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ABSTRACT -

Kelly introduced the concepf of a bitopolggical space, i.é., a
triple (X, Ll, L,) where X is a set and Ly L, are"topologiés.on. X.
He defined pairwise Hausdorff, pairwise regular, pairwise normél spacés
and obtained generalizations of several standafd results such as
Urysohn's lemma, Tietze}s extension theorem, Urysohn's metrization
theorem and the Baire category theoren. Flgtcher énd Lane indepen-
dently defined.pairwise completely reguiaf'andApairwisé uniform spaées

and proved their equivalence,

This theéis began in an attempt to define the concept of pair-
wise compactness in a bitopological space, in a non-trivial way. After ’
.recalling known definitions and results in Chapter 1, this is done in
Chapter 2, It is shown that the definifion used here satisfies most of
the requirements., Furthermore, maximal and minimal bitopological spaces
are investigated and the results are used in the sequel. The results are
then apélied in Chapter 3 to function space topolcgies which are studied
in detail. These function spaces are studied not only for pairwise

continuous functions but also for certain types of non-continuous functions

such as pairwise connected and pairwise almost continuous functionms.

Analogously in bitopological space, connected open topolozy

and graph topology are considered in Chapter 4, 5, 6,



Finally in the last chapter a new function'space isvintrddugéd;
which is especially useful for the space of all functions which have -at worst
discontinuity of the first kind. This sheds more light on the

Skorokhod M~-convergence,



ACKNOWLEDGEMENTS

I would -like to take this opportunity
to express my sincere thanks to my supervisor, .
Dr. S. A, Haimpally, for his invaluable assistance

throughout the preparation of this thesis.,



- CHAPTER
CHAPTER
| CHAPTER
CHAPTER
. CHAPTER

CHAPTER

~ CHAPTER

1l:

2:

3:

Iy

5

TABLE OF CONTENTS"

ABSTRACT wev v v o v v s oo o & s
ACKNOHEDGEMENTS . ;..\, o e s s
PRBLIMINARY ceee e o
P~COMPACTNESS & 4 o'4 « & o &
p~COVPACT OPEN TOPOLOGY . .
(l2)—CONﬁECTED‘OPEN TOPOLOGY
p-COHNECTﬁD O?EN TOPOLOGY . .
BIGRAPH TOPOLOGY .+ ¢ o o o &

ALMOST COKRVERGENT TOPOLOGY .

NOTATIONS AND CONVENTIONS , o +

BIBLIOGRAP}I‘-{ * L] [ ] L . L L L] L] L]

18
30
137

41

48

56

60



CHAPTER 1
PRELIMIKARY
In this chapter we discuss elementary notations, definitions
and some of the known results concerning bitopological spaces that are

used in the following chapters.

(1.1) Definition: ({Kelly [11] A space X on which are defined two

topologies L; and L, is called a bitopological space, and-is denoted
by (X, Ll, L2).
The following definition was given by Weston [26], who used the -

term consistent.

(1.2) Definition: Wweston [26]) A bitopological space (X, Lj, Lp)

Py

is pairwise Hausdorff iff =x,v € ¥ and x # y implies there exist
UgL;, V €L, such that =& U, y €.V and UNV =20,
Ye will use the symbol p- to denote any pairwise property:

e.z. p-Hausdorff stands for pairwise Hausdorff,

(1.3) Definition: (Weston [26]) In a bitopological space
zexrnition P

(X, Ly» Lp), we say that L is coupled to L, 1iff for all G€ Ly,

GcC E, where G, & denote the closures of G in L L2, respegtively.

l’



(1.4) Lemma: (Veston [26]) If (X L P ) is p-dausdorff and- L
1 l

is coupled to L2 s then Ll is Hausdorff,

(1.5) Definition: (Kelly‘[ll]) A.bitooolopical space (X, Lis L,) is

(12)-regular iff for each x € X there exists an Ll-nelshbourhood bgse

of Lo-closed sets, If, in addition, it is (21)-regnlar then it is’
p-regular,
Kelly [11] defined p-normal bitopologiéél spaces in an

analogous manner, namely

(1.6) Definition; (Kelly [11]) A bitopological space (X, Lp, Ip) is
said to be p-normal iff for any ﬁi-closed set A and Lj-closed set B
with AN B = ¢ there exist Lj—openlset U and Lj-open set V such that
ActU,BeVand UAV = ¢ (1#3,1i=1,2).

One notivation for the study Qf-bitopologicai spaces is given

by considering & "pseudo-quasi metric" (or (p-q) metric) .

(1.7) Definition: A p-q metric on a set ¥ is a non-negative real-
a (&)

valued function p on the product X X ¥ such that
(1) plx,x) =0
(1i) p(x,2) 2 p(,y) + p(y,2)  (X,v,2, €¥) and if q is
defined as
a(x%,y) = p(y,x)

then is said to be the conjuzate p-g netric of o . IFf further p
q P} & "L - -



satisfies the condition, -
(iii) p(>,y) =0 . only i.f-_':x": v, s ',‘(’-:;3.’ €'%) then p is Sald

to be a guasi metric..

The following is a generalization of Urysohn’s“métrizétion
theorem.
(1.8) Thecrem: Kelly [11]) If (X, Ll,'LQ) is p-regular satis~
fying Cp , then (X, IL,, Ly) is p-q metrizable. If, in addition, it

is p-Hausdorff, then it is quasi metrizable.

(1.9) Theorem: (kelly [11]) - If Ll and L, are topologies on X
determined by p-q metrip p and its conjugate q , then (X, L, L2)
is p-regular and p-normal and (¥, Lis LQ) is p-Hauscdorif iff p and

q are quasi metric.

(1.10) Definition: 1If £ is a function from ¥ into Rt , fhen F
is LSC (resp. USC) whenever { x €X : £(x) <a} (resp. {xe¥:
£(r) > a } is closed for each a € ®* , wvhere P* is the exténded:rea;
numbers with the usual topology.

The notation "L3C" and "USC" are used for lower and uéper
semi-continuous, res?ectively. further, .“ULX" denotes the set of all
real-valued functions on X that are both Ll-USC and LQ-LGC . nLuz"

is defined analogously.

The following is a gemeralization of Urysohn's Lemma.

(1.11) Theorem: (Kelly [11]) If .(X; Lis Lp) is p-normal, then for



Clwe

.any L2-closed set F and Ll-closed set 'ﬁ‘ with:.F]\lﬂ = ¢}Ehéréffj

exlsts a.vg é ULX ,such that -

g{x) =0 on F
Cglx) =1 on H
Oigil' on X .

