INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

UNIVERSITY OF ALBERTA

THEORY AND ALGORITHMS FOR
PRECONFIGURATION OF SPARE CAPACITY IN
MESH RESTORABLE NETWORKS

By

DEMETRIOS STAMATELAKIS @

A thesis submitted to the Faculty of Graduate Studies and
Research in partial fulfillment of the requirements for the
degree of Master of Science

DEPARTMENT OF ELECTRICAL ENGINEERING

EDMONTON, ALBERTA

SPRING 1997

i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your fig Votre référence
Our e Notre réfdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of his/her thesis by any means vendre des copies de sa thése de
and in any form or format, making quelque maniére et sous quelque
this thesis available to interested forme que ce soit pour mettre des
persons. exemplaires de cette thése d 1a
disposition des personnes intéressées.
The author retains ownership of the L’ auteur conserve la propriété du

copyright in his/her thesis. Neither
the thesis nor substantial extracts
from it may be printed or otherwise
reproduced with the author’s

permission.

Canada

droit d’auteur qui protége sa thése. Ni
la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou
autrement reproduits sans son
autorisation.

0-612-21210-6

University of Alberta

Library Release Form

Name of Author: Demetrios Stamatelakis

Title of Thesis: Theory and Algorithms for Preconfiguration of Spare Capacity
in Mesh Restorable Networks

Degree: Master of Science

Year this Degree is Granted: Spring 1997

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly, or scientific

research purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as hereinbefore provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever
without the author’s prior written permission.

S

11215 93 Street
Fort St. John, B.C.
V1J 4W5, CANADA

Yannary 3/ (997

Date:

UNIVERSITY OF ALBERTA

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies and Research for acceptance, a thesis entitled

“Theory and Algorithms for Preconfiguration of Spare Capacity in Mesh Restorable
Networks”

submitted by Demetrios Stamatelakis in partial fulfilment of the requirements for the
degree of Master of Science.

Wayne D. Grover (Supervisor)

V.

Pawel.Gburzynski (External)

Jan Conradi (Internal)

v (2!

Date: A&c 23{1’6

Dedicated to my wife Tanis
and to my parents Euthimios and Katherine

Abstract

Mesh-restorable transport networks offer a number of advantages, such as low capacity
redundancy and flexible signal management. However, a disadvantage of mesh based res-
toration is that its restoration speed may not be fast enough to prevent voice and data con-
nections from being dropped, when implemented on some types of transport switching
nodes. Typically, an existing connection will not be dropped if a failure is restored within
2 seconds. Previous research in on-demand mesh restoration algorithms have established
that it is technically possible to calculate a restoration pathset, in a distributed realtime
response, within 2 seconds. However, due to the slow crossconnect time of some current
digital crossconnect systems (DCS), it may not be possible to also implement the restora-
tion in the 2 seconds available. One way to reduce this crossconnect formation time is to
reduce the number of crossconnections, that have to be asserted in realtime, to form the
restoration pathset by a strategy of preconnecting spare links, prior to failure, so as to
maximize the statistical likelihood that, in the event of any failure, it will be found that
required connections to form a restoration pathset are already in place within the network

spare capacity.

This thesis experimentally evaluates the performance of a number of different elemen-
tal subgraphs as building blocks, with which to synthesize restorable networks with a high
degree of usefully preconnected spare restoration paths. Preconnected paths supply imme-
diately fully formed restoration paths to the restoration of span failures. Two classic graph
patterns which are evaluated are the tree and the cycle. Subsequently, a pair of genetic
algorithms are used to evolve pre-set patterns which are not constrained to belong to a cer-
tain pattern class. A theoretical upper limit is established to the number of pre-formed
paths which the cycle and tree patterns can contribute to restoration. In addition, a theoret-
ical upper limit is established to the number of pre-formed paths which any pattern,
regardless of its configuration, can provide. The experimental and theoretical results sug-
gest that the cycle may be the best candidate to pre-set, within a network’s spare capacity,

in anticipation of any span failure.

Acknowledgments

I would like to thank my wife Tanis, my parents Tim and Kathy, and
parents in-law Mike and Betty for their love and support during the writing of

my thesis.

I would like to thank my supervisor Dr. Wayne D. Grover for his guidance
and encouragement over the course of the winding trail that eventually

became my thesis.

I would also like to thank all of the people of TRLabs-Edmonton, students
and staff alike, for providing such a friendly environment in which to carry
out my research. I'd like to single out the following fellow members of the
Networks and Systems group (a.k.a. the N&S Mafia) for providing a group
which was both supportive and yet somewhat abusive $) : Danny Li, Mike
MacGregor, Jim Slevinsky, Daniel Tse, Deepak Sarda, Yong Zheng, and, last
but certainly not shortest, Jason Palm. I'd also like to mention the following
people, who graduated and left TRLabs before myself: Ashish Duggal, Vipul
Rawat, Rainer Irashko, Ping Wan, and Jeremy Sewall. TRLabs made it easy
to make many friends.

Table of Contents

1. Introduction

1.1 Background on Mesh Transport Networks: Definitions.............. 3

1.2 Background on Mesh Transport Networks: Logical

Network

Layers

1.3 Restoration of Mesh Network Span Failures
1.4 Problem Introduction

1.5 Research Objectives

1.6 Outline

2. Preconfiguration Concepts and Prior Work.........

2.1 Introduction to Preconfiguration

2.2 Definition of Preconfiguration Terminology.
2.3 Prior Work in Preconfiguration

2.4 Technical Considerations

2.5 Method used to Evaluate the Effectiveness of a PC Plan...............

2.5.1 Step 1: Abstraction of the PC Subgraphs contained
within a PC Plan

25

2.5.2 Step 2: Exploitation of Usefal PC Paths contained
within each PC Pattern

26

2.5.3 Step 3: Formation of Further on-demand KSP Paths

26

(2 Step Restoration)
2.6 Validation of PC Plan Generation and Evaluation

28

2.7 Properties of the Test Networks

30

35

3. Studies on Preconfigured Spanning Trees
3.1 Concepts

35

3.2 Tree Design with Span Weights set Once

37

3.2.1 Method

37

3.3 Tree Design with Span Weights updated Iteratively
3.3.1 Method

......................

39
39

3.4 Results

3.4.1 Results for Treel

3.4.2 Results for Tree2

3.5 Conclusions

41

41
42

4. Genetic Algorithms for Preconfiguration

50

50

4.1 Concepts

4.2 PC Design Using Genetic Algorithms at the Span level...............

4.2.1 Representation of a Pattern at the Span Level

52
53

4.2.2 Fitness Score

55

4.3 Design Using Genetic Algorithms at the
Crossconnection level

55

4.3.1 Representation of a Pattern at the Crossconnection Level.................

56
57

4.3.2 Fitness Score
4.4 Method

58

4.5 Results

61

4.5.1 Genetic Algorithm Design of PC Patterns represented
at the Span Level

61

4.5.2 Genetic Algorithm Design of PC Patterns represented
at the Crossconnect Level

62

4.6 Conclusions

5. Cycle-Oriented Preconfiguration using Integer

71

Programming Techniques
5.1 General Setup of an Integer Program to Generate a
Preconfigured Restoration Design from a Pre-defined
Set of Patterns in a Network’s Pre-existing Spare

71

Capacity Plan
5.2 General Setup of an Integer Program to Generate

a Fully Restorable Preconfigured Restoration Design

and a Network Sparing Plan from a Pre-defined Set of

Patterns in a Networks Pre-defined Working

Routing Plan

74

5.3 Setup of an Integer Program to Generate a Preconfigured
Restoration Design using Cycles in a Network’s Pre-existing
Spare Capacity Plan

77

5.4 Setup of an Integer Program to Generate a Fully Restorable
Preconfigured Restoration Design and a Network Sparing
Plan using Cycles in a Networks Pre-defined Working
Routing Plan

5.5 Results

5.5.1 Preconfigured Cycle Design using Integer Program Techniques

in a Network’s Existing Spare Capacity Plan (IP1-Cycle)..................

5.5.2 Fully Restorable Preconfigured Cycle Design and Spare Capacity

Placement using Integer Program Techniques (IP2-Cycle)

5.6 Conclusions

6. Theoretical Considerations and Interpretation..........

6.1 Maximum Useful PC Paths for Preconfigured Trees/
Segments

6.1.2 Derivation of Maximum for a Preconfigured Tree spanning
N nodes

6.1.3 Maximum Number of Preconfigured Paths per Preconfigured
Tree Spare Link

6.2 Maximum for a Preconfigured Cycle covering N nodes..............

6.3 Upper Limit to the Number of Preconfigured Paths for any

93

Preconfigured Pattern with N nodes
6.3.1 Spare Link Utilization

93

6.3.2 Upper Limit to the Number of Preconfigured Paths

93

6.3.3 Maximum Number of Preconfigured Paths per
Preconfigured Link

6.3.4 Discussion and Conclusions

97
97

7. A Cycle-Oriented Distributed Preconfiguration
Algorithm

7.1 Method

7.1.1 Statelet Format

7.1.2 Network Node Roles

7.1.2.1 . The Tandem Node Statelet Broadcast Rules

7.1.2.2 . Tandem Node Evaluation of a Statelet’s Score

7.1.2.3 . Cycler Node Initiation of Statelet Broadcast

7.1.2.4 . Cycler Node Sampling of Incoming Statelets

7.1.2.5 . Cycler Node Initiation of the Building of a Cycte

7.1.3 Global Execution of the DPCD Protocol

7.2 Simulation Method

7.3 Results

7.4 Conclusions

8. Summary
8.1 Future Research

Bibliography

Appendix A: Test Network Standard
Network Interface Files (SNIF) 143

Table 3.1:

Table 3.2:

Table 3.3;

Table 3.4:

Table 4.1:

Table 4.2:

Table 4.3:

Table 4.4:

Table 5.1:

Table 5.2:

Table 5.3:

Table 5.4:

Table 5.5:

Table 5.6:

Table 6.1:

Table 7.1:

List of Tables

Network Restorability Results using Standard KSP and PC
Restoration with Tree Heuristic Treel

and PC Restoration with GA1

and PC Restoration with GA2

with the Integer Programs

using IP1-Cycle

and for PC Restoration using IP1-Cycle

Restoration using IP2-Cycle

Restoration using [P2-Cycle

Original Network Sparing Plan

Different Pattern Types

42
Total Network Crossconnect Events Results using Standard KSP
and PC Restoration with Tree Heuristic Treel 43
Network Restorability Results using Standard KSP and
PC Restoration with the Tree Heuristic Tree2 43
Total Network Crossconnect Events Results using Standard
KSP and PC Restoration with Tree Heuristic Tree2 43
Network Restorability Results using Standard KSP Restoration
63
Total Network Crossconnect Events Results using Standard KSP
Restoration and PC Restoration with GA1 63
Network Restorability Results using Standard KSP Restoration
64
Total Network Crossconnect Events using Standard KSP
Restoration and PC Restoration with GA2 64
Maximum Cycle Length permitted within the Cycle Sets used
80
Network Restorability using Standard KSP and PC Restoration
81
Total Network Crossconnect Events Results for Standard KSP
81
Network Restorability Results for Standard KSP and for PC
82
Total Network Crossconnect Events for Standard KSP and for PC
82
Comparison between the Sparing Plans of [P2-Cycle and the
..... 83
Comparison of Maximum Preconfigured Paths Available for
97
Network Restorability using Standard KSP and PC Restoration
using the DPCD with Cycler Order in Descending Total Node
122

Working Links Order

Table 7.2:

Table 7.3:

Table 7.4:

Table 7.5:

Table 7.6:

Table 7.7:

Table 7.8:

Total Network Crossconnect Events Results using Standard
KSP and PC Restoration using the DPCD with Cycler Order in
Descending Total Node Working Links Order 122

Network Restorability using Standard KSP and PC Restoration
using the DPCD with Cycler Order in Increasing Total Node
Working Links Order. 123

Total Network Crossconnect Events Results using Standard KSP
and PC Restoration using the DPCD with Cycler Order in Increasing
Total Node Working Links Order 123

Network Restorability using Standard KSP and PC Restoration

using the DPCD with Cycler Order in Descending Total Node

Working Links Order with the Sparing Plans generated

by IP2-Cycle 124

Total Network Crossconnect Events Results using Standard KSP

and PC Restoration using the DPCD with Cycler Order in

Descending Total Node Working Links Order with the Sparing

Plans generated by IP2-Cycle 124

Network Restorability using Standard KSP and PC Restoration

using the DPCD with Cycler Order in Increasing Total Node

Working Links Order with the Sparing Plans generated by

IP2-Cycle 125

Total Network Crossconnect Events Results using Standard KSP

and PC Restoration using the DPCD with Cycler Order in Increasing
Total Node Working Links Order with the Sparing Plans generated

by IP2-Cycle 125

List of Figures

FIGURE 1.1 Logical Separation of the Different Network Layers 5
FIGURE 1.2 Restoration Pathset formed, from a Mesh Network’s Distributed

Spare Capacity, in Response to a Span Failure 6
FIGURE 1.3 Span and Path Restoration 8
FIGURE 2.1 A Preconfigured Pattem within a Network’s Spare Capacity and

the Preconfigured Restoration Paths available for All Possible Span

Failures 18
FIGURE 2.2 A PC Plan containing a PC Pattern which Requires Multiple

Crossconnections on a Single Link and the PC Paths available

For a Failed Span 19
FIGURE 2.3 Electrical Implication of Permitting Multiple Crossconnections to

a Single Port Card 23
FIGURE 2.4 Extraction of the PC Paths contained within a PC Plan by

successive removal of the Shortest Path within the Plan 27
FIGURE 2.5 Routing of On-demand 2nd-Step KSP Paths which Attempts to

Make Use of Preconfigured Crossconnections 29
FIGURE 2.6 Test Network Netl 31
FIGURE 2.7 Test Network Net2 31
FIGURE 2.8 Test Network Net3 32
FIGURE 2.9 Test Network Net4 33
FIGURE 2.10 Test Network NetS 34
FIGURE 3.1 Determination of Span Weights for Use in the Tree Heuristics

by Counting the Contribution of Each Span to the Working Link

Restoration of the Failure of Other Spans 36
FIGURE 3.2 Pseudo-code representation of Preconfigured Tree Heuristic treel. 38

FIGURE 3.3
FIGURE 3.4

FIGURE 3.5

FIGURE 3.6

Pseudo-code representation of Preconfigured Tree Heuristic Tree2.....

Example of the Patterns Generated using Tree HeuristicTreel
in Netl

o

41

Exampls of the Patterns Generated using Tree Heuristic Tree2
in Netl

Crossconnections Closed at each Node to Form the Restoration
Pathsets for Each Span Failure when using the PC plan formed
within Net2 using method Treel. For Restoration using only

Conventional KSP Restoration and for 2-Step Restoration.

.45

FIGURE 3.7

FIGURE 3.8

FIGURE 3.9

FIGURE 4.1
FIGURE 4.2

FIGURE 4.3

FIGURE 4.4

FIGURE 4.5
FIGURE 4.6
FIGURE 4.7

FIGURE 4.8

FIGURE 4.9

Crossconnections Opened at each Node to Form the Restoration
Pathsets for Each Span Failure when using the PC plan formed
within Net2 using method Treel. For Restoration using 2-Step
Restoration.

Crossconnections Closed at each Node to Form the Restoration
Pathsets for Each Span Failure when using the PC plan formed
within Net2 using method Tree2. For Restoration using only

Conventional KSP Restoration and for 2-Step Restoration.

Crossconnections Opened at each Node to Form the Restoration
Pathsets for Each Span Failure when using the PC plan formed
within Net2 using method Tree2. For Restoration using 2-Step
Restoration.

w87

Example of the Genetic Algorithm Operation of Crossover...............

Example of How a Preconfigured Pattern can be Represented
at the Span Level, for use in GA1

cone

Example of How a Preconfigured Pattern can be Represented at the

Crossconnection Level, for use in GA2

Pseudo-code representation of the Use of a Genetic Algorithm to
iteratively builds Preconfigured Patterns

Example of the Patterns Generated using GA1 with Netl

Example of the Patterns Generated using GA2 with Netl..................

Crossconnections Closed at each Node to Form the Restoration
Pathsets for Each Span Failure when using the PC plan formed
within Net2 using method GA 1. For Restoration using only

Conventional KSP Restoration and for 2-Step Restoration.

Crossconnections Opened at each Node to Form the Restoration
Pathsets for Each Span Failure when using the PC plan formed
within Net2 using method GA1. For Restoration using 2-Step

.67

68

Restoration.

Crossconnections Closed at each Node to Form the Restoration
Pathsets for Each Span Failure when using the PC plan formed
within Net2 using method GA2. For Restoration using only

Conventional KSP Restoration and for 2-Step Restoration.

FIGURE 4.10 Crossconnections Opened at each Node to Form the Restoration

FIGURE 5.1

Pathsets for Each Span Failure when using the PC plan formed
within Net2 using method GA2. For Restoration using 2-Step
Restoration.

Determination of the Pattern Span Utilization Coefficients of
a Cycle for use with PC design using IP techniques

69

70

78

FIGURE 5.2

FIGURE 5.3
FIGURE 5.4
FIGURE 5.5

FIGURE 5.6

FIGURE 5.7

FIGURE 5.8

FIGURE 6.1

FIGURE 7.1

FIGURE 7.2

FIGURE 7.3

FIGURE 7.4

FIGURE 7.5

FIGURE 7.6

Evaluation of the number of preconfigured paths that a single
preconfigured cycle can provide towards the restoration of a

failed span 79
Example of the Patterns Generated in Netl using IP1-Cycle 84
Example of the Patterns Generated in Netl using IP2-Cycle 84

Crossconnections Closed at each Node to Form the Restoration

Pathsets for Each Span Failure when using the PC plan formed

within Net2 using method IP1-Cycle. For Restoration using only
Conventional KSP Restoration and for 2-Step Restoration. 85

Crossconnections Opened at each Node to Form the Restoration

Pathsets for Each Span Failure when using the PC plan formed within
Net2 using method IP1-Cycle. For Restoration using 2-Step

Restoration. 86

Crossconnections Closed at each Node to Form the Restoration

Pathsets for Each Span Failure when using the PC plan formed
withinNet2 using method IP2-Cycle. For Restoration using only
Conventional KSP Restoration 87

Crossconnections Opened at each Node to Form the Restoration
Pathsets for Each Span Failure when using the PC plan formed within
Net2 using method IP2-Cycle. For Restoration using 2-Step

Restoration. 87
Comparison of Preconfigured Paths in PC Cycles and PC
Trees/Segments 99
Example of a Simple broadcast of an Incoming Statelet at

a Tandem Node 104
Example of the broadcast of Incoming Statelets with Preference

given to Incoming Statelets with Good Scores 106

Example of the Shifting of a Statelet Broadcast from an Original
Incoming Statelet belonging to an Index Family to a New Incoming
Statelet, of the Same Index Family, with a Better Score....................... 107

An Example of the Tandem Node Statelet Broadcast Rule that
Limits the Cycles Generated to Simple Cycles which visit a Cycle

Node only once 108
Tandem Node evaluation of the Incremental Preconfigured Path
Count of an Incoming Statelet 112

Evaluation of the Total PC path Count by the Tandem Nodes
along a Statelet Broadcast 113

FIGURE 7.7 The Best Received Incoming Statelet Score at the Cycler Node
versus Simulation Iteration when using DPCD with Node Order in
Order of Decreasing Working Links in Netl 120

FIGURE 7.8 The Successive Displacement of the Best Scoring Cycle Candidate
contained in the Received Incoming Statelets at the Cycler Node.
Done for Netl with Nodes in Decreasing Working Link Order, for

the First Statelet Broadcast 121
FIGURE 7.9 Example of the Patterns which Result in Net1 using the DPCD

with Cycler Order in Descending Node Total Working Links............... 126
FIGURE 7.10 Example of the Patterns which Result in Netl using the DPCD

with Cycler Order in Increasing Node Total Working Links................ 126

FIGURE 7.11 Example of the Patterns which Result in Net1 using the DPCD
with Cycler Order in Descending Node Total Working Links with
the Sparing Plans generated by IP2-Cycle 127

FIGURE 7.12 Example of the Patterns which Result in Netl using the DPCD
with Cycler Order in Increasing Node Total Working Links with
the Sparing Plans generated by IP2-Cycle 127

FIGURE 7.13 Crossconnections Closed at each Node to Form the Restoration
Pathsets for Each Span Failure when using the PC plan formed
within Net2 using the DPCD with Cycler Nodes in Decreasing Total
Working Link Order. For Restoration using only Conventional KSP
Restoration and for 2-Step Restoration. 128

FIGURE 7.14 Crossconnections Opened at each Node to Form the Restoration
Pathsets for Each Span Failure when using the PC plan formed
within Net2 using the DPCD with Cycler Nodes in Decreasing
Total Working Link Order. For Restoration using 2-Step
Restoration. 129

FIGURE 7.15 Crossconnections Closed at each Node to Form the Restoration
Pathsets for Each Span Failure when using the PC plan formed
within Net2 using the DPCD with Cycler Nodes in Increasing Total
Working Link Order. For Restoration using only Conventional KSP
Restoration and for 2-Step Restoration. 130

FIGURE 7.16 Crossconnections Opened at each Node to Form the Restoration
Pathsets for Each Span Failure when using the PC plan formed
within Net2 using the DPCD with Cycler Nodes in Increasing Total
Working Link Order. For Restoration using 2-Step Restoration........... 131

FIGURE 7.17 Crossconnections Closed at each Node to Form the Restoration
Pathsets for Each Span Failure when using the PC plan formed
within Net2 (as Spared using IP2-Cycle) using the DPCD with
Cycler Nodes in Decreasing Total Working Link Order. For
Restoration using only Conventional KSP Restoration and for
2-Step Restoration.

FIGURE 7.18 Crossconnections Opened at each Node to Form the Restoration
Pathsets for Each Span Failure when using the PC plan formed
within Net2 (as Spared using IP2-Cycle) using the DPCD with
Cycler Nodes in Decreasing Total Working Link Order. For
Restoration using 2-Step Restoration.

FIGURE 7.19 Crossconnections Closed at each Node to Form the Restoration
Pathsets for Each Span Failure when using the PC plan formed
within Net2 (as Spared using IP2-Cycle) using the DPCD with
Cycler Nodes in Increasing Total Working Link Order. For
Restoration using only Conventional KSP Restoration and for
2-Step Restoration.

FIGURE 7.20 Crossconnections Opened at each Node to Form the Restoration
Pathsets for Each Span Failure when using the PC plan formed
within Net2 (as Spared using IP2-Cycle) using the DPCD with
Cycler Nodes in Increasing Total Working Link Order. For

Restoration using 2-Step Restoration.

132

133

134

135

ADM
APS
DCS
DPCD
DS-N
FOTS
GA

GAl
GA2

IP
IP1-cycle
IP2-cycle
KSP

PC

SHN

SP

SHR
STS-N
treel
tree2

Abbreviations

Add-Drop Multiplexer

Automatic Protection Switching

Digital Crossconnect System

Distributed Preconfigured Cycle Design Protocol

Digital Signal - Level N

Fiber Optic Transmission System

Genetic Algorithm

PC Design at the Span Level using a GA

PC Design at the Crossconnect Level using a GA

Integer Program

IP design of PC cycles in an Existing Network Spare Plan
IP design of PC cycles and Network Sparing Plan
k-shortest paths

Preconfigured / Preconfiguration

Selfhealing Network Protocol

Shortest Path

Selfhealing Ring

Synchronous Transport Signal - Level N

PC Tree Heuristic with Span Weights set Once

PC Tree Heuristic with Span Weights updated at Every Iteration

1. Introduction

Modern society has a greater dependence on information services than ever before.
This information is carried on a world wide network of public telecommunication trans-
port networks. The advent of high capacity digital technologies, in recent years, has per-
mitted the increasing quantities of communication traffic to be carried in an economical
and efficient manner. The large carrying capacity of these technologies, which is their
greatest advantage, also increases the transport network’s vulnerability to a single failure.
A single multi-gigabit per second fibre optic cable can carry the capacity equivalent of
tens of thousands of individual conversations and data connections. There would be signif-
icant financial, and social consequences if such a fibre failed and there was no means in

place to rapidly reroute the traffic which flowed on it [1].

In recent years, alternatives have been studied to solve the problem of the restoration of
a failed network span. These restoration methods basically fall into two categories: dedi-
cated spare capacity routing and undedicated spare capacity routing. In dedicated spare
capacity routing methods, such as automatic protection switching (APS) and self-healing
rings (SHRs), a telecom network will have spare capacity added to the network which is
dedicated to the restoration of specific working traffic flows. The spare capacity is preset
so it contains restoration paths. When a network span fails, the switching equipment auto-
matically reroutes the working traffic by switching the working flow from the failed span
to the preset spare alternate route. In undedicated (also generically called “mesh”) spare
capacity routing methods, spare capacity is distributed throughout the network on each
network span. This spare capacity is not dedicated to the restoration of any particular span
failure. In the event of a failure, workings flows are rerouted over paths, which are dynam-
ically calculated and formed on demand using the network’s distributed spare capacity. In
summary, in dedicated sparing restoration schemes the working traffic is rerouted through
predefined restoration paths in the network spare capacity, while in undedicated sparing
schemes the network configuration is modified, as needed, to form restoration paths on

demand.

The primary advantage of dedicated capacity restoration methods is their speed. The
spare capacity is effectively “hardwired” and, in the event of a span failure, the transport
signals can be rapidly switched to the stand-by paths, which can result in restoration times
of as little as S0 msec. However, there are disadvantages to this type of restoration. First,
the total amount of spare capacity which is required to make such a design fully restorable,
for all span failures, will be generally greater than the total amount of working capacity

present in the network” [2]. The network will also be relatively inflexible in its configura-
tion because all of its spare capacity is hardwired. The implication is that network traffic
has to be accurately forecast, at the time of the network’s construction, so that the net-
work’s fixed protection conﬁgurétion will be able to support future traffic growth.

A mesh type restorable network, on the other hand, uses undedicated spare capacity
and has the primary advantage of being fully restorable using an amount of spare capacity
which can be 3 to 6 times less than required in a dedicated capacity design [2]. This reduc-
tion occurs because all the spare capacity in a mesh network is free to be re-used in the
restoration of any span failure, whereas the spare capacity in a dedicated network can only
be used in the restoration of a specific set of spans. An additional advantage, which mesh
networks offer, is that both the working and spare capacity are fully reconfigurable to
more easily accommodate future changes in offered traffic. The only difference between
working capacity and spare capacity, in a mesh network, is that one is committed to serv-
ice and the other is simply sitting idle. If traffic offered to the network should suddenly
increase, in a certain area, it may be carried by putting some of the spare capacity into
service. However, this may result in a network which is no longer fully restorable in the
event of any span failure. More usually, the benefit is in placing new working capacity
only where the growth is actually materializing which allows a mesh network to be less
dependant on the actual forecast ordering. The primary disadvantage of undedicated spare
capacity restoration is that its restoration speed will not be as fast as that of dedicated res-
toration. In the event of a span failure, alternate paths for the working traffic flowing

* -To appreciate this consider that fully diverse routes APS logically requires only 100% redundancy. How-
ever, by definition, the diverse protection routes cannot be on the same shortest route as the working paths
and, therefore, are physically longer. It follows, therefore, that the redundancy of APS (and by related
argument for rings) is always greater than 100%.

through the failed spans will have to be dynamically calculated through the network’s
unaffected spare capacity. Additional time may also be required to set the switches
required to form dynamically determined restoration the paths.

1.1 Background on Mesh Transport Networks: Definitions

A mesh network contains nodes, where network traffic is sourced, terminated and
routed, and spans, which connect adjacent network nodes and through which network traf-
fic is carried.

