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Abstract

Thin-walled cylinders are often used in civil engineering structures. Offshore platforms,
storage tanks, nuclear reactor vessels, transmission towers, and material-handling plants are
examples of structures incorporating these tubular members. In cases where tubes are subjected to
transverse loading, failure may occur in a shear mode due to local buckling. The present study
focuses on the inelastic shear buckling capacity of thin-walled fabricated steel tubes.

The problem was investigated in two phases, experimental and numerical. The
experimental phase involved testing two specimens of 1270 mm diameter under different
boundary conditions. The tests were preceded by finite element simulation in order that possible
problems could be identified. Measurement of the geometric imperfections was made prior to
testing and the testing itself was carried out in both the pre-buckling and the post-buckling ranges.
During the testing the strains and displacements of the specimens and the supports were carefully
monitored. The finite element predictions and predictions made using other design equations

compare favorably with the test results.

A parametric study was carried out to examine the effect of several factors on the cylinder
behavior. The numerical model used in this analysis consists of bi-cubic degenerated plate-shell
elements and includes the geometric imperfections and the initial stresses due to forming that are
inherent in large-diameter cylinders. The results of the analysis are compared with test results

when possible.

The examination made using numerical énalysis was followed by two attempts to
introduce design methods for determining the inelastic shear capacity of transversely loaded
cylinders. A regression model was developed which predicts the ultimate shear strength of the
available test results with accuracy better than do the current design equations. For the prediction
of the shear capacity beyond the limit point, a truss model is proposed. The truss model is based
on the post-buckling load-carrying mechanism observed in the tests and confirmed by the
numerical simulation. The proposed model describes the shear behavior of thin-walled cylinders
better than other post-buckling models. The capacity predicted by the proposed model can be used
as a conservative predictor of the ultimate shear capacity.
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1. Introduction

1.1 Background

Large-diameter thin-walled tubular members are used frequently in civil engineering
structures. Because of their efficient shape, tubular sections have higher torsional rigidity and
better resistance to wind and pressure loads than conventional sections. Therefore, many
structures incorporate these tubular members in applications such as pipelines, liquid storage
tanks, grain storage bins, nuclear reactor vessels, offshore platforms, transmission towers, and

conveyor galleries.

The cylindrical elements in these structures are subjected to different types of loads,
including longitudinal axial compressive loads, bending moments, transverse shear, and internal
and external pressure. The investigation reported herein deals with tubes subjected to transverse
loads and which have a radius to thickness ratio in the range of 100 to 300. Conveyors that handle
bulk material in industrial plants are often housed and supported by large-diameter fabricated steel
cylinders that fall within these parameters. In this case the cylinder acts as a simple or continuous
beam of spans that may reach 50 m, as shown in Fig. 1.1. The transverse load acting on this
cylinder produces a shear force and bending moment of considerable magnitude on the cross-
- section. Due to the slenderness of the cylinder wall, these forces can cause local buckling at

* critically stressed parts of the cylinder.

The strength of thin-walled tubes is, therefore, usually governed by local buckling
strength. Stiffeners around the cross-section (rings) and along the axis (stringers) can be used to
prevent premature buckling of the cylinder. Depending on the shell radius to thickness ratio, the
radius to unstiffened length ratio, and the stiffener arrangements, buckling of cylinders under
transverse load can be the result of compressive stresses (flexural buckling) or shear stresses
(shear buckling). This study deals with the local shear buckling of thin-walled longitudinally
unstiffened cylinders subjected to transverse loads.

The shear buckling capacity of thin-walled cylinders is influenced by several parameters.
In addition to the geometry, material properties, and boundary conditions of the cylinder, the level
of initial imperfections and residual stresses introduced during the production process potentially
play a role and should be considered in determining the capacity. However, little research has
been carried out to explore the effect of these parameters.

Currently, North American practice is to use a reduced version of the elastic buckling
stress of cylinders under torsion as the design basis for cylinders under transverse loads.



European specifications (European Convention for Constructional Steelwork, 1988) use an
interaction equation for the inelastic shear buckling stress. This equation is also a function of the
elastic torsional shear buckling stress. Another empirical formula is the quadratic interaction
equation proposed by Galletly and Blachut (1985). This equation is based on the results of a
single group of small-scale physical tests. The tests consisted of specimens fabricated from
gradual-yielding steel sheets. In practical structures, tubes are usually fabricated from hot-rolled
steel plates (sharp-yielding) and have much larger diameters than those used in the scaled

specimens.

Clearly, there are insufficient theoretical and experimental studies which address the
problem of the shear capacity of large-diameter thin-walled tubes. Thus, more tests of full-scale
cylinders are essential to establish a satisfactory level of confidence in design techniques. Also,
empirical design formulas and alternate analytical methods for design are highly desirable.

1.2 Statement of the Problem

The present study investigates the inelastic shear buckling behavior of large-diameter thin-
walled fabricated steel cylinders subjected to transverse loads. The cylinders under consideration
are longitudinally unstiffened, fabricated from hot-rolled steel plates, and have a radius to
thickness ratio in the range of 100 to 300.

In this report, the characteristics of inelastic shear buckling are explored both
experimentally and numerically. Two models, a regression model and a truss model, are proposed
for the prediction of the cylinder shear capacity at and beyond the limit point.

1.3 Objectives

This study is a continuation of an investigation of the shear capacity of large diameter
fabricated steel tubes that has been underway at the University of Alberta since 1984. Preliminary
tests have been performed by Bailey and Kulak (1984) and numerical investigations have been
carried out by Mok and Elwi (1986) and Roman and Elwi (1987).

The present research has the following objectives:

1. To test thin-walled cylinders under transverse shear. The test specimens should
represent material properties and fabrication procedures that are typical of practical

structures.

2. To use a numerical analysis technique that can simulate the response of the tested
specimens and to extend this analysis to the prediction of the behavior of any cylinder



under the same general conditions but whose particular parameters are outside of the
scope of the physical tests.

3. To develop an efficient ultimate shear capacity formula based on a statistical analysis of
all the available data and compare it with the current design approaches.

4. To develop an alternate mechanistic method of design that depends on the post-buckling
strength rather than on the ultimate strength.

1.4 Layout of the Thesis

Chapter 2 contains a review of the research work done by others on the buckling of thin-
walled tubes, with a clear emphasis on cylinders subjected to transverse loads. The chapters
following introduce theoretical and experimental investigations of the problem.

The experimental phase of the present study is described in Chapter 3. Testing of two
large-diameter fabricated steel cylinders is reported in detail and the results of these tests are
compared with other theoretical predictions.

In Chapter 4, a nonlinear finite element analysis of both the tested specimens and the
results of work by others is introduced. The ability of the numerical model to simulate the actual
behavior of thin-walled fabricated steel tubes is demonstrated and discussed. A parametric
analysis of nine cantilever models is reported.

Sophisticated numerical analyses are generally not convenient for design purposes, hence
attention is also given to empirical equations. Chapter 5 describes a nonlinear regression analysis
of the experimental and numerical results. From this analysis, an ultimate shear strength equation
is recommended for design. The predictions of the equation are compared with test results and

with other empirical equations.

Post-buckling behavior is investigated in Chapter 6. A truss model, which is based on
observations from the experimental and numerical results, is developed to estimate the stable post-
buckling shear capacity of thin-walled cylinders. Predictions made using this model are presented
in the form of curves suitable for design purposes.

Chapter 7 summarizes the results of the experimental and numerical analyses. Two
different methods are recommended for the design of thin-walled fabricated steel cylinders
subjected to transverse loading; an ultimate inelastic shear formula for the buckling capacity and a
truss model for the post-buckling capacity.
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2. Literature Review
2.1 Introduction
2.1.1 Historical Review

In the early decades of this century, mechanical engineering and aerospace applications
provided the need for extensive research investigation of cylindrical shells. In the 1930's, the
National Advisory Committee for Aeronautics (NACA) sponsored several studies to investigate
the behavior of very thin cylinders under different loading conditions. In recent years, the
extensive use of offshore platforms has led to research into the behavior of the cylindrical tube
when used as a structural member.

One of the earliest studies on buckling strength of structural tubes is that by Wilson and
Newmark (1933), in which axially compressed cylinders were tested. In the mid-sixties, a
landmark paper on the strength of structural tubes was presented by Schilling (1965). In this
paper, he summarized much of the preceding work and presented strength criteria for the design
of structural tubes.

After about 1975, the research effort on structural tubes has been greatly expanded. Most
activities have been directed toward offshore structures, although some have been directed toward
the use of tubes in land-based construction. A comprehensive survey report on the buckling of
both unstiffened and stiffened cylinders used in offshore structures was sponsored by the
Department of Energy in Britain (Ellinas, 1984.) Another thorough theoretical and experimental
treatise of the elastic buckling of thin-walled cylindrical shells was performed at Tohoku
University (Yamaki, 1984.)

At the present time, fabricated cylinders are the subject of research in locations such as
England, Australia, Norway, Japan, and North America. For example, investigation of the
interaction between axial load and external pressure in cylindrical shells is continuing at University
of Liverpool (Galletly et al., 1987), studies on buckling behavior of tanks are proceeding at the
University of Sydney (Rotter, 1986), and tests of tubes under combined bending and external
pressure are being conducted at the University of Texas, Austin (Corona and Kyriakides, 1988).
An ongoing research at the University of Alberta includes an examination of the strength and
stability of large diameter fabricated steel cylinders under axial compression, bending, and
transverse shear (Stephens et al., 1982, Bailey and Kulak, 1984, Roman and Elwi, 1987). At the
University of Wisconsin Sherman is reviewing the design rules for pipes in flexure (Sherman,
1989) and a study on the local stability of beam and beam-column cylinders is underway at



Purdue University (Chen et al., 1989). The behavior of pipelines and tanks under seismic loading
is being investigated at the University of California, Berkeley (Chalhoub and Kelly, 1988).

2.1.2 Overview

Thin-walled cylindrical shells have been extensively used in many branches of
engineering. In particular, tubular members fabricated from steel plates are becoming common in
civil engineering structures. Some examples of structures incorporating these tubular members are
pipelines, liquid storage tanks, grain storage bins, nuclear reactor vessels, components of
offshore platforms, transmission towers, and conveyor galleries.

Because of their round cross-section, tubular members are ideal for air tightness, wind
resistance, and three-dimensional loading. The circular cross-section has a superior wind shape
factor as compared to that of a conventional rectangular section. The round cylinder also provides
the most efficient shape available for centrally loaded columns with no intermediate lateral

support.

Cylindrical shells that have a small radius (R) relative to the wall thickness (t) or length (L)
are usually unstiffened. If the thickness ratio, R/t, or the aspect ratio, R/L, is large enough,
longitudinal and/or ring stiffeners are often used to provide additional strength. The study reported
herein is concemed only with longitudinally unstiffened cylinders.

In the design of cylindrical shells, as in all types of lightweight structures, the
determination of the buckling load is required. The shell buckling problem is complex, and in
addition, the influence of initial imperfections, residual stresses, and material properties must be

considered.

Tubes may be subjected to axial compression, bending, torsion, transverse loading,
internal or external pressure, or to any combination of these loads. The literature review in this
chapter is directed mainly toward cylinders subjected to transverse loading. However, a short
commentary on cylinders subjected to axial compression, bending, and torsion is also presented
because of the relationship between these loading types and transverse loading.

2.2 Buckling of Unstiffened Cylinders
2.2.1 Effect of Imperfections and Residual Stresses

The behavior of tubular members is influenced by the level of geometric imperfections and
residual stresses introduced in them during the production process. Tubular members are either
manufactured or fabricated. A manufactured tube is any tube produced by piercing, forming and



welding, cupping, extruding, or other related methods in a plant dedicated specifically to the
production of tubes. Fabricated tubes are constructed by cold-rolling a flat plate into a cylindrical
form and then welding the longitudinal seam.

In general, fabricated cylinders do not receive a finishing treatment and it is generally
expected that they will have larger magnitudes of imperfections than do manufactured cylinders.
. For axially compressed cylinders, where local buckling is strongly influenced by the level of
imperfection, the strength of a fabricated tube is normally below that of a comparable

manufactured tube.

Long large-diameter tubes are usually constructed by joining several short "cans" with
circumferential welds. Such circumferential joints are particularly susceptible to local buckling
unless carefully made, because they often produce a discontinuity in the form of a slight
depression in the tube. Longitudinal joints may also cause discontinuity, especially if made by
riveting or bolting, but not to the same extent as the circumferential joints.

The unfavorable effect of the geometric imperfections on the buckling strength changes
considerably according to the type of loading, the shape and level of imperfections, and the
dimensions of the tube. This effect can be estimated by either complicated analytical methods or
empirical formulas. Due to the random nature of the geometric imperfections, empirical formulas
are more practical for design purposes.

Residual stresses in tubes usually arise from the forming and welding operations that are
part of the production process. High levels of circumferential residual stress are created in a tube if
it is cold-formed and welded longitudinally in a continuous operation without allowing any
springback. If springback is allowed before welding, the residual stresses will be considerably
smaller. It has been shown (Pascoe, 1971 and Roman and Elwi, 1987) that these stresses can be
predicted with a reasonable degree of accuracy by simple plastic theory. An example of the
residual stress distribution across the cylinder thickness due to cold-rolling is shown in
Fig. 2.1(a). It can be seen that allowing for springback reduces the surface stresses considerably.

Longitudinal residual stresses that arise from the shrinkage of a longitudinal weld in
cylinders of the type used in offshore structures were investigated by Ross and Chen (1976). A
typical distribution of these stresses around the cylinder perimeter is shown in Fig. 2.1(b). The
distribution has a region of yield tension at the welds balanced by compression stress adjacent to
it.

It can be expected that residual stresses will have a significant effect on the inelastic
buckling strength of tubular members. The stress-strain curve of a tubular cross-section may



change from a sharp yielding type to a gradual yielding type due to the existence of residual
stresses. For tubes that have a known gradual yielding stress-strain curve, the inelastic buckling
stress can be determined by using an effective modulus of elasticity, as proposed by Gerard
(1956). However, if the stress-strain curve of the cross-section is unknown, which is usually the
case, then the inelastic effect can be predicted for specific production techniques by means of
empirical equations.

The material properties (the elastic modulus, E, and the yield stress, oy) are usually
determined from coupon tension tests. When used in buckling equations, these values have to be
representative of the behavior of compressed members. The difference between the material
properties measured from coupon test and the actual properties of the tubular cross-section was
investigated by Ross and Chen (1976). They tested both full-size fabricated welded cylinders in
compression (stub-column test) as well as tension coupons from the same steel plate. The tensile
coupons exhibited sharp yielding behavior whereas the compression stub column tests exhibited
gradual yielding behavior because they included the influence of the residual stress. The
compressive yield stresses were slightly lower than the corresponding static tensile yield stresses.
Ross and Chen reported that the difference is dependent on the method of production and the size
of the tube. After comparing several test results, Ellinas (1984) suggested that the tensile value is a
good representation of the yield stress for the solution of buckling problems in offshore-type
cylinders.

2.2.2 Cylinders Subjected to Axial Compression

For convenience, axially compressed cylinders may be classified into three groups
according to their buckling behavior: short, moderate, and long. Buckling of short cylinders is
dependent on both the thickness ratio (R/t) and the aspect ratio (R/L), in a manner similar to the
buckling behavior of flat plates, whereas buckling of moderate cylinders is dependent only on the
(R/t) ratio. Buckling of long cylinders is dependent on the slenderness ratio, (L/r), in a manner
similar to the behavior of columns.

The geometries which describe the limits of each group have been identified by Gerard
(1962) as a function of a curvature parameter, Z, that involves the dimensions of the cylinder and
Poisson's ratio, v. The limits are given by:

Z< 285 for short cylinders 2.1)

) 2
285<Z<6(1-v) (RT) for moderate cylinders (2.2)



2
2
Z26(1-v) (-l—:-) for long cylinders 2.3)

whereZ = ¥ (1-v 2) (R/t) (L/R)2 is the curvature parameter.

According to these limits, the moderate length region has aspect ratios (R/L) between
0.418 YyR and 0.578 YR/. This is believed to cover most of the common geometries used in
civil engineering applications, and it is this region that is emphasized in the following.

The theoretical solution for buckling of axially compressed cylindrical shells was obtained
as early as 1910. The solution was based on the small displacement theory, also called linear
theory, which requires that the analyzed member be perfectly elastic and that there be a linear
relationship between strains and displacement derivatives. The small displacement theory can only
determine the buckling load at bifurcation, i.e. it cannot determine the equilibrium path in the post-
buckling region. The elastic buckling stress for geometrically perfect cylinders according to this
classical theory is given as (Timoshenko and Gere, 1961):

e =——=—= E +

/3 (1_02) R (2.4)

where O, is the elastic buckling stress.

The results of the numerous experiments made to verify the theoretical solution showed a
large degree of scatter and buckling loads generally much less than those predicted by Eq. 2.4.
Some test cylinders buckled at stresses as low as 20% of the critical stress given by Eq. 2.4
(Ellinas, 1984.)

In 1934, Donnell realized that the classical theory is inadequate for analyzing axially
compressed cylinders because, unlike columns and plates, the post-buckling behavior of cylinders
is unstable. In other words, Donnell realized that it was not sufficient to determine the load at
bifurcation, but that an investigation of the post-buckling behavior was required as well. A
schematic presentation of the post-buckling behavior of three different structural members- plates,
columns, and cylinders, is shown in Fig. 2.2. The behavior of a corresponding imperfect member
in each case is also shown in Fig. 2.2. Because the post-buckling stress of a perfect cylinder
drops sharply from the bifurcation buckling stress, the maximum stress of cylinders with small
imperfections is well below the classical buckling stress.

Donnell and Wan (1950) developed a large displacement theory that introduces the effect
of initial imperfections into the stability analysis. Their solution showed that the reduction in the



buckling stress depends on the imperfection magnitude and the value of the R/t ratio. They
concluded that the initial imperfections are responsible for the discrepancy between the classical
theory and experiments. To confirm this conclusion, Tennyson (1964) manufactured four near-
perfect shell specimens and found that the observed buckling loads were very close to the classical
theoretical buckling load.

Arbocz and Babcock (1974, 1976, and 1980) applied more accurate numerical techniques
to simulate statistically random imperfection amplitudes in the analysis as a double Fourier series.
They reached a point where the buckling load can be predicted with considerable accuracy,
provided that the actual imperfection profiles are mapped and used in the calculations.

Pinkney et al. (1983), using finite element analysis, were able to predict the buckling load
of two axially loaded fabricated steel cylindrical shells with excellent agreement with the
experimental results obtained by Stephens et al. (1982). In their analysis, the initial imperfections
measured in the actual tests were modeled by the first buckling mode shape and incorporated into

the finite element model.

Sophisticated analytical or numerical techniques similar to those mentioned above are
generally not suitable for design purposes, however. As an alternative, empirical and semi-
empirical formulas based on many test results have been developed for the design of imperfect
shells.

The dependency of the buckling strength on the degree and shape of the imperfections led
the writers of design specifications to classify steel tubes into groups with similar imperfection
levels. In fact, design codes require that their equations be applied with certain conditions
depending on the type of tests used in developing the equations. For manufactured tubes with
sharp yielding materials, one of the early equations for ultimate strength was that proposed by
Plantema (1946). A conservative modification of Plantema's formula was also adopted for

fabricated cylinders.

Several formulas were developed for specific classes of materials and cylinder thickness.
A comparative study of design formulas recommended by the American Iron and Steel Institute
(AISI), American Water Works Association (AWWA), American Society of Mechanical
Engineers (ASME), and European Convention for Constructional Steelwork (ECCS) codes is
reported by Stephens et al. (1982), who have themselves proposed an equation for fabricated
cylinders of geometries and material properties of the type used in conveyor galleries. Another
excellent compilation of test data and design equations recommended by the American Institute of
Steel Construction (AISC), Det Norske Veritas (DnV), and British Standards Institution (BSI)
codes is reported by Ellinas et al. (1984).
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Stephens et al. (1982) concluded that the ultimate capacity of fabricated cylinders under
axial compression is best approximated by the AWW A formula if the cylinder wall thickness is
less than 6.35 mm (1/4 in) and by the ASME formula if the cylinder wall thickness is greater than
6.35 mm. The two formulas are shown below.

The ASME formula for cylinders with wall thicknesses not less than 6.35 mm is given by:

c=1 A 2.5)
where A =0, 1—2 EEt
Y3(1-v)
I =1.0 for A < 0.55
0.45
' =018+ A for 0.55< A < 1.6
1.31 1

r = — <«<—

+1.I5A A forA = 1.6
O, = 0.207 for 600 < R/t < 1000
O, = smaller of (O,,; and O ,,,) for R/t < 600

o, = 1.52-0.4731og (R/t)

Olyy = 300 (0, /E)-0.033

In these equations, G, is the critical compressive stress, 0., is an imperfection parameter
based on Donnell's theory and G is an empirical reduction factor for plastic buckling. It is obvious
that the ASME formula can be tedious for design purposes. On the other hand, the easy-to-use
AWWA formula for cylinders fabricated from mild steel with yield stress not less than 200 MPa is
given by:

2
Oy =0y (0.138 p - 0.00475 p forp < 14.5 (2.6a)
Oy = Oy forp > 14.5 (2.6b)

where p = (E/0G,) (R/t). Itis to be noted that the AWWA code recommended this formula for a
different thickness range than the one suggested by Stephens et al.
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2.2.3 Cylinders Subjected to Pure Bending

The buckling of cylinders as a result of flexure has not been explored as fully as has the
buckling of cylinders under axial compression. However, the local buckling behavior of the
compressed part of a cylindrical tube in bending is similar to that of a tube under axial
compression, and is usually linked to it.

Early tests of tubes in flexure were performed by Lundquist (1933), who tested 58 thin-
walled Duralumin cylinders in pure bending. The test specimens had wall thicknesses that ranged
from 0.28 to 0.56 mm, radii from 190 to 380 mm, and lengths from 50 to 940 mm. This range of
the thickness ratio (R/t between 339 and 1357) is characteristic of aerospace applications.

It was observed that the shape and size of the buckles in the failed cylinders were
approximately the same as those obtained in axial compression tests of the same R/t ratio.
Lundquist reported that the buckling stresses did not appear to be a function of the R/L ratio, but
were dependent on the R/t ratio and the initial imperfections. The maximum compressive flexural
stresses at failure were about 30% to 80% more than the compressive stresses of the axially
loaded cylinders having the same R/t ratio.

Donnell (1934) tested about one hundred steel and brass cylinders. The tests were run on
matched cylinders, some of which were tested in axial compression and some in pure bending.
The test specimens had R/t ratios in the same range as Lundquist's tests but the cylinders
themselves were much smaller. The radius of the test cylinders ranged from 24 to 72 mm and the
thickness from 0.05 to 0.07 mm. The length to radius ratio varied from 1 to 15.

The test results showed that the ratio of the critical stress in bending to the critical stress in
axial compression ranged from 0.86 to 1.69 for the steel cylinders and from 0.80 to 2.62 for the
brass cylinders. Donnell suggested that the critical stress in bending can be taken as 1.4 times the
critical stress in axial compression, which is the average value of the above ratios.

It should be noted that there is considerable scatter in the test data reported by Donnell and
Lundquist. The scatter was largest for the brass cylinders and least for the Duralumin cylinders.
The average 40% increase in the bending critical stress suggested by Donnell and Lundquist
should be viewed in the context of the material and the size of specimens used in the tests. The
level of imperfections and residual stresses in the small specimens may be significantly different
from that in actual large diameter tubes.

Other investigators (Gerard and Becker, 1957) have suggested that the elastic local
buckling stress for bending can be taken conservatively as 1.3 times the local buckling stress for
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axial compression. This was based on test results and some theoretical considerations. This higher
elastic buckling stress for bending results from the beneficial effect of the stress gradient that
exists in bending.

Seide and Weingarten (1961) also investigated the stability of circular cylindrical shells
under pure bending. Using the small displacement theory, they proved that the critical
compressive stress in bending is equal to the critical compressive stress for the axial load case.

Seide and Weingarten admitted that, without a large displacement solution for cylinders in
bending, no argument about the flexural buckling stress can be complete. However, they
suggested that the similarity in the experimental buckle deformations for bending and compression
would appear to indicate similar theoretical post-buckling behavior and similar strength.

This argument can be twisted in favour of the proposed increased strength for the bending
case because the sensitivity of the compressive stresses to initial imperfections would decrease
with the inherent stress gradient in bending. Consequently, the role of initial imperfections in
reducing the buckling strength would be smaller in cylinders under pure bending than it would be
in cylinders under uniform compression.

There have been very few tests on large diameter fabricated steel cylinders under bending.
Two of these were carried out by Stephens et al. (1982). They tested full-scale fabricated
cylinders with dimensions that resemble the tubular members used in the materials-handling
operations of industrial plants. The two test specimens were fabricated from 3.5 and 5 mm thick
steel plates, respectively. Both had a diameter of 1525 mm and a central length of 1830 mm. Both
cylinders failed at the extreme compressed fiber near the circumferential weld which was a major
source of geometric imperfection and residual stress.

Stephens et al. proposed a local buckling ultimate strength formula for such cylinders
under either compression or bending. Using the limited test data in bending, it was shown that the
proposed equation was as accurate as the equations recommended by the ASME and the ECCS
codes. Stephens' equation is particularly suited for design and is given by:

Oq =0y (1193 ;) forYs < 0.0036 (2.7a)

O =0y ( 1.625 +0.489 log Ys) for 0.0036 < Y, < 0.0527 (2.7b)

Cg =0 forYs = 0.0527 (2.7¢)

y
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0.5 1.5
where o, is the critical compression stress and Ys = (E/Gy)  (t/R) is a non-dimensional

factor reflecting material and geometric properties.

Unlike the ECCS code, which increases the critical compressive stress for tubes subjected
to bending above that for tubes in axial compression, Stephens et al. suggested that the same
critical compressive stress be used for large diameter fabricated steel cylinders in bending and
axial compression. Stephens' recommendation was based on the results of the full-scale tests.

