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ABSTRACT

A numerical scheme for the incompressible, inviscid, axisymmet-
ric modelling of the onset of vortex breakdown in a density strat-
ified flow has been developed. Immiscible stratifications are con-
sidered and a potential/complex lamellar velocity decomposition
is employed.

The code’s fidelity was verified against experimental and numer-
ical homogeneous flow solutions of previous investigators. The
behavior of homogeneous flow vortex breakdown solutions were
found to be in qualitative agreement with past experimental and
numerical work. In a diverging pipe, the critical value of the helix

angle was found to be 29°.

The azimuthal vorticity created by local density and pressure
gradients was found to influence the onset of vortex breakdown.
Density stratifications of 10% were considered. In the break-
down region. positive radial density gradients created negative
azimuthal vorticity and promoted breakdown solutions. Nega-
tive radial density gradients created positive azimuthal vorticity
in the breakdown region, thus hindering breakdown solutions.
These results are in agreement with predictions made by the vor-

ticity dynamics theory of vortex breakdown.



An expert is a man who has made all the mistakes, which can be
made, in a very narrow field.

—Niels Bohr

A computer lets you make more mistakes faster than any inven-
tion in human history - with the possible exception of handguns
and tequila

—Mitch Ratliffe
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CHAPTER 1

INTRODUCTION

Vortex breakdown is a phenomenon that occurs in flows which consist of a
concentrated vortex core with axial velocity. It can best be defined as an
abrupt occurrence of an internal stagnation point on the vortex axis followed
by a recirculation zone of limited axial extent [Faler and Leibovich 1977,
Leibovich 1978].

This flow disruption was first observed in leading edge vortices formed
above wings with highly swept leading edges [Peckham and Atkinson 1957]
and studied because of its aerodynamic significance. The onset of vortex
breakdown above a wing can lead to flow separation, thus altering the lift,
drag and moment coefficients. Aerodynamicists are primarily concerned with
the onset of breakdown, the flow structure is of secondary importance. Vortex
breakdown also occurs in internal flows and has a potential technological
application as a flame stabilizer in swirl combustors. Both the conditions
leading to the occurrence of a breakdown and the structure of the breakdown
zone are important to this application.

A review of the vortex breakdown literature from the past forty years



has revealed no information on the effects of a density stratification on the
onset or structure of breakdown flows. Density stratification is present in
combustion chambers where a fuel and an oxidant are mixed, and to control

such flows the influence of a density gradient must be understood.



CHAPTER 2

LITERATURE REVIEW

2.1 Experimental Review

While vortex breakdown was first observed above wings with highly swept
leading edges [Peckham & Atkinson 1957], the majority of the current re-
search in vortex breakdown focuses mainly on internal flows which are easier
to control and simulate. Thus. this review summarizes only the work con-
ducted using internal flow devices.

The most common internal flow test apparatus used to study vortex
breakdown is a continuous flow device which was first utilized by Harvey
[1962]. An axisymmetric schematic of this experimental setup is shown in
Figure 2.1. In this device, an initial axial flow (a) is driven by a constant
pressure. This axial flow is redirected radially by the pipe walls (b). When
this radial flow is passed over a cascade of swirl vanes (c) it acquires a rota-
tional motion. As the flow approaches the axis, the swirl intensifies until it
passes over the vane centerbody (d) and is directed axially (e). The swirling

flow in the axial direction can be contained by either a straight pipe, or a



pipe with slightly diverging walls. The adverse pressure gradient created by
diverging walls promotes the occurrence of a vortex breakdown {Sarpkaya
1974}, and the breakdown structure is typically observed in this section.

Figure 2.1: Continuous Flow Vortex Breakdown Test Facility

Harvey's goal was to discover if vortex breakdown occurs in internal flows.
To this end he used air as the experimental fluid and used the theoretical
model proposed by Squire [1960| as a guideline. Squire’s model identifies the
parameter atan (-‘fﬂ‘?ﬂ) as an important parameter in breakdown flows. This
number is known as the helix angle (B), and Squire postulated that for a
breakdown to occur, the maximum value of the helix angle must exceed 50°
at one location on the inlet flow, the flow just downstream of the vane cen-
terbody. Using a helix angle which satisfied Squire’s criterion for breakdown,
Harvey relied on flow visualization to study breakdown flows. Probe mea-
surements are difficult to obtain in vortex breakdown as the phenomenon is

sensitive to small flow perturbations. Breakdown zones have been observed



to disappear when a pitot tube is inserted into the flow upstream of the dis-
turbance [Harvey 1962]. By injecting smoke through the vane centerbody
along the centerline of the pipe, Harvey showed that it is possible to observe
vortex breakdown in an internal flow device.

A significant experimental study of vortex breakdown conducted after
Harvey was by Sarpkaya [1971a, 1971b]. Sarpkaya's flow apparatus was sim-
ilar in design to Harvey’s and is also represented by Figure 2.1. Using water
as the experimental fluid, Sarpkaya’s objective was to study the dependence
of vortex breakdown on swirl velocity and Reynolds number. The swirl level
was reported using a non-dimensional swirl number, a ratio of the swirl ve-
locity at the tube wall to the average axial velocity.

The main approach taken by Sarpkaya was to vary the swirl number at
fixed Reynolds number. When this was done, the first breakdown observed
was a spiral type. This spiral breakdown was characterized by a stagnation
point on the pipe centerline, followed by a fold in the dye filament which
rotated down the pipe soon breaking into turbulence, as shown in Figure 2.2.
When the swirl was increased, one of two things occurred depending on the
rate of swirl increase.

The first breakdown resulting from an increase in swirl was the double
helix form, see Figure 2.3. Originally Sarpkaya identified this as a new form
of breakdown, but it is now considered to be a type of instability which
does not involve a stagnation point on the axis or a region of flow reversal
[Sarpkaya 1971b].

The second breakdown form evolving from the spiral type was an ax-

isymmetric bubble type of breakdown, as shown in Figure 2.4. The central



Figure 2.2: Spiral Vortex Breakdown. Reprinted with permission from Faler
and Leibovich [1977]. Physics of Fluids 9 p. 1391

Figure 2.3: Double Helix Vortex Breakdown. Reprinted with permission
from Faler and Leibovich [1977]. Physics of Fluids 9 p. 1394

dye filament decelerates along the tube axis, eventually stagnating. The fil-
ament then shears over a bubble form in the flow. The bubble is an area of
recirculating fluid which is both filled and emptied from the rear.

For all three breakdowns observed by Sarpkaya, the location of the break-
down was moved upstream by increasing either Reynolds number or swirl
number, and moved downstream by decreasing these parameters. The Reynolds

number affects the breakdown indirectly by changing the radius of the vor-



Figure 2.4: Axisymmetric Vortex Breakdown. Reprinted with permission
from Faler and Leibovich [1977]. Physics of Fluids 9 p. 1389

tical core. A higher Reynolds number leads to a thinner boundary layer
forming on the vane centerbody, which leads to a thinner vortical core. For
fixed circulation, or swirl vane angle, this leads to an increase in the core
vorticity, which is the same affect as increasing the swirl {Leibovich 1978].
Sarpkaya observed transient behavior of a breakdown zone to changes in
swirl number. If the swirl number was increased, the breakdown would ini-
tially move downstream, before moving upstream and downshooting it’s final
expected location. The disturbance then moved slowly back to its final mean
location. Under steady flow conditions, the breakdown was also observed to
be quasi-steady in position, fluctuating axially about a mean location.
Sarpkaya [1974] also studied the effect of an adverse pressure gradient
or a divergence of streamsurfaces on the onset of breakdown. It was found
that for pipe divergence angles that did not cause boundary layer separation
along the tube walls and at a given swirl number and Reynolds number, the

application of an adverse pressure gradient moved the breakdown upstream.



It was also shown that in the presence of an adverse pressure gradient, lower
swirl and Reynolds numbers were required to precipitate breakdown.

Faler and Leibovich [1977a, 1977b] conducted a thorough experimental
investigation of vortex breakdown. Their apparatus was similar in design to
that of Sarpkaya, Figure 2.1, and they found three of the same breakdown
flows. In Faler and Leibovich’s taxonomy, the various breakdown flows are
assigned numbers. Type 0 and Type 1 breakdowns are similar to Sarpkaya’s
axisymmetric breakdown, Type 2 breakdown is Sarpkaya's spiral breakdown
and Type 5 is the double helix form. In addition to these, Faler and Lei-
bovich found three more disturbances which can be classified as breakdowns.
Following is a description of the evolution of these flows as the swirl number
is increased.

At a fixed Reynolds number and with no swirl velocity, Faler and Lei-
bovich observed the central dye filament travelling down the tube with no
visible change. As the swirl was increased, small oscillations were reported at
the end of the uniform diameter exit section. Further swirl increases caused
these oscillations to travel upstream to the exit of the divergent test section.
Faler and Leibovich’s Type 6 breakdown was observed when the swirl number
was increased from this level.

The Type 6 disturbance, Figure 2.5, was observed in the divergent test
section and was characterized by the central dye filament moving off of the
tube axis. The filament did not acquire the spiraling motion of the base flow
until it had moved off the tube axis by approximately half of a tube radius.

Faler and Leibovich’s Type 5 breakdown is the double helix form observed
by Sarpkaya, Figure 2.3, and it occurred when the swirl level was increased



Figure 2.5: Type 6 Vortex Breakdown. Reprinted with permission from Faler
and Leibovich [1977]. Physics of Fluids 9 p. 1393

from the Type 6 level. A visual comparison of Figure 2.3 and Figure 2.5 indi-
cates that a Type 5 breakdown is structurally similar to a Type 6 breakdown
with the central dye filament shearing into two branches. This observation
led Faler and Leibovich to conclude that the Type 5 breakdown is the same
as a Type 6 breakdown.

The Type 4 breakdown, Figure 2.6, was observed to form when the swirl
number was increased from the Type 5 swirl level. This disturbance is similar
to the bubble breakdown observed by Sarpkaya, except that it is not rota-
tionally symmetric. The Type 4 bubble was observed to be approximately 3
times as wide as it was thick.

The Type 3 breakdown, Figure 2.7, was observed to contain some char-
acteristics of both Sarpkaya's spiral breakdown form and the Type 4 break-
down. The central dye filament decelerated and folded as observed in spiral
breakdown, but some of the dye spread laterally and marked the outline of
a Type 4 bubble.

Type 2 breakdown corresponds to Sarpkaya’s spiral breakdown, Figure



Figure 2.6: Type 4 Vortex Breakdown. Reprinted with permission from Faler
and Leibovich [1977]. Physics of Fluids 9 p. 1394

Figure 2.7: Type 3 Vortex Breakdown. Reprinted with permission from Faler
and Leibovich {1977]. Physics of Fluids 9 p. 1395

2.2. Again this was characterized by deceleration of the flow on the axis and
the central dye filament forming an abrupt fold. The filament then spirals
out for a few turns with the same sense of rotation as the base flow before
turning into turbulence.

Faler and Leibovich found three variations of the axisymmetric bubble
breakdown. The first bubble type breakdown observed by Faler and Lei-
bovich was named Type 1, Figure 2.8, and was similar to Sarpkaya'’s bubble
breakdown in its general appearance. However, the front end of this form

had slight asymmetries and the emptying region did not return to the tube
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axis, but seemed to break up into large scale turbulence.

Figure 2.8: Type 1 Vortex Breakdown. Reprinted with permission from Faler
and Leibovich [1977]. Physics of Fluids 9 p. 1391

The other two forms of axisymmetric breakdown observed by Faler and
Leibovich are collectively known as Type 0 breakdown. The more common of
these two forms corresponds to Sarpkaya’s axisymmetric breakdown, Figure
2.4. This breakdown was characterized by a single emptying region. Filling
and emptying took place in accordance with Sarpkaya’s observations. The
rotating emptying tail was followed by a spiral type breakdown. The less
frequently observed Type 0 breakdown consisted of two emptying regions,
Figure 2.9. The two emptying regions were diametrically opposed as were
the two filling points. The emptying and filling regions were 90° out of
phase. The Type 0 and Type 1 breakdowns were observed to spontaneously
transform into one another with no change in the swirl number or Reynolds
number.

When a dye filament was introduced off axis into a Type 2 breakdown
flow, it became disrupted about a tube radius ahead of the main disturbance.

If the Reynolds number or the swirl number was increased the main distur-
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Figure 2.9: Two Tailed Type 0 Vortex Breakdown. Reprinted with permis-
sion from Faler and Leibovich [1977]. Physics of Fluids 9 p. 1390

bance would move ahead of the off axis disturbance. This is in contrast to
the axisymmetric breakdowns (Type 0 and 1) which always occurred before
the off axis filament was disturbed and the Type 3 to 6 disturbances which
always occurred after the off axis filament was disturbed.

Faler and Leibovich observed the same movements of the breakdown zone
to changes in the swirl number and Reynolds number as described by Sarp-
kaya. A notable difference between the two studies is the order in which
some of the disturbances evolved. Faler and Leibovich observed the double
helix, Type 5, always forming from Type 6 either spontaneously or with an
increase in Reynolds number or swirl, and sometimes spontaneously from a
Type 4. Type 4 was always succeeded by Type 3 which led to Type 2 and
eventually Types 0 and 1. Sarpkaya reported that the double helix (Type 5)
formed as an intermediate step between spiral (Type 2) and axisymmetric
breakdowns (Types 0 and 1). In general, no rules can be applied to predict
which breakdown forms will appear under specified flow conditions [Escudier
1988]. Indeed, although the aforementioned sequence of breakdown forms
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was generally noticed by Sarpkaya and Faler and Leibovich respectively, it
was observed that Type 0 and 1 and Type 2 breakdowns could spontaneously
change into one another.

Faler and Leibovich’s study was the first instance of velocity measure-
ments being taken throughout a breakdown flowfield. These measurements
were obtained with the aid of a Laser Doppler Anemometer, and result in
the flowfield, just downstream of the vane centerbody, described by equations
(2.1) to (2.3):

v, =0 (21)
v: = Vo + Vg exp (—a (ﬁ)z) (2.2)

ve = Vo (-’}) [1 — exp ((—a (%)2)] (2.3)

where V;, V.2, Vo and a are constants and R the tube radius.

It is accepted that the two basic types of vortex breakdown are the spiral
and axisymmetric modes. The question over which mode is more fundamen-
tal is still open to debate. The theoretical approach taken towards breakdown
depends in large part on the answer to this question. In their experimental
investigation of the development of breakdown modes, Bruecker and Althaus
[1995] use particle tracking velocimetry to address this problem. Using a
significantly lower Reynolds number than Sarpkaya and Faler and Leibovich,
Bruecker and Althaus observed a spiral breakdown forming from a bubble
breakdown. By examining selected streamlines from both forms, they came
to the conclusion that spiral and axisymmetric breakdowns are topologically
similar. Furthermore, they observed that the spiral mode forms as a result of

growing asymmetries in the initial bubble. From these observations, Bruecker
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and Althaus concluded that the axisymmetric bubble breakdown is the more
fundamental phenomenon.

A theoretical model of vortex breakdown should match or explain some
of the observations reported here. The more notable of these observations

are summarized:

e The different forms of breakdown can transform into one another with-

out altering the swirl number or Reynolds number.

Increasing Reynolds number, swirl number and the adverse pressure

gradient causes the disturbance to move upstream.