A link is an individual bidirectional digital signal carrier joining a pair of adjacent
transport network nodes. It could be a DS-3, STS-1 or STS-N *. In general, a link repre-
sents the multiplexed level at which digital signals are managed at the respective transport
nodes. A link can either be a working/worker link or it can be a spare link. A working link
is a link which is carrying live network traffic. A spare link is a link which is currently sit-
ting idle within the network but is available to assist in the restoration of a network failure
or to be used to absorb traffic growth.

A span is the set of all working and spare links which join a pair of adjacent network
nodes. A span can contain many links but a link can only belong to one span. In other
words, the set of all signals that would be intercepted by a slice through the direct route

Jjoining adjacent nodes is a span.

The nodes in a mesh network are a type of digital carrier switching machine called a
digital crossconnect system (DCS.) A DCS permits the forming of a bidirectional switch
or crossconnect between the ends of any pair of links which fall on the DCS. It is impor-
tant to note, especially with regard to the work done in this thesis, that a DCS is a carrier
signal management device and is completely distinct from the more familiar “telephone
switch”. Each link which appears at a DCS is terminated at a port card in the DCS. A
crossconnection may be formed between a pair of links by connecting the port cards,

* The DS-3 rate is 44.736 Mb/s while the STS-1 rate is 51.880 Mb/s. Note that throughout this work it is
these highly multiplexed transport signals that we are manipulating and not individual telephone calls.
For further clarification see section 1.2 on the concept of a transport network.

which terminate the links, through the DCS’s crossconnect matrix. The DCS are what give
a mesh transport network its flexible configuration. Note that the re-configurations in the
transport network are invisible to the conventional call switches of the network.

A path is a concatenation of network links which follow a route between a pair of net-
work nodes. A route is any concatenation of network spans joining a pair of non-adjacent
or adjacent nodes. The distinction between a path and a route is helpfully given in [2]
which states, “that a link is to a path as a span is to a route, the former identifying individ-
ual capacity units of the network, the latter referring to the topology of the network only.”
A route can correspond to many paths but each path has only one route.

A demand pair is a pair of network nodes which require a certain quantity of network
working demand units (e.g. DS-3s, STS-1s) to flow between them. Each unit of working
demand is routed between the demand pair on a working path.

1.2 Background on Mesh Transport Networks: Logical Network Layers

The work in this thesis deals entirely with restoration of failures at the transport net-
work layer. This is separate from the call switching layer where individual conversation
and data connections are made. The transport layer deals only with the multiplexed digital
carrier signals and not with individual conversations. Refer to Figure 1.1 for a diagram
which shows the different network layers.

The physical network layer is formed of fiber-optic transmission systems (FOTS) and
provides the physical transmission media through which signals are passed. Changes at
the physical level occur at a2 monthly or yearly time scale, in response to traffic growth
within the network.

The transport network contains DCS and add-drop multiplexers (ADM) to configure
and process digital carrier signals. It also contains multiplexers which multiplex the traffic
offered by the call switches onto the digital carrier signals. The configuration of the digital
carrier signals form logical connections between the call switches. The transport network
is also the level at which split second restoration of failures takes place and is the level at

Physical Network
o Formed of Fiber Optic cables and Lightwave Terminals

¢ Growth changes at a Monthly or Yearly Time Scale
« Physical Interconnection by fiber-optic transmission systems (FOTS)

L AN

Transport Network
« Formed of Links, DCS, ADM and Multiplexers
» Hour by Hour Signal Management Reconfiguration
» Logical Configuration and Processing of Digital Carrier Signals
networking between Call Switches
o The Level at which Split Second Transport Signal Restoration takes place

A A A A A A

Call Switching Layer
¢ Logical Interconnection by Trunk Group
* Second by Second states changes

¢ Processing Occurs at a Per Call Level

FIGURE 1.1 Logical Separation of the Different Network Layers

which all work in this thesis is done. Configuration changes at this level occur on an hour
by hour time scale, as signal management takes place. All configuration changes at this
level occur transparently to the call switching layer.

The call switching layer, switches individual conversations and data connections using
the logical connections formed within the transport layer. Configuration changes occur on

a second by second scale, as individual connections are formed and released.

1.3 Restoration of Mesh Network Span Failures

A restorable mesh network will contain both working links and spare links distributed
among its spans. The working links will be configured into working paths which will carry
the traffic between the network nodes. In all work to date, the spare links are unconnected
and sit in a stand-by state. In the event of a span failure, the lost traffic, which flowed
through the working links on the failed span, will be rerouted onto restoration paths
formed from the network’s spare links. The presence of the appropriately placed spare
capacity distributed throughout the network permits the restoration of span failures. Refer
to Figure 1.2 for an example of a restoration pathset formed in response to a span failure
using the network’s distributed spare capacity.

o Spare Link
3 Working Links
Lost
3 Restoration - Restoration
Paths Found Path
Failed Span
Restored

FIGURE 1.2 Restoration Pathset formed, from a Mesh Network’s
Distributed Spare Capacity, in Response to a Span Failure

A restorable mesh network will have an associated capacity redundancy which meas-
ures how much spare capacity it contains compared to working capacity. Network redun-
dancy is given by:

s s
Redunduncy = (2 si)/(z "’i) (EQ L.1)

i=1 i=l
Where, S is equal to the number of network spans, s; is equal to the number of spare links
present on span i, and w; is equal to the number of working links present on span i.

Redundancy measures how efficiently a network is provisioned with its spare capacity.

Also, a restorable mesh network will have an associated restorability which gives a
measure of what fraction of working links lost, over all possible failed spans, can be
recovered using a particular restoration method with a given set of spares. Network

restorability is given by:

s
Y MIN(w, k)

Restorability = ‘=1 (EQ12)

iwi

i=l
Where, MIN (A, B) is set equal to lower value of A or B, and k; is equal to the number

of restoration paths which are available for span i using a particular restoration method.
Taking the minimum of the number of restoration paths for a failed span and the number
of working links present on a failed span is required so that those spans which are super
restorable (a span is super-restorable if has a larger number of restoration paths available
to it than it has working links) are accounted for in the restorability calculation. A span is
still only 100% restorable if it is super restorable.

Mesh restorable networks can be restored using span level restoration or path level res-
toration. Span level restoration restores a span failure by forming restoration paths,
between the end nodes of the failed span, to reroute the lost traffic around the failure. Path
level restoration restores a span failure by forming restoration paths between each demand
pair which lost a working path because it was routed through the failed span. Path level

restoration is more efficient in its use of spare capacity so, in general, a fully path level

restorable network requires less spare capacity to achieve than a fully span level restorable
network.

The reason that path level restoration is more efficient than span level restoration is that
it directly reroutes traffic between the demand pairs affected by a span failure; span level
restoration only reroutes traffic between the end nodes of the failed span with out consid-
eration to the routing of the demands. This can result in restoration paths which utilize
more spare links than is strictly necessary. Figure 1.3 shows an example of the restoration
of a failed span using both span and path level restoration. However, path level restoration

1) Original Working Path with Failed Span

a

2) Restored Working Path Using Span Level Restoration

/

3) Restored Working Path Using Path Level Restoration

Nodes from which Working Af Failed
Restoration is Performed Path Span

FIGURE 1.3 Span and Path Restoration

is more complicated to execute because restoration paths must be simultaneously formed
between a number of different node pairs while in span restoration paths are only formed

between the single pair of end nodes of the failed span. For this reason, and because path
level restoration has only recently been evaluated for mesh network restoration [11,16],
the work presented in this thesis will only be concerned with span level restoration.

A network’s restorability (under span-restoration) will depend on the restoration algo-
rithm used to form the restoration pathset. A network’s restorability will be at a maximum,
while using a minimum of spares, if the restoration pathset is equivalent to the failed
span’s max-flow number. A span’s max-flow number is the maximum possible number of
restoration paths which can be formed, through surviving network spares, to restore a
failed span. Algorithms which can generate a max-flow pathset are generally fairly com-

plex (at least 0(N3 J [2].) A compromise to an absolute maximum flow pathset is a path-
set generated using a k-shortest paths (KSP) algorithm. This algorithm can be thought of
as equivalent to iteratively taking out the shortest path possible from the network’s spare
capacity. KSP’s benefit is that it can be calculated using an algorithm with a lower compu-
tational complexity, and, in practice, KSP pathsets can be formed in realtime, in a single
iteration, by a self-organizing distributed autonomous restoration protocol known as the
SHN [3,4]. Additionally, a study which compared KSP restoration io max-flow restoration
[5] in a wide range of transport network models found that in 99.9%, of the network resto-
ration cases studied, the two methods generated equivalent capacity restoration pathsets.
Therefore, the network restorabilities calculated in this thesis were evaluated using a cen-
tralized KSP restoration algorithm as the reference solution sets.

In the event of a span failure, the signals which flowed through the working links on the
failed span can be rerouted using calculated restoration paths which are formed from the
network’s spare links. The restoration pathsets are calculated using either a central mecha-
nism or a distributed local mechanism. Using a central mechanism, the restoration pathset
is calculated, using a central computer, and then downloaded to the network nodes which
then form the restoration pathset. Use of a central mechanism introduces a delay in resto-
ration due to the time required for the affected network nodes to alert the central mecha-
nism of the span failure and due to the time required for the central mechanism to
download the restoration pathset to the network nodes. Additionally, an accurate represen-

tation of the network’s current configuration must be maintained so that the central mech-
anism generates a restoration pathset which is appropriate to the restoration of the failure.
Using a distributed local mechanism, the restoration pathset is formed, in a distributed
self-organizing pattern-forming process, using the computational power present in each of
the network’s DCS machines. The entire restoration pathset is evolved simultaneously as a
composite pattern of mutually feasible restoration paths in the available spares. The use of
a distributed restoration mechanism offers several advantages; it is not required that a
database of the network configuration be maintained for the purpose of restoration, there
is minimal delay in the initiation of the calculation of the restoration pathset, and the task
of calculating the restoration pathset is distributed among the network’s nodes which can
result in reduced calculation time.

Both kinds of restoration mechanism, discussed in the previous paragraph, generate a
restoration pathset in response to a span failure. There is another kind of restoration mech-
anism called preplanning which attempts to reduce signalling time and to eliminate calcu-
lation time by generating a restoration pathset for each possible span failure before any
failure happens. The restoration pathsets are distributed to the network nodes in anticipa-
tion of a span failure. In the event of a span failure, each network node then proceeds to
directly implement the crossconnections indicated in the node’s locally stored restoration
database for the span failure. The primary disadvantage of using preplanned restoration is
that any changes to the network configuration, since the last update of the preplanning
database, would not be included in the database and could compromise the restoration of a
span failure. Preplanned restoration requires that the stored restoration pathsets be contin-
uously updated to track changes in the network configuration.

A failure will have minimal impact on a network if it is restored within 2 seconds [6].
Mesh restorable networks have been widely evaluated since their first proposal in 1987 by
Grover [3]. It has now generally been accepted that it is possible to calculate a restoration
pathset within a time which is less than the 2 second limit using distributed methods
essentially as proposed and patented in [3,4). However, in practice, the total restoration
time will include more than just the time required to calculate a restoration pathset. It may

also include a significant time to actually effect the crossconnections to form the restora-

10

tion pathset and switch the severed signals onto the restoration paths. Unfortunately, the
current generation of DCS machines was not designed with specific consideration given to
realtime network restoration. The current DCS implementations have crossconnect set
times of up to 1 s, serially per crossconnection [7]. Although some part of these long
crosspoint times may be artifacts of specifications developed for growth provisioning
applications', not restoration, and may not represent the machine’s actual technical limits,
it is of research interest to consider how to overcome (at a network level) the problem of
slow crossconnections in realtime restoration. When considering the overall restoration
time of a mesh restorable netwotk, it has been found that a span failure may not be fully
restored within the required 2 seconds [8] mainly due to the slow crossconnect time of

some current DCS implementations.

1.4 Problem Introduction

The main disadvantage to using mesh based restorable networks is that the restoration
time will be slower than when using dedicated spare capacity restoration methods such as
APS or SHRs. It has been recognized, however, that as long as a span failure is restored
within 2 seconds there will be minimal impact on services because connections in
progress are not dropped. However, in the worst case a DCS machines may take up to 1
second to form each crossconnection. Such a slow DCS crossconnection time results, con-
ceptually, in an interesting quandary; that it is possible to quickly calculate an efficient res-
toration pathset in response to a span failure but it may not be possible to actually
implement the restoration pathset quickly enough to minimize the effects of the failure.
This is ironic, as the challenge, in early mesh restorable network research, was to prove
that the fast calculation of a restoration pathset was technically possible. Now that this
problem has been solved, it is found that mesh restorable networks may still not be

quickly restorable because of slow DCS crossconnect times.

Clearly in the regime where implementation, not computation, time dominates, the res-

toration time can be reduced if the crossconnection workload at each node can be mini-

* for instance, current specifications include 100 msec to test each crosspoint. During restoration, this
may reasonably be waived as there is already an emergency on hand (pg. 406 in [2]).

11

mized. But how to do that in a mesh restorable structure is quite unclear, since it is only
known at failure time which crossconnection pattern is needed. This thesis, therefore,
attempts to evaluate a novel idea; that of partially or wholly preconnecting crossconnec-
tions in the network’s spare capacity in statistical anticipation of a failure. An analysis of
the network is performed and those crossconnections, which are deemed to be the most
beneficial in contributing to the restoration of all possible span failures, are preconfigured.

In the event of a span failure, the preconfigured * (PC) paths, which are contained within
the structures formed by the preconfigured crossconnections within the spare capacity, can
be applied to the restoration of the failure. If these structures are efficiently formed then it
may be that a large proportion of restoration paths required by the span will already be
formed within the network’s spare capacity. The PC paths may be “pruned” out of the PC
structures by selectively breaking preconfigured crossconnections to free the contained PC
paths. If the PC paths contained within the network are not adequate to fully restoring the
span failure, then a standard mesh network restoration method can be executed to scav-

enge additional restoration paths from the remaining spare capacity.
In other words, the idea and problem is as introduced in [9]:

‘“Mesh restorable networks have O (1/ (2 —1)) redundancy in the form of spare links

to permit 100% span restorability via restoration re-routing; d is the network average
node degree. In work to date, these spares are crossconnected only on demand, after a
restoration pathset has been computed in response to an actual failure. This is because,
in general, the restoration pathset for each possible network failure requires a signifi-
cantly different pattern of restoration nodes and spare link crossconnections at each
node. We hypothesize, however, that if a restoration re-routing mechanism is well char-
acterised, it should be possible to analyse a mesh-restorable network to derive a
description of the statistically most-likely crossconnection patterns that each node is
called on to deploy, assuming all span failures are equally likely (or using relative fail-
ure probabilities, if known.) An example is the selfhealing network protocol, which
results in k-shortest link-disjoint (KSP) pathsets for restoration. Predeployment of the
statistically most advantageous pattern of crossconnection at each node should there-
fore accelerate restoration: On average, some fraction of the required crossconnections
will already be in place at each node for a given failure. The DCS need then consume
real time only for the crossconnections remaining in the KSP pathset developed by dis-
tributed restoration.”

* the slightly more general term “preconfigured” can be thought of as synonymous with “pre-connected”
throughout this work.

12

The design of an efficient PC plan must consider the placement of preconfigured cross-
connection that will be effective in the contribution of PC restoration paths for all possible
span failures. It must contain PC structures which can be converted into an effective resto-
ration pathset for any failed span by selectively breaking preconfigured crossconnections
within the structures.

1.5 Research Objectives

The objective of this thesis is to evaluate the effectiveness of strategies for establishing
preconfigured spare capacity for the restoration of span failures in mesh restorable net-
works. It is hypothesized that the preconfiguration of network crossconnections can speed
up the restoration of span failures by reducing the number of crossconnection events

which are required to form a restoration pathset.

A number of different approaches will be considered for generating preconfigured res-
toration plans. Different kinds of elemental subgraphs or patterns will be evaluated for use
in the formation of PC plans, including trees and cycles. Also, a pair of genetic algorithm
PC design generation algorithms will be used to form PC pattern sets which can employ a
heterogeneous mix of a variety of subgraph types.

The effectiveness of preconfigured restoration will be evaluated, and compared to KSP
restoration, with regard to network restorability and with regard to the reduction or
increase of the number of crossconnect events required to both form the restoration path-
set in realtime and to prune-off unneeded portions of the subgraphs from which useful res-
toration paths are exploited.

1.6 Outline

Chapter 2 contains an introduction to the key concepts and terminology for preconfig-
uration and a review of previous work done in the design and evaluation of preconfigura-

tion.

Chapter 3 presents a pair of heuristics which iteratively generate preconfigured trees

within a network’s spare capacity. The trees are generated using a maximum weight span-

13

ning tree algorithm from weights assigned to the network spans as determined by each
span’s contribution to the KSP restoration of all other network spans. By forming trees
using these weights it is conjectured that a PC plan will result which contains efficient PC
restoration paths.

Chapter 4 contains a pair of heuristics based on genetic algorithm (GA) techniques.
These heuristics generate PC restoration plans using patterns evolved with a genetic algo-
rithm. The patterns are unconstrained in their basic graph nature, i.e. they do not have to
belong to a specific pattern type (such as cycle, segment, or tree.) The patterns are formed
by the genetic algorithm on the basis of a fitness score which measures how effectively a
pattern provides the network with already formed segments which are immediately useful
for restoration. The performance of a PC plan, generated using a genetic algorithm, will
indicate how effective a plan can be towards PC restoration, if it is unconstrained in the
type of patterns it may can contain.

Chapter S uses integer programming (IP) techniques to generate strictly optimal PC
plans using preconfigured cycles as a homogeneous subgraph building block. The use of
an integer program will generate a solution which is optimal with regard to the problem
given to it; the IP generated preconfigured design will be optimal with regard to maximiz-
ing the number of useful PC restoration paths contained within the design. The generated
PC designs give an upper limit to the effectiveness of using preconfigured cycles.

Chapter 6 presents a theoretical upper limit for PC effectiveness using the tree and
cycle subgraph types, in terms of the number of immediately useful restoration paths that a
single preconfigured pattern can provide. Additionally, the theoretical upper limit to the
number of preconfigured paths, that can be contained within any preconfigured pattern
regardless of its configuration, is evaluated. This analysis gives a clear theoretical insight
into the intrinsic effectiveness of the various pattern types when applied towards precon-
figuration, and goes a long way towards explaining the experimental results as they tum

out.

Motivated by the findings of chapters 3 to 6, which strongly suggest the cycle as the
best elemental subgraph for use in PC strategies, chapter 7 presents a distributed precon-

14

figured cycle generation protocol which can generate PC cycles within a network’s spare
capacity using only the computational power present within the network’s DCS machines.

Chapter 8 summarizes the results and suggests future research for mesh network resto-
ration which exploits the concept of spare capacity preconfiguration.

15

2. Preconfiguration Concepts and Prior Work

2.1 Introduction to Preconfiguration

As discussed, 2 mesh network has several advantages when it used as the solution to
the network restoration problem. It is fully configurable, which allows for easy adaption to
unforeseen growth, and it can provide a fully restorable solution with substantially less
redundant (spare) capacity than a dedicated protection restoration method. The mesh net-
work’s primary disadvantage when used in restoration is its speed. It will not match the 50
msec restoration time that SHRs and APS can provide. However, such a fast restoration
speed (50 msec) is not, strictly speaking, necessary in most instances as it is generally
accepted that if a span failure in a network can be restored within 2 seconds then the fail-
ure’s effects will still be negligible [6]. 50 msec of outage causes 1 or 2 error second. But
restoration at say 1.5 seconds only causes only 2 or 3 error seconds. Few data sessions
ever time out as quickly as 2 seconds and, for voice, 50 msec is a click as opposed to a
pause of a second or two. On the other hand, above 2.5 seconds voice users are returned to
dialtone! Therefore, 2 seconds is a very well reasoned and cost-effective target for restora-
tion times. It has been shown that a highly efficient KSP-equivalent restoration pathset can
be calculated in this 2 second time [3]. However, some existing DCS machines were not
designed with restoration in mind and have crossconnect times which may be up to one
second serially per crossconnection to be set. This suggests that, although it is technically
possible to calculate a restoration pathset for a span failure within a reasonable amount of
time, it may not be possible to form the crossconnections, required to form the restoration
pathset, quickly enough to prevent large scale consequences within the network.

In these circumstances, the best way to reduce the total crossconnection time would be
to reduce the number of crossconnections which must be made. It was first conjectured in
[9] that an analysis of the working and spare capacity distribution within a network could
generate a list of crossconnections, that if set in anticipation of a span failure, would con-
tribute, in a statistical sense, a useful number of the crossconnections which would be
required to form the restoration pathset of any possible span failure. If the preset crosscon-
nections are to be useful towards the overall restoration of the network, they must be pre-

16

set with consideration of the restoration of all possible span failures as it is not possible to
predict, in advance, when a span will fail or which will be the next span to fail. In other
words, crossconnections are preconnected or preconfigured (PC) in anticipation of the
failure of a network span and, because it can not be known in advance which will be the
next span to fail, crossconnections must be preconfigured with consideration given to all
possible span failures. In the event of an actual failure, the preconfigured crossconnections
can be used to form restoration paths for the failed span and, thus, will reduce the number
of crossconnections which must be actively made (or closed) to restore the span failure.
The preconfigured paths exist within the patterns, formed by preconfiguration throughout
the network, and can be used by pruning extraneous crossconnections to free the paths.

Figure 2.1 shows an example of how the preconfiguration of a network’s spare capacity
can contribute restoration paths to multiple failed spans. In the example, a simple precon-
figured pattern is formed using 4 spare links and 4 preconfigured crossconnections. This
pattern contains within itself enough preconfigured paths to fully restore the working links
which are lost on all possible span failures. The preconfigured paths are extracted from the
PC plan by selectively breaking preconfigured crossconnections. Once the PC paths are
freed, or isolated, from the PC patterns of which they were a part, the interrupted working
signals can be rerouted over pruned-down elements of the PC paths. Figure 2.2 contains a
similar example but shows the restorations paths available, for a failed span, within a com-
plex PC pattern with a high nodal degree.

In contrast to standard mesh network restoration techniques which form restoration
pathsets by forming crossconnections completely on demand, preconfigured restoration
forms its restoration paths by unmaking some crossconnections, leaving a minimum of
active make crossconnections to complete restoration, in general. An important considera-
tion, from a real time viewpoint, is that pruning to isolate desired restoration paths may be
done after the restored signals are already flowing. We retumn to issues related to crosscon-
nection make and break speed and technology aspects later.

17

A PC Plan within a Network’s Spare Capacity

Spare Link

Preconfigured
Crossconnection

Working Link
Broken

Crossconnection

Preconfigured
Restoration Path

Span Failure

- Useful Paths = 6
- Spare Links Used = 4

FIGURE 2.1 A Preconfigured Pattern within a Network’s Spare Capacity and the
Preconfigured Restoration Paths available for All Possible Span Failures

2.2 Definition of Preconfiguration Terminology

Before further discussion of preconfiguration takes place, a number of definitions
should be stated explicitly.

18

PC Plan in a Network PC Paths Present within
With a Span Failure the PC Plan for the Span Failure

«._/)

=== PC Pattern Link / "\ PCRestoration Path
Preconfigured Unused
Crossconnection PC Pattern Link
/ Span Failure «—» Opened PC
Crossconnection

FIGURE 2.2 A PC Plan containing a PC Pattern which Requires Multiple Crossconnections
on a Single Link and the PC Paths available For a Failed Span

A preconfigured crossconnection is a crossconnection at a node which connects a pair
of spare links. The preconfigured crossconnection is set among the network’s spare links
in anticipation of a span failure so that it may attempt to contribute towards the restoration
of the failure. A preconfiguraion plan or preconfigured restoration plan refers to the net-
work wide collection of all preconfigured crossconnections at all nodes and the spare links

which they interconnect.

A preconfigured pattern is a pattern formed from a set of connected spare links and pre-
configured crossconnections. A pattern results from a set of links which form a connected

subgraph.
A useful path, or useful PC path, is a PC path, for a specific span failure, which is
present within the network PC plan and is useful in contributing to the restoration of the

failure. It is possible that a PC plan can contribute more PC paths, to a span failure, than
there are working links on the failed span. If this is the case, then those PC paths, which

19

are in excess of the number of working links, are not useful. If a PC plan can not contrib-
ute more PC paths, to a span failure, than there are working links on the span, then all sup-
plied PC paths will be useful.

An uncovered working link is a working link which does not have a preconfigured res-
toration path available to it. This may not mean it is unrestorable. It may still be restorable
using on-demand crossconnect operations. Here we mean only that a useful preconfigured
replacement path is not provided for it in the PC plan. An unallocated spare link is a spare
link which does not belong to any subgraph element of the preconfigured restoration plan
for a network. A pruned spare link is a spare link which was a part of a PC pattern but was
not used to form a PC path, for a span failure, and was “pruned” to isolate it from those
allocated links which formed PC paths.

The k-shortest path (KSP) restorability of a network is the network's restorability when
using a KSP algorithm to calculate a restoration pathset for each of the network’s failed
spans with the available span sparing values and with no PC plan (the spare capacity is not
preconfigured.) The KSP restorability of a network gives an upper limit to the network’s
overall restorability with a restoration method which is near optimal in its efficiency. The
preconfigured (PC) restorability of a network is the network’s restorability when using
only isolated sections of the PC paths, contained within its deployed PC plan, to restore
each the network’s potential failed spans. The PC restorability of a network indicates how
effective the network’s PC plan is at providing immediately useful intact paths for the res-
toration of the network’s span failures. An efficient PC plan could generate a PC
restorability which can approach the restorability which results when just using KSP res-
toration. The “2-step” restorability of a network is the network’s restorability when, first,
all possible useful PC paths are applied to the span failure and then, if needed, additional
on-demand KSP paths are found within both the network’s unallocated spare capacity and
the network’s pruned spare capacity. The 2-step restorability of a network indicates if the
use of PC restoration has exacted a penalty on the overall restorability of a network.

20

2.3 Prior Work in Preconfiguration

The first work which proposed the possible utility of statistically-protective preconnec-
tion and established that preconfigured restoration had the potential to speed-up the resto-
ration of mesh networks is in [9]. In this paper, an analysis is made which establishes the
upper bound to the number of crossconnections which can be preconfigured for use in
forming the KSP restoration paths for all possible span failures. That is, an upper limit is
established to the fraction of the crossconnections, that are required to form the KSP resto-
ration pathsets of all possible span failures, which can be preconfigured in anticipation of
all possible span failures. This value establishes an upper bound because consideration is
only given to the number of crossconnections between each span pair which are preconfig-
ured at each node and not to which specific link level crossconnections are preconfigured.
This is required so the crossconnections within the network nodes line up to form coherent
restoration paths between the endpoints, where they are needed. This upper bound is use-
ful in that it gives an indication of preconfiguration’s rather surprising potential. In the test
networks evaluated [9] it was found that on average the upper bound to the fraction of
crossconnections, which are required to form the network’s KSP restoration paths, that can
be preconfigured was 79%.

A second technique recently developed by the same authors [10] addresses the problem
of the coherent formation of preconfigured crossconnections to form useful preconfigured
paths by using integer programming (IP) techniques to design a PC plan. This was done
for a number of test networks but using only preconfigured linear segments as a homoge-

neous class of building blocks. A “segment” is a simple connected non-closed non-

branching linear sequence. The segment’s end nodes are of degree” one while the interme-
diate nodes are of degree two. The use of an IP to solve a problem will generate a solution
which is optimal with regard to the definition of the problem given to the IP. Using this

method, the IP generates a coherently preconfigured segment plan which is optimal in that

the total number of unprotected working links in the network is minimized by the design,
* The degree of a node is the number of high level connections / spans connecting the node to other adjacent
nodes in the network. At the level of the network, each node’s degree will be determined by the number

of spans falling on it. At the level of a patiern, a node’s degree will be determined by the number of spans
falling on it which are a part of the pattern.