Another large size welded fabricated cylinder was tested in bending by Bailey and Kulak
(1984). The test specimen was fabricated from a 5 mm thick steel plate and had a diameter of
1753 mm and central length of 1219 mm. The cylinder failed with the typical diamond shaped
buckles formed adjacent to the circumferential weld, similar to the two cylinders tested by
Stephens et al. The maximum compressive stress calculated from the measured strains was 99%

of that predicted by the Stephens et al. formula. Bailey and Kulak supported the use of this
equation for fabricated steel tubes with values of s in the range of 0.005 to 0.02.

2.2.4 Cylinders Subjected to Torsion

Buckling of thin-walled cylinders loaded in torsion is not accompanied by immediate
collapse, as is the case with axially compressed cylinders. It was observed (Lundquist, 1932 and
Donnell, 1933) that small initial imperfections on the surface of the test cylinders did not seem to
affect the buckle formation or the buckling strength. Nevertheless, the strengths of tubes tested in
torsion tend to be roughly 15% below the theoretical predictions, apparently as a result of initial
imperfections.

Lundquist (1932) tested 180 Duralumin cylinders in torsion. The cylinders had R/t ratios
that ranged from 323 to 1455 and R/L ratios that ranged from 0.5 to 2.0. The test specimens were
fabricated by wrapping the Duralumin sheet about two end bulkheads. A butt strap was fitted and
bolted in place to close the seam and steel bands were used to clamp the Duralumin sheets to the
bulkheads. It was observed that short cylinders showed a more stable failure pattern than the long
cylinders.

Lundquist reported that both the nominal shearing stress at failure and the slope of the
buckles decrease as the value of the R/L ratio decreases for a constant cylinder thickness or as the
value of the R/t ratio increases for a constant cylinder length. Based on the test data, the following
empirical equation was proposed:
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. 1.37
T. =K, E (— 2.8
e t (R) (2.8)

where 1T, is the elastic buckling shear stress and K, is a function of the ratio R/L. Regarding the
sensitivity to initial imperfection, Lundquist commented that the presence of slight imperfections
in the cylinder may cause the buckles to initiate at a smaller load but does not reduce the strength at
failure. It is to be noted that in the absence of a theoretical solution, Lundquist's comment on the
effect of the initial imperfections can only be approximate.

Batdorf et al. (June, 1947) determined a solution for thin-walled cylinders loaded in
torsion based on Donnell's linear assumptions. The elastic buckling stress was introduced by:

2 2
L8 t

2 2
12(1-v) L

T. =K; E (2.9)

where K is a parameter given in the form of logarithmic plots for cylinders with either simply

supported or clamped edges. For intermediate values of the curvature parameter Z, which

- corresponds to 50 < Z < 10 (R/H)% or 0.309 YUR < R/L < 0.138 VR, the curves which define K¢
- are straight lines. In this case, Eq. 2.9 becomes:

5 1

T = K, E (‘E)I (-E)E (2.10)

where K is a constant equal to 0.74 for simply supported cylinders and 0.81 for clamped end
cylinders. Batdorf's solution was compared with previous theoretical solutions and proved to be
in somewhat better agreement with experimental results reported by other investigators
(Lundquist, 1932 and Bridget et. al., 1934). However, it should be noted that, in this
comparison, only a few test specimens were made of steel. Also, the comparison plot reported by
Batdorf was somewhat optimistic. The difference between the theory and the data appears to yield
reasonable agreement in the logarithmic plot, but if plotted linearly the difference can reach 40%
(Gerard, 1962.)

It was suggested by Gerard (1962) and Schilling (1965) that a reduction of 15% be
applied to Eq. 2.10 to account for the difference between theory and test. The percentage selected
is an average value taken from the test results.
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Yamaki (1984) presented a more complete picture of the pre-buckling and post-buckling
behavior of cylinders subjected to torsion in the elastic range. In addition to presenting better
values for the constant K in Eq. 2.10, a reasonably accurate prediction of the post-buckling

equilibrium path and the buckle formation of earlier experiments was achieved.

The experiments (Yamaki, 1976) were conducted using six polyester test cylinders with a
radius equal to 100 mm, a thickness equal to 0.25 mm, and lengths ranging from 23 to 161 mm.
The corresponding curvature parameter, Z, for these specimens was 20, 50, 100, 200, 500, and
1000. The critical load measured in the tests was between 87% and 94% of the theoretical value,
and the number of buckles was also close or equal to that predicted by the theory. The post-
buckling characteristics of theses tests are plotted together with the theory in Fig. 2.3.

As shown in Fig. 2.3, the equilibrium torque of the tested cylinders decreases after
buckling. For short cylinders (Z<200), the equilibrium torque increases after reaching a minimum
post-buckling value. The cylinder with Z=20 did not exhibit any reduction after buckling. For
long cylinders (Z>200), the equilibrium torque decreases for a large angle of twist before it begins
to increase again. When Z reached 1000, the reduction was almost 60% of the buckling torque. It
is also noted that the theoretical curves are fairly close to the test curves, both before and after

buckling.

Yamaki showed that the shear constant K in Eq. 2.10 is dependent on the value of Z as
well as on the restrained deformation and forces at the boundaries. However, his tables showed
that the value of K may be approximately taken as 0.80 for cylinders with Z values that range
from 200 to 1000. The shear constant K, reproduced from the work tables of Yamaki (1984), is
plotted in  Fig. 2.4 for different cylinder geometries. It can be seen from Fig. 2.4 that cylinders
with relatively thin walls (R/t>200) and long shear spans (R/L<1.0) have a value of K of about
0.80, while cylinders with relatively thick walls (R/t<200) and short shear spans (R/L>1.0) have
considerably higher values of K , which may reach a value of 1.50.

To clarify the effect of imperfections on the critical load, Yamaki introduced an
imperfection amplitude into the stability analysis. The analysis confirmed the dependency of the
imperfection sensitivity on the value of Z and the imperfection amplitude.

Equations 2.8 through 2.10 predict the buckling stress in the elastic range. In the inelastic
range, the buckling strength may be reduced due to the presence of residual stress. In this case,
reduction factors are needed to account for the plasticity effect.
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2.2.5 Cylinders Subjected to Transverse Loading

Failure under transverse shear can result from either local buckling or yielding of the
material or as a combination of both. Local buckling may occur in a flexural mode or in a shear
mode. Extensive yield may take place close to the neutral axis in zones of low bending moment
and high shear forces, or it may take place in tensile zones under flexure of longitudinally
stiffened tubes. In the following, the discussion is limited to thin-walled unstiffened tubes. Thus,
material failure as a separate phenomenon is not of interest.

Using simple flexural beam theory, the pre-buckling membrane stresses in a cylinder are
related to the bending moment and shearing forces as follows:

M=cxtR 2.11)

V=1mxntR (2.12)

where ¢ is the maximum longitudinal stress due to bending, T is the maximum shear stress, and

where the moment of inertia for a thin-walled tube is taken as 7C tR3. It can be seen from
Egs. 2.11 and 2.12 that the ratio of o/t in the pre-buckling range is the same as the ratio of

M/RYV.

The earliest test data in the elastic buckling of transversely loaded cylinders is reported by
Lundquist (1935). The test cylinders had R/t ratios that ranged from 323 to 1455 and R/L ratios
that ranged from 0.5 to 2.0. The specimens were fabricated in the same way as those described in
Section 2.2.4 (Lundquist, 1935).

Lundquist showed that the value of the ratio M/RYV is descriptive of the buckling mode of
cylinders under combined shear and moment. For small values of M/RV (less than 2), failure
occurred in shear by the formation of diagonal buckles on the side of the cylinder. The size and
form of the buckles at failure were similar to those which were observed for the corresponding
cylinders that had been loaded in torsion. As M/RV approaches zero, the maximum shearing
stress was between 1.20 and 1.38 times the critical shearing stress in torsion.

For large values of M/RV (more than 3), failure occurred in bending by a sudden collapse
of the region that was in maximum compression. The buckle size and the maximum longitudinal
stress were similar to the comparable cylinders that had been loaded in pure bending. At
intermediate values of M/RV (between 2 and 3), there was a transition from shear to bending
mode accompanied by a reduction in strength.
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Based on Lundquist's test results, Schilling (1965) suggested that the elastic buckling
shear stress in transverse shear could be taken as 1.25 times the critical elastic shear stress in
torsion. However, for the inelastic range, Schilling proposed that no increase in the shear stress
be permitted so as to account for the corresponding reduction in the buckling strength.

Lu (1965) derived two theoretical bounds for the bending buckling load of a cantilever
cylinder subjected to a concentrated load at the end. The upper bound (C;) was obtained from
linear elastic theory, while the lower bound (C,) was obtained from finite displacement theory.

* The two bounds are:

2.536

Gcrl =———— E ~ 2.13
/ 2 R (2.13)
3(1-v)

0.6594 t
c7cr2 =—— E —

R 1o R (2.14)

Lu did not provide any solution for the critical shear stress, nor did he elaborate on which of the
two critical compressive stresses is more likely to occur.

Schroder (1972) solved the theoretical buckling problem of perfect cylindrical shells under

transverse loads. Starting with Donnell's linear assumptions, Schroder derived the governing
differential equations for a perfect cylinder supported at one end and loaded at the free end by edge
force. The equations were then solved using the Galerkin integration method.

Schr;)oder showed that perfect cantilever cylinders subjected to transverse loading may
buckle in a shear mode or in a bending mode depending on the R/L and R/t ratios. For high values
of the R/L ratio (about 0.35 or more), the buckling stress for shear buckling is considerably

smaller than that for bending buckling. By examining the solution, Schroder concluded that
coupling between the two modes is unlikely to occur. The critical shear stress, expressed in terms

of the geometry and material properties of the cylinder, is given by:

N t} (R 1
T« = N E |=| || —o—o— .
T (R) (L) 3 (10) 2.15)

in which ﬁxq, is a dimensionless parameter which depends on the values of the ratios R/t and R/L.

In the original work by SchrSder, two sets of curves were presented. Each set defines the values

18



of ﬁxq, for one of the two buckling modes. The curves that correspond to the bending mode must

be considered not realistic because the profound effect of the initial imperfections on the critical
bending stress was not included in the analysis. On the other hand, the curves that correspond to
the shear buckling mode can be assumed to be reasonably accurate because shear buckling appears
to be relatively insensitive to the presence of initial imperfections. Those curves are plotted in
Fig. 2.5.

Yamaki et al. (1979) carried out an experimental study on the buckling of clamped
cylindrical shells under combined action of transverse load and internal hydrostatic pressure. The
test cylinders were made of a 0.247 mm thick polyester film rolled on a 100 mm diameter mandrel
and lap-jointed along the longitudinal seam. The cylinder lengths varied from 22.8 to 228 mm. In
order to distribute the end load, an 18 mm thick Duralumin end plate was attached to each end of

the cylinder

Yamaki et al. found that the critical transverse loads obtained under a condition of zero

hydrostatic pressure were between 99% and 106% of those theoretically predicted by Schroder
(Eq. 2.15.) The theoretical critical stress of fixed cylinders under torsion (Eq. 2.10 with Yamaki's
definition of K;) was also compared to the test results and found to be in slightly less satisfactory

agreement. Yamaki et al. concluded from the closeness of the two solutions-that the elastic critical
:shear stress of cylinders under transverse load is nearly equal to that of cylinders under torsion.

To examine the accuracy of Yamaki's conclusion in the range of dimensions that are

important in this study, Schroder's solution and Yamaki's solution for the clamped edge condition

are plotted together in Fig. 2.6. The ratio of the critical shear stress to the elastic modulus is
shown for a selected range of R/L and R/t ratio. It can be seen from Fig. 2.6 that the critical
torsional shear stress is a fairly good estimate of the transverse shear stress except in the case of
short stocky cylinders, where the difference is apparent. It should also be noted that the ratio of
the yield shear stress to the elastic modulus for steel with a tensile yield strength of 450 MPa is
approximately 0.0013. The difference between the two solutions is most important only below
this limit.

Yamaki et al. also compared the results of Lundquist's tests (1935) to the two theoretical
solutions, Egs. 2.10 and 2.15. Lundquist reported the load at which wrinkling appeared as well
as the failure load. Yamaki et al. found that the "failure" loads were higher than the theoretical
predictions while the "first wrinkle” loads were lower. Yamaki et al. questioned the accuracy of
Lundquist's data and criticized the fabrication procedure used in the tests.
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Baker and Bennett (1984) investigated the buckling interaction curves for both unstiffened
and ring-stiffened cylinders. They designed an apparatus that can apply different ratios of axial
compression and shear loads on test specimens. The cylinders, which were made of 0.38 mm
thick Lexan plate and were used repeétedly, had geometries that are characteristic of nuclear steel
containment vessels. They had a value of R/t equal to 460 and a value of R/L equal to 0.57.

Baker and Bennett reported that the unstiffened cylinders demonstrated a smooth transition
from the classical diamond-shaped buckling mode when loaded in axial compression into the
diagonal wave buckling mode when loaded in transverse shear. The study also showed that the
effect of using closely spaced ring stiffeners on the shear buckling load is very favorable (more
than three times the capacity obtained in the unstiffened test for the particular spacing and stiffness
of the ring stiffeners used in the stiffened test).

The first study of the shear capacity of fabricated steel cylinders in the plastic range was
done by Bailey and Kulak (1984.) They tested two steel cylinders (referred to as B1 and B2)
loaded in transverse shear. In each case, the cylinder was fixed at both ends and loaded in the
middle by a central load. The first specimen, B1, was fabricated from 0.76 mm thick steel sheet.
It had an R/t value equal to 251 and an R/L value equal to 0.50. Large deformation was induced
during the welding process in one of the two shearing spans, but no significant differences in the
behavior between the two spans was observed during the test. Cylinder B1 failed as a
consequence of a series of successive inclined buckles (at 22.5, 26.0, and 29.4 kN,
consecutively) followed by compression buckles at the extreme fiber. The successive buckling
observed in the B1 test is not a typical behavior for shear tests. The load is expected to drop after
the first buckle.

The second specimen, B2, was fabricated from 5 mm thick steel plates. For this specimen,
R/t was 75 and R/L was 0.50. Buckling occurred at 967 kN on one side of a shear span, after
which the load dropped. Soon after, another buckle formed at 890 kN on the other side of the
same shear span. The load then dropped to 660 kN where it stabilized. Both tests showed clearly
a stable post-buckling equilibrium path.

Bailey and Kulak hypothesized a similarity between the post-buckling behavior of plate
girders and that of thin-walled cylinders under transverse load. They investigated the possibility of
adapting Basler's tension field theory for plate girders (Basler, 1961) to fit thin-walled cylinders.
Bailey and Kulak suggested a possible form of the ultimate shear strength equation based on the
experimental observations. This form is expressed as follows:

Vo= ky Ty (high R/t ratio) (2.16a)
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Vu=kp T, + kyy Ty (intermediate R/t ratio) (2.16b)
Vu=kp Ty (low R/t ratio) (2.16¢)

where V, is the ultimate shear strength of the cylinder, T, the tension field shear strength, T, the
yield strength of the cylinder and ki, ki, ky1, and ky, are functions of R/t ratio and the material
properties. Bailey and Kulak noted that the ratio R/t is an important factor in determining the
failure mode. Cylinders with low values of the R/t ratio are expected to fail primarily due to
yielding, while cylinders with high values of the R/t ratio may buckle long before yielding occurs.

Another shear study in the inelastic range was reported by Galletly and Blachut, (1985)
who tested fourteen short cantilever cylinders under end loads. The cylinders were made by
wrapping steel sheets around a 150 mm radius mandrel and then welding the longitudinal seam.
Heavy flanges were welded onto the cylinder ends where the end load was applied. The
dimensions, material properties, and the buckling shear stress of the cylinders are listed in
Table 2.1.

As Table 2.1 shows, duplicates were made of the first five models; G1, G3, G5, G7, and
G9. (The duplicates are G2, G4, G6, G8, and G10, respectively). The largest variation in
buckling stresses between any duplicate pair was 10% (G9 and G10). In addition to these results,
each cylinder was tested twice: after a given cylinder was buckled the first time, the load was
reapplied in the opposite direction and increased until buckling occurred a second time. By this
repetitive testing in opposite directions, the effect of relative'ly large imperfections (the buckles that
remained from the first test) could be examined. For all but one of the cylinders, the second
buckling load was at least 90% of the first one. (These results are not shown in Table 2.1).
Galletly and Blachut therefore concluded that shear buckling is not very sensitive to the level of
initial imperfections in the tube. Although this conclusion seems reasonable, it must be noted that
formation of permanent buckles in the first test could have a stiffening effect against buckling
when the direction of loading is reversed.

Galletly and Blachut found that for their tests, the maximum shear stress can be accurately
predicted by a quadratic interaction equation in the following form:

1 1 1
- = = + - (2.17)
T, T, T,

where 1T, is the yield shear stress, T, is the elastic critical shearing stress of a perfect cylinder in
torsion (Eq. 2.10), and T, is the plastic critical shear stress of the cylinder due to transverse shear
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loads. The ratio between the critical shear stress measured in the test and that predicted by
Eq. 2.17 is also given in Table 2.1. In most cases, this ratio is greater than 1.0, i.e., the predicted
value is on the safe side. The only two tests where the ratio was less than 1.0 (G7 and G9) had
reported higher initial imperfection than the rest of the tests. It should be noted that Galletly and
Blachut used the value 0.74 for the shear constant in Eq. 2.10. This is conservative for the fixed

boundary condition and the geometries of the tested cylinders (125 < R/t < 188, and 0.83 < R/L
<1.37). A more accurate value of the shear constant, Kg, would be 0.825 (see Fig. 2.4.)

The European specifications (European Convention for Constructional Steelwork, 1988)
use an interaction equation similar to Eq. 2.17 to calculate the inelastic shear buckling stress. This
equation is also a function of the elastic torsional shear buckling stress, as shown following:

T T
2 4 0.25 Y _ = 1.00 (2.18)
T 0.65 T,

y
where the factor before the elastic shear stress (0.65) reflects what the ECCS suggests as the
effect of the geometric imperfections on the elastic buckling stress. The predictions of the ECCS
equation are generally close to those of Eq. 2.17, but are less conservative for moderate values of
R/t ratio (200 to 300).

Mok and Elwi (1986) carried out a numerical investigation of the shear behavior of large
diameter cylinders using a nonlinear finite element analysis program. They examined the effect of
- loading conditions and boundary conditions on the buckling mode. Mok and Elwi used the first
buckling mode shape to incorporate initial imperfections in the numerical analysis. However, they
did not recommend this procedure for further investigations because of the difficulty of
determining the correct scaling factor. The analysis which employed small size of imperfections
agreed well with the theoretical results by Batdorf et al. (May, 1947) but did not agree well with
the experimental results of Bailey and Kulak (1984).

In addition to the numerical study, Mok and Elwi continued the work by Bailey and Kulak
on the development of a tension-field-based ultimate shear equation. They derived an ultimate
shear equation that consisted of two components, a beam component and a tension field
component. However, the critical shear stress which forms an integral part of the beam

component was not completely defined.

Further numerical investigation was carried out by Roman and Elwi (1987). They traced
the equilibrium path in the pre-buckling as well as the post-buckling range. The initial
imperfections were incorporated naturally in the numerical model with the help of a three
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dimensional degenerated shell element. The analysis also accounted for the initial residual stresses
inherent in thin-walled cylinders due to cold forming and welding.

Roman and Elwi confirmed the experimental observations of Galletly and Blachut that the
shear capacity is not very sensitive to initial imperfections, especially flute-type imperfections. The
analysis also suggested that the residual stresses inherent in some fabrication techniques may have
a significant effect on the ultimate shear capacity.

Based on the results of their numerical study, Roman and Elwi proposed an analytical
theory for the tension field contribution to the shear capacity of large diameter cylinders. They
developed a truss model which simulates the load carrying mechanism of the cylinders in the post-
buckling range. In spite of the good agreement between the model and the numerical analysis, the
model did not include some of the parameters that govern the behavior of transversely loaded
cylinders and, therefore, did not agree satisfactorily with some of the experimental results.

2.3 Summary

The buckling load of cylindrical shells has been a crucial problem in the design of these
members because of the several factors that influence the shell capacity. In the elastic range,
random geometric imperfections introduced during the production process play an important role
in developing the critical load. In the inelastic range, residual stresses developed by forming and
welding techniques can have a detrimental effect on the buckling strength.

Cylinders subjected to axial compression or torsion have been extensively investigated,
both experimentally and analytically. Solutions based on large displacement theory are available
for each case. Such solutions assist in determining the role of initial imperfections on the critical
load.

For axially compressed cylinders, empirical formulas based on numerous test results
(Egs. 2.5 and 2.6) are available for design purposes. As is the case for cylinders subjected to
torsion, the elastic buckling shear stress is accurately predicted by the theoretical solution,
equation 2.10.

Cylinders subjected to pure bending or to transverse shear have not been examined as
thoroughly as have the other loading cases, perhaps due to their limited applications in offshore
structures. No solution based on the large displacement theory is available for these loading cases
and very few experiments are reported in these areas.

In the elastic range, theoretical solutions based on small displacement theory do exist for
cylinders subjected to pure bending or transverse shear. For perfect elastic tubes under transverse
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shear, Schrader's solution (Eq. 2.15) seems to yield fairly accurate predictions of the buckling
load. The sensitivity of the buckling load to geometric imperfections can only be estimated from
test results and numerical analyses.

The inelastic buckling of cylinders subjected to transverse shear was experimentally
investigated by Galletly and Blachut who tested small cantilever models and proposed an
interaction equation for the maximum plastic shear stress, Eq. 2.17. However, this equation,
which has a rational basis, does not produce the best fit of the test data, i.e. the error of estimating
the shear capacity based on the test results was not minimized. The predictions of this empirical
equation were, of course, compared only to the results of the small cantilever tests: full-scale test
results should also be used.

The only tests of large diameter fabricated steel tubes under bending or transverse shear
were carried out at the University of Alberta (Stephens et al. and Bailey and Kulak). The actual
effect of the initial imperfections and residual stresses is correctly represented in the results of
these tests. Initial numerical analyses of one bending specimen and one shear specimen did not
agree satisfactorily with the test results.

The post-buckling behavior of Bailey's test initiated the search for a physical model that
can predict the post-buckling capacity of transversely loaded cylindrical shells. The attempts made
so far do not compare well with the few available tests.
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Texp
Model | Material t R/t R/L E T Texp T
No. (mm) (1000 MPa) | (Mpg) (MPa) (MPa)
Gl Mild steel 0.8 188 1.00 200 172 149 1.11
G2 Mild steel 0.8 188 1.00 200 172 142 1.06
G3 Mild steel 1.0 150 1.00 195 134 134 1.12
G4 Mild steel 1.0 150 1.00 195 134 132 1.10
G5 Mild steel 1.2 125 1.00 200 164 168 1.13
G6 Mild steel 1.2 125 1.00 200 164 161 1.08
G7 Structural steel 1.0 150 1.00 190 240 170 0.95
G8 Structural steel 1.0 150 1.00 190 240 182 1.02
G9 Structural steel 1.2 125 1.00 195 206 163 0.92
G10 [Structural steel 1.2 125 1.00 195 206 179 1.01
G11 |Structural steel 1.2 126 1.37 195 206 194 1.06
G12 |Structural steel 1.0 151 1.37 190 240 192 1.06
G13 |Structural steel 1.2 129 0.83 195 206 171 1.01
G14 |Structural steel 1.0 155 0.83 190 240 172 1.02

Table 2.1 Test results of steel cylinders under transverse edge shear
( after Galletly and Blachut, 1985)
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3. Testing of Fabricated Cylinders Subjected to
Transverse Loading

3.1 Introduction

The purpose of the experimental program described herein was to investigate the shear
buckling behavior of large diameter thin-walled fabricated steel cylinders under transverse
loading. Cylinders of the geometry investigated have a number of civil engineering applications,
for example, as tubular conveyor galleries. Typically, these members range from about 2500 mm
to 4000 mm in diameter and are fabricated from hot-rolled steel plates of about 5 mm to 8 mm in
thickness. This gives a radius to thickness ratio (R/t) in the range of 150 to 400. Practically all
tubes of the proportions described have ring stiffeners, but longitudinal stiffeners may or may not
be present. This study considers only longitudinally unstiffened members.

Very few tests have been conducted on members of this description. One group of tests
was carried out by Bailey and Kulak (1984). Two specimens, one fabricated from hot-rolled steel
plates and the other fabricated from cold-rolled steel plates, were tested as a beam with fixed end
support. These specimens had R/t ratios of 75 and 250, respectively, and a radius to shear span
ratio (R/L) of 0.5. Another group of cylinders was tested by Galletly and Blachut (1985).
Fourteen specimens fabricated from cold-rolled steel sheets were tested as cantilevers. The
specimens had R/t ratios ranging from 125 to 188 and R/L ratios ranging from 0.83 to 1.37. The
radius of these specimens was held constant at 150 mm.

The tests reported herein were on cylinders fabricated from hot-rolled steel plates. They
had an R/t ratio of 185. One specimen, S1, was tested as a beam with fixed end supports and had
an R/L ratio of 0.53, while the second specimen, S2, was tested as a cantilever and had an R/L
ratio equal to 0.76. The nominal diameter of each of these specimens was 1270 mm. These tests,
and one of the Bailey and Kulak test pieces (R/t=75), are considered to be the only available test
results that reflect the material, proportions, and fabrication practice that are representative of full-
size tubes. (The Bailey and Kulak specimen is somewhat stockier than usually encountered in

practice, however).
3.2 Test Design
3.2.1 Design Equations

Since cylinders under transverse loads may buckle either due to shear or due to bending,
estimates of the critical shear stress (for shear buckling) and the critical compressive stress (for
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bending buckling) are required in order that design of the test specimen can be carried out in such
a way that failure by shear buckling can be expected.

