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Abstract22

A theoretical-computational framework is proposed for predicting the failure behavior of two23

anisotropic brittle materials, namely, single crystal magnesium and boron carbide. Constitu-24

tive equations are derived, in both small and large deformations, by using thermodynamics25

in order to establish a fully coupled and transient twin and crack system. To study the com-26

mon deformation mechanisms (e.g., twinning and fracture), which can be caused by extreme27

mechanical loading, a monolithically-solved Ginzburg–Landau-based phase-field theory cou-28

pled with the mechanical equilibrium equation is implemented in a finite element simulation29

framework for the following problems: (i) twin evolution in two-dimensional single crystal30

magnesium and boron carbide under simple shear deformation; (ii) crack-induced twinning31

for magnesium under pure mode I and mode II loading; and (iii) study of fracture in ho-32

mogeneous single crystal boron carbide under biaxial compressive loading. The results are33

verified by a steady-state phase-field approach and validated by available experimental data34

in the literature. The success of this computational method relies on using two distinct35

phase-field (order) parameters related to fracture and twinning. A finite element method-36

based code is developed within the Python-based open-source platform FEniCS. We make37

the code publicly available and the developed algorithm may be extended for the study of38

phase transformations under dynamic loading or thermally-activated mechanisms, where the39

competition between various deformation mechanisms is accounted for within the current40

comprehensive model approach.41
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1. Introduction44

Understanding and predicting anisotropic fracture and damage evolution in brittle mate-45

rials have been long-standing problems in engineering designs. Owing to the advent of novel46

modeling techniques and the advances in computational capabilities, the usage of accurate47

and robust numerical methods plays a key role in situations where purely experimental ap-48

proaches are of high cost and not always readily accessible (e.g., high-energy in situ X-ray49

computed microtomography [1], in situ electron backscattered diffraction (EBSD) [2], and50

micro/nano-mechanical testing [3]). In the literature, the simulation of fracture in solids at51

the atomic scale is commonly treated by molecular dynamics [4], density functional theory52

[5], or lattice static models that are based on spring networks [6]. Despite addressing nonlin-53

earities at the crack tip, avoiding singularity-related issues, and considering bond breaking54

between atoms [7–9], there exist challenges in using atomistic models to cover the time-55

and length-scales necessary to analyze the structural response at the macroscale needed for56

engineering applications.57

Conventionally, there are two main categories of numerical approaches that are employed58

to provide explicit simulations of material failure: (i) discrete crack models (e.g., the discrete59

element method [10, 11], the extended finite element method (XFEM) [12], the cohesive60

zone method [13], and the cohesive segment methods [14]) in which the displacement field61

is allowed to be discontinuous across the fracture surfaces, and (ii) smeared (continuum)62

crack models (e.g., damage models [15], and diffuse interface models [16, 17]) that consider63

a continuous displacement everywhere, assuming gradually decreasing stiffness to model64

the degradation process. Regardless of showing much success in modeling crack propagation65

[18], the discrete crack models need additional criteria based on stress, strain energy density,66

energy release rate, or virtual crack closure techniques [19] to predict the crack initiation67

(nucleation), growth, and branching in dynamic fracture problems [20]. Further, the sharp68

representation of cracks requires remeshing algorithms or using the partition of unity method69

[21], both having their own difficulties in tracking the multiple crack fronts in complex three-70

dimensional morphologies [22, 23].71
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In the smeared crack approach, regularizing strong discontinuities caused by strain local-72

izations within a finite and thin band leads to a precise approximation of the crack topology73

[24]. The gradient damage model [25, 26], physical/mechanical community-based phase-field74

fracture models [27–29] that traces back to the reformulation of Griffith’s principle [30], and75

peridynamics [31–33], which may be regarded as generalized non-local continuum mechanics,76

fall within this category. Replacing partial differential equations in the phase-field model77

by integrals in peridynamics allows for topologically-complex fractures such as intersecting78

and branching to be handled in both two and three dimensions [34]. Coupling smeared79

and discrete crack approaches, for example, the element deletion method [35], the combined80

non-local damage and cohesive zone method [36, 37], and the thick level-set method [38]81

have also shown promising results in modeling fracture. In the thick level-set method, a dis-82

continuous crack description is surrounded by continuous strain-softening regions, defined83

by a level-set function to separate the undamaged from the damaged zone [39]. However,84

the dependence of the results on the finite element mesh and the convergence path of the85

solutions, for a mesh size tending to zero, results in numerical errors [40].86

1.1. Phase-field approach87

As an alternative approach, the phase-field model has been widely used recently in the88

context of phase transition processes, ranging from solidification [41] and phase transforma-89

tion in solids [42] to the modeling of ferroelectric materials [43]. Having the capability to90

model the microstructural evolution, phase-field modeling has been successfully adopted in91

the simulation of martensitic phase transformations [44, 45], reconstructive phase transfor-92

mations [46], phase transformations in liquids [47], dislocations [48], twinning [49], damage93

[50], and their interactions [51–53]. Initiated with the celebrated work by Francfort and94

Marigo on the variational approach to brittle fracture [54], where the total energy is min-95

imized simultaneously with respect to the crack geometry and the displacement field, the96

concept of applying the phase-field method in fracture mechanics has gained significant in-97

terest in the literature [55–67]. Due to the thermodynamic driving forces, the evolution of98

interfaces (e.g., merging and branching of multiple cracks) is predicted with no additional99

effort [68]. Also, being quantitative, material-specific, and simple to couple to other calcu-100

lations (e.g., stress or temperature [69]) makes phase-field modeling a powerful and flexible101

method for studying the fracture of single crystalline [70] and polycrystalline materials [71]102
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as well as in granular solids [72]. The high computational cost in the phase-field model due103

to resolving the gradient term by using sufficiently refined mesh in the damaged zone is104

straightforwardly tackled by parallel implementations [73] and adaptive remeshing [74].105

Using the phase-field model to study the failure mechanisms in brittle materials has106

recently received increasing attention [75–79]. Brittle solids may fail along grain boundaries107

or cracks propagate along the constituent phases in the case of geomaterials [80, 81]. A108

fourth-order model for the phase-field approximation in brittle materials leads to a unified109

model to simulate the mechanics of damage and failure in concrete [82], where an explicit110

Hilber–Hughes–Taylor-↵ [83] method is used with a phase-field approach given by a single-111

well energy potential to describe the fracture behavior. This method is well-established112

in the mechanics community. In the physics community, on the other hand, the phase-113

field models are commonly derived by adapting the phase transition formalism of Landau114

and Ginzburg [84]. For example, Aranson et al. [85] combined elastic equilibrium with the115

Ginzburg–Landau equation, which accounted for the dynamics of defects, to study the crack116

propagation in brittle amorphous solids. Another Ginzburg–Landau based phase-field ap-117

proach restricted to mode III fracture (antiplane shear) was proposed by Karma et al. [27]118

and Hakim and Karma [16] in the two- and three-dimensional settings, respectively. Con-119

sidering fracture as a solid-gas transformation, the double-well energy potential appeared in120

phase-field modeling of damage [58]. Some of the disadvantages of the double-well potential,121

such as crack widening and lateral growth during crack propagation, can be eliminated by122

using a single-well term [86]; however, the realistic shape of the stress-strain curves obtained123

from the experiments or atomistic simulations are more difficult to capture by the single-well124

free energy density [57].125

In numerical implementations, nonlinear problems with a strong coupling between the126

equilibrium equation and the phase-field parameter is solved through two approaches:127

1. A staggered solution scheme is based on decoupling balance equations and the phase-128

field problem into the system of two equations that are solved in a subsequent manner129

[87, 88]. The implementation is more modular and two smaller systems to solve is faster130

than two systems together; computational time increases exponentially. The method131

is robust due to giving rise to two convex minimization problems, but depending on132

the coupling (and application), a significant amount of staggered iterations may be133

required at a fixed loading step, thus resulting in a higher computational cost [89].134
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2. A monolithic solution where all variables are solved at once (simultaneously) [90].135

In some cases, for example highly coupled systems, the monolithic solution is more136

efficient as a result of (in total) less Newton–Raphson iterations [91]. To the best of137

our knowledge, no studies have focused on solving the Ginzburg–Landau based phase-138

field problem concerned with predicting the twinning and fracture behavior of brittle139

materials by using a monolithic scheme; this is addressed in the current paper.140

1.2. Goals and outlook141

In the present study, we seek to extend the Ginzburg–Landau phase-field approach to142

predict fracture and twinning in single crystal anisotropic brittle materials (e.g., magnesium,143

Mg, and boron carbide, B4C). The advantage of the Ginzburg–Landau approach over the144

incremental energy minimization method used in Clayton and Knap [70] is that material145

parameters associated with time scales for interfacial motion enter the model by calibrating146

it with the most recent Molecular Dynamics simulations [92], making it a more general147

model for studying the deformation mechanisms of intrinsically brittle materials (e.g., single148

crystalline Mg and B4C). This is an important consideration for deformation twinning since149

the propagation speed of twin boundaries can be difficult to measure, and could even be150

supersonic if the driving stress is sufficiently large [93]. In addition, this work focuses on151

derivation of governing equations and solving them monolithically in order to increase the152

accuracy for applications with strong coupling between mechanics and damage. We solve153

the nonlinear and coupled differential equations by using the open-source parallel computing154

platform FEniCS [94]. By following the works on local stress concentrations in nanoscale155

defect-free volumes or by high pressures [95], as well as shear arising from twinning [96], we156

develop a nonlinear phase-field theory for elasticity along with anisotropic surface energy157