21

given the initial sparing of an optimal spare capacity plan for KSP (on-demand) restora-
tion. The technique generated PC restorabilities which varied from 30 to 40% and 2-step
restorabilities which were either very close to or exactly 100%. These restorabilities show
the promise of preconfigured restoration and were the genesis of the idea for this thesis.
Since only segments, were used, why not consider elemental trees, cycles, cycle-trees, etc.
and their arbitrary mixtures.

2.4 Technical Considerations

Now in this work several different types of preconfigured patterns will be considered; a
number of these will have nodal degrees which are not constrained to be less than two. To
form such a pattern would require that a single DCS port card which terminates a spare
link be connected simultaneously to more than one other port card. That is, we will be
accepting and allowing for a link at a node to be connected to more than one other link
through the DCS’s crossconnect matrix. This requires some consideration of the technical

issues involved.

The transport signals on each of the network’s links are continuous time, framed, iso-
chronous, time-division multiplexed digital carrier signals. It is easy to visualize a single
incoming side of a link being connected to the outgoing direction of multiple other links.
Each outgoing signal would be a regenerated digital copy of the incoming signal. This is
an example of one way broadcast and is, in practice, used today for distributing broadcast
signals, such as video, from a single source to multiple destinations within the network.

However, the broadcast of multiple incoming signals into a single outgoing signal does
not have any physical meaning with regard to digital signals although, in a graph theoretic
sense, we are quite able to contemplate and deal with it. Electrically, however, if the out-
going side of a port card is to be connected to the incoming side of more than one other
port card then some manner of selection is implied to determine which of the multiple
incoming signals will actually be broadcast on the outgoing side. Isochronous time contin-
uous signals cannot be simply added electrically in the same time-space and bandwidth
without destroying the contents of the signals (unlike, for example, analog signals on dif-

ferent subcarriers. The one link entity is the carrier here.) This could take the form of hard-
ware added to the DCS which would add 1:N selective switching to each port card, as
illustrated in Figure 2.3. However, this might be a costly and significant modification to
existing DCS machines.

Split Select

PC View Electrical Implication

FIGURE 2.3 Electrical Implication of Permitting Multiple
Crossconnections to a Single Port Card

In any event, for the purpose of evaluating pattern types which require multiple cross-
connections joined to a single port card it is assumed that some method exists which per-
mits the patterns to be formed. In other words, our present investigation is focused on the
graph theoretic problem itself. If the benefits are strong, technical solutions will be further
addressed with the motivation from this work. If such patterns show strong performance
when applied to preconfigured restoration it could warrant modification to the design of
future DCS machines.

A final technical consideration, which influence the way we tabulate results, is that the
relative speed of forming (closing) and breaking (opening) a crossconnection may be dif-
ferent; that is, the required speed in closing a crossconnect may be different than in open-
ing a crossconnect. In standard mesh network restoration crossconnections are only made
(closed) when the restoration pathset is formed in realtime. However, when using PC res-
toration crossconnections are opened to free the desired PC paths from the PC pattern in
which they were contained. In PC restoration crossconnections are made to connect the
disrupted working flows to the PC paths and, also, if it is required that additional leftover
restoration paths be formed within the network’s remaining spare capacity (2-step restora-
tion.) When comparing the PC and KSP restoration, therefore, the total number of each

23

kind of crossconnection event (crossconnections closed and opened) will be counted and
maintained separately. This is because there may be a significant difference in the time
required to make a crossconnection and the time required to break one. By recording these
separately we allow others to use our data more effectively in predicting overall realtime
benefits from this work depending on their technical assumptions. The time required to
form a crossconnection is made up, primarily, of a calculation time required to route the
crossconnection through the DCS nodal switching matrix (assuming a multi-stage switch-
ing fabric), a switching time required to form the crossconnection within the matrix and a
testing time to validate the crossconnection (which arguably may be waived in a restora-
tion context.) However, the opening of a crossconnection does not require calculation as
its internal path through the switch matrix is known in advance. There will likely not be a
testing time associated with opening a crossconnection as the resources required to form
the crossconnection are being freed and not allocated. This leaves only the time required
to physically open the logical crossconnection which may actually be a multi-hop internal
path in the DCS. These factors suggest that it will generally take more time to make a new

crossconnection than to open an existing one.

2.5 Method used to Evaluate the Effectiveness of a PC Plan

In the chapters that follow, a PC plan is evaluated on the basis of its restorability (for
both PC and 2-step restorabilities) and the number of crossconnection events required to
extract the isolated PC paths from the PC plan and to form leftover (2nd-step) KSP paths
(if required.) In this section, the basic method used to evaluate a PC plan’s performance is
discussed.

The are 3 steps in the evaluation of a PC plan for a specific span failure:

o Step 1: Connection state to PC subgraph abstraction. The raw PC plan, which is com-
prised only of a list of the link to link individual crossconnections which are preconfig-

ured within the network, is analysed and a higher level abstraction of a list of the
logical unit capacity pattems which are contained within the PC plan is obtained.

24

o Step 2: Exploit useful portions of subgraphs. All PC paths which are useful in restoring
the specific span failure are extracted from each PC pattern and a record is maintained
of the crossconnections which must be opened to free the PC paths from the pattern.
The pruned spare links, which were not useful in forming PC paths, are available for
use in 2nd-step restoration (if required) at the completion of this step.

« Step 3: “Top up” restoration on demand. If required, 2nd-step leftover KSP paths are
extracted from the unallocated and now also released spare links remaining in the net-
work. These spare links can include unallocated spare links and allocated spare links
which were not used in forming PC paths (the pruned spare links generated in the pre-
vious step.) The leftover KSP paths try to make use of the remaining preconfigured
crossconnections in the network to reduce the number of crossconnections events.

These steps are repeated for all possible span failures within the network. As each step is
executed the number of PC paths and the number of leftover KSP paths is stored for each
span failure. Additionally, a record is maintained of the number of crossconnections which
had to be asserted to restore each span failure; a separate record is also maintained of the
number of crossconnections which had to be opened. After the PC plan has been evaluated
for all span failures, an overall representation of the total number of PC and leftover KSP
paths can be used to calculate the pure PC and 2-step restorabilities. Additionally, the
number of crossconnects closed, required in 2-step restoration, can be summed for all span
failures to generate the total crossconnection closures required to form the 2-step restora-
tion pathsets of all spans. A similar procedure can be used to generate the total crosscon-
nection openings required to form the 2-step restoration pathsets of all spans. These totals
give an overall network view of the crossconnection events required when using PC plus
2nd-step KSP restoration. The PC and 2-step restorabilities, as well as the crossconnection
totals, can then be compared against equivalent metrics resulting from the use of on-
demand KSP restoration alone. A more detailed explanation of each step follows in the

next sub-sections.

2.5.1 Step 1: Abstraction of the PC Subgraphs contained within a PC Plan

As previously discussed, the first step in evaluating the performance of a PC plan is to
extract, from the detailed crossconnection data which constitutes implementation of the
PC plan, the logical subgraphs which are formed by the given set of preconfigured cross-
connections. This is a straightforward step; the preconfigured crossconnections are traced

through the network to form the PC patterns. When all PC crossconnections are accounted
for, this stage of evaluation terminates, and a list of logical subgraphs is on hand.

2.5.2 Step 2: Exploitation of Useful PC Paths contained within each PC Pattern

For a particular span failure, each PC pattern will be evaluated to determine the PC
paths which are contained within the pattern. This is done by iteratively taking the shortest
path contained within the pattern which joins the end nodes of the failed span. Successive
shortest paths are removed from the PC pattern until the subgraph is disconnected between
the end nodes of interest. As each path is taken out, the PC crossconnections, which join
the PC path’s links to other links in the pattern, are pruned (a record is maintained of the
number of crossconnections which are broken.) Figure 2.4 is an example of the extraction
of PC paths contained within a PC pattern. In the example, two paths are removed succes-
sively from the one PC pattern by iteratively choosing the shortest path within the pattern.
As each path is extracted, the crossconnections which connected it to the rest of the pattern
are unmade. In the end, all that remains-of the original pattern is a fragment which cannot
contribute any PC paths but may be useful if released for use, when in the general case,
some additional on-demand KSP paths are required (i.e., 2 steps to complete restoration.)

2.5.3 Step 3: Formation of Further on-demand KSP Paths (2 Step Restoration)

The final step, in evaluating the overall restorability of the network is to form KSP
paths from the network’s remaining spare capacity, if needed. At this stage unallocated
spares and pruned spares are both available. A shortest path (SP) algorithm is used to iter-
atively generate successive single shortest paths to restore the span failure being tested.
However, as each shortest path is generated, it is not simply formed from randomly chosen
available spare links. Instead, a simple method is used which tries to make use of still
present PC crossconnections to assist in forming the on-demand shortest paths. This fur-

ther reduces then number of crossconnection closures required for the failure restoration.

Each iteratively generated on-demand SP path is formed in the following manner: at the
starting node (one of the end nodes on the failed span is arbitrarily chosen to be the start-
ing node) the first available spare link is chosen on the span which joins the starting node

26

. Extraction of the Extraction of the
PC Pattern in a PC Plan First PC Path Second PC Path
and a Span Failure as found by Shortest Path as found by Shortest Path

A

2 PC Paths Extracted Pattern Fragment formed of
ﬁ-(:n Pattern pruned spare links which do not

contribute to forming a PC Path

Preconfigured
Crossconnection
Opened
Preconfigured
Crossconnection

/ Span Failure
+——>
em== Pattern Link

=
M OO#-O)

FIGURE 2.4 Extraction of the PC Paths contained within a PC Plan by successive removal
of the Shortest Path within the Plan

to the next node along the route generated by the SP algorithm. At the next node, however,
along the restoration route, the spare link is inspected to determine if a preconfigured

crossconnection exists between it and a spare link on the span which connects the node to
the next node along the route. If such a crossconnection exists then the construction of the
SP restoration path continues along the spare link which is connected to this crossconnec-
tion; otherwise, an inspection of the unoccupied spare links which exist on the next span is

made and the available spare link, which would require the least number of preconfigured

27

crossconnections to be opened, is chosen. This continues until the SP path is fully formed.
In summary, a SP route is converted into a path by choosing links, along the route, with
preference given to those links which are in a preconnected fragmentary state which
assists in forming the path, and to those links which minimize the number of preconfig-
ured crossconnections which must be opened. This method is applied to the construction
of each of the iteratively generated on-demand SP paths. Constructing the on-demand KSP
paths in this way, helps to further reduce the number of crossconnection events by making
use of preconfigured crossconnections to assist in the formation of the leftover 2nd-step
KSP paths.

Figure 2.5 is an example of how a leftover KSP path is formed. In the example the only
possible leftover KSP path follows the route A-B-C-D. Atnode A, construction of the path
is started on the only available spare link on span A-B. At node B, there are two spare
links on span B-C which can continue the construction of the path. However, one of the
links has a preconfigured crossconnection which connects it to the path link on span A-B.
So, this link is chosen to continue the construction of the path so as to reduce the number
of 2nd-step crossconnections which must be asserted. At node C, there are two possible
spare links, on span C-D, with which the construction of the path can be completed. How-
ever, one of the spare links has a preconfigured crossconnection connecting it to a spare
link on span C-E while the other has no crossconnection. Therefore, in order to minimize
the number of crossconnections which must be broken, the path construction is completed

on the spare link which has no preconfigured crossconnections.

2.6 Validation of PC Plan Generation and Evaluation

For all the PC design methods, discussed in the following chapters, PC plans were eval-
uated using an independent PC evaluation program which implemented the evaluation
method discussed in section 2.5. Each design method generated a detailed list containing
all of the preconfigured link to link crossconnections contained within the method’s gener-
ated PC plan. In other words, the program which implements each design method and the
program which evaluates the PC plan are separate and independent of each other. The

28

Spare Links Remaining in a Network

For use in Leftover KSP Paths
1) The Paths Starts on the Single

Available Spare Link on Span A-B.

The Only Existing Path for Restoring the
Failure of Span A-D follows the
Route A-B-C-D

2) Two Spare Links are on Span B-C. 3) Two Spare Links are on Span C-D.

Take the Link which has a PC Take the Link which does not
Crossconnection to the Path Link Require a PC Crossconnection
on Span A-B to be Broken (Path Completed)

FIGURE 2.5 Routing of On-demand 2nd-Step KSP Paths which Attempts to Make Use of
Preconfigured Crossconnections

operation of the PC evaluation program was hand verified for the different design methods
using a small test network (Netl.)

Each program, which implemented a PC design methods, generated a raw output file
which contained the detailed link to link crossconnections contained in the generated PC
plan. The evaluation of this PC plan was performed by the program described in the previ-
ous paragraph. The PC patterns generated within an output PC plan were inspected for

29

each test network, to verify that the category of generated pattern was correct. Finally, the
execution of each PC design program was hand verified using a small test network (Netl1.)
Full source code listings for all PC design and evaluation programs are available in [17].

2.7 Properties of the Test Networks

There were S test networks used with the PC design methods presented in the following
chapters. The networks are labelled Netl, Net2, Net3, Net4, and NetS. Figures 2.6 to 2.10
show each network’s topology. Appendix A contains each network’s standard network
interface file (SNIF) which gives detailed information about the network, specifically
about the number of working and spare links which are present on each network span. The
working and sparing placement plan, for each network, was designed using the integer
program (IP) method presented in [11]. The resulting design is optimal, in the sense that
the total physical fibre distance of the working and spare capacity is minimized while
insuring that the network is fully restorable when using on-demand max-flow span resto-
ration. The network designs, which result, when using this method are very capacity effi-
cient and will give a true indication of how effective PC restoration can be when it is
deployed within an efficiently spared network plan.

We now go on to consider the performance of tree subgraphs as the elemental building
block for preconfiguration.

30

FIGURE 2.8 Test Network Net3

32

3. Studies on Preconfigured Spanning Trees

The tree is a class of pattern which has no limitation on its nodal degree. The current
generation of DCS are not designed to directly form a pattern in which any node has a
nodal degree greater than 2 (although some support broadcast unidirectionally.) Nonethe-
less, in this chapter a pair of heuristics, which generate preconfigured spanning trees in a
network’s existing spare capacity plan, are tested to see if the tree pattern can be of theo-
retical or conceptual benefit to preconfigured restoration.

3.1 Concepts

A tree is defined as a collection of fully connected nodes in which there is only a single
path between any pair of nodes in the tree. A tree may not contain cycles and, as a result,
the failure of any single span will disconnect the tree (a path will no longer exist between
every pair of tree nodes.) A spanning tree is a tree which, when superimposed over a net-

work, covers all connected network nodes.

In a network which has a weight associated with each network span, a maximum
weight spanning tree is a tree, from the set of all possible spanning trees, for which the
sum of the weights of the tree spans is at a maximum. That is, the sum of the weights
belonging to such a tree can not be exceeded (although it may be equalled) by the sum of
the span weights of any other spanning tree.

The heuristics, which are described in this chapter, generate preconfigured trees by iter-
atively building maximum weight spanning trees in a network’s spare capacity. The span
weights are determined by running a k-shortest path (KSP) algorithm for the failure of all
network’s spans and counting the number of times that each span contributes to the resto-
ration of another span. An example of how the span weights are determined is given in
Figure 3.1. Note, in the example, that although the network can offer a number of restora-
tion paths, which exceeds the number required for full restoration by two of the spans,
only the number of paths which are directly used in restoring the spans is counted in deter-
mining the span weights. Thus, the span weights are determined so they are representative
of each span’s actual contribution to the KSP restoration of other spans.

35

Restoration Paths Available for Each Failed Span

1 Lost Worker
1 Useful Path

1 Lost Worker
0 Useful Paths

Span Failure
Spare Link
_____ Working Link

FIGURE 3.1 Determination of Span Weights for Use in the Tree Heuristics by Counting the
Contribution of Each Span to the Working Link Restoration of the Failure of Other Spans

After the span weights are determined, preconfigured trees can then be designed in the
network’s spare capacity by the repeated application of Prim’s spanning tree algorithm
[12] to form a series of maximum weight spanning trees based on the span weights. At
each application of the spanning tree algorithm, one or more copies of the determined
maximum weight spanning tree will be constructed at a link level within the network’s

spare capacity. The algorithm terminates when it is no longer possible to find another max-

36

imum weight spanning tree in the network’s spare capacity (a network’s spare capacity is

finite and, so, can only hold a finite number of trees.)

By building PC spanning trees using spans with a high contribution to the KSP restora-
tion of other spans, the idea is that the likelihood of the tree design containing efficient
preconfigured restoration paths should be increased.

Two versions of this basic method will be presented. The first version will form all
spanning trees on the basis of a set of span weights which are determined only once at the
start of execution. The second version will form spanning trees using a set of span weights
which are determined at the start of each iteration. This should help track changes caused
in the network’s configuration by the addition of PC trees in previous iterations. The two
versions of the maximum weight spanning tree heuristic are presented in the following

sections.

3.2 Tree Design with Span Weights set Once
The first preconfigured tree heuristic constructs a tree PC design by calculating the

span weights in the network once, at the start of execution, and then building successive
preconfigured trees using only the original span weights. The span weights do not change
as the network configuration is modified by the addition of PC trees.

3.2.1 Method

First, the heuristic runs a KSP algorithm to determine the restoration pathset which
recovers, to as large a degree as possible, the working links lost for each potential failed
span. While the KSP algorithm is run, the heuristic tracks the number of times each span
contributes a spare link to the restoration of another span’s failed working link. When the
KSP restoration pathset has been evaluated, the total number of times that each span has
contributed to the restoration of another span is set equal to the span’s weight. This gives
each span a weight which is proportional to its contribution to span restoration.

After the span weights have been determined, a maximum weight spanning tree is
determined using Prim’s algorithm. Next, the number of copies the spanning tree, to be

37

START buildPCtrees_with_SpanWaeights_set_at_start_of_execution {
findKSPrestorationPathsetsForAllSpans
calculateSpanWeightsFromKSPpathsets
for (i = 1 to NumberOfSpans) {

unallocated_spares(i] = spans(i].spares

}
done = FALSE
while (not done) {
tree = prim (weights, unallocated_spares)
if (tree exists) {
treeSpans = free.treeSpans
numTree = INFINITY
for (i = 1 to size of treeSpans) {
if (unallocated_spares[treeSpans(i]] < numTree)
numTree = unallocated_spare[treeSpans{i]]

}
adjustUnallocatedSpares(tree, numTree, unallocated_spares)
preconfigureTree (tree, numTree)
} else {
done = TRUE
}

}

FIGURE 3.2 Pseudo-code representation of Preconfigured Tree Heuristic treel.

preconfigured in the network’s spare capacity, is determined. The number taken is set
equal to the number of available spare links on the tree span which has the least amount of
available spare capacity. The reason that multiple copies of the tree are taken is that, in
general, rerunning Prim’s algorithm, after having taken only a single copy, would return
exactly the same spanning tree as in the previous run because the span weights do not
change between runs. With unchanging span weights, a different tree will only be gener-
ated if the span set, from which a tree can be formed, is changed. If the number of copies
taken is equal to the number of spare links on the tree span with the least amount of avail-
able spare capacity then at least one network span will be depleted of all available spare
capacity. This will reduce the set of valid spans from which a tree may be formed and
force the next run of Prim’s algorithm to generate a different tree. After the number of
link-level instances of the tree to take is determined, the number of available spare links on
each span, which is covered by the tree, is adjusted downward by the number of trees

38

taken (each copy of the tree requires one spare link on each tree span.) Subsequent trees
are built using repeated applications of the procedure described in this paragraph. The
algorithm terminates when it is no longer possible to build a PC tree in the network’s
available spare capacity. Refer to Figure 3.2 for a pseudo-code representation of this heu-
ristic which will be referred to as algorithm treel.

3.3 Tree Design with Span Weights updated Iteratively
A second preconfigured tree heuristic, is similar to the tree heuristic discussed in the

previous section, as it builds trees iteratively in a network’s spare capacity. However, it dif-
fers in that it updates the restorability contribution weights of the spans at the start of each
iteration and takes only one copy of the maximum weight spanning tree that is formed per
iteration. Evaluating the span weights at the start of each iteration reflects changes in the
network restoration plan which are caused by the addition of preconfigured trees in previ-
ous iterations. The restoration pathset is modified because the PC trees contain paths
which can contribute towards the restoration of a failed span’s working links. These PC
paths modify the restoration pathset by reducing the number of working links which are
directly vulnerable to a span failure which results in a reduction of the number of restora-
tion paths which must be calculated using KSP restoration. Also, the PC paths occupy
spare links which are no longer available for use in KSP restoration (tree links which are
not used to form a PC path can be recycled for use in 2nd-step on-demand KSP restora-
tion, if required) and this can result in the KSP restoration paths being distributed among
different spans than in previous iterations. Since the span weights are calculated on the
basis of the KSP restoration pathset, which is evaluated after taking all useful PC paths,
the span weights will change as PC trees are added to the network. Updating the span
weights, at the start of each iteration, should result in a more efficient preconfigured tree
design because a maximum weight spanning tree will be formed on the basis of the current

network configuration.

3.3.1 Method

At the start of each iteration, a 2nd-step on-demand KSP restoration pathset is evalu-
ated for each potential network span failure after first taking advantage of all useful PC

39

paths from the PC trees present from previous iterations. The network span weights are
determined from this KSP pathset by counting the number of times each span contributes
to the restoration of another span. The KSP pathset, for each potential failed span, is deter-
mined with consideration to the reduction in the amount of spare capacity which can be
used to form 2nd-step KSP paths and to the reduction in the number of uncovered working
network links (as more PC trees are added to the network, additional useful PC paths
should be available for use by previously uncovered working links. These paths will
reduce both the number of uncovered working links and the number of available spare
links for use in 2nd-step KSP paths.) The 2nd-step KSP pathset will be modified by the
reduction in the number of uncovered working links because fewer KSP restoration paths
will need to be calculated. It will also be modified by the use of spare links in forming PC
paths because this will reduce the number of spare links which each span can contribute to
the KSP algorithm. This could modify the configuration of the 2nd-step KSP pathset, if it
is forced to include on-demand restoration paths with different routes, than in previous
iterations, due to the changes in available network sparing. The spare capacity which is
available for use in the calculation of the KSP pathset is made up of the unallocated spare
capacity and the pruned spare capacity present in the network. In summary, at the start of
an iteration, the 2nd-step on-demand KSP restoration pathsets are evaluated for each
potential span failure, using a PC plan formed of the generated PC trees from previous
iterations, and it is from these pathsets that the span weights are calculated for use in the

current iteration.

At the start of execution, the algorithm calculates the span weights as described in the
previous paragraph. Once the span weights are calculated, Prim’s algorithm is executed to
find a maximum weight spanning tree and a single copy of this tree is preconfigured into
the network’s spare capacity. The network’s unallocated spare capacity is decremented to
account for the links used in forming the tree and the network’s uncovered working links
are also decremented to account for the preconfigured paths that exist within the tree. The
adjusted network configuration is used to recalculate the network span weights and the
next tree is formed on the basis of these updated weights. The algorithm continues, in this
manner, until it is no longer possible to build further preconfigured trees in the unallocated

network spare capacity, at which point it terminates. Refer to Figure 3.3 for a pseudocode
representation of this PC tree design algorithm which will be referred to as tree2.

START buildPCtrees_with_SpanWeights_evaluated_at_start_of_each_iteration {
for (i = 1 to NumberOfSpans) {
unallocated_spares(i] = spans(i}.spares
uncovered_working[i] = spans(i].working

}
done = FALSE
trees = &
while (not done) {
findLeftoverKSPrestorationPathsetsForAliSpans
(unallocated_spares, uncovered_working, trees)
calculateSpanWeightsFromKSPpathsets
tree = prim (weights, unallocated_spares)
if (tree exists) {
treeSpans = free.treeSpans
numTree = 1
trees = trees U tree
adjustUnallocatedSpares(tree, numTree, unallocated_spares)
adjustUncoveredWorking (iree, numTree, uncovered_working)
preconfigureTree (tree, numTree)

} else{
done = TRUE
}
}
}
FIGURE 3.3 Pseudo-code representation of Preconfigured Tree Heuristic Tree2.
3.4 Results

3.4.1 Results for Treel

Figure 3.4 shows an example of the type of pattern that preconfigured tree heuristic
treel generates in test network Netl. Table 3.1 contains the network restorability results
over all possible span failures for restoration using only KSP, restoration using only pure
PC, and 2-step restoration. Table 3.2 contains the total count of crossconnection events,
over all possible failed spans, for KSP restoration alone and for 2-step restoration. Figures
3.6 and 3.7 give counts of the number of crossconnection events required at each node to
form a restoration pathset, for each span failure, in test network Net2 when using only on-

demand KSP restoration and when using 2-step restoration. The crossconnect totals for

41

each node appear sequentially within the space, on the x-axis, corresponding to each span
failure.

3.4.2 Results for Tree2

Figure 3.5 shows an example of the type of pattern that algorithm tree2 generates in test
network Netl. Table 3.3 contains the network restorability results over all possible span
failures for restoration using only KSP, restoration using only pure PC, and 2-step restora-
tion. Table 3.4 contains the total count of crossconnection events, over all possible failed
spans, for KSP restoration alone and for 2-step restoration. Figures 3.8 and 3.9 give counts
of the number of crossconnection events required at each node to form a restoration path-
set, for each span failure, in test network Net2, when using only on-demand KSP restora-
tion and when using 2-step restoration. The crossconnect totals for each node appear

sequentially within the space, on the x-axis, corresponding to each span failure.

Table 3.1: Network Restorability Results using Standard KSP and PC Restoration

with Tree Heuristic Treel
KSP Restorability | PC Restorability 2-step
Network Restorability
(%) (%)

(%)

Netl 100 37.32 97.89
Net2 96.87 35.04 98.01
Net3 100 35.32 100
Net4 100 377 100
NetS 100 31.22 98.45

42

Table 3.2: Total Network Crossconnect Events Results using Standard KSP and PC
Restoration with Tree Heuristic Treel

Total Xpt
Network Xpts Closed Xpts Closed Xpts Opened Events
KSP 2-step 2-step 2
-step
Netl 310 169 583 752
Net2 3984 2644 6184 8828
Net3 13787 7879 22464 30343
Net4 84389 51084 175349 226433
NetS 8529 5726 16851 22577
Table 3.3: Network Restorability Results using Standard KSP and PC Restoration
with the Tree Heuristic Tree2
KSP Restorability | PC Restorability 2-step
Network Restorability
(%) (%)
(%)
Netl 100 38.74 99.30
Net2 96.87 36.04 97.15
Net3 100 36.19 100
Net4 100 39.96 100
Net5 100 33.68 100

Table 3.4: Total Network Crossconnect Events Results using Standard KSP and PC
Restoration with Tree Heuristic Tree2

Total Xpt
Network Xpts Closed Xpts Closed Xpts Opened Events
KSP 2-step 2-step
2-step
————ee
Netl 310 171 501 672
Net2 3984 2737 6205 8942
Net3 13787 9135 24353 33488
Net4 84389 55661 157214 212875
Net5 8529 6235 18462 24697

43

g

subGr:ph 3, Occmi;nces 1 subea?h 4, Occurrences 2
FIGURE 3.4 Example of the Patterns Generated using Tree
HeuristicTreel in Netl

R
(NN

P
e ~
R -

subGraEh 3, Occurrences 1

_ >, p
S Z >, % T
subGraph 4, Occurrences 1 subGraph 5, Occurrences 1 subGraph 6, Occurrences 1

FIGURE 3.5 Example of the Patterns Generated using Tree
Heuristic Tree2 in Netl

Xpts Closed

Xpts Closed

Xpts closed at each Node for Each Span failure - KSP Only

304

20+

10

0
i

70

i34567§9wﬁhﬁ£w$nwwﬁmnnuﬁmnn

ed Span

Xpts closed at each Node for Each Span failure - 2-Step

504

304

204

104

re

lly

8 lOll1213140:’5l6l71819202[22232425262728

Span

FIGURE 3.6 Crossconnections Closed at each Node to Form the Restoration Pathsets for
Each Span Failure when using the PC plan formed within Net2 using method Treel. For
Restoration using only Conventional KSP Restoration and for 2-Step Restoration.