When the elastic buckling shear stress approaches the yield shear stress, the cylinder
buckles in an elastic-plastic mode at loads smaller than those predicted by the elastic equation. An
estimate of the inelastic critical shear stress for cylinders under transverse shear has been proposed
by Galletly and Blachut (1985). This estimate, which is based on experimental test results, is
calculated as follows:

T

—_ y
Tp = 5

1+ (%1) (3.1)

where T is the inelastic critical shear stress, Ty is the shear yield stress, and T, is a conservative

estimate of the elastic buckling shear stress of cylinders under torsion and is given by:

125 05

t R
= 0.74 —_ =
Te 0.7 E( ) ( ) (3.2)

in which 7, is the elastic buckling shear stress, E is the elastic modulus, R is the cylinder radius, L
is the length of the shear span, and t is the cylinder wall thickness. This is the Batdorf et al.
(1947) solution given by Eq. 2.10 with K as 0.74.

The best estimate for the critical compressive stress for a cylinder under transverse shear is
probably that proposed by Stephens et al. (1982) which has been discussed thoroughly in Section
2.2.3 and represented by Egs. 2.7(a), 2.7(b), and 2.7(c). However, these researchers also
suggested that for cylinders with wall thickness less than 6 mm, a more conservative estimate of
the critical stress is the AWWA (1979) formula represented by Egs. 2.6(a) and 2.6(b). Since this
estimate is conservative, it can be interpreted as a lower bound for bending failure and therefore its
use helps in designing the shear failure tests.

Using beam theory, these critical stresses can be translated to critical forces as follows :

2
M;=04s T Rt (3.3)

Ve =T¢ ® R t (3.4)

in which M is the critical bending moment for the compression buckling mode case and V, is the
critical shear force for the shear buckling mode case. As explained in Section 2.2.5, the value of
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the 6./, ratio, or the M/VR ratio, identifies the buckling mode. This ratio can be calculated for
specific material and geometrical properties using Egs. 3.1, 3.2, 2.6 and 2.7.

An R/L ratio around 0.5 is considered to represent practical cases. The values of the elastic
modulus and the yield stress are assumed to be 200x10> MPa and 300 MPa, respectively. In order
to be able to use hot-rolled steel plates, as would be employed in practice for large diameter
fabricated steel tubes, the cylinder wall thickness had to be larger than 3.2 mm (1/8 in.). For the
commonly used range of R/t values, a value around 200 was considered appropriate for the
selected wall thickness and the capacity of the testing equipment available. The selected ratio
implies that the cylinder will buckle in shear in an inelastic mode. The diameter of the test
specimen that results from this R/t ratio is about 1280 mm.

Calculating T, and o, from Egs. 3.1, 3.2, and 2.6, the maximum M/VR ratio in a span
has to be less than 1.13 to allow for buckling in a shear mode before buckling in a bending mode.
By choosing a conservative value of the M/VR ratio (1.0), the cylinder had to be tested either as
the fixed-ended beam shown in Fig. 3.1(a) or as the cantilever beam shown in Fig. 3.1(b). The
fixed-ended beam solution, which has a constant shear, was chosen for its simplicity and
convenience. The specimen tested in that configuration, which also used constant thickness, was
called S1.

When S1 was tested, only one of the two shear spans showed signs of failure or yielding
in shear or bending; the other span recovered completely upon removal of the load. It was
decided, therefore, to modify the specimen by cutting away the damaged span and testing the
remaining intact shear span. This was designated as specimen S2. It was tested as a cantilever
beam with an R/L ratio of 0.76. This is the longest shear span that allows a shear buckling mode
to occur according to the predictor equations.

3.2.2 Finite Element Analysis

In addition to the design equations mentioned above, numerical analysis was also used to
predict the failure load and the failure mode of specimens S1 and S2. Roman and Elwi (1987)
utilized the finite element method to analyze the problem in hand with a reasonable degree of
confidence. Prior to testing the specimen, a finite element analysis was carried out to predict the
behavior and capacity of the specimens. The analysis predicted that both specimens could be
expected to fail due to shear buckling.

For Specimen S1, the finite element mesh used was a 6x6 mesh of three dimensional
degenerated bi-cubic Lagrangian thin shell elements which modeled one quarter of the cylinder.
The load-displacement curve and the shape of the deformed mesh were obtained in the pre-
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buckling and post-buckling range. The results are presented in Section 3.3.4. For Specimen S2, a
4x4 mesh which modeled one half of the cylinder was adopted in a similar manner for the analysis
of S1. The analytical results are compared with the test values in Section 3.4.4. A detailed
description of the numerical analysis of S1 and S2 is reported in Chapter 4.

3.3 Shear Specimen S1
3.3.1 Specimen Description

Geometry and Fabrication

It is possible that the buckling behavior of a fabricated tube is affected by the method of
construction. Therefore, the fabrication techniques employed were carefully observed. The
specimens were fabricated by a local steel fabricator using their standard procedure. Two
3.44 mm thick grade 300W hot-rolled plates (P1 and P2) meeting CSA Standard G40.21
(specified minimum yield and ultimate strength of 300 MPa and 450 MPa, respectively) were
cold-formed in rollers to the desired curvature and then joined longitudinally with full-penetration
groove welds to form two cans. The two cans were then welded together to form the specimen
S1, as shown in Fig. 3.2. In one method of fabrication, flat plates are rolled to a radius smaller
than the final radius and released to spring back to the desired radius, thereby releasing some of
the residual stresses created by rolling. However, in this case the plates were rolled to the desired
curvature, clamped, and then welded without allowing any spring-back.

Material Properties

Coupons were cut from the base material prior to rolling in order to determine the elastic
modulus and the yield strength of the material. The 50 mm gage length coupons were prepared in
accordance with the ASTM Standard (1989), and were oriented so that material properties would
be measured parallel to what would be the longitudinal axis of the specimen. Three coupons taken
from plate P1 (see Fig. 3.2) were tested. They had an average static yield stress of 337 MPa and
an average elastic modulus of 218x10° MPa. The coefficients of variation for these average values
were 3.7% and 2.5%, respectively. Three coupons taken from plate P2 had an average static yield
stress of 335 MPa and an average elastic modulus of 215x10® MPa. The coefficients of variation
for these average values were 4.2%, and 0.8%, respectively. All coupons demonstrated the sharp
yielding plateau characteristic of hot-rolled steel and had a ductility of approximately 30%.
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Initial Imperfection Measurements

The initial geometric imperfections resulting from fabrication, welding, and preparation of
the specimen for testing were carefully measured in order to determine the imperfection level and
the shape of the fabricated cylinder.

The overall shape deviation of the cross-section was established by measuring the cylinder
out-of-roundness, €, which is defined as the difference between the maximum diameter, D_,,,

and the minimum diameter, D,;:

e=D_, - D (3.5)

In addition, local bulges and depressions in the cylinder wall were measured along both
longitudinal generators and the circumference. The surface imperfection was characterized by the
deviation amplitude, w;, defined as the offset between points on the wall surface and the

corresponding points on a perfect cylinder with average diameter. Thus:

w; =D; - Davg (3.6)

The apparatus used to measure the imperfectioné, shown in Fig. 3.3, permitted the
measurement of the specimen radii at discrete points on the inside surface of the cylinder with
respect to an assumed longitudinal axis. It consisted of an aluminum tube 56 mm in diameter and
2650 mm long placed between the centers of the two end fixtures so that it would coincide with
the longitudinal axis of the cylinder and could rotate about it. A linear variable differential
transformer LVDT was mounted at the top of a steel bar so that total length of the bar and the
LVDT probe is as same as the mean radius of the cylinder (635 mm). This bar was welded normal
to a car which can move on a track along the aluminum tube. The voltage changes from the LVDT
were converted to changes in the cylinder radius. By pushing the car, the LVDT was able to reach
any point on the inside surface along a line parallel to the longitudinal axis of the cylinder. By
rotating the aluminum tube, the LVDT was able to reach any point along the inside circumference
of the cylinder.

The first set of measurements consisted of 540 readings. The radius was measured at 15
stations along the longitudinal axis. At each station the radius was measured at 36 points equally
spaced about the circumference. The second set of measurements consisted of 70 readings. These
were taken along the longitudinal weld and the transverse weld seams. The imperfections,
measured just before testing, on each quarter of the cylinder are magnified 20 times and shown in
Fig. 3.4. The four quarters of the cylinder will be named according to their orientations, e.g. the
southwest side of the cylinder is the quarter which lies between the west set of columns and the
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midspan and faces south. For the imperfection measurements taken, the average radius was 637
mm, the cylinder out-of-roundness (e) was 14 mm and the average deviation amplitude (w;) was

2.54 mm.
3.3.2 Test Frame

The test set-up used for specimen S1 is illustrated in Fig. 3.5. It is simply a 2650 mm long
cylinder placed horizontally between two sets of supporting columns, one set at the east and the
other at the west, and loaded at the midspan.

The load was transferred to the cylinder through two 19 mm thick diaphragms, which
were designed to carry 2000 kN vertical concentrated force from the testing machine and transfer
it through the weld by means of shear flow into the thin wall of the cylinder. At each end, the
cylinder was welded to a 19 mm thick diaphragm. These end diaphragms were bolted to the
supporting columns with 40 ASTM A325 bolts of 25 mm diameter. Each set of supporting
columns consisted of five individual columns. Three of these, W310X118 sections, were tied to
the floor. It was not possible to bolt the others (W310X79 sections) to the floor, and they were
hung from the diaphragm. The five columns were connected together by two horizontal beams
(W200X36) bolted to each one of them. To minimize column rotations, two channels (C250X23)
were inserted longitudinally between the two ends.

3.3.3 Instrumentation
Strain gages

Shear buckling of thin-walled tubes can be significantly influenced by the residual stresses
induced in the cylinder due to fabrication and installation processes (Roman and Elwi, 1987).
Therefore, an attempt was made to measure the stresses induced by forcing the specimen into a
circular shape, by welding, and by the test set-up itself. This was done by installing strain gages
on the tube wall prior to attaching the cylinder to the test frame and prior to welding the diaphragm
plates. Moreover, the gages had to be placed far enough from the weld locations so as not to be
damaged by the welding process. This distance is governed by the maximum temperature that the
strain gage can withstand and the heat input from welding, and it can be calculated from a standard
heat transfer equation, (Adams, 1958):

go4h (P_E_I_) 1
S, 8 tKT 5 3.7
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in which d is the distance between strain gage and weld, S, is the welding speed (10 mm/sec), P,
is the welding efficiency (95%), G is the welding voltage (21 volt), L, is the welding current
intensity (140 amp), K is the thermal conductivity (0.052 Cal./mm.sec.®C), h is the thermal
diffusivity (13.54 mm2/sec), and T is the peak temperature for the strain gages (100 °0).
Substitution of these values in the above equation gives d equal to 113 mm. '

The tube was first placed vertically so that the cross-section would take its free shape.
Using a level and a plumb-bob, twelve longitudinal generators 30 degrees apart were drawn on
the outside tube surface. Electrical resistance strain gages (N11-FA-5-120-11) were then mounted
on the outside surface of the cylinder.

The strain gages were grouped in four groups or "rings”. Two rings were placed near the
ends and two near the middle. Each ring consisted of one pair of strain gages at each of the twelve
generators and each pair was oriented in the longitudinal and circumferential directions except at
the neutral axis where rosettes were used instead. An additional eight rosettes were mounted at the
middle of the shear spans, where zero bending moment was expected, on both the inner and the
outer surfaces of the specimen. A total of 120 strain gages were applied. Their locations are
* illustrated in Fig. 3.6.

All data from the strain gages and LVDT's were recorded using a Fluke 2400 data
acquisition system through which the signals were conditioned, converted from analog to digital
form, and stored on disk. With this recording equipment, a large number of virtually simultaneous
readings were taken.

The strain gages were connected to the Fluke and initial readings as well as measurements
of the diameter were taken. The initial cross section had an ellipse-like shape with a difference
between the maximum and the minimum diameter equal to 55 mm.

Displacement measurement devices

The bending moment distribution and the midspan deflection of the fixed end cylinder are
sensitive to the support movements. Although the end fixtures were intended to model fixed end
conditions, small rotations were inevitable. Therefore, eight LVDT's (L1 through L8), as shown
in Fig. 3.7, were mounted normal to the corners of the end diaphragms to measure their rotations.
Six dial gages (D1 through D6) were also mounted in the plane of the end diaphragms to measure
the vertical and horizontal displacements. Four dial gages (D7 through D10) were mounted normal
to the columns to measure their rotation in case the bolts holding the columns to the diaphragms
stretched under loading.
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The vertical displacement at the midspan is considered the most important measurement,
therefore, four vertical LVDT's (1.9 through L12) were mounted at the centerline and the bottom
of the middle diaphragms. Although care was taken to center the specimen under the loading head
and between the end supports, two LVDT's (L13 and L14) were mounted on the middle
diaphragm to detect any sway movement from the cylinder, and two (L15 and L16) were mounted
normal to the middle diaphragms to measure their rotations. All the LVDT's and the dial gages are
shown in Fig. 3.7.

3.3.4 Spacers

In order to make the cylinder cross section as close as possible to a circular shape,
50x100 mm wood posts with the same length as the inside diameter of the tube were inserted at
the ends and the middle of the tube. The tube was then turned over on its side and the posts were
adjusted until the difference between the maximum and minimum diameters was reduced to

14 mm.
3.3.5 Welding

The loads and reactions were transferred to the cylinder through four plates or
diaphragms. The middle diaphragms were aligned, centered, and welded to the cylinder using the
shielded metal-arc welding process. The end diaphragms were first bolted to the supporting
columns, then welded to the cylinder using the gas-shielded arc welding process. The welding
details are shown in Fig. 3.8.

A set of strain readings was taken after the welding of the tube to the diaphragms had been
completed. The longitudinal and circumferential stresses induced due to insertion of the spacers
and to the welding process are shown in Fig. 3.9. The weld was left to cool to room temperature
before the supporting columns were tied to the floor.

3.3.6 Testing Procedure

After initial imperfections were measured and the specimen was installed in the test frame,
a set of strain gage readings was taken to evaluate all the stresses induced in the specimen before
testing. These stresses were not significantly different from those shown in Fig. 3.9, which were
measured before the specimen was installed. The load was applied using an MTS 6000 universal
testing machine. A trial load of 400 kN (25% of the expected maximum load) was applied and
released several times to check the instrumentation and the support behavior.
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The cylinder was loaded gradually in 100 kN increments. At every load step, dial gage and
LVDT readings were recorded. The testing machine was on displacement control mode in order to
be able to trace the behavior in the post-buckling stage. The load vs. central displacement curve
was plotted using the instrumentation of the MTS machine and separately traced using LVDT L12.
When the load reached 1300 kN, the cylinder started to show nonlinear displacement. The loading
interval was then decreased to 50 kN. At a load level of 1700 kN, the cylinder buckled at the
northwest side with a loud detonation. The whitewash which had been applied to the specimen
before testing did not flake anywhere prior to this. The buckle consisted of two diagonal waves
(locations 1 and 2 in Fig. 3.10) inclined at about 23 and 25 degrees to the longitudinal axis of the
cylinder. Upon buckling, the load dropped to 1490 kN, then started to increase again at about the
previous rate until it reached 1563 kN when a second buckle occurred at the southwest side of the
specimen. It also consisted of two diagonal waves, inclined at about 24 and 27 degrees. The load
dropped to 1290 kN, recovered to 1380 kN, and then stayed nearly constant. When the vertical
displacement at midspan approached 5.0 mm, a single depression buckle occurred at 115 mm
from the west middle diaphragm (location 3 in Fig. 3.10) together with three small buckles at the
extreme compression fiber of the central test section between the two middle diaphragms (location
4 in Fig. 3.10). However, the load remained constant with continuing deformation. The test was
terminated when the central vertical displacement had reached slightly over twice its magnitude at
the time of buckling. The central displacement had almost the same value before buckling for the
four different LVDT's (L9, L10, L.11 and L12). Fig. 3.10 shows a schematic of both the shear
buckles and the subsequent compression buckles, while the deformed shape of one half of the
cylinder as plotted from the finite element analysis is shown in Fig. 3.11. Photos of the buckled
shape of specimen S1 from both the north side and the south side are shown in Fig. 3.12(a) and
Fig. 3.12(b).

3.3.7 Test Results

The load applied from the MTS machine was plotted against the vertical displacement of
the cylinder neutral axis at the location of the loading diaphragm. The displacement was taken as
the average of LVDT's L9 and L10, then corrected for the support deformation. The first
correction was made to adjust for the end support rotation which was measured by LVDT's L1
through L8. A second correction was made to adjust for the vertical settlement of the supporting
columns, as measured by the dial gages D1 and D2. Modeling the specimen as a beam with fixed
ends, the measured support deformations were used to calculate the change in the displacement at
the LVDT locations. The correction resulted in a decrease of the measured central deflection by
0.000436 mm/kN up to the ultimate load, at which time the reduction was 20% of the measured
value. The corrected load vs. displacement curve as measured in the test and the calculated
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displacement from the finite element analysis are both shown in Fig. 3.13. The load vs
displacement curve of the test is linear before reaching about 800 kN, following which the slope
gradually flattens. The slope of the load vs. displacement curve predicted by finite element
analysis is slightly larger than the actual slope. The ultimate load measured in the test is 1700 kN.
The ultimate load predicted by the finite element analysis is 1716 kN.

Shear stresses measured prior to buckling from the rosettes located close to the supports
and at the theoretical zero-moment locations are plotted in Fig. 3.14 (end rosettes) and Fig. 3.15
(mid-span rosettes). The stresses were calculated from the measured strain assuming plane stress
relationships. Figure 3.14 shows that the west span had slightly higher values of shear stresses
than the east span (a difference of about 8% at the ultimate load). Similar observations can be seen
in Fig. 3.15 for the mid-span rosettes located at the south side of the specimen. One exception to
this criterion is the rosettes located at the north side of the specimen, where the readings indicates
that the stresses in the unbuckled side (the north-east side) were about 10% larger than those
measured in the buckled side (the north-west side) at the time of buckling. The only explanation
that can be offered in this case is that these two rosettes were not accurate. Figure 3.15 also shows
that the shear stresses at the inner surface of the northeast and southwest quarters of the specimen
are smaller than those at the outer surface.

The longitudinal strain distributions around the cross-section near the fixed ends and the
middle diaphragms are shown in Figs. 3.16(a) and 3.16(b), respectively. It is noticed that the
second pair of strain gages from top and bottom gave readings which were particularly smaller
than the theoretical predictions based on the beam theory. An attempt to explain this difference is
described below (Section 3.3.8).

The longitudinal strain distribution along the top and bottom generators of the cylinder is
shown in Figs. 3.17(a) and 3.17(b), respectively. It is clear that the strain readings at the middle
gages are larger than those of the end gages: this is a direct effect of the end fixture rotation.

3.3.8 Discussion

Test specimen S1 had an elastic linear response under transverse loads up to a proportional
load limit, after which the slope of the load vs. displacement curve was slightly smaller than the
slope before the proportional load. The ultimate load was reached when buckling occurred.
Beyond the ultimate load, the carrying capacity dropped and stayed stable at a lower load level
(about 82% of the ultimate load). The stability of the carrying capacity was accompanied by the
development of a tension field in the direction of the buckles between the middle diaphragm and
the supporting diaphragm. This post-buckling capacity was maintained until the compression
buckles occurred near the middle diaphragm.
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The best prediction of the ultimate load was achieved by the finite element model, which
estimated the failure load to within 1% of the actual load. The buckling mode predicted by the
numerical analysis was a shear mode similar to the observed mode in the test. However, the
number of buckles appeared in the deformed finite element mesh (three buckles) did not agree
with the number of buckles which actually occurred in the test (two buckles).

The relative movement between the east and the west supports may have caused the shear
force to differ from one span to the other. Figure 3.18 shows the shear force diagram that
corresponds to the measured settlement and rotations at the supports. The shear force that existed
on the west span according to this figure is 966 kN. The maximum shear force predicted by
Egs. 3.1 and 3.4 is 772 kN which is 20% smaller than the west span shear force. A better
agreement is obtained from the numerical model where the predicted shear force is 858 kN or 11%
smaller than the west span shear force.

The shear stress in the west shear span was larger than the shear stress in the east span,
probably because of some eccentricity in the applied load or because the deformations at the east
support were larger than those at the west support. These factors added more shear to the west
span of the specimen and presumably triggered buckling in it. The difference between the shear
stress measured at the inside and the outside surface of the specimen can be attributed to the
presence of a cross bending moment associated with the initiation of the buckles.

Both the finite element analysis and the previous tests (Stephens et al., 1982, and Bailey
and Kulak, 1984) showed linear strain distribution through the cross section before buckling.
However, in this test, some strain gages seemed to give unreasonable readings (Fig: 3.16). It was
noted in Section 3.3.3 that the amount of heat transmitted to the strain gages is dependent on the
welding speed which was controlled manually and might not have been constant at all times. A
speed higher than 10 mm/sec may overheat some of the strain gages and affect their performance.

In addition to the overheating effect, the longitudinal strains at the end diaphragm were
sensitive to the support deformations. This could have resulted from the fact that the supporting
columns attached near these strain gages were less stiff than the supporting columns near the other
gages. A numerical analysis of an elastic cylinder with boundary conditions reflecting relaxed end
fixture deformation was carried out (see Fig. 3.19). In this analysis, the deformations of the
locations attached to the less stiff columns were allowed. The results of the analysis in the region
close to the end diaphragm showed that a very small displacement in the longitudinal direction was
enough to significantly reduce the longitudinal strain at this location. The longitudinal stress
distribution near the support and the corresponding longitudinal displacement distribution are
shown in Fig. 3.19.
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Thus, despite the fact that the gages placed close to the end diaphragms were useful in
measuring the stresses generated by welding and test set-up, their usefulness in measuring the
fixed end stresses was diminished in the light of the boundary condition changes shown in
Fig. 3.18. Their usefulness was further reduced according to the above analysis.

3.4 Shear Specimen S2
3.4.1 Specimen Description

Specimen S2 was prepared by cutting the undamaged span of S1 about 1400 mm from the
east support. This part did not show any signs of failure or yielding during the first test and
recovered completely upon removal of the load. The east end fixture was left attached to the
specimen to be used as a part of the set-up for S2. The material properties of S2 correspond to P1
coupons. The initial imperfection and overall geometry are, of course, the same as for the east

span of S1.
3.4.2 Test Frame

Specimen S2 was tested as a cantilever beam, as shown in Fig. 3.20. The overturning
moment of the cantilever was supported by a triangular frame composed of the end fixture,
bracing members, and reaction columns. The moment was transferred from the end fixture to the
bracing members and hence to the reaction frame. The end fixture was the east end fixture of
specimen S1, which consisted of three long columns resting on the floor and two short columns
hung between them. The five columns were bolted to the end diaphragm from one side and to two
horizontal beams from the other side. The bracing members consisted of three inclined channels
(C250X23) and three horizontal beams (W200X31). These six members were bolted at one end to
the three long columns and at the other end to the reaction columns. The three reaction columns
(W310X118) were connected together and prestressed to the floor to support the horizontal

movement of the test frame.

A universal testing machine was used to apply load to the cylinder through a 19 mm thick
diaphragm. The loading diaphragm was welded to the cylinder at a distance 825 mm from the end
plates using the gas-shielded arc welding process. In order to increase its stability, the loading

diaphragm was connected to a dummy diaphragm which remained from the first test set-up. Two'

rollers 300 mm wide were placed above the loading diaphragm to allow for the horizontal
component of the edge rotation. A 37 mm thick horizontal plate and eight 25 mm thick stiffeners
were used to seat and center the rollers above the diaphragm.
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3.4.3 Instrumentation
Strain gages

A ring of twelve rosettes 30 degrees apart around the circumference was mounted at a
distance 65 mm from the end diaphragm. Another ring of four rosettes was mounted at the middle
of the shear span. The strain gage locations are shown in Fig. 3.21.

Displacement measurement devices

The rotation of the end support was measured by two LVDT's (L1 and L2) and a dial gage
(D1) at the top, bottom, and middle, respectively, of the end diaphragm. The vertical settlement of
the columns was measured by one LVDT (L3) attached to the bottom of the end diaphragm.

The vertical displacement of the cylinder at the loading diaphragm was measured by two
LVDT's (L4 and L5) at the neutral axis of the cross section and one LVDT (L6) at the bottom of
the loading diaphragm.

Ovalling of the cylinder was measured at the middle of the shear span by two LVDT's (L7
and L8) in the horizontal direction and another two (L9 and L10) in the vertical direction.

The rotation of the loading diaphragm at the neutral axis was measured by a rotational gage
(R1) and the change in the diaphragm width was measured by two LVDT's (L11 and L.12). The
LVDT locations are shown in Fig. 3.22.

3.4.4 Estimated Failure Load

Unlike the situation for Specimen S1, the bending moment and shear force diagrams in S2
are easily calculated because the system is statically determinate. The expected failure load in a
shear buckling mode for Specimen S2 is 968 kN according to Eq. 3.1 and the expected failure
load in a bending buckling mode is 745 kN or 1142 kN according to Eq. 2.6 or Eq. 2.7. Also, the
finite element analysis predicted failure due to shear buckling at an ultimate load of 1054 kN.
Although Eq. 2.6 (the AWWA formula) anticipates failure in a bending mode rather than a shear
mode, its conservative nature together with the predictions of Eq. 2.7, Eq. 3.1, and the finite
element analysis minimizes this possibility. The conservative nature of the AWWA formula can be
easily seen from the results of specimen S1. The maximum load resulting in bending failure of
specimen S1, as predicted by this equation under the conditions shown in Fig. 3.18, is 1435 kN,
which is smaller than the actual failure load measured in the test (1700 kN) and which occurred in
a shear mode.
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3.4.5 Testing procedure

The inside and outside surfaces of the specimen were painted with whitewash. The strain
gages and the LVDT's were connected to the data acquisition system. The load was applied up to
400 kN and removed several times to check the instrumentation and the support behavior.