Csé%zéb:[él vas first to prove that eQery tOpbldcical Spaée

~ 1s quasi-uniformizable. Subsequentlj, Pervin [18] gave a direct proof
of this result. Dei’erence [15] contains a systematic exp031t10n of
quasi uniform spaces. . Fletcher [6] and Lane [13] 1ndependently defined
p-completely regular spaces aﬁd geheralized the classical form of the

uniformization theorem.

(1.12) Definition: (Fletcher [6]) (X, Lys hy) is (12)-completely .
regular iff for any L;-closed set F and x %F there exists f € ULX
such that

f(x)

1
f(y) =0 for yeF and 04 f ¢1 onX

and it is p-completelv regular Iiff (12) and (21)-completely-regular.'

Since, if L; is T3 for i = 1,2, then a singleton is

L;~closed, therefore we have

(1.13) Theoren: If. (X, Ly, Ly) is p-normal and L; is Ty for

i=1,2, then (X,Ll, L,) 1is p-completely regular.

(1.14) Corollary: If (X, Ly, L2) is p-normal and p-tausdorff, then



(X, Ly, Ly) is p-completely regular. .

(1.15) Definition: (Fletcher [6]) (¥ L1y Ly) "is p-uniform iff f
there exists a quasi-uniformity [ such that L, = (L) and L, =
T(Z[?) , where T(QL) denotes the topolozy on X induced by L(,vahdv

u-l = (vl vell} .

(1.16)  Theorem: = (Fletcher [61) (X, L;, Ly) is p-uniform iff it
is p-completely regular.

The above vesult is a generalization of -the classical result
of A. Weil, namely that a topological space is uniformizable iff it is

- completely regular.
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- p-COYPACTYESS

In a»priﬁate cpﬁmunication‘Fletchér suggestedvthefpfébiémjdf.“
suitably defining p-éompactneSS for bitopological spaces. Such'a .
definition should meet the following requirement (i) .a bitépolégica11 f
space (X, Li, L,) can be p-compact without Ly = Ly 3 (ii) bﬁ-
compacfness and p-Hagsdorff together imply p-normality and; (iii)

p-compactness is a p-continuous invariant,

We shall find later that such a definition of p-compactness.
also helps in the study of bitopological Sunction spaces. In.this
chapter we state the definition of p-éompactness and then develop some

results which will be used in the sequel.

(2.1) Definition: Let (X, Ly, L,) be a bitopological space. For
any V€ Lp where V # @ , consider {U; U YV} where U; € L; .
Then Ly(V) = {X,8, {U;U V} } is a topology and is said to be an

adjoint topology of Ly with respect to 7,

{2,2) Definition: (X, L;, L) is said to be (12)-compact iff for

each non-empty V € Ly , Ll(V) is compact. This is equivalent to
V¢ being Lj-compact for each non-empty V € L. | 1f, in addition, it is

(21)-compact we say that (¥, Lys Lz) is p-compact.



Remark: In a (12)4compécf spéce Llc:'L2 “implies J(X,'Ll)i is»  ?j*:ff“"

compact, .

(2.3) ‘Example}_’ Let' % be the set of all réal'humbers;_»Lif'ﬁé:tﬁéjiiT'
topology generated by the sets {(-c¢o ,a)}.vand-:Lz.be géneratedfby‘théfj}
sets {(a,00)} » where a is any real number.. vThen_'(x,;LléiLQ?; is}f 

p-compact but neither L; nor -L. is compact.

(2.4) Example: Let X = {{iy Ni}" , wheve & is the set of all natural
numbers and i% = -1 . Let Ly be generated by {N U Fi} where F is
a finite subset of ! and Ly = {#,%,N,Ni} . Here (X, Ly) is cbmﬁact

but (X, Lis L ) is not (12)-compact.

2
(2.5) Example: Let X be the set in Example (2.4)., Let L; be
generated by (N - F) Uy G., where F is a finite subset of N and G

‘an arbitrary subset of Ni. Let L, be generated by H L}(Hi - Fi)
where T 1is as before and H an arbitrary subset of ¥ , ' Here

(X, Ly, L2) is p-Hausdorff and p-compact, but (X, L:) is not -compact
1 - ‘ 1

for i = 1.2 .

(2.6) Theorem: If (X, L s Ip) is L.-compact for 1 = 1,2 and
Iheorem » L1s Lo i |

p-Hausdorff, then (X, Ly, Lp) is (ij)-compact, i,j = 1,2 .

Proof: If V€ Ly . Then Ve is Ls-compact and since’ X is p-

Hausdorff it is L;~closed. Since (X, Li) is compact, V¢ is 'Li- '

compact, showing that (¥, Lys Lp) is (ij)-compact for i,i = 1,2 .



Remark: We cah:éasiiy deduce'the fbliowiﬁgjstatémen%s ffoﬁ,(2,6):
(1) - If (X, Ly, L,) is p-Hausdorff and Lj , i= 1,2, s
compact then _Ll,ElL2~. |
(2) If (%, Lis Ls) is p-Hausdorff'and.-L is= 1,2';_is
compact then (X, L, L2) is‘p—compact; ‘
The following example shows that p-T, is not supérfluous in the

hypothesis,

| Let  x=1[0,11. L ={{0},'{[0, a) : a €lo, 1]}, Xy 0}
while Lé is generated by { {1}, {(a, 1] T ae [o, 11}, X , 21 , since
for ;/2, 2/3 € X, we cannot have U€ Ly , V&L, such that 2/3¢ U,
1/2 €V and . |

UAV = ¢

(X, Ly, L2) is not p-Hausdorff. However,. (X, Ly L2) is compact with
pespect'to Li’ i= 1,2 , because every open coveriné of ¥ with
L,-open set must include X. Moreover, this is not p-compact for {1} € ILj

and {1}¢ = [0, 1) is not an Lj-compact subset.

(2.7) Definition: A mapping <

£z (%, Lys.Ly) » (Y, 81, S,)
is said to be p-continuous iff £ : (¥, L;) » (Y, Sj) is continuous for

i=1,2.

(2.8) Lemnma: (12)-compactness is a p-continuous invariant.

\.

Proof: Consider £ : (¥, Ly, L2) » (¥; S3, 82) , where £ is p-continuous




nd (X, by, L) I8 (1,2)-compact. - Tet
f('.X).c: v Ui‘q v'v}._," ulesl épd VE Sy, Ve £ 7 ¢

then |

H

xcU f‘l(u‘i) v =)

is p-continuous, f'l(Ui) € Iy and ‘f'l(v) €L,. By (12)-

Hy

Since .
compactness of X there exists a finite subclass {Uij: n>3j>1}

Xc

R CARIVIERC)
3 J-

res

which implies

n
f(Xe U UiV V.
3=1

(2.8) Corollary: p-conpactness is a p-continuous invariant.

(2.10) Lemma: Let (X, L., L,) be a (iQ)-compact space.,

1 72

(i) If C is a Ly-closed proper subset, then C is L,-

corpact and (12)-compact.