45

Xpts opened at each Node for Each Span failure - 2-Step

160
140
120/
1004

& 8o

a

=2

3
604
40.
204

04
1 23 456 78 91011121314151617 18192021 222324252627 28
Failed Span

FIGURE 3.7 Crossconnections Opened at each Node to Form the Restoration Pathsets for

Each Span Failure when using the PC plan formed within Net2 using method Treel. For
Restoration using 2-Step Restoration.

3.5 Conclusions

The tree pattern type appears to have a relatively poor performance when applied to
preconfigured restoration. For both tree heuristics the restorability when using PC restora-
tion without leftover KSP restoration was typically in the range of 30% to 40%. The PC
plus leftover KSP restoration was quite good, however, typically being at or near fully
100% restorability which would indicate that the addition of preconfigured trees to a net-
work’s spare capacity will not hurt overall restorability to any large degree. The PC
restorability was marginally better in the PC plan generated by tree2 compared to the PC
plan generated by treel. The difference was typically only 1%-2%, however.

The use of the PC tree also dramatically increased the total number of crossconnection
events required to restore a span failure compared to just using KSP restoration. However,

the number of crossconnections which were closed when using PC restoration was always

Xpts Closed

Xpts Closed

Xpts closed at each Node for Each Span failure - KSP Only

801

70+

504
40 <
304
20+
10
0

123456 7 8 9 1011121314 151617 18 19 20 21 22 23 24 25 26 27 28
Failed Span

8 Xpts closed at each Node for Each Span failure - 2-Step
0

70+

604

50 <

40 4

304

204

10+

A L
L

345 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Failed Span

FIGURE 3.8 Crossconnections Closed at each Node to Form the Restoration Pathsets for

Each Span Failure when using the PC plan formed within Net2 using method Tree2. For
Restoration using only Conventional KSP Restoration and for 2-Step Restoration.

47

Xpts opened at each Node for Each Span failure - 2-Step

140

120+

100 4

'§ 804
-
404

204

0

1 234567 8 9 1011 1213 1415 16 17 18 19 20 21 22 23 24 25 26 27 28
Failed Span

FIGURE 3.9 Crossconnections Opened at each Node to Form the Restoration Pathsets for
Each Span Failure when using the PC plan formed within Net2 using method Tree2. For
Restoration using 2-Step Restoration.

lower than the number of crossconnections which had to be closed when using KSP resto-
ration. But PC restoration will generally require that crossconnections also be opened so
that the PC branches are pruned off of the desired PC paths for restoration. The number of
crossconnections which would have to be opened when using preconfigured trees is quite
large compared to the number which have to be made and, when considering the total
number of crossconnect events between PC and KSP restoration, PC restoration will
require a considerable number of crossconnect events to implement if using directly pre-
configured trees. This is because it is assumed that a preconfigured crossconnection exists
between each pair of links, which meet at a node and belong to the same PC tree. The
number of such preconfigured crossconnections which exist at a node for a particular PC
N(N-1)
2
links which meet at the node. Therefore, to form a PC tree, the number of preconfigured

link-level tree will be equal to (g’) or , where N is equal to the number of tree

crossconnects at a single node will increase with the square of the number of tree links

which meet at the node. As PC trees have no constraint on their nodal degrees, the total
number of preset crossconnections can be quite large.

However, as previously discussed, whether this is harmful depends on the method used
to implement the ability to have multiple crossconnections meeting at a single port card in
a DCS. If a method is used which uses a fast selection switch then having a large number
of crosspoints preconfigured within the network may not be harmful to the overall restora-
tion time. Also, there may exist an asymmetry between the time required to close a cross-
connection and the time required to open one. If the time required to open a
crossconnection is significantly less than the time required to close a crossconnection,
then the overall restoration time may still be better when using this PC method than when
using KSP restoration alone. This is because the number of crossconnections which must
be made when using PC tree restoration is always less than the number of crossconnec-

tions which must be made when using KSP restoration alone.

49

4. Genetic Algorithms for Preconfiguration

In the previous chapter, the tree was considered as a preconfigured element. It was
unconstrained in nodal degree but still belonged to a category of pattern with certain defin-
ing properties. In this chapter, a genetic algorithm (GA) is used to generate preconfigured
patterns without constraint on the heterogeneous mixture of differing pattern classes. That
is, the patterns contained within the design do not have to belong to a common pattern
class (i.e. cycle or tree.) The patterns are generated on the basis of a fitness scoring for-
mula which favours those patterns which are the most efficient in providing useful precon-
figured restoration paths.

4.1 Concepts

Genetic algorithms are an optimization/search method modelled after the processes
found in natural evolution [13,14]. For a genetic algorithm (GA) to attempt to optimize a
problem it requires an encoding scheme which can represent a potential solution as a
string formed from some symbol set and it requires a fitness function by which it can
assign a score to a string (actually, to the solution the string represents) that evaluates how
well it solves the problem. The string representing a particular solution can be viewed as
the “genome” of that solution while its score is equal to its fitness.

The GA generates an initial “population” of solutions from randomly generated strings
and evaluates the fitness of each “individual” in the population. This initial population is
used to generate a new population, which is to form the next “generation”, by combining
pairs of strings from the initial population to generate new strings. Pairs of strings are cho-
sen probabilisticly for this operation, with a probability directly proportionate to each
string’s fitness relative to the average fitness of the population, until the population of the
next generation is filled (equal in size to the initial population.) This process of evaluation
and reproduction is repeated to produce successive generations of populations. The GA
can terminate either when an individual is found that meets a certain fitness level, after a
certain number of generations have passed, and/or when the population converges (a pop-
ulation has converged when all the members of the population contain the same solution or

have the same score and generating further generations would be of limited benefit.)

50

An explanation of why a GA is effective in finding a good solution to a problem is
given by the schema theory [14]. According to this theory, a GA operates by evaluating
the effectiveness of the schema which are present in the individuals of the population. A
schemata is a particular pattern of genes which can appear in an individual’s defining
genome. For example, the bit sequences 100100 and 101101 both contain the schemata
defined by 10x10x, where x is a wild card bit location. Each schemata represents a hyper-
plane of the solution search space. A schemata can be either beneficial or harmful to a pat-
tern’s overall fitness depending on what its effect is on the solution. The overall fitness of
an individual is determined by the interaction of all of the schema present in its genome. If
an individual contains a beneficial schemata, it will, on average, have a relatively high
contribution to the formation of the next generation. On the other hand, if an individual
contains a harmful schemata, it will, on average, have a relatively low contribution to the
next generation. The net effect is that the representation the beneficial schema have in the
population will increase as the number of generations increases while the representation of
the harmful schema will decrease. This will result in an overall increase of both the aver-
age and highest individual score present in the population.

Crossover is the most common method used to combine two individuals to produce two
new individuals from the genomes of the original pair. Crossover operates by cutting two
strings in half at the same location and connecting the first half of the first cut string with
the second half of the second cut string and vice versa to generate two new strings from

the original two. Figure 4.1 shows an example of the crossover operator

ABCDEFGH ABCDEG678
+
12345678 12345FGH
~®— Crossover Point

FIGURE 4.1 Example of the Genetic Algorithm Operation of Crossover

In Figure 4.1, the two strings on the left are mixed together using a crossover point
between the fifth and sixth string location to produce two new strings (shown on the right.)

51

The example above is of a one point crossover operator. It is possible to have 2 or more

crossover points. The location of the crossover point is, generally, chosen at random.

When the crossover operator acts on two fit individuals with beneficial schemata it can
produce individuals with a higher concentration of good schemata. However, the crosso-
ver operator can also disrupt a schema if the crossover point should occur between one of
the bits spanning the edges of the schema’s defining bits. This would result in the different
parts of the schema being separated along the crossover point. The crossover operator can
also create new schema, that were not present in either of the original individuals, by com-
bining fragments of bit sequences from the original sequences to form new schema. Thus,
the crossover operator can recombine existing schema, disrupt existing schema and create
schema which previously did not exist. Whether the results of the crossover operation are

beneficial or not is determined by the GA’s fitness function.

The mutation operator is used to perturb the search into parts of the search space which
may not be represented by the individuals in the population. Mutation operates by flipping
a gene in an individual’s defining genome. The probability that a mutation will occur ata
particular gene is set to some small value (typically 0.1% or less, per iteration or genera-
tion.) An individual modified by a mutation operation would thrive if it contained a new
schema which provided it with benefit; otherwise, the selection process would be biased

against it.

4.2 PC Design Using Genetic Algorithms at the Span level

The first GA representation for PC strategies tries to design good preconfigured pat-
terns using individual spans as building blocks. A pattern is formed from the union of a
number of spans. Each span contributes a single spare link to forming the pattern and all
the links in a pattern which fall on a node are fully connected; that is, there is a crosscon-
nection formed between each pair of the pattern links which meet at a node. The scoring
function, which is used by the GA to assign a score to the pattern represented by each indi-
vidual, is the ratio of the number of useful preconfigured paths contained in the individ-
ual’s pattern to the number of spare links which would be required to construct the

52

individual’s pattern. This scoring function gives an advantage to individuals which repre-
sent a pattern that can provide a large number of usefully preconfigured paths relative to
the number of spare links required to construct the pattern. This encourages the generation
of preconfigured patterns that make efficient use of the network’s finite spare capacity.
This GA based design algorithm will be referred to as GA1.

The GA continues execution until the population converges (converges in the sense that
all members of the population have the same score), at which point a preconfigured pattern
with a good score should result. By scoring on the basis of preconfigured paths per pattern
link, a pressure for efficient preconfiguration of network spare capacity is created.

4.2.1 Representation of a Pattern at the Span Level
A preconfigured pattern can be represented with a bit string of length N in a network

with S spans. N is given by the following expression:

Ngs= 3§ (EQ4.D)

Where, 8, is one if span i has at least one spare link which is not being used (to form a
preconfigured pattern, or restore a span failure) or zero if span i has no free spare links.
Ny is equal to the number of spans which are able to contribute at least one free spare

link to form a preconfigured pattern.

A specific pattern can be represented with a particular sequence of ones and zeros in a
bit string of length N If a position in the bit string is set equal to one then the pattern
contains a link on the span which corresponds to that bit position. If another position is set
equal to zero then the pattern does not contain a link on the span corresponding to that bit
position. An example, of the span level representation of a pattern using a bit string, fol-
lows in Figure 4.2.

53

A Network with 5 spans. Pattern from Binary Digit:
01110

01234

FIGURE 4.2 Example of How a Preconfigured Pattern can be Represented at the Span Level,
for use in GA1

In the example in Figure 4.2, there is a simple network containing 4 nodes and 5 spans.
A triangular pattern is represented in the network by the binary string 01110, which has a
zero for the two network spans which are not in the pattern, and a one for the three spans
which are. Note that in this example all of the network spans are assumed to have at least
one available spare link to contribute to the construction of a preconfigured pattern. If, for
example, span 4 were completely depleted of available spare links it would not be repre-
sented with a bit in the pattern’s binary string. In this case, the same pattern could be rep-
resented with the binary string 0111, which is only 4 bits long as opposed to 5 bits in the

original example.

It should be noted that there is nothing within this representation that does not allow a
single binary string to represent a pattern which contains several disconnected elements.
The binary string only determines what spans contribute a link to the pattern and it could
be that the pattern links join together to form two or more disconnected subpatterns. How-
ever, there is no advantage in attempting to encourage the creation of bit strings which rep-
resent fully connected pattern; if a disconnected pattern has a high fitness score, it can still
effectively provide PC paths even if its subpatterns are disconnected.

54

4.2.2 Fitness Score

A GA requires a fitness function to assign a score to the solutions contained in the pop-
ulation pool. A good preconfigured pattern will tend to contain a large number of useful
preconfigured paths compared to the number of spare links required to form the pattern.

The score used to evaluate the fitness of an individual i is given by:

F Si bl (EQ 4.2)
Where F,_ is the fitness of individual ¢, P pc, is the number of useful preconfigured paths

contained in the pattern represented by individual i, and SL, is the number of spare links

used in the construction of preconfigured individual i. This fitness score will favour those
individuals that represent patterns which make efficient use of network spare capacity to
deliver preconfigured paths, for the given working demand flows and network topology.

4.3 Design Using Genetic Algorithms at the Crossconnection level

The previous method (GA1) used a representation of a pattern at the span level to
design preconfigured patterns in the network’s spare capacity. The span level method has
the advantage of needing only a relatively small binary string size to represent a pattern
(the string can, at most, be of a length equal to the number of spans in the network.) Hav-
ing a short defining string translates into a relatively small solution search space in which
good patterns must be searched for. However, the previous representation assumes that all
pattern links, where they meet at a node, are fully connected; i.e.) that is there is a cross-
connection between each pair of pattern links meeting at a node. As the number of pattern
crossconnections at a node varies with the square of the number of pattern links meeting at
the node, the number of crossconnections can increase rapidly as the degrees increases at

the vertices of the patterns.

Representing a pattern at the crossconnect level could reduce the total number of cross-
connections preset in a preconfiguration plan while maintaining a high level of preconfig-
ured restorability. Reducing the total number of preset crossconnects can translate into

S5

faster restoration times by reducing the number of preset crossconnections which have to
be broken to utilize preconfigured paths in span restoration or, at least, permit the PC plan
to be formed using fewer and smaller 1:N selection switches within the DCS. This GA
based design algorithm will be referred to as GA2.

4.3.1 Representation of a Pattern at the Crossconnection Level

A pattern can be represented at the crossconnect level using a binary string with a
length equal to the number of possible crossconnects which could exist in a pattern. In the
pattern, the crossconnection would be set if its corresponding bit position in the defining
binary string was equal to one; otherwise, it would not be set.

The length of the binary string would be equal to N, which is given by:

N N
dp; dp;(dp;—1)
Nps = Z(2') -y EQ43)

iml im]

Where, N is the number of network nodes, and dp; is the maximum degree that a pattern
can have on node i (dp; is equal to the number of spans at node i which have at least one

spare link available for contribution to forming a pattern). It is assumed in equation 4.3
that each pattern can use, at most, a single spare link on each span. Refer to Figure 4.3 for
an example of how a pattern can be represented at the crossconnect level. In the example
there is a simple network with 4 nodes and 5 spans. A pattern is permitted to utilize, at
most, one spare link on each span which is able to provide a spare link. In this example
there are 8 possible crossconnections which could be set in a pattern. A pattern can be rep-
resented using a string with 8 bits where each bit represents whether a particular crosscon-
nection is set within the pattern or not (our convention is, if a bit is set to 1 then the
crossconnect represented by that bit is set; otherwise, it is not set.) This representation
indirectly determines whether a pattern has a spare link on a particular span because a
spare link on a span is only present in the pattern if there is a crossconnection connecting it

to another spare link.

56

Potential Crossconnections in a Pattern

‘ » Simple Network with 4 nodes and S spans
« Forasingle pattern, with 1 link maximum
on each span, there are 8 possible

potential crossconnections.

A single pattern can be represented by a
string of 8 bits. If a bit corresponding to a

crosspoint is equal to 1 then the crosspoint
(is set; otherwise, it is not set.

Example: 3 Bit Strings and the Intra-Nodal Connection Patterns they Represent

~

10011001 10011001 11001000
01234567 01234567 01234567

4 Set Crosspoints 4 Set Crosspoints 3 Set Crosspoints
4 Links 4 Links 2 Links

(&

FIGURE 4.3 Example of How a Preconfigured Pattern can be Represented at the
Crossconnection Level, for use in GA2

4.3.2 Fitness Score
As in the previous GA based preconfigured design method, a fitness score is required as

a basis for evaluating solutions. However, if the patterns were evaluated as in the previous
section there would not be a strong drive to reduce the number of crossconnections set in
the preconfigured patterns because a pattern’s fitness was set equal to the ratio of the
number of useful PC paths it could provide to the number of spare links required in its

57

construction. The function is only evaluated at a link level, not at a crossconnect level, so
if a pattern contained one or more PC crossconnections which do not contribute to the for-
mation of a useful PC path, the pattern’s fitness score would not reflect this. For this
method, a good preconfigured pattern would tend to contain a large number of preconfig-
ured paths compared to the number of crossconnections which would be required to form

the pattern. The score used to evaluate the fitness of an individual i is given by:

P
Fy Az (EQ4.4)

i~ XPT,
Where F S; is the fitness of individual i, P P, is the number of useful preconfigured paths

contained in the pattern represented by individual i, and XPT; is the number of crosscon-

nections used in the construction of the pattern represented by individual i. Such a fitness
score favours those individuals which deliver a large number of preconfigured paths per
crossconnection required to form the pattern.

4.4 Method

The basic method is the same for both GA1 and GA2 with only the fitness function and
representation method differing. These algorithms builds up patterns in a network’s spare
capacity iteratively. The GA is run repeatedly to generate a preconfigured pattern with the
genome length and fitness function adjusted according to the network configuration at the
start of the iteration. A number of the patterns are then taken, and the network’s configura-
tion is adjusted to include the patterns.

The final pattern which is generated by the GA will depend on two factors: unallocated
spare links available within the network and uncovered working links present in the net-
work. The network’s unallocated spare links will represent a hard limit to the form the pat-
tern generated by the GA may take, as the pattern may only use a link on spans which have
at least a single available unallocated spare link. The network’s uncovered working links
will represent a soft limit to the form the pattern may take as the pattern will only be
rewarded, in its fitness score, for the useful PC paths that it contains. If a pattern overpro-

58

vides a network span, whose working links are covered with PC paths supplied by previ-
ously generated PC patterns, with PC paths it will not be punished but it will not be
rewarded either. Consideration, of the limits imposed on the pattern generation by the cur-
rent network configuration of unallocated spare links and uncovered working links, sug-
gest that it would be reasonable to place multiple copies of the pattern generated by the
GA, at each iteration. This is because, depending on the state of the network’s PC plan at
the current iteration, taking only a single copy of the pattern will not change the distribu-
tion of the spans requiring PC paths or of the spans able to contribute unallocated spare
links to the construction of the pattern. Re-running the GA, after only taking a single copy,
could result in an individual which is similar to the previously generated individual
because fitness would be evaluated based on a similar distribution of uncovered workers
and the configuration of the pattern would be limited by a similar distribution of unallo-
cated spares. Therefore, the number of the pattern which are taken is set equal to the lower
of the number required to change the distribution of the uncovered workers and the
number required to change the distribution of the unallocated spares.

The limiting pattern number due to the network’s unallocated spares is equal to the
number of copies of the pattern which result in the depletion of all unallocated spares on
one or more network spans. The limiting pattern number due to the network’s unallocated
workers is equal to one less than the number of copies of the pattern which cause one or
more network spans, with a non-zero number of uncovered working links, to be overpro-
vided with PC paths. Spans with no uncovered working links are not considered in evalu-
ating this limit because these spans no longer influence the fitness score used by the GA to
evaluate its individuals (only useful PC paths are considered when evaluating an individ-
ual’s fitness score.) The number of copies of an individual is equal to the lower of these
two limits. However, at least a single copy of each individual will be taken at each itera-
tion even if the uncovered working link limit should be equal to zero (this may happen if
taking even a single copy of a pattern will cause a network span to be overprovided with
PC paths.) Taking multiple copies of each pattemn, if possible, reduces the number of times
that the GA must be run and speeds up execution time.

59

After the network configuration is modified to accommodate the pattern, the GA is
rerun and a new pattern is generated. The algorithm continues in this manner until it is no
longer possible to preconfigure a pattern in the network spare capacity or the pattern pro-
duced is not useful to preconfigured restoration. Refer to Figure 4.4 for a pseudocode rep-
resentation of this algorithm.

START building GA PC patterns at the span level{
for (i = 1 to NumberOfSpans) {
unallocated_spares(i] = spans(i].spares
uncovered_working[i] = spans{i].working

}
done = FALSE
while (not done) {
goodPattern = runGA_untilConvergence
(unallocated_spares, uncovered_working)
numPattern = INFINITY
if (goodPattern exists) {
numPattern =
numberPatternToTake
(goodPattern, unallocated_spares, uncovered_working)
adjustAvailableSpares
(goodPattern, numPattern, unallocated_spares)
adjustUncoveredWorking
(goodPattern, numPattern, uncovered_working)
preconfigurePattern (goodPattern, numPattern)
}else{
done = TRUE
}

FIGURE 4.4 Pseudo-code representation of the Use of a Genetic Algorithm to iteratively
builds Preconfigured Patterns.

4.5 Results

The GA PC design heuristics were programmed and executed using a publicly availa-
ble library of GA procedures, written in C code, called LibGA®* [15].

Each PC iteratively generated PC pattern was generated using a generational GA. The
population pool size, of each execution of the GA, was set to the 4 times the length of the
solution’s representative bit string as determined by Equation 4.1 or 4.3. The initial popu-
lation, of the GA, was formed of randomly generated bit strings. The mutation rate was set
equal to 0.1% and a mutation of a bit would simply invert it. Pairs of individuals were
selected for the crossover operator using a roulette wheel method of selection. Roulette
wheel selection operates by giving each individual in a population a slot which is propor-
tional in size to the individual’s fitness relative to the average fitness of the population.
The wheel is then “spun” and pairs of individuals are selected for crossover until the next
generation’s population pool is filled. Crossover was performed using a simple one-point
swap of a pair of individual’s defining strings. In addition, for each crossover operation,
there was a 10% chance that the individuals would not be crossed over but would be
directly copied into the next generation’s pool without modification. Finally, each GA was
operated using elitism; that is, when the next generation is formed, a pair of copies of the
best individual found, so far, is automatically placed into the next generation.

4.5.1 Genetic Algorithm Design of PC Patterns represented at the Span Level

Figure 4.5 gives an example of the type of patterns that GA1 generates in test network
Netl. Table 4.1 contains the network restorability results over all possible span failures for
restoration using only KSP, restoration using pure PC, and 2-step restoration. Table 4.2
contains the total crossconnection events, over all possible failed spans, for KSP restora-
tion alone and for 2-step restoration. Figures 4.7 and 4.8 give counts of the number of
crossconnection events required at each node to form a restoration pathset, for each span

failure, in test network Net2, when using only on-demand KSP restoration and when using

*_ available by anonymous ftp, over the internet, at: ftp.aic.nrl.navy.mil/pub/galist/src/ga/libgal00.tar.Z

61

2-step restoration. The crossconnect totals for each node appear sequentially within the
space, on the x-axis, corresponding to each span failure.

4.5.2 Genetic Algorithm Design of PC Patterns represented at the Crossconnect
Level

Figure 4.6 gives an example of the type of pattern that GA2 generates in test network
Netl. Table 4.3 contains the network restorability results over all possible span failures for
restoration using only KSP, restoration using only pure PC, and 2-step restoration. Table
4.4 contains the total crossconnection events, over all possible failed spans, for KSP resto-
ration alone and for 2-step restoration. Figures 4.9 and 4.10 give counts of the number of
crossconnection events required at each node to form a restoration pathset, for each span
failure, in test network Net2, when using only on-demand KSP restoration and when using
2-step restoration. The crossconnect totals for each node appear sequentially within the

space, on the x-axis, corresponding to each span failure.

62

Table 4.1: Network Restorability Results using Standard KSP Restoration and PC

Restoration with GA1
Network KSP Re(;:;rability PC Re:;g;ability 2-step R(g;:)orability
Netl 100 74.64 93.66
Ner2 96.87 82.48 95.73
Net3 100 81.71 98.37
Net4 100 85.88 99.58
Net5 100 88.32 100

Table 4.2: Total Network Crossconnect Events Results using Standard KSP
Restoration and PC Restoration with GA1

Total Xpt
Network Xpts Closed Xpts Closed Xpts Opened Events
KSP PC PC
PC

Netl 310 75 585 660

Net2 3984 700 5722 6422

Net3 13787 2916 20044 22960

Net4 84389 12862 196553 209415

Net5 8529 1427 18157 19584

63

Table 4.3: Network Restorability Results using Standard KSP Restoration and PC

Restoration with GA2
KSP Restorability PC Restorability 2-step Restorability
Network (%) (%) (%)
— e
Netl 100 73.94 90.85
Net2 96.87 76.64 99.00
Net3 100 78.19 99.43
Net4 100 82.78 97.37
Net5 100 89.87 99.82
Table 4.4: Total Network Crossconnect Events using Standard KSP Restoration and
PC Restoration with GA2
Total Xpt
Network Xpts Closed Xpts Closed Xpts Opened Events
KSP PC PC PC
—_—
Netl 310 46 253 299
Net2 3984 911 3645 4556
Net3 13787 3133 11886 15019
Net4 84389 14049 103963 118012
Net5 8529 947 8967 9614

64

H)
S -

~

subGraph 4, Occurrences 1 subGraph 5, Occurrences 1
FIGURE 4.5 Example of the Patterns Generated using GA1 with Netl

65

subGraph 2, Occurrences 1 subGraph 3, Occurrences 1

P\ :I
o/ R

subGraph 1, Occurrences 1 subGraph 2, Occurrences 1 subGraph 3, Occurrences 1

@

subGraph 4, Occurrences 1 subGraph 5, Occurrences 1
FIGURE 4.6 Example of the Patterns Generated using GA2 with Netl

4.6 Conclusions

The preconfigured restoration offered by the PC plans designed by the genetic algo-
rithms tested in this chapter was quite effective compared to the performance of the pre-
configured tree algorithms. The designs generated by both genetic algorithms were
restorable, using only preconfigured paths, in the 70% to 90% range. Overall restorability
using PC restoration plus leftover KSP did seem to be hurt somewhat, by the use of
genetic algorithm designed PC plans, with overall restorability being mainly in the range
of 95% to 100% but in one case dropping to 90%. The reason that the overall restorability
of a network may be hurt when using PC restoration is that the useful PC paths which are
applied to the restoration of a failure are constrained by the configuration of the PC pattern
from which they are pruned. This can results in PC paths utilizing more spare capacity,

Xpts Closed

Xpts Closed

Xpts closed at each Node for Each Span failure - KSP Ouly

il

1 2 3456 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

30

Failed Span
Xpts closed at each Node for Each Span failure - 2-Step

204

154

104

5

0 !. 'm

1234567891011 1213141516171819202122232425262728
Fail

ed Span

FIGURE 4.7 Crossconnections Closed at each Node to Form the Restoration Pathsets for
Each Span Failure when using the PC plan formed within Net2 using method GAL. For

Restoration using only Conventional KSP Restoration and for 2-Step Restoration.

67

© Xpts opened at each Node for Each Span failure - 2-Step
L

1204

100 1

80 4

Xpts Opened

204

1 23 456 7 8 9 1011121314151617 18 1920 21 22 23 2425 26 27 28
Failed Span

FIGURE 4.8 Crossconnections Opened at each Node to Form the Restoration Pathsets for
Each Span Failure when using the PC plan formed within Net2 using method GAL. For
Restoration using 2-Step Restoration.

than the equivalent restoration when using only on-demand KSP paths, and can hurt the
network’s overall restorability.