The initial movement of the disturbance to a change in Reynolds num-

ber or swirl number, is in the opposite direction to that expected.

Breakdown seems to be initiated and altered by increasing the swirl of

the incoming flow.

The spiral breakdown’s (Type 2) role as an intermediate form between

Types 3-6 and Types 0 and 1.

2.2 Theoretical Review

Shortly after Peckham and Atkinson first observed vortex breakdown in 1957,
several different theoretical explanations were presented. Generally the the-
ories can be called; Wave Models, Instability Models, and Quasi-Cylindrical
Models. Initially it was thought that all three of these theories were inher-
ently different, but more recent analysis has shown them to be related [Wang

and Rusak 1997]. In this section, the three models will briefly be discussed.
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2.2.1 Wave Theory

The central idea in the wave theory of vortex breakdown is the concept of
a critical state. A subcritical flow can sustain infinitesimal standing waves,
while a supercritical flow cannot. The critical state marks the boundary
of these two states, and in this condition a flow can sustain infinitesimal
disturbances of indefinite wavelength. A clear mathematical description of
these definitions can be found in Benjamin [1962]. The definition relies upon
the assumptions of inviscid, steady, axisymmetric flow. Furthermore, the flow
is assumed to have a small radial velocity component and little variation in
the axial direction, such flows are called quasi-cylindrical.

Squire [1960] introduced the concept of a critical state into vortex break-
down theory. In his paper he considered only the critical state, and searched
for conditions on the axial and swirl velocity for which a flow could first
sustain standing waves. Squire’s theory was that when a flow can sustain
a standing wave, disturbances created downstream can travel up the vortex
core causing breakdown. For three different swirl distributions, Squire found
that the Helix angle should be greater than 50°. It was this data that Harvey
used to guide his experimental work.

Benjamin [1962] proposed that vortex breakdown is a transition from
a supercritical upstream flow to a subcritical downstream flow akin to a
hydraulic jump or a shock wave. Benjamin showed that subcritical flows have
greater flow force than supercritical flows. Flow force is defined as the sum of
horizontal momentum flux and pressure force per unit length. He postulated
that to conserve momentum, a standing wavetrain forms on the subcritical

flow. Benjamin believed that this wavetrain is the vortex breakdown. This
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idea of wave dissipation would apply only when the difference in flow force is
small, for large differences turbulence is a more likely dissipation mechanism.
This is a weakness in his theory, as is the fact that his definition of conjugate
flows (supercritical/subcritical) applies only to small perturbations. Vortex
breakdown is a large amplitude nonlinear phenomenon.

As outlined in the Experimental Review section of this thesis, the loca-
tion of a vortex breakdown moves upstream in response to an increase in
swirl velocity and moves downstream in response to a decrease in swirl ve-
locity. A strength of the wave theory is its ability to explain this movement
of the breakdown zone to changes in swirl level [Faler and Leibovich 1977a].
The vortex breakdown location is fixed in space if its upstream propagation
speed vanishes with respect to the laboratory frame. From the wave theory.
the upstream wave propagation speed is found to increase for increases in
swirl and decrease with an increase in axial velocity. When the swirl is in-
creased the upstream wave speed increases causing the breakdown to convect
upstream. As the breakdown moves upstream however, it sees a converging
pipe which increases the axial velocity. The increase in axial velocity causes
the upstream wave speed to decrease. Eventually the breakdown comes to a

new equilibrium position upstream of its old one.

2.2.2 Quasi-Cylindrical Theory

The wave theories of vortex breakdown were analogous to the hydraulic
jump and shock waves from other branches of fluid mechanics. Likewise,
the Quasi-Cylindrical theory is analogous to the parabolizing of the Navier

Stokes equations in boundary layer theory. Quasi-cylindrical flow implies
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slow axial gradients and approximately cylindrical stream surfaces.

The Quasi-Cylindrical theories propose that vortex breakdown occurs
where the quasi-cylindrical equations become singular. At a vortex break-
down, which is characterized by a rapid flow deceleration along the pipe
axis of symmetry, the assumptions of slow axial gradients and cylindrical
stream surfaces are not valid [Hall 1972]. The physical mechanism for flow
deceleration can be shown to depend on the magnitude of the swirl velocity.
Specifically, the pressure gradient along the axis is greater than that outside

of the vortex core by an amount depending on the square of the circulation

[Hall 1972):

gP apP 2
(g) r=0 B (E’-) r=R i pkﬁ (2.4)

Hall performed numerical calculations based on this theory. He predicted
the location of breakdown to within one and a half diameters of the vor-
tex core. Furthermore, a sensitivity study of the quasi-cylindrical equations
showed that the location of failure depends, at least qualitatively, on the
parameters of swirl number and pressure gradient in the same way as exper-
imental breakdown flows.

It has been shown that when the solution to the quasi-cylindrical equa-
tions fail, the flow shows a fall from supercritical to subcritical conditions. In
fact, Trigub [1985] has shown that the singular state of the quasi-cylindrical
equations is the same as the critical state defined in the wave theory. This is

not surprising as the wave theory also invokes a quasi-cylindrical assumption.
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2.2.3 Instability Theory

Another theory which was initially proposed to explain vortex breakdown
is that of hydrodynamic instability [Ludweig 1962,1965]. Ludweig claimed
that vortex breakdown is a direct consequence of instability to spiral type
disturbances. He calculated a stability boundary for swirling flow in an
annulus and postulated that this should be a necessary condition for stability
in high Reynolds number flows. Ludweig said that after the instability has
developed, it may induce asymmetry in the vortex core which could lead to
stagnation.

The main criticism of this theory lies in the fact that spiral asymmetry
is never observed upstream of breakdown. This would indicate that the flow
is not becoming unstable prior to breakdown. Furthermore, using the tra-
ditional stability analysis of Lessen et. al. [1974], Leibovich [1977a] showed
that all of the approach flows used in his experiments were marginally stable
to axisymmetric and asymmetric disturbances.

Due to the difficulties involved in any stability analysis, the role of sta-
bility in vortex breakdown is not clear. Flows have been observed to break
down with no sign of instability, and many unstable swirling flows do not
undergo breakdown [Leibovich 1984]. The traditional analysis put forth by
Lessen et. al. [1974] dealt with flow in an infinite pipe. Wang and Rusak
[1996] have recently conducted a stability analysis for swirling flow in a fi-
nite length pipe and have used their results to guide a new theory of vortex
breakdown [Wang and Rusak 1997].

Using inviscid, axisymmetric flow in a circular finite length duct as their

starting point, Wang and Rusak [1997] showed that the critical swirl level
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defined by Benjamin {1962] is a point of exchange of stability for columnar
swirling flows. When a flow is supercritical, all disturbances are convected out
of the flow domain. When the flow is subcritical, disturbances can travel up-
stream and interact with the inlet conditions in a nonlinear instability which
forms a breakdown. The disturbances Wang and Rusak discuss can travel to
the inlet since a uniform duct is considered in their work. Their results can
be interpreted in terms of a diverging duct when the effect of this geometry
on wave propagation is considered. Experimentally observed breakdowns are
supercritical upstream and subcritical downstream of the breakdown zone.
In a diverging duct. the flow will be supercritical at the high axial velocity
found at the inlet. As the flow decelerates down the diverging duct, the up-
stream wave propagation speed increases and subcritical conditions will soon
develop. It is at this supercritical/subcritical station that breakdown will
occur. The theory of Wang and Rusak is an extension of Benjamin's theory.
The inclusion of an instability removes the small disturbance drawbacks of
Benjamin's theory.

Popper {1969] put forth several criteria that any explanatory theory should
satisfy. A theory should not only correspond to known facts, it should evolve
from a simple unifying idea, have explanatory power, explain all interesting
aspects of a phenomenon and have a high degree of refutability. Based on

this criteria, no theory of vortex breakdown is yet complete.

2.3 Computational Review

Many computational studies into vortex breakdown have been conducted.

Early simulations were limited by computing resources and were capable of

19



capturing only first order effects. Other early numerical studies, such as
Grabowski and Berger {1976], predicted breakdown occurring near the in-
let plane of the computational domain. The accuracy near a boundary of
any numerical simulation is limited by the accuracy with which the bound-
ary condition approximates the physical flow. If the boundary condition is
not an exact solution of the equations being solved there must exist a re-
gion of adjustment in which an exact solution to the equations develops.
Flow phenomena observed in this development region may be generated by
the boundary condition and not by a physical mechanism. Furthermore, it
is possible that any disturbance occurring near a boundary may affect the
boundary condition creating a non physical temporal disturbance.

Darmofal {1996}. conducted a numerical experiment into the validity of
the axisymmetric assumption of vortex breakdown. To make a comparison
between experiment and computation, Darmofal choose to use Faler and
Leibovich's [1977b] data. This data encompasses breakdown flows at many
Reynolds and swirl numbers so that several flow situations can be compared.
Faler and Leibovich's test apparatus is shown in Figure 2.1. The use of a
straight pipe followed by a diverging test section isolates the vortex break-
down from occurring near the pipe inlet. Using a similar domain in his
computational work also allowed Darmofal to isolate the breakdown from
the pipe inlet.

Darmofal solved the incompressible axisymmetric Navier Stokes equations
in vorticity streamfunction form using a finite volume algorithm with four
stage Runge Kutta time stepping. The details of this second order accurate

method can be found in Jameson et. al. [1981].
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For three different Reynolds number/swirl number combinations, Darmo-
fal predicted the location of the breakdown. Although the calculation was
unsteady, and experimental breakdowns are unsteady in position, a steady
breakdown location was predicted by the simulation. An examination of
Faler and Leibovich’s experiments shows that the location of breakdown is
very sensitive to inlet conditions. It is likely that the numerical/experimental
discrepancy can be attributed to the lack of periodic fluctuations in the inlet
boundary condition and not to a failure of the axisymmetric assumption.

Darmofal also looked at a specific Reynolds number/swirl number combi-
nation for comparison with Faler and Leibovich's detailed vortex breakdown
velocity field. The overall structure of the computational bubble was very
similar to the experimental bubble. The calculated velocity values in the
upstream half of the bubble were found to be only 10% in error. The down-
stream portion of the bubble and the wake flow showed relatively larger
discrepancies with the experimental values. Darmofal’s interpretation of this
was that the mechanism leading to axisymmetric breakdown flows is inher-
ently axisymmetric, but the breakdown itself is unstable to nonaxisymmetric
disturbances. This would lend credence to the theoretical models which begin
with the assumption of axisymmetry.

Beran and Culick {1992} utilized numerical simulations in a different man-
ner than Darmofal. Using a Newton iteration technique in conjunction with
arc length continuation, they managed to show that vortex breakdown is re-
lated to the existence of nonunique solutions of the Navier Stokes equations.

Like Darmofal, Beran and Culick wrote the equations of motion in vor-

ticity streamfunction form, and a straight pipe to diverging pipe type of flow
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domain was utilized to remove the effects of the inlet on the breakdown zone.
The inlet swirl level was used as the free parameter onto which continuation
was applied, and the minimum axial velocity on the axis of symmetry used
as a representation of a particular solution. When the minimum axial ve-
locity was plotted as a function of swirl level, two limit points were found.
By also solving the quasi-cylindrical equations, Beran and Culick were able
to show that the first limit point corresponds to the point at which the
quasi-cylindrical approximation fails. This is also the point at which the
flow becomes critical. Reversed flow was not observed until after this point,
which is in accordance with Leibovich [1989]. who said that a flow must first
become subcritical to axisymmetric disturbances before the point at which
stagnation is observed.

More recent computations using the unsteady Navier Stokes equations by
Beran [1994] and Lopez [1994], have shown that the region between the first
and second limit points is unstable. It is a physically unrealizable solution,
which will not evolve from any initial flow.

Another observation from Beran and Culick’s work was that for large
Reynolds numbers, three different forms of flow could be observed. These
three flow forms; columnar, solitary wave and wave train correspond to three
types of flow found to exist in inviscid problems [Leibovich and Kribus 1990].
The relationship of these viscous flows to their inviscid counterparts has been
used to support the inviscid assumption in theoretical vortex breakdown work
[Wang and Rusak 1997].

As can be seen from the summary given in this section, the use of CFD

techniques has much to add to the study of vortex breakdown. Darmofal’s
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numerical simulations support the use axisymmetric equations when studying
vortex breakdown. Beran and Culick supplied evidence that the underlying

mechanism causing vortex breakdown is inviscid.

2.4 Vorticity Dynamics in Vortex Breakdown

The vorticity in internal flow vortex breakdown is generated through bound-
ary layer effects. The boundary layer shed from the vane centerbody forms
the vortex core, outside of which the flow is approximately irrotational.

The vorticity in the flow upstream of vortex breakdown is aligned in the
axial direction [Spall et. al. 1990]. Brown and Lopez [1990] have examined
the evolution of the vorticity as the breakdown zone is approached, and
concluded that vortex breakdown flows are always accompanied by the tilting
of the axial vorticity into the negative azimuthal direction.

By looking at the equation governing the azimuthal vorticity in axisym-
metric flow, Brown and Lopez derived a new criteria for breakdown to occur.

The equation governing azimuthal vorticity can be written as:

we _ To /\o r /\o
oo T (ao) m (3 1) (2:5)

This equation shows that for breakdown to occur (i.e. —wjp) the swirl number
of the velocity (A, = %) must be greater than the swirl number of the
vorticity (8, = *2) at some initial location on a diverging streamline (i.e.
r > r,). Brown and Lopez proposed that the diverging streamlines were
initially created by a diffusion of the axial vorticity outwards. Once the

radial velocity has been initiated they proposed that an inviscid mechanism
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of tilting and stretching of vortex lines governs the evolution of the axial
vorticity.
Darmofal [1993] expanded upon this inviscid azimuthal vorticity genera-

tion mechanism. The equation governing vorticity can be written as:

Duwy  Oug Ovg vew, Upwg

Dt e T T s Ty (28)
Using the definition of vorticity this equation can be rewritten as:

Dwg O (I? Vrwe
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where [’ = rvy. For steady inviscid flow this can be restated in terms of the

streamfunction as follows:

Dup _ _urd([?) | iy
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The first term on the right hand side of equation (2.8) contains the three
vortex tilting terms on the right hand side of equation (2.6). This means that
a non-zero radial velocity or axial gradient of circulation results in the tilting
of the axial and radial vorticity components into azimuthal vorticity. For
vortex breakdown flows it is noticed that %l > 0, so that a positive radial
velocity always causes a reduction in azimuthal vorticity [Darmofal 1993].
Once the azimuthal vorticity has become negative, the vortex stretching term
in equation (5.6) creates more negative wy, and a further deceleration of the
axial flow along the axis.

When the axial velocity decelerates along the pipe axis, mass conserva-

tion requires that a positive radial velocity develops. From equation (2.8) the

increased radial velocity will create more negative azimuthal vorticity which
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will in turn decelerate the flow on the axis of symmetry. Vortex breakdown
has been identified as a rapid structural change, and the the vorticity dy-
namics description of the breakdown process also describes a rapidly evolving
flowfield.