(ii) If ¢ is L,-closed, then C is (12)-compact.

b1

Proof: Consider Cc U Ui s U; € L; , where C is L2-closed.
Then Y& U UiL} cey, cC= g . But C°¢€ Ly . Therefore, there exists

finite subcollection ZUij : 3 =1 5000 nS

ey (U0 ) .



- 10.‘-

n

Fow C = X.—'CQZ‘ U Uij wvhich implies £ is L,~compact., To $how 'C :
j=1 : o ' '

is (12)-compact, consider CC U U; U ? s wiere ;€ L, » V€L, and -

YyncCc#@ . Then

But

v ce Ly e
Let V' =vyc®. Since X is (12)-compact, there exists finite subcless
{ Uij: j =1,.0. n} such that

n
How C =¥ - CCC U U;jLJ ¥ which impliss C 1is (12)-compact. Part
L i

j=1
(ii) is proved analogously.

(2.11) cCorollary: IF (¥, Lis L,) 1is p-compact, then an Ls~closed

subset C is p-compact and if C is.a proper subset of X then. C is

Ls-compact (i #3, 1=121,2).

(2.12)  Theorem: Let (X, L,, Ly) be p-Hzusdorff,

is iHausdorff, then z (12)-compact subset of X

. F o1
(1) - If 5

is L2-clcsed.

(ii) 1f Ly is Hausdorff, then a (l2)-compact subset of ¥

is Ll-closed.



hf ll.f:'

Proof:  Assume L, 1is Hausdorff and C . is a (12)-compact subsat of

X with x* C . Then, by the virture of the p-Hausdorff pfoperty; for

each y; € € there exist v‘lyie Lo and U:’.q.e ‘Ll. with ,x’e'Vyi ,".amd
Yi-é}in such that Vyif\ in = @#. "a also have for,evebj y é C

% 1 I ch 1 no= vhere % e Y. v e U,
lye L2 and . € L, su h that Iyn Y 2 .r‘xerc.‘ 2 €Yy and ¥y € Uy
Since C is a (12)-compact subset there exists n € ¥ such that »

n
cc U vy u).
P Yi 3
n - '
Let V = ((WV )N Vy . - Then V&L, and 2V with YvNnC=29g,
1. Y3 -
Similarly, we can show (ii)
The following is proved analogcusly.

(2.13) Theorem: If (X, Ly, Ly) 1is p- Hausdorff and X X is

L,-compact, then K is Lj-closed (i#3, i=1,2).

Remark: If (¥, Ly, L2) is p-compact and 1L; and L, are leausdorsf
then L,.= L, because if U &L; then U¢ is- Li-compact. By Hausdorff

property U® is Lj—closed walch implies U g Lj .
(2.14) Corollary: Let (X, Ly, L,) be p-fausdorff,
(i) 1r Li is coupled to Lj then every (ji)-compact subset

of ¥ is Li-closed.

Proof: Use Lerma (1l.4) and Theorem (2.12).




:--.-A12.-'.

(2.15) Definition: A subset e ¥ is said to be (12)'-'=-'separétec}_" iff
for each x'e C and v € c® there exist Uxe Ly and V& € L2 éu‘ch'
that 2 €U, , ye V, and UyN Vy = 8 . A.set both (12)='=_sepyar'ated

and (21) separated is called P*-separated.

In Example (2.3) every L2—closed set is (12)*-separated and
every Lj-closed set is (2l)#-separated, If (X’4Ll’ Lp) 1is p-Hausdorff,

then every subset of X 1is p¥%-separated.

The following is easily shown.,

(2.16) ILemma: If an Lj-compact subset K of (X, Ly Lp) ds (ji)=-

separated, then K is Lj~closed (i #j , i =1,2) .
Remark: (2.13) is easily deduced from the above lemma.

(2.17) Theorem: If (X, Ly L2) is (12)~-compact and if every L,-closed

set is (12)%-separated, then (X, Lys Ly) is (21)-regular.

Proof: Let C be an L2-closed subset of X .. Then C is L,~compact
by Lemma (2.10), Assume D % C . By (12)%-separateness for each y; € C

there exzists Vyi ¢ Lp and in@ Lysuch that y; € U : and

p € Vy- with U : n Vyi =@ . Since C is Lj-compact we have n € N

i
n n :
such that Cc yU . Let V, = NV . Then
1 Yi P 1 Yi
n n
\'4 U = gs= 1L
pN Y Y0 Y %€t



.13 -

wvhere UDSC and p ¢ VP .

(2.18) Corollary: If (X, L L2)' is p-. compact and if evéry L=

l’
closed set is (ji)#-separated, then (X, L

i=1,2.

(2.19) Corollary: If (X, Ll,.Lz) is p-compact and p-Hausdorff, then

(X, Ly, Lo) is p-reguler.

(2.20) Theorem: If (X, Ly, L,) is p-compact and If every Lj-closed

set is (ji)#-separated, then (¥, L;, L2) is p-normel (i # 3 , i =1,2).

Procf: Assume CC X is Lj-closed (we hzve an egquivalent result if

C is L2-closed). Let CC A where & Is L2éopen. e have to show

b

there exist L,-open set U and Ly-closed B such that
2-0% : 1
CCcyYUcE cCcy

which is .an equivalent form of (1.6). Sirce € is Ll-élosed by (2.10)

C is L2-compact. For each x; € C thers exist U _ , an Ly-cpen
. _)i_‘

neiochborhood of x3, and an Li-closald 3By such that
Px) 19 - 1

by (2.18). Since C is Ly-compact thers exist a finite number of sets

v, ¥
14 1 such that



n ,
Let. B = ‘g B . Therfore

Cc UcBea

(2.21) Corollarv: If (%, Lys L2) is p-compact and P-regular, then

(X5 Ly, L,) is p- normal.

(2.22) Corollarv: If (X, Lis L2) _is p~compact and p-Hausdorff, then

(X, Ly, Lp) is p-normal,

Proof: By (2.19) p-compactness and p-Hausdorfs together imply p-

regularity, so that the result follows from (2.21) .

"(2.23) Theorem: If (X, L, L2) is p-compact and p-Hausdorf#, then

(%, Lys L2) is p-conpletely regular.
Proof:  Apply (2.22) and (1.14).

( 2.24) Theorem: 1If (X, Ly, L,) is p-compact and p-Hausdorff, then

(x, Ll’ L2) is.p-uhifdrm“.
Proof:  Apply (2.23) and (1.16).