The loading started in increments of 50 kN. After each load step, a set of readings was
taken from all the instrumentation. When the load reached 500 kN, the increment was decreased to
30 kN. At a load level of about 700 kN the slope of the load vs vertical displacement curve,
plotted simultaneously by the MTS machine, started to show nonlinear behavior. The loading
increment was decreased to 20 kN. At a load level of about 830 kN the nonlinearity increased and
the increment was decreased to 15 kN until the ultimate load was reached.

At a load of 940 kN the cylinder buckled at the north side and the whitewash flaked along
two diagonal lines (shown in Fig. 3.23 as 1 and 2) that were inclined at 21 and 27 degrees from
the horizontal. The load dropped to 790 kN, then started to increase at a rate much smaller than
that which was predicted before the first buckle. When it reached 920 kN, the cylinder buckled
again at the same side, but at a location below the first two buckles (shown as 3), and the load
dropped to 720 kN. The load was removed and the displacement which had occurred prior to the
first buckling was recovered. Fig. 3.23 shows a schematic of the shear buckles while the
deformed shape of one half of the cylinder as plotted from the finite element analysis is shown in
Figs. 3.24. Photos of the buckled shape of specimen S2 from both the outside and the inside
surface are shown in Figs. 3.25(a) and 3.25(b).

3.4.6 Test Results

The load applied from the MTS machine is plotted in Fig. 3.26 against the vertical
displacement of the cylinder neutral axis at the loading diaphragm. The displacement was taken as
the average of LVDT's L4 and LS5 and corrected for boundary conditions. The first correction was
made to adjust for the end support rotation as measured by LVDT's L1 and L2 and the dial gage
D1. The rotation was linear with the load and resulted in 2.15 mm vertical displacement at ultimate
load at the loading diaphragm. The second correction was made to adjust for the vertical settlement
of the supporting columns as measured by LVDT L3 and resulted in 0.84 mm vertical
displacement at ultimate load at the middle diaphragm. The total correction resulted in a decrease
of the measured central deflection by 0.0032 mm/kN up to the ultimate load, at which time the
reduction was 65% of the measured value. The corrected load vs. displacement curve from the test
is compared to the response predicted by the finite element analysis in Fig. 3.26.
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The shear stresses measured from the four rosettes at the neutral axis are plotted in
Fig. 3.27. The buckled side of the specimen (the north side) appears to have slightly larger shear
stresses than the other side. The difference was significant only just before reaching the buckling
load, however. .

Ovalling of the cross section is depicted in Fig. 3.28. The increase in the horizontal
diameter and the decrease in the vertical diameter are plotted against the load. At the ultimate load
level, the vertical diameter decreased by 0.10% and the horizontal diameter increased by 0.25%.
These small values of diameter change support the application of the beam theory in the case of S2
before buckling.

The longitudinal strains measured from the strain gages around the cross section are
plotted in Fig. 3.29. The strain distribution before buckling is almost linear except for the second
reading from the top and bottom. These correspond to the strain gages at 30, 150, 210 and 330
degrees. As already described for Specimen S1, the end diaphragm at these locations was attached
to two short W310X79 columns which were supported by the more rigid columns that were
seated on the floor. Although the short columns were rigidly connected to the long ones through
two horizontal W200X36 beams, this connection inevitably allowed for a small movement. This
movement was enough to reduce the measured strain according to the numerical analysis shown in

Fig. 3.19.
3.4.7 Discussion

Specimen S2 demonstrated a linear response under transverse loading up to a load level of
800 kN. The carrying capacity dropped after it reached an ultimate load of 940 kN. The tension
field, which appeared after buckling, had the same direction as the buckles. The post-buckling
load of S2 was about 80% of the ultimate load.

The best prediction of the ultimate load was achieved by Eq. 3.1 which estimated the
failure load within 3%. The behavior of specimen S2 can be traced by the finite element analysis.
Although the numerical model predicted the slope of the load-displacement curve and the
deformed shape of the buckles specimen fairly closely, the ultimate load predicted by the finite
element model was 12% larger than the ultimate load attained in the test.

The shear stress measured at different locations of the specimen confirms the presence of a
constant shear stress on both halves of the circular cross-section. However, the shear stresses in
the buckled half of the specimen increased rapidly just before buckling. This increase can only be
related to the initiation of the buckles.
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The linearity of the longitudinal strain around the cross-section can be observed in
Fig. 3.29. The odd readings of the second pair of strain gages from top and bottom are explained
by the change in the boundary conditions as discussed in Section 3.3.8.

3.5 Summary

Two large-diameter fabricated steel cylinders were tested under transverse shear. Both
specimens failed in an inelastic shear buckling mode. Before buckling, the behavior of the
specimens was linearly elastic up to a proportional load level. Following this, the response
became gradually non-linear until inelastic buckling occurred.

The ultimate load for both specimens is reasonably estimated by the interaction equation
proposed by Galletly and Blachut, Eq. 3.1. The finite element method can also be used to provide
a good estimate of the failure load and to simulate the deformed shape.

After buckling, the carrying capacity of each specimen dropped by approximately 20%,
after which it remained stable. This suggests a significant secondary post-buckling capacity. This
post-buckling behavior, which has also been observed by other investigators (Bailey and Kulak,
1984), is used to develop a post-buckling shear capacity formula for thin-walled cylinders under
transverse shear as described in Chapter 6. )

44



BM
1.0
Fig. 3.1(a) The fixed-ended beam solution
3P P
Thick part Test part Thick part

2R | 2R 7 2R J

P P
I

2P

W

2PR

| == M
I

2PR

Fig. 3.1(b) The cantilever beam solution

Fig. 3.1 Possible configurations for cylinders with M/VR ratio equal to 1

45



East end

Longitudinal weld

=
Rolled 7?-: Rolled
from plate Q from plate
P1 53 P2
2
g
- 1550 mm = 1100 mm

West end

Fig. 3.2 Specimen S1 Configuration

D =1273 mm
(outside diameter)

Dial

. LVDT
>
Rail

Aluminum tube

Boundary of Specimen S1

L = 2650 mm

|

A

Fig. 3.3 Imperfection measurement device

46



e
L[]

(TT77T 77777
{ [[]]

T T —

Fig. 3.4(a) The measured imperfection on the north-east quarter of
the cylinder (magnified 20 times)

I
//// [T ]]]]

L]
((({\\\\\\i

AURNARRAN

Fig. 3.4(b) The measured imperfection on the south-east quarter of
the cylinder (magnified 20 times)

47



([ T RS S~

[T/
/77 /[ //
[/ / ////////////// /// [/ /.

[T17777 777777 ]]
L] (][]

LU
\A\\\\\\\\\\\\‘ml
SN ‘
e Y A
ISR
SRR

Fig. 3.4(c) The measured imperfection on the north-west quarter of
the cylinder (magnified 20 times)

[ [ []]]

Fig. 3.4(d) The measured imperfection on the south-west quarter of
the cylinder (magnified 20 times)



IS udwddds 10y dn-39s 1S, §°¢ S

N
n
o
1
£
o
8 <
o o
oo
:
(snyy omy)
9eX00C M

i
(=]
(@]

2

w

2

— ¥

(o <] ~J
W

3 (snyp om1)

& [locxooz m

&

(snypr om1) £TX0STO

pesy Surpeo SLIN

49



- - - - A
- N | B
d | | | {
| | .| C
© [ ] M
5 5
% I " UN N | W | O R W U | gt L D
o S
w iy | | A=
4 | _I K E
I J 0 ] H ¢ F
120 535 430 430 |535 Locations of the longitudinal generators
1 1 1 1 1 11 Al Rosette strain gage

-] Two normal strain gages
== Longitudinal strain gages

Fig. 3.6 Strain gage locations for specimen S1

Dial Gage

Fig. 3.7 Instrumentation for specimen S1.

50



r 7 NU130-130

<. shielded metal arc welding

N\

\ 7 ¥ 130-130
N
\

/

Ve
Y

7

vV

Gas-shielded arc welding

Fig. 3.8 Welding Details at the diaphragms of specimen S1

51



I I
-300 -100 0 100 200 300

I
-200

Longitudinal stress near edges (MPa)

Fig. 3.9(a) Distribution of longitudinal stresses generated by welding and test set-up

5
3
E
E;
B

———  West middle

—o-— East middle

J ' I ! 1 * v I ! 1 ' 1
-300 -200 -100 0 100 200 300

Longitudinal stress near middie (MPa)

Fig. 3.9(b) Distribution of longitudinal stresses generated by welding and test set-up

52



West end

]
;
k

—a— Westend

—0—— Eastend

r T T L] I Ll L] l L] l L] l
-300 -200 -100 0 100 200 300

Circumferential stress near edges (MPa)

Fig. 3.9(c) Distribution of circumferential stresses generated by welding and test set-up

Q
=3
?'g
Eu
38
S B

——— West middle
—o— Eastmiddle

I ' 1 4 | ' I ' 1 ' 1
-200 -100 0 100 200 300

i
-300

Circumferential stress near middle (MPa)

Fig. 3.9(d) Distribution of circumferential stresses generated by welding and test set-up

53



East end

4 3
1

/2/’

West end

Fig. 3.10 Schematic of the buckles in specimen S1

77 7 / -
| ] 1

Fig. 3.11 Buckled shape of the finite element model
( displacements magnified 10 times)

54



Fig. 3.12(b) Buckled shape of the south side of Specimen S1
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Fig. 3.23 Schematic of the buckles in specimen S2

Fig. 3.24 Buckled shape of the finite element model
( displacements magnified 10 times)
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4. Numerical Analysis

4.1 Introduction

In Chapter 3, the behavior of thin-walled cylinders under transverse load was
experimentally investigated for a limited range of cylinder geometries. Alternatively, theoretical
approaches are of more general use in studying the same problem. It was shown in Chapter 2 that
analytical solutions, based on solving the governing differential equations for shells, are available

for the case of ideal cantilever cylinders subjected to transverse shear (Schrb.der, 1972).
However, the complexity of the shell buckling problem limits such solutions to linear elastic
perfect cylinders. Consequently, the solution is restricted because some factors which may affect
the behavior and the capacity of cylinders cannot be included. Some of these factors are the initial
imperfections inherent in real cylinders, the cold bending stresses introduced in cylinders during
fabrication processes, and the effect of different types of boundary conditions. Experimental
investigation is possibly the best approach to study these effects. However, this approach is
costly. In the course of this work, two full-scale specimens were tested.

An alternative approach is to use numerical analysis, namely the finite element method.
This method has been used successfully in modeling different types of structures including thin
and thick shells and plates. For example, Roman and Elwi (1987) analyzed thin-walled cylinders
under transverse shear using a finite element model. Their study included both the effect of
different types of initial imperfections and the effect of initial stresses that exist in fabricated steel
cylinders due to longitudinal seam welding and cold bending. Such factors are difficult to
investigate by solution of the differential equations of the shell. The numerical analysis can also
help to determine the stress and strain distributions after buckling, which are hard to evaluate

experimentally.

The objective of the finite element analysis presented in this chapter is to examine the
inelastic buckling behavior of transversely loaded thin-walled cylinders. In the following sections,
the effects of boundary conditions, actual measured geometric imperfections, and initial stresses
on buckling behavior are discussed, the numerical model is compared with the physical tests, the
relationships between the shear capacity and different geometric variables are explored, and the
development of tension field mechanism in the post-buckling region is investigated. The finite
element program NISAS0 (Hafner et al., 1981 and Stegmi.jller, 1984) has been chosen as the
numerical analysis tool for the problem. A description of the program and the options available are

briefly presented in the following.
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4.2 NISA80 Code

NISA80 (Nonlinear Incremental Structural Analysis) is, as the name implies, a nonlinear
finite element program for the analysis of large-displacement large-strain problems. The program
can trace the equilibrium path of nonlinear structures from an initial state up to the limit point and
beyond it to the post-buckling stage. It can also perform eigenvalue analysis on nonlinear element
groups. NISA80 includes a truss element, a two-dimensional degenerated curved beam element, a
beam element with thin-walled open cross-section, a two-dimensional plane stress plane strain
axisymmetric element, and a family of three dimensional degenerated plate shell elements. Only
the degenerated shell elements are of interest here.

The degree of success expected from the finite element analysis in simulating the behavior
of real shell structures is dependent on, among other things, the ability of the chosen element to
model the curved shape of the shell and its complicated behavior throughout the equilibrium path.
Therefore, a brief introduction of the degenerated elements is presented in the following.

In the early 1970's, three-dimensional isoparametric degenerated elements were introduced
to model the behavior of general arbitrary shapes of shells and plates (Ahmad et al., 1970). The
element avoided the normality (Kirchhoff) conditions by choosing separate interpolation functions

for the displacements and the rotations. The degenerated element was derived from a full three- -

dimensional form, the hexahedral element, by prescribing linear displacement variation across the
thickness and suppressing the strain energy due to stresses normal to the shell middle plane. Since
the strain normal to the shell surface was assumed to be negligible, the displacements throughout
the element were uniquely defined by five degrees of freedom for each node: three displacements
and two rotations, as shown in Fig. 4.1(a).

Although degenerated elements have been effectively used in thick shell simulations
(Ahmad et al., 1970), they demonstrated an excessive stiffness when used in thin shells, mostly
because they were not capable of representing pure bending without shear or membrane effects.
Shear or membrane locking is present in most curved elements, but is less pronounced in elements
with higher order interpolation polynomials, as for example in the 16-node bi-cubic element. To
overcome the locking problem, several schemes have been proposed, for example using elements
with shear-strain constraint (Crisfield, 1984 and Huang and Hinton, 1984) or elements that are
based on discrete Kirchhoff theory (Kui et al., 1985 and Bathe and Ho, 1981), but the most
common method is to use uniform or selective reduced integration (Zienkiewicz et al., 1971 and
Pawsey and Clough, 1971). In 1977, Ramm modified and extended the use of quadratic and
cubic degenerated elements to arbitrary large rotation problems.
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Among the family of degenerated elements available in NISA80, the fully integrated bi-
cubic Lagrangian element is recommended by StegmUller et al. (1984). Ramm (1986) also
confirmed that the 16-node element is reliable, but noted that some membrane locking may still be
present if full integration is used. Roman and Elwi (1987) have used the bi-cubic element with
both 4x4 and 3x3 integration schemes to model transversely loaded cylinders. No shear locking
was encountered and the results obtained using full integration (4x4) were the same as those
obtained using reduced integration (3x3), except that the former was much more costly. Based on
these experiences, the 16-node bi-cubic Lagrangian degenerated plate shell element with uniform
3x3 reduced integration is used in the present study to model thin-walled cylinders under
transverse shear loads. The nodal degrees of freedom of the plate shell element are described in
Fig. 4.1(b). The rotations 0, and 6, are defined as the change in the angles ¢ and ‘¥ shown in
Fig. 4.1(b). Angle ¥ is measured from the surface normal to the X axis and angle ¢ is measured
from the projection of the normal on ZY plane to the Y axis.

The NISAS80 code contains different types of incremental displacement formulations. In
addition to small displacement formulation, it incorporates a total Lagrangian formulation and an
updated Lagrangian formulation. Total Lagrangian is useful in large-displacement small-strain
problems, whereas updated Lagrangian is more general in the sense that it can be used for large-
displacement large-strain problems. For the magnitude of deformations experienced in testing
specimens S1 and S2 (Chapter 3), the total Lagrangian formulation was considered to be
sufficient in this case.

The program accommodates elastic and elastic-plastic strain-hardening material models.
The resulting nonlinear stress distribution across the thickness is accommodated by using the
Simpson integration rule. The number of integration points used in the present study is five
points, which is the minimum of the number of points recommended by Stegmijller (five, seven,
or nine). Although the material nonlinearity would have been modeled more accurately using
seven, or nine points, the solution time would have increased accordingly.

The NISA80 program employs two main solution strategies: load control and displacement
control. Load control is applied through the modified Newton-Raphson or the standard Newton-
Raphson iterative strategy, while the displacement control is applied through a modified constant-
arc-length iterative strategy (Ramm, 1981). The latter method is especially recommended for
tracing nonlinear descending equilibrium paths, which cannot be done using the more common
load control methods.

The solution strategy used in this study was varied along the equilibrium path. A modified
Newton-Raphson method was found to be suitable before reaching the limit load because the
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response was almost linear in this range. In the neighborhood of the limit load, the Newton-
Raphson iteration diverges. Therefore, the solution strategy was switched to the constant-arc-
length method. At the limit load, the initial arc length was reduced in order to achieve convergence
in this highly nonlinear part of the equilibrium path. As the cylinder capacity stabilizes in the post-
buckling region, convergence could be achieved with a larger arc length.

4.3 Preliminary Analysis

The objective of the preliminary analysis is to search for the most accurate way to model
the boundary conditions. Two different cases need to be investigated: one for cylinders with
fixed-ends and the other for cantilever cylinders.

The effect of a fixed-end boundary condition, e.g. specimen S1 (Fig. 3.5), on the
buckling mode was studied by Mok and Elwi (1986). They found that coupling some nodal
degrees of freedom at the loading diaphragm and at the symmetric edge leads to the desired
diagonal buckling mode. The suggested representation of the boundary conditions is detailed in
Table 4.1. It can be seen that coupling the translational Z displacement at the loaded nodes ensures
that the circular shape of the cross section remains undistorted during loading, which is what
would be expected if infinitely stiff loading diaphragms were used. Using the above
representation of the fixed boundary conditions, the buckling load and mode can be closely
predicted. '

The boundary conditions at the loading diaphragm for cantilever cylinders, e.g. specimen
S2 (Fig. 3.18), cannot be represented by coupling the translational Z displacement due to the
rotation of the loading edge. Instead, the loading diaphragm may be represented by relatively thick
elements or by fixing the shape of the cross-section at the diaphragm location. Four possible
models, (CNT1, CNT2, CNT3, and CNT4) are proposed and shown in Fig. 4.2. The boundary
conditions of these models are shown in Table 4.2. All the models have a radius of 635 mm,
shear span of 835 mm, and a thickness of 3.44 mm. The material model is assumed elastic
perfectly plastic with elastic modulus of 217x10° MPa and a yield stress of 337 MPa. The
transverse load is applied in the vertical direction at all the nodal points on the loading diaphragm.

The load vs. displacement curves for the four models are shown in Fig. 4.3. During the
solution phase, numerical difficulties were observed in models CNT2 and CNT4 and the ultimate
load could not be reached. On the other hand, the equilibrium paths of models CNT1 and CNT3
were completely traced. It can be shown that the ultimate load, the stiffness, and the buckling
shape of models CNT1 and CNT3 are close to each other. It was decided to adopt the
representation of CNT1 for cantilever boundary conditions because the vertical displacement of

72



different locations on the loading diaphragm of specimen S2, which had the same geometric and
material properties as the CNT series, was closest to the values obtained using model CNT1.

4.4 Models of Tested Cylinders

- Previous studies have used the degenerated bi-cubic element in the context of the NISA80
program to simulate the behavior of thin-walled fabricated steel cylinders under transverse shear
or pure bending (Petrick, 1985, Mok and Elwi, 1986, and Roman and Elwi, 1987). When the
results of these numerical analyses were compared with results of tests that have the same
conditions, the agreement was not satisfactory. One major difference was the apparent stiffness of
the finite element model compared to the actual test. This problem was discussed in Chapter 3,
where the discrepancy was attributed to the inevitable support rotations during the experiment. To
avoid such unknown boundary conditions, the support movements have to be monitored
throughout the test and then used to correct the measured specimen displacements.

Another reason for the disagreement between the finite element model and the test is failure
to include the geometric imperfections and the initial stresses that exist in the real structure. Petrick
(1985) and Mok and Elwi (1986) used an eigenmode scaling technique to incorporate the initial
imperfections into the analysis. They extracted a scaling factor from the first buckling mode shape
and the measured imperfections in the tests. The scaling factor was then used with the
eigenvectors to describe the initial imperfections in the model. This technique resulted in models
that gave higher ultimate load and greater stiffness than those measured in the tests. A better and
more natural method is to incorporate the initial imperfections actually measured in the specimens
into the model geometry (Roman and Elwi, 1987).

In the following sections, the fixed-ends and the cantilever models are used to predict the
response of the test specimens S1 and S2 (Chapter 3) and the four other experiments reported by
Galletly and Blachut (1985).

4.4.1 Specimen S1

The dimensions and boundary conditions of specimen S1 are shown in Fig. 3.5. Because
of symmetry, only one quarter of the specimen needs to be modeled. The model, M1-S1, consists
of 36 elements arranged as shown in Fig. 4.4. The boundary conditions used in M1-S1 are
described in Table 4.1. The geometric imperfections were measured for each quarter of the test
specimen (see Fig. 3.4) and the one with the largest average imperfections, the south-west
quarter, was incorporated into the model M1-S1.
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The cold bending stresses inherent in the real structures due to fabrication processes are
introduced in the M1-S1 model. Roman and Elwi (1987) used temperature gradient through the
shell thickness to produce an initial state of stress. They calculated the temperature gradients
needed to produce strains equivalent to bending a flat plate to form a cylindrical shape and
introduced these temperatures in the finite element model. Assuming a state of plane strain in the
longitudinal direction of the cylinder, the relationships between the stress and strain in both the
circumferential and the longitudinal directions can be derived and used to check the results.
Following the same procedure, the required temperature gradient for specimen S1 is calculated as
-231.5 degrees at the outer surface of the element to +231.5 degrees at the inner surface. The
stresses produced in model M1-S1 after the temperature loading were found to match the
calculated theoretical stresses.

After introducing the initial stresses, the analysis was continued by adding the transverse
loads. The loading steps were chosen at equal intervals of about 20% of the expected limit load.
When the model response started to be nonlinear, the solution strategy was switched from
modified Newton-Raphson to CALM with an assumed initial arc length. As the displacements
increased, the strains increased and the shear stresses reached the yield value at the locations of
maximum stresses. At this stage, the deformed shape of the model started to show a form of
diagonal buckling at the elements near the neutral axis. The deformed shape of the model before it
reached the ultimate load is shown in Fig. 4.5 for two different displacements. The load levels at
which these deformation occurred are 1473 and 1671 kN. It is to be noted that the deformations in
Figs. 4.5(a) and 4.5(b) are magnified 30 and 20 times, respectively. It can be seen that the
initiation of the diagonal buckles starts before the ultimate load is reached and the buckles then
increase as the deformation increases. The relationship between the applied load and the vertical
displacement at the location of the loading diaphragm is shown in Fig. 4.6 for the whole loading
path. Points C and B in Fig. 4.6 correspond to the stages where the deformed shapes in Fig. 4.5

were observed.

As the model deformed further, the buckles folded more and plastification of the cross
section propagated through the thickness. Consequently, the stiffness of the model decreased
gradually until it almost diminished. This "gradual yielding" is primarily due to the existence of
the initial stresses. In fact, if the initial stresses were eliminated, the response of the model would
have been linear up to the limit point. To show the effect of the initial stresses on the model
behavior, another model, M2-S1, was analyzed. This model was similar to M1-S1 but without
initial stresses. Both models are shown in Fig. 4.6 for comparison. The ultimate load of M2-S1 is
much higher than the measured load of the test. After the ultimate load, the capacity drops quickly
and then decreases with a smaller rate. The ultimate load reached by model M1-S1 is only 1%
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different than the ultimate load obtained in the test. However, the model did not show the sudden
drop in the shear load observed in the test after the limit load was reached. The deformed mesh of
model M1-S1 in the post-buckling region is shown in Fig. 3.11 (deformations are magnified 10

times).

It is often assumed (Yamaki, 1984, and Galletly and Blachut, 198S5) that the shear stress
and the longitudinal stress in thin-walled cylinders in the pre-buckling region can be calculated
according to the classical beam theory. The average shear stresses along the cross section obtained
using models M2-S1 and M1-S1 are plotted in Figs. 4.7(a) and 4.7(b), respectively. The
reference load level is 1671 kN (points A and B in Fig. 4.6), and the location of these stresses is
at the section of zero moment. Figure 4.7(a) shows that the M2-S1 model shear stresses are close
to the predictions obtained using beam theory. In fact, it can be shown that the finite element
model predicts stresses very close to beam theory predictions when the model is perfect (no initial
imperfections and initial stresses). On the other hand, the deviation of the imperfect model,
M1-S1, from the beam theory is clear as shown in Fig. 4.7(b). It is noted that the shear stress at
the neutral axis is higher than the beam theory predictions in both cases, M1-S1 and M2-82. It is
therefore reasonable to believe that the initial geometric imperfections trigger the variation in the
stresses which are then magnified by the initial stresses. In addition, the distribution of the shear
stress across the cylinder thickness, shown in Fig. 4.8, is almost uniform in model M2-S1, which
is close to the beam theory predictions. Meanwhile, the imperfect model, M1-S1, has an uneven
distribution of shear stress across the thickness, with maximum value at the middle and minimum
values at the surfaces due to the introduced state of initial stresses.

The distribution of the longitudinal stresses along the cylinder cross-section as obtained
from models M1-S1 and M2-S1 is shown in Fig. 4.9. The stresses are taken at the nearest Gauss
points to the fixed boundaries. As was the case for shear stresses, the longitudinal stresses of the
model that did not include initial stresses, M2-S1, corresponded closely to the beam theory while
the imperfect model, M1-S1, showed considerable discrepancy from the beam theory results. This
discrepancy is also a magnification of the deviations of model M2-S1.

The post-buckling behavior of specimen S1 was described in Chapter 3. It was observed
that the load carrying mechanism changed after buckling. As soon as the cylinder buckles, a
tension field is formed in the direction of the buckles. The tension field anchors in the stiff
boundaries of the shear span. These observations can also be seen in the results of the finite
element model. Figures 4.10 and 4.11 show plots of the internal principal forces of model
M1-S1. The forces are calculated by integrating the stresses throughout the thickness and are
plotted to scale at the Gauss points. The plots show the three-dimensional mesh in a two-
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dimensional plane by unfolding the circumference of the cylinder. The resulting view is referred to

as the developed surface.

