentation method can be utilized to segment the

closed and open regions like atrial segmentation [26]. This unique segmenta-

tion approach can be easily generalized from 2D to 3D images. Also, it can

be used in most segmentation tasks as this method does not depend on any

specific condition.

Most of the existing machine learning-based methods, such as U-net, rely

on semantic segmentation, which may not be suitable for all the image seg-
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mentation tasks like predicting the open contours. After indicating the closed

contour, many post-processing steps must be done to extract the available

contour. But with our proposed method, we can directly predict any seg-

mentation contour in spite of having different shapes and orientations. U-Net

is one of the fully connected networks that outperformed the classical image

processing approaches in many applications, such as liver segmentation, brain

tumour segmentation, prostate segmentation etc. However, U-Net is limited

in extracting some complex features that could help image segmentation in

medical images. For example, U-Net can detect objects of known shape and

location but is limited in extracting complex features when the target object

has a non-standard shape and random location.

So, with our proposed uterus segmentation method, we could achieve 94.8%

accuracy in terms of Dice Coefficient, and the highest DC was 97% which is

shown in Figure 4.7, whereas U-Net achieved 92% accuracy in terms of DC

and the highest was 94%. But an exciting finding from this step is the unusual

cases shown in Figure 4.8. One can see that U-Net segmented some incorrect

regions along with the correct segmentation (i.e. the uterus). So, the areas

with similar intensity values as the uterus on the MRI images are included

in the segmentation result, which is unacceptable in this case. That is why,

with our dataset, our proposed segmentation approach CNN with autoencoder

is proved to be the better choice over the U-Net to segment uterus structure

automatically from MRI.
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Chapter 5

Uterus Structure Prediction

Using Deep Learning

5.1 Overview

Deep learning methods are highly effective when the number of available sam-

ples is large during a training stage. For example, in the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC), more than 1 million annotated

images were provided [96]. However, as for medical applications, we usually

have a very limited number of images. Therefore, one of the main challenges

in applying deep learning to medical images arises from the limited number of

available training samples to build deep models without suffering from overfit-

ting. To this end, research groups have devised various strategies, such as (i)

to take image patches either 2D or 3D as input [97–99], rather than the full-

sized images, to reduce the input dimensionality, thus the number of model

parameters; (ii) to expand their dataset by artificially generating samples via

various data augmentation methods (like translation, rotation, transforma-

tion, scaling) and then train their network from scratch with the augmented
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dataset [100, 101]; (iii) to use deep models trained over a huge number of

natural images in computer vision as feature extractor and then train the

final classifier or output layer with the target-task samples [99]; (iv) to ini-

tialize model parameters with those of pre-trained models from non-medical

or natural images and then fine-tune the network parameters with the task-

related samples [100]; (v) to use models trained with small-sized inputs for

arbitrarily-sized inputs by transforming weights in the fully connected layers

into convolutional kernels [102].

In terms of the input types, we can categorize deep models as typical

multi-layer neural networks that take input values in vector form (i.e., non-

structured) and convolutional networks that take 2D or 3D shaped (i.e., struc-

tured) values as input. Because of the structural characteristic of images (i.e.,

the structural information among neighbouring pixels or voxels is another crit-

ical source of data), convolutional neural networks have gained significant in-

terest in medical image analysis. However, networks with vectorized inputs

were also successfully applied to different medical applications [103,104].

The numerous development in medical imaging acquisition systems and

deep learning technologies have resulted in the rise of usage frequency of modal-

ities for computer-aided diagnosis. Despite the U-Net being super-efficient in

the semantic segmentation task, there is still a void to fill with improvements

in certain aspects. The most apparent problem in the original (vanilla) U-

Net is that the learning may slow down in deeper layers of the U-Net model,

which increases the possibility of the network ignoring the layers representing

abstract features of the target structure. Therefore, researchers modify the

U-net according to the specifications of the problem.

The driving focus of the medical imaging community has been on the su-

pervised learning of decision boundaries, while generative tasks were the sec-
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ondary position or less important. This changed dramatically with the advent

of Generative Adversarial Networks (GANs) [105], which lead to a new age of

generative modeling and distribution learning. With their abilities to mimic

data distributions and to synthesize images at yet unprecedented levels of re-

alism, GANs opened new ways to bridge the gap between supervised learning

and image generation. The mentioned improvements are essentially due to

the following properties: 1) GANs maximize the probability density over the

data-generating distribution by exploiting density ratio estimation (Isola et

al., 2017) in an indirect fashion of supervision; 2) GANs can discover the high

dimensional latent distribution of data, which has lead to significant perfor-

mance gains in the extraction of visual features.

In this thesis, we are dealing with a unique problem in medical imaging,

i.e. predicting the anatomy deformation using MRI, so the main goal is to pre-

dict the at-BT MRI (after inserting the applicator) from pre-BT MRI (before

inserting the applicator). We can conclude from the images shown before that

it is very difficult to address the challenging task of anatomy prediction using

only the 2D MRI slices. Also, image to image prediction is a tough prob-

lem to solve. There are well-known methods for predicting an image mask

(segmentation) like U-Net, V-Net, variations of U-Net architectures, fully con-

nected networks etc. The GANs are used to generate synthetic images from

real images. The architecture consists of a generator model for outputting new

plausible synthetic images and a discriminator model that classifies images as

real (from the dataset) or fake (generated). That means there should be some

similarity between the real Image and the predicted Image. But in our dataset,

there is no such similarity between pre-BT and at-BT MRI images, and the

problem is to predict the anatomical deformation due to applicator insertion.

For this reason, we have chosen U-Net architecture and utilized a modified
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version of U-Net to predict the at-BT uterus shape and position from the pre-

BT MRI and the corresponding pre-BT uterus segmentation. The fine-tuning

details are described below.

5.2 U-Net Architecture

First introduced in 2015 in the paper [89], the U-Net possesses an approach to

image segmentation that outperformed its competitors at the time, a sliding

window convolutional network, all the while using few images in the training

dataset and making use of image augmentation to increase the learning ca-

pability of the network. The U-Net is a CNN architecture design for image

segmentation or detection applications [89]. Our framework’s prediction net-

work is designed based on a modified version of the original U-net architecture

proposed in [89]. U-shaped network consisting of a contracting path and an ex-

pansive path. The basic intuition is that while on the downslope (contracting

path), the network learns to classify the object, and on the upslope (Expan-

sive path), the networks on the localization of the object. U-Nets consist of

convolution layer, batch normalization [106], rectified linear unit (ReLU), and

contracting path connection with concatenation. The network uses four depth

levels with two convolutional layers in each depth level and the bridge of the

network. In our implementation, we used 32, 64, 128, 256, and 512 channels in

the feature maps at levels 1, 2, 3, 4, and the bridge, respectively. This architec-

ture consists of three sections: contraction, bottleneck, and expansion. Each

block in contraction takes an input and applies two 3 × 3 convolution layers,

followed by a 2 × 2 max pooling. The bottom-most layer mediates between

the contraction layer and the expansion layer. It uses two 3 × 3 CNN layers

followed by a 2× 2 up-convolution layer. Specifically, each stage contains four
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sequential layers composed of convolution with 3 × 3 kernels, batch normal-

ization, and ReLU layers. Finally, the last scene has two sequential layers,

and the previous layer contains only the convolution layer with a 1 × 1 kernel.