(2,25) Definition: A partial order > on the family of all.bitopological

spaces is defined as follows:



(2.26)

for L

Proofs-

dasa
(x, Ll, L,) > (X, sl, Sp) iff Iy D8, and L2830

Lemma:  If (X Ll’ L ) is (l2)-compact and p-Fausdorf s then ‘

<L, Ly :
(1) (%, Ly, LY) is nct p-Hausdorff, and

» 1Y) is not (12)-compact

(2) (X, Ly, LY

1

Assune (X, Ly, LY) 1is p-Hausdorff, Let G €L Then G©

2 .

| is Lo-closed and hence Ll—compact:by(Z.lO). Since an Ll-ccmpacf subset

in a p-Hausdorff bitopological space (x, Lys L2) is L2-closed ‘G € Lé .

Therefore, Ly = L2 s which is a contradiction.,

Then G©

conpact,

. 1"
this implies that Ly = L, , again a contradiction.

(2.27)

cCL
*-

I-n-

(2.28)

Now assume that (X, Lis Lg) is (12)-compact and G ¢ L; .
is Lo-closed in the (12)-compact space, which implies GC is L -
2

Since (X, Lis L2) is p-Hausdorff, 6S is Lp-closed and G g L Lys

.

Theoren: If (X, Ll,-L2) is p-Hausdorff and p-compact, then for
" i
ighi
' ]
(1) (, L3, Lj) is not p-Hausdorff and

"
(2)  (x, L;, Lj) is. not p-compact, i,j = 1,2 and i # j

Definition: (X, L., L,) is said to be p- T ) or p-senmi
=esinition 12 2 = T1d ,

Hausdorff iff for all x,y € X , x # ¥ o there exist Ux €L; and



~16-
Vy € Lj , i1#3 with i either 1 or 2, 'such.ﬁhatix E'Gx;;'yve'Vy:

and

Ux ﬂ‘Vy =g

Remark: p- Ts 1m011es p-Trﬂ but p- ll does not llej p-v l

however it is p-'TO. The space of Example (2.3) is p- er but not

P- T2 .

The following example shows that Theorem (2.27) is not true if

p-Hausdorff is replaced by p- Tyi R
. / ’
(2.29) - Example: Let X be the interval [0, 1] with the following
topology: L; is generated by {(b, 17} ‘while Lo is generated by
' 1

{fo, a)} where 0 <a, b<1l. let Ly = L; be generated by . {(a, b)}.

Then both bitopological space (X, Lj, Loy, (¥, L. L, 'y are p-compact and

t
- 3. s I .
) le_ and yet I g._ L
(2.30) Theopem: If £ : (¥, Lis Lo) > (Y, Sy, So) 1is one-to-one onto,

p-continuous, Y is p-Hausdorif and- X is p-compact, then f is a

p-horeomorphisin, (i.e. a one-to-cne onto p-continuous p-open nap).

: ' .
Proof: Comsider (X, Lj, Lé) where Li = {&X(u) : U €83} for 1=1,2.
. -
Then L;.C:Li and (%, L, Lé) is p-compact ancd p-Hausdorff, and so is
% Lys Ly) . By Theoren (2, 27) we have L; =L; , 1=1,2 which

implies that £ is a p- -honeomorphisn.



In Theorem (2.30) if'we assume that - Ly =.L2‘ and 8,

= S, then
we have the well-known theorem:

(2.31) Corollary: If f : (¥, L) » (Y, S) is onto, one-to-one, .
continuouz, Y is Eausdorff and X is compact, then f is a homeo-

morphisn.
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CHAPTER. 3

p~COIHPACT OPEY TOPOLOGY

In this chapter, using the previous results, we discuss the
p-compact open topology which is a generalization of the compact cpen
topology. e prove analogously in bitopological spaces of the pesults

concerning compact open or X topology.

To have meaningful results, we assume that (¥, Lys L2) is a
. i
. ) :
p-ilausdorff space. First we define the p-compact open topology, or p-X
| : L1z VI
topology, and then study this topolegy on C where C is the set
P S8 ~ & =) A ]
. - S12 S12
of all p-continuocus Functions ¢ : (¥, Lys L2) > (¥, 35, S9) o

(3.1) Definition: For each pair of sets AC X, Ba¥Y, let

A p-K topology on Y¥ is the pair of topologi.

[®4)

es.”wl and Y, which are

‘generated by all sets of the form {K(A,V) : V € $;} and {%(4,U0) : ve Sy}

(where A is p- compact) respectively,

xay‘ [y
(v~ Y1 V2)

174

is said to be & p-XK topological space. Similarly ve can have p-pointiwise




g ,.-. lg.- -:-

convergent topolozy consisting of a pair of topology Pis

i=1,2,

The following lemmas are frequently used in the sequel.
(3.2) Lemma: If (¥, Lys Lp) is p-Hausdorff, then every non-empty

p-compact subset XK€ X can be expressed 'as
K=XU Ky

where K; is a non-empty Lj-compact énd' Ko is a non-empty Lo-compact

subset of ¥.

Proof: Let X be a p-compact subset of X ,

Case (i): If K is a singleton set then Ky =K and Ky =K are
both L= and Lo~ compact subsets and tﬁe statement is

true:

Case (ii):  Suppose there exist x,y € KX, x#y . Since
%, Lys Lp) is p-Hausdorff, there exist U € L; and
V€L, such that x ¢ U and v eV with UnvVv=yg .

Since K is p-compact,

K; = K-V is non-empty Lj-compact,

K K - U 1is non-empty Lo-compnact
2 PLy Lp=conp
and

Kju Kp = (K= V) U (K -U) =K=-(UAV) =X,

Similarly we can show:



P

(3.3) Lemma: In a.bitopblo_gical space (¥, Ll', L2)vif Ly, L, are both

Hausdorff, then every non-empty p-compact subset K<€ X can be expressed

as

~
1t

and

! '
K=K U K

. . . .
where K;, K, are non-empty Ll-compact and K., K

10 Ko are non-empty Lo-

compact subsets of ¥ .

Remark: The above lemma implies that a p-compact subset K 1is compact

subset with respect to L; whenever each .L; is Hausdorif for L;i , 1 =

1,2 .

(3.4) Lemma: In a bitopological space (X, Lys Ly) , if C is L,-
closed, i=1lor 2, and KC X is p-compact, then °

"T=CNK

is a p-compact subset.

Proof: If T=Cn K=¢ , then the result is obvious and therefore we

assume T # ¢ . let {U; U V} be an Li(V)-covering of T , where
Ve L, and Ll(V) is the adjoint topology of L, with respect to V.,

Tc U (Uiu V) , where A is an index set and TAV #9 .
icA

Case (i): If C is Ly-closed, then {(C®U U;) U V} is an
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Ll(V)—coverihg of K with VA K#¢ . Since X isa p-compactr

subset' of (X, Ly, L2) there exists a finite subcover

. n
ke U (CCy Uz3)v v

j=1
which implies
n ‘ n .
T=KncCccVUI[(cCy Udu vVlince U(U.uy V)
1 . 1 ?