As was discussed in the Experimental Review section (Section 2.1), vortex
breakdown depends most significantly on the magnitude of the swirl number
and an adverse pressure gradient in the flow. Starting with Hall's pressure
equation (2.4) and using Darmofal’s azimuthal velocity equation (2.8) we get

[Darmofal 1993]:

oP _ 0P < Dwg
(%) .~ (&) e B =9

From equation (2.9) it can be seen that the production of negative azimuthal
vorticity is connected to the creation of an adverse pressure gradient. This
is interesting for two reasons. First, the vorticity approach to problems
normally does not involve the pressure field, but here we have a connection
between vorticity dynamics and the more common momentum approach to
problems. More importantly, in equation (2.9) we have a connection between
the vorticity dynamics theory of vortex breakdown and the quasi-cylindrical
theory of breakdown.

Spall et. al. [1991] performed a three dimensional numerical simulation of
vortex breakdown. They observed the vorticity field upstream of the vortex
breakdown being aligned mainly in the axial direction. They also saw this
vorticity becoming stretched and tilted into both the radial and azimuthal
directions as the breakdown zone was approached.

Spall et. al. [1991] also calculated the enstrophy of vortex breakdown

flows. Enstrophy is an absolute measure of the amount of vorticity present
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in a fluid region. They found that the governing influence over enstrophy was
vortex stretching and tilting, viscous effects were secondary. They showed
that in some regions of the flow inviscid effects are not as important as the
viscous effects. In these isolated regions, viscous effects likely govern the flow.
(i.e. flow inside the bubble). These observations are supported by inviscid
calculations of breakdown which correctly predict an axial velocity stagna-
tion, but which do not predict a breakdown bubble structure in agreement

with experimental results.



CHAPTER 3

MATHEMATICAL MODEL

3.1 General Form of Governing Equations

The governing equations for a constant energy flow are the conservation of

mass and momentum. They are shown below in integral form for a volume

Q2 bounded by a surface W:

%///pdﬂ-{-//p('v'ﬁ)dl'V:O (3.1)
0 1%
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By applying the Divergence Thereom and Reynolds Transport Thereom
to equations (3.1) and (3.2) [Panton 1996] it is possible to write them in

differential form.

dp S
§+V-(p'v)—0 (3.3)
Do .
o = pV(grsin) —-VP+V .1 (3.4)
where:
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0. 14, g .
V= aer + ;5569 + aez (3.6)

and a cylindrical co-ordinate system is defined in Figure 3.1.

Figure 3.1: Cylindrical Co-ordinate System

This manipulation assumes that the surface stress is composed of a pres-

sure stress and a viscous stress.

R=#a(-P+7) (3.7

This formulation also assumes that only conservative body forces are
present. In this instance, the only body force is gravity. For a cylindrical
co-ordinate system, gravity can be written as a potential in the following

manner:

F =V (grsin8) (3.8)
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The equations are written in differential form as these equations are sim-
pler to manipulate than the integral form, but still apply to a wide class of

problems.

3.2 Modification of Equations

3.2.1 Incompressible Flow

The incompressibilty condition can be written as:
V.o=0 (3.9)

For numerical simulations of incompressible flows it is beneficial to recast
equation (3.3) into a new form so that the incompressibilty condition can
be satisfied explicitly. This is achieved by expanding the dot product and

recollecting terms:
— +pV.5=0 (3.10)

The incompressibility condition (3.9) in conjunction with continuity (3.10)

leads to the additional condition:

Dp _

B = 0 (3.11)

3.2.2 Inviscid Flow

One of the major assumptions taken in this work is that vortex breakdown
is an inviscid phenomenon. This assumption is supported in work conducted
by previous investigators {Benjamin 1962, Leibovich and Kribus 1990, Brown

and Lopez 1990, Darmofal 1993, Wang and Rusak 1997].
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The success of the inviscid wave theory of vortex breakdown is one reason
for neglecting viscosity in this model. This theory, outlined in Section 2.2.1,
correctly predicts the unsteady motion of the breakdown zone in response to
changes in Reynolds number and swirl number [Faler and Leibovich 1977a].

Spall et. al. [1991] conducted three dimensional, viscous calculations
of vortex breakdown in an unbounded flow. They calculated the rate of
change of enstrophy in these flows due to both vortex stretching (an inviscid
process) and viscosity. They showed that in the flow upstream of a vor-
tex breakdown, the total change in enstrophy (due to viscosity and vortex
stretching) is governed by vortex stretching. This indicates that the initia-
tion of vortex breakdown is governed by an inviscid mechanism. Darmofal’s
[1993] description of the inviscid evolution of vorticity in the flow approach-
ing vortex breakdown, discussed in Section 2.4, agrees with the numerical
observations made by Spall et. al. and also supports the use of an inviscid
model for studying breakdown flows.

The axisymmetric, viscous calculations conducted by Beran and Culick
[1992] were described in Section 2.3. In these calculations, a Newton iteration
was performed with arc length continuation applied to the swirl level. The
minimum axial velocity along the pipe axis was used as a representation
of a flow solution. A bifurcation diagram of the minimum axial velocity
plotted against the applied swirl velocity was found to have two limit points.
The axial velocity along the pipe centerline was found to stagnate at a swirl
velocity between the two limit points. Inviscid simulations conducted by
Buntine and Saffman [1995] which also used a Burger vortex distribution

for the swirl velocity and a jet profile for the axial velocity resulted in a

30



bifurcation diagram that closely matched the shape of Beran and Culick’s
up to the location of the axial velocity stagnation. The similar behavior of
the viscous and inviscid calculations in the region approaching the stagnation
point indicates that the mechanism creating vortex breakdown is inviscid.

It is believed that viscous effects are important in shaping and governing
the flow inside the bubble region of vortex breakdown. In this work we are
interested in predicting the occurrence of vortex breakdown in a flow and not
the details of the flowfield, it is therefore reasonable to neglect viscosity in
(3.4), giving:

p% = -VP+ pV (grsinf) (3.12)

3.2.3 Axisymmetric Flow

As discussed by Leibovich [1984], there are compelling arguments supporting
both axisymmetric and asymmetric models of vortex breakdown. The most
convincing evidence that breakdown is axisymmetric are the many numeri-
cal simulations of the axisymmetric Navier Stokes equations that have been
conducted and which contained breakdown solutions [Kopecky and Torrance
1973. Grabowski and Berger 1976, Salas and Kuruvila 1989, Darmofal 1996].
Darmofal’s simulations, which are discussed in Section 2.3, were conducted
to test the validity of the axisymmetric assumption. By comparing the re-
sults of his computations to the experimental results of Faler and Leibovich
[1977b], Darmofal concluded that the mechanism leading to vortex break-
down is axisymmetric.

Previous theoretical work in vortex breakdown has invoked the axisym-

metric assumption {Benjamin 1962, Hall 1967, Darmofal 1993, Wang and
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Rusak 1997]. As discussed in Section 2.2.1, the wave theory of vortex break-
down successfully predicts the movement of breakdown zones to changes in
Reynolds number and swirl number [Leibovich 1977a]. The axisymmetric
quasi-cylindrical theory of Hall [1967], described in Section 2.2.2, correctly
predicts the location of vortex breakdown to within one and a half diame-
ters of the vortex core. The axisymmetric vorticity dynamics approach to
vortex breakdown [Darmofal 1993] summarized in Section 2.4, qualitatively
describes the tilting and stretching of the vorticity leading to a vortex break-
down that Spall et. al. [1991] observed in their three dimensional numerical
calculations.

To obtain axisymmetric equations, previous investigators of vortex break-
down have neglected the azimuthal derivative terms found in the Navier
Stokes or Euler equations [Benjamin 1962, Batchelor 1967, Beran and Culick
1992]. Axisymmetric equations can be derived by averaging the governing
equations over the azimuth. The resulting equations consist of the axisym-
metric equations and a group of correlations which contain three dimensional
effects.

To obtain the axisymmetric averaged set of equations, the flowfield is
first assumed to be composed of an axisymmetric averaged component, and
a three dimensional perturbation. For example, the velocity field can be

written as:
5(r.0,2) =0(r,2)+7 (r.0,2) (3.13)

The averaging procedure involves substituting equation (3.13), along with

similar equations for the pressure and density, into equation (3.12). This
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equation is then averaged utilizing the definition of an azimuthal average:
1 2r
F(r) =5 / T (r.6,z)d8 (3.14)
0

When this procedure is carried out in a term by term manner the following

equations result:

oo, 0  _0b, B\ _ 0P 2pg )
(at f?;:”fa?‘T)-‘E‘—‘Z‘ (3.15)
.[(Otg  _ OVy . OUg  Uglr) _
<w+tr,—ar—+0;',—-z-+ - ) = ;2; (3.16)
(08, _ 8D,  _ O, op &
(Wﬁ-vrg-i-v:-—:) = “E‘—;@i (317)
where for example:
Bv .,0v. ,_odv. ,,0u. |, ,av'
A = Pap AU +pL,aT+pv,ar+p = (3.18)
Ny = P PO OU POV, pUg O
=St 9T - a6 T r a0 (3.19)
0v ov, av, dv..
./ — I b U I I ' .2
V= pugy TG TG TR, (3.20)
Ay = Uop’ g + FUgVe + p'Ugtg + p'UgUg (3.21)
r r r r
1~ .
A== /0 5 gsin6do (3.22)

The A.X.®. and gravity terms can be viewed as three dimensional cor-
rection terms to the axisymmetric equation, which when included and mod-
elled correctly, give a closer approximation to the three dimensional solution.
When the A,X,® and gravity terms are neglected, equations (3.15) to (3.17)

reduce to the standard axisymmetric Euler equations.
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This work shall deal with the simpler axisymmetric equations:

(05,  _0b, .05 13\ _ OP
P (E R T 7) = (3:23)
~ 3179 ~ 6170 - 8179 2791-1,.
— — — = 3.2
P( e + Uy or + v, Es + . ) (3.24)
o, . dv. _ O, op
ol —+ 10— + Je— | = —— 9
”(at+”'ar+"= Z) - (3.25)

The correlation terms may be added in a future study. Tilde overbars shall

be dropped in all future equations where it is understood that all terms are

axisymmetric.

3.3 Clebsch Decomposition

The axisymmetric equations can be written in vector form as

p% = -VP (3.26)

Where p. U and P are all functions of only r and 2. Yokota [1998] has
developed a complex lamellar approach to solving two dimensional stratified
flow problems in a cartesian co-ordinate system. The method employed here

parallels that of Yokota.

The velocity vector field can be decomposed into potential and complex

lamellar components such as [Aris 1962}:
v=V¢+ AVB+CVD+ EVF +GVH (3.27)

Expanding equation (3.27) yields:

_ 90 0B 0D _OF _OH
Ur—§+‘4E+CE—+EE+G—a-T— (3.28)
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_106 AdB COD EOF GoH
=0 To8 T8 roe  r oo
8¢ OB _OD _OF _OH

v:=-a—z‘+A——z+C—a;+EFz'+G—a-; (3.30)

(3.29)

For a flowfield to be axisymmetric, it is necessary that equations (3.28) to

(3.30) have no azimuthal dependence. To construct a flowfield which includes

a swirl velocity, equation (3.29) shows that at least one Monge variable must

be a function of . To satisfy both of these constraints it is necessary to

select:
D=¢ (3.31)
6. A,B.C,E,F.G.H = f(r,2) (3.32)
C(r.z) =ruvg (3.33)
This results in a velocity field given by:
do dB oF oH
U = E + 45 + EET— + GE (3.34)
Vg = Ug (335)
0¢ 0B oF oH
U:_E+.452—+EE+G?Z— (3.36)

Here the axial and radial velocities are constructed from the axisymmetric

Monge variables, shown in equation (3.32). The azimuthal velocity is con-

structed by dividing the axisymmetric Monge variable rvg by r.

Using equation (3.27), the material derivative of the velocity field can be

written as:

Dt Dt 2 Dt

Do DE DF

Dt Dt Dt

rueV (-) + S VF+EV (S
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By substituting this material derivative into the momentum equation (3.26),

the following transport condition results:

Do ©-v DA DB Drug D6
\% (E - T) + EVB + AV (E) + Dt V8 + rvyV (E)
DE DF DG DH VP

Yokota [1997] presents five possible solutions to a similar equation, the

following can be called a modified Clebsch/Weber transformation:

Do ©v-v
Do (3.39)
A=ruy (3.40)
DB Vg i
"b? = —-F' (3.41)
s (3.42)
p
DF
R (3.43)
DG
— A4
—2 =0 (3.44)
DH
- = 3.4
=0 (3.45)

By considering continuity and the '6° component of the axisymmetric

Euler equation it is clear that

1
D(rve)
TR 0 (3.47)

Also. to add an inflow shear to the problem it is necessary to select

G=uv (3.48)
H=2Z (3.49)
60=Vez+d (3.50)
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Where Z is a material coordinate in the z direction, v] is an inflow shear,
and V. is the base axial flow. The only Monge variable that is not related
to a physical parameter is B.

To gain an understanding of the B potential, a dimensional analysis was

conducted on equation (3.41):

%—f = —f"rﬁ (3.51)
[units] - [1] (3.52)

T
This simple analysis shows that B is dimensionless, it must represent
a ratio or an angle. Squire’s [1960] criterion for vortex breakdown stated
that the value of the helix angle must exceed 50° upstream of a breakdown.
Sarpkaya [1971a, 1971b, 1974] and Faler and Leibovich [1977a, 1977b] used a
ratio of azimuthal to axial velocity as a non-dimensional parameter in their
experimental investigations of vortex breakdown. The importance of this
ratio of azimuthal to axial velocity in both Squire’s analytical work, and the
experimental studies of Sarpkaya and Faler and Leibovich is the justification
for selecting the initial value of B. denoted as 3, to be the helix angle.

8 = atan (3"-) (3.53)

-~
<

Equation (3.53) is used to select boundary and initial conditions for equa-
tion (3.41). The evolution of B occurring after the initialization of the flow-
field is not influenced by equation (3.53).

An axisymmetric flow with swirl is described by equations (3.39) to (3.45).
To solve this system of equations, in particular equation (3.43), an additional

constraint is required to obtain the pressure field. To avoid solving a pressure
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equation, it is possible to use the incompressibility condition, equation (3.9),
to solve for the Monge variable F.

In summary the equations to be solved are:

0=V (Vez+¢)+rveVel +rvyVB + -:;VF +uviVZ (3.54)

D¢ ©v-v -

_—t = T - VU (350)

3=at (?) (3.56)
B Vg )

E = —7 (3.57)

D (rvg) _ =
br = 0 (3.58)

Dp .

Dt = 0 (3.59)

Dv?

= = 0 (3.60)

DZ

D = 0 (3.61)

V-t=0 (3.62)

This set of equations is solved by tailoring the numerical methods used
to the physical properties of the equations. Equations (3.53) - (3.61) are
hyperbolic and are solved using an upwind differencing scheme. Equation
(3.62) is elliptic and will be solved using an approximate LU factorization

with multigrid convergence acceleration [Yokota 1993].

3.4 Numerical Form of Convection Equations

The hyperbolic equations are written in conservative form to ensure that flow

information is convected at the correct wavespeeds. The necessary manipula-

38



tions of these hyperbolic constraints are demonstrated on a model equation:

DT
57 =S (3.63)

Using (3.5), (3.63) can be written as:

oT aT ar
5‘{4‘1),-'5;'*‘1);'6—2 =85 (364)

Using the product rule of calculus and bringing the velocities into the deriva-

tives results in:

ar  9(v.T) A 0(v.T) _
5?4- Ew + 5 -S+T(

+ —

v,  Ov,
or 0z

(3.65)

This technique, when applied to equations (3.55) to (3.61) results in the

following set of equations:

g GG e (G B e
Oy, Qurva)  Serve) _ (2;; + f‘;) (3.68)
S+ e S e (G4 32 659

Solving the equations in this form would only be possible on a rectangular
grid. To solve these equations for a wider range of geometries, it is necessary

to write them in generalized co-ordinates.