Note that the number of channels is doubled after each pooling layer.

5.3 Fine-tuning details of proposed

U-net architecture

5.3.1 Backbone U-Net architecture

The model architecture is an end to end deep learning approach that takes

inspiration from the encoder, decoder backbone of U-Net, and the feature

enricher Bidirectional feature network. The proposed model makes the use

of U-Net based backbone network incorporated with a Bidirectional feature

network for the task of uterus prediction. Further, the fully convolutional

network-based U-Net encoder takes the MRI input images and outputs fea-

tures at five corresponding depths. The feature network’s outputs are com-

bined respectively with a decoder architecture to obtain a combination of

lower-level fine-grained features with high-level semantic features [107]. The

incorporation of a bidirectional feature network aims to improve the feature

extraction efficiency at each level of the backbone architecture and enrich the

feature vectors, thereby allowing a fusion of lower-level fine-grained features

and higher-level semantic features.

5.3.2 Bidirectional Feature Network

The bidirectional feature network also incorporates additional weight for each

input during feature fusion, thereby allowing the network to learn the particu-

82



lar input feature importance. For dynamic learning behavior and accuracy fast

normalized fusion (one of the methods of incorporating weights during feature

fusion) is implemented [108]. Also, for improvement of efficiency, depth-wise

separable convolution followed by batch normalization and non-linear activa-

tion function ReLu (Rectified Linear unit) are implemented. This modification

improves the feature maps at each depth of the network and provides an ef-

ficient fusion of features across various depths of the encoder section of the

U-Net backbone architecture.

Instead of a single image, we input two images to the modified U-net:

(i) the original pre-BT MRI in the first channel and (ii) the corresponding

pre-BT uterus segmentation mask (binary image mask) in the second channel.

U-net predicts the at-BT uterus segmentation mask (binary image mask). The

uterine contour in the at-BT position is extracted from this binary mask. The

complete U-net architecture is illustrated in Fig. 5.1.

The network training aims to increase probability of right class of each

voxel in the mask. To accomplish this, a weighted binary cross-entropy loss of

each sample of training has been utilized. For the implementation of weighted

binary cross-entropy, the positive pixels by the ratio of negative to positive

voxels in the training set was weighted. The network will learn to be less

biased towards outputting negative voxels due to the class imbalance in the

masks. The weighted binary cross-entropy loss is formulated as follows:

Loss = − 1

n

∑

i

[wp × yilog(ŷi) + (1− yi)log(1− ŷi)] (5.1)

where, n represents the number of samples, wp represents the positive pre-

diction weights and ŷi indicates the prediction of the model.
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5.3.3 ReLU Activation Functions

In the neural network, the activation function is the gateway to incorporating

non-linearity. It plays a pivotal part in the training and evaluation of deep

neural networks. The widely used activation functions are ReLU, Sigmoid,

Leaky ReLU, Tan hyperbolic. ReLU introduces the property of non-linearity

to a deep learning model and solves the vanishing gradients issue. The main

reason ReLU wasn’t used until more recently is because it was not differen-

tiable at the point zero. Researchers tended to use differentiable functions like

sigmoid and tanh. However, it’s now determined that ReLU is the best activa-

tion function for deep learning. The ReLU activation function is differentiable

at all points except at zero. For values greater than zero, we just consider the

max of the function. All the negative values default to zero, and the maximum

for the positive number is taken into consideration. For the computation of

the backpropagation of neural networks, the differentiation for the ReLU is

relatively easy. The only assumption we will make is the derivative at the

point zero, which will also be considered as zero. The main advantages of the

ReLU activation function are:

• It is the most popular activation function for training convolutional layers

and deep learning models.

• The rectifier function is trivial to implement, requiring only a max func-

tion.

• An important benefit of the rectifier function is that it is capable of

outputting a true zero value.

• A neural network is easier to optimize when its behavior is linear or close

to linear.
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5.3.4 Data augmentation

Medical image segmentation is constrained by the abundant availability of

labeled training data. Data augmentation helps to prevent the model from

over-fitting and helps in improving the generalization capability of the net-

work on data outside the training set. In medical imaging, the augmentations

are provided to both the image and label equally, thereby creating warped ver-

sions of the training data. Common data augmentation techniques adopted

in medical image analysis applications [89] include cropping, translation, ro-

tation, flipping, and scaling of images. Here we rotated the MR images with

different degrees (5, 10, 15, 20, 25, 30) clockwise and anti-clockwise to generate

more training examples to train the DL models. At the same time, the same

operation applied to an MR image is used for corresponding mask images. In

this way, each augmented image pair’s relationship between the MR image

and the output mask is preserved.

Figure 5.1: Architecture of the proposed U-net model for predicting the de-
formed at-BT uterus.
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5.4 Comparison with U-Net++ Architecture

The state-of-the-art models for image segmentation are variants of the encoder-

decoder architecture like U-Net and fully convolutional network (FCN). These

encoder-decoder networks used for segmentation share a key similarity: skip

connections, which combine deep, semantic, coarse-grained feature maps from

the decoder sub-network with shallow, low-level, fine-grained feature maps

from the encoder sub-network. To address the need for more accurate seg-

mentation in medical images, another variation of U-Net architecture called

U-Net++ is introduced in [109], a new segmentation architecture based on

nested and dense skip connections. The underlying hypothesis behind this ar-

chitecture is that the model can more effectively capture fine-grained details of

the foreground objects. This is in contrast to the plain skip connections com-

monly used in U-Net, which directly fast-forward high-resolution feature maps

from the encoder to the decoder network. U-Net++ starts with an encoder

sub-network or backbone followed by a decoder sub-network. Each convolu-

tion layer is preceded by a concatenation layer that fuses the output from the

previous convolution layer of the same dense block with the corresponding up-

sampled output of the lower dense block. The main idea behind is to bridge

the semantic gap between the feature maps of the encoder and decoder prior

to fusion. The architecture of U-Net++ is illustrated in Figure 5.2.