[97]. To address this, the governing equations for both small and large deformations are158

derived because finite rotations may occur under some loading conditions even at small159

strains, which necessitate considering both regimes in crystallographic theory [98]. A new160

decomposition for the strain energy density based on [99] is proposed to reproduce the161

experimentally-observed crack propagation under compressive loading, and the simulated162

results are compared with analytical solutions. In these comparisons, a double-well energy163

potential is considered for studying the fracture behavior (e.g., crack initiation, growth, and164

propagation) and twinning in anisotropic brittle solids.165
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The remainder of this paper is outlined as follows. In Section 2, we briefly describe166

the chosen materials. Continuum mechanics and thermodynamically sound derivation of167

equations are shown in Section 3. Variational formulation and the finite element method168

is explained in Section 3.5. Results and representative material properties along with the169

discussion of phase-field simulations are reported in Section 4. The conclusions of the study170

are drawn in Section 5.171

2. Materials172

The focus of the present paper is to model the deformation behavior of magnesium and173

boron carbide single crystals. The low ductility of these materials suggests to comprehend174

them as brittle elastic materials with large driving forces for dislocation glide, leading to175

other mechanisms such as phase transformations [100], deformation twinning [101, 102], and176

fracture [103].177

2.1. Magnesium178

Having low mass density (⇠23% of steel and 66% of aluminum), high strength, and179

durability for a wide range of temperatures in high performance automotive and aerospace180

applications, magnesium and its alloys have attracted considerable attention in recent years181

[104, 105]. Mg alloys tend to be brittle due to their limited number of dislocation systems182

[106]. As a result of possessing low-symmetry crystallographic structure and larger critical183

resolved shear stress (CRSS), twinning is the dominant deformation mode in magnesium as184

it is subjected to twinning-favored loads stretched along [0001] [107–109], resulting in tran-185

sitions in the material behavior at high strain rates [110]. A previous study indicated that186

the formation of intersecting twins may improve the ductility of Mg alloys [111]. Therefore,187

understanding and predicting the twinning behavior during plastic deformation of magne-188

sium is critical towards the realization of next-generation lightweight metallic materials for189

application in automotive and defense applications. In order to investigate twinning in mag-190

nesium, various techniques such as high-resolution transmission electron microscopy [112],191

visco-plastic self-consistent polycrystal models [113], elasto-plastic self-consistent polycrys-192

tal models [114], molecular dynamics simulations [115], crystal plasticity models [116], and193

quasi-static phase-field models [49] have been employed. In this paper, the fracture and twin-194

ning behaviors of single crystal magnesium are studied using an advanced time-dependent195
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phase-field theory by numerically solving engineering problems.196

2.2. Boron carbide197

As a result of possessing hardness above 30GPa, low mass density (2.52 g/cm3), and high198

Hugoniot elastic limit (17 -20GPa), boron carbide (B4C) has received considerable atten-199

tion in ballistic applications [117]. Due to its high melting point and thermal stability [118],200

favorable abrasion resistance [119], and high temperature semiconductivity [120], boron car-201

bide excels in refractory, nuclear, and novel electronic applications, respectively; however, its202

performance is hindered by one or more of a number of inelastic deformation mechanisms,203

including deformation twinning [121], stress-induced phase transformations [122, 123], and204

various fracture behaviors [124] when subjected to mechanical stresses exceeding their elastic205

limit. The key failure mechanisms in boron carbide (e.g., cleavage fracture and twinning) are206

commonly studied experimentally using numerous characterization techniques (e.g., trans-207

mission electron microscopy [125] and Raman spectroscopy [126]). Fracture in the form of208

shear failure, cavitation, and cleavage has been confirmed from atomic simulation results,209

either via first principles or molecular dynamics simulations [127, 128]. Finite deformation210

continuum models, such as cohesive zone models for fracture [129] and crystal plasticity [130]211

have also been used to investigate inelastic deformation in single and polycrystalline boron212

carbide. The present time-evolved phase-field model seeks to engineer the next generation213

of anisotropic boron carbide-based armor ceramics by understanding the important plastic214

deformation and brittle fracture mechanisms that govern its high rate performance. The215

current framework does not incorporate slip for B4C due to having very large resistance to216

dislocation glide in certain directions at low temperatures [131].217

3. Formulation218

In this section, we develop a model for single twinning and fracture systems in solids219

based on thermodynamical derivation. The present approach extends the model of Clay-220

ton and Knap [49, 70, 132, 133] by accounting for the time-evolution of order parameters221

towards an equilibrium state for predicting the twinning and crack paths in anisotropic sin-222

gle crystal materials adequately. This allows the study of spatio-temporal fluctuations of223

order parameters (e.g., twinning and fracture variables), as well as the nanoscale dynamics224
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that govern various pattern forming phenomena [134]. Moreover, the interfaces, their prop-225

agation, and interactions, which are the most important features governing the formation226

of microstructures in materials, can be studied via this newly implemented approach. It227

is worth mentioning that the present work does not address plastic slip distinct from the228

motion of twinning partials inherent in deformation twinning. We refer to [135, 136] and229

references therein for further details on ways to simultaneously address plastic slip and twin-230

ning. In what follows, we are interested in elastic twinning (i.e., the reversible nature of the231

corresponding deformation of the crystal) in which a twin appears and grows in the crystal232

lattice due to the presence and to the increase of an external load, and escapes from the233

crystal upon removal of the load [137].234

3.1. Order parameters235

The main desired feature of the proposed model is to introduce an order parameter ⌘236

assigned to each material point X for the description of the twinning, ⌘ = 0 within the237

parent (original or untwinned phase at (X, t)) elastic crystal, whereas ⌘ = 1 denotes the238

twin. The twin boundary zone is determined by the diffuse interval, 0 < ⌘ < 1. Another239

order parameter, ⇠, is used to represent fracture, where ⇠ = 0 indicates undamaged (“virgin”)240

material, ⇠ = 1 fully damaged material, and ⇠ 2 (0, 1) partially degraded material. Both of241

these state variables are commonly assumed to be at least C2-continuous with respect to X242

according to the diffuse interface theory [138, 139]. They also vary in time and are subjected,243

in general, to time-dependent boundary conditions. In addition, the global irreversibility244

constraint of crack evolution is satisfied by ensuring locally a positive variational derivative245

of the crack surface function and a positive evolution of the crack phase field [85]. Without246

this fundamental constraint, no cyclic loading can be performed [61, 72]; however, cyclic247

loading is not in the scope of the current study.248

3.2. Kinematics249

We use standard continuum mechanics notation and understand a summation over re-250

peated indices. A continuum body as in Figure 1, composed of many grains, is considered251

in the reference frame, B0 ⇢ Rd in d dimensional space. This framework is simply the252

initial configuration—before loading. For modeling purposes, we introduce a stress-relaxed253

intermediate frame, B⇤, and a current frame, B. Since the formulation is established in the254

reference frame, it is a material system where coordinates denote particles. In this frame,255
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Figure 1: Multiplicative decomposition of the deformation gradient into elastic F E and stress-free twinning
shear F ⌘ parts with corresponding configurations. The reference configuration B0, the deformed config-
uration B, and an arbitrary elastically unloaded intermediate configuration B⇤ of a polycrystal material
are shown. The Neumann and Dirichlet boundary conditions corresponding to each configuration are also
illustrated. Two distinct order parameters for fracture ⇠ (blue color) and twinning ⌘ (green color) are also
considered. (For interpretation of the references to color in this figure, the reader is referred to the online
version of this article.)

the mass density is given as a function in X, we circumvent solving the balance of mass.256

For the balance of momentum, the computational domain will be B0 with its closure @B0.257

On Neumann boundaries, @B0N i , gradient of the solution (traction vector) is known and258

on Dirichlet boundaries, @B0Di , the solution (displacement) is given. The motion from the259

reference position X to the current (deformed) position x = X + u is given by the dis-260

placement tensor of rank one, u = u(X, t), as a function in space, X, and time, t. The261

deformation gradient, F = r0x, is multiplicatively decomposed as262

Fij =
@xi
@Xj

= xi,j = FE

ikF
⌘
kj , (1)263

where F E is the recoverable elastic deformation work-conjugate to Piola stress, analogously,264

F ⌘ is the deformation associated with structural defects, twinning in the current study,265

evolving within the material. It is important to highlight that twinning is distinguished266

from plastic slip. First, the former occurs by collective motion of defects that preserves the267

particular orientation relationship between the twin and original phases [140]. In addition,268

twinning is unidirectional while usually slip is not [141]. In contrast to F , which always269
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satisfies compatibility conditions r0⇥F = 0, the deformation maps F E and F ⌘ are generally270

not integrable to a vector field, when considered individually, as a result of existing crystal271

defects [142, 143]. In other words, these two deformations are generally anholonomic (r0 ⇥272

F ⌘ 6= 0 and r ⇥ (F E)
�1 6= 0) [144, 145]. Additional structural changes may be included273

in this theory for representation of other defects, such as point defects [146] or dislocation274

slips [147, 148]. The kinematics for twinning in simple shear is given as [149]275

F ⌘(⌘) = I + �(⌘)�0s⌦m ; F ⌘
ij = �ij + �(⌘)�0simj , (2)276

where s and m are the orthogonal unit vectors in the directions of twinning and normal to277

the twinning plane, respectively; and �0 is the magnitude of the maximum twinning shear.278

All functions are defined in the reference frame, since we have a material system. For small279

deformation, this distinction is negligible. The continuous interpolation function �(⌘) is280

obtained from a general representative function '(a, ⌘) within a fourth-degree potential [44]281

defined as282

'(a, ⌘) = a⌘2(1� ⌘)2 + ⌘3(4� 3⌘), (3)283

where a is a constant parameter—in order to ensure that '(a, ⌘) is a monotonous function, a284

is chosen between 0 and 6. The functions '(a, ⌘) and �(⌘) should be monotone for 0  ⌘  1285

and satisfy the following conditions [44]286

'(a, 0) = 0, '(a, 1) = 1,
@'(a, 0)

@⌘
=
@'(a, 1)

@⌘
= 0,

�(⌘ = 0) = 0, �(⌘ = 1) = 1,
@�(⌘ = 0)

@⌘
=
@�(⌘ = 1)

@⌘
= 0.