39



3.5 Generalized Transformation

A two dimensional transformation of axisymmetric co-ordinates to general-
ized co-ordinates begins with the definition of a generalized system. For the
present case this shall be defined as:
§=¢(z.r) (3.71)
n=n(zr) (3.72)

Figure 3.2: Schematic of Co-ordinate Transformation

With this definition and the chain rule of calculus it is possible to write the

axisymmetric derivatives as:

9 _060 m9
dz  0:0¢ 020y
9 _9%9 omd

(3.73)

(3.74)

The terms in (3.73) and (3.74) that involve the geometry of the grid are
called metrics. To ensure that the transformed equations can be written in
conservative form, the transformation needs to be expressed in terms of the
inverse of these metrics. The inverse metrics can be derived using the defi-

nition of the transformation Jacobian:
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3z
J=(a€ )

ar

13

along with its inverse:

9% 9%
J_l = x or
o

or Oor

sle SR

The inverse Jacobian can also be obtained from the Jacobian by utilizing

Cramer's Rule from linear algebra to yield:

gr _ 8z
-1 _ 1 an dan
"=l % o
-% 5%

where:
0:0r _ 0zor
ddn 0Onok

By matching the terms in these two alternate forms of the inverse Jacobian,

11l = (3.75)

the transformation equations (3.73) and (3.74) can be written as:

0 1 {or@ Ord
z—wﬂ%%‘&%] (3:76)
0 1 [|0z0 08z0
5‘Wﬂ%%"%%} (3.77)

These transformation equations must be used on the hyperbolic convec-
tion equations as well as the elliptic continuity equation. The transformation
shall be demonstrated on the model equation (3.65):

T , d(wT) , (v.T)
at * or 32

o oz

(3.78)

=S+T(av’ av‘)
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When the spatial derivatives are replaced with the transformation equations
(3.76) and (3.77) we obtain:

0 a a
a (T“J“) + a—’l’] (T'Ur.'.e - Tv:re) + —az (T‘U:T’,, - T'U,-o,,) = ”J”S

a 0
+ T (% (vrze — vore) + 3¢ (very = v,.z,,)) (3.79)
where advantage has been taken of the Geometric Conservation Laws:
9%z 8%z
Dédm — amde (3.80)
52 2
d°r or (381)

ocdn . ondE

Defining transformed velocities as

Ue
Uy

the transformed model equation can be written as

0 d
an (T”J”U")+6—§

Given this model equation, the actual kinematic conditions to be solved

= (TIJI)+ (TII0G) = I1S+T £ (1107) + 3 (17100 ) 282

are.
5 @11+ 55 @10+ o @110 = 11 (T3 = Vi) +0'0(3.80)
— e .
2 (BIJI) + % (BIJIU,) + 53 B =-I11% +By  (384)
9 (ruall ) + 2 (roallJU;) + 2 (rupll TNUe) = rvay (3.85)
5z (ruellI) + 5 (reall T, ag” ¢) = rugy) .
—(v’nJu)+i 2INU) + o (villJler)'—‘vidf (3.86)
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9

3j
5 (2 + 5

0
(Z|IJ\Uy) + 5 (Z|J||U¢) = Zy
where:

d d
b= (% (I9105) + 2 (IIJIIUs))

(3.87)

(3.88)

This set of equations is solved using a midpoint rule time integration in

conjunction with a uniformly second order accurate non-oscillatory interpo-

lation scheme (UNO2).

3.6 Dimensional Analysis

The final modification made to the governing equations is to put them into

dimensionless form. Dimensionless variables are defined as:

r. —_ r -~ o < v. — v" v. — v: t. _ t‘/ref
R'" R Ver' ° Vg’ R
T ¢ - p - F - U0
Q = = F Ug =
RV,,; p Pref PrefRVref Vref
vs Z
B'=B.uy=.2"=%
K Vre] R

The radial and axial velocity fields are given by:
do 0B 10F ,0Z

Ur=§_r‘+f‘van+par U:E
do 0B 10F ,0Z
ve=Vo+—+rvp— +-—

—_ + v, —
0z dz po:z *0z
Substituting the non-dimensional variables, we obtain:

._9¢ . .0B" 10F ,0Z

+ vy — + — v
'U,. a.r: r Ug a,ra pa a.ra < a,rt
Vo 00" 0B* 10F* 0z*
" = X e =T
7l P R Al
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(3.91)

(3.92)

(3.93)

(3.94)

(3.95)



It is clear that the velocity decomposition is in non-dimensional form without
the introduction of any non-dimensional parameters.

The continuity equation can be written as:

% (rv.) + —8% (rv.) =0 (3.96)

Substituting the dimensionless variables results in:

061)" (r*vy) + % (rrv:)=0 (3.97)

The continuity equation is in non-dimensional form without the introduction
of any non-dimensional numbers.
Using the non-dimensional variables. the model convection equation, equa-

tion (3.63), can be written as:

or~ oT*  aT" _ . .
o tUgT T =9 (3.98)

The convection equations are also non-dimensional without the introduction
of any non-dimensional parameters. The * will be dropped in all future

equations, where it is assumed that the variables are non-dimensional.
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CHAPTER 4

NUMERICAL TECHNIQUES

4.1 Solution Sequence

A benefit of employing a Clebsch decomposition to the Euler equations is that
the resulting system of equations can be solved by coupling the numerical
methods to the physical characteristics of the equations. The hyperbolic wave
equations are solved using a Leapfrog Method, and the elliptic continuity
equation is solved using an approximately factored LU scheme whose growth
factor is tailored to the use of multigrid.

The sequence in which these hyperbolic and elliptic equations is solved is

important. and shall be outlined here:

1. Initial conditions on all of the complex lamellar potentials except for
the F potential are specified. The F' potential is calculated by solving
the continuity equation (4.1). This equation is solved using an approx-
imately factored LU scheme and accelerated to a steady state by the
multigrid method.

2. The complex lamellar variable equations (3.83) to (3.87) are character-
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istically convected to the next time level using a leapfrog method and
a uniformly second order accurate interpolation scheme (UNO2). The

boundary conditions are then updated at this new time level.

3. An F potential that satisfies the continuity equation is obtained at the

new time level.

4.2 Elliptic Equations

Elliptic equations have imaginary characteristics. Information in these acous-
tic equations is not transmitted in any preferred directions, instead it is
propagated in all directions simultaneously. Thus, it is beneficial to solve
elliptic equations with a numerical scheme that gathers information from all
directions. The continuity equation is solved at each timestep by using an
approximately factored LU scheme which is accelerated to convergence by a

geometric multigrid solver [Yokota 1987].

4.2.1 Approximate LU Factorization

Substituting the velocity decomposition (3.27) into equation (3.96), the fol-

lowing expression is obtained:

(102 107 )]

ar |\ \ar T T oo e
9 9¢ 0B 10F . ,0Z\] _
+—a—z [(T) (V°° + 5.—2- +7'ng- + ;E’- -+ U:E)] =0 (4.1)

The F potential is constructed to satisfy the continuity equation. This is

achieved numerically by first making equation (4.1) time dependent and then
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iterating the resulting equation to a steady state. Rearranging (4.1) gives:

OF _ 0 (roF) 9 (rdF)
ot~ ar\por dz \p 0z T
0 d¢’ 0B 0z d o¢' 0B ,0Z
= (| = = — — - 2
5 [(r) (31‘ o+ 'ar)]+az [( )(V + 5 T + v; 8~>](4 2)
where t* is a pseudo time different from the real time t.

Equation (4.2) is solved using an approximately factored LU scheme. This

scheme is derived by considering a Taylor series expansion of the F potential:

Fe+l = pk 4 g—p At +0 (At?) (4.3)

This can also be written as:

- k k
FFU = Pk L At (1 - p) gtF: + ug ] +0 (At‘z) (4.4)
Using equation (4.3) we obtain:
i k k+1
F**' = F* £ At* [(1 - p) gtp + ugf ] +0(at?) (4.5)

By defining AF = F¥+! — F*_and rearranging we are left with:

gF**'  oF* oF*
ot 'at-] =A%

AF — pAt* [ (1.6)

The time derivative on the right hand side of equation (4.6) can be replaced
using equation (4.2). For brevity the right hand side of equation (4.2) shall
be labelled as the residual, Res:

aFk+l aFk
ot* ot*

AF — pAt* [ ] = At"Res* (4.7)

Linearizing equation (4.7) about the last time step gives:

g (rd g (rad " I
{I pAt [8 (p8r>+az (;;a-)]}"\‘F = At"Res (4.8)
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This is written in delta form as:
{1 — uAt* [5,%5, + azga:} } AF* = At'Rest (4.9)

Equation (4.9) can be written as an approximate factorization:

r oF r o

I — uAt” (—) = + (-) - )
[ ( Plinp B2 \p)jap AT
r o7 r g

e ((2) e () £)
( p)ioyp AZ P) 12 BT

where w is a relaxation factor. This is solved in two steps:

[ r 5 [r 5= \]
1) (I+pAt*|]|- =+ - — || AF' = wAt"Res
) i g ((p).'-m Az (p>j—l/?. Ar-)_

[ r oF r 6r \]
@) |1 -par ((—) LI (-) r ) AF=AF  (4.11)
| P/ ivipp A P/ jerp AT ]

Steps (1) and (2) in equation (4.11) are solved explicitly in a step by step

.

AF* = wAt'Res*  (4.10)

manner.

As with the hyperbolic equations, the continuity equation is solved in
generalized co-ordinates to allow for flexibility in the types of grids which may
be used. The transformation is carried out using the techniques described in

Section 3.5, and results in:

. '
(1) |7+ pae (( °") 6 + (ﬂ) 5;) AF’ = wAt Res
| P /i1 j=1/ |

P 2
2) |I-par ((K-"> 5t + (ﬁ) 5:;) AF = AF' (4.12)
. P ] iv1y2 P 712
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where:

a 0

Res = 5 (r11Uy) + 5 (110 (4.13)

22472
K, == 4.14
L= T (4.14)

; z?, + r:",
, = 4.15
H (4.15)

4.2.2 Calculation of the Residual

The residual as written in equation (4.13) can be recast in a more general

form as:
0 0
Res = 5-7; (Af) + a—f (By) (4.16)

where Ay and By are representative fluxes.

In this work all spatial derivatives are solved for using a finite volume
approximation. In this approximation, the differential in the n direction
represents the change of the Ay flux in the n direction. The £ differential
represents the change in the By flux in the £ direction. The 7 differential is
approximated by differencing the values of A on the top and bottom faces
of a computational cell and dividing by An = 1. Similarly the £ differential
is obtained by differencing the values of By on the right and left hand faces
of a computational cell and dividing by A€ = 1. The residual can be written

as the sum of these differences:

Res;; = (Afi.j+1/2 - Afi.j—l/?) + (Bfi+1/2.j - Bfi—l/z.j) (4.17)

The values of the fluxes at the cell faces is obtained from the cell centered

data through a linear interpolation.
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4.2.3 Stability Analysis Of LU Scheme

A numerical scheme is said to be stable if the numerical error remains

bounded as:
1. t — oo for a fixed At
2. At — 0 for a fixed t

This analysis of stability is carried out using a von Neumann Stability Anal-
ysis. This technique is applied to a simplified model equation. The model
equation is simpler to analyze than the full equation, but offers insight into
the stability characteristics of the full equation. This analysis is only a guide-
line as it provides a necessary but not sufficient condition for stability. For
this analysis, equation (4.1) is approximated by:

O*F
0z2

=0 (4.18)
The approximate LU factorization of equation (4.18) is:

I+ pad?] - [I - pad?| AF; = aws..F; (4.19)

where a = %; is the Fourier Number and w is a relaxation parameter.

A Fourier decomposition of the solution potential F is:
Fj = G*ePv* (4.20)

where G* represents the growth factor or, the ratio of the numerical solution
between two consecutive time steps.

_
-5

2

Gk

(4.21)
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In operator form, the LU scheme can be written as:
LUAF* = ResF* (4.22)

Using equation (4.20) L,U and Res can be written:

L= [I + pa (1 - e'“’"’)] (4.23)
U=[I-pa(e® -1)] (4.24)
Res = aw [e“g'” + e“B“’] (4.25)

Equation (4.22) can be rearranged into the form:

F¥' = (LU) ' (Res + LU) F* (4.26)
By comparing equation (4.26) and equation (4.21), it is clear that:

G* = (LU)"" (Res + LU) (4.27)

Substituting equations (4.23) to (4.25) into equation (4.27) and using the
general mathematical results:

cos(z) = ;)1- (e“ + e":) (4.28)

>
~

sin? (-9—) = %(1 —cos (2)) (4.29)

The growth factor of the approximately factored LU scheme can be written
as:

_ 1—dafw - p(1 + pa)]sin® (8,Az/2)
T 1+4pa (1 + pa)sin® (8,A2/2)

(4.30)

The growth factor is shown in Figure 4.1, for the parameter values u =
0.5,a = 5.3, and w = 1.9. These values were chosen to optimize the schemes

ability to damp high frequency errors.
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Figure 4.1: Growth Factor of LU Scheme
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4.2.4 Multigrid Convergence Acceleration

Figure 4.1 demonstrates the fact that the approximately factored LU scheme
has favorable high wavenumber damping. As with most numerical schemes,
both explicit and implicit, it is the low frequency errors that cause slow
asymptotic convergence to steady state [Yokota 1987].

The Multigrid method is founded on the principle that low frequency er-
rors on a fine grid are high frequency errors on a courser mesh. By solving the
flow equations on course meshes and updating the fine grid solution including
a course grid influence, convergence rates can be dramatically improved. The
accuracy of the solution is governed by the fine grid calculation, the course
grids help to accelerate the solution to a steady state.

The solution of steady state problems is governed by the boundary con-
ditions. It can be said that Multigrid accelerates the solution by accelerating
the influence of these boundary conditions.

In operator form, the LU scheme can be written as:
LUAF = ~AtRes (4.31)

Initially the scheme is applied to the fine grid, allowing an updated fine
grid solution to be calculated:

LU},AF}, = —AtResh (4.32)
FF¥'= FF + AFF (4.33)
The fine grid residual contains low frequency errors which are more efficiently

removed on the course grids. The fine grid residual is transferred to the

courser grids using a direct summation denoted by N,’:_I:

Resi_, = N!_|Res, (4.34)



The fine grid solution is transferred to the courser meshes using an area

weighted averaging process denoted by Np_;:
F}_, = NP_|Fy (4.35)

Using the transferred course grid solution, a course grid residual is now cal-

culated:

Res,_, = Res [F,‘,_l]h_l

= Res [;\/,’,*_lzﬂ“,,]h~l (4.36)
A forcing function F'F, is calculated from the residuals in equations (4.36)
and (4.34). The forcing function is a measure of the difference in truncation

error between the two grids.
FF = Res;_, —Res}_,;

= Ni_Fa—Res[N R, (4.37)

The course grid residual is the sum of the forcing function and the residual

calculated on the course grid:
LU |AFpy = —-At(Resp + FF,))
= —At (Res,,_1 + N"_ Res, — Res (1V,{‘_1F,.)h_l) (4.38)
This procedure of passing grid information down to progressively courser

grids continues until the coarsest grid has been reached. At this point, course

grid corrections are passed up to progressively finer grids until the fine grid

is reached.