The genetic algorithm which represented pattems at the span level of representation
(GA1) generated high levels of crossconnection events when restoring span failures. The
number of crossconnections which are set using PC restoration are quite low compared to
the number set when using only KSP restoration. However, the number of crossconnec-
tions are opened is very high which contributes to a high overall number of crossconnect
events. The patterns which are generated are not limited in their nodal degrees and, so, a
large number of preconfigured crossconnections can be required to form the patterns as
with the PC tree pattern type. The span level representation used a scoring function which
rewarded patterns which offered a large number of preconfigured path in relation to the
spare capacity required to form the pattern. This score does encourage the efficient use of
a network’s spare capacity but does not place any limit on the number of preconfigured

crossconnections. However, as with the PC tree, the implementation method which per-

68

Xpts Closed

Xpts Closed

Xpts closed at each Node for Each Span failure - KSP Only

804

70 4

304

20 1

10

0 - — y
1 2 3 45 6 78 91011121314151617 18192021 2223 24252627128
Failed Span

Xpts closed at each Node for Each Span failure - 2-Step

35

304

204

151

104

5

Oll‘r'.”.
L 6

2 3 45

II | Il

N I —| | — " . 1l
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Failed Span

FIGURE 4.9 Crossconnections Closed at each Node to Form the Restoration Pathsets for
Each Span Failure when using the PC plan formed within Net2 using method GA2. For
Restoration using only Conventional KSP Restoration and for 2-Step Restoration.

69

Xpts opened at each Node for Each Span failure - 2-Step

90
804
704
60 4
g 50+
2 0!
304
204
104

1]
1 23 456 7 8 9 10111213141516 1718 19 20 21 22 23 24 2526 27 28
Failed Span

FIGURE 4.10 Crossconnections Opened at each Node to Form the Restoration Pathsets
for Each Span Failure when using the PC plan formed within Net2 using method GA2.
For Restoration using 2-Step Restoration.

mits multiple input port cards would influence whether the large number of crossconnec-
tion to be opened would be harmful or not. The relative speeds of crossconnection open
and close operations would also be a factor, as the number of crossconnections closures
were dramatically reduced when using the PC restoration plan developed by GAl.

The genetic algorithm which represented patterns at the crossconnect level (GA2) per-
formed reasonably well with regard to total number of crossconnection events. As with the
PC plan generated by GA1, the PC plan produced by GA2 reduced the number of cross-
connections which had to be made compared to KSP restoration. Additionally, it greatly
reduced the number of crossconnections which had to be opened to expose the desired PC
paths when compared to GA 1. The representation used for this method scored patterns
according to the number of PC paths which a pattern could provide compared to the
number of crossconnects which are required to form the pattern. This score encourages the
production of patterns which contain minimal crosspoints while providing a good number
of PC paths.

70

5. Cycle-Oriented Preconfiguration using Integer
Programming Techniques

In the previous chapters, designs for preconfigured restoration were generated using
complex types of pattemns, such as the trees generated by the spanning tree heuristics, and
the unconstrained patterns generated by the genetic algorithm techniques. These patterns
are complex in the sense that there is no constraint on the nodal degrees that a pattern can
have (other than the nodal degrees of the underlying network.) As previously mentioned,
there is currently no provision in modem DCS to directly connect together more that two
port cards, although, a multiple unidirectional connection may be allowed by the DCS

implementation.

A cycle is an example of a pattern which can, however, be directly implemented in any
current DCS. In this chapter integer programming (IP) techniques are used to generate
preconfiguration restoration plans using cycles as the building element. An IP, if defined
and run successfully, will result in a solution which is optimal with regard to the problem
given it. A PC cycle design produced by an IP will be optimal (as long as the problem is
not constrained to reduce it to a manageable size) so a PC design generated by an IP will
indicated the best performance that can be achieved using only cycles as building blocks.

5.1 General Setup of an Integer Program to Generate a Preconfigured
Restoration Design from a Pre-defined Set of Patterns in a Network’s
Pre-existing Spare Capacity Plan

This method is a modified version of a method used to generate preconfigured restora-
tion plans using preconfigured segments as design elements [10]. It is modified so that
instead of considering a particular pattern type, such as segments, it has a finite set of pre-
defined and arbitrary patterns from which it can draw on to generate a preconfigured
design. This method uses IP techniques to form a design from the pre-defined patterns in
the set. The result is optimal only with regard to the patterns contained within the set; a
constrained or minimal pattern set will result in a constrained or sub-optimal solution.

71

Assume there exists a pattern set P of size N, equal to the number of patterns con-

tained in the set. Each of the patterns in the set has a unique configuration and properties.
The contents of the set are preset and there are no constraints as to the type of pattern con-
tained within the set.

For a pre-existing sparing plan, a particular PC design formed from pattern set P has

the following constraint on its use of the spare capacity present on each network span j:

Np

5;2 SPCJ. - Z (spc,.,j)n,. (EQS.1)

i=1
Where, s ; is the number of spare links available on span j, SPC ; is the number of spare
links utilized by the PC design on span j, n; is the number of copies of pattern i present
in the PC design and spe; is the number of spare links required on span j to form a sin-

gle copy of pattern i . The constraint given in eq. 5.1 exists for all network spans, and it
requires that the spare capacity used on each span to form a PC design does not exceed the

amount of available spare capacity.

The number of preconfigured paths, that a PC design can provide to span j (for its res-

toration) is given by the relationship:

NP
PC; = Y (pc;)n; (EQ5.2)

i=]

Where, PC ' is the total number of PC paths available for the restoration of span j, and
pe; ; is the number of preconfigured paths that a single copy of pattemn i of set P can pro-

vide for failed span j.

An additional constraint, on a PC design, is that for each span j it is required that the

following relationship be met:

72

uj+PCj =-wtr; (EQ5.3)

Where, w; is the number of working links which are on span j, «; is the number of work-
ing links on span j which do not have a PC path available to them (i.e. the amount by
which PCJ. is less than w; ,)and r; is the number of PC paths which are in excess of the

number needed on span j (i.e. the amount by which PC ; is greater than w fi .) Note that

either u ; Or r; must be equal to zero. This constraint defines the relationship, on each

span, between the number of working links which are not protected by PC paths, the
number of working links, the total number of available PC paths, and the number of PC
paths which exist but, for the given span, are not needed for further PC restoration.

Equations 5.1, 5.2 and 5.3 can be combined to form a set of constraints that can be
passed to an IP engine to form a PC design using pattern set P . Constraints that the varia-
bles be positive and integer are also required to limit the IP to meaningful physical solu-

tions. The IP constraint set, for a network with S spans, is given by:

NP
52 Y (spe,pn; Vi=12..,5
i=m]
NP
ui+ Y, (P, n; = wtr; Vi=12..S

im]

OSuij. Vi=12,...,§
r.20 Vi=12,..8

n,20 Vi=12..,N,
EQ54)

Where, spc; j and pc; ; are pre-calculated before the IP engine is executed and take the

form of integer coefficients in the relationships. Both spc; j and pc; ;j must be greater

73

than or equal to zero. s I and w ; are set by the network’s configuration and also take the

form of integer coefficients. They must also be non-negative.

In addition to a constraint set, and IP engine also requires an objective function to min-

imize or maximize. This function (which is minimized) is given by:

s
pIE EQS.S)
i=1
Minimizing the objective function given by eq. 5.5 results in a PC design, formed from the
elements of P, which is optimal in the sense that total number of unprotected working

links is at a minimum.

Using the constraints given by eq 5.4 and the objective function given by eq 5.5 with an
IP engine will generate a PC design, in a pre-existing network working and sparing plan,
which maximizes the number of useful PC paths available to in a network to assist in the

restoration of a span failure.

This formulation, called IP1-general, will be used shortly in test cases where the pattern

set P contains all distinct cycles of the network graph and the network sparing is given.

5.2 General Setup of an Integer Program to Generate a Fully Restorable
Preconfigured Restoration Design and a Network Sparing Plan from a
Pre-defined Set of Patterns in a Networks Pre-defined Working Routing
Plan

In the previous section, a PC design was formed for a network whose working capacity
and spare capacity had been pre-defined. In this section, a PC plan is designed for a net-
work in which the working capacity plan has been placed but the spare capacity has not. It
is required that the PC plan be designed so that the network is fully restorable using only
preconfigured restoration and that the PC plan be designed so that the spare capacity,
required to contain it, be minimized. As in the previous section, a design is formed from a
pre-defined set of PC patterns.

74

First a finite set P of patterns, from which the PC design will be formed, is defined.

The set contains N, patterns and there is no constraint, in the general formulation, on the

type of pattern which the set can contain although our interest will be in later constraining
the design pattern set to consider cycles only.

For a particular PC design, the number of spare links which will be required on span j
is given by:

NP
s;= 3 (spe, pm; EQ5.6)

i=l
Where, 5; is the number of spare links which are required on span j, spc; j is the number
of spare links required on span j to form a single copy of pattern i, and n, is the number
of copies of pattern { which are present in the design.

The PC design is required to be fully restorable using only PC restoration as set by the
following constraint:

NP
wi+r, = PC;= 3 (pc,)n; (EQS5.7)

im]

Where, w; is the number of working links which exist on span j, r; is the number of PC
paths which exceed the amount required to fully restore span j, PC ; is the total number of
PC paths available for span j, and pc; j is the number of PC restoration paths that a single

copy of pattern i can provide for span j. Eq. 5.7 is a slightly modified version of eq. 5.3
with the number of unprotected working links, # ;» Set to zero due to the requirement that

the network be fully restorable using only the PC design.

Combining egs. 5.6 and 5.7 results in the following constraint set:

75

NP
S; = Z (spc; j)n; Vi=1,2,..,8
=1
N’
witr; = Z (pc; Jn; Vi=12,..S

i=]1

sJ.ZO Vi=12,...,S8
rjzo Vi=12..,S

n20 Vi=12..,N,
EQ58)

Where, spc; ;. pc; ; and w; take the form of pre-defined non-negative integer coeffi-
cients. All variables are required to be integer and positive. In this [P method, unlike the

method in the previous section, s; is a variable as a PC plan must be formed while also

forming a network sparing plan.

An objective function is required which must be minimized or maximized by the IP
engine. Because a network sparing plan is being generated to contain the PC plan, a func-
tion which minimizes the total required network sparing would produce an efficient
design. The objective function, which is to be minimized, is given by:

s
S ds; (EQ5.9)
j=0
Where, d; is the actual physical length of span j. The summation given by eq. 5.9 is equal
to the total physical distance of the transmission medium (be it optical fibre or coaxial
cable) that is required to provision the network’s spare capacity. Minimizing this sum

results in an economical savings.

Using eq 5.8 and eq 5.9 with an IP engine will generate a PC design and a network
sparing plan from a network's pre-existing working routing plan and a pattern set. The PC
design generated with this IP solution will be able to fully restore any failed network span
using only PC paths.

76

This formulation, called IP2-general, will be used shortly in test cases where the pattern
set P contains all distinct cycles of the network graph.

5.3 Setup of an Integer Program to Generate a Preconfigured
Restoration Design using Cycles in a Network’s Pre-existing Spare
Capacity Plan

The general method given in section 5.1 formed a PC design using a combination of
patterns drawn from a set containing a number of pre-defined patterns (IP1-general). In
this section, the method will be used with a set containing only distinct cycles of the net-
work graph. The method, constrained to use only cycles, will be referred to as IP1-cycle.

The constraints and objective function required for use in an IP are given by equations
5.4 and 5.5. However, it is required that the coefficients pe;; and Spe; ; be evaluated for
the cycles contained in the pattern set. The coefficients w;, and s; are set by the network’s

working and spare capacity placement plan.

The coefficient spc; j is equal to the number of spare links required on span j to build
a single copy of pattern i. For a cycle i, in a predefined set of cycles, spc; ; would be set
equal to 1, if cycle i passes over span j; otherwise, spc; ; would be equal to 0. Refer to

Figure 5.1 for an example of how spc; j is determined.

The coefficient pc; ; is equal to the number of preconfigured paths that cycle i can

provide to assist in the restoration of failed span j. For a cycle, pc; ; can be either 0, 1 or

2. It is zero, for a particular cycle and failed span, if either of the span’s end nodes are not
on the cycle. It is one if both of the span’s end nodes are on the cycle and the end nodes are
adjacent to one another along the cycle. It is two if both of the span’s end nodes fall
beneath the cycle and the end nodes are not adjacent to one another on the cycle. Figure

5.2 shows these different cases as an example of how pc; i is calculated.

77

Cycle i of Cycle Set Pattern Span_
in a 4 node, 5 span Utilization Coefficients

Network SpCij

SPCio = 1
Spc;, = 1
spc;, = 1

spe; ;= 0

SPCi 4 = 0

FIGURE 5.1 Determination of the Pattern Span Utilization Coefficients
of a Cycle for use with PC design using IP techniques

5.4 Setup of an Integer Program to Generate a Fully Restorable
Preconfigured Restoration Design and a Network Sparing Plan using
Cycles in a Networks Pre-defined Working Routing Plan

The general method given in section 5.2 formed a PC design and a network sparing
plan using a combination of patterns drawn from a set containing a number of pre-defined
patterns (IP2-general.) In this section, the method will be used with a set containing only
cycles and will be called IP2-cycle.

The constraints and objective function required for use in an IP are given by equations
5.8 and 5.9. The coefficient values given by pc; j and spc; ; are evaluated for the cycles
contained in the pattern set as in section 5.3. The w; coefficients are set by the network’s

working routing plan.

5.5 Resulits

For both integer program design methods, Table 5.1 summarizes the maximum cycle
length which was used to form the cycle set used with the previously described integer
programming techniques. The maximum cycle length is set in maximum logical hops.

78

Evaluation of the Contribution a gcle i can make
to the PC Restoration of a Failed Span j

Case 1: No Preconfigured Paths available

pc; ;= 0

Case 2: 1 Preconfigured Path available Case 3: 2 Preconfigured Paths available

X)) (=

pec; ;=1 pc; ;=2

FIGURE 5.2 Evaluation of the number of preconfigured paths that a single
preconfigured cycle can provide towards the restoration of a failed span

5.5.1 Preconfigured Cycle Design using Integer Program Techniques in a Network’s
Existing Spare Capacity Plan (IP1-Cycle)

Refer to Figure 5.3 for an example of the type of PC pattern that is generated in Netl by
IP1-Cycle. Table 5.2 contains the network restorability results over all possible span fail-
ures for restoration using only KSP, restoration using pure PC, and 2-step restoration.
Table 5.3 contains the total crossconnection events, over all possible failed spans, for KSP
restoration alone and for 2-step restoration. Figures 5.5 and 5.6 give counts of the number
of crossconnection events required at each node to form a restoration pathset, for each

span failure, in test network Net2, when using only on-demand KSP restoration and when

9

using 2-step restoration. The crossconnect totals for each node appear sequentially within
the space, on the x-axis, corresponding to each span failure.

5.5.2 Fully Restorable Preconfigured Cycle Design and Spare Capacity Placement
using Integer Program Techniques (IP2-Cycle)

Refer to Figure 5.4 for an example of the type of PC pattern that is generated in Netl by
[P2-Cycle. Table 5.4 contains the network restorability results over all possible span fail-
ures for restoration using only KSP, restoration using pure PC, and 2-step. Table 5.5 con-
tains the total crossconnection events, over all possible failed spans, for KSP restoration
alone and for 2-step restoration. Table 5.6 contains the total sparing which is generated by
this method, for each of the 5 test networks, and compares it the original sparing Figures
5.7 and 5.8 give counts of the number of crossconnection events required at each node to
form a restoration pathset, for each span failure, in test network Net2, when using only on-
demand KSP restoration and when using 2-step restoration. The crossconnect totals for
each node appear sequentially within the space, on the x-axis, corresponding to each span
failure.

Table 5.1: Maximum Cycle Length permitted within the Cycle Sets used with the

Integer Programs
Network Mm(tfougcﬁyg:;;ngth
T:: :oo —
Netr2 oo
Net3 oo
Net4 12
Net5 25

80

Table 5.2: Network Restorability using Standard KSP and PC Restoration using

IP1-Cycle
KSP Restorability PC Restorability | 2-Step Restorability
Network %) %) %)
Netl 100 93.66 93.66
Ne2 96.87 96.58 100
Net3 100 96.86 99.95
Net4 (*) 100 75.88 98.91
Net5 (*) 100 94.93 99.95
Table 5.3: Total Network Crossconnect Events Results for Standard KSP and for
PC Restoration using IP1-Cycle
Total Xpt
Network Xpts Closed Xpts Closed Xpts Opened Events
KSP PC PC
PC
—
Netl 310 0 174 174
Netr2 3984 92 2260 2352
Net3 13787 366 7086 7452
Net4 (*) 84389 20032 55419 75451
Net5 (*) 8529 312 4067 4379

*. The Integer Program did not return a solution which is guaranteed to be optimal.
Due to the size of the design problem, for Net4 and Net5, the IP engine terminated before

finding a strictly optimal solution because it ran out of memory. The solution returned is

the best found prior to the point of memory exhaustion failure

81

Table 5.4: Network Restorability Results for Standard KSP and for PC

Restoration using IP2-Cycle
Network KSP Rcz;tot;tability PC Rezg:;ability
N;tT 100 1 100
Net2 100 100
Net3 100 100
Net4 (*) 100 100
Net5 (*) 100 100
Table 5.5: Total Network Crossconnect Events for Standard KSP and for PC
Restoration using IP2-Cycle
Network Xpts Closed Xpts Closed Xpts Opened Tglj;jt(spt
KSP PC PC PC
— —_—
Netl 291 0 190 190
Net2 4176 0 2108 2108
Net3 20744 0 6860 6860
Net4 (*) 86048 0 45216 45216
NetS (%) 13727 0 3850 3850

*. The Integer Program did not return a solution which is guaranteed to be optimal.

Due to the size of the design problem, for Net4 and Net5, the IP engine terminated before

finding a strictly optimal solution because it ran out of memory. The solution returned is

the best found prior to the point of memory exhaustion failure

82

Table 5.6: Comparison between the Sparing Plans of IP2-Cycle and the Original

Network Sparing Plan
Total Real Fiber Total Real Fiber % Excess between
Network Distance Distance PC Cycle Original and PC
Original Spare Plan Spare Plan Cycle
Netl 4 48 9.09
Ner2 6388 6584 3.07
Net3 177804 175476 -1.31
Netd (*) 874189 1036240 18.54
NetS (*) 672876 647241 -3.81

*. The Integer Program did not return a solution which is guaranteed to be optimal.

Due to the size of the design problem, for Net4 and Net5, the IP engine terminated before

finding a strictly optimal solution because it ran out of memory. The solution returned is

the best found prior to the point of failure.

83

-~ ‘ | o
subG?aph 3, Occurrences 1 sub(;raph 4, Occurrences 1
FIGURE 5.3 Example of the Patterns Generated in Netl using IP1-Cycle

subGraEh 4, Occurrences 1 subGr:;I)h S, Occurrences 1
FIGURE 5.4 Example of the Patterns Generated in Netl using IP2-Cycle

84

Xpts Closed

Xpts Closed

Xpts closed at each Node for Each Span failure - KSP Only

804

704

304

20

10 il

o ” |

2 34567 8 9 10111213 14151617 18 19 20 21 22 23 24 25 26 27 28
Failed Span

Xpts closed at each Node for Each Span failure - 2-Step

20+

154

104

0 4=v ey -

1 23456 789 10111213 141516 17 18 19 20 21 22 23 24 25 26 27 28
Failed Span

FIGURE 5.5 Crossconnections Closed at each Node to Form the Restoration Pathsets for
Each Span Failure when using the PC plan formed within Net2 using method IP1-Cycle.
For Rmraﬁon using only Conventional KSP Restoration and for 2-Step Restoration.

85

Xpts opened at each Node for Each Span failure - 2-Step

90
80
70+
60+

g 504

é- 40+

304

204

10 4

04 ey ymgedy - b ~ v
1 23 4567 8 9 1011121314151617 1819 2021 22 23 24252627 28
Failed Span

FIGURE 5.6 Crossconnections Opened at each Node to Form the Restoration Pathsets for
Each Span Failure when using the PC plan formed within Net2 using method IP1-Cycle.
For Restoration using 2-Step Restoration.

5.6 Conclusions

The designs generated using IP techniques, with cycles as the preconfigured element,
offered very good preconfigured restorability and preconfigured restoration crossconnec-

tion event counts.

For the design of PC cycle plans in a network’s existing sparing plan, the PC restorabil-
ity which resulted ranged from 75% to 97% in the test networks. The low score of 75%
which resulted in network Net4 is most likely due to the severely restricted cycle set
which was used by the IP to form the PC plan. Because of Net4’s complexity, a hop limit
of 12 was used in its IP design. The remaining networks had PC restorabilities in the range
of 94% to 97%. The overall restorability, using PC restoration and leftover KSP restora-
tion, was generally quite good with values ranging from 94% to 99%.

86

Xpts closed at each Node for Each Span failure - KSP Only

90
804
704
a) L
3 504
=3
O
g
>
304
20+
10
0
1 234567 8 9 1011121314151617 18192021 22 23 24252627 28
Failed Span
FIGURE 5.7 Crossconnections Closed at each Node to Form the Restoration Pathsets for
Each Span Failure when using the PC plan formed withinNet2 using method IP2-Cycle.
For Restoration using only Conventional KSP Restoration.
% Xpts opened at each Node for Each Span failure - 2-Step
80 4
70 4
60 4
2
=N
3
304
204
| |

04 — ey - Remglieapedey prnkogmdebgmdegueldy v

1 23 4567 8 91011121314151617 18192021 222324252627 28
Failed Span

FIGURE 5.8 Crossconnections Opened at each Node to Form the Restoration Pathsets for

Each Span Failure when using the PC plan formed within Net2 using method IP2-Cycle.
For Restoration using 2-Step Restoration.

87

The combined design of fully restorable PC cycle plans and spare capacity plans which
the second IP technique generated were also quite efficient. The network’s are, of course,
fully restorable using only the preconfigured paths available within the network’s PC plan.
The price which was paid, in terms of excess spare capacity compared to the original spar-
ing plans, so that the network would be fully restorable using only PC paths ranged from
18.54% to -3.81%. The large excess sparing requirement of 18.54% occurred for Net4 and
the likely reason for this excessive sparing is, again, that the cycle set used to form the
design was severely restricted due to the size and complexity of Net4. The two network
test cases where the overall network sparing was actually reduced, for the fully restorable
PC design, are likely due to the fact that the original sparing plans were generated using an
IP engine with a constrained problem definition. The IP problem was formulated so that a
solution would be generated in which all of the network’s spans would be fully restorable
using restoration paths, in the network’s spare capacity, which routed around each failed
span. However, much as with IP cycle design, the IP may only form restoration/sparing
plans from the paths contained in a predefined pathset. In a large network the total number
of possible paths, which join the end nodes of every possible failed span, will quickly
become very large and, as a result, the problem will require that a constraint be placed on
the maximum path length which can be considered.

The performance, in regards to the total crossconnection events required to achieve res-
toration, was also good using preconfigured cycles. For the case where a PC plan is
designed in an existing sparing plan (IC1-Cycle), the total crossconnect closures in the test
cases were all substantially lower than the total crossconnect closures required for KSP
restoration. The actual reduction ranged from approximately 76% to 100%. The reduction
in total crossconnect closures was even more pronounced for the fully restorable PC plan
generated by the IP2-Cycle where all test networks had 0 closures. In addition, both IP1-
Cycle and IP2-Cycle had a low total number of opened crossconnection which is a direct
result of the cycle’s simple structure and low nodal degree. Because a cycle can, by defini-
tion, have only degree 2 nodes contained within itself, the number of crossconnections
required to form a cycle is relatively small.

88

An additional point, in favour of PC cycles, is, if a cycle is useful towards contributing
PC paths towards the restoration of a span failure, then only the nodes on the ends of the
span failure need prune crossconnections in the cycle to extract the usefully preconfigured
paths. The implication of this is that no signalling is required to other network nodes to
inform them of a failure as the only nodes which need do any pruning are the failed span’s
end nodes. Therefore, the PC paths present within a plan composed of PC cycles could be
extracted and utilized more quickly than the plans designed using the tree and genetic
algorithm methods. Figure 5.8, which shows the node level crossconnect opens in Net2
for IP2-Cycle, shows how only the end nodes on a failure need prune any crossconnects to
extract the plan’s PC paths; each span failure has only a pair of spikes which correspond to
the failed span’s end nodes while the other nodes have a crossconnect workload of zero.

89

6. Theoretical Considerations and Interpretation

Intuitively, it would seem that the performance of the more complex, high nodal degree
patterns would be superior to that of a simple type of pattern, such as the cycle, due to the
large number of preconfigured paths which a high complexity pattern could contain. How-
ever, in the previous chapter the performance of preconfigured cycles was investigated
and was found to be quite good even compared to that of the unconstrained patterns gener-
ated by the genetic algorithms in chapter 4. How can this be explained or understood?

In this chapter, the theoretical upper limit to the number of preconfigured paths, which
various classes of pattem can contain, is evaluated to provide insight on this issue. The
upper path limit is evaluated for the preconfigured tree/segment class and for the precon-
figured cycle class. Additionally, the theoretical upper path limit that any pattern, covering
a certain number of nodes, can achieve is evaluated and compared to that of the tree and

cycle class.

6.1 Maximum Useful PC Paths for Preconfigured Trees / Segments

The upper limit to the maximum number of preconfigured paths per preconfigured pat-
tern link can be found for the tree type (of which segments are a subset.) A tree is any fully
connected set of nodes for which there exists one, and only one, path between each pair of

nodes, along the tree’s branches.

Assume a full mesh network with a very large number of nodes, and a very large
amount of spare and working capacity on the spans connecting the nodes. This assumption
allows any path (save those preconfigured paths which traverse a failed span) which exists
in a preconfigured pattern between any pair of network nodes to be a useful path. Now
assume that there is a tree of size N nodes which is preconfigured in the network’s spare

capacity.

6.1.1 Spare Links Utilization in a Preconfigured Tree of size N

The number of spare links s used to form the tree pattern is given by:
s=N-1 (EQ6.1)

6.1.2 Derivation of Maximum for a Preconfigured Tree spanning N nodes

By definition, a tree can provide only a single path between each pair of its nodes.
However, a preconfigured tree can not provide a restoration path to any span which lies
directly beneath the tree because the failure of such a span splits the tree into two discon-
nected patterns where each of the disconnected patterns contains one of the failed span’s
end nodes. The maximum number of spans for which the tree can provide a restoration
path is given by the difference between the maximum number of spans bounded by the

tree and the number of spans which form the tree. Therefore, the maximum number of

paths P that a preconfigured tree can provide is:

P = (g) —(N-1) = (%’—l)(N-l) EQ62)

6.1.3 Maximum Number of Preconfigured Paths per Preconfigured Tree Spare Link

Next, the efficiency measure of interest, the maximum number of PC paths per pattern

link, E, is given by:

7-1)
(--1 (N-1)
E-f- 2 -%,-1 Nz2

s N-1 (EQ6.3)

Therefore, the maximum number of preconfigured paths that a single preconfigured
tree can provide per preconfigured pattern link is roughly half the number of nodes in the
tree.

6.2 Maximum for a Preconfigured Cycle covering N nodes

A cycle is defined as a set of fully connected nodes where each node in the pattern has
degree two (i.e. each node is connected to two other nodes.)