Figure 4.10 shows the principal forces on the developed surface when the model reached
the ultimate load. It is noticed that the tensile forces dominate at the locations of the buckles and
are in the same direction, while the compressive forces dominate at the top and bottom fibers of
the cross section, far away from the buckles. The slope of the tensile forces is constant in the
central portion of the developed surface and changes near the boundaries where the forces find
anchorage in the diaphragm.

Figure 4.11 shows the principal forces after the buckles have been completely developed.
It can be noticed that the tensile forces separate into bands. The direction of the forces becomes
more unified and their magnitudes increase to the yielding values. The compressive forces do not
seem to separate into bands, but their magnitudes increase with distance from the neutral axis. It is
suggested (Roman and Elwi, 1987) that the tensile and compressive forces offer a mechanism to
carry the load in the post-buckling range. This argument is discussed in detail in Chapter 6.

4.4.2 Specimen S2

The dimensions and boundary conditions of specimen S2 are shown in Fig. 3.20.
Because of symmetry, only one half of the specimen needs to be modeled. The model, M1-S2,
consists of 24 elements arranged as shown in Fig. 4.12. The boundary conditions used in model
M1-S2 are the same as those used for model CNT1. The geometric imperfections used in M1-S2
are shown in Fig. 3.4(a). The stresses produced in the cylinder due to cold rolling were
incorporated in the analysis. The transverse loads were then applied in a similar way to that
described for model M1-S1. The relationship between the applied load and the vertical
displacement at the location of the loading diaphragm is shown in Fig. 3.26. The behavior of the
model is essentially the same as that for model M1-S1 except for the amount of difference between
the model and the test. (The ultimate predicted load of model M1-S2 is 12% higher than that
obtained in the test). Again, the model failed to represent the drop in the load after buckling that
was observed in the test. However, the deformed mesh of the model, shown in Fig. 3.24, is close
to the buckled shape observed in the test. The post-buckling behavior of the finite element model,
as shown later in the parametric study, is dependent on the pattern and magnitude of the
introduced initial stresses. The observed differences between the models and the tests indicate that
the assumed state of initial stresses is not yet complete.

In order to follow the change in the stress distribution as the model deforms, the average
shear stress along the cross-section at three consecutive load levels (marked as A, B, and C in
Fig. 3.26) is plotted in Figs. 4.13 through 4.15. Similarly, the average longitudinal stress is
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plotted in Fig. 4.16 through 4.18. The shear stress is taken at the middle of the shear span and the
longitudinal stress is taken near the fixed support. It can be noticed that the deviation of the
imperfect model from the beam theory increases as the deformations increase. Due to the existence
of the initial stresses, some points in the model reach the yield stress before the model can reach
the ultimate load. Consequently, a redistribution of the stresses takes place until equilibrium is
satisfied. As the buckles form after reaching the ultimate load, further redistribution is needed to
accommodate the local bending moments associated with the buckles. It should be noted that the
stress distributions in Fig. 4.13 through Fig. 4.18 represent the average stress across the cylinder
thickness.

The principal forces at buckling and in the post-buckling region are plotted in Figs. 4.19
and 4.20, respectively. The tensile forces stretched diagonally between the loading diaphragm and
the fixed boundary. It is noticed that the slope of the tensile forces on the developed surface of the
cylinder is approximately constant. As the deformations increased, the tension field separated into
bands of forces. The compressive forces dominated at the top fibers of the cross section but did

not separate into bands.
4.4.3 Other Tests

Other cantilever tests were carried out by Galletly and Blachut (1985). The ultimate load of
these tests was reported but the load-displacement curves and the geometric imperfections were
not reported. The tests had boundary conditions similar to specimen S2. Therefore, the models
that represent them are similar to the M1-S2 model. Two models, M-G12 and M-G34, are
proposed to predict the ultimate load of a sample of four tests from Galletly and Blachut tests.
Model M-G12 represents the dimensions and material properties of specimens G1 and G2 while
model M-G34 represents the dimensions and material properties of specimens G3 and G4 (see
Table 2.1). No geometric imperfections are used in these models but the initial stresses are
incorporated as before. The ratio of the ultimate load predicted by the first model, M-G12, and the
measured test load is 1.03 for G1 and 1.08 for G2. The ratio of the ultimate load predicted by the
second model, M-G34, and the measured test load is 0.94 for G3 and 0.95 for G4. The
comparison between the finite element models and the test results shows that the ultimate load can
be estimated within a reasonable margin of error.

4.5 Parametric Analysis

The above simulations establish a reasonable level of confidence in the ability of the
numerical model to predict results that are in agreement with test results. Reliable full scale test
results are still limited, even in view of the tests carried out in this study. In order to extend the
data base in terms of failure mechanism, failure loads, stress distributions, etc., one is led to
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numerical analysis as a viable tool. Hence, a parametric study intended to fill in the gaps in
experimental results was carried out. This study is reported in the following.

4.5.1 Model Descriptions

Nine models, MF1 through MF9, are analyzed in this section. The aim is to investigate the
relationship between the ultimate shear load and the geometric variables of the cylinder in the
inelastic range. The MF series represents a cantilever cylinder and uses boundary conditions
similar to model CNT1. A typical mesh of the MF series is shown in Fig. 4.21.

The diameter, thickness, and shear span of each model, shown in Fig. 4.21, are the
parametric variables in this analysis. These variables were chosen so that the cylinders are
susceptible to inelastic shear buckling. The chosen aspect ratio, R/L, is between 0.5 and 1.0.
Cylinders with R/L ratio outside this range may buckle in a flexural mode (for cylinders with
shear span longer than their diameter) or yield due to excessive shear stresses (for cylinders with
shear span shorter than their radius). The thickness ratio, R/t, was chosen to be between 150 and
250. Cylinders with R/t ratios higher than 250 may buckle in an elastic mode. Cylinders with R/t
ratio lower than 150 were not considered so as to limit the number of models. The lower limit of
the R/t ratio selected was thought to be a reasonable minimum value for some practical

applications (e.g. conveyor galleries).

The MF models have very small magnitudes of initial imperfections, just enough to trigger
the buckle formations. The imperfections were scaled down from the imperfections of the test
specimen S2. The models have the same material properties, an elastic modulus of 200x10° MPa
and a yield stress of 300 MPa, and they include cold bending initial stresses. The analysis of each
model is carried out by introducing a temperature gradient through the element thickness and then
applying the transverse loading, a procedure similar to the M1-S1 and the M1-S2 models. The
solution was terminated when the post-buckling deformations had been completely developed.

4.5.2 Ultimate Shear Capacity

The load resisted by each model is plotted against the vertical displacement of the neutral
axis of the cross section in Figs. 4.22, 4.23, and 4.24. To normalize the results, the shear load is
replaced by a shear ratio which is the ratio of the shear load to the shear force required to cause
yield shear stress at the neutral axis. The load-displacement curves are arranged to show the effect
of R/L ratio on the inelastic shear capacity. Figure 4.22 shows the models that have a constant R/t
ratio of 150 and different aspect ratios. It is clear from Fig. 4.22 that the shear capacity decreases
as the aspect ratio (R/L) decreases. The stiffness of the model also decreases as R/L decreases
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because it is dependent on the length of the shear span. The same conclusions can be drawn from
both Fig. 4.23 ( models with R/t=188) and Fig. 4.24 (models with R/t=250).

The effect of the thickness ratio (R/t) can be demonstrated by grouping the models
according to R/L ratio, as shown in Figs. 4.25, 4.26, and 4.27. The ultimate shear load of the
finite element models decreases slightly as the thickness ratio increases, while the post-buckling
load clearly decreases as the R/t ratio increases. However, the main effect of R/t ratio is upon the
shape of the load-displacement curve. It can be seen that the stockier models (models with small
R/t ratio) experience nonlinear deformations earlier than the thinner models (models with large R/t
ratio). After reaching the ultimate load, the stockier models lose their stiffness more gradually than
the thinner models. It is possible that this behavior is related to the initial stresses introduced in the
model. As the cylinder radius takes smaller values, more strain is required to form a cylinder by
bending a flat plate, which in turn increases the portion of the cylinder thickness that exhibits
yielding. As a result, the behavior of the cylinder changes from sharp yielding (e.g. model MF9)
to gradual yielding (e.g. model MF3). In fact, the same argument applies for the difference
between model M1-S1, which contained initial stresses, and model M2-S1, which did not contain
any initial stresses.

By comparing model MF5 with model M1-S2, it is clear that the dimensions of the
cylinder do not influence the ultimate shear ratio. The two models have different radius, shear
span, and thickness but they have similar R/t ratios, 185 and 188, similar R/L ratios, 0.76 and
0.75, and similar E/sy ratios, 643 and 667. The resulting ultimate shear ratios are 0.79 for M1-S2
and 0.81 for MFS5, which is also close. The cylinder dimensions, however, affect the ultimate
load resisted by the cylinder.

4.5.3 Post-Buckling Behavior

The first attempt at analysis using MF models employed a mesh of 18 elements with the
transverse load applied at the edge. The model stiffness in this analysis started to rise instead of
decline and the solution diverged shortly after, even though a very small arc length was used in
the context of CALM solution strategy. It was then realized that applying the load at the edge is
responsible for the stiffening behavior and that the presence of an additional part of the cylinder
under the loading edge is necessary. This end part, which has a length of 75 mm in the typical
model shown in Fig. 4.21, may be useless in the early stages of applying the transverse load but
as soon as the carrying mechanism starts to change from "beam” type to "tension field" type, the
end part provides the needed support to anchor the inclined force fields.

The load carrying mechanism of thin-walled cylinders after buckling can be studied by
examining the force fields in the models. The plots of the principal forces at the maximum

79



displacement of each of the nine models are shown in Figs. 4.28 through 4.36. The models in MF
series demonstrate the same basic post-buckling characteristics as did models M1-S1 and M1-§2.
The observations that follow are obtained by inspection of Figs. 4.28 through 4.36.

After the cylinder reaches the ultimate load, two main force fields start to develop in the
cylinder; a tension field that takes the general direction of the diagonal buckles and a compression
field that takes a crossing direction. The inclined field forces anchor in the stiff vertical boundaries
(diaphragms or fixed ends).

As the deformations grow, the shape of these fields crystallizes. The tension field
separates into bands of intense forces at the center of the bands and little or no forces in between
the bands. The number of bands in the tension field varies from two to four. On the other hand,
the compression field does not separate into bands, but the forces in the field tend to intensify near
the top corner of the cross-section and diminish towards the neutral axis.

The unloaded parts of the tension field seem to match the valleys of the buckles, while the
loaded parts match the crests of the buckles. To demonstrate this, the deformed shape of a cross-
section in model MF9 is shown in Fig. 4.37. By comparing the node locations in Fig. 4.37 and
Fig. 4.36, it can be seen that nodes 141 and 145, for example, lie between the tension bands and
therefore are deflected toward the center of the cross section, while nodes 139, 143, and 147,
which lie in the tension bands, are deflected outward from the center. The same observation was
reported by Roman and Elwi (1987).

The slope of the tension field changes as the deformations increase after reaching the
ultimate load, but it becomes approximately constant as the equilibrium path flattens. It is to be
noted, however, that the tensile forces tend to tilt at the proximity of the boundaries where they
anchor in the stiff vertical edges. This tilting is considered to be an inevitable local effect of the
boundary conditions. The slope of the tension bands referred to here is, therefore, measured some
distance away from the boundaries. The slope of the tension bands for MF series and the two
models M1-S1 and M1-S2 are shown in Table 4.3. The slope is measured on the developed
surface of the cylinders and it is reported at the ultimate load and at the maximum displacement
obtained in each model. The slopes range from 32 to 48 degrees. They are generally higher at the
ultimate load than at the maximum displacement and are also higher for the top band than for the
bottom band. No relationship between the slope of the tension bands and the R/t ratio is observed.
However, it is clear that the slope lessens as the aspect ratio, R/L, decreases.

Using the scales shown in Figs. 4.28 to 4.36, the forces in the tension field could be
measured. It can be shown that some of these forces reach maximum value (which corresponds to
average yield stress across the thickness). The forces in the compression field also increase,
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especially near the top. Figures 4.28 to 4.36 also show that the slopes of the compression forces
do not show any parallel pattern.

The above observations show clearly that there is a common pattern in which thin-walled
cylinders carry the transverse load in the post-buckling region. This behavior can be modeled so
that the shear capacity of the cylinder may be estimated. The attempt to do so is described in
Chapter 6. ‘

4.6 Summary

The 16 node degenerated plate shell element can be used successfully to model the shear
behavior of transversely loaded thin-walled steel tubes, provided that certain aspects are treated
properly. The correct representation of the test boundary conditions is crucial to the stiffness of
the finite element model. As discussed in Section 4.4, this factor is considered to be the reason for
the discrepancy between the finite element model and previous tests. In this Chapter, it has been
shown that good agreement exists between the results of two full scale tests and the predictions of
the numerical model.

A parametric study of nine model was carried out in order to extend the information
available about the ultimate shear capacity of thin-walled cylinders and their failure mechanism.
The study investigated the effect of the thickness ratio (R/t) and the aspect ratio (R/L) on the
ultimate shear capacity of the cylinders. The numerical analysis was most useful in examining the
post-buckling behavior. The analysis provided a clear picture of the force fields responsible for
carrying the shear load in the post-buckling region. All models demonstrated a common load-
carrying pattern that can be used to determine the post-buckling capacity.

The study showed that the magnitude and distribution of the initial stresses introduced in
the finite element model to account for the cold bending inherent in fabricated steel tubes are
critical in determining the ultimate capacity of the numerical model as well as its post-buckling
capacity. Further refinement of the initial stress is needed to include both the longitudinal and
circumferential welding stresses.
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Loading diaphragm

Fixation
X
Symmetry edge
111
Section Fixed DOF Free DOF Coupled DOF

I-1 u, v, w, 0x, Bs === —
II-I1 === u, v, Ox, 6s W
TI-I1 6s v, w, Ox u
& v, 6x u, w, 0s

Table 4.1 Boundary conditions for fixed-ends cylinder model
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Y

Loading diaphragm

Fixation
X
Free edge
III
Section Fixed DOF Free DOF Coupled DOF
I-1 u, v, w, 0x, Os -—-- -
II-101 ———- u, v, w, Ox, Os ———
I-II1 v, Ox u, w, s ----
II-II (CNT1) v, Ox u, w Os
II-II (CNT2) v, Ox u, w, Bs -—--
II-II (CNT3) - u, v, w, Ox Os
II-II (CNT4) - u, v, w, 0x, 0s -—--

Table 4.2 Boundary conditions for cantilever cylinder models (CNT series)
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Slope at ultimate load Slope at max. displ.
F.E. Model R/t R/L | Topband | Mid. band | Botband | Topband | Mid. band | Bot. band

MF1 150 | 1.00 | 45 43 40 47 46 44
MF2 150 | 075 | 45 42 36 46 43 38
MEF3 150 | 050 | 41 39 33 39 37 36
MF4 188 1.0 43 43 43 45 44 44
MF5 188 | 0.75 - 38 37 47 42 42
MF6 188 | 0.50 - 38 37 39 38 32
MF7 250 | 1.00 | 48 45 39 45 43 43
MF8 250 | 075 | 48 44 37 47 39 39
MF9 250 | 050 | 40 38 38 39 37 36
M1-S1 185 0.53 40 40 40 37 34 34
M1-S2 185 0.76 48 42 37 42 42 40

Table 4.3 Slope of the tension field bands (in degrees)
at and beyond the ultimate load
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Middle surface

Note: 7, is normal to the surface

Fig. 4.1(a) Configuration of the isoparametric degenerated bi-cubic shell element
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Projection of %

X : vector normal to the surface

Y

\4

X

Fig. 4.1(b) Nodal degrees of freedom of the plate shell element in NISAS0
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Fig. 4.2 Mesh arrangement of CNT models
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Fig. 4.5(a) Mesh deformation for model M1-S1
at vertical displacement= 1.89 mm (maginified 30 times)
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Fig. 4.5(b) Mesh deformation for model M1-S1
at vertical displacement= 2.38 mm (maginified 20 times)
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Transverse load in kN
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Fig. 4.6 Load-displacement curves for models of specimen S1
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Fig. 4.7(b) Average shear distribution for M1-S1 at load = 1671 kN
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Fig. 4.7(a) Average shear distribution for M2-S1 at load = 1671‘kN
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Fig. 4.9 Average longitudinal stress distribution at load = 1671 kN
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-«+——— Tensile force

Compressive force
Force scale : 1 cm = 600 N/mm

Fig. 4.10 Principal forces on the developed surface of model M1-S1
at vertical displacement = 3.18 mm
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-«———  Tensile force

Compressive force
Force scale : 1 cm = 600 N/mm

Fig. 4.11 Principal forces on the developed surface of model M1-S1
at vertical displacement = 6.42 mm
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Fig. 4.13 Average shear distribution for M1-S2 at disp. = 0.99 mm
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Fig. 4.14 Average shear distribution for M1-S2 at disp. = 2.22 mm
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Fig. 4.15 Average shear distribution for M1-S2 at disp. = 3.41 mm
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Fig. 4.16 Average longitudinal stress distribution at disp. = 0.99 mm
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-«+———» Tensile force

Compressive force
Force scale : 1 cm = 600 N/mm
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Fig. 4.19 Principal forces on the developed surface of model M1-S2
at vertical displacement = 2.44 mm
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Fig. 4.20 Principal forces on the developed surface of model M1-S2
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MFé6 150 300 0.8 188 0.50
MF7 150 150 0.6 250 1.00
MF8 150 200 0.6 250 0.75
MF9 150 300 0.6 250 0.50

Fig. 4.21 Mesh arrangement of MF series
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Fig. 4.22 Load-displacement curves for models with R/t ratio=150
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Fig. 4.23 Load-displacement curves for models with R/t ratio=188
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Fig. 4.25 Load-displacement curves for models with R/L ratio=0.5
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5. Regression Analysis

5.1 Introduction

The inelastic shear buckling capacity of fabricated steel thin-walled cylinders is affected by
many factors. This is one reason why it is not possible at the present time to develop an
analytically derived solution for the inelastic shear capacity of such members. Two alternatives are
available in such cases. Either a sophisticated numerical analysis can be employed, which is
usually expensive and not convenient for everyday design purposes, or empirical formulae based

on experimental results can be developed.

In this chapter, regression models are developed which provide an estimate of the inelastic
shear capacity of thin-walled cylinders. A number of linear and nonlinear models are fitted to the
available experimental and numerical data. The effectiveness of these models is tested by several
correlation criteria and a particular model is then recommended as an empirical design equation
and compared with a currently used design equation (Eq. 2.17, Galletly and Blachut, 1985).

5.2 Regression Variables and Data Set

With the increasing emphasis on empirical research, along with the availability of prepared
computer programs, regression analysis is now widely used in many fields. Regression analysis
is the method of building a statistical model to describe in some sense the behavior of a random
variable. A regression model uses information about a set of independent variables in order to
estimate the expected value of some dependent variable. The regression model is useful for
estimating the response provided it is based on an understanding of the relations among the

variables.

The elements of any regression analysis are the model, the variables, and the data set. In
this Section, the variables contained within the inelastic shear buckling problem for thin-walled
cylinders are defined and the regression data are presented.

For the problem of cylinder shear buckling, the shear capacity of the cylinder is the

dependent variable. In order to generalize the analysis, the response (Y) is defined as the ratio of
the maximum resisted shear force (Vp,,,) to the yield shear force (Vy):

(5.1)

In deriving expressions for V., and Vy, it is assumed that the relationship between the shear

force and the shear stress is based on membrane theory, that is:
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V=nRt1 ‘ (5.2)

The shear capacity of the cylinder is influenced by many parameters: cylinder radius (R),
shear span (L), shell thickness (), material yield strength (G,), elastic modulus (E), the degree
and shape of imperfections which exist in the cylinder wall prior to loading, the residual stresses
due to the manufacturing process, and the boundary conditions. A successful multiple regression
model includes the least possible number of independent variables that permit an adequate
interpretation of the response. Multiple regression models that have fewer independent variables
are inherently easier to analyze and interpret. Therefore, an attempt to reduce the eight independent
variables mentioned above will be advantageous.

As discussed in Chapter 2, the influence of cylinder imperfections on the maximum shear
capacity is considered to be relatively small, and, based on tests and numerical analysis, is
reported to be less than 10% (Galletly and Blachut, 1985 and Roman and Elwi, 1986). Therefore,
it is proposed to ignore imperfections as an independent variable in this analysis. However, the
effect is included as a source of random error inherent in the test specimens used as the basis of

the regression model.

For most of the cases in the data set, the boundary conditions are identical. This does not
allow the effect of the boundary conditions to be examined in a worthwhile way, and therefore it
has been omitted as a variable.

Residual stresses are mainly induced by the rolling and welding processes and by the type
of material used. All the physical specimens were manufactured using the same fabrication
procedure. Also, the finite element models included an estimate of the residual stresses equivalent
to those induced by bending a flat plate to form a cylinder. The lack of variation in the residual
stress patterns throughout the data set led to a decision to exclude them as a variable in this
analysis. However, the residual stresses caused by welding and the type of material are not the
same in all the observations in the data set. Because of the insufficient information reported from
the physical tests concerning these residual stresses, this difference is expected to induce some

inevitable error in the analysis.

The remaining parameters (R, t, L, E, and ©,) are used to define three dimensionless

independent variables X1, X2, and X3 as follows:
X1 = Rt (5.3)

X2 = R/L (5.4)
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X3 = Elo, (5.5)

Since E is almost constant for different types of steel and since R does not independently affect the
shear capacity as an individual variable, the defined variables X1, X2, and X3 are in fact
independent of one another. The thickness ratio (X1) emphasizes the thin-wall aspect of the
cylinder while the aspect ratio (X2) emphasizes the effect of the shear span. The material ratio
(X3) introduces the effect of the grade of steel on the maximum shear stress. Defining the
regression variables in this manner serves three purposes. It reduces the number of variables in
the regression model, it generalizes the model by relating the shear capacity to nondimensional
ratios, and brings it closer in form to the theoretical elastic shear buckling prediction (SchrSder,
1972 and Yamaki et al., 1979), where the elastic shear stress (T.) is a function of the elastic
modulus (E), the aspect ratio (R/L), and the thickness ratio (R/t). (The elastic shear buckling
equation is given by Eq. 3.2).

The data set chosen to develop the regression models covers a wide practical range of the
three independent variables X1, X2, and X3, as shown in Table 5.1. The thickness ratio (X1)
varies from 125 to 250, the aspect ratio (X2) varies from 0.50 to 1.37, and the stress ratio (X3)
varies from 457 to 841. It should be noted that the regression models can predict the response (Y)
most accurately within the range of the independent variables from which they were derived. The

model accuracy outside this range is indefinite.

The data set consists of 29 different data records and each record consists of the three
variables X1, X2, and X3 and the corresponding response Y. Seventeen of these records are
obtained from physical tests, including G1 through G14 (Galletly and Blachut, 1985), B1 (Bailey
and Kulak, 1984), and the tests S1 and S2 performed as part of this work and described in
Chapter 3. The other data records are the results of the numerical analysis described in Chapter 4.
The finite element models tend to slightly overestimate the maximum shear capacity of the
cylinder. Therefore, it might be considered that a more rational regression model would be one
based on the experimental data only. However, both approaches, including and excluding the
finite element data, are investigated and criticized in the following sections.

5.3 Regression of the Data Set
5.3.1 Linear Model

The ultimate goal of any regression analysis is to develop the true relationship between the
response and the independent variables. If the shape of this relationship or equation is known,
then the remaining unknown constants can be evaluated from the data set using the least squares
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method or any other error minimization technique. However, in most cases the shape of the
equation is also unknown and has to be determined. The simplest form of the regression models is
the linear form. Using linear models in cases where the true behavior is certainly nonlinear is
justified by Taylor's theorem (Burington, 1948), wherein any nonlinear function can be
approximated to any desired degree of accuracy by a linear function with enough higher order
terms. Simple linear models help to understand the strength of association between Y and each of
the X-variables, while multiple linear models approximate the true function.

In selecting the best regression model of the simple linear models, one approach is to
evaluate all possible models, especially if the number of X-variables is small (Berenson et al.,
1983). For three independent variables, the possible simple linear regression models are :

Y =a+bXl (5.6)
Y=a+bX2 .7)
Y=a+bx3 (5.8)
§ =g+ bXl +cX2 (5.9)
Y =a+bXl +cX3 (5.10)
Y =a+bX2+cX3 (5.11)
Y =a+bXl+cX2+dX3 (5.12)

where Y is the predicted response and a, b, ¢, and d are the regression constants. It is also
possible to multiply two or more variables as follows (Berenson et al., 1983):

Y =a+bX1X2 . (5.13)
Y =a+ bX1X3 (5.14)
Y =a+bX2X3 (5.15)
Y = a + bX1X2X3 (5.16)

To test these models, a correlation criterion is needed, that is, a method is needed which
measures the strength of association among the variables. One popular correlation criterion
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compares the coefficient of determination (r2) of the different models (Wesolowsky, 1976). The
‘coefficient of determination is defined as:

m 22
Z(Yi'Yi)
2 SSE i=1
r=1-—-—n=1-- — 5.17
SST - ) G-1D
3 (%-Y)
i=1
inwhich m = the number of data records in the regression;

SSE= the sum of the squares of the error for a model and is a measure of the

scatter of the observed Y data about the regression line Y ; and
SST = the sum of the squares of the total error and is a measure of the variation

of the observed Y values around their mean ?

If the fit of the linear relationship {( is perfect, that is, if all points fall on ’\\?, then r’= 1. If,
on the other hand, the variation from the linear relationship is nearly as large as the variation about
the mean ?, then r’ approaches zero. The value of 1 is therefore a measure of the strength of the
regression: the model fits the data best when the value of ? approaches unity.