The corrections are interpolated in the following manner:
F, = B+ L7 (F, - F)
= Fu+ 7 (Fioy - NP FR) (4.39)
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where:
Fooy = Faoy+ B2} (Faoy — NP3 Fiy) (4.40)

The Multigrid procedure is continued until the desired level of accuracy has
been reached.

The I and N operators denote interpolation and transfer operations used
to pass information up and down between different grid levels. They are not
the inverse of one another.

There are many different forms that a Multigrid cycle can take [Yokota

1987]. In this work, a five level W cycle is used.

Finest Mesh

Coarsest Mesh

Figure 4.2: Five Level Multigrid Scheme

4.3 Hyperbolic Equations

Hyperbolic equations have two real characteristics, or lines along which infor-
mation is propagated. This means that these equations have both a domain

of dependence and a region of influence and that the equation propagates
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information in the direction of the flow. This physical behavior has an im-
portant impact on the numerical scheme used to solve hyperbolic equations.
Central differencing is not a valid choice of discretization since this method
assumes that the independent variable at a point is affected by every point
around it. This obviously violates the concept of a domain of dependence.
Instead an upwinding scheme must be used to solve hyperbolic equations.
Often, upwinding is associated with one sided differencing. For a one dimen-
sional problem this is true, but for a multi-dimensional problem there is an
infinite number of directions and waves which may be chosen to upwind. For
such multi-dimensional problems, a more sophisticated technique must be
applied to achieve upwinding. In this work a leapfrog method in conjunction
with a nonoscillatory quadratic interpolation scheme (UNO2) is applied to
upwind all the hyperbolic equations.

For the model convection equation (3.82) with no source term, the finite

volume formulation of the leapfrog method may be written as:

n+1/2 n+1/2 n+1/2 n+l1/2
T+ = _ At Mi+1/2.j = Mi—l/'z.j + K.’,j+1/2 - Ki,j—l/2

=T
S ST AE &n

(4.41)

where M = U||J||T, K = U,||J||IT and A§ =1, Anp=1.

The half cell information used to calculate the convective derivatives is
obtained using UNO2 a uniformly non-oscillatory second order accurate in-
terpolation technique derived by Harten and Osher [1987]. The following
description is from Yokota [1998].



4.3.1 UNO2 Convection Scheme
A one dimensional interpolation can be written as:
T=T+S5(z—z) (4.42)

where the repeated indices do not imply summation. S} represents the slope

of T in the ‘z* direction, and for Harten and Oshers UNO2 scheme [1987] is

given by:

55 — edian © Tf'izzz;f‘v T - Tt.p) (4.43)

A quadratic interpolation is used to construct the T, , terms:

Toap =5 T+ Tit) = 1 Diviye (4.44)
where:

Dity12 = minmod (Tiyy — 2T + Ty, Tiyo — 2T + T3) (4.45)
and:

minmod (a, b) = sign (a) max (0, sign (ab) min (|al, |b])) (4.46)

Following characteristics back to their spatial locations at time level n
allows for the calculation of cell face data at time level n + 1/2. Surface data
at the half cells can be calculated in four different ways depending upon the
axial and radial convection speeds. For positive convection speeds, the half

cell surface data is given by:

-

n+1/2 . Az Us(i+1/2,5) Al Ur(i+1/2.5)OE
Ties =T + Siig (1 - —_&L‘) -5 ,-—2“’—— (4.47)

After the cell face data has been updated, the cell centered values are updated
using the Leapfrog method, equation (4.41)
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4.3.2 Source Terms

The discretized convection equation (4.41) does not include the source term
found in equation (3.82). The numerical inclusion of the source term is quite
straightforward. Numerically, the convective derivatives found in equation
(3.82) are treated as residuals, which, when added to time level n, update

the solution to time level n + 1:
1_ ;
77 =T, + Res (4.48)

The source term is calculated at time level n in accordance with equation

(4.17), and added to the residual prior to updating the solution.

4.4 Boundary and Initial Conditions

When using a complex lamellar velocity decomposition, the specification of
boundary and initial conditions is not a trivial matter. The specified condi-
tions on all of the Monge variables must be chosen to satisfy certain physical
boundary conditions while introducing no numerical instabilities into the
various governing equations.

4.4.1 Solid Wall and Symmetry Boundary Conditions

Equation (3.54) is the kinematic velocity decomposition of the velocity field:

0=V (Vez+¢)+rvsVl+rvyVB + %VF +viVZ

Along the top solid wall boundary and along the symmetry boundary, the

physical condition that must be met in an inviscid flow is a no flux condition.
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In transformed co-ordinates the radial velocity can be written as:
1
=5 [2¢A2 — zpAy] (4.49)

where:

—-%_{_rv §§+16_F Usa_Z
Tog o Tpoe o

d¢’ OB 10F ,0Z
A2 = — +rvg— + —

, + + Vi —
on an oo on

Since all of the grids used in this study use only vertical grid lines in the

Al

(4.50)

radial direction, the term 2, = 0. This reduces equation (4.49) to:

v = % [2¢ Ao (4.51)

This will be identically zero at the wall and symmetry boundaries when the

following conditions are set:

00| _ 9B _o 9B} _, 92} _, (4.52)
M | yau M |y M | yan N |yt

¥ 0.8 0L 0% -0 (4.53)
N |sym O | sym M lsym M | syom

4.4.2 Inflow Boundary Conditions

In an incompressible flow, downstream disturbances can influence the up-
stream flow through pressure waves. For these incompressible calculations,
the inflow boundary condition is specified such that it can adjust to down-
stream disturbances. This is achieved by specifying the axial velocity to be

C! continuous over the inflow boundary:

dv.
== 0 (4.54)
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This condition allows the inflow to adjust to both radial and axial distur-
bances. An F potential is constructed along the inflow boundary such that
equation (4.54) is satisfied.

The remaining Monge variables are chosen such that an inflow axial ve-
locity distribution can be prescribed. In transformed co-ordinates, the axial

velocity can be written as:

1
v: =5 [rnA1 — reAs)] (4.55)

where 4; and A, are given in equation (4.50). Since r¢ = 0 along the inflow

boundary for all of the grids used in this study, the axial velocity expression

reduces to:
1 oo’ dB 10F 0z
v, = — o — Iy it 4.5
v, Dr,, [V +8§ +rv93§+p8£+v"6£} (4.56)
By setting:
0o’ dB 0z
— =0. — =0. — =1 (4.57)
86 in flow aE inflow 06 inflow
we are left with
1 ,  10F
v. = -57',, [Vm + v, + ;a_f} (458)

for the axial velocity.
To obtain a value for the F potential from equation (4.54) would require:
0*F
% =
be specified along the inlet boundary. This boundary condition cannot be

0 (4.59)

used with equation (4.12). A second order partial differential equation can-
not have a second order boundary condition. Using the continuity equation

(3.96), an equivalent boundary condition for equation (4.54) is:
a(rv.)
5 =

0 (4.60)
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When expanded utilizing the equation for v, with 2z, = 0, this becomes:

d (roF\ _ [8% 8 (, 8B\ 8 ( ,0Z
3 o) =~ 5w+ () * 3 (™5 (o1

Discretizing this equation gives:
r

r r
T\ j¥1/2 T\p j+1/2 PJ iy

where the residual is the right hand side of equation (4.61). This tridiagnol

+Fjy (3) = —Res;(4.62)
j=vy

2

system is solved for the inflow F' potential using the Thomas algorithm.
The boundary condition on the inflow shear is supplied explicitly to the
code, as is the density and reduced circulation (rve). In the simulations

conducted in this research the following conditions were applied:

vi = 0 (4.63)
Ve = 1 (4.64)
rvg = Vg (1 — exp (—are)) (4.65)

p = 10 (4.66)

Equation (4.65) is known as a Burgers vortex [Rusak et. al. 1998]. Vg, is
the swirl level and is used to control the magnitude of the swirl velocity. a

is used to control the size of the vortical core:

re 112 (4.67)

T Q2
Figure 4.3(a) illustrates the inflow distribution of the reduced circulation
(rvg) with a swirl level of V4 = 0.5 and a vortical core of r. = 0.6. Figure

4.3(b) is the corresponding inflow distribution of azimuthal velocity.
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4.4.3 Outflow Boundary Condition

The outflow boundary condition must be chosen so that the flow can move

smoothly through the outlet. This is achieved on the convected variables by

setting:
2 .7 2 2
i —0, %8 =0, 22 =0 (4.68)
3{- vut flow 8§~ out flow aE- out flow
3% 8 82 (rve)
= = 0 . - = 0 ’ = 0 (4.69)
3&- out flow 852 out flow 862 out flow

Since the equation for F, equation (4.11), is a second order partial differ-
ential equation. it is impossible to use the boundary condition:

O*F
oer

0 (4.70)

as this would not constitute a well posed mathematical problem. It is pos-
sible, however. to enforce this condition indirectly. The outflow boundary
condition on F is similar to that utilized for the inflow boundary. Equation
(4.54) is satisfied along the outflow boundary by solving equation (4.60) for
the F potential. Equation (4.60) is discretized to equation (4.62) and solved
using the Thomas algorithm.

4.4.4 Initial Conditions

The initial conditions on the convected variables are input to the code, and
the initial condition on the F variable is constructed from these values by

solving the continuity equation.
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The initial conditions on the convected quantities are:

v = 0 (4.71)
Ve = 1 (4.72)
rvg = Vg (1—exp(—ar2)) (4.73)
3 = atan (va :"Vm) (4.74)
o =0 (4.75)
p =1 (4.76)
Z =z (4.77)

B is initialized to the local inflow helix angle 3. Figure 4.4 shows the inflow
helix angle 3 for a Burgers vortex with V4, = 0.5 and r. = 0.6. The ini-
tial condition for the reduced circulation is identical to its inflow boundary

condition shown in Figure 4.3(a).
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CHAPTER 5

RESULTS

5.1 Flow Through a Straight Pipe

Simulations of flow in a straight pipe were conducted to test the code’s fi-
delity. In the absence of spatial and temporal disturbances, swirling and
non-swirling inviscid flows should convect through straight pipes with no
change.

Figure 5.1 shows the grid used for straight pipe flow calculations. The grid
corresponds to the flow plane shown in Figure 3.1. In the axial direction the
grid is 8 units long and discretized by 128 uniformly sized computational cells
(Az =0.0625). In the radial direction the grid is 1 unit high and is discretized
by 48 uniformly spaced computational cells (Ar = 0.0208). Simulations were
conducted using finer grids with no change in the flow solution, indicating
that the solutions are not grid dependent.

A timestep of 0.01 was used in these calculations. Since this timestep
corresponds to a maximum local Courant number of 0.16, we are confident

that these simulations are numerically stable. Each timestep, the maximum
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residual in the continuity equation is reduced to O (10~!*) within 6 iterations

using a 5 level multigrid cycle, Figure 4.2
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5.1.1 Non-Swirling Flow

Material lines in the = direction are Lagrangian co-ordinates. Although the
initial conditions are assumed to exist for —o0 < z > +00, they are only
observed within the finite domain shown in Figure 5.2(a). In Figure 5.2(a)
the material co-ordinates coincide with the Eulerian co-ordinates. Equation
(3.61) governs the evolution of the Z material lines and indicates that these
lines are purely convected with the flow. Figure 5.2(b) shows the Lagrangian
co-ordinates after 3200 timesteps. At this instant in time the initial flow has
convected 32 pipe radii or 4 times through the numerical domain. Since the
material lines are still straight and parallel after 3200 timesteps, it is clear

that the flow is still uniform.

5.1.2 Swirling Flow

Figure 5.2(a) also represents the initial condition for the Z material lines in a
swirling flow. The inflow helix angle 3 is described by equations (4.74).(4.72)
and (4.65) with Vp, = 0.6, and is shown in Figure 5.3(a). The inflow helix
angle is used as the initial condition of the B potential. Equation (3.41)
governs the evolution of B indicating that this is not a purely convected
quantity. A B distribution exists for —0o < z > +00, but is only observed
within the finite flow domain.

By examining a simplified swirling flow. the significance of the B term
becomes clear. This simplified flow is axisymmetric and the velocity field is

given by:

v. = 1 (5.1)
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v, = 0 (5.2

vg = (r (5.3)

Substituting this velocity field into equation (3.41) gives:

%3 =—C (5.4)

Integrating gives:
By, =By - (t (5.5)

This simplified analysis shows that for a uniform flow in solid body rota-
tion. B is a linear function of time. The Burgers vortex employed in this
work contains a core region of solid body swirling flow and this region should
behave similarly to equation (5.3). B will only develop a nonuniform distri-
bution in regions where the local helix angle 3 is a function of ‘z*, the radial
velocity is non-zero or the azimuthal velocity is not solid body rotation. B
offers a unique three dimensional insight into axisymmetric swirling flows.
All of the other convected quantities in this work are convected by the axial
and radial velocity field, they feel no influence of the swirling component. B
is also convected by the axial and radial velocities, but it is also influenced
by the azimuthal velocity through the source term in equation (3.41). This
quantity, which is unique to the potential\complex lamellar decomposition,
is axisymmetric yet influenced by the three dimensional velocity field.
Figures 5.3(b) and 5.3(c) show the Z material lines and B potential after
3200 timesteps or after passing 4 times through the computational domain.

The convected Z material lines have remained vertical indicating that no
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shear disturbances have developed in the flow. The B distribution has re-
mained independent of ‘z‘°, indicating that no azimuthal or axial velocity
shears have developed.

The inlet boundary condition applied to the F potential, equation (4.61),
does not fix the inflow axial velocity for all time. Instead, this boundary
condition satisfies the continuity equation and allows the axial velocity to
adjust to any downstream disturbance. The literature categorizes breakdown
flows by the localized velocity ratio along the inlet, or inflow helix angle (3).
Therefore, it is important to quantify the variation with time of the the local
helix angle in these flow simulations. Figure 5.3(d) shows that 3 is constant

for all time in a straight pipe flow.

Text resumes on page 79
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5.2 Flow Through a Divergent Pipe

Figure 5.4 shows the grid used to study vortex breakdown flows. The grid
corresponds to the flow plane shown in Figure 3.1. In the axial direction the
grid is 8 units long and is discretized by 128 uniformly sized computational
cells (Az = 0.0625). The section of the grid from z = 0 to z = 2 is 1 unit
high and is discretized by 32 cells in the axial direction and 48 cells in the
radial direction (Ar = 0.0208). The divergent portion of the grid extends
from z = 2 to : = 8 and has a 2° angle of divergence. This portion of
the grid is discretized by 96 cells in the axial direction and 48 cells in the
radial direction. The radial grid spacing in the divergent section of the grid
varies in the axial direction from Ar = 0.0208 at z = 2 to Ar = 0.0252 at
z = 8. The distribution of the computational cells was chosen so that the
coarsest mesh used in multigrid consisted of a straight pipe discretization of
2 cells x 3 cells and a divergent section discretization of 6 cells x 3 cells. This
ensured that the grid maintained its shape in the multigrid calculations. The
solutions obtained are not grid dependent as simulations conducted on finer
grids produced the same results.