91

Assume there exists a full mesh network with a large number nodes and a large amount

of spare and working capacity on its spans, as in the previous section. Now assume that a

cycle with N nodes is preconfigured in the network’s spare capacity.
The number of spare links s which are required to form a cycle spanning N nodes is:

s=N (EQ6.4)

A cycle can provide preconfigured restoration paths for two kinds of potential failed
span. The first kind of span is one which is not actually a part of the cycle but its end nodes
fall beneath the cycle. For this kind of span, the pattern can provide 2 preconfigured resto-
ration paths. The second kind of span is one which lies beneath the cycle. For this kind of
span the pattern can provide 1 preconfigured restoration path. The maximum number of

spans, which a cycle with N nodes can bound, is equal to (D . N of these spans are of

the second type of span which lie directly beneath the cycle and the remaining (ID -N

spans are of the first type of span, which do not lie directly beneath the cycle, but whose
end nodes do fall beneath it. Therefore, the maximum number of preconfigured paths P
that a cycle with N nodes can provide is:

P = 2[(1:)-N] +IN = N(N-2) (EQ6.5)

The maximum number of paths per pattem link, E, is given by:

s (EQ6.6)

Therefore, the maximum number of paths that a cycle can provide for each of the spare

links used in its formation, varies directly with the number of nodes used in the cycle. This
compares quite well with the maximum associated with preconfigured trees found in the

previous section.

6.3 Upper Limit to the Number of Preconfigured Paths for any
Preconfigured Pattern with N nodes

An upper limit to the maximum number of preconfigured paths can be derived for any
preconfigured pattern covering N nodes. Once again, assume there is a full mesh network
with a very large number of nodes, and a very large amount of spare and working capacity

on the spans connecting the nodes. Also, assume there exists, in the network’s spare

capacity, a preconfigured pattern of an arbitrary type which spans N nodes.

6.3.1 Spare Link Utilization

The number of spare links s used in the formation of the pattern can be found from the
general equation:

4,

N
5= % IDIY EQ67)
imljml

Where N is the number of nodes in the pattern, d; is the number of pattern spans which
fall on node i in the pattern, and a; ; is the number of spare links that the pattern has on

span j atnode i.

6.3.2 Upper Limit to the Number of Preconfigured Paths
The maximum number of preconfigured restoration paths, for all potential failed spans,

that a pattern node i can source is given by:

P; = Ppg +Pypg (EQ6.8)
Where Pp, s, is the number of preconfigured paths that can be sourced for spans which are
in the pattern, Py S, is the total number of preconfigured paths that can be sourced for all

spans which are not in the pattern (but whose end nodes fall beneath the pattern,) and P; is

the total number of preconfigured paths that node i can source for all potential span fail-

ures.

93

For a span not in the pattern, node i can source a single outgoing restoration path for

each link which is a part of the pattern and falls on node i. Therefore, PN,,S, is equal to:

dl
Pyps, = (N-1-d) 2 a;; (EQ6.9)
j=1

Where (N-1-d,) is the number of spans which fall on node i but are not a part of the

df
pattern, and)" @ ; is the number of pattern links which fall on node i.
j=1
For a span which is in the pattern, node i can have an outgoing restoration path for

each pattern link which is a part of the pattern but not on the failed span. Therefore, Pp¢

is equal to:
dl d!
Pps,= 3, [(«; k] - ai”;|
j=1l k=1
d, d, d,
-2 (2 “i,k]‘ LY EQ6.10)
j=1 k=1 j=1
d;
- (@-1) Yo,
j=1
dl
Where (2 a ,‘} - ; is the number of pattern links which fall on node i excluding
kel

those pattern links which are on span j.

Summing the contributions from equations 6.9 and 6.10 gives:

94

P; = Ppg +Pypg

d, 4
= (N-1-d)) E a;;+ (d;-1) 2 % (EQ6.11)
j=1 j=1
d;
= (N'Z) za,”j
j=1

Where P; is the maximum number of preconfigured restoration paths that node i can
source for the failure of all possible spans.

The limit for the maximum number of preconfigured paths that can exist within a pat-
tern for a potential span failure j, is determined by the maximum number of paths that the
span’s end nodes can source in the pattern, and by the maximum number of paths that
other nodes in the pattern can carry. In general, the limiting factor to the number of paths
the pattern can provide will be the number of paths that the span’s end nodes can source.

Therefore:

PS;<MIN (B;, ap B;, b;) (EQ6.12)
Where PS; is the maximum number of paths available for span j, a; and bj are span j‘s
end nodes, and B k is the number of preconfigured paths that node & can source for span

j. What equation 6.12 states is that the maximum number of preconfigured paths that can
be provided for a failed span j will be less than or equal to the smaller of the number of
paths that each of the span’s end nodes can source.

A less rigorous upper limit for PS ; can be found by considering the average of § .,
and B .6, This average will be greater than or equal to the upper limit found in equation

6.12 because equation 6.12 is found by taking the smaller of B; a and B, b The average

of two numbers will always be greater than the smaller of the two numbers unless the two

95

numbers are equal in which case the average will be equal to the two numbers. Therefore,
another upper limit for PS ; is:

. 1
PS;<min(B; ;,B; ;) <5(B;5+B;s) (EQ6.13)

The largest number of paths P that any preconfigured pattern, covering N nodes, can
provide is given by:

Ng Ng 1 1 N 1 N d,
P=Y PS;<3 5(B;,+B;5) SE_Z Pi=5Y N-2) Y oy (EQ6.14)

1i-l A{-ld, inl i=l j=1
tnnd o)
imiVjml
N5
Where N is the number of spans in the network. The summations Y. E(Bi' - B, 5)
j=1

N
and -21- Z P; are equivalent. The first summation sums the preconfigured paths that can be

iml
sourced by each span‘s end points, over all spans, while the second summation sums the
total number of preconfigured paths, for all spans, that each node can source, over all
nodes. The final result must be the same for both summations.

Therefore, the upper limit to the number of preconfigured paths that any preconfigured
pattern can provide is given by:

N d
1
Ps<3(N-2) Z(Z%J (EQ6.15)

i=lVj=1
The pattern which, for which equation 6.15 was derived, is assumed to be fully con-

nected; that is, at each pattern node, there exists a crossconnection between each pair of

pattern links on the node. The equation still holds for simpler patterns whose link ends are

not fully connected because these patterns can be realized, from fully connected patterns,
by breaking crossconnections; the breaking of a crossconnect can only reduce the number
of PC paths which the pattern contains and, so, the upper limit given in equation 6.15 will
still hold.

6.3.3 Maximum Number of Preconfigured Paths per Preconfigured Link

The maximum number of preconfigured paths per preconfigured spare links, E, for any
preconfigured pattern covering N nodes can be found by expressions contained in equa-

tion 6.7 and equation 6.15. Therefore, E is given by:

N 4

1
;3 (N=2) Z E o
< izli=l __<N-2 (EQ 6.16)

6.3.4 Discussion and Conclusions

In this section, the upper limit to the number of preconfigured paths that two simple
patterns, tree/segment and cycle, could provide were determined. The maximum number
of paths that any possible pattem could provide was also determined. The patterns were
placed on a very large full mesh network with very large working capacity. This condition
makes any preconfigured path between any node pair useful in the event of the failure of
the span connecting that node pair.

Table 6.1: Comparison of Maximum Preconfigured Paths Available for Different Pattern Types

Maximum number of Preconfigured Paths
Pattern Type per Preconfigured Pattern Link, for a pattern covering N
nodes
— —
Segment/'T;
g N1 w22
2

Cycle N-2 N23

Any Possible Pattern N=-2

97

A comparison of the maximum number of preconfigured paths per preconfigured pat-
tern link which can be provided by a single preconfigured cycle of size N against a single
preconfigured tree of size N, gives the preconfigured cycle roughly a 2:1 advantage in the
maximum number of preconfigured paths per spare link which it can provide. The cycle
has this advantage because less of its preconfigured links are “wasted” when providing a
restoration path to a failed span. For example, in Figure 6.1, there exists a preconfigured
cycle and a preconfigured tree. Cases 1 and 3 are for a span failure where the span’s end
nodes fall beneath the preconfigured pattem but the failed span does not, and the cycle is
able to provide two preconfigured paths while the tree is only able to provide one. The
cycle links are fully utilized providing preconfigured paths but the tree links which do not
fall on the tree’s single preconfigured path cannot be used to form additional preconfig-
ured paths. Cases 2 and 4 are for span failures which fall fully beneath the pattern. The
cycle is able to provide a single preconfigured path while the tree is unable to provide any
paths. The cycle is able to provide more paths because there exists 2 paths between each
pair of cycle nodes, while a tree/segment has, by definition, only 1 path between each pair
of tree nodes.

Another result of interest is that for a given pattern covering N nodes a cycle can pro-
vide a maximum of N -2 preconfigured restoration paths per spare link in the cycle. This
is equal to the maximum that any configuration of preconfigured pattern covering N
nodes can achieve. This result suggests that more complex patterns, with high pattern
nodal degrees and more than one pattern link on a single span, will not necessarily be bet-
ter performers than simpler patterns (such as cycles.)

Simpler patterns have the advantage of having low pattem nodal degree which results
in fewer crossconnections which must be set (the number of crossconnections in a pattern
tends to go with the square of the nodal degree in the pattern.) Also, simple patterns which
only have, at most, a pattern nodal degree of 2, can be preconfigured in today’s existing
DCS, while it is unclear how a pattern nodal degree greater than 2 can be preconfigured
(such a configuration would require a single port to be simultaneously connected to more
than one other DCS port) without modification to the DCS*s software and/or hardware.

98

Case 1: PC Cycle, failed Span not on Cycle Case 2: PC Cycle, failed Span on Cycle

WA AN

Case 3: PC Tree, failed Span not on Tree Case 4: PC Tree, failed Span not on Tree

FIGURE 6.1 Comparison of Preconfigured Paths in PC Cycles and PC Trees/Segments

7. A Cycle-Oriented Distributed Preconfiguration
Algorithm

The results of chapters S and 6 indicate that using cycles as the building blocks of a pre-
configured restoration plan can be quite effective and efficient. The method given in chap-
ter 5 for generating a PC plan uses an integer program engine which is quite
computationally intensive and does not lend itself to real time generation of a PC plan.
However, the result is capacity optimal with regard to the cycle set used to generate the PC
plan.

Ideally, a PC design algorithm would be able to be run using only the computational
power available within the network. Using such an algorithm would allow a network to
directly respond to any changes made to its configuration with no need for outside inter-
vention. The main advantages of this are that configuration changes in the network can be
responded to quickly by the network, and the need for data gathering to determine the cur-
rent configuration of the network can be eliminated (at least for the purpose of generating
a PC design using a central designer.)

In this chapter a distributed preconfigured cycle design (DPCD) algorithm, which can
be run in a network’s nodes, is presented. The algorithm is distributed in the sense that its
execution is spread amongst the significant processing power present in the DCS
machines which form a mesh network’s nodes. A network’s nodes can execute the algo-
rithm using only the information which is available locally at each node. This algorithm is
a heuristic so the results are not guaranteed to be optimal but, for the advantage of being to
design a PC plan using only the processing power present within the network, sub-optimal
designs may be acceptable.

7.1 Method

This DPCD algorithm is based on the selfhealing network (SHN) protocol [3,4]. The
SHN protocol implements a distributed algorithm which generates efficient path sets for
span restoration and it does this using statelet based processing. A statelet is embedded on
each network link and contains the current state of the link as described by a number of

100

fields. A link is a bidirectional signal carrier and, so, each link, viewed locally by a node,
has both an incoming statelet and outgoing statelet. An incoming statelet arrives at a node
on a link, and originates from the adjacent node connected to the receiving node through
the link. An outgoing statelet is broadcast from a node through a link, and arrives at the
adjacent node which is connected to the broadcasting node through the link.

Each outgoing statelet has, in general, an incoming statelet which forms its precursor.
An incoming statelet forms a precursor to an outgoing statelet if the incoming statelet was
broadcast to form the outgoing statelet. In other words, an incoming statelet which forms
the precursor of an outgoing statelet is the source for the outgoing statelet. An incoming
statelet can be the precursor for many outgoing statelets but an outgoing statelet can have

only one precursor incoming statelet.

As a statelet is broadcast throughout a network, it forms a statelet broadcast tree which,
at each node in the tree, is rooted at the precursor incoming statelet from which the outgo-
ing statelets are propagated. The particular route which a statelet travelled from the sender
node to its present location is called the statelet broadcast route.

The distributed algorithm operates by the application of a set of rules at each node
which preferentially broadcast certain incoming statelets over others. Each node acts only
on the basis of information available to it only but the interaction of the nodes’ actions

results in the generation of a solution which is efficient at a global level.

7.1.1 Statelet Format
The statelet format used in the DPCD algorithm has 5 main fields:

¢ index: Each statelet belongs to an index family. At a node, when an outgoing statelet is
broadcast from an incoming statelet, the outgoing statelet’s index field is set equal to
the index field of the incoming statelet from which it was broadcast.

o hopcount: As a statelet is relayed from node to node, a count of the number of hops it
has taken is maintained. The hopcount in an incoming statelet is equal to the number of
times that the statelet has been relayed by previous nodes to reach the node at which it
has arrived.

101

« sendNode: All statelet broadcasts originate at a single node which acts as the sender
node for the network. The sendNode field is set equal to the name of the sender node,
and is the same for all statelets in the network.

* numPaths: As a statelet is relayed through the network, the number of useful PC paths
which the statelet could provide if it could successfully loop back to the sender node to
form a cycle, is evaluated. This field, in an incoming statelet, is set equal to the value
which was evaluated at the node from which the incoming statelet originated.

* route: This field contains the route, from the sender node, which a statelet broadcast
followed to become an incoming statelet at a particular node. This field is a vector with
a size equal to the number of nodes in the network. Each node in the network is repre-
sented by a cell in the route vector. Each cell corresponding to a node contains the name
of the node which was the predecessor of the node along the route. That is, the cell cor-
responding to a node points back to the node which fell before the cell node on the
route. If a node does not fall on the route then its cell is set equal to NIL. As a node
broadcasts a statelet to an adjacent node, the route field is updated so that the receiving
node’s cell points to the broadcasting node. Using the route vector allows the route,
which was taken by a statelet broadcast to reach a particular node, to be traced back to
the sender node.

These 5 fields form the basis of the statelet used in this distributed PC cycle design
algorithm.

7.1.2 Network Node Roles

In the SHN protocol there are three node roles: that of the sender, the chooser and the
tandem nodes. The sender node is the source of the broadcast pattern and the chooser node
is the recipient of the broadcast pattern. The tandem nodes in the network relay received
statelets according to the rules of the SHN protocol. The SHN protocol is concermned with
the restoration of a span failure at the span level. The end nodes on a failed span become
the sender and chooser nodes (which end node takes on which role is chosen in an arbi-
trary manner.) All other nodes become tandem nodes as broadcast statelets reach them. So
in summary, the sender node initiates a statelet broadcast pattern, the tandem nodes relay
the broadcast pattern according to the SHN protocol, and the chooser node receives the
broadcast pattern. When the chooser receives an incoming statelet, then there exists a res-
toration path for the failed span. The path is found by tracing the exact link-level path that
the statelet followed from the sender to reach the chooser in a process called reverse link-

ing.

102

However, in the DPCD algorithm, the objective is different from that of the SHN proto-
col. In the SHN, it is required that paths joining the end nodes of a failed span be found, in
order that the span be restored. In the DPCD algorithm, it is required that cycles which are
maximally effective at providing PC paths, over all possible span failures, are to be found.
The node roles in the DPCD algorithm are modified to reflect that cycles are to be gener-
ated rather than point to point paths. In the DPCD, there are two possible node types: that
of a combined sender/chooser node which sources and receives the statelet broadcast pat-
tern, and that of the tandem nodes which relay the broadcast statelet pattern.

The combined sender/chooser or “cycler” node initiates the statelet broadcast, the tan-
dem nodes relay it according to the DPCD algorithm’s statelet processing rules, and, even-
tually, the statelet broadcast pattern loops back to touch the cycler node. At this point,
there exists a cycle which the cycler node can choose to take. The cycle is defined by fol-
lowing the route taken by the statelet broadcast pattern to return back to the cycler node.
However, the cycler does not take immediately take the cycle indicated by the first incom-
ing statelet it receives. Instead, it samples the incoming statelets and updates a record of
the best received cycle each time it receives a new incoming statelet. When there is no fur-
ther improvement in the best received cycle, the cycler node terminates the statelet broad-
cast and initiates the construction of a single link-level copy of this cycle. Each initiation
of a statelet broadcast by a cycler node will eventually result in the construction of a cycle
(if a cycle exists.)

7.1.2.1 . The Tandem Node Statelet Broadcast Rules

The bulk of the processing takes place in the tandem nodes of a network in both the
SHN protocol and the DPCD algorithm. The tandem nodes determine what the actual
shape of the statelet broadcast pattern will be through the repeated application of the state-
let broadcast rules locally at each node.

The basic statelet broadcast rule is quite simple; for each incoming statelet, try to
broadcast a single outgoing copy of it on a spare link, whose outgoing side is unoccupied,
on each span except for the span on which the incoming statelet arrived. This is a simple
broadcast of an incoming statelet and attempts to broadcast the statelet to the largest extent

103

possible. Simple broadcasts of incoming statelets typically only happen at the start of the
cycler node’s initiation of the statelet broadcast because a single incoming statelet can be
broadcast to form the precursor of multiple outgoing statelets and, as the tandem nodes
relay incoming statelets, the spare link’s outgoing sides, at each node, are quickly occu-
pied by outgoing statelets. Refer to Figure 7.1 for an example of a simple broadcast of an

incoming statelet. In the example, a single incoming statelet arrives on the incoming side

e

A single incoming statelet arrives The incoming statelet is broadcast
at a node with no other statelets present to the largest extent possible

FIGURE 7.1 Example of a Simple broadcast of an Incoming
Statelet at a Tandem Node

of a node’s spare port. There are no other incoming statelets present at the node so the
incoming statelet is broadcast to the largest extent possible, forming the precursor of a sin-
gle outgoing statelet on each network span (except the span on which the incoming statelet

arrived.)

A modification to the simple statelet broadcast, is the score based statelet broadcast.
With the addition of this rule, an incoming statelet is broadcast to the largest extent possi-
ble prioritized by a score which is assigned to it (the rules which evaluate the score are dis-
cussed in the next section.) If multiple incoming statelets are present at a node then the
statelets compete, on the basis of their scores, for a maximum statelet broadcast. A conse-
quence of a node’s incoming statelets being broadcast on the basis of their scores is that if
a superior statelet arrives at a node and there are no free spare links available, on one or
more spans, then the incoming statelet will, on each span with no unoccupied spare link,
displace the single outgoing statelet whose precursor has the worst score. An incoming
statelet can be broadcast on a span in one of two ways. The first way is by simple broad-
cast, which happens if there is at least one spare link on the span whose outgoing side is

104

unoccupied by a statelet. The second way is by displacing an outgoing statelet whose pre-
cursor’s score is both worse than that the score of the incoming statelet being considered
for broadcast, and, also, the worst of the scores of all the incoming statelets which form a
precursor to an outgoing statelet on the span. If there is no spare link, on a span, whose
outgoing side is unoccupied and the incoming statelet’s score is not good enough to dis-

place an existing outgoing statelet, then the incoming statelet will not be broadcast.

This competition among the incoming statelets distributes the limited number of outgo-
ing statelet positions among the incoming statelets with preference given to those statelets
with good scores. The statelet broadcast pattern, at a node, is updated continuously as new
incoming statelets appear. However, the overall pattern will have the same appearance as
if the following procedure was followed. First a list of incoming statelets is formed and
evaluated to assign each statelet a score. Next the list is sorted so the statelets are ordered
from best score, at the start of the list, to worst score, at the end. Next, the incoming state-
lets are broadcast, without statelet displacement, sequentially as each appears in the list, to
the fullest extent permitted by the unoccupied outgoing side of the spare links in the net-
work. The result of applying this procedure is that high scoring incoming statelets will be
fully broadcast, medium scoring incoming statelets will be partially broadcast, and low
scoring incoming statelets may not be broadcast at all. This is analogous to the “compete”
procedure in the SHN. Refer to Figure 7.2 for an example of statelet broadcast by statelet

score.

As previously mentioned, each statelet belongs to an index family. When an incoming
statelet is broadcast to form an outgoing statelet, the index to which the incoming statelet
belongs is also assigned to the outgoing statelet. All statelets of a common index in a net-
work can be traced back to a single outgoing statelet, at the cycler node, which forms the
basis of that index family. As incoming statelets are broadcast to form the precursor of
multiple outgoing statelets, it can occur that multiple incoming statelets can appear at a
node that all belong to the same index family. An additional rule, which is added to the
broadcast rules of a tandem node, is that there can only be one outgoing statelet, which
belongs to a particular index family, on any given span. The broadcast rules are processed,

as previously described, with preference given to those incoming statelets with the best

105

Statelets orderers by Score

(Best Score to Worst Score)

Statelets S;=~S)~S3-54-Ss

84

Ss

Apply Statelet broadcast for each Incoming Statelet
in Order of Score (Best to Worst)

S
$1
1 2 3
& 5
Ss

Resulting Overall Statelet Broadcast Pattern

 The final broadcast pattern reflects the preference given
to better scoring incoming statelets

* s, is fully broadcast to form the precursor of 2 outgoing
statelets

* sy, S3, and s4 are only partially broadcast to form the
precursor of 1 outgoing statelet

* sg is not broadcast and forms the precursor for no
outgoing statelets

FIGURE 7.2 Example of the broadcast of Incoming Statelets with Preference given to
Incoming Statelets with Good Scores

scores but there is an additional requirement that only a single outgoing statelet of any

given index family can exist on any span. The incoming statelet, which forms the precur-
sor of this outgoing statelet, has the best score of all incoming statelets of that index family
which could potentially broadcast an outgoing statelet on that span. This rule requires that

a new incoming statelet will displace a pre-existing outgoing statelet of the same index
family, if the new incoming statelet would form a superior precursor. This has the effect of
shifting the broadcast pattem for a particular index family from the original precursor
statelet to the superior incoming statelet. Refer to Figure 7.3 for an example of the arrival

of a superior incoming statelet where an incoming statelet, of the same index family,

exists.
1. A node with a single incoming 2. Statelet s,, also belonging to
statelet s; belonging to index m index m, arrives with a better score
S|, index=m S|, index=m

Sy, index=m
3. s1’s statelet broadcast is shifted to s,
51, index=m o Arrival of a superior incoming statelet s at
the node causes the broadcast pattemn to be
shifted from the previously present s; to s,

e s;’s broadcast on s,’s incoming span is
unchanged because a statelet may not be
broadcast on its incoming span

» s broadcasts an outgoing stateleton s;'s
incoming span because there is a spare link
available on the span

FIGURE 7.3 Example of the Shifting of a Statelet Broadcast from an Original Incoming

Statelet belonging to an Index Family to a New Incoming Statelet, of the Same Index Family,
with a Better Score

s, index=m

The final broadcast rule, and the only departure from the tandem node broadcast rules
defined in the SHN protocol, is that an incoming statelet may not be the precursor of an
outgoing statelet on a span which connects the node, where the incoming statelet arrived,
to a node which touches the incoming statelet’s broadcast route. This route is stored in the

107

route field of the incoming statelet. The goal of the DPCD protocol is to generate cycles
for preconfiguration by evaluating the statelet broadcast patterns which originate and end
at the cycler node. In order that only simple cycles be generated (that is cycles which
traverse each cycle node only once), the statelet broadcast at the tandem nodes is limited
to nodes not previously touched by the incoming statelets broadcast route. The only case
where an outgoing statelet may be broadcast to a node falling on the broadcast route is
when a tandem node broadcasts to the cycler node. This is required so that the statelet
broadcasts may form cycles by terminating on the cycler node. Refer to Figure 7.4 for an
example of the valid spans a tandem node may broadcast an incoming statelet on.

@:——__@-—@ 8 Cycler Node

Existing Statelet
® Broadcast Pattern
——p Permitted Outgoing
Statelet

’ A Invalid Outgoing
x Statelet
e An existing Statelet Broadcast travels from the Cycler Node A to Tandem Node

E along route A-B-C-D-E

¢ The Incoming Statelet arriving at Tandem Node E can be Broadcast to Nodes A,
F, or G. Nodes F and G are valid broadcasts as they are Tandem Nodes which
have not previously been touched by the Statelet Broadcast Pattern. Node A is a
valid broadcast because it is the Cycler Node.

¢ Nodes B and C are not valid as they have previously relayed the Statelet Broad-
cast.

 If an outgoing statelet was sent to the Cycler Node, the Statelet Broadcast Pattern
would form a cycle following A-B-C-D-E-A.

FIGURE 7.4 An Example of the Tandem Node Statelet Broadcast Rule that Limits the
Cycles Generated to Simple Cycles which visit a Cycle Node only once

In summary, a tandem node’s statelet broadcast rules will broadcast each incoming
statelet to the largest extent warranted by the statelet’s evaluated score. If all spare links on

108

a span are occupied by outgoing broadcast statelets and an incoming statelet, with a good
score, is able to broadcast on the span but currently does not, then the incoming statelet
can displace the outgoing statelet whose precursor statelet has the worst score of all pre-
cursors for the span. An incoming statelet may only form the precursor for an outgoing
statelet whose destination is a node which has not been previously touched by the incom-
ing statelet’s statelet broadcast route. The single exclusion to this rule is that a outgoing
statelet may be broadcast to the cycler node. An additional rule is that only a single outgo-
ing statelet of a given index family may appear on a span. If multiple incoming statelets
exist, which are of a common index family and are able to be broadcast on a span, then the
statelet with the best score is broadcast. These rules result in the cycler node receiving
incoming statelets whose statelet broadcast route traces out cycles which begin and termi-
nate at the cycler node.

7.1.2.2 . Tandem Node Evaluation of a Statelet’s Score

In the previous section a description of how a tandem node broadcasts incoming state-
lets on the basis of each statelet’s evaluated score was given. In this section it will be

described how an incoming statelet is assigned a score.

The DPCD protocol attempts to generate effective PC designs using cycles as PC ele-
ments. To generate good cycles a score is required which reflects the quality that makes a
particular cycle effective at providing span failures with PC paths. The score is chosen to
reflect the potential that an incoming statelet’s broadcast route can form a PC cycle with a
high ratio of number of effective PC restoration paths to number of spare links required to
form the cycle. This score reflects how efficiently the cycle would use the spare links
required to construct it to provide PC paths for span restoration.

When an incoming statelet first arrives at a tandem node, the tandem node must first
evaluate the statelet’s score before it can attempt to broadcast the statelet. The statelet’s
score is equal to the ratio of the number of useful PC paths that the cycle, formed from a
union of the incoming statelet’s broadcast route and an imaginary span joining the tandem
node and the cycler node, can provide and the number of spare links which would be
required to form the statelet’s broadcast route. The number of useful PC paths contained in

109

the cycle are only counted for real network spans and are not considered for the imaginary
span which closes the cycle (unless the imaginary span should coincide with a real span.)
‘The number of spare links required to form the broadcast route can also be viewed as the
number of spare links required to form the cycle when not considering the imaginary span.
This score measures the potential that an incoming statelet’s broadcast route, as evaluated
locally at the tandem node, would form an effective PC cycle if it should loop back and
touch on the cycler node.

The count of the number of PC paths which a statelet broadcast route could provide, if
it was shorted out to form a cycle, is updated incrementally as the statelet broadcast route
is relayed from tandem node to tandem node. When a tandem node receives an incoming
statelet it evaluates the number of PC paths which were added in the step between the
incoming statelet’s originating node and itself. This number is added to the total PC paths,
as evaluated at the originating node, which is contained in the incoming statelets num-
Paths field, to form a local numPaths value for the incoming statelet. The local numPaths
number is divided by the value of the incoming statelet’s hopcount field to generate the
incoming statelet’s score. If the incoming statelet should form the precursor to an outgoing
statelet, the outgoing statelet’s numPaths field will be set equal to the incoming statelet’s
evaluated local numPaths.