Using the least squares method, the unknown constants a, b, ¢, and d of the linear models
can be easily calculated. The constants and the corresponding correlation factors 1% are presented
in Table 5.2. Some important observations can be made from the data in this table. First, the
coefficient of determination (r2) for Egs. 5.6 to 5.12 show that the accuracy increases when the
model includes more parameters. They also show that the thickness ratio (R/t) and the aspect ratio
(R/L) have a clear effect on the shear capacity ratio (Y), while the stress ratio (E/o,) does not
seem to be linearly related to Y and its effect is, in fact, minimal. This is to be expected since the
stress ratio includes two components, E, which is almost constant, and G, which is present on
both sides of the equation because it is proportional to T,.

Second, from Egs. 5.13 to 5.16 it is noted that when X2 and X3 are combined, the degree
of association with Y increases. This is most beneficial if the multiple linear models are used. The
general multiple models contain higher powers of X as follows:

”~

Y=a+bXl +cX12+dX1® +..+ eXx1®
+fX2 + gX22 + hX2 + .+ KX

+1X3 +mX32 + nX3 +.t g X3 (5.18)
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Equation 5.18 is not convenient for design purposes. Even with only second powers, it
would include seven terms. A simpler model which includes second order terms and makes use of
the strength of the combined X2 and X3 is written as:

~

Y =a +b X1) +c (Xl)2 +d (X2 X3) +e (X2 X3)2 (5.19)

Eq. 5.19, which includes the additional second order terms, resulted in the largest value of
_ 1%, This is shown in Table 5.2. Although the accuracy may increase if more terms are added, it
will be seen that the same accuracy can be achieved more easily by nonlinear models.

5.3.2 Nonlinear Models
5.3.2.1 Regression Subroutine

Nonlinear regression models are not usually as easy to solve as the linear models. Instead
of using simple formulae to calculate the unknown constants, as is the case with linear models,
computer subroutines designed for nonlinear regression must be used. The subroutine RNLIN
(IMSL, 1987) has been chosen to analyze the models proposed in the following sections.

Subroutine RNLIN fits a nonlinear regression model to a set of data using the least
squares method. The nonlinear regression model is:

Y = FX;,C) + & (5.20)
where Y; = the observed values of the dependent variable;
X; = the known independent variables;
C; = the unknown constants; and
€ = independently distributed error with zero mean value and common
variance S” such that
2 1 i=1 2

(e:-¢) (5.21)

m-1

w2
1
8 M

The program which provides the data and the function F to the solver subroutine RNLIN
is listed in Appendix A. The output of this program includes the values of the regression constants
(C;-values), the sum of the squares of the error (SSE), and the coefficient of determination (r2).
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5.3.2.2 Model Groups

- In this section, two groups of models are tested and compared with the data set. The
general formula of each model is based on the general behavior of thin-walled cylinders under
transverse loading. The first group is based on the interaction between the yield shear stress and
the elastic shear buckling stress. The second group is based on an examination of the shape of the
response relative to each independent variable.

The first group is based on the interaction equation proposed by Galletly and Blachut
(1985). This equation assumes that the inelastic shear buckling stress (T;,) can be approximated by

a quadratic interaction equation that uses the elastic shear buckling stress for simply supported
cylinders under torsion (T.) and the yield shear stress (T,). The interaction equation takes the

following form:

1 1 1
= = = t = (5.22)
T, T, T,

where T, is calculated according to Eq. 3.2. Although Galletly and Blachut compared the results
of fourteen down-scaled model tests (300 mm in diameter) with the predictions of Eq. 5.22 and
reported good agreement, this equation is not the best fit for the fourteen tests. In fact, if the
difference between Eq. 5.22 and the test results is minimized using the least squares technique,
the power "2" in the equation will be replaced by the pbwer "2.33".

To expand on this idea, the interaction equation is assumed to have an unknown power n,
this power is to be determined from the regression analysis of all the available data, namely
Galletly's tests, Bailey's test (380 mm in diameter), the two full scale tests S1 and S2 (1270 mm
diameter), and the finite element models. The power n of the interaction equation is no longer
restricted to integer numbers and is calculated so that the equation is the best fit of the available
data set. The regression model is written in the general form as follows:

1 1 1
- = — + — (5.23a)
T, T, T,

Equation 5.23a has favorable convergence characteristics. When T, approaches infinity,

the case of a very thick or a very short cylinder, the maximum shear stress approaches the yield
shear stress. When T, approaches zero, the case of a very thin or a very long cylinder, the

maximum shear stress converges to the elastic buckling stress. As a result, the inelastic buckling
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capacity acts as a smooth transition from the elastic buckling capacity to the yield capacity in a
manner similar to that used to describe the inelastic buckling of steel columns. Eq. 5.23a can be

rearranged in terms of Y and X as follows:

Y = (1+[0.74 X171 x2%5 x3) 305 )i (5.23b)

As previously explained in Chapter 2, the constant, 0.74, that appears in Eq. 3.2 and
5.23(b), is actually a function of the boundary conditions as well as the thickness ratio (X1) and
the aspect ratio (X2). For cylinders with fixed boundary conditions and with the range of
X-values as in the data set, this constant ranges from 0.805 to 0.842, with an average of 0.825
(Yamaki, 1984). The constant 0.74 in Eq. 5.23b can therefore be replaced by 0.825. This is now
re-introduced as another model, one that accounts for the effect of the boundary conditions:

”~

Y = {1+[(0.825 X171% x2%3 x3) 303%™ i (5.24)

The two models, Eqs. 5.23(b) and 5.24, have the same accuracy with different values of
the power n. The success of these models should be dependent on the accuracy of Eq. 3.2, which
was originally derived for cylinders under pure torsion. After comparison with test results,
Yamaki (1976) recommended the use of the same elastic buckling shear stress for cylinders under

torsion and transverse loading. On the other hand, Schroder (1972) derived a capacity for
cylinders under transverse loading which, although close to Yamaki's solution, is slightly

different. Even though Schroder's solution is more accurate, it is available only in a chart format,
and this discourages utilization in the interaction equation in place of Yamaki's solution. Also, the
regression analysis performed on Eq. 5.23(b) and 5.24 minimizes the effect of the elastic solution
and yields almost the same accuracy for both equations.

In order to limit the number of possible models in the analysis, an intuitive approach is
. adopted to select the second group of the nonlinear regression models. First, the general shape of
the relationship between the response and each independent variable is described. Second,
appropriate functions which are able to represent these relationships are suggested. Finally,
different combinations of these functions are chosen to formulate the regression models.

To describe the relationships between Y and X, it is helpful to use the output of the linear
regression analysis developed in Section 5.3.1. Equations 5.6 and 5.7 show that Y increases as
X1 (=R/t) decreases or as X2 (=R/L) increases, while the small value of r of Equation 5.8 shows
only a small association between Y and X3 (=E/C,). Equation 5.12 indicates the importance of
including all the X-variables in the model and Eq. 5.15 suggests a possible interrelation between
X2 and X3. Many functions can describe these relations: thus, more conditional characteristics
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have to be included. One way is to examine the theoretical shear capacity when the independent
variables approach limit values. When the thickness ratio (R/t) approaches zero or when the aspect
ratio (R/L) approaches infinity, the shear capacity converges to the yield shear capacity, or at least
to a value close to the yield, depending on the initial residual stresses in the cylinder. In order to
bring the regression model closer to the true behavior of cylinders, the selected functions should
be able to satisfy these theoretical limits. Figures 5.1 and 5.2 show the desired general shape of
the relationship between the shear force and the two variables R/t and R/L. They are best
described by exponential functions. The following functions, f1 and f2, are suggested to simulate

the curves in Fig. 5.1 and 5.2, respectively:

fl, = aX1” (5.25)
f1, = ae®*) (5.26)
2 = aX2® (5.27)
f2, = ae**? (5.28)

in which the subscripts describe different versions of the function f. Considering X3 (the stress

ratio), it is either treated similarly to X2 or combined with it in f2 as follows:

£2, = a (X2 x3)° (5.29)

From these functions, the following combinations are proposed as the second group of nonlinear

regression models:
Y = a x1° x2° X3¢ (5.30)
Y = a X1° (x2X3)° (5.31)
T = a X1 X2+ dX3 (5.32)
Y = a e®XD xo° x3¢ (5.33)
Y = a 2 (x2 X3° (5.34)
Y = a X1° CX2+eXD (5.35)
§ = g o®Xl+cX2+dX3) (5.36)
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It is also possible to approximate the interaction equation 5.23 by expanding it to a third
degree polynomial (Appendix B):

”~

Y =a+b®D + cP 4D (5.37)
in which @ is Yamaki's elastic parameter (X1 x2%° X3).

Equations 5.23, 5.24 (Group 1) and 5.30 to 5.37 (Group 2) are the proposed nonlinear
models for inelastic shear buckling. The values of the constants a, b, ¢, and d are determined from
a regression analysis on the total data set shown in Table 5.1, which includes both the test results
and the finite element parametric study results, and are listed in Table 5.3. By examining the
correlation factor r” in Table 5.3, it can be seen that the proposed nonlinear models are more
successful than most of the linear models. In particular, Egs. 5.30, 5.31, and 5.33 are the most
accurate models of the nonlinear groups. However, the values of 1’ have not increased to an
acceptable degree of accuracy. This is due to the inclusion of the finite element data in the total set.

5.4. Regression of the Experimental Data

Regression analysis assumes that the least squares assumptions of normality,
independence, and common variance are valid within the data set. When these assumptions are
satisfied, the least squares estimates are the best (i.e. have the minimum variance) among all
possible estimates. In reality, these assumptions hold only approximately (Rawling, 1988).
Violating these assumptions may seriously affect the estimates of the regression unless proper
corrections are made.

Normality, the assumption that the residual errors are normally distributed, is valid in most
practical cases. In the shear buckling problem, the major causes of residual errors are the random
imperfections, the residual stresses, and the testing procedures. These factors are likely to have
symmetrically bell-shape distributed errors. Even if the normality condition is not satisfied, the
least squares estimates are still the best unbiased estimates if the other assumptions are met.
However, the tests of significance are affected by non-normality and would generally be incorrect.

The independence assumption means that, for a certain set of X-variables, there is no
relationship between the residual errors. This assumption is satisfied in the data set of Table 5.1
since the variables X1, X2, and X3 are independent.

The common variance assumption requires that all the residual errors have the same
variance S, which also implies that every observation contains the same amount of information
(Rawling, 1988). This assumption is violated in the regression of the data set of Table 5.1, mainly
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because of the existence of two types of data, numerical, and experimental. Finite element analysis
is a deterministic method of analysis: in other words, it calculates a unique value of the shear
capacity for a certain set of variables X1, X2, and X3. On the other hand, physical testing is
subject to other factors (such as the random measuring errors) that contribute to the response
beside these three variables. These errors cannot be modeled and this causes the numerical and the
experimental sets to have different variance. Heterogeneous variance causes the least squares
method to lose precision in the estimates and consequently to show poor accuracy. The remedy
for this problem is to use one type of data.

Since the experimental data are believed to contain more information about the actual
problem, the above discussion suggests that the finite element records be eliminated from the data
set used in order to satisfy the least squares assumptions. The number of records left (17 data
records) may not be large enough to represent the whole population, but it is more consistent than
the mixed data used in Section 5.3. Using the same linear and nonlinear models described in
Section 5.3, the regression constants and the correlation factor of the regression of the
experimental data are calculated and listed in Tables 5.4 and 5.5.

The first observation from Tables 5.4 and 5.5 is that a high level of correlation is achieved
for both the multiple linear model (Eq. 5.19) and the nonlinear models, as demonstrated by the
high values of 1*(0.795 to 0.954). This is mainly due to the consistency of the data used.
Comparison with the constants of Table 5.2 and 5.3 shows that some models, namely 5.15, 5.19,
5.32, and 5.35, changed drastically when a subset of the data is used. This sensitive dependency
on the subset of the data decreases the confidence of the model. The other models were less
sensitive and have more conservative predictions of the shear capacity when the experimental data
were used alone. This is favorable from the design point of view. Models 5.12, 5.19, 5.30, 5.31,
5.33, and 5.34 have high values of r* for the regression of both the whole data and the
experimental data, while model 5.37, based only on experimental data, has the best value of r’.

Among the equations in Tables 5.4 and 5.5, the best five are selected and re-examined in
detail in order to select the one to represent the inelastic shear buckling capacity. Equations 5.19,
5.33, and 5.37 are chosen for their good accuracy. Equations 5.23 and 5.30 are also chosen; the
former represents the interaction group and the latter has the simplest form of all the models.
Although Egs. 5.12, 5.24, and 5.34 have good accuracy, they are similar to Egs. 5.19, 5.23, and
5.33 and are less accurate. Thus, the equations selected are (renumbered):

~

Y =0.455 + 2.13 (10)>. X1 - 1.27 (10)°> X12

+ 5.8(10)* X2 X3 + 4(10)® x2% x3? (5.38)
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;‘1 = {1+ 30.5(0.7 4 X125 x2%5 x3 ))-2.2 }-1/2.2 (5.39)
Y = 098+424 F- 3383F +0933F (5.40)
Y = 0345 X10488 20422 30522 (5.41)
§ = 0.050 o(33E3 X1) 30387 5,30.520 (5.42)

Choosing one equation from these five equations cannot be based solely on the value of r.
Two other factors need to be examined; the behavior of the model outside the range of the
independent variables used in the regression, and the scatter of the data about the regression
model.

As already noted, the regression model best estimates the response in the range of the data
upon which it was based. If the model is close to the physical behavior of the true problem, it
should not predict unexpected physical response outside the range as well. The five equations are
therefore plotted against the three independent variables R/t, R/L, and E/o, in Figs. 5.3, 5.4, and
5.5, respectively. Equation 5.38 unreasonably underestimates the response for thickness ratios
outside the data range (125 to 250) and over-estimates the response for aspect ratios above 1.5.
Equation 5.39 has the closest shape to the physical problem outside the data range, as expected
from any interaction equation. Equation 5.40 is unrealistic for R/t < 100 and R/t > 350. Eqs. 5.41
and 5.42 are reasonable except for low R/t ratios, where they over-estimate the response. This is
especially true for Eq. 5.41.

One way of showing the scatter of the data around the regression line is to plot the

predicted capacity ratio ({() versus the measured capacity ratio (Y). These plots are shown in
Figs. 5.6 through 5.11 for the five equations 5.38 through 5.42, as well as for Galletly's equation
(Eq. 5.22). The plots are not different enough to be able to discriminate among them visually. The
following gauges are suggested to rank the data scatter:

_ §i'Yi
E = 100(—) (5.43)
yield
1 m
E,, = — E;
& m z’ll | (5.44)
En.x = maximum {E;} (5.45)
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m ;~ 2
Z(Yi - Yi)
o - i=1 (5.47)
y/x = - m‘ " o
where Y; = the shear capacity ratio for the "i" record of the experimental data set;
E; = the residual error as a percentage of the shear yield capacity of the
cylinder;
E,g = theaverage of the absolute value of Ej-values;
E.x = the maximum value of E;-values;
Enin = the minimum value of E;-values;
n = number of regression constants;
m = number of observations; and
Syx = the standard error of estimate of the regression equation § measured in

- the same units of the dependent variable Y.

The first four gauges are direct error measurements, while the last one is a statistical
measurement. If the errors are assumed to have a normal distribution probability function with
zero mean and variance, then the probability of having data points less or more than that predicted

by Y can be calculated (Berenson et al., 1983). For example, the probability of having cylinders

with shear capacity less than {(-ZSy/x is 95.44% at the mean of the data. If 25, is small, the data
will be close to the regression, and vice versa. Therefore, ZSy/x can be taken as a measure of the
data scatter about the regression equation. The values of these gauges, Eqs. 5.43 to 5.47, are
listed in Table 5.6 for the five regression models. The most accurate model is Eq. 5.40 and the
poorest is Eq. 5.39. However, the difference between them is not very large.

Equations 5.38 and 5.40, although they have the best accuracy, do not simulate the true
shear capacity outside the range of X-variables, as shown in Fig. 5.3. They anticipate negative
capacity for larger values of R/t and a puzzling decrease or increase for the smaller values of R/t.
These equations are also sensitive to any change in the data set, as can be seen from the values of
the constants in Tables 5.2 and 5.4. In contrast, Eq. 5.39 behaves ideally outside the range of the
X-values, as expected, but it has the poorest accuracy of the five models: 1* = 0.83, Euvg=5%
and 28, = 13.3%. Equations 5.41 and 5.42 are very close to each other, with the latter slightly
more conservative and slightly more accurate. Both provide reasonable estimates of the shear
capacity outside the range of X-variables except for R/t ratios less than 100, where they tend to

over-estimate it.
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In conclusion, Eq. 5.42 is considered the best regression model because it has good
accuracy as well as reasonable predictions within the overall range of the independent variables.
Galletly's predictor equation (Eq. 5.22) is also presented in Table 5.6 for comparison with the
regression models. Equation 5.42 has an error range (Ep;, to Ep.0) of -7.5% to 11.8%, whereas
Galletly's equation has a wider range, -11.6% to 14.7%. Equation 5.42 has an accuracy factor
(r*) of 0.91 and a scatter factor (2Syy) of 0.11, whereas the corresponding factors for Galletly's

~ equation are 0.80 and 0.14.
5.5 Shear Capacity Equation

The currently used formula for identifying the inelastic shear capacity of transversely
loaded cylinders is the quadratic interaction equation suggested by Galletly and Blachut
(Eq. 5.22). This equation, although empirically based, is not the best fit for the group of tests
upon which it was based. In this chapter, a best fit regression model for all the available shear
buckling physical tests has been determined as:

v -0.0033 R (R)0.387 (E 0.52
e t
- \L

Vy o,

In addition, the maximum shear force resisted by the cylinder according to Eq. 5.48 should not
exceed the yield shear force or the elastic buckling shear force: '

v ‘
\r’nax < 1.0 (5.49)
y
\' T.TRt
_max gL (5.50)
Vy Vy

Where 1, is the elastic buckling shear stress for cylinders under transverse loads as calculated
from Eq. 2.15.

The predictions of Eq. 5.48 are most accurate within the following ranges:

125 < % < 250 ' (5.51(a)
R
05 < T <1.4 (5.51(b))
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150 < £ <850

Oy

(5.51(c))

Figure 5.12 shows the finite element results relative to equation 5.48. Clearly, the
proposed design equation is a lower bound on the best available theoretical prediction in addition
to its excellent performance relative to the available test data.

Equation 5.48, which has better accuracy than Galletly's equation, is the empirical
equation recommended for the determination of the inelastic shear buckling capacity of thin-walled
fabricated steel cylinders under transverse loading.
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Data X1 X2 X3 Y

Specimen S1 185 0.53 645 0.64

Specimen S$2 185 0.76 643 0.71

Specimen Bl 250 0.50 679 0.38

Specimen Gl 188 1.00 673 0.87

Specimen G2 188 1.00 673 0.83

s Specimen G3 150 1.00 841 1.00
S Specimen G4 150 1.00 841 0.99
— Specimen G5 125 1.00 704 1.02
E 2 | Specimen Gé 125 1.00 704 0.98
g 2 Specimen G7 150 1.00 457 0.71
-5 -; Specimen G8 150 1.00 457 0.76
a - Specimen G9 125 1.00 547 0.79
M | 2 | SpecimenG10 125 1.00 547 0.87
© | specimenG11 126 1.37 533 0.94
Specimen G12 151 1.37 457 0.80

Specimen G13 129 0.83 533 0.83

Specimen G14 155 0.83 457 0.72

Model M1-S1 188 0.53 645 0.64

Model M1-S2 188 0.76 643 0.80

L Model M1-Bl 250 0.50 679 0.50
3 Model MF1 150 1.00 667 0.94
= Model MF2 150 0.75 667 0.85
o Model MF3 150 0.50 667 073
g Model MF4 188 1.00 667 0.90
f Model MFS 188 0.75 667 0.81
g Model MF6 188 0.50 667 071
= Model MF7 250 1.00 667 0.89
Model MF8 250 0.75 667 0.83

Mode! MF9 250 0.50 667 0.73

Table 5.1 Variables of the regression data set
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Eq. number a b c d e r

Eq. 5.6 1.129 |-0.002 ——- -—- - 0.300
Eq. 5.7 0.457 | 0.400 0.459
Eq. 5.8 0.575 | 3.50E-4 -—- ——- 0.058
Eq. 5.9 0.673 |-8.70E-4 | 0.319 0.503
Eq. 5.10 0.807 |-2.30E-3 | 6.20E-4 0.466
Eq. 5.11 -0.046 | 0.48 6.90E-4 0.661
Eq. 5.12 0.205 |-1.20E-3 | 0.376 7.60E-4 0.739
Eq. 5.13 0.608 1.30E-3 0.121
Eq. 5.14 0.957 |-1.40E-6 - 0.115
Eq. 5.15 0.391 7.60E-4 - --- --- 0.698
Eq. 5.16 0.593 | 2.30E-6 0.189
Eq. 5.19 0.476 |-1.46E-3 | 1.55E-6 | 1.33E-3 | -5.87E-7 0.766

Table 5.2 Regression constants of the linear models based on all data records

Table 5.3 Regression constants of the nonlinear models based on all data records

Eq. number a c d r
Eq. 5.23 2.5040 -=- --- -—- 0.644
Eq. 5.24 2.1512 -== --- ——- 0.644
Eq. 5.30 0.0945 |-0.2334 0.4094 0.5288 0.765
Eq. 5.31 0.1290 |-0.1909 0.4478 --- 0.756
Eq. 5.32 43932 |-0.4386 0.7250 0.0006 0.712
Eq. 5.33 0.0366 [-0.0013 0.4104 0.5256 0.764
Eq. 5.34 0.0584 [-0.0011 0.4477 — 0.755
Eq. 5.35 1.1878 [-0.2574 0.4442 0.0008 0716
Eq. 5.36 0.4083 [-0.0014 | 0.4459 |0.0008 0.715
Eq. 5.37 -0.1717 [2.3313 -1.8804 0.5440 0.677

125



Eq. number a b c d e r

Eq. 5.6 1.369 |[-3.55E-3 --- 0.564
Eq. 5.7 0.371 | 0.464 --- --- 0.427
Eq. 5.8 0.550 | 4.32E-4 - 0.114
Eq. 5.9 1.025 |-2.65E-3 | 0.214 -—- 0.619
Eq. 5.10 1.041 |-4.10E-3 | 6.80E-4 - 0.835
Eq. 5.11 -0.111 | 0.548 6.60E-4 0.679
Eq. 5.12 0.581 |[-3.02E-3 { 0.273 7.29E-4 0.923
Eq. 5.13 0.648 | 1.10E-3 ——- --- 0.044
Eq. 5.14 0974 |-1.66E-6 --- --- 0.110
Eq. 5.15 0.329 |-8.42E-4 0.722
Eq. 5.16 0.578 | 2.70E-6 0.170
Eq. 5.19 0.455 | 2.13E-3 |-1.27E-5 | 5.84E-4 | 4.00E-8 0.940

Table 5.4 Regression constants of the linear models based on experimental data

Table 5.5 Regression constants of the nonlinear models based on experimental data

Eq. number a b c d r’

Eq. 5.23 2.2040 --- - - 0.830
Eq. 5.24 1.9370 --- 0.795
Eq. 5.30 0.3446 |-0.4883 | 0.4218 | 0.5215 0.894
Eq. 5.31 0.3545 |-0.4399 | 0.4796 --- 0.888
Eq. 5.32 43.200 |-0.8950 | 0.6250 | 0.0005 0.821
Eq. 5.33 0.0493 |-0.0033 | 0.3873 | 0.5202 0.912
Eq. 5.34 0.0652 |-0.0028 | 0.4672 --- 0.902
Eq. 5.35 5.9040 |-0.5714 | 0.3802 | 0.0008 0.863
Eq. 5.36 0.6174 [-0.0037 | 0.3473 0.0008 0.887
Eq. 5.37 -0.9799 | 4.2390 | -3.3830 | 0.9332 0.954
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Maximum Shear Force

R/t

Fig. 5.1 The general shape of the shear capacity vs R/t

Maximum Shear Force

R/L

Fig. 5.2 The general shape of the shear capacity vs R/L

128



/Y JUIIRYJIP 10§ SPPOW UOISSIIZAI Y] JO SUOIPIPAIY €°S “Siyf

(/d) onea ssauydIY) Y],

Zb'G by  ————
[P'G DT emrmrmimieea -
Ob' G b3y ~mmem—ae
6£'G b3 cmemacmeenanas
8¢S b3

' abueu ejeq

129

( X) oneua Lypded aeayg



/Y JUIJ3JJIP J0J SPPPOUW UOISSIAZAT 3) JO SUOIPIPIIJ $°S “S1

("1/4) onea yadse ay g,
¢ 0¢ Gl o'l G0 00
' i r'l '] — | 1 ' L — £ ' 4 ) _ ] '] ' L — 1 L i s- Oo.o
Nv.m .Um L] \ L.
. U lllllllllllllll
i'G b3 \ — GZ'0
oF'S Mu — L W
6£'G D3 mommmmmsmmmeees
— 050 .
8¢'g b3 ]
. — CL'0 <
N -
PR Y S dadals - -]
STt Ll e _ .
(-]
. — 00'l >
abued eieq _ )

0s't

130



£O/H JUIIYJIP J0J SIPPOUL UOISSAITII 3Y) JO SUOIPIPAIJ §°S “Si

(KO/3) oryea ssans ay

131

0001

006

008 004 009

Z¥'s b3
%G b3
ob's b3
6£'G b3
8¢£'c b3

abued ejeq

( X ) onea fyoeded aedays



Predicted capacity ratio (Y)

Predicted capacity ratio (Y)

Measured capacity ratio (Y)

Fig. 5.6 Scatter of the test data about the regression Eq. 5.38
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Fig. 5.7 Scatter of the test data about the regression Eq. 5.39
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6. A Truss Model for the Post-Buckling Shear Capacity

6.1 Introduction

Prediction of the maximum shear capacity of cylinders under transverse loading, based on
experimental, numerical and empirical studies, has been reported in the previous Chapters. Both
the experimental and the numerical studies showed that there is significant secondary strength after
buckling. This strength, which of course is lower than the buckling strength, can be utilized as a
conservative estimate of the shear capacity of cylinders.