U-Net++ takes advantage of re-designed skip pathways and deep supervi-

sion. The re-designed skip pathways aim at reducing the semantic gap between

the feature maps of the encoder and decoder sub-networks, resulting in a pos-

sibly simpler optimization problem. With deep supervision: accurate mode

wherein the outputs from all segmentation branches are averaged. UNet++

generates full resolution feature maps at multiple semantic levels. The loss are

estimated from 4 semantic levels. Also, a combination of binary cross-entropy
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The image size was 256 × 256. All the experiments with the neural network

were implemented using Keras API [95] with TensorFlow and on two NVIDIA

GeForce GTX 1080 GPU processors. It took around 5 hours to train the

network. The prediction took 4 ms per image.

5.5.2 Automated Uterus Structure Prediction

Using CNN

Table 5.1: Evaluation of uterus prediction results by the proposed method in
terms of Dice Coefficient (DC) and Hausdorff Distance (HD) in comparison
to expert manual segmentation. The Mean ± Standard Deviation values are
reported for each metric. The higher the Dice coefficient or the lower the

Hausdorff distance the better the results.

Dice Coefficient (%) Hausdorff Distance (mm)

U-Net 89.5± 4.2 3.6± 2.6

U-Net++ 87.8± 5.3 6.2± 3.7

The conventional U-net model predicts the at-BT uterus structure from

pre-BT MR image and pre-BT uterus segmentation. The proposed approach

yielded an average Dice score of 89.5% and an average Hausdorff distance of

3.6 mm compared to the ground truth segmentation. The results of U-Net is

compared with U-Net++ and is shown in Table 5.1.

The MSE loss curves (training and validation curves) with different epochs

are shown in Figure 5.3.

In Figure 4.8, the highest accuracy (90%), 50th percentile (87%), 25th

percentile (83%) and the lowest accuracy (78%) of Dice scores achieved by

the proposed method are shown visually, where the green, yellow and red

contours depict the segmentation results by the proposed method (CNN with

autoencoder), U-net approach and manual ground truth, respectively.
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(a) preBT MRI (b) atBT Uterus prediction result: DC 0.90

(c) preBT MRI (d) atBT Uterus prediction result: DC 0.80

Figure 5.4: Results with different Dice score values for predicting the uterus
structure using U-net (green) and U-Net++ (yellow). The red contour rep-
resents the manual ground truth. The corresponding input MRI (pre-BT) is
also displayed in the right to have a clear idea about the problem formulation
and the output results.
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preBT MRI atBT Uterus prediction result: DC 0.76

preBT MRI atBT Uterus prediction result: DC 0.75

Figure 5.5: Results with different Dice score values for predicting the uterus
structure using U-net (green) and U-Net++ (yellow). The red contour rep-
resents the manual ground truth. The corresponding input MRI (pre-BT) is
also displayed in the right to have a clear idea about the problem formulation
and the output results.
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(a) Highest DC - 0.90 (b) DC - 0.88

(a) 50th percentile - 0.86 (b) 25th percentile - 0.82

(c) DC - 0.80 (d) Lowest dice score - 0.78

Figure 5.6: Results with different Dice score values for predicting the uterus
structure using U-net (green) and manual ground truth (red). As for any test
cases, there is no at-BT image, that is why
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the BT applicator, is unique and has not yet been reported by any other study.

Our proposed method (modified U-Net) achieved 89.5% accuracy in terms of

Dice Coefficient (DC) in predicting uterine shape deformation and outper-

formed U-Net++, which is quite acceptable as there is no other method avail-

able now in medical imaging that can solve this problem. Where as U-Net++

achieved 87.8% DC which is comparable with our proposed method, but for a

few difficult cases our approach with modified U-Net performed significantly

better than U-Net++. Figure 5.4 and Figure 5.5, display the visual results

of U-Net and U-Net++. From the results we can conclude that, although

the measures are comparable but in most of the cases U-Net outperformed

U-Net++ in predicting at-BT uterus structure from pre-BT MRI.
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Chapter 6

Non-rigid registration/Free

form deformation

6.1 Overview

Medical image registration is one of the most important and challenging re-

search in the modern medical image analysis field. From the view of the image

transformation, medical image registration can be classified into rigid registra-

tion and non-rigid registration. As our goal is to predict the uterine deforma-

tion in cervical cancer brachytherapy, that is why we are focusing on non-rigid

registration method using free form deformation. The non-rigid medical image

registration algorithm naturally depends on the geometric deformation model

and the similarity measure criterion. The geometric deformation models can

be classified into two main categories: i) physics-based models such as the

elastic body models [111, 112], the optical flow models [113] and the diffusion

models [83]; and ii) interpolation-based models such as free-form deforma-

tions [114].

For the above registration algorithms based on the physical models, it is
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difficult to construct a reasonable physical model that can simulate the com-

plex tissue deformations between the two input images. In [114], the authors

proposed a local deformation model for non-rigid registration on breast MR

images. This model was described by the so called Free-Form Deformation

(FFD) based on B-splines, and it employed the normalized mutual informa-

tion (NMI) as the similarity function. Since the degree of freedom of the local

deformation model is determined by the number of control points, it is im-

portant to decide whether a sparse or dense set of control points should be

used. However, both sparse and dense sets have limitations. If a sparse set

of control points is used, the movements of the control points will not well

represent complicated deformations. If a dense set of control points is used,

the optimization can be computationally inefficient. In order to tackle these

shortcomings, some researchers proposed some alternate methods. For exam-

ple, [115] proposed a multi-level B-spline model in which only a sparse subset

of the control points is active to balance speed and accuracy.

Free Form Deformation (FFD) is part of the computer graphics literature

on soft objects. The definition of a soft object is an object that can be de-

formed by the user or during the process of animation. Soft object deformation

is used for many purposes: 1) Shape distortion to highlight dynamic interac-

tion with the environment. For instance, an animator may want to create

a basketball that will deform when it bounces on the ground. Another use

would be to deform the shape of a car during a collision in a racing simula-

tion. 2) Realistic deformation of an object that has a highly elastic and flexible

shape. Examples include the facial expressions, motion of the human body,

and cartoon animation etc.

The FFD model employs a B-spline mesh to estimate the deformation field.

The mesh is controlled by the grid points, referred to as control points, which
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are scattered in a regular spacing grid. Each control point is associated with

a kernel function, which defines the local deformations induced by the dis-

placement of this control point. A popular kernel function chosen is the cubic

B-spline kernel function. Here, after predicting the at-BT uterus shape and

location for the pre-BT MRI image using deep convolutional neural networks,

we need to determine the amount of deformation or shift that happened in

the uterus structure due to the applicator insertion. This information will be

helpful for the clinicians who perform the brachytherapy treatment and will

guide them to understand the anatomy deformation in a better way. For ex-

ample, suppose the clinicians have the information about the possible amount

of uterine deformation before inserting the applicator. In that case, this will

help them select the correct applicator configuration for each patient. To mea-

sure the amount of deformation, we used a non-rigid shape-based registration

method and a free-form deformation approach. The detailed methodology is

explained in the next section below.