Therefore T 1s a p-compact subset of X .,
Case (ii) is similarly handled.

L12
From now on we consider only the set € . Concerning the

3

relation between the p-K topology and the K-topology we have the

following:
(3.5) Theorem: If (X, L, L2) is a bitopological space that both Ly

and L2 are Hausdorff, then

where Kk is the compact open topology on the set of all continuous

functions on (¥, Li) to (Y, 8;) .

Proof: Let K be a p-compact subset of X . Then by (3.3) K = K U Ko,

where X; is Ly-compact, i =1,2, and X = Ki.u Ké » with Lo-compact Ki,

i=1,2., PFor any ‘E(K,V) € ¥y

K(K,¥) = K(Ky,V) N K(Ky,V)
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where Vg 8;, which impliés
.‘E(K,V) € «;(K-topology) .

We have a non-trivial example which show the above inclusion

relation are strict, _ - .-

(3;6) Example: Let X be R (the set of éll reals). Ly is
generated by {(a,b) and [2,a) where a,b €& R} and L, is the -usual
topology. Then [1,2] is a compact subset in’ L, but ié not p-cbmpact
which can be seen by considering IL,([2,3)). Fow (X, Ly, L2) is p-Ty
and each L " is Hausdorff for i = 1,2 and has an'L2—compact'subset

which is not p-compact. If -(Y, Sy, Sp) is any bitopological space then

¥([1,2],M)e ky - ¥, for VE S,.

e
/]

3
o
[
(]
(2N
o]
3
M
Fh

w

(3.7) Theorem: If (%, Ly, Lp) is p-compact and Ly

Proof: By the previous lemma we hzve only to show that I =i TR

-~ .
Consider XK(C,U) where U € S; and. C is L,-compact. Then C is
Lj-closed by (2.13) (recall that X is p-llausdorff) ., Thus C is p-

compact by Corollary (2.11) which implies that KXK(C,U) g w. .

Since every sincleton is.a p-compact we have the followinz:

(3.8) Theorem: The palrwvise pointuise comvercent topolosy, denoted by
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p- Ptopology, is cbntained in the p-K topology.
Thus we have the following relation:

P; e x,';l c K3 (wvhere P; is generated by the subbase

{(x,U) = {£ €Y% £() € U &S;} ) provided L, is Hausdorff, i =1,2.

(3.9) Definition: Let (Y, S1s 825 be a bitopological space generated
L
12

is said

2

by a p-q metric p and its conjugate q . Then {fn}?,c.c
| 512

to p~converge to f € ¥Y* uniformly on p-compact sets iff, for each

p-compact set CC X and e>0 , there exist I = }N(C,e ) such that

p(£(c;),fr(ei)va(F(e;),Files)) < e forall n > I and for all

Cie(:'

The following is a generalization of Arens' thzorsn .[1] on

sequential convergence in the K topology.

(3.10) Theorem: Let (Y, Sy, So) be quzsi metric and let S; te
s ] 2 < 1

._ - , o P12 L2
Hausdorff for i =1,2 . Then {fj}jCC p-converges to £ €C

S12 S12

uniformly on every p-compact subset iff £, f in the p-K topolozy of

cLl2
Si2 °

Proof: Assune {fn}cz p-converge to f unifornly on eveny p-compact

subset of X . Let f € EZC,VO where V € Sy (we have an equivalent
result for V& S,) , which implies .£(C) €V . Since C is p-coupact

£f(C) 1is p-compact and £(C) is closed and compact in S, , i=1,2,
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by (2.12) and the remark following (3.3) .  Therefore we have - éi >0, '

i=1,2, such that

p(£(c), V©)

€1

IAa

€o o
Let e'= €3 A€, and N = N(C,e) . Then for all n > , we have
p(£nley) Ele)valFyley) £leg)) <&
for all c; € C , which implies
£, € E(C,V) for all n > ¥ .

Hlence f;— f in the p~-K topology.

Conversely, for a p-compact subset K in X, £(K) is a
12

. Since Y is a Hausddrff
S12.

p-compact subset in Y for any £ &€ C

space, f£(K) is 8j-compact by the vemark following (3.3) i = 1,2 .
Mow, for each cj € K , consider Pi(f(ci),-g‘—_) = {y : p(f(ci),y) <’§j} and
Qi(f(ci),%) = {y : q(£(ci),y) <—§—_-} . |

Since (Y, S3, S2) is a quasi metric space; it is a p-regular
space by (1.9). Therefore there exist U;c E; ¢ Pi(f(ci),%)' and
VicDic Qi(f(ci),%) where £(cj) € U; € 53 and Ei is an 82_—ciosed

set and f(c3) € v; € Sp and Dj is an Sl-closed set.,

By (3.4)



K’l = Kn f-l(El)

K =Kn£XE)
Ky =K n£1(p,;)

Km = K f\ f-l(Dm)

are p-compact subsets in (X, Ly, Lp) and the compactness os F(K)
allows us to cover fF(K) with.a finite number of Sl and 52 open sets

{U;}8 and {v, }’J’_‘ respectively.  Therefore
K= Kl U ses U Kn
’ t
= Kl U I \J V\In

1
wnere K. i=12,,..,n and K. 1= 1,0ee4m are p-compact subsets of
i 9 . ’ ’ 1 9 s slil o
X .

Consider . U = R(Kp,P) A e nT((Kn,Pn)

~, ~
V= R(K3501) n wee OK(KpaOp)

where P; is a p-sphere of radius % about £(ci) and 'O_j is a g-sphere

of radius -;-:: about f(cj) . Then U and V are p-X neighborhoods of .
£ with respect to 1,?;1 and ¥, , respectively, which implies there
exists N such that for n >H, fn EUnV, If x ¢ K then x e ‘r(i

for some i and if

fn(x) 6 Py 03
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then

p(fn(x),f(x) V a(£,(x),5(x)) < ¢

(3.11) Example: Ve have a nontrivial (i.e, nonmetric) quasi metric
bitopological space (Y, Sy, S,) such that each S; is Hausdorff, for
i =1,2, which is defined as follows:

s

d(x,y) = min (1,|x-y]) £or all %,y € 2 (the set of all reals)

dx,y if x <y
pleay) = | |

1 if x>y

a(x,v) if x>y
RN |

1 if =x <y

The topology' Sy determined by p 1is the topology for X which has a

base the family of all haif open intervals cf the form [a,b) ={x:a < x < b},
while &, js determined by q with base 2ll half open interfals cf the

form (a,b] .