The shear tests of transversely loaded cylinders that were carried out in the post-buckling
region, B1 and B2 (Bailey and Kulak, 1984) and S1 and S2 (Chapter 3), demonstrated a common
post-buckling pattern. An example of the load-displacement relationship obtained during these
tests is shown in Fig. 6.1. As the load reaches the buckling strength, diagonal buckles appear in
the center of the shear span and the load level drops. After buckling, the load remains constant as
the deformation of the cylinder increases in the plastic range.

There are similarities between the post-buckling behavior of thin-walled cylinders and that
of plate girders. The buckled shape of plate girders and cylinders under transverse load is
displayed in Figs. 6.2a and 6.2b, respectively. When a plate girder buckles in shear, truss action
evolves to carry some of the shearing force. In this truss action, the tensile forces in the direction
of the buckles are carried by membrane action of the web and the compressive vertical and
horizontal forces are carried by the stiffeners and the flanges. Similarly, when a cylinder buckles .
in shear, tensile membrane forces develop in the direction of the buckles. The vertical component
of these diagonal forces is taken by the circumferential stiffeners or by the end diaphragm, while
the horizontal component is resisted by compressive membrane forces in the direction opposite to
the buckles.

Although the tension field mechanism in plate girders has been studied by many
researchers (a summary of which is reported in Structural Stability Research Council Guide,
1988), few such studies have been identified in the case of thin-walled cylinders. Tension field
action in cylinders was first observed by Bailey and Kulak (1984). Later, Mok and Elwi (1986)
and Roman and Elwi (1987) attempted to predict the post-buckling capacity of one of the Bailey
and Kulak tests by using the tension field action. In the following sections, a brief review and
discussion of these studies is presented, and a general truss model for the shear buckling capacity
of thin-walled cylinders is proposed and verified.
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6.2 Tension Field Models for Thin-Walled Cylinders

When Bailey and Kulak (1984) tested two thin-walled cylinders (B1 and-B2) under
transverse loading, they noticed that the specimens had a buckle pattern similar to that of plate
girders. As a result, they tried to adopt the tension field theory of plate girders to fit thin-walled
cylinders. Bailey and Kulak assumed that a diagonal tension field developed in the cylinder after
buckling and that it was anchored in the vertical sides of the shear span, as illustrated in Fig. 6.3.
They also assumed that this tension field had a constant tensile stress equal to the flexural buckling
stress O, The slope of the tension field (§) was calculated by replacing the panel height and
length in the corresponding plate girder equation for tension field slope (Salmon and Johnson,
1990) by the cylinder diameter (2R) and shear span (L). According to Bailey and Kulak, the shear
strength (T,), the arc width (), and the slope (£) of the tension field are expressed in terms of the
cylinder dimensions and the flexural buckling stress as follows:

T,=2Rto,, (1-cosy)sin{ (6.1)
-1
where Y =T - cos (1-%tan§)
1 -1 2L
C = 5 tan (?)

and O, is the critical buckling stress in flexure (Stephens et al., 1981) and all other terms are
shown in Fig. 6.3. Comparison of predictions made using Eq. 6.1 with the two tests available
(B1 and B2), led Bailey and Kulak to conclude that an improved shear strength predictor equation
would depend on R/t ratio. They subsequently proposed the following format:

Vo=ky T, (high R/t ratio) (6.2)
Va=kp T, +k; T, (intermediate R/t ratio) (6.3)
Vu=ky Ty (low R/t ratio) (6.4)

where V, is the ultimate shear strength of the cylinder, T, the tension field shear strength, T, the
yield strength of the cylinder and k;;, ki, kyy, and ky, are functions of R/t ratio and the material
properties. The first term in Eq. 6.3 is referred to as the "tension field shear" part, whereas the
second term is called the "beam shear" part.

Mok and Elwi (1986) adopted Eq. 6.3 as a shear buckling formula for the B1 test and
attempted to evaluate the tension field and the beam shear parts. Their assumptions regarding the
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shape, the slope, and the stress distribution of the tension field were the same as those of Bailey
and Kulak. However, they calculated the tension field stress o, differently. Whereas Bailey and
Kulak assigned the flexural buckling stress G, to the tensile stress, Mok and Elwi determined it
from a yield condition. They assumed that the cylinder buckles at a critical shear stress which is
proportional to the elastic buckling shear stress (t.;) proposed by Batdorf et al. (1947). After
buckling occurs, additional shear stress is carried by the tension field action. Assuming that the
state of stress in the tension field reaches the Von Mises yield criterion, the tension field stress can
then be determined. The components of Eq. 6.3 according to Mok and Elwi are:

2 2 l
K, = {1- 0 Tex (3-%sin22§)} L L R
c 2 oy
y
L .
T, = Rtoy (2 -Etanc ) sin{ (6.6)
01T
K, =3 — (6.7)
c
y
T,=+3 mRt o 6.8)

where oy is the yield stress and d is a reduction factor which is applied to the elastic buckling
stress (T, to account for the effect of the initial imperfections. Mok and Elwi did not determine a

specific value for d, and therefore no comparison between Eq. 6.3 and the tests was made.

Several criticisms can be directed toward each of these models. The Bailey-Kulak model
dealt with the cylinder as a flat plate when calculating the angle of inclination of the tension field,
¢, neglected the compressive membrane forces, and used an ambiguous definition of the tension
field stress, o,. Bailey and Kulak (1984) were not able to provide supportive evidence for their
assumption about the tension field stress, while Mok and Elwi (1986) left the tension field stress
as a function of the unknown factor 3.

Roman and Elwi (1987) used extensive finite element analysis of the first shear test of
Bailey and Kulak in order to develop a truss modei which addressed these criticisms. The Roman-
Elwi model, shown in Fig. 6.4, has a helix-shaped tension field and an equilibrating compression
strut. The total shear capacity (V) of the model is evaluated not only from the integration of the
vertical component of the tension field (T,), but also from the vertical component of the
compression strut (C,). In this model, it is assumed that the shear capacity after buckling is
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dependent on the tension field action alone. In other words, the beam shear contribution is

neglected.

To define the tensile stress ©,, Roman and Elwi proposed two limiting bounds for the
tensile stress in the tension field. The lower limit corresponds to a sinusoidal distribution of stress
in the direction of the buckles accompanied by a cross-bending moment equal to the yield moment
due to the deformations of the buckle waves. The upper limit corresponds to constant yield stress
accompanied by cross-bending moment equal to the plastic moment. These limits are represented
by a reduction factor (o) which is applied to the yield stress. The factor a is equal to 0.438 for the
lower limit and 0.750 for the upper limit. The post-buckling shear strength of cylinders according
to Roman and Elwi is described by the following equations:

Vin= Ty + G (6.9)

where Ty =aRt oy (1-cosy ) sin2(
R 2
Cv=2aRt6y\|li— (1 +cosy) cos §

L
Yy=Tt- =t
R an§

¢ = tan-l(1+ cos(fli- tan §)) cosec (% tan §) cos2C

It can be demonstrated that the shear capacity of the truss model according to Eq. 6.9 is
independent of the thickness ratio, R/t. This is not consistent with the test observations. The ratio
of the shear capacity calculated using the lower limit of Eq. 6.9 to that measured from the tests
which have the same R/L ratio is 1.62 for B1 (R/t = 250), 1.04 for S1 (R/t = 185), and 0.78 for
B2 (R/t = 75). The discrepancy is mainly due to the fact that the model is independent of the R/t
ratio. Equation 6.9 does give satisfactory results within a narrow range of the R/t ratio, but it does
not give good predictions over a broader range.

There are also some inconsistencies in the Roman-Elwi model regarding the definition of the
compression strut. First, the strut (C), which is the resultant of the compressive membrane forces,
and the resultant of the tension field (T) do not intersect at the same point on the circumferential
stiffeners. Thus, the model violates equilibrium conditions. As shown in Fig. 6.4, the
compression strut intersects the stiffener at angle equal to (r-y), while the resultant of the tension
field intersects the stiffeners at (y/2). Second, the stress concentration at one end of the strut is
theoretically equal to infinity since the strut starts from the extreme point of the cross section.
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Finally, the slope of the tension field, {, was chosen to maximize the shear component of the
tension field, T,. This is a reasonable assumption in plate girders, where the compressive forces
in the flanges do not contribute to the shear capacity. On the other hand, the shear capacity V, in
Eq. 6.9 consists of two segments, T, and C,, and maximizing only one of them is not easily

justifiable.

In summary, the concept of tension field action can be reasonably employed to determine the
shear capacity of thin-walled cylinders in the post-buckling range. The tension field models which
are available do not satisfactorily predict the test results, however. An attempt to develop a tension
field model which can address the deficiencies of the previous models and predict the shear
capacity of thin-walled cylinders will be presented.

6.3 Proposed Truss Model

The models summarized in Section 6.2 were constructed to fit cylinders with fixed-end
boundary conditions, such as the B1 and B2 tests of Bailey and Kulak. As discussed in
Chapter 3, the bending moment distribution of the fixed-end test S1 along the shear span is
sensitive to the support movements. It was also observed that even small deformations in the
supporting elements change the bending moment significantly and that such deformations cannot
be avoided. As a result, the degree of indeterminacy in the tests and the post-buckling models
increases. To decrease the number of unknowns, and consequently the number of assumptions in
the proposed model, the boundary conditions will be limited to simple and cantilever supports.
For these cases, the middle of the shear span is susceptible to shear buckling while one end of the
shear span is susceptible to local flexural buckling.

6.3.1 Assumptions

The truss model adopted in this study is illustrated in Fig. 6.5. The model consists of three
main elements; the tension field that develops after buckling, the compression strut that must be
present to balance the horizontal component of the tension field, and the circumferential stiffeners
that support the vertical thrust of the inclined force fields. In order to view the model in a two-
dimensional plane, the cylinder is cut with a vertical plane and then unfolded as shown in
Fig. 6.6. This two-dimensional plot will be referred to as the developed surface of the cylinder.

In the following, the basic aspects of behavior in the post-buckling range are discussed
and the assumptions necessary to construct a truss model of the behavior are set out.

1. When a cylinder buckles in shear due to transverse loading, the ultimate shear capacity
immediately drops to a lower load level and then stabilizes, as seen in Fig. 6.1. Such

140



typical post-buckling behavior has been observed in all shear buckling tests (B1, B2,
S1 and S2) which were continued into the post-buckling range. During buckling, the
load-carrying mechanism changes from beam-type to truss-type in a way similar to that
of plate girders except that the post-buckling capacity of cylinders is, herein, assumed
to be dependent on the truss mechanism alone. An explanation of this observed
behavior was offered by Roman and Elwi (1987). They suggested that outward shear
buckles help develop the inclined tensile membrane forces while the inward buckles
reduce these forces significantly due to the reduction in length of the buckles. With the
increase of deformations in the post-buckling range this results in unloaded strips of
forces, which in turn causes the beam-type shear to diminish.

2. After buckling, tensile forces are developed in approximately the same direction and
location as the buckles. This field of forces has a helical shape, which means it appears
as a straight strip on the developed surface of the cylinder (Love, 1944). This
assumption is supported by the results of the finite element analyses (Chapter 4),
which showed that the principal tensile forces in the post-buckling range always
appear as straight, parallel rays. An example of these analyses is displayed in Fig. 6.7,
where the principal forces in the post-buckling range are plotted on the developed
surface of specimen S2. ’

3. Examination of Fig. 6.7 shows that the compression field is not as clearly defined as
the tension field. The compressive principal forces at different points on the cylinder
do not have the same slope, neither do they have a definable shape. However, the
compression field can be replaced by an equivalent compressive strut in deriving the
truss model capacity. This strut must be in equilibrium with the resultant of the tension
field.

4. The compression and tension fields can receive anchorage only in the circumferential
stiffeners. In other words, the unstiffened parts of the cylinder cannot provide
anchorage to the inclined force fields. This behavior, which helps in defining the width
of the force fields, was observed in the tests (Figs. 3.10, and 3.22) and it is also
consistent with the numerical analysis (Fig. 6.7).

5. The stresses in the force fields are redistributed as the deformations increase until they
reach maximum values-yield stress in tension and buckling stress in compression. As
suggested by the finite element analyses (Chapter 4), the stresses in the tension field
tend to be high at the crests of the buckles (yield value) and low at the valleys (almost
zero value), creating banded strips of forces as shown in Fig. 6.7. Therefore, it is
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reasonable to assume that the stress distribution in the tension field has a sine wave
variation as shown in Fig. 6.6. The number of buckles observed in tests S1 and S2
(Chapter 3) was three and thus, the stress distribution in Fig. 6.6 has also three
waves. (Subsequent examination of the effect of the assumed number of waves on the
truss model capacity showed that it is minimal). On the other hand, the stresses in the
compression field at the support tend to intensify near the top of the cross section and
diminish towards the neutral axis. The stresses in the compression field, therefore, are
assumed to have a triangular distribution, with a maximum value at the crest of the
cross section equal to the critical compressive stress in buckling due to bending.

6. During redistribution of the stresses in the post-buckling range, the direction of the
tension field changes accordingly until the capacity stabilizes. It is reasonable to
postulate that when the shear capacity of the cylinder stabilizes, the tension field slope
reaches an optimum value such that the shear capacity of the truss model is maximized.
This assumption is analogous to the one made by Basler (1961) regarding the post-
buckling shear capacity of plate girders.

6.3.2 Derivation of Shear Capacity

The shear capacity of the truss model can now be derived. From the definition of the helix
shape of the tension field, the angle y (Fig. 6.6) which defines the width of the tension field is
calculated as follows:

\|I=1:-%tan§ (6.10)

in which L is the length of the shear span, R is the cylinder radius and C is the slope of the tension
field.

Consider an element of width dw oriented in the direction of the tension field (Fig. 6.6). If
the stress acting on the end area of this element is 6, and the cylinder wall thickness is designated

as t, then the infinitesimal force acting on the element in the direction of the tension field can be
written as:

dT = o, t dw (6.11)

(Note that, because of the presence of cross-bending moment as a buckle forms, o, is not, in fact,

a uniform stress acting on the end area of the element, although it will be convenient to think of it
that way. The influence of the cross-bending moment on ¢, will be developed subsequently.)
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The component of the infinitesimal force, dT, in the direction of the applied shear is

written as:
dT, = o, t dw sin{ sin 6 (6.12)
where 0 is the angle between the infinitesimal strip and the vertical axis.

The width (dw), which is defined as the dimension of the strip normal to the tension field,
can be expressed in terms of the infinitesimal angle (d0), the radius (R), and the slope of the
tension field as follows:

dw = R db cos( (6.13)

Substituting Eq. 6.13 into Eq. 6.12 and using a trigonometric identity, one obtains:

dT, = % 6, t R (sin22) sin® do | (6.14)

Before integrating Eq. 6.14, the tensile stress, G, first has to be defined. Using the
assumed sinusoidal distribution of o, shown in Fig. 6.6, the tensile stress (o,) at a strip dw can
be expressed as a function of the peak value of the distribution (G,) and the strip location angle
(0). It can be shown that this function is:
610

o .
Gt=7y(l+s1n(

T
- 5)) (6.15)

Equation 6.15 is still incomplete because it does not take into account the variation of the
tensile stress through the cylinder thickness (t). As already noted, the shape of deformation in the
buckled zone implies that in addition to the tensile stress that exists in the direction of the tension
field, there is also stress normal to it due to the cross-bending moment. For example, when the
surface buckles outward at a particular cross-section, the outside half of the thickness will be
subjected to tensile stress normal to the tension field stress while the inside half of the thickness
will be subjected to compressive stress. This biaxial state of stress may prohibit the tensile
stresses in the direction of the tension field from reaching the yield value (cy). To determine the

tensile stress distribution, the biaxial state of stress first needs to be identified.

As the deformations in the post-buckling range increase, the cross-curvature of the buckles
increases, thereby creating high local cross-bending moments. These moments can be as high as
the plastic moment after a sufficient degree of deformation is reached in the stable post-buckling
path (Roman and Elwi, 1986). The stresses (G,,) associated with the cross-bending moment will
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limit the maximum stress (G,,) that can be reached in the direction of the tension field. Adopting
the Von Mises yield criterion, shown graphically in Fig. 6.8, the relationship between the biaxial
stresses takes the form:

otaz + o-cmz - Gt Ocm - o'y2 =0 (6.16)

The distribution of the cross-bending stress, O, through the thickness is determined
from the cross-bending moment due to the buckle deformation. The distribution of the maximum
stress in the direction of the tension field, 6,,, around the cylinder can then be calculated from
Eq. 6.16. The tension field stress, which was assumed to be uniform through the thickness, is
now adjusted so that it does not exceed the maximum stress, ©;,. Finally, an equivalent uniform
stress, Oy, is calculated as the average value of the adjusted tension field distribution through the
thickness. This equivalent uniform stress, G, is now the one that considers the effect of the

cross-bending moment at the chosen location.

An example of this procedure is illustrated in Fig. 6.8. The section considered in this
figure is the crest of a buckle where the thickness is fully plastified. It is logical to assume that the
stress in the direction of the tension field must be between 0 and +0,. Equation 6.16 will show,

.therefore, that this stress (o,) will be +0, and that it will be present only in the outside half of the
thickness. The adjusted tension field distribution in this case is similar to the oy, distribution and
the equivalent stress (Gye) is equal to 0.50,. Defining m as the ratio between the equivalent stress
and the tension field stress, m at the crest location is 0.5. This ratio, first introduced by Roman
and Elwi (1987), is a reduction factor which should be used in Eq. 6.15 to take the effect of the
cross-bending moment into account at the crest location. After some further discussion of the
value of L, its introduction will be made in Eq. 6.17.

The steps for calculating S,,, S, and M are repeated for different locations on the buckle
wave. Figure 6.9 shows the distributions of the cross-bending moment y., the tensile stress o,

and the reduction factor ¢ along one half of a buckle wave.

Instead of including the distribution of m in Eq. 6.15 as a function of 0, an average value
of it for the whole tension field width can be calculated by integrating the distributions of | and
o,. This average value is calculated as 0.820, which is slightly less than the value of 0.875
suggested by Roman and Elwi (1986) using a similar approximation. Equation 6.15 is now
modified to include the effect of the cross-bending moment.

0.820,

6O T
Gt= 2

- 5)) (6.17)

(1 + sin(
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Substituting Eq. 6.17 into Eq. 6.14, one obtains:

_082Rt 0,

dT, .

sin2{ (1+sin (—659 - %) )sin0dO (6.18)
L4
Integrating Eq. 6.18 over the range of dq (from O to ), the contribution of the tension
field to the shear capacity can be evaluated as:

2

36 T
2 2
¥ +36T

T, = 0.205Rt G, sin2{ (1 - cosy ) (6.19)

The horizontal component of the tension field can also be determined in the same manner:

dT, = o, t dw cos{ (6.20)

2
36T

2
Ty = 041Rt O, ¥ cos{ (6.21)

2
¥ +36m

To satisfy equilibrium, the horizontal component of the compression field (C,) is set equal
to the horizontal component of the tension field (T,). The compression force (C) can then be
calculated from T, as:

C = T (6.22)

cos M

in which m is the slope of the compression strut. The compression force (C) is also given by the
resultant of the triangular compression stress distribution shown in Fig. 6.6. The width (B) of this
distribution at the supporting diaphragm is given by:

2C
t Ocr

B = (6.23)

in which o, is the buckling compressive stress (Stephens et al., 1981). The vertical distance b,
shown in Fig. 6.6 as the distance between the compressive strut (C) and the top of the cylinder, is
dependent on B:

b = ———
3 cosM (6.24)
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Substituting Egs. 6.21, 6.22 and 6.23 into Eq. 6.24, b is written as:

2 2
oycos § 36T

b=0273 Ry (6.25)

2 2 2
O..cosM| |y +36 T

There are three unknowns (b, 1, and {) in Eq. 6.25; therefore, two extra conditions are
needed. Since the compression strut has a helical shape, its slope (1) is governed by the location
of the tension field resultant and the centroid of the stress triangle. This condition is expressed as:

RY p) (6.26)

tanm = >

1
L
Substituting Eq. 6.25 into Eq. 6.26, the value of h can be determined as a function of Z. Roman
and Elwi (1986) assumed incorrectly that 7 is equal to {, while Bailey and Kulak (1984)
neglected the compression strut altogether. After calculating m, the contribution of the
compression field to the shear capacity can be obtained.

C,= T, tannm sin;—’ (6.27)

The total shear capacity of one half of the cylinder is simply the summation of the tension
component (Eq. 6.19) and the compression component (Eq. 6.27). For the whole cylinder, the
post-buckling shear capacity according to the truss model is written as:

Vi = 2(T, +C,) (6.28)

Equation 6.28 is a function of the slope of the tension field, {, which is still unknown. To
determine the value of {, the assumption that the slope will be that which produces maximum
shear will be applied:

d Vi
dg

The nonlinearity of Egs. 6.28 and 6.29 prevents the derivation of a closed form solution
for the post-buckling shear force V,,. However, numerical techniques are suitable in such cases

=0 (6.29)

to determine the maximum value of the post-buckling shear force V. One possible algorithm is
to assume different values of z in the practical range (0 to w/2) and to calculate Eq. 6.28 for each
value of {. Subsequently, the maximum value is selected and the first derivative (Eq. 6.29) is
checked to ensure that it is almost zero. Appendix C lists a FORTRAN subroutine that was written
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to perform these calculations. The input data of this subroutine are the cylinder variables, namely
the aspect ratio (R/L), the thickness ratio (R/t), and the material ratio (E/c,). The output data are
the slope of the tension field (), the slope of the compression strut (1), and the ratio of post-
buckling shear stress to the yield stress (Tyy/Sy). This shear stress is related to the shear force Vy,

of Eq. 6.28 by the simple beam shear relationship:
Vi = TRt Ty (6.30)

The process of selecting the maximum shear stress (ty,,) for different values of R/t, E/o,,
and R/L is demonstrated graphically in Figs. 6.10, 6.11 and 6.12, respectively. Each curve in
these figures shows the post-buckling shear stress ratio (t/0,,) versus the slope of the tension field
() and each figure shows the effect of changing certain cylinder variables on the - relationship.
The global maximum of each curve is selected as the shear value for the truss model capacity
(Tyy)- Examining these maximum values, it is observed that the post-buckling shear stress 7,
increases with increasing values of R/L and E/c,, but decreases as the R/t ratio increases. These
relationships agree with the observations of the full-scale tests B1, B2, S1, and S2.

In addition to the global maximum values, there are some local maximum values at a
tension field slope greater than that of the global maximum. These values correspond to horizontal
compression struts, that is, the slope 7 is equal to zero. In other words, these local maximum
values represent cases when the shear capacity is due to the tension field alone.

Figures 6.10 and 6.11 indicate that when the shear strength is generated from the tension
field alone (T,), it is not a function of the ratios R/t and E/q,. On the other hand, Fig. 6.12 shows
that T, is a function of the aspect ratio R/L. Indeed, when R/L decreases to a certain limit, the
tension field contribution becomes the only active shear component. This limit is a function of the
thickness ratio and the material ratio. The curve with R/L. = 0.5 in Fig. 6.12 shows that the global
maximum value is only slightly greater than the local maximum value. Further examination
showed that for R/L < 0.35, the local maximum becomes the global maximum.

6.3.3 Model Mechanism

To understand the role of R/L and R/t ratios in developing the post-buckling shear force
V.m, the shear resistance is separated into two components; the tension field component, T,, and
the compression field component, C,. The two components, as well as the slopes of the tension
and compression strut, are displayed on the developed surface of the cylinder in Figs. 6.13 and
6.14. Figure 6.13 points out the change in the slopes due to variation of the R/L ratio. It is noticed
that the shorter the shear span L, the steeper the slopes of the tension and compression struts, and,
consequently, the higher the shear components. Figure 6.14 illustrates the effect of the R/t ratio.
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When the cylinder thickness is reduced, the critical compression stress is also reduced. Thus, the
compression strut, which should balance the horizontal component of the tension field, is forced
to have a smaller slope | and it therefore provides a smaller vertical component. Even though the
slope of the tension field increases to compensate for the loss of the compression strut shear
contribution, the shear capacity of the whole model diminishes as the thickness ratio, R/t,

increases.

Although Figs. 6.13 and 6.14 utilized specific values of the aspect ratio and the thickness
ratio, the same conclusions can be drawn for any value of R/t and R/L. This can be seen in
Figs. 6.15, 6.16 and 6.17. As the shear span decreases, the shear capacity and the slopes { and
increase. As the cylinder thickness decreases, the shear capacity and the slope of the compression
strut decrease, while the slope of the tension field increases.

6.3.4 Design Charts

The subroutine described in Appendix C can be used to produce design charts for the post-
buckling shear capacity by repeating the process for different cylinder variables. Some examples
of these charts are presented in Figs. 6.18(a), 6.18(b), and 6.18(c). The shear force ratio
(Vim/Vy) is plotted against the aspect ratio (R/L) for selected increments of the thickness ratio
'(R/t). Since the shear capacity is not sensitive to the variation of the material ratio (E/cy), it is
better to choose a constant value for the E/o, ratio rather than to complicate the chart. The values
of E/o, chosen for Figs. 6.18(a), 6.18(b), and 6.18(c) are 400, 600, and 800, respectively. In
these figures, the shear ratio is increasing as the aspect ratio increases, except for small values of
the R/t ratio (about 0.5 or less). At these small values, the compression strut is horizontal and not
contributing to the shear capacity of the cylinder.

Three limitations were imposed on the design charts in the above figures. The first limit is
the yield limit, wherein the yield shear stress, Ty, is considered as an upper bound to the truss
model shear stress, T,;,. When the shear stress predicted by the truss model is larger than the yield
shear stress (Ty, > Ty), the yield shear stress is plotted instead. This condition occurs at low
values of the thickness ratio, R/t, and can be observed as the horizontal lines seen in
Figs. 6.18(a), 6.18(b), and 6.18(c).