6.2 Methodology

The shape registration problem has been studied mainly in the literature and

represents a fundamental problem in different computer vision and image pro-

cessing applications. It tries to recover a set of transformation parameters

that brings a given data set as close as possible to the corresponding model

set. The rigid case, also known as shape alignment, involves simple rotations

and translations. While in the non-rigid shape registration case, in addition

to the rotation and translation parameters, it includes a set of deformation

parameters. In general, most of the approaches proposed for non-rigid shape

registration follow a two-step scheme, where first, a rigid global alignment is
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performed. Then a local process deforms the shape of the data set towards

the given model set.

We tested a shape registration algorithm proposed by [116] that tackles

global and local alignment and deformation. The method follows these steps:

(1) a robust distance approximation based on local curvature information is

used for non-rigid registration; (2) the proposed objective function is in the lin-

ear least squares form, hence it can be solved by a linear system of equations;

(3) the proposed method captures all deformation from rigid to non-rigid by

the same framework; there is no need to use different steps to capture global

and local deformations separately; (4) unlike the sign distance field, the pro-

posed function is not discretely approximated.

6.2.1 Registration Error (Squared Distance)

Signed distance fields (SDFs) are used in [117] to capture the local transforma-

tion in small sampling grids. The FFD control lattice defines these sampling

grids. The approximation error estimates the distance between the current

data set and the model set. All the registration methods seek the best trans-

formation parameters to move the given data set S = {si} (source shape) close

to the model set T = {tj} (target shape).

A well-known example method is the Iterative Closest Point (ICP) algo-

rithm to measure the distance between the data set and model set. It moves

the data set in each iteration based on a simple criterion: for the given data

point, it searches for the closest corresponding model point. Therefore, the

distance used by ICP is a point-to-point distance, and ICP performs a Point

Distance Minimization (PDM) in each iteration to find the best transforma-

tion parameters [118]. One scenario could be when some of the data points lie

on the curve passing through the model set; hence their distance to the model
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set must be quite low, but ICP devotes a quite high distance to these points

since the model set is quite sparse. If there could be a better approximation

for the distance, the ICP would devote more weight to the data point, which

is still far from the model point.

Here we used a quadratic approximation of the geometric distance to define

the registration error term in the least squares form. This distance is based on

the curvature information in the model sets. Consider the data point si with

its closest corresponding model point tj. Then the Squared Distance (SD) of

si to the whole model set T can be approximated as follows:

SD(si, T ) =
d

(d− ρ)
[(si − tj).Tj]

2 + [(si − tj).Nj]
2 (6.1)

where Tj and Nj are the unit tangent and unit outer normal, respectively,

defined in the Frenet–Serret frame at tj. The value ρ is the curvature radius

at the model point tj, and d is the signed distance between the data point si

and the model point tj. The sign of d is positive if si and Nj lie on the same

side and are negative otherwise.

The squared distance approximation works with the Frenet–Serret frame

at the foot-point tj. It projects the data point on the normal and tangent

vectors first, and the final approximation will be quadratic with respect to

these projections. In the particular case where the data point is along the

normal at the foot-point, the first quadratic term vanishes and the distance

will be equal to |si − tj|2, which is the squared point-to-point distance. In

another case, where the model’s curvature set at tj is zero, the first quadratic

term vanishes again, and the projection of the data point on the normal will

be the SD approximation of quadratic distance.
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6.2.2 Free Form Deformation

The shape registration problem has been studied mainly in the literature and

represents a fundamental problem in different computer vision and image pro-

cessing applications. It tries to recover a set of transformation parameters that

brings a given data set as close as possible to the corresponding model set.

The rigid case, also known as shape alignment, involves simple rotations and

translations. While in the non-rigid shape registration case, in addition to the

rotation and translation parameters, includes a set of deformation parameters.

In general, most of the approaches proposed for non-rigid shape registration

follow a two-step scheme, where first, a rigid global alignment is performed.

Then a local process deforms the shape of the data set towards the given model

set.

We tested a shape registration algorithm proposed by [116] that tackles

global and local alignment and deformation. The method follows these steps:

(1) a robust distance approximation based on local curvature information is

used for non-rigid registration; (2) the proposed objective function is in the lin-

ear least squares form, hence it can be solved by a linear system of equations;

(3) the proposed method captures all deformation from rigid to non-rigid by

the same framework; there is no need to use different steps to capture global

and local deformations separately; (4) unlike the sign distance field, the pro-

posed function is not discretely approximated.

6.2.3 Registration Error (Squared Distance)

Signed distance fields (SDFs) are used in [117] to capture the local transforma-

tion in small sampling grids. The FFD control lattice defines these sampling

grids. The approximation error estimates the distance between the current

data set and the model set. All the registration methods seek the best trans-
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formation parameters to move the given data set S = {si} (source shape) close

to the model set T = {tj} (target shape).

A well-known example method is the Iterative Closest Point (ICP) algo-

rithm to measure the distance between the data set and model set. It moves

the data set in each iteration based on a simple criterion: for the given data

point, it searches for the closest corresponding model point. Therefore, the

distance used by ICP is a point-to-point distance, and ICP performs a Point

Distance Minimization (PDM) in each iteration to find the best transforma-

tion parameters [118]. One scenario could be when some of the data points lie

on the curve passing through the model set; hence their distance to the model

set must be pretty low, but ICP devotes a high distance to these points since

the model set is quite sparse. If there could be a better approximation for the

distance, the ICP would save more weight on the data point, which is still far

from the model point.

Here we used a quadratic approximation of the geometric distance to define

the registration error term in the least squares form. This distance is based on

the curvature information in the model sets. Consider the data point si with

its closest corresponding model point tj. Then the Squared Distance (SD) of

si to the whole model set T can be approximated as follows:

SD(si, T ) =
d

(d− ρ)
[(si − tj).Tj]

2 + [(si − tj).Nj]
2 (6.2)

where Tj and Nj are the unit tangent and unit outer normal, respectively,

defined in the Frenet–Serret frame at tj. The value ρ is the curvature radius

at the model point tj, and d is the signed distance between the data point si

and the model point tj. The sign of d is positive if si and Nj lie on the same

side and are negative otherwise.

The squared distance approximation works with the Frenet–Serret frame
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at the foot-point tj. It projects the data point on the normal and tangent

vectors first, and the final approximation will be quadratic with respect to

these projections. In the particular case where the data point is along the

normal at the foot-point, the first quadratic term vanishes and the distance

will be equal to |si − tj|2, which is the squared point-to-point distance. In

another case, where the model’s curvature set at tj is zero, the first quadratic

term vanishes again, and the projection of the data point on the normal will

be the SD approximation of quadratic distance.

6.3 Results

The performance of the shape deformation approach has been evaluated on

a dataset of 120 cervical cancer patients. Here the data set corresponds to

the pre-BT shape, and the model set conforms to the at-BT shape. The

uterine canal, vaginal canal and uterus shapes have been deformed using this

approach.