Diverging pipes have been used in experimental studies of vortex break-
down [Sarpkaya 1971a 1971b 1974, Faler & Leibovich 1977a 1977b, Bruecker
and Althaus 1995]. It was found that the radial velocities generated in diverg-
ing pipes promoted the occurrence of a breakdown by initiating the tilting of
the axial vorticity into azimuthal vorticity which is characteristic of break-
down flows [Darmofal 1993]. Computational work has also been carried out in
diverging tubes [Darmofal 1996, Beran and Culick 1992]. In numerical work,

the wave propagation characteristics found in a diverging tube isolate the
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breakdown location from the inlet of the numerical domain. The importance
of isolating a vortex breakdown from the inflow boundary is emphasized by
Spall et. al. [1987], and in the discussion of Section 2.3. Since the inflow
boundary condition of this work, equation (4.57), is influenced by the flow-
field it is of paramount importance that the breakdown occurs at least one
pipe radius downstream of the inflow boundary. If the breakdown structure
were able to influence the inlet boundary, an unsteady boundary condition
would exist. This would make it impossible to attribute the flow development
to fluid dynamic effects as opposed to numerically induced effects.

A timestep of 0.01 was used in all divergent pipe calculations. Since
this timestep corresponds to a local maximum Courant number of 0.18, we
are again confident that these simulations are numerically stable. At each
timestep, the maximum residual in the continuity equation is reduced to

O (107%) within 8 iterations using a 5 level multigrid cycle. Figure 4.2.
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5.2.1 Non-Swirling Flow

Panton [1996] presents an analytical solution for inviscid, irrotational plane
flow through a diverging duct. The geometry considered by this solution
consists of a straight pipe followed by a diffuser and another section of straight
pipe. The straight pipe sections are considered to be of infinite extent, and a
solution is obtained through a Schwarz-Christoffel transformation. It is not
possible to make quantitative comparisons between the present simulations
and Panton’s work due to the infinite flow domain he considers, and due to
two singular points that occur in his solution. However, it is possible to make
qualitative comparisons of the overall flow behavior.

Panton predicts an infinite velocity occurring at the point on the wall
where the first straight pipe connects to the diffuser. Through the Bernoulli
equation, this infinite velocity results in a low pressure occurring at this
point. In an inviscid flow, a pressure gradient is required to turn streamlines,
the large velocity is created so that the streamlines can curve into the diffuser
section. Panton predicts that the velocity along the wall at the connecting
point of the diffuser and second straight pipe should be zero. The low velocity
creates a high pressure at this point and the corresponding pressure gradient
bends the streamlines into the outflow pipe.

Figure 5.5(a) is the initial axial velocity field for a non-swirling flow
through a diverging pipe. Figure 5.5(b) is the axial velocity after 3200
timesteps. [t is clear from Figure 5.5(b), that the axial velocity reaches
a maximum along the wall at the entrance of the divergent section. This lo-
cal maximum agrees qualitatively with the infinite velocity found in Panton’s

analytical solution, and exists to bend the streamlines into the diffuser. The
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F potential is shown in Figure 5.5(c). F is calculated to satisfy continuity,
however the kinematic condition governing F, equation (3.43), shows it to be
closely related to the pressure field. The gradients in the F’ potential in the
straight pipe section are causing the flow to accelerate towards the bent. In
the divergent section, the F' gradients are causing flow deceleration. These
observations are in agreement with Panton’s analytical solution.

Figure 5.5(d) and Figure 5.5(e) represent material lines in the 'z* direction
initially and after 3200 timesteps. The fact that these timelines are still
vertical after the flow has convected through the computational domain 4
times, indicates that there are no shear disturbances being generated by the

pipe divergence.

Text resumes on page 89
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5.2.2 Pre-Breakdown Swirling Flow

Batchelor [1967] presents analytical solutions of inviscid axisymmetric swirling
flows. The analysis of these flows was completed using the Bragg-Hawthorne
equation with the additional assumption of quasi-cylindrical stream surfaces.
The Bragg-Hawthorne equation requires the specification of a circulation
function and a total head function at a location upstream of the inflow con-
dition. The form of these functions will not be valid in regions of reversed
flow since the fluid originating downstream of the outlet does not necessarily
have the same form as the flow at the inlet. For this reason, Batchelor’s
analysis is only valid up to the formation of a stagnation point.

Batchelor analyzed a Rankine vortex in a uniform flow. He assumed
that at a location downstream of the initial conditions the velocity at the
edge of the vortical core had decelerated to half of its upstream value. This
boundary condition mimics the effect a divergent pipe section would have
on the flow. Batchelor found that with this velocity deceleration along the
outside of the vortical core, the axial velocity along the pipe centerline would
stagnate when the quantity %‘ was of order unity. When Batchelor’s swirl
ratio was less than unity, low deceleration but not stagnation was predicted
along the vortex centerline.

Figure 5.6(a) shows the initial axial velocity distribution for a swirling
flow in the divergent pipe. The inflow helix angle 3 is shown in Figure 5.6(b)
for Vg = 0.4. The velocity field after 3200 timesteps is given in Figure
5.6(c). This plot shows that the axial velocity along the pipe centerline has
decreased to about 60% of the inlet axial velocity, but has not stagnated.
The deceleration of the flow along the pipe axis is clearly illustrated by
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the shearing of the Z material lines in the diffuser section of Figure 5.6(d).
Figure 5.6(e), the B potential after 3200 timesteps, shows that the flow in
the straight pipe has remained uniform. The flow in the bottom 25% of the
diffuser is not uniform, indicating that a shear has developed. Figure 5.6(f)
shows the F' potential for this field, Figure 5.6(g) is a more detailed contour
plot of the region inside the vortical core. The strongest axial gradients in
the F potential are found in the region of highest material line shearing.
This indicates that the strongest axial pressure gradients exist in this region.
All breakdown flows undergo their most drastic flow changes along the pipe
centerline, and the behavior along the axis of symmetry can be used to
characterize the flow behavior as a whole [Beran and Culick 1992]. Figure
5.6(h) shows the variation of the minimum axial velocity along the pipe
centerline with time. It is clear that the axial velocity is asymptoting to a
steady state axial velocity 1800 timesteps.

Figure 5.6(i) shows the variation of the inflow helix angle 3 with time.
The initial conditions applied in this work are not exact solutions for the
flow through a diverging duct. The initial conditions are washed out of the
flow domain after 800 timesteps, and this period is represented by the first
3 data points in Figure 5.6(i). After the initial transients have been washed
out of the flow domain, the helix angle is asymptoting a steady state.

A quantitative comparison of this simulation and Batchelor’s [1967] work
is only approximate, due to differences in swirl velocity distribution and pipe
geometry. The axial velocity along the edge of the vortical core in Figure
5.6(c) is reduced to 80% of the inflow value and Batchelor only considered

the case where this velocity reduction was 50%. In a general sense, Batchelor
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showed that by reducing the axial velocity along the edge of the vortex core,
the velocity along the pipe centerline reduces by a greater amount. This
behavior is evident in Figure 5.6(c). The velocity along the vortex core
is reduced to 80% of the upstream value and the velocity along the axis
of symmetry is reduced to 60% of the inflow value. The quantity %’f is
approximately unity for the flow shown in Figure 5.6(c). The present results
and the results of Batchelor exhibit similar behavior and are of the same

order of magnitude and significance.

Text resumes on page 101
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Figure 5.6(b): Inflow Helix Angle 3 (Vg = 0.4)
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5.2.3 Incipient Breakdown Swirling Flow

Buntine and Saffman [1995] conducted numerical simulations of vortex break-
down in diverging pipes using the Bragg-Hawthorne equation. These sim-
ulations are only valid up to the occurrence of a stagnation point on the
pipe axis due to the inherent limitations of the Bragg-Hawthorne equation
discussed in the previous section. For pipes of a unit length and an inlet
to outlet radius ratio of 1.5, Buntine and Saffman studied the response of
a Burger vortex to changes in ihe swirl velocity magnitude. For a uniform
inflow axial velocity, Buntine and Saffman observed that the level of flow
deceleration along the axis decreases monotonically with an increase in swirl
velocity until a stagnation point is reached.

Figure 5.7(a) shows the axial velocity field after convecting 4 times through
the computational domain (3200 timesteps) with a swirl level of Vg = 0.45
and inflow helix angle 3 distribution shown in Figure 5.7(b). The only dif-
ference in the flow conditions leading to Figure 5.6(c) and Figure 5.7(a) is
the applied 3 level. The minimum axial velocity in Figure 5.7(a) is 20%
lower than that in Figure 5.6(c). The additional flow deceleration caused by
increasing the swirl level is clearly illustrated by the Z material co-ordinates.
The shearing of the Z material lines in Figure 5.7(c) is more pronounced than
the shearing shown in Figure 5.6(d). This increased disturbance is also evi-
dent in a visual comparison of the B potentials between the two swirl levels,
Figures 5.6(e) and 5.7(d). Figure 5.7(e) shows that this flow is asymptoting
to a steady state. Like the V; = 0.4 simulation, Figure 5.7(f) shows that the
inflow helix angle 3 is asymptoting to a steady state after 800 timesteps. As
with the V4, = 0.4 simulation, this flow approaches a steady state after the
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initial conditions have washed out of the flow domain.

By increasing the initial swirl level to V4, = 0.5, with an inflow helix an-
gle 3 distribution shown in Figure 5.8(a), the flowfield described by Figure
5.8(b) evolves after 5400 timesteps, or after convecting approximately 7 times
through the computational domain. Unlike the Vp; = 0.40 and Vj; = 0.45
simulations, this flow does not reach a steady state. Instead it is clear that
the flow has stagnated along the pipe centerline. The variation of the min-
imum axial velocity with time is shown in Figure 5.8(c) where it is evident
a stagnation point formed on the axis after approximately 5000 timesteps.
This flow stagnation is also evident in Figure 5.8(d) where the Z material
co-ordinates at the bottom right hand corner of the outflow are piling up.
The fact that these purely convected co-ordinates are stagnating means that
the flow is also stagnating. The disturbance is also manifest in the B poten-
tial, Figure 5.8(e). Figure 5.8(f) shows the variation with time for the inflow
helix angle 3. Unlike the inflow helix angle for the V4, = 0.4 and V4, = 0.45
simulations, this inflow helix angle 3 does not reach a steady state. Instead,
this B is increasing at a constant rate to adjust to the downstream stagna-
tion point. However, the overall change after the initial conditions have been
convected through the domain 7 times is only 1%, this small disturbance
does not affect the flow.

The onset of the stagnation point is due to physical and not numeri-
cal effects. This is supported by the simulations conducted in the straight
pipe which were not influenced by numerical disturbances. We are confident
that the initial conditions are not triggering a breakdown as the effects of

these initial conditions was shown to wash out of the flow domain after 800
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timesteps in the Vp; = 0.4 and Vj; = 0.45 simulations, and this simulation
was run for 5400 timesteps.

In these studies, the flow development occurring after the formation of
a stagnation point was not explored. The flow velocities occurring after the
formation of a stagnation point tended to grow dramatically because of the
absence of viscosity in our simulations, neither physical nor artificially added.
The structure of actual breakdown flows is governed by viscous three dimen-
sional effects which are beyond the scope of the present work. As stated in
Section 3.2.2, the mechanism causing vortex breakdown is inviscid although
the breakdown structure is governed by viscous and three dimensional effects.
Since the goal of this work was to predict the occurrence of vortex break-
down in stratified flows and not study the breakdown structure, viscosity was
neglected.

Qualitatively, the simulations conducted at swirl levels of Vs, = 0.40,
Vo1 = 0.45 and Vp; = 0.50 show the same trends as the results reported by
Buntine and Saffman. An increase in swirl velocity leads to an increase in
the flow deceleration along the pipe axis. Buntine and Saffman do not report
quantitative data of their uniform axial flow simulations, so a more rigorous
comparison is not possible.

Wang et. al. [1998] conducted inviscid simulations of vortex breakdown
by solving the unsteady Euler equations in vorticity streamfunction form.
These equations are not limited by the upstream dependence of the steady
Bragg-Hawthorne equation. The calculations were conducted in a straight
pipe and a vortex breakdown solution was initiated by perturbing a base

columnar vortex. A uniform axial flow and a Burgers vortex described by
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equation (4.65) were the prescribed inflow conditions. In their simulations
there existed a critical level of swirl below which no breakdown could form,
regardless of the perturbation magnitude used. This critical level was iden-
tified as V5 = 0.7305. In the present simulations the divergence angle of
the diffuser is the perturbation which causes a breakdown to occur, and the
critical swirl level has been identified as V; = 0.5. The fact that less swirl
is required to precipitate a breakdown in a diverging tube is in agreement
with the experimental observations of Sarpkaya {1974]. Furthermore, Rusak
et. al. {1997] studied the effect of pipe divergence on vortex breakdown an-
alytically, and found that pipe divergence reduces the swirl level required to
trigger a breakdown. Wang and Rusak and Sarpkaya both attributed the
appearance of vortex breakdown at swirl numbers less than critical to the

adverse pressure gradient found in diverging tubes.

Text resumes on page 117
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Figure 5.7(b): Inflow Helix Angle 3 (V4 = 0.45)
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5.2.4 Response of Breakdown Zone to Increased Swirl

Figure 5.9(a) is the inflow helix angle 3 for a flow with a swirl level of V5, =
0.55. Figure 5.9(b) shows the axial velocity for this flow after convecting 4
times through the numerical domain (3200 timesteps). The stagnation point
in Figure 5.9(b) occurs approximately 1 unit upstream of the stagnation point
in Figure 5.8(b). The stagnation point can also be identified using the Z
material co-ordinates, Figure 5.9(c). This movement of the stagnation point
is in qualitative agreement with the experimental observations of Sarpkaya
[1971a 1971b] and Faler and Leibovich [1977a] who observed the upstream
migration of a breakdown zone in response to an increase in swirl level.
The structure of the B potential after 3200 timesteps indicates that a large
disturbance has developed in the flow, and the disturbance is approximately
one half of a pipe radius in radial extent.

At the swirl levels of V5, = 0.5 and Vp; = 0.55, the stagnation point on the
flow axis occurred 0.5 units and 1.5 units upstream of the pipe outlet. The
stagnation zone in these simulations extends from the initial stagnation point
through the pipe outlet, forming an open stagnation zone. This stagnation
zone is particularly clear in the Z material co-ordinates, Figure 5.9(c). The
dense collection of material lines near the outlet boundary indicates that the
fluid in this region is not being convected out of the flow domain. Wang et.
al. [1998] conducted numerical simulations using an unsteady form of the
Bragg-Hawthorne equation. Unlike the steady Bragg-Hawthorne equation,
this equation is valid after the formation of a stagnation point. Wang et. al.
predicted open stagnation zones for all swirl levels. They state that the open

stagnation zone appears since their simulations are inviscid, and claim that

117



it is viscosity which causes the closing of a vortex breakdown bubble and the
formation of a second stagnation point.