(4)287

Setting a = 3 leads to �(⌘) = '(3, ⌘) = ⌘2(3�2⌘), which obeys the antisymmetry condition,288

i.e., �(1�⌘) = 1��(⌘) [150]. As usually assumed, the plastic deformation is deviatoric such289

that the volume remains the same, detF ⌘ = 1. Therefore, the Jacobian determinant reads,290

J = detF = detF E. With the right Cauchy–Green deformation tensors, Cij = FkiFkj and291

CE
ij = FE

kiF
E

kj , we obtain the Green–Lagrange total and elastic strains,292

Eij =
1

2
(Cij � �ij), EE

ij =
1

2
(CE

ij � �ij), (5)293
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respectively. They are now used, as follows:294

Eij =
1

2

⇣
Cij � �ij

⌘
=

1

2

⇣
FkiFkj � �ij

⌘

=
1

2

⇣
FE

knF
⌘
niF

E

kmF ⌘
mj � �ij

⌘
=

1

2

⇣
CE

nmF ⌘
niF

⌘
mj � �ij

⌘

=
1

2

✓
CE

nm

⇣
�ni + �(⌘)�0snmi

⌘⇣
�mj + �(⌘)�0smmj

⌘
� �ij

◆

=
1

2

✓
2EE

ij + CE

im�(⌘)�0smmj + CE

nj�(⌘)�0snmi + CE

nm�
2�20snsmmimj

◆

(6)295

In the case of small deformations, by using the standard linearization approach, we obtain296

Eij =
1

2

⇣
FkiFkj � �ij

⌘
=

1

2

⇣
(�ki + uk,i)(�kj + uk,j)� �ij

⌘
=

1

2

⇣
uj,i + ui,j + uk,iuk,j

⌘

⇡"ij =
1

2

⇣
uj,i + ui,j

⌘
.

(7)297

With the same approach, by discarding all nonlinear terms (including displacement gradient298

multiplied by s or m), we determine from Eq. (6), in the case of small deformations,299

"ij = "Eij +
1

2

⇣
�(⌘)�0simj + �(⌘)�0sjmi

⌘

| {z }
"⌘ij

.
(8)300

By inserting Eq. (7), we obtain301

"Eij = "ij � "⌘ij =
1

2

⇣
ui,j + uj,i � �(⌘)�0

�
simj +misj

�⌘
. (9)302

In this way, we aim for using F and F ⌘ in large deformation simulations; analogously,303

" and "⌘ in small deformation simulations. A comparison will lead to the significance of304

nonlinearity in twinning simulations.305

3.3. Constitutive equations306

In order to derive the constitutive equations, we follow thermodynamics of irreversible307

phenomena and refer to [151] for historical remarks. By starting with the balance of energy308

and subtracting the balance of momentum, for an arbitrary volume V0 in the undeformed309

configuration B0, we obtain the balance of internal energy:310

Z

V0

⇢0u
• dV +

Z

@V0

QiNi dA�
Z

V0

⇢0r dV =

Z

V0

PkiF
•

ik dV, (10)311
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with the specific internal energy, u in J/kg, its (heat) flux term, Q in W/m2, across the312

direction N (surface normal outward the volume), a specific volumetric heat supply rate, r in313

W/kg, and a production term defined by Piola stress, P in N/m2, and deformation gradient314

rate, among others see [152, Sect. 2.4] for a straight-forward derivation. Temperature T in315

K, and specific entropy s in J/(K kg), are related by the global entropy balance equation, in316

the undeformed configuration, with the assumption that the entropy flux is 1/T times heat317

flux leading to318

Z

V0

⇢0s
• dV +

Z

@V0

1

T
QiNi dA�

Z

V0

1

T
⇢0r dV =

Z

V0

⌃ dV, (11)319

where the entropy production, ⌃, is zero for reversible and positive for irreversible processes.320

This assertion, ⌃ � 0, is the Second Law of Thermodynamics. Since T � 0, we immediately321

acquire T⌃ � 0. By replacing the supply term in Eq. (10) and using Gauß–Ostrogradskiy322

(divergence) theorem, we obtain323

Z

V0

✓
⇢0u

• +Qi,i �
⇣
⇢0Ts

• + T
⇣Qi

T

⌘

,i
� T⌃

⌘◆
dV =

Z

V0

PkiF
•

ik dV. (12)324

Now, by using the Helmholtz free energy,  = U � Ts, and using temperature as an inde-325

pendent thermodynamic parameter instead of entropy, the entropy production related term326

reads327 Z

V0

T⌃ dV =

Z

V0

✓
� ⇢0

�
u• � Ts•

�
�Qi,i + T

⇣Qi

T

⌘

,i
+ PkiF

•

ik

⌘◆
dV

=

Z

V0

✓
� ⇢0

�
 • + T •s

�
+ TQi

⇣ 1

T

⌘

,i
+ PkiF

•

ik

◆
dV

=

Z

V0

✓
� ⇢0

�
 • + T •s

�
� Qi

T
T,i + PkiF

•

ik

◆
dV .

(13)328

As the latter is positive, several restrictions are possible for constitutive relations. We329

choose the simplest possible constitutive relation for the heat flux. The linear dependency330

is called Fourier conduction law, Qi = �ijT,j , where  is the (symmetric and positive-331

definite) thermal conductivity tensor, it may depend on temperature [136] but is constant332

in temperature gradient. Hence, we reduce T⌃ � 0 to the following inequality333

Z

V0

✓
� ⇢0

�
 • + T •s

�
+ PkiF

•

ik

◆
dV � 0 . (14)334
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We start modeling by assuming the free energy dependency on order parameters and their335

first derivatives,  =  (F , T, ⌘, ⌘,i, ⇠, ⇠,i), leading to336

 • =
@ 

@Fij
F •
ij +

@ 

@T
T • +

@ 

@⌘
⌘• +

@ 

@⌘,i
⌘•
,i +

@ 

@⇠
⇠• +

@ 

@⇠,i
⇠•
,i . (15)337

By using the latter in Eq. (14), regrouping by means of variables in the energy F , T , ⌘, ⌘,i,338

⇠, and ⇠,i, we obtain339

Z

V0

✓
� ⇢0

⇣
s+

@ 

@T

⌘
T • +

⇣
Pkj � ⇢0

@ 

@Fjk

⌘
F •

jk � ⇢0
@ 

@⌘
⌘• � ⇢0

@ 

@⌘,i
⌘•
,i

�⇢0
@ 

@⇠
⇠• � ⇢0

@ 

@⇠,i
⇠•
,i

◆
dV � 0 .

(16)340

This model is the simplest one and we obtain after subsequent Gauß–Ostrogradskiy theorems341

342 Z

V0

 
� ⇢0

⇣
s+

@ 

@T

⌘
T • +

⇣
Pkj � ⇢0

@ 

@Fjk

⌘
F •

jk

+

✓
� ⇢0

@ 

@⌘
+ ⇢0

⇣ @ 
@⌘,i

⌘

,i

◆
⌘•

+

✓
� ⇢0

@ 

@⇠
+ ⇢0

⇣ @ 
@⇠,i

⌘

,i

◆
⇠•

!
dV

�
Z

@V0

⇣
⇢0
@ 

@⌘,i
⌘• + ⇢0

@ 

@⇠,i
⇠•

⌘
Ni dA � 0 .

(17)343

The boundary conditions for the evolution of the order parameters are obtained by assuming344

a phase-independent energy of the external surface @V0 of V0345

⇢0Ni
@ 

@⌘,i
= 0, ⇢0Ni

@ 

@⇠,i
= 0. (18)346

With this assumption, fractured or twinned regions are always orthogonal to the boundary347

because their conjugate is proportional to the normal gradient. We refer to [153] for different348

interpretations about the boundary conditions in the damage gradient approach. However,349

in the phase-field theory, one can use a stricter approach by introducing a generalized surface350

force conjugated to the rate of change of the order parameter. This generalized surface force351

balances the terms that appears due to the dependence of the free energy on the gradient352

of the order parameter, and this will give us more general boundary conditions [154]. The353

inequality (17) has to hold for any process, the first two terms may only be zero, since T •354
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and F • are in general not restricted and calculated by balance of entropy and momentum,355

respectively. Hence, we acquire the well-known relations356

s = �@ 
@T

, Pkj = ⇢0
@ 

@Fjk
, (19)357

where the second term is known as Castigliano’s theorem. In the case of small deformations,358

the latter differentiation reads �ij = ⇢0@ /@"ji. The Second Law of Thermodynamics is359

satisfied for all processes by choosing (mobility) parameters L⌘ and L⇠ in order to achieve360

Ginzburg–Landau (evolution) equations361

⌘• =L⌘

 
� ⇢0

@ 

@⌘
+ ⇢0

⇣ @ 
@⌘,i

⌘

,i

!
,

⇠• =L⇠

 
� ⇢0

@ 

@⇠
+ ⇢0

⇣ @ 
@⇠,i

⌘

,i

!
,

(20)362

which reduce Eq. (17) to363 Z

V0

✓
(⌘•)2

L⌘
+

(⇠•)2

L⇠

◆
dV � 0 . (21)364

The L⌘ and L⇠ are positive kinetic coefficients for twinning and fracture evolution, respec-365

tively.366

3.4. Governing equations367

For a given temperature, i.e. for an isothermal process, the balance of entropy is ful-368

filled and we aim for solving the balance of momentum and evolution equations for order369

parameters. We make further assumptions and model the system without inertia and body370

forces. In other words, for an isothermal, quasi-static case, the deformation is caused by the371

mechanical loading on boundaries such that the governing equations become372

Pji,j =0 , Pji = ⇢0
@ 

@Fij
,

1

L⌘
⌘• =� ⇢0

@ 

@⌘
+ ⇢0

⇣ @ 
@⌘,i

⌘

,i
,

1

L⇠
⇠• =� ⇢0

@ 

@⇠
+ ⇢0

⇣ @ 
@⇠,i

⌘

,i
.