(3.12) Exarmle: If, in the hypothesis of (3.10), 4o assume @ D-q

metric instead of quasi metric T, space, then the stategent is nof true,

227

[
1

As a counter example cons ¥ =Y =72 (the set of all reals). Yow

Ly =5y is the topology generated by the base consisting of all sets of

1o

S

s generated by the base

the form (-00,3) = {y: vy < al , while I, 2

consistinz of all sets (a,s0) = {y: a < } . Then (Y, 83, 8p) is &

p~q¢ wetrlc space gensrated by p:i

W

(x,v) = 0 if y <= anc p(x,y) =

|-yl if y > x and g, the conjugate of p .
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‘Define the sequence {fnff  by

fn(x) = x + for all x:G £

=R 2

Thén . {f.}® p-converges unifornly to £z 1 (identity map) on every
n l o & 7 o~

p-compact subset of X .  However,
£ € K((-w,a), (-=,2)) & Uy

while, for any = , fn%' K((~w,a), (-w,2)) when a #o i.e,

fn.» f
in the p-K topolozy.
Ll2 . ) :
(3.13) Theoren: (CS s ¥y ¥o) is p-T, p-Ty3, or p-T, whenever
12 . ’

(7, 84, 82) is p-Tys p=Ty» oOF p=Tys respectively. (For definition p-Ti

refer to [1513)

Proof: Since p-T,, P-T; can be shown analogously, we show only the
. S
case of p-Tp . Let f£,g€ CI and £ # g . Then there exists an
N 2]
12

x € ¥ such that f£(x) # g(xz) . Since (¥, S,, S,) is p-Hausdorff, there

exist U € Li and V€ Lj such that
e(x) eV, f(x)eU and UNYVS= g .

~ ' . , - ’
Thus X(x,U) and R(x,V) are disjoint neizhboriicods of £ and g

in 7y and ¢j , respectively, 1 # J , »i,j = 1,2 .
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\ ‘Lo . o L
(3.14) - Theorem: (CSlQ,' ¥y l,')z) is-p-r?gular whenever - (X,‘ Ll,‘:.':r‘_'.Q').
is p-corﬁpact and Li-Hausdorff‘with pespect to 1 =1,2, and (¥, sl,vsz')

is p-regular.
Pproof: By Theorem (3.7) Wi = Ki » i = 1,2 . Consider
£e KK, We U;
where. K is Lj-compact and U € S; .. lNow £(K) is Sj-compact. For
each x; € £(K) we have

X; € Vx.c. C

c U
i X3

where Vx is 8j-open C,.. is Sj—closed. Since f(K) is compact in

1 i
8y we have
Sa
f(K)& U Vx- =V &85 .
H A i
: n ) ‘
Let U C, =C. Then C is Sj—closed with ¢cc U, Thus
1 i
f(K) e ve ce U
Lo = . -
Suppose g € CSlQ anéd ¢ § K(K,U0) . Then there exists x € K such that

g(x) %U .  Consider ¥(x,c%) . Since x is p-compact and CC¢€ ’S:.| ,
then T(x,C%) ¢ l!)j with g ¢ K(x,C®) but KK, V) C.T((K,U) and

KK, V) ¢ ¥; , and

K(x,CC) A K(K,V) =0 .

~ = . ‘
Hence if g§. K(K,U) then g § ®(x,v)J and the result is proved.
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L

‘ : 1 _
(3.15) Corollary: With topeology . k;, the space Csli is. p-Tos.

p-Ty, or p-Tp whenever (Y, S;, S2)I.is p-Tys P-T3 or P-Tps

respectively.

(3.16) Corollary: With the X topology, the space Ci is To; T, oOF

T, whenever (Y, S) is T Ty or To respectively,

2

(3.17) Corollary: With the K topology, the space Cg is p-regular
— 12 |

whenever (Y, S;, Sp) is p-regular.

(3.18) Corollary: With the K topology, the space QL is regular

whenever (Y, S) is regular.
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CHAPTER L

(12)-CONNECTED- OPEN TOPOLOGY

As a generalization of the connected open topology which was
initiated by Irudayanathan and Naimpally [9], we consider the (12)-
connected open topology which is denoted by C':'fz . First, we discuss

some definitions,theorems and notations which will be used in the sequel.

(4,1) Definition: In a bitopological space (X, L;, L2) a pair (A,B)

with A,B € X is said to be (12)-separated iff

Ang=ANE=p

where A is the Ll-closure of A and § is the Ly-closure of B .,
Remark: If Lj € L, then every (12)-separated pair is L,-separated.

(4.2) Lemma: In a bitopological space (X, L., Ly}, (A,B) is (12)-

l’

separated iff there exist WPE Ly and W, € L, such that A C-‘.-z'q and

Be Wp with '.'{qr\ B =g and an A = g .

Proof: Assume (A4,3) is (12)-separated, Then K AR = A nB =g

and An B = ¢ implies (> B and ('!\-.)ct:\ A=¢g. Let (R)C=1V_.

Similarly Wq = (B)° .
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q

Then W:.: B . But Wg is Lp-closed which implies Wg‘D B s Wwhile

. Conversely,'assume Wq € L2 such that Ac Wq and ?}'n B=¢ .

NgD A . This A®DHS and ACD f . Theprefore

q
AnB=9.
Similarly
EnB=9¢.

(4,3) Definition: A bitopological space (X, Ly, L2) is (12)-

connected iff X is not the union of two non-void (12)-separated subsets.
Similarly we can define (21);connected and extend the definition to p-

connected.

(4.4) Definition: (¥, Iy, L2) is said to be p-completely normal iff
for every (12)-separated pair (A,B) there exist Lo-open set U2 A and

Li-open set Vo> B such that UnV =0,
With the above definiticon we have

(4.5) Theorem: (X, Lis L,) is p-completely normal iff every subset of

X 1is p-normal.

Proof: Suppose X is p-completely nornmal and Y& X . Let Fy and

F, be disjoint closed (rclative to Y) in L; and Lp, respectively.

2
Then
L L L
= -7 In B - R T S I
Flf\ Ing = Fl n o = (Yr\ Fl)f\ Fo = Fq N Yo = :l i = ¢



¥ is the Lp-clo

where

of F Similarly, we

532 -

Ly,

. - 1 o o
F 'and F - denotes the _LY-.-fclosure

sure of
: i

can show '°E—‘ln Fy = $ which implies (Fq, Fp)

of ¥ By p-complete normality there exist

is a (12)-separated pzair X

disjoint sets(Ll-OPen) Gy and (L2-open) G, containing- F, and Fj,

respectively., Then Y N Gy and YN G, are disjoint L » LY open sets
“1 2 .

of Y which contain F, and F, , so that Y is @ p-normal.

Conversely, le

t (A,B) be a (12)-separated pair, .i.e.

(Z 0 B)UA(AF\':%») =g .

Let Y=(&0n )¢ . Then (Y, LYl, LY2) is p-normal by as_sumption; Since
YyAT=((uiHaT=8n%
YAE=(uEHnE=TnE

YNA and Yt.'\ § are disjoint I;Yl‘ and LYz-closed sets, respectively.