The second limit is the elastic buckling limit, wherein the elastic shear stress (T, calculated
from Eq. 2.10 with K conservatively taken equal to 0.74) is also an upper bound to the truss
model shear stress, T,,,. When the shear stress predicted by the truss model (Eq. 6.28) is larger
than the elastic buckling shear stress (Eq. 2.10), the elastic buckling shear stress is plotted

instead. This condition occurs at high values of the thickness ratio, R/t, and low values of the
material ratio, E/0,. It can be observed in Fig. 6.18(a), wherein the curves for R/t ratios greater
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than about 250 show slightly shallower slopes because they represent Eq. 2.10 rather than
Eq. 6.28.

The third limit deals with the failure mode. When the R/L ratio is small, the shear capacity
of the truss model, V,, is larger than the load required to cause buckling due to bending. In these
cases, the curves were terminated so that they do not identify shear resistances which in fact
cannot be delivered. This condition occurs at values of R/L that are slightly smaller than those
which have a horizontal compression strut. The shear resistance corresponding to a bending
buckling limit is calculated as M/L, where M is the bending moment (case of a cantilever or a
simply supported cylinder) and the buckling stress due to bending is evaluated as suggested by
Stephens et al. (1981).

In general, the shear capacity ratio in the design charts decreases as the R/L ratio
decreases, except for R/L ratios less than about 0.50, where the carrying mechanism becomes a
function of the tension field alone. It also happens that at these values of R/L, the buckling mode
changes to bending-type rather than shear-type.

6.4 Assessment of the Proposed Model
6.4.1 Comparison with Tests

The known cylinder shear tests are B1 and B2 (Bailey and Kulak, 1984), S1 and S2
(Chapter 3), and G1 through G14 (Galletly and Blachut, 1985). The first four tests (B1, B2, S1,
and S2) were the only ones for which the pre-buckling and post-buckling behavior was reported
and, therefore, the only ones that can be directly compared to any post-buckling model. The last
three tests of this set (B2, S1, and S2) also happen to be large-scale tests carried out on specimens
that use hot-rolled steel.

The truss model contained in Eq. 6.28 was derived primarily for simply supported and
cantilever cylinders, which leaves only one test (S2) that can be compared directly with the truss
model. Although the B1, B2, and S1 tests were intended to have fixed-end supports, the support
rotations could not be prevented completely. This caused the bending moments to be redistributed
towards that of simply supported members. The degree of success the truss model will have in
predicting these tests is dependent on the degree of this moment redistribution. Not withstanding
the boundary condition effect, the truss model will be evaluated using the four tests B1, B2, S1
and S2.

The comparison is illustrated in Fig. 6.19, where the predicted and measured capacity
ratios (the ratio of the post-buckling shear capacity to the yield shear capacity, V/V,) are plotted
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against one another. The diagonal line in Fig. 6.19 represents the ideal condition. Values above
the line are conservative model predictions, and values below the line are unconservative
predictions. It is clear that the truss model is close to the test results, especially for S2. Following
the same definition of the error measurements E, suggested in Chapter 5 (Eq. 5.43), the error
between the truss model predictions and the test results is 5.0%, -13.5%, -11.0%, and -1.5% for
B1, B2, S1, and S2, respectively.

The slopes of the inclined buckles measured from the tests are compared to the slope of the
tension field calculated according to the truss model in Table 6.1. Only three tests (B1, S1, and
$2) are compared to the truss model in Table 6.1 because the B2 test and all of Galletly's tests did
not report the buckle slopes. Although the slopes predicted by the truss model are reasonably
close to the measured ones, no general conclusion can be made until more test data are available.

Although tests G1 through G14 did not report the post-buckling capacity, were carried out
on very small specimens (150 mm in diameter), and in some cases were not made of hot-rolled
steel, they could be used indirectly in the comparison with the tests. The ratios of the stable post-
buckling load to the buckling load for the tests, B1, B2, S1, and S2, were 0.800, 0.700, 0.823,
and 0.797, respectively. Except for B2, these ratios are unusually close to one another. This
closeness suggests that the ratio of the stable post-buckling load to the buckling load for the tests
that did not report the post-buckling capacity and have the same range of variables may also be in
the neighborhood of 0.805, the average of B1, S1, and S2. Galletly's tests also had a range of
variables closer to B1, S1 and S2 than to B2. The range of R/t ratios is 125 to 188 for Galletly's
tests, 185 to 250 for B1, S1 and S2 tests, and 75 for B2 test.

In order to utilize the results of G1 through G14, it will be assumed that the ratio of the
post-buckling capacity to the buckling capacity of these tests is 0.805, which is the average ratio
of the three tests B1, S1, and S2. The comparison between the truss model and G1 through G14
tests is shown in Fig. 6.20. The test results cluster around the model predictions in a reasonable
way. The error (E,) between the truss model predictions and the results of G tests range from

-8.1% (case of G3) to 16.5% (case of G12).

Considering all experimental results, the proposed model has an error range of -13.5% to
16.5% with an overall average of 7.1%. Taking into consideration the approximations made to
compensate for the limited information obtained from some of the tests, it appears that the
proposed model has good potential for estimating the post-buckling capacity of thin-walled
cylinders.

Although the numerical parametric study described in Chapter 4 is not a "physical test", it
is worthwhile to examine the correlation of the finite element results with the truss model. The
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post-buckling capacity measured from the results of the finite element analysis is compared to the
post-buckling capacity predicted by the proposed truss model in Fig. 6.21. It is clear that the truss
model prediction is a lower bound on the finite element model. This observation is similar to that
illustrated in Fig. 5.12 for the relationship between the finite element and the regression model.

6.4.2 Comparison with Buckling Equation

In Chapter 5, the buckling capacity was estimated by the inelastic buckling equation 5.48.
If the assumption made in the previous section regarding the ratio between the buckling and the
post-buckling capacities is valid in the prescribed range of variables, then the results from an ideal
truss model should be approximately 80% of the results obtained using the buckling equation. On
the other hand, if the assumption is not valid and both the buckling and post-buckling models are
accurate, then the ratio between them would give an idea about the ideal relationship between the
buckling and post-buckling capacity.

The shear force ratio calculated from Eq. 5.48 is plotted against the cylinder variables R/L,
R/t, and E/s in Figs. 6.22, 6.23, and 6.24, respectively. In order to compare the buckling load
with the post-buckling capacity, two truss model curves are also plotted in these figures; the
proposed truss model (Eq. 6.28) and the Roman-Elwi model (Eq. 6.9). As for Eq. 6.28, it can be
noticed that it is generally a lower bound solution for the buckling strength. However, the truss
model results are not exactly proportional to those of Eq. 5.48. In fact, the ratio between the truss
model predictions and Eq. 5.48 changes from 0.69 to 1.00 in the prescribed range of variables for
the inelastic buckling Eq. 5.48 (125 <R/t <250, 0.50 < R/L < 1.40, and 450 < E/c, < 850 ).

Unfortunately, no solid conclusions regarding the ratio between the post-buckling and
buckling strength can be drawn because the test results available are limited. However, the
proposed truss model demonstrated the favorable attribute of being a lower limit to the buckling
shear capacity: therefore, at least it can be used as a conservative predictor of the shear capacity for

most practical cases.
6.4.3 Comparison with' Other Post-Buckling Models

The model proposed by Roman and Elwi (1987) to simulate the post-buckling behavior of
large diameter cylinders is the model chosen herein for comparison. In Figs. 6.22, 6.23, and
6.24, the predictions of the Roman-Elwi model, Eq. 6.9, for different values of the cylinder
variables are shown simultaneously with the proposed truss model, Eq. 6.28.

Figs. 6.22 through 6.24 show that Eq. 6.9 is below the expected shear capacity for large
values of the aspect ratio, small values of the thickness ratio or large values of the material ratio.
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In fact, Eq. 6.9 lacks the effect of the cylinder thickness ratio (R/t) and the material ratio (E/oy)
completely. Therefore, it is expected that Eq. 6.9 may be very conservative in cases of relatively
short thick cylinders with low yield stress. For example, the ratio of the shear capacity calculated
using Eq. 6.9 to that measured from the G11 test (which has R/L = 1.37) is 0.80. The same ratio
for G4 test (which has E/csy = 840) and G5 test (which has R/t = 125) is as low as 0.75 and 0.74,

respectively.

On the other hand, Eq. 6.28 appears to include the desirable effect of all the variables
(R/L, R/t, E/sy) that influence the shear capacity. For example, the ratio of the shear capacity
calculated using Eq. 6.28 to that measured from the tests chosen above, G11, G4, and G5, is
1.14, 0.91, 0.90, respectively. Thus, it is concluded that the proposed model provides better
agreement with the buckling behavior of thin-walled cylinders than does the Roman-Elwi model.
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Shear force / Shear at buckling

Angle between buckle and longitudinal axis of the cylinder
(in degrees)
Test | R/t R/L .
Measured Calculated
S1 185 0.53 230, 250, 240, 27.0 24.0
S2 185 0.73 210 . 270 - - 29.0
B1 250 0.50 24.0 -—-- - - 26.0

* Individual numbers in the same test correspond to different buckles

Table 6.1 Comparison between measured and predicted buckle slopes
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1.0

0.8

0.6
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0.0

Fig. 6.1 Behavior of large diameter tubes in post-buckling range (typical)
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Fig. 6.2a Tension field action in plate girders

Fig. 6.2b Tension field action in thin-walled cylinders
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A 4—' i
-]
Section A-A

Fig. 6.3 Tension field action in the Bailey - Kulak model
(after Bailey and Kulak, 1984)

T Limits of tension field

-C . Compression Strut

Cr

Fig. 6.4 Tension field action in the Roman - Elwi model
(after Roman and Elwi, 1987)
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Force fields in the cylinder

C

ez Compression force

T

—=  Tension force

T T Ring Stiffener

Truss model

Fig. 6.5 Proposed truss model
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Fig. 6.6 The truss model on the developed surface of the cylinder
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Fig. 6.8 Effect of biaxial stress state at the crest of a buckle

Outward displacement

| Pre-buckling surface

Cross-bending
moment distribution

Tensile stress ¢,
distribution
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1.00
1.00
1.00
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Reduction factor u
distribution
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Fig. 6.9 Distributions of M, G,, and L for half buckle wave in the tension field
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Shear stress / Yield stress

Shear stress / Yieid stress
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Slope of tension field ( §)

Fig. 6.10 Effect of thickness ratio on post-buckling shear stress
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Fig. 6.11 Effect of material ratio on post-buckling shear stress

(R/L=1.0, R/t=200)
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Shear stress / Yield stress

R/L =05

R/L=1.0
RL=15
R/ =20

0.0 ' T T ' T T T
0.2 0.4 0.6 0.8 1.0 1.2

Slope of tension field ( {)

Fig. 6.12 Effect of aspect ratio on post-buckling shear stress
(R/t=200, E/c,=600) :
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Fig. 6.13 The truss elements on the developed surface for different R/L ratios
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Shear stress / Yield stress

Tension field slope
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Fig. 6.15 Shear capacity of the truss model
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Fig. 6.16 Tension field slope of the truss model
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Compression strut slope
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Fig. 6.17 Compression strut slope of the truss model
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Fig. 6.19 Comparison between the truss model and full-scale tests
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Fig. 6.20 Comparison between the truss model and Galletly's tests
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Shear force / Yield shear

Measured ratio (Vo/Vy)

1.0 -
'd
L r'd <
— — — 10% Error range o ©° .- -
0.8 - e 1~ L _- -
i o [} P ” _ -~ -~
o e -
0.6 o © R e
-7 -~
i o - - - g
0.4 P “, -7
o - Ideal
e -~
” . .
0.2 L~ o Finite element data
-
p P
0.0 T T T Y Y T T T
0.0 0.2 04 0.6 0.8 1.0
Predicted ratio (Vp/Vy)
Fig. 6.21 Comparison between the truss model and finite element results
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Fig. 6.22 Comparison between buckling and post-buckling strength
for different aspect ratios (R/t=200, E/o-y =600)
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Fig. 6.23 Comparison between buckling and post-buckling strength
for different thickness ratios (R/L=1.0, E/0'y =600)
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Fig. 6.24 Comparison between buckling and post-buckling strength
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7. Summary and Conclusions

7.1 Summary and Conclusions

The inelastic shear behavior of large-diameter cylindrical shells subjected to transverse
loads was investigated both experimentally and numerically. Two specimens of 1270 mm
diameter were tested under different boundary conditions. After the buckling load was reached,
testing was continued in order to determine the post-buckling characteristics of the transversely
loaded cylinders. Numerical analysis was performed a priori to help plan the tests and to offer
insight into the findings. Subsequently, two design approaches were proposed. One approach
was based on a regression analysis of the available test data as well as a parametric numerical
analysis. The other approach was based on a mechanistic truss model.

The experiments confirmed that thin-walled tubes loaded in transverse shear behave in a
linear elastic manner up to a proportional load level. Following this, the response becomes
gradually non-linear until inelastic buckling occurs. In the linear elastic range, the stresses could
be estimated according to the classical beam theory. Beyond the proportional load level the
presence of the initial stresses and initial imperfections distort the predictions of the beam theory.
After reaching the ultimate load, the cylinder shear capacity drops to a stable lower level. This
secondary post-buckling capacity is conditional on the existence of stiff elements in the boundaries
of the shear span, such as ring stiffeners or end diaphragms. Some of the aforementioned
observations were also reported by other investigators (Bailey and Kulak, 1984).

The behavior of the tested specimens was successfully simulated using nonlinear finite
element analysis. A 16-node degenerated plate-shell element was used to predict the cylinder
response. The analysis incorporated the geometric imperfections measured in the test and the
locked-in stresses initiated due to cold bending. The analysis showed that shear buckling of thin-
walled tubes is not sensitive to geometric imperfections. Meanwhile, locked-in stresses proved to
be an important factor in determining the inelastic buckling strength. Insensitivity to imperfection
was also observed by others (Galletly and Blachut, 1985, and Roman and Elwi, 1987).

In order to properly model the test specimen, the boundary conditions that actually existed
in the test (frame and fixture stiffness) have to be introduced in the numerical model. Allowing for
these effects, the numerical simulations carried out in this work matched closely the response of
the full-scale test results with respect to both strength and stiffness.

The numerical analysis was used to generate data beyond that relating to the test
specimens. Once the results of the numerical study had been used to establish trends, only the test
data were used to determine the empirical design equation that predicts the ultimate capacity of
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thin-walled cylinders under transverse loads. The proposed equation, Eq. 5.48, is a best-fit
regression model of all the available test results, and is therefore more accurate in predicting the
shear test results than the empirical interaction equation proposed by Galletly and Blachut (1985).
Equation 5.48 has two upper limits; the yield shear capacity (Eq. 5.49) and the elastic shear
capacity (Eq. 5.50). The recommended equation was derived for cylinders within specific ranges
of geometric and material variables (Eq. 5.51). The accuracy of the equation outside these ranges

is uncertain.

An alternate method, also suited for design purposes, was developed to predict the post-
buckling shear capacity of thin-walled tubes. Based on the test results in the post-buckling range
and the results of the numerical analyses, a truss model which simulates the load carrying
mechanism beyond the limit point was proposed and compared with other models. The proposed
model idealizes the cylinder behavior by two force fields, tension and compression, acting
together to support the transverse load. The tension field takes the general direction of the diagonal
buckles, while the compression field takes a crossing direction to balance the horizontal
component of the tension field. Both force fields anchor in the stiff vertical boundaries (ring
stiffeners or end diaphragms).

The truss model predictions compare well with the post-buckling test information
available. The proposed truss model demonstrates the favorable attribute of being a lower limit to
the ultimate shear capacity presented by equation 5.48. Thus, the truss model can be used as a
conservative predictor of the shear capacity. The model also shows better agreement with the
buckling behavior of thin-walled cylinders than does the Roman-Elwi model. The shear capacity
of the proposed truss model is presented in the form of design curves (Figs. 6.18(a), 6.18(b), and
6.18(c)). Limits on the shear capacity derived using the truss model are the yield shear capacity
and the elastic buckling shear capacity of the cylinder. It is to be noted that the strength curves
given in Fig. 6.18 were terminated when the shear span was long enough to induce a flexural
buckling mode rather than a shear buckling mode.

7.2 Recommendations for Future Research

When the experimental program was planned, it was decided to test a few full-scale
specimens rather than a large number of small scale specimens. Obviously, large-diameter
specimens provide a clear and accurate view of the shear buckling problem especially in the post-
buckling range. However, the number of full-scale tests carried out so far is still small and more
tests are desirable in order to improve the confidence in the design models.

The minimum rigidity of the circumferential stiffeners required to anchor the tension and
compression fields needs to be investigated. Spacing of ring stiffeners defines the length of the
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shear span and controls the ultimate shear strength. They also provide the support for the inclined
force fields in the post-buckling range. The rigidity of the ring stiffeners therefore has a direct
effect on the shear capacity.
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Appendix A

Regression Analysis Program

a 000000

THIS FORTRAN PROGRAM PROVIDES REGRESSION DATA AND REGRESSION MODEL
TO THE REGRESSION ANALYSIS SUBROUTINE RNLIN AND PRINT THE REGRESSION
CONSTANTS AND CORRELATION FACTOR R2.C

INTEGER LDR, NOBS, NPARM

PARAMETER (NOBS=29, NPARM=4, LDR=NPARM)

INTEGER IDERIV, IRANK

REAL DEF, FUNC, R(LDR,NPARM), SSE, PAR(NPARM),
& X1DATA(NOBS), X2DATA(NOBS), X3DATA(NOBS),
& YDATA(NOBS)

EXTERNAL FUNC, RNLIN
THE INITIAL REGRESSION CONSTANTS

10 READ(.,*) PAR
IF(PAR(1).EQ.999) GO TO 20
WRITE(6,*) PAR INITIAL =", PAR
IDERIV =0

THE SOLVER SUBROUTINE

CALL RNLIN (FUNC, NPARM, IDERIV, PAR, R, LDR, IRANK, DEF,
& SSE)
WRITE(6,*) PAR ="', PAR

THE CORRELATION FACTOR

RSQU= 1.0-SSE/0.5936764
WRITE(6,*) TRANK = "IRANK, ' DEF ="DEF,' SSE =,
SSE,) R2='RSQU
GO TO10
20 END

THE FUNCTION SUBROUTINE

SUBROUTINE FUNC (NPARM, PAR, IOPT, IOBS, FRQ, WT,

& E, DE, IEND)
NTEGER NPARM, IOPT, IOBS, IEND
REAL PARNPARM), FRQ, WT, E; DE(1)
INTEGER NOBS

PARAMETER (NOBS=29)

181



REAL EXP, X1DATANOBS), X2DATA(NOBS), X3DATA(NOBS),
& YDATA(NOBS)

COMMON /XYDATA/ X1DATA, X2DATA, X3DATA, YDATA

INTRINSIC EXP

IF (I0BS .LE. NOBS) THEN

WT =1.0E0

FRQ =1.0E0

IEND =0

THE REGRESSION MODEL

E = YDATA(IOBS)*1.73205-PAR(1)*EXP(X1DATA(IOBS)*PAR(2))
& *X2DATAJIOBS)**PAR(3)*X3DATA(IOBS)**PAR(4)

ELSE

IEND =1

ENDIF

RETURN

END

THE REGRESSION DATA

INTEGER NOBS
PARAMETER (NOBS=29)
REAL X1DATA(NOBS), X2DATA(NOBS) X3DATA(NOBS)
& YDATA(NOBS)
COMMON /XYDATA/ X1DATA, X2DATA, X3DATA, YDATA

DATA YDATA/.368,.371,.409,.46,.219,.286.,.5,.477,
.5717,.569,.591,.567,.409,.438,.457,.502,.544,.462,
479,414,.423,.493,.543,.41,.47,.52,.423,.48,
513/

DATA X1DATA/188.,188.,188.,188.,250.,250., 188.,188.,
150.,150.,125.,125.,150.,150.,125.,125.,126.,151.,
129.,155.,150.,150.,150.,188.,188.,188.,250.,250.,
250./

DATA X2DATA/.53,.53,.76,.76,.5,.5, 1.,1.,
1,1.,1,1,1,1,1,1,,1.37,1.37,
0.83,0.83,.5,.75,1.,.5,.75,1.,.5,.75,

1/

DATA X3DATA/645.,645.,643.,643.,679.,679., 671.,671.,
840.,840.,704.,704.,457.,457.,547.,547.,533.,457.,
533.,457.,667.,667.,667.,667.,667.,667.,667.,667.,
667./

R PR R RPRR

é
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Appendix B
Taylor's expansion of Eq. 5.23
Equation 5.23 can be written in terms of one variable Z as follows :
Y=(1+Z")'" (B.1)

in which Z = 0.74 (3.00'5) x171% x2%% x3. Using Taylor's theorem, Eq. B.1 can be
expanded into a polynomial of n degree.

Y = Y(h) + Y(B) (Z-h) + Y(h) (Z-h)Y2! +X(h) (Z-h)*/3!
+Y()" Z-h)"/m! +R, (B.2)

In which the superscript on Y(k) defines the derivative with respect to Z, k is an arbitrary value
and R, is the remainder after n number of terms and it is equal to Y(Z1)(Z-h)"/n! where Z1 is a

value between Z and k. Since the value of Z for the data in Table 5.1 varies from 0.6 to 2.2, then
if h is chosen as 1.4, (Z-h)" will be numerically small and R, can be neglected. Consequently,

Eq. B.1 can be accurately approximated by a third degree polynomial of Z or any parameter that is
proportional to Z as ®. Therefore, Y can be written as follows:

Y=a+bp+cPp>+dd° (B.3)

For a specific 4, the constants a, b, ¢ and d can be calculated from Eq. B.2 or, alternatively,
they can be tailored by determining them from the regression analysis of the data set.
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Appendix C

Truss Model Subroutine

oloNoNoNoKe!

THIS PROGRAM CALCULATES THE TRUSS MODEL EQUATIONS 6.10 TO 6.28
FOR INCREMENTS OF THE TENSION FIELD SLOPE { AND CHOOSES THE
MAXIMUM VALUE 1T, THE PROGRAM ALSO CHECK THE DERIVATIVE
ACCORDING TO EQUATION 6.29.

oleloleloleKeXe!

99

REAL RT.RL,ES,AETAETACLETAC,SC,EM,ETAC1
REAL ETAC2,GAMAS,VER,VG,VK,AA PAPAOVT,VCERR
REAL ETAQ, FF,VK1,VK2,VK3,VMAX ETAM.ETACM

ACU IS AN ITERATIONS INCREMENT FACTOR :
ACU= 1.0 GIVES LOW ACCURACY
(ANGLES' INCREMENT IS 0.57 DEGREES AND TOLERANCE IS 1.0%)
ACU = 10.0 GIVES HIGH ACCURACY
(ANGLES' INCREMENT IS .057 DEGREES AND TOLERANCE IS 0.5%)

WRITE(6,*) ' PLEASE, ENTER E /sy, Rt, R/L, ACU (1 to 10) *
READ (5,*) ES, RT, RL, ACU

TOLEC = .01 /ACU

STEEC = .01 /ACU

STEET = .01 / ACU

ETAO =,01
VMAX =0.0
ETAM =0.0
ETACM =0.0
KOKO = 1.57/STEET

ITERATION ON THE TENSION FIELD SLOPE

DO 30K=1KOKO .
ETAO = ETAO + 3.*STEET
DO33KK=13
ETA  =ETAO+STEET*(KK-2)
AA =3.1415927-TAN(ETA)/RL
EM =0.82%0.5*355.3/(355.3+AA**2)
ETAC1 =RL/2.*AA
GAMAS =RT**(-1.5)*ES**0.5
IF (GAMAS.LE.0.0036) THEN
SC =119.3*GAMAS
ELSE
IF (GAMAS.GE.0.0527) THEN
SC =10
ELSE
SC =1.625+0.489* ALOG10(GAMAS)
ENDIF
ENDIF
ETAC2 =RL/1.5*COS(ETA)**2.*AA¥*EM/SC
ETACI =0.0

LOLO =1.57/STEEC
ITERATION ON THE COMPRESSION FIELD SLOPE

DO 40M=1LOLO

oloNoNoNeke!
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40
50

ETACI =ETACI+STEEC

PAO =ETAC1-ETAC2/COS(ETACI)/COS(ETACI)

IF (PAO .LT. 0.0 ) THEN
ETAC =0.0

GO TO 50

ELSE

PA =ABS(TAN(ETACI)-PAO)/TAN(ETACI)

IF (PA.GT.TOLEC) GO TO 40
ETAC =ETACI
GO TO 50
ENDIF
CONTINUE
WRITE (6,70)
VT =SIN(2*ETA)*(1-COS(AA))/2.

vC =COS(ETA)**2*AA*SIN(AA/2.)*TAN(ETAC)

33
30

VK =EM*(VT+VC)*2/3.1415927
IF (VMAX .LT. VK) THEN
VMAX =VK
ETAM =ETA
ETACM =ETAC
ELSE
ENDIF
IF (KK .EQ. 1) VK1=VK
IF (KK .EQ. 2) VK2=VK
IF (KK .EQ. 3) VK3=VK
CONTINUE
DERV  =(VK3-VK1)/2./STEET
CONTINUE

CHECKING THE DERIVATIVE

CALCULATION OF THE POST-BUCKLING SHEAR RATIO

IF ( DERV.GT.TOLER) THEN 80
WRITE (6,60) ESRT RLETAM ,[ETACM ,VMAX
FORMAT( ' ',6(F7.3,1X))

FORMAT (3X,ERROR *** COULD NOT FIND h , ZERO SLOPE IS ASSUMED)

WRITE(6,88) DERV

FORMAT (3X,ERROR *** DERIVATIVE OF MAXIMUM SHEAR IS

' F1.3,GREATER THAN TOLERANCE.)
GO TO 99
END
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