(22)373

As usual in mechanics, we search for displacement, u, from the balance of momentum in374

Eq. (22)1. Equation (22)2 is solved in order to calculate ⌘ for the twin versus original375

14

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



phase, and Eq. (22)3 is solved for determining ⇠ for fracture versus intact material. Specific376

Helmholtz free energy,  , is simpler to model, if separated into mechanical and gradient of377

order parameters-related terms378

 (F , ⌘, ⇠,r⌘,r⇠) = g(⇠) M(F , ⌘) +  r(⌘, ⌘, ⇠,r⌘,r⇠) . (23)379

Technically,  r represents the gradient energy per mass. The mechanical energy degrades380

by the order parameter ⇠ denoting the microporosity (⇠ = 1 means fracture) of the structure381

in each position. This field function, ⇠, is used to obtain a degradation function phenomeno-382

logically383

g(⇠) = ⇣ + (1� ⇣) (1� ⇠)2 , (24)384

The constant ⇣ ensures a minimal residual stiffness for fully fractured materials. The385

quadratic degradation of elastic energy has likewise been used in a number of other phase-386

field and gradient damage models [155–158]. The reflection or rotation of the reference387

frame of the crystal lattice commensurate with twinning should be taken into account for388

anisotropic elastic constants [159]. By using Green–Lagrange strains in Eq. (5), for the389

deformation energy density, WM, we use a quadratic energy description390

WM = ⇢0 
M =

1

2
EE

ijCijklE
E

kl. (25)391

The stiffness tensor, C, has minor and major symmetries, Cijkl = Cjikl = Cklij . Also it392

depends on the twin stiffness CT and initial stiffness CP by the phase-field approach,393

C = CP + (CT �CP)�(⌘) . (26)394

The order parameter, ⌘, is used to determine the amount of each phase in various position.395

Elastic coefficients of the fully twinned crystals, ⌘ = 1, are related to those of the untwinned396

state, ⌘ = 0, by397

CT

ijkl = QimQjnQkoQlpC
P

mnop, (27)398
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where Q is the reorientation matrix transforming the original lattice to twin lattice within399

a centrosymmetric structure400

Qij =

8
><

>:

2mimj � �ij type I twins,

2sisj � �ij type II twins.
(28)401

Type I and type II twins differ in reflections or rotations of the lattice vectors in the twin and402

parent phase. In the case of homogeneous materials, r⇢0 = 0, we simplify the notation and403

use this for the gradient energy density, Wr = ⇢0 r, and use the following decomposition:404

405

Wr(⌘, ⇠,r⌘,r⇠) = Wr
1 (⌘, ⇠) +Wr

2 (⇠,r⌘) +Wr
3 (⇠) +Wr

4 (r⇠). (29)406

The first term consists of a standard double-well potential [154, 160, 161]407

Wr
1 (⌘, ⇠) = A⌘2 (1� ⌘)2 ◆(⇠), (30)408

where A = 12�/l characterizes the energy barrier between two stable phases (minima), relat-409

ing to the equilibrium energy per unit area, �, and thickness, l, of an unstressed interface410

[49]; ◆(⇠) is a coupling degradation function which degrades with the fracture parameter411

⇠. It is assumed that ◆(⇠) = g(⇠), meaning that the twin boundary energy and the elastic412

deformation energy degrade with damage according to the same quadratic function. The413

regularization length is taken as the cohesive process zone for shear failure [162]414

l =
16⇡⌥

µ0 (1� ⌫0)
, (31)415

where ⌥ is the fracture surface energy, µ0/2⇡ is the theoretical shear failure strength, and416

⌫0 = (3k0 � 2µ0)/(6k0 + 2µ0) [163]. The second term on the right-hand side of Eq. (29) follows417

from the Cahn–Hilliard formalism [138]418

Wr
2 (⇠,r⌘) = ij⌘,i⌘,j , (32)419

where ij = 0◆(⇠)�ij is a diagonal tensor of rank two, and 0 = 3�l/4 is a gradient energy420

parameter. For cleavage fracture, which is the primary failure mode in boron carbide, we421
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choose the terms in Eq. (29) as follows422

Wr
3 (⇠) =B⇠2,

Wr
4 (r⇠) =!ij⇠,i⇠,j , !ij = !0

�
�ij + �(�ij �MiMj)

�
,

(33)423

where B = ⌥/h is the ratio of fracture surface energy and crack thickness, !0 = ⌥h is a424

material constant, � is the cleavage anisotropy factor, and M is a unit vector in material425

coordinates that is normal the cleavage plane [87, 88]. The cleavage plane can be a plane426

of low surface energy or low intrinsic strength in the crystal [164]. Generally, there is no427

predefined relation between cleavage and twinning planes. Orientations of these planes are428

specified a priori and may or may not coincide [133]. The parameter � penalizes fracture429

on planes not normal to M so that � = 0 results in isotropic damage. This formulation has430

been used in recent continuum models of fracture as a result of its ability to converge to the431

correct surface energy of a singular surface when the twin boundary thickness tends to zero432

[165, 166].433

By using the aforementioned material modeling and strain definition in Eq. (2), the434

governing equations (22) read for displacement435

Pji,j = 0 , Pji = g(⇠)
@WM

@Fij
= g(⇠)

@WM

@EE

kl

@EE

kl

@Fij
= g(⇠)SklF

E

il (F
⌘)�1

jk (34)436

since437

@WM

@EE

kl

=Skl = CklijE
E

ij , Skl = Slk ,

@EE

kl

@Fij
=
@EE

kl

@FE
mn

@FE
mn

@Fij
=

1

2

@

@FE
mn

⇣
FE

okF
E

ol � �kl
⌘ @

@Fij

⇣
(F ⌘)�1

pnFmp

⌘

=
1

2

⇣
�om�knF

E

ol + FE

ok�om�ln
⌘
(F ⌘)�1

pn �mi�pj =
1

2

⇣
FE

il (F
⌘)�1

jk + FE

ik(F
⌘)�1

jl

⌘
.

(35)438

For phase-fields, in the case of a homogeneous material ⇢0 = const.439

1

L⌘
⌘• =� ⇢0

@ 

@⌘
+ ⇢0

⇣ @ 
@⌘,i

⌘

,i
= �g(⇠)

@WM

@⌘
� @Wr

1

@⌘
+
⇣@Wr

2

@⌘,i

⌘

,i

=� 1

2
g(⇠)EE

ij

�
CT

ijkl � CP

ijkl

�
�0(⌘)EE

kl � g(⇠)Pji
@Fij

@⌘

�
⇣
2A⌘(1� ⌘)2 �A⌘22(1� ⌘)

⌘
g(⇠) +

⇣
20g(⇠)⌘,i

⌘

,i
,

(36)440
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and441

1

L⇠
⇠• =� ⇢0

@ 

@⇠
+ ⇢0

⇣ @ 
@⇠,i

⌘

,i
= �g0(⇠)WM � @(Wr

1 +Wr
2 +Wr

3 )

@⇠
+
⇣@Wr

4

@⇠,i

⌘

,i

=� 1

2
g0(⇠)EE

ijCijklE
E

kl �A⌘2(1� ⌘)2g0(⇠)� 0g
0(⇠)⌘,i⌘,i � 2B⇠

+
⇣
2!0

�
�ij + �(�ij �MiMj)

�
⇠,j
⌘

,i
.

(37)442

By using Eqs. (1), (2), we have443

@Fij

@⌘
= FE

ik�
0(⌘)�0skmj (38)444

For a better analogy, we misused the notation for the same degradation function in Eq. (24)445

as follows:446

g(⇠) = ⇣ + (1� ⇣)
�
1� ⇠

�2
, g0(⇠) = �2(1� ⇣)

�
1� ⇠

�
. (39)447

Finally, we obtain the following equations to solve numerically,448

1

L⌘
⌘• +

1

2
g(⇠)EE

ij

�
CT

ijkl � CP

ijkl

�
�0(⌘)EE

kl + g(⇠)PjiF
E

ik�
0(⌘)�0skmj

+2A
�
⌘ � 3⌘2 + 2⌘3

�
g(⇠)�

⇣
20g(⇠)⌘,i

⌘

,i
= 0 ,

(40)449

and450
1

L⇠
⇠• +

1

2
g0(⇠)EE

ijCijklE
E

kl +A⌘2(1� ⌘)2g0(⇠) + 0g
0(⇠)⌘,i⌘,i + 2B⇠

�
⇣
2!0

�
�ij + �(�ij �MiMj)

�
⇠,j
⌘

,i
= 0 .