Therefore, there exist UN Y = UY € LYl and VA Y = Vy € LY2 such that

(Y & 5) C.UY and (Y0 K)C‘.’Y , where U, NV = g. But Un (AN §)©

=un (Eu 8%

U, =UAY=(UN 5% u (UNTE®) where Ue€ L,
v =UAY = (U0 3¢y W (VATS) where VE L,
Since (Un EynbB=90,

implies (Un %) > (YA B)
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and

V,2 (YN E) inplies (VN 3%)D(vnT) .

. L, = . - : N
Since U ¢ Ll ané A e Ll Ut =UNA" € Ll and UYD ur .
Similarly V' = VN B¢ ¢ L, and V"'O'V' « Since UY N VY =g , this

implies U'A V' = g, Consider

°)r\3=f,§0n

o
s3/1}
.

YAl = (v

But ANn3 =0 sothat A°C® B ., Therefore

e N

FNAB5B and U =UATD (vAB) =FTnda3B.

Similarly,

o BN Do .

(4.6) Definition: (Y,U,L) is said to be a semi continuous bitopological

space  iff U is generated by {(-o ,a)} and L is generated by {(a,®)}

where Y 1is the space of reals and a is any real number,

(4,7) Lemma: Every subspace of a p-q metric space (¥, P, Q) is

a p-c metric space.

(4.8) Theorem: A p-q metric space (X, P, Q) is p-completely

normal.

Proof: By Theorem (1.9) a p-q metric space is p-normal, and by the

above lemma everv subspace of a n- metric space is bp- metric
- & - -



space also, Therefore every'subspace is p-normal, and, so by Theorem (it,5) .

we have p-complete normality for X.

(4,9) Lemma: If in a bitopological space (¥, Lis

L2) a subset A is
(12)-connected,’ ‘then, for any f € Cgi2 s, f(A) 1is (12)-connected in
0 :

(v, ESl, 82) .

Proof: Assume f(A) = Uu V where U,V are non-empty and

S.
S S, _ ©oe=d - .
T 1A V=UnT 2=0 where U denote S;-closure of U . v (4,2)
there exist W_€ S, and ¥ € S, such that Uc ¥ and Vc ¥
o] 1 q 2 q P
. . . -1
= W = T s £ (%
where Wq(\ v Upt\ U=¢ wvhich 1np11§ (Ip) € Ll and

f‘%wq) € L, with .

1

f'l(wp> n £y = £ N £ = 9

where f—l(wp)ZD f-l(V) and fjl(Wq):> f—l(U) . Therefore

_ful(U)LJ f-l(V) = f-l(U\l V) = A is (12)-separated which contradicts

the assumption.

(4.10) Definition: For each (12)-connected subset K of (X, Lis L,)

ves, in (Y, 8, S,) , let

and q € Sl s 2

TK,U, V) = {f e YY:EGD e Uu V,e(K)N U # 8 # £(X) N VU €S

1 and VY § 82}.

The topology CE2 generated by the subbase {C(K,U,V)} 1is called a

(12)-connected open topology and is denoted by (YX,C§2) .




(4.11)

. =35 - .

e use the following motations for further discussion:

L .
(1) _C"2 gl2 = the set of all p-connected mappings (i.e.
512 ‘ ,

mappings which preserve p-connectecness )
£2(%, Ly L2) +~ (¥, 8;5 S,)

(2) 2 g = the set of all connected mappings

Fi(x, L), » (Y, S)
(3) Cig = the set of all (12)-cornected mappings (i.e.

mappings which preserve (12)~-connectedness )

£1(X, Ly Lp) > (¥, Sy S5)

closed in (YX,Ciz).;

Proof:

Theorem: I1If (¥, Sy, 52) is p-completely normal, then C;5 is
SQuppose £ € v® 3 a limit point of C-2 but £ é.C-Q Then
y ) e Y12 12’

-

there exists a (12)-connected set X © ¥ such that £(X) is not a (12)-

connectaed subset O

ar

(Y, S, 25) . Since ¥ 18 p-corpletely ncrpal,

h

there exist non-empty disjeint sets §-open U and S,-open 7 such ‘that

Since

~ o -T2V v s . 5 0y P -~ 13
z € C(K,U,V) where C(x,U,v) is an open neighborhood of £ 1n C

£

Sryevuv, FXINUFF? ()Y,

. s s . - A~2 . -2 e
is a limit point o< C12 , there exists & g € €y, Such that

120

30 g(X)e Uv Y with g(K) U F 97NV . Aur UNV =0
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2

5 and the result is proved.

which is a contradiction. Therefore £ € Cj

is zn interval with the usual topology and

it X
pointwise

-t

(4.12) Theorem:
cal spéce, then ‘the

(Y, S,, So) 1is 2 senmi continuous bitopolozi
» Y1y 22 ) e < S
., i = 1,2) topology is strictly smaller than Ci,

D

L

convergence (or 3

L12 |
is dense in Pi(i = 1,2)

Proofs By (1.9) CLlQC C—2 ow C
e 4 (R . LW
19 12 S12 |
respectively, but (¥, Si, Sp) is & p-corpletely normal space by virtus
-2 . . i .
is closed in Cl2 . Hence

of Theorem (4.8)., By Theorem(4.11), C;,

the theorem follows.

(4.13) Definition: (¥, L, Ly) 1is said to be hi-locally conhected iff
(%, Ly) and (¥, Lp) are locally connected,
with the above definition we can construct a topology which is
b1o .
Ca . However, we will not
°12

comparable with p-compact open topology on

discuss it here and the relation between p-compact open topology and p-

connected open topology is comsidered in the next chapter.
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CHAPTER. 5

p-CONNECTED OPEH TOPOLOGY

In Chapter 4 we discussed one of the generalized forms of
connected open topology. lNow, in this chapter we consider another
generalization in the bitopological sense and discuss mainly the separation

axioms and the comparison with other bitopological function spaces.

(5.1) Definition: p-connected open topology on Yx is defined with

the subbase
C,(K,U,V) = {f€ Yuf(X) Q@ UU Y, SKIATU# 8 # H(X) AV}

where U,V € Si , i=1l,2, and K is a p-connected'Subset of X ,

and if TI'; is generated by {C;(K,U,V))} then

X
(Y%, Ty, Tp)

is said to be a p-connected onen bitopological function space.

i4

X .
(5.2) Theorem: (Y7, T, ry) is p-T,, p-T; , or p-T, whenever

Y is p-T, 4 p-T3 ; or p-To, respectively,

Proof: - We give a proof for the case Y is P-To » If f,gz & YX and
f # g then there exists an x € ¥ such that £(x) # g(x) . Since Y is

p-T, , we have U €S, and V€S, such that f£(x) €U and g(x) ¢V
2 1 2
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with Un V=g . Since a sinfleton is a p-connected set c,(x LU,U) ¢ I‘l

Cz(x.,V,V) € T'p where

Cy(x ,U,U)n Colx ,V,V) =8 .