Table 6.1: Quantitative analysis of anatomical deformation (uterus, uterine
canal, vaginal canal) due to applicator insertion between pre-BT and at-BT
anatomical structures. The Mean ± Standard Deviation values of the Mean

Squared Distance are reported here.

Anatomy deformation estimation (mm)

Uterus 35.8± 5.2

Uterine Canal 30.7± 6.9

Vaginal Canal 28.4± 4.6

The following figures show illustrations of 2D shapes (uterine canal and

vaginal canal, and uterus) registered with the proposed approach. In the

current implementation, the regularization parameter λ, which somehow rep-

resents the registration rigidity, was automatically tuned. It starts with a high
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regularization value λ = 105, mainly devoted to tackling the alignment prob-

lem. The figures depict intermediate results and the results after convergence

are reached.

Figure 6.1 shows illustrations of a 2D uterine canal and the applicator

model registered with the proposed approach. Figure 6.2 illustrates the 2D

vaginal canal deformed according to the applicator. Figure 6.3 and Figure 6.4

show the deformation of the 2D uterus structure from the pre-BT position to

the at-BT position.

6.4 Discussion

The tandem applicator is inserted through the patient’s vaginal canal into the

uterine canal. As we have the 2D shape of the applicator from the beginning

as the reference shape, we tried to deform the 2D shape of the uterine canal

and vaginal canal according to the applicator’s shape (shown in Figure 6.1

and Figure 6.2). During this deformation procedure, we measured the amount

of deformation that happened to the shapes of the canals. The applicator

insertion induced uterine and vaginal canal displacement of 38.6 mm and 30.5

mm, respectively.

In Figure 6.3 and Figure 6.4, the uterus deformation from pre-BT to at-BT

treatment for two different patients is demonstrated. Large displacements and

deformations were observed in these cases.

The applicator insertion induced the largest mean displacement for the

uterus of 29.5 mm and 62.3 mm, respectively, for these two patients. Shape

with red depicts the pre-BT anatomy, and the yellow shape represents the

at-BT anatomy. The red shape is deformed to the yellow shape using the

free-form deformation technique.
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(a) Iteration 1 : 29.8 mm (b) Iteration 2 : 6.4 mm

(c) Iteration 3 : 3.1 mm (d) Iteration 4 : 2.4 mm

(e) Iteration 5 : 1.7 mm (f) Iteration 6 : 1.3 mm

Figure 6.1: Registering the pre-BT uterine canal with the applicator shape.
Red - applicator shape and Blue - pre-BT uterine canal. The iteration number
and the distance between pre-BT and at-BT shapes are given here.
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(a) Iteration 1 - 29.8 mm (b) Iteration 2 - 18.7 mm

(c) Iteration 3 - 6.1 mm (d) Iteration 4 - 3.5 mm

(e) Iteration 5 - 2.1 mm (f) Iteration 6 - 1.7 mm

Figure 6.2: Registering the pre-BT vaginal canal with the applicator shape.
Red - applicator shape and Blue - pre-BT vaginal canal. The iteration number
and the distance between pre-BT and at-BT shapes are given here.
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(a) Iteration 1 - 29.4 mm (b) Iteration 2 - 17.2 mm

(c) Iteration 3 - 9.9 mm (d) Iteration 4 - 5.1 mm

(e) Iteration 5 - 2.6 mm (f) Iteration 6 - 1.2 mm

Figure 6.3: Registering the pre-BT uterus with at-BT uterus. Red - at-
BT uterus and Blue - pre-BT uterus. The iteration number and the distance
between pre-BT and at-BT uterus shapes are given here.
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(a) Iteration 1 - 62.5 mm (b) Iteration 2 - 48.2 mm

(c) Iteration 3 - 29.6 mm (d) Iteration 4 - 13.5 mm

(e) Iteration 5 - 4.1 mm (f) Iteration 6 - 2.6 mm

Figure 6.4: Registering the pre-BT uterus with at-BT uterus. Red - at-
BT uterus and Blue - pre-BT uterus. The iteration number and the distance
between pre-BT and at-BT uterus shapes are given here.
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Predicting and measuring deformation from the natural anatomy prior to

BT to anatomy in the presence of an intrauterine applicator is challenging as

the uterus, and surrounding organs, deform in a unique way relative to each

other, and for every patient. However, the applicator model and its geome-

try are fixed usually. In clinical practice, radiation oncologists make several

experience-informed predictions prior to BT applicator selection and insertion,

partly based on pre-BT MRI, gauging potential uterine deformation, the final

decision of the chosen tandem relative to tumour targets, size of the intrav-

aginal applicator, and radial and deep positions for applicators. An implant

strategy is formulated for anatomic and geometric fit, which also considers

anticipated dosimetry. The possibility to correctly predict uterine distortion

using the DL-method demonstrates a first milestone towards achieving these

technical BT parameters with improved accuracy and ease. The challenge

in implementing this algorithm was the inter-patient anatomical dissimilarity

and extreme intra-patient uterine deformation from pre-BT to at-BT in the

dataset. Increasing the size of our training dataset, with the inclusion of more

heterogeneous images with anatomical variability, will improve the prediction

accuracy of this DLbased algorithm. These uterine deformation measurements

will guide the clinicians in accurate prediction of the applicator geometry for

each LACC patient.
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Chapter 7

Conclusion and Future Work

7.1 Discussion

7.1.1 Application of Mass-Spring Methods (MSMs)

The problem of predicting anatomical deformation due to applicator insertion

is a very rare and difficult problem in the medical imaging field. The ideal

solution needs simulations of soft tissues and internal organs in a proper scien-

tific and medical environment. Various simulation methods and improvement

approaches for modeling deformable bodies were explored [74,119]. The meth-

ods aim for fast and robust simulations with physically accurate results. But

most of the modeling approaches demand 3D data to perform the simulation

of the internal organs like uterus, vagina, cervix etc. The main limitation of

our dataset is that, we only have 2D MRI images of pelvic region (pre-BT and

at-BT MRIs) to predict the uterine deformation due to applicator insertion in

LACC BT. It is very challenging to develop a simulation model of the internal

organs of pelvic region for one patient only from 2D MRI slice. Even if one

can contour all the anatomical structures on the 2D MRI, the main concern

will be to derive a good 3D view from it.
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To develop a physical model, based on elasticity property of the uterus

to deform it from its natural anatomy, a mass-spring damper system using

the common material properties such as Young’s Modulus and Poisson’s Ratio

were applied. A mass-spring model based shape deformation algorithm was

investigated to deform the uterus structure from pre-BT to at-BT position.

By defining a mesh model and adding a new generalized spring for each mass,

our surface mesh model can preserve its original geometric features such as

volume and shape. Global deformations such as stretch and shear, as well

as rigid motions are separated from the physically based mass-spring model.