(41)451

3.5. Variational formulation452

We follow the standard techniques for generating weak forms to solve numerically by453

means of the finite element method [167]. The space discretization is incorporated by ap-454

proximating fields, u, ⌘, ⇠, by spanning over nodal values after a triangulation of the com-455

putational domain, ⌦, with its closure, @⌦, into finite elements. For simplicity, we skip a456

notational change for approximated fields, since their analytical and discrete representations457

never occur in the same formulation. We emphasize that all unknowns,
�
u, ⌘, ⇠

 
, are solved458

in a monolithic manner, therefore, the Hilbertian Sobolev space, H
n, with the polynomial459
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order, n, as follows:460

V =

(
�
u, ⌘, ⇠

 
2 [H n(⌦)]DOF :

�
u, ⌘, ⇠

 ���
@⌦

= given

)
. (42)461

We use mixed spaces for quantities, depending on the problem, displacement (linear or462

quadratic) and phase-fields (linear) standard Lagrange finite element. On each node, un-463

knowns read 2 + 1 + 1 = 4 degrees of freedom (DOF) in 2-D and 3 + 1 + 1 = 5 (DOF) in464

3-D space. As usual in the Galerkin approach, we use the same space for test functions,465

�
�u, �⌘, �⇠

 
, where they vanish on Dirichlet boundaries466

V̄ =

(
�
�u, �⌘, �⇠

 
2 [H 1(⌦)]DOF :

�
�u, �⌘, �⇠

 ���
@⌦

= 0

)
. (43)467

To ensure the irreversibility of the order parameter rates in our simulations, ⌘̇ and ⇠̇, we468

restrict them to be zero if they become negative. For the time discretization, we use Euler469

backwards scheme for order parameters, for example470

⌘• =
⌘ � ⌘0

�t
, (44)471

where �t is the time step. For simplicity we use constant time steps. This method is implicit,472

hence for real valued problems stable, and converges to the correct solution. Multiplying473

governing equations by test functions, generating integral forms, and then integrating by474

parts where necessary, we obtain475

Formu =�
Z

⌦
Pji�ui,j dV +

Z

@⌦N

t̂i�ui dA , (45)476

where a traction vector, t̂, is given on Neumann boundaries, @⌦N.477

Form⌘ =

Z

⌦

 
⌘ � ⌘0

L⌘�t
�⌘ +

1

2
g(⇠)EE

ij

�
CT

ijkl � CP

ijkl

�
�0(⌘)EE

kl�⌘ + g(⇠)PjiF
E

ik�
0(⌘)�0skmj�⌘

+ 2A
�
⌘ � 3⌘2 + 2⌘3

�
g(⇠)�⌘ + 20g(⇠)⌘,i�⌘,i

!
dV,

(46)478
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where we have employed the fact that Ni⌘,i vanishes at the boundary of ⌦ in connection479

with Eq. (17). Analogously, we obtain480

Form⇠ =

Z

⌦

 
⇠ � ⇠0

L⇠�t
�⇠ +

1

2
g0(⇠)EE

ijCijklE
E

kl�⇠ +A⌘2(1� ⌘)2g0(⇠)�⇠

+ 0g
0(⇠)⌘,i⌘,i�⇠ + 2B⇠�⇠ + 2!0

�
�ij + �(�ij �MiMj)

�
⇠,j�⇠,i

!
dV

(47)481

The implementation solves the nonlinear weak form482

Form = Formu + Form⌘ + Form⇠, (48)483

after a symbolic derivation and Newton–Raphson iterations.484

4. Multiphysics simulation485

The weak forms in Eq. (48) are nonlinear and coupled. We have implemented a tran-486

sient, fully coupled solution strategy by using open-source packages from the FEniCS Project487

[168]. We refer to [169–171] for implementations in FEniCS by means of a staggered scheme.488

Herein, the implementation uses a monolithic approach, where displacement and phase fields489

are solved at once. Staggered solution solves many smaller problems than one larger, which490

is faster since the computational cost increases exponentially. However, in a staggered al-491

gorithm, several iterations are necessary for solving one time step in order to ensure that492

coupling between unknowns are fulfilled. Generally speaking, for highly-coupled systems,493

a monolithic approach is more feasible. For the linearization, we use a standard Newton–494

Raphson approach. The linearization is done automatically by means of a symbolic deriva-495

tion that allows the user to write the weak form without going through the error-prone496

linearization process by hand [172, 173]. The code is written in Python, although the497

FEniCS software wraps the formulation to a C++ code and solves as a compiled program.498

Therefore, yet efficient in developing the code, all computation is running in parallel very499

efficiently. In short, the problem-specific parts of the computer code used to perform the500

simulations have been generated automatically from a high-level description that resembles501

closely the notation used in this work.502

Examples under different loading conditions in two-dimensional samples are demon-503

strated next in order to simulate deformation mechanisms observed in metallic magnesium504
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and ceramic boron carbide. The results are adequate, qualitatively and quantitatively. The505

material properties used in the simulations are shown in Table 1 for Mg and B4C. Five inde-506

pendent second-order elastic constants [174] are listed by using Voigt notation, with indices507

I, J from 1 to 6, as follows:508

CIJ =

0

BBBBBBBBBBBB@

C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212

C3333 C3323 C3313 C3312

C2323 C2313 C2312

sym. C1313 C1312

C1212

1

CCCCCCCCCCCCA

, (49)509

The bulk modulus listed below for each undamaged material is obtained by [175]510

k =
(C11 + C12)C33 � 2C2

13

C11 + C12 + 2C33 � 4C13
(50)511

According to the primary inelastic mechanisms for each material mentioned before, three512

different problems are simulated and discussed in the following to represent the degenerate513

cases:514

(i) Twin propagation in two-dimensional single crystals magnesium and boron carbide in515

Sect. 4.1; Fracture is suppressed in this condition by assuming ⇠ = 0.516

(ii) Analysis of twinning induced by a crack in magnesium under pure mode I or mode II517

loading in Sect. 4.2; Similar to the previous case, fracture is not calculated, ⇠ = 0.518

(iii) Fracture in homogeneous single crystal boron carbide under biaxial compressive loading519

in Sect. 4.3; Twinning is suppressed for this problem by setting ⌘ = 0.520

These examples demonstrate that we generate knowledge about mechanical deformations in521

very small length-scales and extreme loading rates causing a twin or crack initiation and522

propagation at very small time scales. These extreme conditions are challenging to observe523

experimentally, where we rely on accurate multiphysics simulations as presented herein.524
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Table 1: Material properties and model constants for magnesium and boron carbide

Parameters Notation Value-Mg Value-B4C Reference

Elastic constants

C11 = 63.5GPa 487GPa

[176, 177]
C12 = 25.9GPa 117GPa

C13 = 21.7GPa 66GPa

C33 = 66.5GPa 525GPa

C44 = 18.4GPa 133GPa

Shear modulus µ = 19.4GPa 193GPa [178, 179]

Bulk modulus k = 36.9GPa 237GPa Eq. (48)

Twin surface energy � = 0.12 J/m2 0.54 J/m2 [131]

Fracture surface energy ⌥ = 7.26 J/m2 3.27 J/m2 [132, 180]

Twinning shear �0 = 0.13 0.31 [121, 140]

Gradient energy parameter 0 = 0.0878 nJ/m 0.4212 nJ/m Eq. (30)

Transformation barrier A = 1.404GPa 3.01GPa [127, 140]

Regularization length l = h = 1.00 nm 1.04 nm Eq. (29)

Kinetic coefficient (Twinning) L⌘ = 4200 (Pa · s)�1 2000 (Pa · s)�1

Kinetic coefficient (Fracture) L⇠ = suppressed (⇠ = 0) 1000 (Pa · s)�1

4.1. Twin growth and propagation525

Nucleation and evolution of deformation twinning in a single crystal of magnesium (in526

Sect. 4.1.1) and boron carbide (in Sect. 4.1.2) are presented in a two-dimensional domain in527

plain strain conditions to be depicted in Fig. 2.528
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Figure 2: The numerical setup of the rectangular single crystal (gray), ⌘ = 0, including a single twin embryo
(red), ⌘ = 1.

For validation, the model is initially solved for elastically isotropic pure magnesium single529

crystals with the properties listed in Table 1. The isotropic elastic approximation appears530

reasonable because magnesium single crystals are not strongly anisotropic elastically [181].531

A circular twin nucleus, ⌘ = 1, of initial radius a = 3nm is embedded in a rectangular532

domain with a surrounding parent material, ⌘ = 0. The domain is of 40⇥ 40 nm in size for533

the magnesium simulations. The initial radius of the twin embryo is set to 3 nm as a result534

of the fact that a bifurcation from circular to elliptical shape occurs for a radius of 3.2 nm,535

corresponding to the analytical sharp interface solution [182]. The lattice orientation vectors536

are in the form537

s =

0

@cos(✓)

sin(✓)

1

A , m =

0

@� sin(✓)

cos(✓)

1

A , (51)538

where ✓ denotes the orientation of the habit plane. Also, according to the following matrix-539

form gradient coefficient540

 =

0

@11 0

0 22

1

A , (52)541

both isotropic (11 = 22 = 0) and anisotropic (11
2 = 222 = 0) twin boundary surface542

energies are employed in different simulations in order to explore their effects as well as for543
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validation purposes. The following simple shear with Dirichlet boundary conditions on @BD544

for top and bottom boundaries are used545

u
���
D
=

0

@⇤Y

0

1

A , ⌘
���
@BD

= 0, (53)546

where ⇤ = 0.08 is the magnitude of applied shear for all simulations in the following section.547

The twin growth to the boundary is inhibited by the displacement boundary conditions.548

The order parameter gradients also vanish at the boundaries due to the Neumann boundary549

conditions defined in Eq. (18).550

4.1.1. Twin embryo propagation and growth in single crystal magnesium551

Figure 3 shows contour plots demonstrating the spatial distributions of numerical results552

for the growth of a circular twin embryo in a single crystal magnesium with an orientation553

of the habit plane ✓ = 0. The embryo is undergoing a simple shear at 8% displacement554

prescribed on the top. Parameters of interest include the twin order parameter (i, ii), y555

displacement (iii, iv), and shear stress (v, vi). Each image pair considers both small (left556

side) and large strains (right side), as well as isotropic (a, b) and anisotropic surface energies557

(c, d). For this case, there is no significant difference in the simulation results between linear558