Figure 5.10(a) shows a breakdown flow with a swirl level of Vj; = 0.6 after
convecting 4 times through the domain (3200 timesteps). The inflow helix
angle 3 for this flow is as shown in Figure 5.10(b). The maximum inflow
helix angle 3 varies by 7% over the course of this simulation, Figure 5.10(c).
This variation is due to the presence of a large breakdown region in the
downstream flow. This large disturbance is evident in Figure 5.10(d). Since
the V3, = 0.5 swirling flow underwent breakdown with only a 1% variation
in the maximum helix angle 3, it is clear that the Vj, = 0.6 breakdown is
not due to the inflow disturbance. Figure 5.10(e) shows the axial velocity
along the pipe centerline when a vortex breakdown has formed. This plot
shows that an identifiable stagnation zone forms between z = 4.9 units and
z = 5.5 units to give a breakdown bubble 0.6 units long. The axial velocity
after this breakdown zone recovers to 20% of the inflow value. The formation
of this closed stagnation zone in an inviscid flow suggests that it is possible
for a vortex breakdown bubble to form without viscosity. The B potential
only changes in regions of axial and swirl velocity gradients. Figure 5.10(f)
offers a particularly clear picture of the disrupted flow region which we call
the bubble, and the surrounding regions of quiescent flow. Figure 5.10(g)
and Figure 5.10(h) illustrate the F' potential. The largest axial gradients in
F are clearly found in the bubble region of the flow. These large gradients
are indicative of the the large pressure gradients which are retarding the flow
along the axis. Outside of the breakdown region, the gradients in the F
potential are mostly radial. The breakdown bubble acts as a flow blockage
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which the fluid must pass over. The radial gradients in F are required to
deflect the flow around the breakdown region.

The presence of a closed stagnation zone is in disagreement with the
results presented by Wang et. al. A definitive reason for this difference is
not clear. Wang et. al.’s simulations were conducted in a straight pipe,
and it is possible that the closing of the stagnation zone in this work is due
to the use of a diverging pipe. It is also possible that the formation of the
bubble is a second order effect not found in Wang et. al.’s first order accurate

simulations.

Text resumes on page 132
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Figure 5.9(a): Inflow Helix Angle 3 Potential (Vg = 0.55)

120

8r




(g0 = 194) sdogsouiry 0pge 19y AN00PA [uixy :(()6'¢ 2mBty

&

0= enjeA wnwjul
I'f = onjeA wnuwixen
1'0 = Jusweiou|

121



(gg'0 = 184) sdagsawry gOge 101)y d1vUIpIo-0) [ 7 :(9)6°¢ 2andtg

=7 1 |

pE-=  eneA wnuiuw
Ol-= 8njeA wnwixepw
2= juseioU|

122



(gg'0 = 184) sdajsautry gozg PPV [enuatod g :(p)6-g oindiyg

‘A‘@\ S g5

0/-= ©OnfeA wnuiuw
Gl- = onjeA wnwixep
G= juswiaIou)

123



(09°0 = 194) sdaisoutry )pZE 1YY LNIOPA [BIXY :(®)(Q['G dandiy]

e
N

0= eneA wnwuy
L'L = enjeA wnwixey
1'0= juswesou)

124



09

0.8

0.7

0.6

~ 05

0.4

0.3

0.2

0.1

L L 1 1 ) -

or

10 15 20 25 30
Inflow Helix Angle B (degrees)

Figure 5.10(b): Inflow Helix Angle 3 (Vi = 0.60)

125




36.5 T T T T T T

maximum infiow Helix angle f§ (degrees)

L 1 L

0 500 1000 1500 2000 2500 3000
timestep

Figure 5.10(c): Temporal Variation of Inflow Helix Angle 3 (V4 = 0.60)

126

3500



(09'0 = '64) sdosawry gogg 19V sreuiplo-0) [vLIBN 7 (P)O1°G 218l

ye-=  enjeA WNwuIW
OL-= enjeA wnwixepw
2= JusweIou)

127



0.8+

06

vz

04

Figure 5.10(e): Axial Variation of Axial Velocity at Breakdown (V5 = 0.60)

128



(09°0 = 97) sdoysowmn (Ozg WYY [BIULIO] & (J)0T°G Pt

5 2

T —

08-= oneA wnwuiW
02-= enfeA wnwixew
g= juswaiou|

129



(09°0 = 16A) sdeysawny (()gg 1OYY [0 (8)o1'g omBiy

L

318

L= enjeA wnwiuy
/2= onfep wnuwixepw
2= juswaiou|

130



(09°0 = 184) sdojsowny Oz YV [vNIUIO] o PafreIdg :(4)01'g dndtg

vc = 8anjeA wnuwiuin
2= enjeA wnwixew
£0= jusweIoU|

131



The preceding seven simulations have shown that the equations resulting
from a kinematic decomposition of an axisymmetric swirling flowfield result
in vortex breakdown solutions that follow expected behavior. Both swirling
and non-swirling flows in a straight pipe convect through the domain un-
altered. A non-swirling flow in a diverging pipe also convects through the
computational domain unaltered. A low level swirling flow through a diverg-
ing pipe experiences a more pronounced flow deceleration along the pipe axis
than it does along the pipe walls, in accordance with the solutions of Batche-
lor [1967]. As the swirl level is increased this flow deceleration becomes more
pronounced, until the flow stagnates along the pipe axis in agreement with
the results of Buntine and Saffman {1992]. With a further increase in swirl
the location of the stagnation point is moved upstream in accordance with

the experimental observations of Leibovich [1977a| and Sarpkaya [1971a].

5.3 Vortex Breakdown in Density Stratified Fluids

The results presented thus far have demonstrated the validity of using a po-
tential/complex lamellar velocity decomposition to study vortex breakdown
flows. A benefit of using such a velocity decomposition is that pressure is
removed from the governing equations and density is treated as a material
quantity. This allows for the calculation of density stratified fluids using an
Eulerian grid without the use of a density interface boundary condition or
grid regeneration at each timestep. The fluids considered in this work are

immiscible stratified media.
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5.3.1 Summary of the Vorticity Dynamics of Vortex Breakdown

The vorticity equation for an inviscid fluid can be written as:

Do, _. _ VpxVP
R LR (5.)
where:
_ 19(rue)
W = " (5.7)
o, = _%"19 (5.8)
dv, Ov. -

o= aL: '% 59

The first term on the right hand side of equation (5.5) represents the tilting
and stretching of the vorticity components. The cross product term is known
as the Baroclinic torque and represents the creation of vorticity in the pres-
ence of density and pressure gradients. For an axisymmetric flow, gradients
of density and pressure are only present in the (r, z) plane and as a result
only azimuthal vorticity can be created in such a flow.

The vorticity dynamics occurring in vortex breakdown flows was discussed
in Section 2.4. Brown and Lopez [1990] observed that the presence of negative
azimuthal vorticity in a flow is a necessary condition for the formation of
a vortex breakdown. Darmofal {1993] argued that the negative azimuthal
vorticity is generated by a tilting of the axial vorticity into the azimuthal
direction and is then intensified through vortex stretching. Darmofal’'s work
dealt with homogeneous flows, the presence of a density stratification and
the Baroclinic torque was not considered.

The sign of the azimuthal vorticity created in these flows is governed

by the signs of local density and pressure gradients. Only radial density
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gradients are considered in this work, therefore there are four possible com-
binations of density and pressure gradients creating azimuthal vorticity in
these flows. The four scenarios are illustrated in Figure 5.11.

Taking the curl of the potential /complex lamellar velocity decomposition,
equation (3.54), the azimuthal vorticity created by density and pressure gra-

dients can also be written as:
o = _Vp xoVF (5.10)
02

The four possible vorticity fields produced by radial density gradients and
axial gradients in the F potential are shown in Figure 5.12.

In Section 5.1.4 the flow with a swirl level of V3, = 0.5 was identified as
the critical flow; a swirl level less than Vj, = 0.5 will not cause a breakdown
in the given geometry. Stratification was first added to this flow as the sta-
bilizing/destabilizing effects of stratification should be most evident around
this critical level.

The initial axial vorticity field of a constant density critical flow is shown
in Figure 5.13(a) . The azimuthal vorticity field is of the order O (10~%) and
is not contoured here. The axial and azimuthal vorticity fields after 5400
timesteps are shown in Figure 5.13(b) and Figure 5.13(c) respectively. The
initial vorticity is all aligned in the axial direction, and when a breakdown
solution is reached an azimuthal vorticity component has developed which
is negative and of the same order as the axial vorticity. Equation (5.6)
shows that a homogeneous flow has no sources of vorticity indicating that
the azimuthal vorticity evolved from a tilting of the axial vorticity into the

tangential direction.
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5.3.2 Effect of Negative Density Gradient on Vortex Breakdown

The initial and boundary conditions of the stratified flow cases are identical to
those employed in the homogeneous test cases apart from the introduction
of a density stratification. The stratification is imposed along the inflow
boundary and allowed to convect through the domain governed by equation
(3.59). This means that a fully stratified flowfield is not present until after 860
timesteps. or one sweep through the computational domain. The location of
the density interface along the inflow boundary is identified as r;, the density
found in the region 0 < r < ry is p; and the density located in the region

rs<r< Ris p,.

Critical Swirl With Density Interface Qutside of Vortex Core

Figure 5.14(a) and Figure 5.14(b) show the axial velocity and the Z material
lines for a flow with ry = 0.77. py = 1.0 and po = 0.9, giving a negative
density gradient in the radial direction. Unlike the homogeneous case the
velocity has not stagnated along the pipe centerline. The initial axial vor-
ticity field is represented by Figure 5.13(a) and the azimuthal vorticity is
of the order O (107%) and not contoured. At breakdown, the axial vorticity
and azimuthal vorticity are as shown in Figures 5.14(c) and 5.14(d) respec-
tively. Figure 5.14(c) and Figure 5.13(b) show that the axial vorticity in
homogeneous and stratified breakdown flows is of the same magnitude and
varies from a maximum of 7 at the centerline to 0 at the pipe wall. Figure
5.14(e) shows the location of the density interface at breakdown. A visual
comparison of Figures 5.13(c) and 5.14(d) shows that the Baroclinic torque

has generated a region of concentrated azimuthal vorticity along the density
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interface. A notable difference between the axial vorticity in the homoge-
neous and stratified flow cases is the wave like disturbances present in Figure
5.14(c). This disturbance is reminiscent of a Kelvin Helmholtz instability
along the density stratification. Figure 5.14(f) shows that the disturbance
is also present along the density interface in the F potential indicating that
it is due to a pressure wave. Due to the wave disturbances it is difficult
to interpret the azimuthal vorticity field, however, it appears as though the
concentrated region of negative azimuthal vorticity at the downstream end
of the pipe in the stratified case, differs from that in the homogeneous flow,

Figure 5.13(b).

Tezt resumes on page 148

141



(08°0 = 64 £2°0 = ¢ uonEoyeng aanedop) sdolsowin) OFG 0YY PRI £IV0PA [BIXY :(v)p1'g am3lg

P

L'0= 8njeA wnuwiuin
I'L= anjeA wnwixew
1'0= JuUaWaIou)

142



‘n = 16 ‘nN==7% . S SO 114 ¢ ol —w
Aom. O > N N 0= A :O_u.ﬁ.vcmad._um « >_Hﬂ~m02v b nmoa. QU 00FS .—OG&< —v—mu— vu —Aw—hmuu E N .AA—VVM. —m
H . ¢ 4« ‘

A AVPBRR

1G-= 8njepA wnwjuin
Ob- = enjeA wnwixepw
| = Juswiaiou)

143



(09°0 = 94 L4°0 = "+ uopeoyexg danegaN) sdojsowty OOpg PYY ANDIMOA [eIxy :(2)p1'g 23y

0= 8neA wnwiuw
L= enjeA wnwixep
L= Jusweiou)

144



: ‘g oandi,
(08°0 = '9A LL°0 = 4 uonedyIBIg 0A1peSa)N) sdojsowin) 0FS 19YY AIDILIOA [Bijnuzy (P)vr-g d

2-= enjeA wnwiupy
€= anjeA wnwixep
go= JusLWwaIoU|

145



: : ‘g a1ndt
(0G0 = 194 22°0 = "+ uorjesyneng aanedop) sdorssuiry gOFG WYY drepou] Lysusqg (d@)p1°g d

L — " ]

146



(0S'0 = "7 £2°0 = "+ uonjeayiyeng aanedoN) sdosouin) OQpg 1YY [BNUNO] 4 :(J)F1°g 2andt]

L= 8njeA wnwun
L€ = onjeA wnwixew
€= Juswaiou)

147



Critical Swirl With Density Interface Inside of Vortex Core

The axial velocity and Z material field for a flow with r, = 0.25, p, = 1.0
and ps = 0.9 are shown in Figures 5.15(a) and 5.15(b) respectively. Again
the presence of a negative density gradient in the radial direction has hin-
dered the occurrence of a breakdown solution. The initial axial vorticity
field is represented by Figure 5.13(a) and the azimuthal vorticity is of the
order O(107%) and not contoured. At breakdown, the axial vorticity and
azimuthal vorticity are as shown in Figures 5.15(c) and 5.15(d) respectively.
Figure 5.15(c) and Figure 5.13(b) show that the axial vorticity in homoge-
neous and stratified breakdown flows is of the same magnitude and varies
from a maximum of 7 at the centerline to 0 at the pipe wall. A visual com-
parison of Figures 5.13(c) and 5.15(d) shows that the Baroclinic torque has
altered the azimuthal vorticity field. The density interface is shown in Figure
5.15(e). A region of negative azimuthal vorticity has been generated in the
straight section of the pipe. Positive azimuthal vorticity has been generated
along the density interface in the divergent section, lowering the magnitude
of the minimum negative azimuthal vorticity in the homogeneous case by
80%. Figure 5.15(g) shows a negative gradient in the F' potential along the
density interface. Combined with a negative density gradient in the radial
direction, Figure 5.12 shows that the Baroclinic torque creates positive az-

imuthal vorticity along the density stratification.