They are modeled graphically and this approach largely improves the global

deformation effects of the model.

In this work, the mass-spring model was utilized using Statistical and Ma-

chine Learning Toolbox of Matlab. The real-time computational complexity

of our model is linear with the number of point masses, which is much more

efficient than general FEMs. Furthermore, our model almost does not need

any pre-processing because mass-spring models do not need the computation

for global stiffness matrix which is needed in FEMs. The results are shown in

Figure 7.1 and Figure 7.2.

The elastic properties of the organs or soft tissues are defined by two pa-

rameters (elastic moduli). Classically Young’s modulus E and Poisson’s ratio

v are the popular pair. The Young’s modulus is the ratio of stress to strain

measured along the same axis under an uni axial stress condition, that is, it

gives the resistance to directional stretching or compression. The Poisson’s

ratio is the ratio of transverse to axial strain (denotes to what degree material

expands in one direction when compressed in another). Depending on the ap-

plication, besides E and v, other moduli are often used such as bulk modulus

K, or Lamé parameters λ and µ [120]. In any description only two of them
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are independent and providing a link between spring-network parameters, and

a chosen pair of the elastic moduli is sufficient to describe elastic properties

of the MSM. In case of 2D MSM, an isotropic homogeneous structure can be

obtained with hexagonal lattice [120]. All the springs have the same spring

coefficient k and the relation between the spring coefficient and the Lamé

constants for such network is given by

λ = µ =
3

4
√
3
k (7.1)

from which it follows that E = 2
√

3
k and v = 1

3
. Springs are assumed to be

of a unit length.

Limitations of MSM in our dataset

A stable and accurate deformable model to simulate the dynamics of soft tis-

sues is a challenging area of research. Real-time and precise simulation of soft

tissue deformation is still a major challenge. A realistic estimation of stiff-

ness parameters (Young’s modulus, shear modulus, bulk modulus, viscosity)

is required as basis for the simulation models. The reliable approximation of

these input parameters is difficult. FEMs and MSMs are most suitable when

we have the appropriate data and the accurate values of the parameters which

are responsible for the anatomy deformation.

As our original problem is predicting uterine deformation, there are various

factors that affect soft tissue deformation. Elasticity property of the uterus,

surrounding fluid density, presence of other organs affect the deformation im-

mensely from patient to patient. We have seen from our data that, every

patient’s anatomy is different and it deforms in a distinctive way. So, predict-

ing this deformation before applicator insertion is very much challenging even

for the expert clinicians. Hence, we wanted to utilize deep learning methods

110







and also evaluate whether DL networks can discover the hidden information

from the MRI data with which we can come up with a method to predict the

anatomy deformation in cervical cancer brachytherapy.

Biomechanical properties of Uterus, Vagina, Cervix

Soft tissues connect and support other tissues and surround the organs in the

body. They include muscles (including the heart), fat, blood vessels, nerves,

tendons, and tissues that surround the bones and joints. Soft tissues can be

categorized into the skin, muscles, connective tissues, and various functional

organs. The major soft tissues existing across the length and breadth of the

human body. Due to trauma, cancer, or pathological conditions, soft tissues

such as skin, vascular tissues, neural tissues, skeletal muscle, cartilage, and

ligament become deficient or lose their natural functionality. In our case, the

organs of interest are uterus, vagina, cervix for LACC BT treatment.

The uterus, through the cervix, is connected to the vagina and the fallopian

tubes. This tissue is usually pear-shaped and is about 7.6 cm long, 4.5 cm wide,

and 3.0 cm thick [121]. It undergoes large deformation during brachytherapy

applicator insertion. Dias et al in [122] stated the elastic modulus and Poisson’s

ratio of the uterus tissue as 5 and 0.49 kPa, respectively. Baah-Dwomoh et

al in [123] estimated the elastic modulus of the uterus and the associated

ligaments. The reported values for the elastic modulus were, uterus (0.02–1.4

MPa), cervix (2.17–243 kPa), cardinal ligament (0.5–5.4 MPa), round ligament

(9.1–14.0 MPa) and uterosacral ligament (0.75–29.8 MPa).

MSM Implementation Details

We implemented deformable object with interconnected mass-spring-damper

(MSD) system. The Young’s Modulus is used as 5 for the uterus and Pois-
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son’s ratio is used as 0.49 for the uterus from [122]. Simulating deformable

but cohesive bodies using a system of springs and dampers interconnected by

point masses allows the real-world inter-atomic forces that give materials their

elastic properties to be modelled on a macroscopic scale [119]. An MSD model

provides a conceptually simple way to turn a 3D shape into an object which

reacts in a visually believable manner to external forces. However, when the

method is considered for an scientific application its use becomes more com-

plex as the elastic properties of the MSD system now need to correlate with

the materialistic properties input in to the simulation. A primary question

therefore is how to translate a set of spring constants and damping coefficients

such that they are scaled correctly to individual connections within an MSD

so the entire system behaves according to the initial governing values [79].

The mathematics behind a typical MSD model is relatively simple, the

spring mechanics are based in Newton’s second law via Hooke’s law (F = kx)

and damping is a function of the instantaneous velocity difference between two

particles (b|v|). This can be expressed in a form to connect two discrete points

to each other as,

Fij = (−k(|x| − dij)
x⃗

|x|)− (b|v|) (7.2)

where Fij is the force exerted on particle i due to the spring constant k, dij

the rest length of the spring between the particles, x⃗ the vector representing

the spring, b the damping coefficient and |v| the difference in current velocity

between the particles.
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7.1.2 Application of Generative Adversarial Networks

The Generative Adversarial Network (GAN) has shown tremendous potential

in the machine learning world to create realistic-looking images and videos.

GANs mainly generate amazing photorealistic images that mimic the content

of datasets they were trained to replicate. One concern in medical imaging is

whether GANs can also be effective in generating workable medical data as

they are for generating realistic RGB images. In [124], the author proposed

various GAN architectures from basic to more sophisticated style-based GANs

on three medical imaging modalities and organs namely: cardiac cine-MRI,

liver CT and RGB retina images. The top-performing GANs can generate

realistic-looking medical images. However, segmentation results suggests that

no GAN can reproduce the full richness of medical datasets [124].

A GAN is a system that consists of two models: a generator and a dis-

criminator. The discriminator is simply a classifier that determines whether a

given image is a real image from the dataset or an artificially generated image

from the generator. This binary classifier will take the form of a convolutional

neural network. The generator’s task is to take in random input values (noise)

and create an image from it using a deconvolutional neural network. The con-

cept is like setting a seed for a random number generator — the same input

noise will yield the same output. The generator uses the random noise as a

seed of sorts to produce an image.

Image-to-image translation is an image synthesis task that requires the

generation of a new image that is a controlled modification of a given image.