(left side) and nonlinear (right side) elasticity. The results are shown at time instants of559

t = 50ps and t = 500 ps to show the evolution of the twin’s morphology. The mesh of560

the rectangular domain includes 160,000 linear triangular elements. By using a standard561

h-convergence, we have chosen this particular mesh to deliver mesh insensitive results. The562

h1 0 1 1i plane and {1 0 1 2} direction are considered as the primary twinning system in563

magnesium [183].564

First, the evolution of the twin order parameter is shown in Fig. 3(a, b)(i, ii) under simple565

shear with the boundary conditions defined at t = 50ps and t = 500 ps for small and large566

deformation with isotropic twin boundary energy. As can be seen, the twin embryo grows567

until it is repelled by the rigid outer boundaries, where the order parameter is set to zero.568

Under these numerical conditions, a small orientation of the twin evolution is realized due to569

the difference in the driving force for twinning, which is a factor of (F ⌘)�1. We emphasize570

that the twin morphology at the final stage is in qualitative agreement with the (static)571

phase-field results [49] and molecular dynamics simulations [115], thus serving to verify the572
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set of results in Fig. 3(a, b)(i, ii) for the proposed time-dependent phase-field model.573

Second, the distribution of the displacement in the y direction for the domain under574

simple shear loading for small and large strains at different times are depicted in Fig. 3(a,575

b)(iii, iv). The positive and negative displacement values indicate that the left and right576

sides of the twinned boundary regions are under compressive and tensile loading, respectively.577

This distribution in a simple shear is not possible for a homogeneous material with prescribed578

vanishing y displacement on top. Herein, we stress that the parent to twin phase change579

introduces a heterogeneity in stiffness parameters across the twin boundaries. By means of580

this relatively simple simulation, we gather an insight into the material response. Moreover,581

the range of displacement magnitudes at the very last time instant are lower than those at582

initial times as a result of inhibiting by the boundaries. The corresponding evolution of the583

shear stress for small and large strains with consideration of the isotropic surface energy at584

various times are illustrated in Fig. 3(a, b)(v, vi). Investigating the shear stress distribution585

improves our knowledge of the redistribution of high local stress, resulting from twinning586

[184], and this provides new insights into demonstrating the driving force for the propagation587

and growth of twin within a small region in the microstructure.588

25

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure 3: Evolution of a circular twin embryo in a rectangular domain in single crystal magnesium in both small (left side in image pair) and large (right side in image pair) deformations
considering isotropic and anisotropic surface energies and elasticity with orientation of the habit plane ✓ = 0: (a) row shows isotropic surface energy case at t = 50ps, (b) row shows
isotropic surface energy case at t = 500 ps, (c) row shows anisotropic surface energy case at t = 50 ps, and (d) row shows anisotropic surface energy case at t = 500 ps. (i) column shows
twin order parameter contour for small deformation, (ii) column shows twin order parameter contour for large deformation, (iii) column shows displacement in y direction contour for
small deformation, (iv) column shows displacement in y direction contour for large deformation, (v) column shows shear stress contour for small deformation, and (v) column shows
shear stress contour for large deformation. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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Third, in Fig. 3(a, b)(v, vi), one component of the stress tensor (shear) is shown. Again,589

in a homogeneous material under simple shear conditions, a constant shear stress is created.590

The distribution is caused by the twinning, as visible by the shape compared to the twin591

distribution.592

Fourth, the effect of anisotropic surface energy is studied in Fig. 3(c, d)(i - vi). For the593

twin order parameter in Fig. 3(c)(i, ii), the equilibrium shape of the twin embryo under small594

strains is wider in the horizontal direction (parallel to the habit plane) and flatter in the595

vertical direction at t = 50ps as compared to the isotropic energy case shown in Fig. 3(a)(i,596

ii). This behavior has been observed previously in the time-independent phase-field approach597

[49], where the results are in agreement with those in this study, thus providing an additional598

confirmation of this phenomenon. After completing its growth in the horizontal direction,599

Fig. 3(c)(i, ii), the twin begins to grow in width for later times, t = 500 ps, Fig. 3(d)(i, ii).600

This behavior is correlated to the surface energy anisotropy ratio 11/22. Moreover, the601

twin interface thickness has a lower value in the direction normal to the habit plane for602

the anisotropic surface energy scenario depicted in Fig. 3(c, d)(i, ii) as compared with the603

isotropic case from Fig. 3(a, b)(i, ii). This phenomenon is related to the contribution of the604

core and elastic energies to the total surface energy of the interface [185]. The displacement605

for the anisotropic case in Fig. 3(c, d)(iii, iv) is lower than in the isotropic one in Fig. 3(a,606

b)(iii, iv). Finally, the variation of shear stresses for anisotropic surface energies at various607

time instants under small and large strains are depicted in Fig. 3(c, d)(v, vi). Considering608

the results at t = 500 ps, Fig. 3(c, d)(vi), the maximum and minimum shear stress values609

for the current simulations are within a 7% difference of the results obtained in [49] by610

means of a static simulation, demonstrating the significance of inertial terms in extreme611

loading conditions. For both isotropic and anisotropic surface energies, the magnitude of612

the shear stress within the twinning region decreases as a function in time and, eventually,613

becomes negative. This observation is consistent with experimental results for single crystal614

magnesium under simple shear loading [186].615

For the next set of simulation examples in Fig. 4, the same boundary conditions and616

numerical setup from Fig. 3 are considered for ✓ = ⇡/6. The layout of the figure is similar to617

that of Fig. 3 with ✓ = 0 where (a, b)(i - vi) and (c, d)(i - vi) are the simulation results for the618

order parameter, displacement, and shear stress under small and large strains at t = 50ps619

and t = 500 ps for isotropic and anisotropic surface energies, respectively. For the isotropic620
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surface energy case in Fig. 4(a)(i, ii) at t = 50ps, the twin is smaller as a consequence621

of less driving force under the same shear loading of 8% as compared with Fig. 3(a)(i, ii).622

Further, the twin area fraction at t = 500 ps shown in Fig. 4(b)(i, ii) is much smaller than623

the case, when the orientation of the habit plane is aligned with the shear loading direction624

(previously in Fig. 3(a)(i, ii)). In the case of large strains, the twin tends to grow more625

prominently in the direction of the habit plane when ✓ = ⇡/6 than when ✓ = 0 (Fig. 4(a)(ii)).626

The displacement contours shown in Fig. 4(a - d)(iii, iv) indicate that the upper and lower627

sides of the twin’s interface are under tensile and compressive loading, respectively, which628

is similar to Fig. 3(a - d)(iii, iv). The displacement in the vertical direction (Fig. 4(a)(iv))629

is ⇠17% greater than that for the small deformation case depicted in Fig. 4(a)(iii), and630

the maximum shear stress under large strain conditions (Fig. 4(a)(vi)) is 5% greater than631

that for the small deformation case (Fig. 4(a)(v)). At t = 500 ps, the twin embryo has a632

greater thickness for small deformations (Fig. 4(b)(i)) as compared with its growth in length633

in the direction of the habit plane for the case of large deformations (Fig. 4(b)(ii)), until it634

is prohibited by the boundaries. The displacement at the end of the simulation is around635

17% larger for small strains (Fig. 4(b)(iii)) as compared with the large deformation result636

(Fig. 4(b)(iv)). Lastly, the spatial variations of shear stress at t = 50ps and t = 500 ps are637

depicted in Fig. 4(a, b)(v, vi). As can be seen, the minimum and maximum shear stress638

values happen in the twinned region and matrix, respectively. The heterogeneous stress639

distribution around the twins is due to a sudden change in the stresses within the twin640

interface [187].641

Next, the phase-field results for the anisotropic surface energy and ✓ = ⇡/6 are shown in642

Fig. 4(c, d)(i-vi). Considering the distribution of the twin order parameter for small strains,643

Fig. 4(c, d)(i, ii), the twin boundaries tend to be expanded parallel to the habit plane when644

compared with the isotropic case because the elongation in the direction of s is favored645

due to a decreasing contribution of the gradient energy term [49]. Pointing to Fig. 4(c)(iii,646

iv), the maximum displacement values for large deformations are 20% higher than those in647

the small deformation case from Fig. 4(a)(iii, iv). At the tip of the twin, the shear stress648

is maximum and ⇠10% larger for large strain conditions (Fig. 4(a)(vi)) as compared to the649

small deformation case (Fig. 4(a)(v)). For the same boundary conditions, the results are650

depicted for t = 500 ps in Fig. 4(b, d). Here, the twin embryo has a different equilibrium651

shape than what was shown in Fig. 3 for ✓ = 0. Namely, the twin is rotated in such a way652
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that one axis in the reference coordinate is aligned to the direction s of twinning shear,653

as shown in Fig. 4(d)(i, ii). The twin interface also has a lower thickness in the direction654

normal to the habit plane due to the various contributions of the core and elastic energies to655

the interface energy [185]. For the displacement contour, the values are 30% larger for the656

anisotropic energy (Fig. 4(d)(iii, iv)) as compared to the isotropic case, while the difference657

in shear stress for small and large strains is negligible.658
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Figure 4: Evolution of a circular twin embryo in a rectangular domain in single crystal magnesium in both small (left side in image pair) and large (right side in image pair) deformations
considering isotropic and anisotropic surface energies and elasticity with orientation of the habit plane ✓ = ⇡/6: (a) row shows isotropic surface energy case at t = 50 ps, (b) row shows
isotropic surface energy case at t = 500 ps, (c) row shows anisotropic surface energy case at t = 50 ps, and (d) row shows anisotropic surface energy case at t = 500 ps. (i) column shows
twin order parameter contour for small deformation, (ii) column shows twin order parameter contour for large deformation, (iii) column shows displacement in y direction contour for
small deformation, (iv) column shows displacement in y direction contour for large deformation, (v) column shows shear stress contour for small deformation, and (v) column shows
shear stress contour for large deformation. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

303030

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 



4.1.2. Twin embryo propagation and growth in single crystal boron carbide659

For the first time in the literature, the numerical results obtained from phase-field ap-660

proach are validated with the high-resolution transmission electron microscopy (HRTEM)661