The PC path increment required to form the local path count for an incoming statelet is
evaluated by examination of the statelet’s route field. If the route touched on any of the
nodes which are adjacent to the tandem node then the incoming statelet’s route could pro-
vide PC paths for the spans which connect the tandem node to adjacent nodes. The rule
used to evaluate the number of PC paths which are provided to a span connecting the tan-
dem node to an adjacent span is quite simple. If a span connects the tandem node to a
node, which is present in the route field, then the statelet broadcast route could provide
one or two preconfigured paths; if the node is not present, the route can provide no paths.
If the node is present, the route can provide only a single PC path if the adjacent span is
that on which the incoming statelet, belonging to the broadcast route, arrives. The route
can provide two PC paths if the span connects the tandem node to an adjacent node which
is on the route but is not directly behind the tandem node on the route. The case where no

110

PC paths are provided, occurs because there is no path possible in a cycle for a pair of
nodes which are not both a part of the cycle. The case, where a single PC path is available,
occurs when a span, which connects a pair of cycle nodes directly along the cycle, fails
because the only path possible is that which connects the pair of nodes around the failed
span. The case, where two PC paths are available, occurs when a span, which connects a
pair of cycle nodes but is not directly on the cycle, fails because there are two paths possi-
ble between any pair of nodes on a cycle, and, in this case, the cycle is not broken by the
failure of a span. Therefore, unlike in the previous case, both paths can be exploited to aid
in restoring the span failure. It should be noted that the total number of PC paths provided
by a statelet broadcast route is not what is calculated but the total number of useful PC
paths. If an incoming statelet’s broadcast route is evaluated and it is found to overprovide
a span with PC paths, either because the span has very few working links or the span’s
working links have been provided PC paths by previously formed cycles, then only the
number of paths which are useful to restoring a span are counted. It can be determined if a
PC path would be useful in restoration because each node maintains a list of the number of
uncovered working links on the spans which join it to other nodes and this list is updated

as PC cycles are formed in the network.

The method used in the previous paragraph to evaluate the total PC path count for an
incoming statelet is valid only when considering the incoming statelet for broadcast to
another tandem node. If a statelet is being considered for broadcast on a span which con-
nects the broadcasting tandem node to the cycler node then the total PC count must be
evaluated in a slightly different manner. The rules given in the previous paragraph are
valid except that the number of PC paths which are available for a span, which has the
cycler as an end node, can be at most one. This is because when an outgoing statelet is
broadcast to the cycler node, it is closing the statelet broadcast route to form a cycle. The
span connecting the broadcasting tandem node to the cycler node will fall directly beneath
the cycle formed by the broadcast route and a cycle can only provide only a single PC path
to the failure of such a span. This difference requires, in effect, that a tandem node evalu-
ate two different scores for each incoming statelet: a score to be used for broadcast to other
tandem node, and a score to be used for broadcast to the cycler node. Both scores are still

11

« An Incoming Statelet arrives at Node T with
Broadcast originating at Cycler Node S

¢ The Statelet’s Broadcast Route is S-1-2-T

e Tandem Node T evaluates PC paths added for
m the Spans joining it to Adjacent Nodes

+ Potential Failed Spans which are considered
O by Node T are T-2, T-1, T-3 and T-S.

o PC paths are found for the cycle formed from

Q‘ the Union of Route S-1-2-T and a span joining
Node T to the Cycler Node S
Case 1: No PC paths Case 2: 1 PC path Case 3: 2 PC paths
Failure of Span T-3 Failure of Span T-2 Failure of Span T-1

Case 4a: 2 PC paths Case 4b: 1 PC path
Broadcast to a Tandem Node Broadcast to the Cycler Node
Failure of Span T-S Failure of Span T-S

(D

Added PC paths for Broadcast to a Tandem Node =0+ 1 +2+2 =5
Added PC paths for Broadcast to the Cycler Node =0+ 1 +2+ 1 =35

FIGURE 7.5 Tandem Node evaluation of the Incremental Preconfigured Path Count of an
Incoming Statelet

112

calculated by taking the ratio between the total PC paths, as calculated locally, to the value
of the incoming statelet’s hopcount field. Refer to Figures 7.5 and 7.6 and for examples of
how the total PC path count is evaluated and updated at successive tandem nodes along a
statelet broadcast route.

¢ A Statelet Broadcast which reach
the Cycler with Route S-1-2-3-4-S

¢ Aseach Tandem Node receives the
Statelet Broadcast it increments the
Total Preconfigured Path Count

» The Total Number of
Preconfigured Paths is equal to 9

¢ 1PC path is available for the
failure of a cycle span

o 2 PC paths is available for a non-

cycle span whose end nodes are
cycle nodes

Total PC paths for Cycle S-1-2-3-4-S=0+1+ 1+ (1+2+2) +1+1=9

FIGURE 7.6 Evaluation of the Total PC path Count by the
Tandem Nodes along a Statelet Broadcast

7.1.2.3 . Cycler Node Initiation of Statelet Broadcast

All statelet broadcasts originate at the cycler node. To initiate statelet broadcast, the
cycler node places a single outgoing statelet on an available spare link on each span falling
on the cycler node. Each outgoing statelet is assigned a unique index. If a span does not
have an available spare link, either because the span has no spare links or because the
span’s spare links have been previously used to form PC cycles, then no outgoing statelet
is placed on it. Each outgoing statelet has its sendNode field set to the name of the cycler
node, its hopcount field set to a value of 1 hop, and its numPaths field set to zero. Also,
each outgoing statelet has all the cells in its route field set to NIL except for the contents of
the cell, corresponding to the node which receives the outgoing statelet, which is set to the

name of the cycler node.

113

After initiation of statelet broadcast the cycler node initiates the sampling of incoming
statelets.

7.1.2.4 . Cycler Node Sampling of Incoming Statelets

After the statelet broadcast is initiated, the cycler node waits and samples the incoming
statelets arriving on its spare links. Each successful arrival of an incoming statelet repre-
sents a cycle with a score attached to it. The score for each incoming statelet is found by
taking the ratio of the incoming statelet’s numPaths field to that of its hopcount field. The
value is equal to the number of useful PC paths which the cycle can provide per spare link
which would be required for its construction. At the start of statelet sampling the cycle
resets a timer and then waits. As new statelet events arise on the incoming sides of the
cycler node’s spare links, it examines the new incoming statelet and determines its score.
If the cycle represented by the new statelet has a score which better the scores of all previ-
ously received statelets, the cycler node records the cycle and its score and resets the
timer. When the timer times out, the cycler node will initiate the building of the best non-
zero scoring cycle which it has received. If the cycler has, either, received incoming state-
lets which have a score of zero or has received no incoming statelets at all, the cycler will
not initiate the building of a cycle. Instead, it will terminate its role as the cycler node and
signal another predetermined node to assume the role of the cycler node.

This sampling of incoming statelets is markedly different from the way received
incoming statelets are treated by the chooser node in the SHN protocol. Immediately upon
reception of an incoming statelet, the chooser node will react by initiating reverse linking,
back along the incoming statelet’s broadcast path, to form a restoration path between the
sender and chooser nodes. The reason for this is that a statelet broadcast in the DPCD pro-
tocol will tend to improve in its score as it progresses unlike in the SHN where a statelet
broadcast will tend to worsen in score. This difference is a consequence of the different
goals of the two protocols. The SHN uses statelet broadcasts to represent node to node
paths, between the sender and chooser nodes, and, in general, a shorter path makes more
efficient use of network spare capacity than a longer path and is more reflective of the real

time pressure in restoration. Therefore, a SHN statelet broadcast’s score will worsen as it

114

progresses and becomes longer. As shown in the previous section, a cycle tends to contain
more PC paths as it grows in size and, therefore, the score of a DPCD statelet broadcast,
which represents a cycle, will improve as it increases in size. This means that reacting
immediately to an incoming statelet in the DPCD protocol will, in general, give a cycle
which does not have very good score. Sampling the incoming statelets forces the cycler
node to give the generation of incoming statelets, with better scoring broadcast routes, a
chance to occur. The DPCD has the luxury of permitting the sampling of signatures
because it is being run in anticipation of a span failure, and not in response to one, and so

does not require the fast real time response present in the SHN.

7.1.2.5 . Cycler Node Initiation of the Building of a Cycle

If the cycler node has found a non-zero scoring cycle in the statelet sampling stage, it
will initiate the building of a single copy of the cycle. As mentioned in the previous sec-
tion, a statelet broadcast in the DPCD protocol will improve in score as it progresses. A
consequence of this is that there is no guarantee that the actual link level path, thata
incoming statelet’s broadcast path traversed to reach the cycler node, will still be occupied
by the statelet’s broadcast. Because a statelet broadcast’s score improves as it progresses
there is nothing to protect its root from being displaced by other better scoring statelet
broadcasts in the tandem node broadcasts rules. At each tandem node, a statelet broadcast
builds upon the statelet broadcasts preceding it at other tandem nodes. The relatively low
scoring portion of the broadcast will occur earlier in the broadcast route and can be dis-
placed by the arrival of new higher scoring incoming statelets at the preceding tandem
nodes. A consequence of this is that the network wide statelet broadcast pattern will not
eventually grow static, unlike in the SHN protocol, but will continue to fluctuate as the
roots of broadcast patterns are continuously displaced by the arrival of better scoring state-
lets. However, in the previous sampling stage, the cycler samples the incoming statelets
and maintains a record of the best scoring cycle. The record contains only the route the
cycle’s statelet broadcast travelled to reach the cycler node, not the actual path, but this is
all that is required to build a single copy of the cycle. It is guaranteed that the spare capac-
ity required to construct a copy of the cycle will be available because the cycle's statelet
broadcast route was only broadcast on unoccupied spare links.

115

The first step in initiating the construction of a cycle, is that the cycler node cancels all
outgoing statelets. This causes a termination of the statelet broadcasts as the cycler node is
the source of all statelet broadcasts within the network. In effect, although the statelet
broadcasts would continue to fluctuate if left to proceed, the cycler node brings the statelet
broadcasts to a conclusion. Next, the cycler examines the route field which was stored for
the cycle. The cell corresponding to the cycler node will contain the name of the tandem
node which preceded the cycler node on the broadcast route. The cycler node will then
scan for the first unoccupied spare link on the span joining the cycler node to the node
indicated by the route field. The cycler node will then place an outgoing statelet, on this
spare link, with a copy of the cycle’s route field and a special reserved index family which
indicates the outgoing statelet is not a normal statelet broadcast but a cycle construction

request.

The tandem node, upon reception of the cycle construction statelet from the cycler
node, will cancel all outgoing statelet broadcasts. Then it will examine the route field on
the construction request statelet for the name of the tandem node which preceded it on the
cycle’s original broadcast route. It will then locate the first unoccupied spare link on the
span joining it to the node which preceded it on the broadcast route. Next, an outgoing
construction request statelet will be placed on this link, instructing the preceding route
node to continue construction of the cycle. The tandem node’s local list of uncovered span
working links will be updated, to reflect the PC paths which are available in the newly
formed cycle, so that future iterations of statelet broadcasts can be scored accurately. Also,
the tandem node will form a crossconnection between the link on which the incoming con-
struction request statelet arrived and the link on which it sent the outgoing construction
request statelet. The preceding tandem nodes on the broadcast route will react in a similar

manner, continuing the construction of the cycle.

Eventually, the construction of the preconfigured cycle will loop back to the cycler
node and an incoming cycle construction statelet will arrive on a spare link. The cycler
node then forms a crossconnection between this spare link and the link on which it origi-
nally placed the outgoing statelet which initiated the cycle construction thus completing
the cycle. The cycler node also adjust its local list of uncovered working links in a similar

116

manner to that of the tandem nodes. Finally, the cycler node cancels all outgoing statelets,
and initiates a new statelet broadcast, as described in section 7.1.2.3.

7.1.3 Global Execution of the DPCD Protocol

The previous section gave a network node level description of the DPCD protocol. In
this section a network level representation of the protocol’s execution will be given. The
DPCD protocol is an example of a greedy algorithm. A greedy algorithm is an algorithm
which iteratively constructs a solution to a problem on the basis of the state of the problem
at the start of the iteration. The state of the problem is modified, after each iteration, by the
application of the iteratively generated solution. The DPCD protocol can be seen to be
greedy because it iteratively generates a single cycle per iteration and the cycle is formed
on the basis of the current network configuration as represented by the number of unoccu-
pied spare links and the number of uncovered working links present in the network spans.
As the cycle is generated these network values are modified by the presence of PC paths in
the newly generated cycle and the utilization of spare links needed to construct the cycle.

Globally, the DPCD protocol executes in the following manner. Each node in the net-
work takes a tumn at being the cycler node in an order which is predetermined and is stored
locally within the nodes. As each node assumes the role of the cycler node, it iteratively
generates cycles, using the rules outlined in the previous section, until it can either no
longer generate a cycle or the cycles that it can generate all receive a zero score. At this
point the current cycler node gives up the role and signals the next node in the series to
become the cycler node. The new cycler node generates as many cycles as it can until it
too is no longer able to generate useful cycles. The preconfigured cycles generated by
each node alter the network’s configuration as it is seen by later cycler nodes. The role of
the cycler is successively assumed by all the network nodes and when the last node has
terminated its role as the cycler, preconfigured cycle generation stops.

The execution time of this protocol will be many times longer than that of the SHN.
This is because a statelet broadcast is required for each generated PC cycle and because of
the timer delays introduced by the cycler node’s sampling of its incoming statelets. How-

ever, because the DPCD protocol is being run in anticipation of a span failure event,

117

instead of in reaction to one like the SHN, it has the luxury of being able to have a rela-

tively long execution time.

The order in which each node assumes the role of the cycler is important because the
cycler node can only generate cycles of which it is a part. Depending on the current net-
work configuration, choosing a certain node to assume the role of the cycler node could
cause the generation of cycles which are wasteful in the use of the network spare capacity.
A cycler node, on which spans fall which require minimal restoration paths, could result in
cycles which are larger than required or which cover spans which do not require many PC
paths.

The node order with which this algorithm was used was determined by the total number
of working links falling on each network node. Each network node had a total generated of
the number of working links contained in the spans which fell on it. The order in which the
nodes assumed the role of the cycler was generated by sorting the nodes in descending
order of the calculated working links total. The reverse order was also run to evaluate any
performance difference between the two orders. The node’s working link total was used to
determine the cycler node ordering because it seemed reasonable that if a node terminates
a large number of working links then it should receive an early opportunity to form a part
of the PC cycles generated.

7.2 Simulation Method

As an initial evaluation of the potential of realizing an algorithm, which could generate
preconfigured cycle designs in a distributed manner, a simple simulation approach was
taken. The distributed protocol was simulated in an iterative manner with the state of the
current iteration being determined by only the state of the previous iteration. In each itera-
tion, the outgoing statelet broadcast pattern, for each network node, is generated on the
basis of the node’s incoming statelet broadcast pattern in the previous iteration. Each node
then assumes its newly calculated broadcast pattern simultaneously and in lockstep. Suc-

cessive iterations are generated in a similar manner.

118

This simulation method approximates the case where a network’s statelet insertion
delay is large compared to the statelet processing delay. Insertion delay is due to the time
required to transmit a statelet through a limited bandwidth communication channel while
processing delay is due to the time required by the computation element present in each

node to process incoming statelet events.

As an example of the iterative nature of the simulation, Figure 7.7 contains a plot of the
score of the best received incoming statelet, by the current cycler node, versus the simula-
tion iteration. In the plot, 4 distinct structures appear; each structure corresponds to the
search and construction of a single PC cycle. At the left most edge of each structure, the
plot can be seen to start at zero and then step up. Each step corresponds to the arrival of an
incoming statelet with a superior score and an improvement to the best candidate cycle
received by the cycler node. The structure then plateaus which corresponds to the cycler
node's timer counting down (the timer was set to countdown 50 iterations.) When the
timer counts out, the cycler initiates the construction of the cycle and resets the best
received score to zero (this corresponds to the right edge of each structure.) Although, the
graph goes up to only 300 iterations, the actual simulation continued for 500 more itera-
tions. However, no more PC cycles were possible within the network after the construc-
tion of the fourth cycle and, so, the plot remains at zero after this point. Figure 7.8 shows
an example of the successive displacement of the best received cycle candidate as a cycler
node samples the incoming statelets generated by the evolving statelet broadcast. The
statelet broadcast, from which the incoming signatures containing these cycles originate,
is the broadcast represented by the left most structure in Figure 7.7. The arrival of each
superior incoming signature, can be seen as a step in the left most edge of this structure.
During the evolution of the statelet broadcast, 8 superior incoming statelets arrive at the
cycler node (superior in the sense that their score is better than that of any previously
received statelet.) Each cycle in Figure 7.8 corresponds to the cycle contained within a
superior incoming statelet and the score above the cycle corresponds to the statelet’s
score. The cycles are ordered in the same order of arrival as the superior statelet to which
each cycle corresponds. After the arrival of the 8th superior statelet, no more incoming

statelets with better scores appear at the cycler. Eventually, the cycler’s timer times out

119

and the 8th cycle, as the best received cycle, is formed within the network’s spare capac-
ity.

—_— O I~ e~ ™~ p—— ~ —
> 58R>B8835858858%
Heration

FIGURE 7.7 The Best Received Incoming Statelet Score at the Cycler Node versus
Simulation Iteration when using DPCD Lmil:oge Order in Order of Decreasing Working
etl

7.3 Results

Please refer to figures 7.9 and 7.10 for an example of the type of PC pattern that is gen-
erated in Netl by the DPCD, with cycler node order sorted in order of decreasing total
node working links and increasing total node working links, respectively. Table 7.1 con-
tains the network restorability results, for the decreasing order case, over all possible span
failures for restoration using only conventional KSP restoration, restoration using only
pure PC paths, and 2-step restoration. Table 7.3 contains the restorability results for the
increasing order case. Table 7.2 contains the total crossconnection events, for the decreas-
ing order case, over all possible failed spans, for KSP restoration alone and for 2-step res-
toration. The crossconnection results for the increasing order case is presented in Table
7.4.

120

1) Score = 1.0 2) Score = 2.0

T X

3) Score =2.2 4) Score = 2.67

5) Score = 2.71 6) Score = 3.00 wmm Cycle Span
@ -

8) Score = 34

FIGURE 7.8 The Successive Displacement of the Best Scoring Cycle Candidate contained
in the Received Incoming Statelets at the Cycler Node. Done for Netl with Nodes in
Decreasing Working Link Order, for the First Statelet Broadcast

Figures 7.11 and 7.12 contain examples of the PC patterns generated in Netl by the
DPCD, for decreasing and increasing cycler order, when run within the network sparing
plans generated by the 100% PC cycle restorable IP method (IP2-Cycle.) Tables 7.5 and
7.7 contain the restorability results for the two orders when using [P2-cycle with the test
networks. Tables 7.6 and 7.8 contain the corresponding crossconnection results.

In addition, figures 7.13-7.20 give counts of the number of crossconnection events
required at each node to form a restoration pathset, for each span failure, in test network

121

Net2, when using only on-demand KSP restoration and when using 2-step restoration. The

figures present the results corresponding to the original sparing and the sparing generated
by IP2-Cycle for both decreasing and increasing total working link cycler ordering. The
crossconnect totals for each node appear sequentially within the space, on the x-axis, cor-

responding to each span failure.

The countdown timer, used by the cycler node when sampling incoming statelets, was

set to time out after 50 iterations in all test networks.

Table 7.1: Network Restorability using Standard KSP and PC Restoration using the
DPCD with Cycler Order in Descending Total Node Working Links Order

KSP Restorability PC Restorability 2-step Restorability
Network (%) (%) (%)
e ——
Netl 100 93.66 93.66
Net2 96.87 95.01 99.43
Net3 100 81.73 94.53
Net4 100 85.12 94.93
Net5 100 92.20 99.50

Table 7.2: Total Network Crossconnect Events Results using Standard KSP and PC
Restoration using the DPCD with Cycler Order in Descending Total Node Working

Links Order
Total Xpt
Network Xpts Closed Xpts Closed Xpts Opened Events
KSP PC PC
PC
— = =

Netl 310 0 174 174

Ner2 3984 122 2220 2342

Net3 13787 1917 7011 8928

Net4 84389 8269 43277 51546

Net5 8529 455 3985 4440

122

Table 7.3;: Network Restorability using Standard KSP and PC Restoration using the
DPCD with Cycler Order in Increasing Total Node Working Links Order

Network KSP Restorability | PC Restorability | 2-step Restorability
(%) (%) (%)
Netl 100 84.51 84.51
Net2 96.87 85.33 96.87
Net3 100 82.86 96.29
Net4 100 84.91 94.57
Net5 100 86.13 98.86

Table 7.4: Total Network Crossconnect Events Results using Standard KSP and PC
Restoration using the DPCD with Cycler Order in Increasing Total Node Working

Links Order
Total Xpt
Network Xpts Closed Xpts Closed Xpts Opened Events
KSP PC PC
PC
—— e ——— s —

Netl 310 0 162 162

Net2 3984 420 2278 2698

Net3 13787 1666 6595 8261

Net4 84389 7812 44074 51886

NetS 8529 1074 4190 5264

123

Table 7.5: Network Restorability using Standard KSP and PC Restoration using the
DPCD with Cycler Order in Descending Total Node Working Links Order with the
Sparing Plans generated by IP2-Cycle

Network KSP Rz;toc;rability PC Re:;:;ability 2-step R(e:qsot)orability
_— —
Netl 100 94.37 97.18
Net2 100 99.15 100
Net3 100 90.02 97.12
Net4 100 96.84 99.00
Net5 100 92.42 96.44

Table 7.6: Total Network Crossconnect Events Results using Standard KSP and PC
Restoration using the DPCD with Cycler Order in Descending Total Node Working
Links Order with the Sparing Plans generated by IP2-Cycle

Total Xpt
Network Xpts Closed Xpts Closed Xpts Opened Events
KSP PC PC
PC
Netl 291 "9 203 212
Net2 4176 20 2080 2100
Net3 20744 1074 6783 1857
Netd 86048 1762 42292 44054
Net5 13727 382 3828 4210

124

Table 7.7: Network Restorability using Standard KSP and PC Restoration using the
DPCD with Cycler Order in Increasing Total Node Working Links Order with the

Sparing Plans generated by IP2-Cycle

Network KSP Re(;;c;rability PC Rez;:;ability 2-step R(;t)orability
Netl 100 83.10 95.07
Net2 100 98.72 100
Net3 100 94.44 97.94
Net4 100 96.23 98.22
Net5 100 86.86 97.49

Table 7.8: Total Network Crossconnect Events Results using Standard KSP and PC
Restoration using the DPCD with Cycler Order in Increasing Total Node Working
Links Order with the Sparing Plans generated by IP2-Cycle

Total Xpt
Network Xpts Closed Xpts Closed Xpts Opened Events

KSP PC PC

PC
Net 291 44 199 243
Net2 4176 32 2120 2152
Net3 20744 558 6836 7394
Net4 86048 2222 42020 44242
Net5 13727 2044 4757 6801

125

- ~
" ™

subaiaph 3, Occurrences 1 subaraph 4, Occmren;:;s 1

FIGURE 7.9 Example of the Patterns which Result in Netl using the DPCD with Cycler
Order in Descending Node Total Working Links

7}
-

subGra;;h 4, Occurrences 1 subGraph S, Occm;ences 1

FIGURE 7.10 Example of the Patterns which Result in Net1 using the DPCD with Cycler
Order in Increasing Node Total Working Links

126

subGraEh 4, Occur;ences 1 subGraphS§, Occur};nces 1 subGra[;h 6, Occurrences 1

FIGURE 7.11 Example of the Patterns which Result in Netl using the DPCD with Cycler Order
in Descending Node Total Working Links with the Sparing Plans generated by IP2-Cycle

subGraEh 4, Occur;énces 1 subGraEh S, Occur;énces 1

FIGURE 7.12 Example of the Patterns which Result in Net1 using the DPCD with Cycler Order
in Increasing Node Total Working Links with the Sparing Plans generated by IP2-Cycle

127

Xpts Closed

Xpts Closed

Xpts closed at each Node for Each Span failure - KSP Only

80 4

704

504

304

20 1

10

0 &
1 23 4567891011 1213F1a?1a115[6[718 19 20 21 22 23 24 25 26 27 28

Span
20 Xpts closed at each Node for Each Span failure - 2-Step
154
104
54
1 23 45 67 8 9101112131415161718 192021 22 23 242526127 28
Failed Span

FIGURE 7.13 Crossconnections Closed at each Node to Form the Restoration Pathsets for Each
Span Failure when using the PC plan formed within Net2 using the DPCD with Cycler Nodes in
Decreasing Total Working Link Order. For Restoration using only Conventional KSP
Restoration and for 2-Step Restoration.

128

Xpts opened at each Node for Each Span failure - 2-Step

704

504

Xpts Opened

304

20

104 I
: |

1 2 3 456 7 8 910111213 141516 I7 18 19 20 21 22 23 24 25 26 27 28
Failed Span

FIGURE 7.14 Crossconnections Opened at each Node to Form the Restoration Pathsets
for Each Span Failure when using the PC plan formed within Net2 using the DPCD with
Cycler Nodes in Decreasing Total Working l&l:k Order. For Restoration using 2-Step
Restoration.

7.4 Conclusions

For the original network sparing plans, the performance of the distributed cycle genera-
tor at times approached that of the IP based PC cycle design (it equals the performance for
Netl using the descending ordering) but, as the distributed algorithm is based on a heuris-
tic, there was no guarantee of optimal cycle generation. Although, the overall performance
did not exactly equal that of the IP PC designs, the results were still quite good. Using the
descending order, the distributed cycle generator generated PC restorability scores which
ranged between 82% and 95%. The overall restorability using PC with leftover KSP resto-
ration varied between 94% and close to 100%. Also, the crossconnect results showed the
result of using a simple pattern as the PC plan’s building block; the total number of cross-
connection opens was quite low for all test networks. In addition, the total number of
crossconnection closures was significantly lower for restoration using PC paths compared

to KSP restoration alone, in all the test networks.

129

Xpts closed at each Node for Each Span failure - KSP Only

80 4

704

Xpts Closed

20+

10

o [

1 2 3456 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27 28
Failed Span

Xpts closed at each Node for Each Span failure - 2-Step

204

154

Xpts Closed

104

54 [
J L1 "] ! 1l 1 |
1 4

S 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Failed Span

FIGURE 7.15 Crossconnections Closed at each Node to Form the Restoration Pathsets for Each
Span Failure when using the PC plan formed within Net2 using the DPCD with Cycler Nodes in
Increasing Total Working Link Order. For Restoration using only Conventional KSP
Restoration and for 2-Step Restoration.

130

Xpts opened at each Node for Each Span failure - 2-Step

Xpts Opened
&

LM IR

1 2345678 9 10111213 14151617 18 19 20 21 22 23 24 25 26 27 28
Failed Span

FIGURE 7.16 Crossconnections Opened at each Node to Form the Restoration Pathsets
for Each Span Failure when using the PC plan formed within Net2 using the DPCD with
Cycler Nodes in Increasing Total Working Link Order. For Restoration using 2-Step
Restoration.

The performance of the DPCD, when run using the sparing generated for the test net-
works using IP2-Cycle, was in general better than when run using the original sparing,
with improvements in PC restorability, 2-step restorability and total crossconnection event
numbers. However, it did not achieve, although it did approach, the performance of the

original PC cycle plan which was generated by the IP.