Text resumes on page 156

148



: ‘g 91N 31
(08°0 = 194 6z°0 = *+ uoEdYIIENG dA1ESON) Sdorsown (OFG PYY AUDO[A [BIXY :(#)GT'G oMILg

=

20= eneA wnwiu
L'L= enjeA wnwixep
1'0 = ueweiou)

149



0$'0="116z0=" ¢
( IA GZ'0 = 2 uonedyielg aanedon) sdajsourty gOpg 10Ny PPL BB 7 :(q)G1°G 9ISty

T I L

6G- = OnjeA wnwjuin
Gp-= enjea wnwixep
| = JuswBIoU}

150



(09°0 = 194 gz'0 = *+ uonEoynENg aAnEaN) sdasautr) (PG 1YY ANOTHOA [BIXY :(9)GT°g By

|
|

0= eneA wnuwiuw
L= enjep wnwixepw
L= uswaIou|

151



(080 = "A 6z°0 = °+ uonedyneng aanesaN) sdojsowry gopg Yy ANdMIoA [enuizy (p)g1'g 2andig

L"b-= 8njeA wnuuiy
0= onjeA wnwixepw
20= usweIou|

152



: ‘¢ aandt
(08°0 = A gz'0 = "+ uonEaynrNg oAnedaN) sdajsown OOFg 1Yy d0vjIaI] Ansua(d :(9)gr1°Q 1

153



(08°0 = '04 gz°0 = *+ uonEayneNg danEdoN) sdorsowty OOKG JOYY [P0 o (J)G1°G 2B

20

218

anjeA wnuwiuy
enjeA wnwixew
jusweIdu)

154



. c :(8)gr°g 0anBi g
(080 = '9A Gg'0 = *+ uorredYENG dAteSaN) sdarsowny OOpG 109y [enRlod 4 papedd (F)gr'g

92 = enjeA wnuuiy
62 = onjeA wnwixen
£0= JuewaIou|

155



Stabilizing Effect of Negative Density Gradient

Figure 5.16 shows the variation of the minimum axial velocity along the pipe
axis for a homogeneous flow, a flow with r, = 0.77,p, = 1.0, p0 = 0.9 and
a flow with ry = 0.25,p = 1.0,p2 = 0.9. This plot shows that a negative
density gradient influences breakdown solutions. It also shows that the strat-
ification has a stronger effect when located inside of the vortex core. The
homogeneous flow stagnated along the pipe centerline after approximately
5000 timesteps. In the same time, the ry, = 0.25 flow is asymptoting to a
steady state with a minimum axial velocity of 0.25, and the r, = 0.77 flow
has a minimum axial velocity of 0.1 but has not reached a steady state. Dar-
mofal states that breakdown involves the tilting of the axial vorticity in the
vortex core into negative azimuthal vorticity. Figure 5.13(c) shows that the
negative azimuthal vorticity is concentrated at the downstream end of the
pipe. The negative density gradient located inside of the vortex core lowers
the magnitude of this vorticity by 80%, thus hindering breakdown. Due to
the wave disturbances present when a negative density gradient is located
outside of the core, it is difficult to interpret the effects of the stratification.
Since the vorticity present in breakdown flows is concentrated in the vortex
core, it is reasonable that a stratification located outside of the core will have

less effect than one inside.
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Figure 5.16: Variation of Minimum Axial Velocity Along Pipe Centerline For

Various Stratification Locations (Negative Stratification Vj; = 0.50)



5.3.3 Effect of Positive Density Gradient on Vortex Breakdown

Figure 5.17 shows the variation of the minimum axial velocity along the
pipe axis for a homogeneous flow, a flow with ry = 0.77,p, = 0.9,p, = 1.0
and a flow with ry = 0.25,p; = 0.9.p, = 1.0. The presence of a positive
density gradient in the radial direction has promoted the occurrence of vortex
breakdown. and the location of the density interface has a stronger effect
when located inside of the vortex core. The flow with the stratification
located at r¢ = 0.25 has reached a breakdown state before the flow with
the density interface located at ry = 0.77, which has broken down before
the homogeneous flow. Figure 5.18(a) shows the azimuthal vorticity in a
homogeneous flow after 3200 timesteps. Figures 5.18(b) and 5.18(c) show
the azimuthal vorticity after 3200 timesteps for the ry = 0.77 and r; = 0.25
flows respectively. The ry = 0.77 positive density gradient simulation has not
generated the oscillations that it did with a negative density gradient, as can
be seen on the density interface. Figure 5.18(d). It is clear that the presence of
a positive density gradient inside the vortex core, as shown in Figure 5.18(e),
has altered the azimuthal vorticity present in the homogeneous case. With
the stratification inside the core the magnitude of the minimum azimuthal .
vorticity is increased by 50%. With the stratification outside of the core the
magnitude of the minimum vorticity has not changed. However, the region

of minimum azimuthal vorticity is larger in the stratified flow case.

Text resumes on page 165
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5.3.4 Effect of Density Stratification on Above Critical Swirl Vor-
tex Breakdown

The results of the previous section examined a vortex breakdown occurring
at a swirl level of Vp; = 0.5. The stagnation point in this flow occurs less than
a pipe radius from the outflow boundary and a definable vortex breakdown
bubble is not formed. To examine the effect of a density stratification on the
location of a breakdown zone, simulations were conducted with a swirl level of
Va1 = 0.6. At this swirl level an identifiable bubble forms and the stagnation
point occurs approximately three pipe radii from the outflow boundary.
Figure 5.10(a) shows the axial velocity field for a vortex breakdown oc-
curring in a homogeneous flow. The stagnation region is approximately one
half of a pipe radius in length and the initial stagnation point is located at
z = 5.0. The bubble can also be visualized with the Z material lines and
B potential, Figures 5.10(d) and 5.10(f). The initial vorticity field for this
flow is shown in Figure 5.19(a) and the azimuthal vorticity is 5 orders of
magnitude lower and not contoured. The axial and azimuthal vorticity at
breakdown are shown in Figures 5.19(b) and 5.19(c) respectively. The axial
vorticity has been tilted into the azimuthal direction as was evident in the

Vo1 = 0.5 simulation.

Text resumes on page 169
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Figure 5.20 shows the variation of the minimum axial velocity along the
pipe axis for a homogeneous flow, a flow with r;, = 0.77,p, = 1.0,p, =
0.9 and a flow with r, = 0.25,p; = 1.0,p2 = 0.9. The results show the
same trends as reported for the critical swirl flow of the previous section. A
negative density gradient hinders the occurrence of a breakdown. The effect
is strengthened by locating the density stratification inside the vortex core.
Figure 5.21 shows the variation of the minimum axial velocity along the pipe
axis for a homogeneous flow, a flow with r; = 0.77,p; = 0.9, p, = 1.0 and
a flow with ry = 0.25, 0 = 0.9, p2 = 1.0. Again the results show the same
trends as reported for the critical swirling flow, a positive density gradient
promoting breakdown solutions, and the effect being more pronounced when

the stratification is located inside the vortex core.
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Negative Density Gradient Inside of Vortex Core

A vortex breakdown solution occurring in a stratified flow with the density
interface located at r; = 0.25 with p; = 1.0 and p; = 0.9 is illustrated in
Figure 5.22(a). The stagnation zone in this flow is 1.0 unit long and the
initial stagnation point occurs at =z = 5.6. Again, the bubble structure can
be seen in the Z material lines and B potential, Figures 5.22(b) and 5.22(c).
Figures 5.22(d) and 5.22(e) clearly show the F' gradients in the bubble region
indicating an adverse pressure gradient. The axial and azimuthal vorticity
are shown in Figures 5.22(f) and 5.22(g). The density stratification is clearly
evident in the density contour of Figure 5.22(h). Positive azimuthal vorticity
is being generated along this density interface in the divergent section of
the pipe reducing the amount of negative azimuthal vorticity in this region
from the homogeneous case. This is why the negative density gradient has

inhibited the occurrence of a breakdown solution in Figure 5.20.

Text resumes on page 181
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Negative Density Gradient Outside of Vortex Core

A vortex breakdown solution occurring in a stratified flow with the density
interface located at r, = 0.77 with p, = 1.0 and p» = 0.9 is illustrated
in Figure 5.23(a). The stagnation zone in this flow is 0.5 units long and
the initial stagnation point occurs at approximately z = 5.1. Again, the
bubble structure can be seen in the Z material lines and B potential, Figures
5.23(b) and 5.23(c). Figures 5.23(d) and 5.23(e) clearly show the F gradients
in the bubble region indicating an adverse pressure gradient. Figure 5.23(f)
is a single contour of the density interface. The density interface indicates
that this flow is starting to develop a Kelvin Helmholtz type instability, due
to a pressure wave as shown in Figure 5.23(d). The axial and azimuthal
vorticity are shown in Figures 5.23(g) and 5.23(h). There is a region of
concentrated azimuthal vorticity generated along the density interface. Due
to the oscillations in this flow it is difficult to interpret the vorticity field. The
presence of the stratification has, however, reduced the level of concentrated
azimuthal vorticity shown in Figure 5.23(h), hindering the occurrence of a

breakdown.

Text resumes on page 190
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Positive Density Gradient Inside of Vortex Core

A vortex breakdown solution occurring in a stratified flow with the density
interface located at r; = 0.25 with p; = 0.9 and po = 1.0 is illustrated
in Figure 5.24(a). The stagnation zone in this flow is 0.5 units long and
the initial stagnation point occurs at z = 4.5. The bubble structure can
be seen in the Z material lines and B potential, Figures 5.24(b) and 5.24(c).
Figures 5.24(d) and 5.24e) clearly show the F gradients in the bubble region
indicating an adverse pressure gradient. The axial and azimuthal vorticity
are shown in Figures 5.24(f) and 5.24(g). The density stratification is clearly
evident in the density contour of Figure 5.24(h). Negative azimuthal vorticity
is being generated in the downstream region of the pipe along this interface.
increasing the total negative azimuthal vorticity present. It is this addition
of azimuthal vorticity into the flow which is promoting the occurrence of

breakdown, as shown in Figure 5.21.

Text resumes on page 199
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Positive Density Gradient Qutside of Vortex Core

A vortex breakdown solution occurring in a stratified flow with the density
interface located at r; = 0.77 with p; = 0.9 and p» = 1.0 is illustrated in
Figure 5.25(a). The stagnation zone in this flow is 0.5 units long and the
initial stagnation point occurs at z = 4.9. Again, the bubble structure can
be seen in the Z material lines and B potential, Figures 5.25(b) and 5.25(c).
Figures 5.25(d) and 5.25(e) clearly show the F' gradients in the bubble region
indicating an adverse pressure gradient. Figure 5.25(f) is a single contour of
the density interface. As opposed to the flow with a negative density gradient
located outside of the vortex core, the density interface is not subject to
a Kelvin Helmholtz like instability. The axial and azimuthal vorticity are
shown in Figures 5.25(g) and 5.25(h). A thin region of azimuthal vorticity
is generated along the interface. The presence of the stratification outside
of the vortex core has not significantly influenced the concentrated region of

negative azimuthal vorticity found in the homogeneous flow case.

Text resumes on page 208
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The preceding set of four stratified flow simulations shows that the in-
fluence of vorticity on a breakdown zone depends on local flow conditions.
Although the test section is a diverging tube and the global pressure gradient
is adverse, the creation of azimuthal vorticity along a density stratification
is governed by the local pressure gradients. It was found that the location
of vortex breakdown was not influenced significantly by a density stratifica-
tion located outside of the vortex core. With the stratification located inside
the vortex core, a positive stratification moved the location of the initial
stagnation point upstream by approximately half a tube radius. A negative
stratification located inside of the vortex core moved the breakdown down-

stream by approximately half a tube radius.

208



CHAPTER 6

CONCLUSIONS

A modified Clebsch/Weber velocity decomposition was derived for an in-
compressible, inviscid, stratified, axisymmetric swirling flow. This decom-
position separates the flowfield into two components, one rotational and the
other irrotational. The rotational component is constructed from a set of
hyperbolic complex lamellar potentials while the irrotational component is
obtained from a scalar elliptic field. By applying appropriate upwind and
central difference techniques to the hyperbolic and elliptic equations, the
numerical scheme obeys the information propagation characteristics of the
physical problem.

The numerical scheme was used to study vortex breakdown in the strat-
ified flow of immiscible media. Due to the difficulties inherent in calculating
a density interface, previous studies of vortex breakdown have been limited
to homogeneous flows. The modified Clebsch/Weber decomposition treats
density as a material quantity, allowing for the calculation of stratified flows
on Eulerian grids.

Experimental vortex breakdown flows are sensitive to flow disturbances
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and are not amenable to probe measurements. For this reason, it is im-
possible to obtain detailed pressure information in breakdown flows. The
majority of the computational work on vortex breakdown utilizes the vortic-
ity stream-function equations which do not calculate pressure. The modified
Clebsch/Weber decomposition includes pressure information. Since the ve-
locity decomposition is kinematic and the complex lamellar potentials include
material quantities, the modified Clebsch/Weber decomposition also includes
flow visualization as part of the solution.

The scalar hyperbolic equations were solved by characteristically convect-
ing information to an intermediate time level and updating the solution using
a midpoint rule time integration. To ensure a nonoscillatory solution, a uni-
formly second order accurate (UNO2) interpolation scheme was used. The
elliptic equations were solved using an approximately factored LU scheme
with multigrid convergence acceleration. Vortex breakdown is a flow insta-
bility which is sensitive to small How disturbances. To avoid reflected pressure
waves, the axial velocity is not fixed along the inflow or outflow boundaries.

A non-swirling flow simulation was conducted in a straight pipe. A uni-
form flow remained uniform after passing four times through the numerical
domain. This proved the robustness of the numerical scheme.

Previous investigators have observed vortex breakdown solutions of an
inviscid flow in a straight pipe with an applied disturbance. In this study,
with no applied disturbance, a Burgers vortex in a uniform axial flow re-
mained unchanged after passing four times through the numerical domain.
This proves that any breakdown solutions obtained are due to physical effects

and not numerical disturbances.
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Vortex breakdown simulations were conducted in a straight/diverging
pipe flow domain. The presence of the diffuser promotes the occurrence
of a breakdown by creating an adverse pressure gradient. The wave propaga-
tion characteristics of a diverging tube prevent the breakdown from moving
towards the inlet of the flow domain and influencing the inflow boundary
condition.

Simulations were conducted using a Burgers vortex in an initially uniform
axial flow. Homogeneous density flows were investigated at different levels of
swirl to verify the model’s fidelity.

With no swirl velocity, the initial uniform flow was convected through the
domain unaltered. With an increase in the magnitude of the swirl, the flow
was observed to decelerate along the pipe centerline. At a critical level of
swirl, a maximum inflow helix angle of 29°, a stagnation point was formed
along the axis of symmetry indicating that a vortex breakdown solution had
occurred. Further increases in swirl caused the initial stagnation point to
move upstream. and led to the formation of an identifiable breakdown zone
characterized by two stagnation points along the flow axis. These results were
in qualitative agreement with previous experimental and numerical studies.

The vorticity dynamics approach to vortex breakdown identifies the pres-
ence of negative azimuthal vorticity in the flow as a necessary condition for
the onset of flow stagnation along the pipe centerline. Swirling flows found
in combustion chambers consist of a core of fuel surrounded by an annulus
of air. The radial gradients of density present in such flows can lead to the
generation of azimuthal vorticity through a Baroclinic torque. To success-

fully control the onset and structure of vortex breakdown in these flows, it
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is necessary to understand the effects of a density stratification on vortex
breakdown.

The effect of an immiscible density stratification was first investigated on
a critical swirling flow. Simulations were conducted with the density interface
located both inside and outside of the vortex core with a density difference
of ten percent.

[t was observed that a positive density gradient in the radial direction
promoted the onset of vortex breakdown while a negative density gradient
hindered breakdown solutions. The effect of the density stratification was
more pronounced when the density interface was located inside the vortex
core. A breakdown zone is characterized by a region of negative azimuthal
vorticity. In the presence of a local adverse pressure gradient. a positive
density gradient creates negative azimuthal vorticity through a Baroclinic
torque, thus promoting breakdown. A negative density gradient in a local
adverse pressure gradient creates positive azimuthal vorticity which delays
the onset of breakdown. When the stratification is located outside of the
vortex core, away from the location of concentrated azimuthal vorticity, its
influence on the breakdown zone is less significant.

The effects of a density stratification on a flow with a swirl level above the
critical level were also investigated (3 = 34°). The same trends as occurred
with the critical swirling flow were evident at this swirl level. In addition,
it was observed that the positive density gradient caused the breakdown to
occur upstream of its homogeneous breakdown location. A negative density
gradient moved the breakdown downstream of its homogeneous location.

This work could be extended in several ways. At the inviscid level, it
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would be interesting to conduct simulations using an inflow shear instead of
a uniform axial flow. It would also be interesting to use a straight pipe flow
domain and to investigate various inflow disturbances to see if they trigger a
breakdown.

The influence of three dimensional effects on vortex breakdown could be
studied by incorporating the correlation terms resulting from the axisymmet-
ric averaging process. Viscous effects could also be incorporated by adding

another term to the potential /complex lamellar decomposition.
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