[188] for the twinning propagation, growth, and interactions in B4C. The ubiquitous exis-662

tence of twins and stacking faults in pressureless sintered and hot-pressed B4C, reported in663

the previous literature [120, 189], has motivated studies of their impact [190, 191]. This is664

important because it is widely accepted that existing nanotwins, ranging from t = 1nm up665

to t = 30nm in width for milled and unmilled samples [192], would enhance the strength and666

hardness of boron carbide [193] by arresting twin boundary slip within the nanotwins [193].667

As a result, the presented results opens a number of interesting possibilities for simulating668

and controlling microstructure pattern development in materials experiencing extreme me-669

chanical loading [194, 195]. Given the lack of true images of the twin interfaces in boron670

carbide [121, 196] and the difficulty in experimentally tracking the twin growth process, the671

present continuum mechanics model will provide insight into the deformation behavior of672

pre-existed twinned B4C, which have been largely neglected in previous works [49, 197]. In673

addition, the morphology of mature twins will be affected by the early stages of the twin674

nucleus evolution, which necessitates a comprehensive model as herein. In this light, un-675

derstanding how twins are formed and then developing effective strategies for incorporating676

twin boundaries into polycrystalline microstructures constitute an attractive approach for677

enhancing the mechanical response of ceramics. To address this, we conducted numerical678

simulations using the proposed phase-field model in a boron carbide single crystal.679

The combination of growth of a single twin embryo is measured along two critical direc-680

tions, including twin thickening through twin boundary (TB) migration and twin tip (TT)681

propagation. The simulation results are then compared with experiments in Fig. 5. Shear682

strains are applied by displacing all the boundary regions, while the bottom side is fixed. A683

time step of �t = 1 fs is chosen for solving the problem. The dimensions of the simulation684

domain are 40 nm⇥ 40 nm in the X and Y directions, and contains 160,000 linear triangu-685

lar elements. One circular twin embryo with a radius of 5 nm is inserted at the center of686

a square containing the perfect B4C crystal lattice, using the Eshelby method as in [198].687

The magnitude of applied shear ⇤ is set to 0.3, which is maximum at the top and zero at688

the bottom. Additional simulations showed that choosing a shear magnitude lower than 0.3689

leads to shrinking and disappearing of the twin.690
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Figure 5: The distribution of twin order parameter in boron carbide from snapshots taken at (a) 1 ps and
(b) 2 ps for samples deformed under shear strain; (a) the various interfaces associated with a single twin
embryo; (b) the direction of twin propagation in a 40 nm⇥ 40 nm plate with an initial circular twin nucleus
of radius 5 nm denoted by yellow dotted line; (c) the TEM image showing the larger twin spacing in boron
carbide at the 100 nm scale with an angle of 73.3� [193]; and (d) the symmetric twin in boron carbide with
inclination angles of 73.1� and 73.3� on the two sides predicted by density functional theory [193]. (c) and
(d) reproduced with permission from [193]. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)

Schematics of the simulation result for an initially circular twin embryo in boron carbide691

at t = 1ps and t = 2ps with the X-axis along the [1101] direction are shown in Figs. 5(a) and692

5(b), respectively. Figure 5(a) depicts the “twin tip”, which occurs in the primary direction693

of twin growth, and the “twin boundary”, which occurs in a direction perpendicular to694

the twin growth. Under shear loading, the size and shape of the initial circular twin has695

changed until reaching a stable configuration. Similar to other ceramics such as calcite, the696

twin was contracted at the beginning of loading, and this has been shown to be related to697

the stress reversal [199]. Next, the twin embryo’s shape and growth direction at t = 2ps698

from Fig. 5(b) is compared with the high-resolution transmission electron microscope images699

(Fig. 5(c)) and density functional theory results (Fig. 5(d)) [193]. The shape and angle of700

the twin embryo obtained from the numerical simulations are in good agreement with the701

previously published results, showing the symmetric twin with an inclination angle of 73.1�702
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to 73.3�.703

Following this basic validation for boron carbide with results under restrictions of exper-704

imental limitations in the literature, the change of the twin size (e.g., length and thickness)705

and twin interactions in a single crystal boron carbide are explored in order to measure the706

velocity of twin tips and boundaries (Fig. 6). Being an important parameter for indicating707

the twin boundary propagation as a key plasticity mechanism, the present findings have708

important implications for studying the morphology of twins. In order to accomplish this709

endeavor, the velocities are calculated by tracking the mid points (⌘ = 0.5) on the twin tip710

and twin boundary interfaces with respect to time. Currently, there is no such statistical711

data on twin boundary velocity for single crystalline boron carbide, and so we make an712

attempt to provide some new insights. Considering only one nucleus in the center of the713

domain, the twin boundary (red colored) and twin tip (blue colored) velocities are shown714

in Fig. 6(a). The distribution of the twin order parameter at different steps along with the715

direction for twin tip and twin boundary are also shown in the inset, where the applied716

shear loading of 0.3 is in the [1101] direction. By choosing �t = 1 fs as the time step, the717

initial circular nucleus shrinks in size until reaching to a stable shape. After that time, the718

twin starts to grow in the direction of 73.6� with respect to the loading direction. In this719

case, the twin tip and twin boundary velocities are larger at the beginning of the loading720

in comparison with later time instants due to the detwinning process [199] and larger space721

for unconfined propagation. In addition, the average of twin tip velocities (2.71±0.86 nm/ps)722

are larger than twin boundaries (2.91±0.37 nm/ps) as a result of having a larger aspect ratio.723

For the two nuclei scenario shown in Fig. 6(b), the average of twin boundary velocities of724

the middle embryo (2.76 ± 0.48 nm/ps) are larger than the single twin case because of the725

tendency of the middle twin to interact with the twin at the top of the inset (termed as726

Twin #2). The variation of the twin tip velocity is also smaller than the single twin case727

on the basis of the fast growth of the twin’s aspect ratio. Moreover, Twin #2 has a lower728

aspect ratio, indicating that the two twins will have a wedge shape in the case of interaction729

between each other. The spreading of a wedge shaped twin has been seen for other ceramics730

as a result of rapid load drop associated with the twinning process [200].731

33

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure 6: Bar charts showing the twin boundary (red arrow) and twin tip (blue arrow) velocities for a single
crystal boron carbide by considering different numbers of twin embryos under a shear loading of 0.3: (a)
The velocities of a single twin in the center of the numerical geometry at various noted time steps. The
insets show the evolution of the twin, parallel and orthogonal to the habit plane; (b) The velocities of two
nuclei with respect to time. In the inset, the second twin is inserted at x = 25nm and y = 35nm; (c) The
velocities are shown for three twin embryos. A different growth direction for the third twin is clear in the
inset; (d) The change of twin boundary and twin tip velocities for four nucleus. The growth of each embryo
is illustrated in the inset. (For interpretation of the references to color in this figure, the reader is referred
to the web version of this article.)

When placing Twin #3 at the bottom right of the specimen near the fixed boundary con-732

ditions (Fig. 6(c)), the average twin boundary velocities of Twins #1 and #2 are increased.733

This fact is likely a consequence of increasing the twins’ aspect ratio, which can be related734

to the high tendency of twins to interact. Moreover, Twin #3 grows in the direction perpen-735

dicular to other embryos because of arresting at the boundary in the scenario depicted for736

the three twin systems in Fig. 6(c). By adding another embryo close to the fixed boundary737

condition in a four twin system (Fig. 6(d)), all the twins’ aspect ratio has decreased, with738

Twin #2 by ⇠30% in both length and width. Furthermore, the embryo in the middle tended739

to connect to the nucleus at the top of the domain as a result of the proximity of Twin #2740
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with the shear loading. Altogether, adding more twin nuclei leads to decreasing the twin741

boundary velocity of Twin #1, which may be caused by the local stress created from other742

nuclei to restrict the movement of the boundary.743

4.2. Fracture-induced twinning in single crystal magnesium744

The next example seeks to evaluate the current phase-field approach for studying twin-745

ning at a crack tip in magnesium. This simulation is motivated by the urge in understanding746

the sequence and competition between twinning and fracture, which is difficult to unravel747

experimentally (e.g., via nanoindentation tests [3]). This is important because far less at-748

tention has been given to nucleation and propagation of twins at crack tips and it could749

offer valuable information on the deformation twinning processes and help to elucidate the750

role of nanotwinning in crack propagation [201]. In this subsection, a stationary pre-existing751

crack is considered by a thin notch in a two-dimensional geometry for studying twinning752

under mode I and mode II cracking. The numerical setup is shown in Fig. 7. An initially753

square domain of size 100 nm by 100 nm with a pre-existing edge crack of length 50 nm and754

thickness 4 nm with a rounded tip of radius 2 nm is considered for simulations under a plain755

strain condition. The crack is assigned a finite radius to alleviate extreme deformations due756

to singular stress fields at the tip [202].757

Figure 7: A square domain containing an edge crack for numerical simulations under plain strain conditions.
The origin of the (X, Y ) coordinate system is at the crack tip, with positive X downward and positive Y
to the right.

For boundary conditions, the crack surface is a free surface with a zero Neumann bound-758

ary condition. Along each external boundary condition except for the crack surface, the759
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displacements for pure mode I or mode II loading are imposed as in [203]. The orientation760

of the twin system, s and m, is chosen such that the resolved shear stress is maximum (i.e.,761

✓ = 1.2 rad for mode I and ✓ = 0 rad for mode II). In addition, a small twin nucleus with762

a radius of 0.8 nm at the crack tip is considered as the initial condition for the twin order763

parameter. The phase-field results for mode I loading are illustrated in Fig. 8, where a con-764

tour of the twin order parameter is plotted. It is clear that the twin growth to the external765

boundaries is prohibited by the imposed displacement boundary conditions. By progressing766

in time, the h1 0 1 1i{1 0 1 2} twin band is nucleated at the crack tip and develops at an767

externally applied strain of 5% due to the stress concentration. The shape and angle of the768

twin of 69.4� at t = 110 ps are in agreement with the atomistic simulation results of tensile769

twinning in single crystal magnesium [204], where a value of 69� has been reported.770

Figure 8: Time-evolved twin morphology for mode I loading of single crystal magnesium at 5% tensile
strain for noted times of: (a) t = 1ps, (b) t = 50ps, (c) t = 75ps, and (d) t = 110 ps. The resulting twin
propagation angle is 69.4�, which is close to the molecular dynamics result of ⇠ 69� [204]. (For interpretation
of the references to color in this figure, the reader is referred to the web version of this article.)