Examples of image-to-image translation include:

• Translating summer landscapes to winter landscapes (or the reverse)

• Translating paintings to photographs (or the reverse)
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• Translating horses to zebras (or the reverse)

Traditionally, training an image-to-image translation model requires a dataset

comprised of paired examples. That is, a large dataset of many examples of in-

put images X (e.g. summer landscapes) and the same image with the desired

modification that can be used as an expected output image Y (e.g. winter

landscapes). The requirement for a paired training dataset is a limitation.

These datasets are challenging and expensive to prepare, e.g. photos of dif-

ferent scenes under different conditions. There is a desire for techniques for

training an image-to-image translation system that does not require paired

examples.

The uniqueness of our dataset

The main challenging part of our dataset is the huge dissimilarity between

the paired images (pre-BT and at-BT MRIs) which is an inherent property

in brachytherapy. For this reason, it is extremely difficult for GANs as well

to predict the anatomical deformation caused by an external force (i.e. the

applicator) as there is a huge anatomical difference between pre-BT and at-BT

MRIs. The CycleGAN approach is presented with many impressive applica-

tions:

• Style Transfer: It refers to the learning of artistic style from one domain,

often paintings, and applying the artistic style to another domain, such

as photographs.

• Object Transfiguration: It refers to the transformation of objects from

one class, such as zebras into another class of objects, such as horses.

• Season Transfer: It refers to the translation of photographs taken in one

season, such as summer, to another season, such as winter.
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• MRI to CT: It refers to the transformation from MRI to CT image of the

same patient where there is not much dissimilarity between the images.

There is inter-patient anatomical dissimilarity and extreme intrapatient

uterine deformation from pre-BT to at-BT in our dataset which makes the

problem very unique and tough to address.

The main goal of GANs is to learn mapping functions between two domains

X and Y given training samples {xi}Ni=1
∈ X and {yj}Mj=1

∈ Y . The model

includes two mappings G : X 7→ Y and F : Y 7→ X. In addition, we introduce

two adversarial discriminators DX and DY , where DX aims to distinguish

between images {x} and translated images F (y); in the same way, DY aims

to discriminate between {y} and {G(x)}. The objective contains kinds of two

terms: adversarial losses for matching the distribution of generated images to

the data distribution in the target domain; and a cycle consistency loss to

prevent the learned mappings G and F from contradicting each other.

Implementation details of CycleGAN

The Cycle Generative Adversarial Network, or CycleGAN, is an approach to

training a deep convolutional neural network for image-to-image translation

tasks. The Network learns mapping between input and output images using

paired/unpaired dataset.

In our case we have two domains (pre-BT MRIs and at-BT MRIs). The

model architecture is comprised of two generator models: one generator (Generator-

A) for generating images for the first domain (Domain-A i.e. pre-BT) and the

second generator (Generator-B) for generating images for the second domain

(Domain-B i.e. at-BT).

Domain− B → Generator − A → Domain− A

Domain− A → Generator − B → Domain− B
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Each generator has a corresponding discriminator model (Discriminator-A

and Discriminator-B). The discriminator model takes real images from Domain

and generated images from Generator to predict whether they are real or fake.

Domain− A → Discriminator − A → [Real/Fake]

Domain− B → Generator − A → Discriminator − A → [Real/Fake]

Domain− B → Discriminator − B → [Real/Fake]

Domain− A → Generator − B → Discriminator − B → [Real/Fake]

The loss used to train the Generators consists of several parts:

Adversarial Loss: Adversarial Loss to both the Generators, where the Gen-

erator tries to generate the images of it’s domain, while its corresponding

discriminator distinguishes between the translated samples and real samples.

Generator aims to minimize this loss against its corresponding Discriminator

that tries to maximize it.

Cycle Consistency Loss: It captures the intuition that if we translate the

image from one domain to the other and back again we should arrive at where

we started. Hence, it calculates the L1 loss between the original image and

the final generated image, which should look same as original image.

Identity Loss: It encourages the generator to preserve the color composition

between input and output. This is done by providing the generator an image

of its target domain as an input and calculating the L1 loss between input and

the generated images.

We input a 128x128x1 grayscale MRI image (pre-BT) into the CycleGAN

to generate a 128x128x1 MRI image (at-BT). The training was performed

using 200 epochs and a batch size of 6. All the experiments with the neural

network were implemented using Keras API [95] with TensorFlow and on two

NVIDIA GeForce GTX 1080 GPU processors. It took around 6 hours to train

the CycleGAN.
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Figure 7.3, shows the result of CycleGAN on our dataset. From the visual

results, it is clear that CycleGAN was not able to predict the at-BT MRI from

pre-BT MRI due to the extreme organ deformations in brachythrapy.

Figure 7.3: Results of CycleGAN in predicting at-BT MRI from pre-BT MRI

One shall keep in mind that training a GAN is often computationally in-

tensive (typically because it involves two or more networks) and require a large

amount of memory. Also, training GANs requires a lot of hyperparameter tun-

ing which may or may not lead to better results [124]. This also affects more

sophisticated GANs which, despite their good performances which improve

the accuracy of the tasks, require large computing resources to train [124].

The results show that, most of the images generated by the tested GANs fail

in reaching the baseline performance. A considerable amount of the medical

data is acquired in a 3D fashion and voxel wise to achieve better performance.

Typical GANs might not capture the full extent of the medical information

when trained solely on 2D views. Indeed, this makes exploring GANs spe-

cially made for medical data an interesting research venue and could lead to

an improvement in quality and ultimately clinical usability.
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7.2 Conclusion

This study was performed on the dataset from 120 cervical cancer patients to

predict the organ motion induced by the applicator insertion in brachyther-

apy. Large anatomical displacements and deformations were observed for most

patients due to the insertion of the BT applicator between the anatomies be-

fore and at the time of BT. Standard DIR methods appeared inadequate to

estimate such deformations. Our proposed CNN with autoencoder method

achieved an average Dice Coefficient of 94.8% and a Hausdorff distance of 3.06

mm, in the automated uterus segmentation task. After that, a pre-trained

modified U-net is proposed to predict the at-BT uterus position from only

the pre-BT MRI. This method yielded an average Dice score of 89.5% and

a Hausdorff distance of 3.6 mm in automatically predicting the uterine de-

formation due to applicator insertion. The applicator insertion induced the

most significant mean displacement for the uterus of 62.5 mm. In addition, an

average 27.8 mm displacement of the uterus has been measured between all

the patients.

During this deformation procedure, we also measured the amount of de-

formation that happened to the canal shapes. As a result, the applicator

insertion induced the average displacement of the uterine and vaginal canal of

43.2 mm and 22.1 mm, respectively. These deformation measurements of the

canals give us an idea of how much the uterus could have been deformed based

on these canal movements due to the applicator’s presence. Based on these

measurements, one can predict the at-BT uterus position, which will assist

the clinicians in selecting the correct applicator size for each patient and help

optimize personalized BT planning.