As expected the performance of the descending order execution was, in general, better
than that of the increasing order execution producing better PC restorability scores and PC
plus leftover KSP restorability scores for 4 out of the 5 test networks when run in the test
network's original sparing plans (decreasing order was better than increasing order in 3 of
the 5 test networks when using the sparing plans generated using [P2-cycle.) The algo-
rithms dependency on the order in which the network nodes assume the role of the cycler

nodes is shown by the variation in the two orders scores.

131

Xpts Closed

Xpts Closed

Xpts closed at each Node for Each Span failure - KSP Only

304

204

10 I
o [
1 23 456 7 8 91011121314151617 18 192021 2223 242512627 28

Failed Span
Xpts closed at each Node for Each Span failure - 2-Step

0 - v e p——— e e et
1 23 4567 8 91011121314151617 18 19 2021 22 23 24 25 2627 28
Failed Span

FIGURE 7.17 Crossconnections Closed at each Node to Form the Restoration Pathsets for Each

Span Failure when using the PC plan formed within Net2 (as Spared using [P2-Cycle) using the

DPCD with Cycler Nodes in Decreasing Total Working Link Order. For Restoration using only
Conventional KSP Restoration and for 2-Step Restoration.

132

Xpis Opened

Xpts opened at each Node for Each Span failure - 2-Step

804

70+

304

204

104

1 23 456 7 8 9 1011121314151617 18 192021 22 23 24252627 28
Failed Span
FIGURE 7.18 Crossconnections Opened at each Node to Form the Restoration Pathsets for
Each Span Failure when using the PC plan formed within Net2 (as Spared using [P2-Cycle)
using the DPCD with Cycler Nodes in Decreasing Total Working Link Order. For Restoration
using 2-Step Restoration.

0

133

Xpts closed at each Node for Each Span failure - KSP Only

Xpis Closed

304

204

10

L |

1 234567 8 9 10111213 14151617 18 19 20 21 22 23 24 25 26 27 28
Failed Span

Xpts closed at each Node for Each Span failure - 2-Step

0

Xpts Closed
W

24

0 Sy - e ———————— e e et

1 23 456 7 8 91011121314151617 18192021 22 23 2425 26 27 28
Failed Span

FIGURE 7.19 Crossconnections Closed at each Node to Form the Restoration Pathsets for Each

Span Failure when using the PC plan formed within Net2 (as Spared using IP2-Cycle) using the

DPCD with Cycler Nodes in Increasing Total Working Link Order. For Restoration using only
Conventional KSP Restoration and for 2-Step Restoration.

134

Xpts Opencd

Xpts opened at each Node for Each Span failure - 2-Step

404
304

204

10 “
0 e

1 2 3456 7 8 9 10111213 1415 16 17 18 19 20 21 22 23 24 25 26 27 28
Failed Span

FIGURE 7.20 Crossconnections Opened at each Node to Form the Restoration Pathsets for
Each Span Failure when using the PC plan formed within Net2 (as Spared using IP2-Cycle)
using the DPCD with Cycler Nodes in Increasing Total Working Link Order. For Restoration
using 2-Step Restoration.

135

8. Summary

This thesis explored the performance of a number of different subgraph types when
applied to the preconfigured restoration of mesh-type transport networks. The motivation
behind preconfigured restoration is that current DCS implementations have crossconnec-
tion formation times which may not permit a span failure to be restored quickly enough to
avoid large scale consequences when using an on-demand restoration method. Preconfigu-
ration attempts to pre-form crossconnections within the network spare capacity in best
average-case anticipation of span failures. In the event of a span failure, preconfigured res-
toration paths may be removed from the pre-formed spare link structures by opening pre-
configured crossconnections, and may then be applied to the restoration of the disrupted
working signals. If there are not sufficient immediately available preconfigured restoration
paths, additional restoration paths may be scavenged from the remaining pruned and unal-
located spare capacity using an on-demand restoration method. By preconfiguring spare
capacity, the number of crossconnections which must be dynamically closed, to form the
restoration pathset of any span failure, is reduced and should, therefore, result in a speed-

up of restoration times.

In chapter 3, two related heuristics were evaluated, which generate preconfigured trees
using a network’s spare capacity plan. In the test networks, network restorability, when
using preconfigured restoration alone, was in the range of 30-40% while the overall
restorability, when using 2-step restoration, was very close to, if not, 100%. The total
number of crossconnections which were asserted to form the 2-step restoration pathsets, of
all span failures, was 50-70% of the number required for conventional on-demand KSP
restoration alone. The tree pattern type has no constraint on the nodal degree which it may
have. This requires a technical ability which present DCS machines do not have; the abil-
ity to directly connect a single port card to multiple other port cards. However, the PC tree
was still evaluated to evaluate its potential contribution to preconfigured restoration. The
unconstrained nodal degree of the tree pattern resulted in a large number of preconfigured
crossconnections within the network, as it was assumed that all of a tree’s links, meeting at
a node, would be fully crossconnected (i.e. there would exist a crossconnection joining

each pair of tree links.) This also generated a relatively large number of crossconnections

136

which would have to be opened to access the preconfigured paths contained with the PC
trees. As discussed in chapter 2, whether or not this would be a technical problem depends
on the method by which a DCS forms multiple crossconnections to a single port card and

on the relative speed of closing and opening a crossconnection.

In chapter 4, two genetic algorithm based heuristics, were allowed to form preconfig-
ured plans which contain a heterogeneous mixture of preconfigured subgraph variants.
Each GA evolves a one unit capacity preconfigured pattern, at each iteration, although
multiple copies of the pattern may be taken. The first GA (GA1) formed PC patterns based
on a span level of representation while the second GA (GA2) formed PC patterns based on
a crossconnection level of representation. In the test networks, both GAs generated PC
restorabilites from 75-90% and overall 2-step restorabilities of 90-100%. When using the
PC plan generated by GAl, the total number of crossconnect assertions to form the 2-step
restoration pathsets were 15-25% of the total required when using on-demand KSP resto-
ration alone. With GA2, this was only 11-23% of the total required when using on-demand
KSP restoration. However, as with PC trees, the patterns which were generated by the
GAs were not constrained in their nodal degree. GA1 used a span based representation to
form PC patterns in which all links of a common pattern, which met a node, are assumed
to be fully connected, i.e., a crossconnection is implied between all pairs of pattern links
meeting at a node. GA2, however, used a crossconnection based representation which
does not require that every pair of pattern links, at a node, have a crossconnection. As a
result GA1 had a significantly larger number of crossconnections to open (or prune), to
effect 2-step restoration, than did GA2. Again, as with PC trees, whether, the number of
crossconnections to open is an issue or not depends on the DCS implementation. The most
important result is the demonstration of 4 to 5-fold reduction in the crosspoints to be
asserted in realtime to affect restoration. This may be a significant speed-up for network
restoration with slow crossconnects, if one considers that the pruning workload is not of a

realtime concem.

Chapter 5 introduces two integer program techniques which form PC plans containing
cycles. The first integer program technique (IP1-Cycle) generates a PC cycle plan using a
network’s defined sparing plan and a pre-defined cycle set. The resulting PC plan is opti-

137

mal, in that it minimizes the number of uncovered working links within the network,
within the limits imposed by the network’s pre-existing sparing plan and the richness of
the pre-defined cycle set. The second integer program (IP2-Cycle) generates a PC cycle
plan and a network spare capacity plan based on a network’s given working link place-
ment plan and a pre-defined cycle set. The resulting PC plan is 100% restorable using only
PC paths and is optimal, within the limits imposed by the richness of the cycle set pro-
vided for the IP, in the sense that the total physical distance of the spare fibre is minimized.
This results in an economical savings while achieving 100% preconnected readiness for
restoration. IP1-Cycle generated PC plans with restorabilities, using only preconfigured
paths, in the range of 75-96%. The lower value of 75% occurred in test network Net4
which was run with a severely limited pre-defined cycle set, due to the size and complex-
ity of the network. The remaining networks were all greater than 90%. IP1-Cycle’s 2-step
restorabilites ranged between 93 and 100%. The total crossconnection closures required to
form the 2-step pathsets, of all span failures, was, excluding the most severely constrained
test network (Net4), in the range of 0-4% of the total generated when using on-demand
KSP restoration alone. Net4 required a total number of crossconnection closures which
was 24% of that required by on-demand KSP.

IP2-Cycle generated restorabilites, using only preconfigured restoration paths, which
were 100%. In addition, because only PC paths were used there were no crossconnection
closures required to form the restoration pathset. However, the spare capacity required to
make a network fully PC restorable was greater, compared to the original fully sparing
which was fully restorable using only on-demand KSP restoration, for 3 of the 5 test net-
works. 3 to 18.5% excess sparing distance was required for these networks, although if the
constrained network (Net4) is excluded, the range of excess sparing becomes 3-9%. The
cases where less sparing was required is attributed to the IP, which generated the original
100% KSP restorable sparing of the networks, being constrained in the set from which it
could form restoration paths (in a2 manner similar to the constraint of the IP1-Cycle and
IP2-Cycle’s cycle set.)

For both IPs, the total number of crossconnections pruned, to form the 2-step restora-
tion pathsets of all span failures, was relatively low compared to the previously evaluated

138

PC pattemns. This is due to the cycle’s simple structure (all nodes in a cycle are degree 2.)
In addition, a cycle is an example of a pattern class which can be formed by any existing
DCS implementation without any modification.

Chapter 6 establishes theoretical upper limits to the number of preconfigured paths per
preconfigured pattern link which the tree and cycle subgraph types can provide. It was
found that a cycle, spanning a certain number of nodes, could potentially provide twice as
many immediately useful PC paths per spare link consumed than a tree, spanning the same
number of nodes. In addition, the maximum number of PC paths which can be provided
per pattemn link was established for any possible configuration of pattern and this value
was found to match the value found for the cycle.

Motivated by the results of chapter S and 6, chapter 7 presents and tests a distributed
preconfigured cycle design (DPCD) protocol. The DPCD is based on the statelet process-
ing rules of the Selfhealing Network (SHN) protocol but is adapted significantly to dis-
cover the most useful cycle in the network spares, on each iteration, in a non real-time
preplanning orientation. The overall performance of the PC plans generated by the DPCD
did not, in general, equal that of the plans generated by IP1-Cycle. However, as the DPCD
is a heuristic, it was not expected that they would. The comparative performance of the
DPCD was quite good, however, sometimes equal to the IP generated results, in terms of
PC restorabilities (80-95%) and 2-step restorabilities (94-99%). The total crossconnection
closures required to form the 2-step pathsets was in the range of 0-15% of the total
required to form the on-demand KSP pathsets. In addition, due to the simple structure of a
cycle, the total number of crossconnections which were opened was relatively low. When
the DPCD was run using the sparing plans generated by IP2-cycle, it generated PC plans
with good PC restorabilities (90-99%) and 2-step restorabilities (96-100%). Also, the total
crossconnection closures required to form the 2-step restoration pathset were quite low

(0.5-5% of the total number of closures required to form the KSP restoration pathset.)

Of all the evaluated pattern types, the cycle seems clearly to offer the most advantage
when used in PC restoration. It can form PC plans which offer a high restorability when
using only PC restoration to restore all span failures. In addition, because of the cycles

139

simple structure (all of a cycle’s nodes are degree 2) it can be directly implemented using
existing DCS implementations, and requires the minimum of subsequent pruning work-
load. Another benefit of the cycle’s simple structure is that, in the event of a span failure,
to extract the useful PC paths only the failed span’s end nodes need prune any preconfig-
ured crossconnections which means that no signalling is required to inform other network
nodes of the failure. This could translate into a speed advantage when compared against
other PC pattern types.

8.1 Future Research

This work presented a first attempt at a distributed preconfigured cycle design protocol.
Future work could modify the protocol to improve its effectiveness and more accurately

model its behaviour using discrete event simulation.

Research into the speed-up of DCS crossconnect times would also be of benefit to pre-
configured restoration. Although, preconfigured restoration was conceived to compensate
for the slow crossconnect time of current DCS implementations, it would still be useful if
fast DCS implementations came to be; with a suitably fast DCS implementation combined
with a PC restoration plan, one can begin to see how the restoration times of dedicated
capacity restoration methods such as SHR and APS could be approached by a mesh-based

restoration method.

In closing this thesis, it should again be emphasized that the work contained within was
done at a graph theoretical level. Pure crossconnection event totals were tabulated for the
various methods presented within the thesis. Although, this data is useful for establishing
that preconfigured restoration has a great deal of potential for speeding up the restoration
of failures in mesh networks, it would be of great interest to perform a discrete event sim-
ulation of PC restoration based on an actual DCS implementation to establish how much
of a speed-up there is compared to conventional on-demand restoration.

140

[1].

[2].

(31

[41.

(51

[6].

[71.

(8].

[91.

[10].

[11].

[12].
[13].

Bibliography

J. C. McDonald, “Public Network Integrity - Avoiding a Crisis in Trust,” IEEE Jour-
nal on Selected Areas in Communications, Vol. 12, No. 1, pp. 5-12, January 1994.

W. D. Grover, Chapter 11 of Telecommunications Network Management Into the
21st Century, IEEE Press, 1994, pp. 337-413, edited by S. Aidarous and T. Plevyak.

W. D. Grover, “The selfhealing network: A fast distributed restoration technique for
networks, using digital cross-connect machines,” Proc. [EEE Globecom’87, pp.
1090-1095, 1987.

W. D. Grover, “Method and apparatus for self-healing and self provisioning net-
works,” U.S. Patent No. 4,956,835, September 11, 1990.

D. A. Dunn, W. D. Grover, M. H. MacGregor, “Comparison of k-shortest paths and
maximum-flow routing for network facility restoration,” IEEE J-SAC Integrity of
Public Telecommunications Networks, Vol. 12, No. 1, pp. 88-99, January 1994

J. Sosnosky, “Service applications for SONET DCS distributed restoration,” IEEE
Journal on Selected Areas in Communications, Vol. 12, No. 1, pp. 59-68, January
1994.

SR-NWT-002514: “Digital cross-connect systems in transport network survivabil-
ity,” Bellcore, 1, January 1993

T.-H. Wu, H. Kobrinski, D. Ghosal, T. V. Lakshman, “The impact of SONET digital
cross-connect system architecture on distributed restoration,” IEEE Journal on
Selected Areas in Communications, Vol. 12, No. 1, pp. 79-87, January 1994.

W. D. Grover, M. H. MacGregor, “Potential for spare capacity preconnections to
reduce crossconnection workloads in mesh-restorable networks,” Electronics Let-
ters, Vol. 30, No. 3, February 3, 1994, pp. 194-195.

M. H. MacGregor, W. D. Grover, K. Ryhorchuk, “Optimal spare capacity preconfig-
uration for faster restoration of mesh networks,” accepted for publication by Journal
of Network and Systems Management

R. Iraschko, M. H. MacGregor, W. D. Grover, “Optimal Capacity Placement for Path
Restoration in Mesh Survivable Networks,” Proc. ICC’96, pp. 1568-1574, 1996.

R. Brualdi, Introductory Combinatorics, Englewood Cliffs, NJ: Prentice Hall, 1992.

G. J. E. Rawlins, Introduction to Foundations of Genetic Algorithms, San Mateo,
CA: Morgan Kaufmann Publishers, 1991, pp. 1-10, edited by G. J. E. Rawlins

141

[14]. D. Beasley, D. R. Bull, R. R. Martin, “An Overview of Genetic Algorithms: Part 1,
Fundamentals,” URL - fip://alife.santefe.edu/pub/USER-AREA/EC/GA/papers/
over93.ps.gz, 1993

[15]. A. L. Corcoran, R. L. Wainwright, “LibGA: A User-Friendly Workbench for Order-
Based Genetic Algorithm Research,” Proceedings of the 1993 ACM/SIGAPP Sym-
posium on Applied Computing (SAC 93), Indianapolis, Indiana, Feb. 14-16, 1993.

[16]. R. R. Iraschko, Path Restorable Networks, Ph. D. Dissertation, University of
Alberta, Spring 1997

[17]. D. Stamatelakis, “Source Code Listings for Programs Used in M. Sc. Thesis on
Preconfiguration of Mesh Network Spare Capacity”, TRLabs Internal Report
TR-96-13, 1996

142

Appendix A: Test Network Standard Network Interface
Files (SNIF)

143

Network: Netl

Program: combined working and spare capacity placement span restoration

Node Xcoord Ycoord

0 20 100

1 80 100

2 0 50

3 40 75

4 60 75

5 100 50

6 40 25

7 60 25

8 20 0

9 80 0

Span NodeA NodeB Distance Working Spare
1 0 1 1.000000 6 3
2 0 2 1.000000 6 3
3 0 3 1.000000 6 3
4 1 3 1.000000 7 2
5 1 4 1.000000 6 2
6 1 5 1.000000 7 2
7 2 3 1.000000 7 2
8 3 6 1.000000 7 0
9 3 7 1.000000 8 1
10 3 4 1.000000 7 1
11 4 6 1.000000 4 3
12 4 7 1.000000 6 1
13 4 5 1.000000 7 1
14 2 8 1.000000 7 2
15 2 6 1.000000 6 2
16 6 8 1.000000 7 1
17 6 7 1.000000 6 2
18 7 8 1.000000 7 2
19 7 9 1.000000 8 1
20 5 7 1.000000 7 2
21 8 9 1.000000 S 4
22 5 9 1.000000 5 4

144

Network: Net2
Program: combined working and spare capacity placement span restoration

Node Xcoord Ycoord

0 60 75
1 40 80
2 70 80
3 50 70
4 10 40
5 10 55
6 45 50
7 30 47
8 45 40
9 60 30
10 30 30
11 10 20
12 50 10
13 15 70
14 70 50
Span NodeA NodeB Distance Working Spare

1 0 1 9.000000 20 12
2 0 2 6.000000 8 16
3 0 14 21.000000 16 4

4 1 2 14.000000 28 4

5 1 3 6.000000 32 32
6 1 13 11.000000 48 16
7 2 14 16.000000 20 12
8 3 13 8.000000 24 16
9 3 14 11.000000 48 16
10 4 7 7.000000 28 28
11 4 11 7.000000 0 28
12 5 6 5.000000 12 28
13 5 7 7.000000 76 24
14 5 13 10.000000 4 48
15 6 7 11.000000 24 0

16 6 8 11.000000 68 64
17 6 9 11.000000 100 32
18 6 13 8.000000 104 8

19 7 8 1.000000 64 68
20 7 10 7.000000 136 40
21 7 11 13.000000 64 20
22 9 10 5.000000 88 88
23 9 12 23.000000 16 0

24 9 14 10.000000 40 56

145

26
27
28

NodeA
10
10
11
13

NodeB
12
14
12
14

13.000000
19.000000
8.000000

11.000000

146

Working
112

88

Network: Net3

Program: combined working and spare capacity placement span restoration

Node Xcoord Ycoord

0 100.000000 100.000000
1 0.000000 0.000000
2 0.000000 80.000000
3 50.000000 80.000000
4 70.000000 80.000000
5 0.000000 100.000000
6 0.000000 20.000000
7 20.000000 50.000000
8 100.000000 0.000000
9 30.000000 80.000000
10 70.000000 100.000000
11 0.000000 60.000000
12 20.000000 25.000000
13 60.000000 60.000000
14 0.000000 40.000000
15 40.000000 60.000000
16 50.000000 0.000000
17 75.000000 25.000000
18 20.000000 0.000000
19 100.000000 60.000000
Span NodeA NodeB Distance

1 0 4 80.000000

2 0 10 110.000000
3 0 19 45.000000
4 1 6 40.000000

5 1 12 65.000000

6 1 18 64.000000

7 2 5 95.000000

8 2 9 83.000000

9 3 4 30.000000
10 3 9 23.000000
11 3 10 76.000000
12 4 10 76.000000
13 4 13 26.000000
14 S 10 118.000000
15 6 14 30.000000
16 7 11 51.000000
17 7 12 72.000000
18 7 15 20.000000
19 8 13 76.000000

147

Working
177

21
71
51
153
94
33
118
103
287
87
133
321
117
51
72
202
273
213

65
59
124
59
36
95
118
117
242
197
45
14
163
118
59
171
203
73
36

Span
20
21
22

24

26
27
28
29
30
31

NodeA
8
8
9
9
11
12
12
12
13
13
14
16

17
19
13
15
15
13
16
17
15
17
17
18

NodeB Distance

76.000000
95.000000
30.000000
20.000000
33.000000
110.000000
60.000000
108.000000
20.000000
122.000000
80.000000
65.000000

148

Working
70
124
236
215
171
321
95
35
326
131
51
17

Spare
95
118
20
183
130
84
94
59
158
23
59
95

Network: Netd

Program: combined working and spare capacity placement span restoration

Node

VOO -JAWMEWN=D

O 00 I ONWN W

Xcoord

27662.000000
36839.000000
40193.000000
59028.000000
45300.000000
36839.000000
26544.000000
31358.000000
39315.000000
53040.000000
60304.000000
64071.000000
50965.000000
62094.000000
53441.000000
48094.000000
40193.000000
32545.000000
40272.000000
48094.000000
51893.000000
57272.000000
57512.000000
61578.000000
65811.000000
65650.000000
59652.000000
47375.000000
47454.000000
33568.000000

NodeA

NNNW= =000
O\u#sNUO\N—-

NodeB

Ycoord

58733.000000
59453.000000
51952.000000
51473.000000
48681.000000
45327.000000
44810.000000
32213.000000
39740.000000
41815.000000
44847.000000
37623.000000
35670.000000
28058.000000
30961.000000
28886.000000
25933.000000
19089.000000
16914.000000
18512.000000
19353.000000
23060.000000
17315.000000
24480.000000
23221.000000
17716.000000
14602.000000
10850.000000
15240.000000
12448.000000

Distance
10.000000
98.000000
21.000000
75.000000
166.000000
34.000000
42.000000
88.000000
78.000000

149

Working
786

726

1118

786

123

1273
1215

55

1003

Spare
786
332
454
786

276
332
510
510

10
11
12
13
14
15
16
17
18
19
20
21
22

24

26
27
28
29
30
31
32
33
34
35
36
37
38
39

41
42
43

45

47

49
50
31
52
53
54

NodeA NodeB Distance

= IR WY I N -

ot

q\loooo:;oo\oq.—.—\o.—\o

7

6

5

8

10
9

10
11
11
12
13
9

12
12
14
14
16
17
16
17
16
18
15
20
23
21
14
24
19
27
29
18
29
29
27
26
27
24
25
28
20
17
19
9

8

56.000000
45.000000
50.000000
50.000000
10.000000
45.000000
99.000000
23.000000
56.000000
89.000000
45.000000
91.000000
10.000000
10.000000
10.000000
34.000000
56.000000
134.000000
122.000000
111.000000
102.000000
104.000000
106.000000
67.000000
45.000000
23.000000
11.000000
100.000000
100.000000
66.000000
67.000000
29.000000
44.000000
46.000000
32.000000
77.000000
67.000000
79.000000
55.000000
23.000000
11.000000
45.000000
66.000000
99.000000
100.000000

150

Working
526

209
144
1458

1524

1255
31

1335
32
1509
1219
787
18
59
332
108

11

118
118
164
1538
788
49

170
114
196
326
278
85
12
86
184
189
279
853
326
1692

195

Spare
431
608
948
592
910
595
69
432
671
515
228
431
769
962
962
453
49

10
49
108
108
81
1307
1307
164
49

98
98
228
228
85
85
85
79
85
228
1415
228
1121
79
95

Span
ss
56
57
58
59

NodeA NodeB Distance

22
20
24
21
20

28
21
25
22
22

10.000000
10.000000
34.000000
30.000000
40.000000

151

Working
109

1036

33

307

21

228
1307
104
230
0

Network: Net5

Program: combined working and spare capacity placement span restoration

Node

D00 pWND~O

Xcoord
167.751000
193.225000
175.881000
191.599000
149.051000
18.157200
18.970200
80.216800
15.447200
9.214090
139.566000
7.046070
164.499000
126.287000
68.834700
66.124700
149.051000
169.106000
164.770000
162.602000
81.571800
46.612500
15.718200
47.425500
63.956600
51.761500
88.888900
104.878000
117.886000
110.569000
106.233000
78.048800
71.273700
122.764000
111.653000
136.856000
153.930000
70.189700
149.593000
33.333300
140.108000
28.726300

Ycoord
43.902400
67.479700
55.284600
95.122000
94.579900
99.187000
49.864500
85.094900
7.317070
139.024000
173.984000
78.319800
63.956600
37.398400
176.152000
75.067800
117.886000
102.439000
121.680000
80.758800
127.642000
127.642000
18.699200
106.504000
100.271000
85.636900
189.431000
66.395700
78.048800
150.678000
85.365900
71.002700
189.702000
60.433600
37.398400
59.349600
151.491000
43.902400
132.249000
173.442000
188.618000
82.926800

152

Node
4?2
43

45
47
49
50

51
52

g
B

O oo JAW WD -

Xcoord Ycoord
107.317000 173.713000
123.306000 189.160000
39.837400 6.775070
39.837400 48.238500
52.303500 176.152000
94.579900 66.937700
162.331000 7.317070
79.674800 109.756000
42.547400 75.880800
104.336000 49.322500
30.000000 45.000000
NodeA NodeB Distance

0 2 5.000000

0 1 76.000000
1 2 46.000000
1 12 209.000000
20 38 299.000000
3 4 168.000000
4 12 214.000000
4 19 16.000000
5 41 91.000000
1 48 349.000000
6 45 36.000000
6 52 36.000000
7 15 29.000000
7 49 1.000000

8 22 12.000000
8 44 30.000000
12 35 250.000000
9 39 2560.000000
10 40 114.000000
10 43 35.000000
36 38 1480.000000
9 21 585.000000
11 22 118.000000
11 41 79.000000
5 11 100.000000
0 13 414.000000
13 34 305.000000
14 26 23.000000
14 32 25.000000
14 42 32.000000
14 46 53.000000
15 37 148.000000

153

Working
11

27
13
32
73
22
29
22

62
12
11
13
21

43
70
4

65
61

13
26
15

13
15
20
37

Spare
13
13
13

62
22
29
22
13
56
11
12
21
21

42
65

70
70
62
54

14
13

10
13

Span
33
34
35
36
37
38
39

41
42
43

45
47

49
50
51
52
53
54
55
56
57
58
59

61
62
63
64
65

67
68
69
70
71
72
73
74
75
76
77

NodeA
15
15
16
16
16
4
16
17
3
10
20
13
28
22
23
23
23
23
24
27
27
27
28
28
29
10
29
22
30
30
31
33
33
37
22
39
40
9
10
45
26
34
47
22
45

NodeB Distance

49
50
17
18
20
16
38
18
19
36
21
35
49
44
24
25
49
50
25
33
47
51
30
31
36
29
46
31
31
49
47
34
35
45
37
46
43
41
42
50
42
47
51
48
52

31.000000
7.000000
48.000000
28.000000
210.000000
1011.000000
243.000000
20.000000
721.000000
79.000000
373.000000
35.000000
88.000000
30.000000
8.000000
2.000000
19.000000
36.000000
1.000000
112.000000
10.000000
14.000000
43.000000
76.000000
80.000000
89.000000
348.000000
513.000000
76.000000
88.000000
71.000000
12.000000
207.000000
139.000000
740.000000
79.000000
98.000000
173.000000
377.000000
166.000000
49.000000
146.000000
14.000000
653.000000
7.000000

154

Working
24
35
11
12
40
25
29

14
35
91

38

11
11
27
19

37
28
11

43
33
19
43
63
43
37
56

36
19
42
36

62
17
19

14
16
96
11

21

12
11
29
29
11
12
22
11
70

21

11
11
19
27
11
42
42
16

22
62
27
62
35
22
21
42
22
55
19
21
62

61
19
21
16

62
12

Span NodeA NodeB Distance Working Spare
78 21 48 309.000000 90 62
79 32 39 75.000000 13 13

155