The mode II case is shown in Fig. 9 for the twin order parameter at various time instants.771
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Similar to the mode I case, the twin nucleates at the crack tip and starts to grow until it772

is inhibited by the right boundary condition. As expected, the twin system is aligned in a773

direction that has the maximum resolved shear stress (✓ = 0). These results are in qualitative774

agreement with the stationary phase-field model under similar boundary conditions [132].775

This needle-shaped lenticular twin, which has also been observed in [205], suggests that twin776

growth occurs by extension of a fast twin tip followed by a coordinated slower migration of777

the boundaries [206].778

Figure 9: Time-evolved order parameter for mode II loading of a single crystal magnesium at 5% tensile
strain: (a) t = 1ps, (b) t = 50 ps, (c) t = 100 ps, and (d) t = 140 ps. (For interpretation of the references to
color in this figure, the reader is referred to the web version of this article.)

4.3. Phase-field modeling of fracture subjected to shear and compressive loading in anisotropic779

boron carbide single crystals780

The subject of crack growth in the literature has mainly focused on mode I fracture781

because opening mode crack growth is preferred before that under mixed mode or pure shear782

mode conditions [207]. It is recognized that, even under pure shear loading, local tensile783
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stresses at the tip result in crack growth under mode I conditions [208]. However, cracks can784

grow in brittle materials under mode II loading when the ratio between the critical stress785

intensity factors, KIIc/KIc, is low [209]. It is also motivated that at a sufficiently high confining786

pressure, the crack is assumed to extend along a smooth curved path that maximizes KII787

[210]. In heterogeneous brittle solids, the different microstructural inhomogenities (e.g.,788

voids and microcraks) result in a large process regions at the crack tip, and this may lead789

to macroscopic mode II failure under compressive loads [211]. The study of crack initiation790

and propagation of mode II fracture is, thus, important in order to better understand the791

behavior of cracks in brittle solids.792

Classically in phase-field modeling in the literature [155], it is assumed that for com-793

pressive deformation states, crack growth does not take place. To deal with this, a common794

technique is to decompose the strain energy density into tensile and compressive parts using795

a spectral decomposition [87], or a hydrostatic-deviatoric approach [165]; however, both of796

these decompositions have disadvantages that have yet to be addressed. Specifically, regard-797

ing the spectral decomposition, the force-displacement curve shows unphysical stiffening in798

the fully-cracked specimen [212]. For the hydrostatic-deviatoric method, there are limita-799

tions for compression-dominated loading (e.g., the material is allowed to crack in volumetric800

expansion and shear, but not in volumetric compression) [62]. In addition, both of these801

popular decompositions can only be used for isotropic materials [99]. Nevertheless, boron802

carbide has strong anisotropic elasticity (Emax
Emin

= 8.11, where Emax and Emin are the general803

maximum and minimum Young’s modulus, respectively) [213]. This analysis is important804

because the plastic deformation in nanograined boron carbide is assumed to be dominated by805

intergranular fracture [214] and these new results can be employed toward guiding material806

design for B4C under extreme dynamic loading.807

4.3.1. Crack initiation and propagation under biaxial compressive stress in single crystal808

boron carbide809

Consider the biaxial compression test of a single crystal B4C specimen with a single810

pre-existing notch under plain strain condition as shown in Fig. 10. The dimensions of811

the square domain are those of Fig. 7, and the material parameters are the same as those812

mentioned in Table 1. Additionally, the fracture surface energy (⌥) and cleavage anisotropy813

factor (�) are set to 3.27 and 100 J/m2 (or 0 for isotropic damage), respectively [180]. In814
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the simulations, a total of 323,460 triangular elements were used to discretize the domain815

with a finer mesh assigned to critical zones. A high confining stress is chosen such that the816

opening stress intensity factors at the tip of the crack in any direction is zero. The stress817

parallel to the crack plane is assumed to be larger than the stress values normal to the crack818

plane (�XX > �Y Y ). The initial condition for the time-dependent fracture order parameter819

and time step are set to ⇠(t = 0) = 0.01 and �t = 0.5 fs, respectively. In the simulations, all820

the frictional effects on the crack surfaces are disregarded.821

Figure 10: Geometry and boundary conditions in the numerical simulations of biaxial loading of boron
carbide in a pre-notched domain. The Cartesian coordinate system is considered at the crack tip.

The crack evolution process under these numerical conditions is depicted in Fig. 11. As822

shown, biaxial compression first leads to the initiation of the crack from the tip of the823

notch (Fig. 11(a)). The range of the fracture order parameter indicates that the crack is824

not fully formed at t = 0.5 ps. At t = 0.75 ps (Fig. 11(b)), the crack kinks as two single825

straight branched cracks at a small angle. By progressing in time to t = 0.9 ps, two anti-826

symmetric cracks begin to propagate toward the top and bottom boundaries due to the827

larger compressive normal stress parallel with the crack plane (Fig. 11(c)). In addition, the828

crack grows in incrementally small steps that are consistent with experimental observations829

for other brittle materials [215, 216]. At the last time frame of t = 1ps, the propagation830

path of cracks in single crystal B4C is shown (Fig. 11(d)). As can be seen, the crack patterns831
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follow a curvilinear path described by a function axb. The crack paths reported analytically832

in [217] and measured experimentally in [215] support this computational result herein. In833

the studied experiments, b has been found in the interval of 1.43 to 1.58 for pre-fractured834

specimens of gypsum under uniaxial and biaxial compression [210]. From the analytical835

model, the exponent was required to be equal to 1.5 in order to be independent of the836

crack extension length [217]. For boron carbide in this study, the exponent b is obtained as837

1.66±0.06 and this is in reasonable agreement with the predicted theory for brittle materials.838

The curvature parameter a is equal to 0.49± 0.08 (nm)�0.66 and the angle of the branched839

kink is 73.1�, which is in good agreement with the value (70�) reported in [218].840

Figure 11: Crack evolution obtained with the phase-field approach under a biaxial stress loading condition
in single crystal B4C: (a) At t = 0.5 ps, the fracture order parameter starts to accumulate at the tip of
the pre-existing notch. The maximum value of the order parameter is 0.3, showing that the crack region is
not fully formed; (b) Two fully cracked regions start to grow via an incipient kink at t = 0.5 ps; (c) Two
anti-symmetric cracks at t = 0.9 ps which emerged first at the crack tip. The inset shows the mode II crack
growth under a combined load of shear and high compression. (d) Stable propagation of cracks along a
curvilinear path described by y = axb at t = 1.0 ps. The angle from the previous crack plane to the new
assumed direction of crack growth is 73.1�. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)

Finally, the homogeneous damage distribution (⇠ ⇠ 0.5) in Fig. 11 is also due to the841
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hydrostatic nature of the loading. As it is shown in [58], the damage initiation criteria in842

the current phase-field potential for fracture is fulfilled at infinitesimal load; however, at the843

crack free surface where the load is not applied, the color is dark blue, which indicates no844

damage, as expected.845

5. Conclusion846

A robust finite element procedure for solving a coupled system of equilibrium and time-847

dependent Ginzburg–Landau equations has been motivated by using thermodynamically-848

sound derivation of governing equations. Use of the variational procedure and thermody-849

namically consistency of the model ensures that it has a strict relaxational behaviour of850

the free energy; hence, the models are more than a phenomenological description of an in-851

terfacial problem as was done previously in the literature [219]. The dissipation and time852

scales associated with growth kinetics are also derived and addressed in our paper. The853

model has been used for studying the evolution of twinning deformation and fracture in854

anisotropic single crystal magnesium and boron carbide at finite strains. The formulation855

considers distinct order parameters for fracture and twinning. For the first time, a mono-856

lithic strategy has been employed for solving the coupled mechanical equilibrium and order857

parameters evolution equations under extreme conditions. As a challenge in continuum me-858

chanics, nanometer length scale and picosecond time scale have been used in simulations in859

this paper.860

The computational procedures and numerical algorithms are implemented using the861

open-source platform FEniCS. The present nonlinear finite element code has been developed862

and used to study: (i) the growth and propagation of deformation twinning in single crystal863

magnesium and boron carbide, (ii) fracture-induced twinning in single crystal magnesium864

under pure mode I and mode II loading, and (iii) the prediction of the crack path under865

biaxial compressive stress loading in single crystal boron carbide. The numerical results866

for all the problems are in agreement with the available experimental data and analytical867

solutions in the literature. It has been demonstrated through numerical simulations that868

the proposed model delivers adequate results matching qualitatively a variety of observed869

phenomena, including the growth of existing twin embryos, the effect of pre-existing cracks870

on the twin path under various loading, and the propagation of cracks under compression871

for highly anisotropic boron carbide. The current contribution opens up new possibilities872
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for multi-scale fracture models. In the future, our finite element based phase-field model can873

be applied for studies of phase transformations (e.g., amorphization [220]) and interaction874

between plasticity and fracture under high strain-rate loading. As a next step, the current875

model could be combined with discrete localized plastic flow (e.g., shear band and disloca-876

tion pileups [221]) and thermally-activated mechanisms (e.g., melting [222]) to capture the877

behavior of brittle materials in laser spall experiments.878
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