Predicting the deformed anatomy following applicator insertion from the

natural anatomy before brachytherapy treatment is challenging as the uterus
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and the other organs deform uniquely for each patient, depending on the pa-

tient’s anatomy. But the applicator model and its geometry is fixed for each

patient. Our proposed method can deform the uterus shape from pre-BT to

at-BT. As this is a shape-based deformable registration method, this method

can be applied to other applications of non-rigid shape registration of various

organs in MRI where the organs are delineated/appropriately segmented. In

this work, we can deform the pre-BT uterine and vaginal canal to the applica-

tor shape. This deformation field and the deformation parameters associated

with this will be saved. After that, the pre-BT uterus shape will be deformed

using the deformation of the uterine canal. In that way, we will be able to

predict the deformed anatomy of the uterus employing just the pre-BT image.

The task of predicting the deformed anatomy following applicator insertion

from the natural anatomy prior to brachytherapy treatment is very challenging

as the uterus and the other organs deform uniquely for each patient, depend-

ing on the patient’s anatomy. The way the deformation takes place is also

patient-specific. But the applicator model and its geometry is fixed for each

patient. Our proposed method can deform the uterus shape from pre-BT to

at-BT. As this is a shape-based deformable registration method, this method

can be applied to other applications of non-rigid shape registration of vari-

ous organs in MRI where the organs are delineated/appropriately segmented.

Our novel DL-based algorithm, developed using 120-paired cervical cancer pa-

tient MR images, can quantify and predict the uterine deformation induced

by applicator insertion. We are predicting this deformation from the natural

anatomy before BT is challenging as the uterus and surrounding organs de-

form uniquely relative to each other and for every individual patient. This

method demonstrates a first milestone towards achieving these technical BT

parameters with improved accuracy and ease. No study has deployed DL in a
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concerted effort to predict MR-based anatomical deformation in LACC BT to

facilitate improved dosimetry. Analytics from this study can form a new kind

of decision-aid, used before BT, for more efficient treatment customization,

delivering personalized brachytherapy for women with LACC.

7.2.1 To Develop User Friendly Software/Library

The digitization of modern imaging has led radiologists to become very fa-

miliar with computers and their user interfaces (UI). It is also known as the

human–machine interface and defined as all the mechanisms (hardware or soft-

ware) that supply information and commands to a user in order to accomplish

a specific task within an interactive system. In practice, the UI is the link

between the machine and the operator. In informatics, the UI includes inputs

and outputs. Inputs communicate a user’s needs to the machine, and the most

common are the keyboard, mouse. The shift from analog to digital imaging

should have led to an increase in efficiency among radiologists by reducing

the time for interpretation and image manipulation. The proposed method

for predicting at-BT uterine shape and location only from pre-BT MRI, will

be implemented as an user-friendly software. This automated software with

take the pre-BT MRI as the input and will produce the at-BT uterus. We

will archive all the codes, pre-trained deep learning model weights for further

training. Even if there is more data available, the model can be trained again

with the new dataset to improve the performance accuracy. This software

library can be used for automatic organ segmentation, image registration and

organ deformation prediction as well.

User Interface (UI) Design focuses on anticipating what users might need

to do and ensuring that the interface has elements that are easy to access,

understand, and use to facilitate those actions. UI brings together concepts
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from interaction design, visual design, and information architecture.

Steps to develop user-friendly library: Need to keep the interface simple.

• Input the pre-BT DICOM image for a new patient

• Pre-process the input image accordingly

• Load the pre-trained CNN models and the weights associated with it

• Segment the uterus automatically using CNN

• Predict the at-BT uterus shape and position using U-Net

• Measure the amount of uterine deformation using Free Form Deforma-

tion Model

Technology is changing every aspect of our lives including the ever-evolving

world of medicine. It has enabled physicians to collect data in a more system-

atic way, explore different treatment methods, and find new tools to practice

medicine. Doctor-patient communication has improved significantly – both

through education (as doctors can use tools and 3D images to show patients

what’s happening). Medical software is vital to the healthcare industry since

it allows healthcare providers to monitor and manage organization and patient

data efficiently. Our overall goal is to improve Locally Advanced Cervical Care

Brachytherapy treatment and enhance clinical decision making and implant

strategies prior to Brachytherapy for more efficient treatment customization

and delivering personalized brachytherapy for women with LACC.
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7.3 Future Work

GANs have achieved impressive results in image generation, image editing,

and representation learning. Recent methods adopt the same idea for con-

ditional image generation applications, such as text2image, image inpainting,

and future prediction, as well as to other domains like videos and 3D mod-

els. The key to GANs’ success is the idea of an adversarial loss that forces

the generated images to be, in principle, indistinguishable from real images.

This is particularly powerful for image generation tasks, as this is exactly the

objective that much of computer graphics aims to optimize. We adopt an

adversarial loss to learn the mapping such that the translated image cannot

be distinguished from images in the target domain.

One of the essential components of a virtual reality surgical simulation is

deformation. Deformations in computer graphics and surgical simulations are

commonly modeled with three different approaches e.g. geometry based meth-

ods, Finite Element method (FEM), and Mass-spring Method (MSM). These

methods take the physics of deformation into consideration. Even though the

FEM results in more physically realistic deformations, a significant drawback

of this method is its expensive computation cost and vulnerability to surgi-

cal procedures such as incision. However, MSM is relatively computationally

inexpensive. Because of the real-time physics based behavior of MSM, it is

widely accepted by surgical simulation community. For MSM, it is difficult to

extract parameters from experiments for the thousands of individual springs

and masses or dampers. To have both real-time performance and an accept-

able deformation output, MSM is common choice for deformation simulations.

To apply this scientifically, a 3D simulation model is necessary. Hence, in

future, we will use 3D MRI datasets along with the organ segmentation to

explore this model.
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Our DL-based approach can also be used in other organ deformation tasks

if we have enough training data. Also, this method could be generalized from

2D to 3D MRI datasets. However, we also need the corresponding uterus seg-

mentation for the 3D dataset. If we have 3D pre-BT at-BT MRIs, along with

the 3D uterus segmentation, mass-spring methods can be applied and the sim-

ulation model of the uterus can be created. In future, we will consider solving

the problem of automated multi-organ segmentation from the 3D pelvic MRI

dataset. After BT treatment, the multi-organ (tumour target, bladder, rec-

tum, sigmoid, bowel) segmentation is performed manually to calculate the dose

distribution. Currently the use of deep learning approaches in medical image

analysis stay hindered by the limited access to huge annotated dataset. In

contrast to EBRT and its technological advancements including contribution

of AI, BT is still dependent more on the skills and technique of the physician

than technological advances. There is a huge potential for incorporation of AI

in BT technology.
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