X

(5.3) Theorem: (Y7, s 1‘2) is p~regular whenever (Y, S;, 8,) is

p-regular,

n

Proof: Consider a T, -nbhd .of £, U(f) =Q C;(Ki, U Vi') el . since

i’

is p- is ',V - s .
Y is p-regular there exist Ul,!l é Sl and S.2 closed sets D; and El

such that
U} « b; &U;
Vl{ c B! < Vi
Suppose g %U(f) whi»ch implies there exists an i such that
(1) gk)&uv UV, o
(2) either g.(Ki) c Uj_v.J»V.:.L and g(X;) N u; = g or
g(K)n v, = ¢

Without loss of generality we can assume, there exists an i such that

x € K; and glx) % U; , which implies g(x)% D; , i.ev g(x) e Di e-S'2 .

n T
Consider Cy(x ,D;,D;) € T, and let V(£) =0 C (K ,U;5V;) € Ty

c Cy _
v(E) Mcylx 05,05 = 0 .
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— T2
‘Hence. f ¢ Vs e V(F) < u(f) .
Further, assuming U(f) € Ty s we have an equivalent result. .Therqfore-
p-regularify is proved. |

(5.4) Theoren: If (Y, Sy, S,) is a bito ological space then
lheorEr 1s 027 P

Pic:ri, i=12.

Proof: A subbase for the P, is the set (x,U) where
(x,U0) = { FeY : £(x) & U €S, , i=1,21}.
But (x,U) = Ci(x ,U,U) €T, i=1,2,

(5.5) Theorem: If a bitopological Spéée (X, Lys Ly) 1is both Heusdorff

and bilocally connected then «kj cr;, for i=1,2.

ppoof: Let R(K,U) € «; » Then h ¢ ¥(x,U) implies h(K) &U &Sz .

8ince K is Lj-compact

: n
Ke( ur:zt)
1

where Wt & Li W, .C h—liﬂ) , t=1,2,... n, vhere Wt is non-empty

s T

2 . et . ‘- -

connected set in Lisu

then n
f\(w

U, U) € Fi ané
1

tS

~
174

n
N (i, U, U) € K(K u) .
1
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(5.7) Corollary: If a bitopological space (¥, Ly, L,) is p-Hadédorff‘
N po-Log 12 ~2

and both Li" is Hausdorff then

Proof: See (3.5) and (5.8) .
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CHAPTER 6
BIGRAPH TOPOLOGY
The graph topology was initiated by Naimpélly [16] for the
purpose of stuaying almost .continuous functions. In this chapter we

study it in the bitdpological sense.,

(6.1) Definition: f € YX is said to be almost c@ntinuous in

(X, L) x (Y, 8) iff for each open set U € L x S containing
() = {(x,f(x) + el X xY

1 :
there exists a g ¢ Cg such that C(g) e U ,

Notations: (1) Ag will denote the set of all almost continuous

functions in L x § ,

_ _ . _
(2) For each- UEL xS, let G, = {feYy :c(Hc ul .,

(6.2) Definition: The topolosy GL xg on Y'< generated by

{GU : U€L xS} is called graph tonology.

le extend the above definition to bitopological space.

(6.8) Definition: Let (X, Ly, L2) and (Y, S 82) be bitopologzical

l’

spaces, and let
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3 s 6 }
R TR 8% "L, X S

is said to be a bigraph topology on Yx generated by L, and L, ,

and

X
? GL X Sl’ GL x 8, }

is said to be a bigraph topology on YA generated by S; and ‘Sp .

We will frequently make use of the following:

(6.4) Theovem: (¥Waimpally [161}). If ¥ contains at least two points,

then the following are equivalent:

(1) (X, L) and (Y, 8) are T, spaces

X .

_‘(2) Y-, GL x s) is Tl
(3) (AL G Y is T
: 3° °L x 8§ 1l

As an extension of the zbove theoremn we have:

(6.5) Theorem: (1) (Y, 83, 52) has at least two points, then

G ) |

_ (X -
G = (Y%, 6 s,> L x 5,

512

is p-Hausdorff iff (Y, S3, S,) is p-Hausdorff and (X, L) is Ty If
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also, (%, L L2) has at least two points then

l’
~L12

(2) G

X
= (¥", G, . , G )
S S0 Buyx8? L, % 8

is p-Hausdorff iff (X, L;, L2) is p-Hausdorff and (Y, s) is T, .

Proof:  Assume GS is p-Feusdorff but (7, Sl’ S2) is not p~Hausdorff.
12 .

et p,a Y, P74 .‘ Then every open set 0p € Sl. intersects every
qu S, vhere D € 0-p and q €U_ . Define f£,g € vX such that
f(x) = p and g(x) = q forall xg&X. Then every open set containing

c(£) in GL x $q intersects every open set 1n GL % 82 contalning

_c(g) which is a contradiction.  Assume (2, L) ismnot Ty . By

Theoren (6.4) 'éls' and ’52 are not Ty . Since a p-Hausdorif space
1l 2 '
T, . -
is Ty, fés is not p-Hausdorff.
12

Conversely, assume that _(Y:, S1s 82) is p-Hausdorff and (X, L)
is Ty . Yow if f,g v and £ # g , then there exists a € X such
that f(a) # g(a) . Since (Y, Sy, S9) is p—ﬁausdorff there exist
Ues; and V € S, such that f(a) € U and gla) €V with UnAvV =29

which implies

(XU ((x-2a)xY)es xkh

'_:-'n
!

@ x WU x-a)x¥) &) *xL

Fod

-
N

t

and Gwlr\ Gw2 = ¢ with C(f) €Y, and C(g) €M, - Therefore

~L .
G is p-Hausdorff,

12
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To prbve parf (2) first assume (X,'Ll, L2) is not P-Hausdorff,
i.e. for a,ﬁ €ExX, ath every open set containing a in L, |
intersects evzry open set-in L, that contains b . Let p#4 ,-ahd
Psq € Y . Ve define f,g elYX such that £(b) = q , g(b) =P,

£(x) = g(x) =p forall x €X , X% #b . Every open set in G _ ¢
1l

which contains C(f) , intersets with every open set in G 4
. 2

which contains C(g) which is a contradiction, Further, if S is
. L

. . s . 1

not Tl then ’égl i=1,2 isnot T; by (6.4).  Therelore ’ES 2

cannot be p-Hausdorff which is a contradiction.

Ccnversely, assume that (X, Ly, Lp) is p-tausdorff and (Y, S)
is T, . If f,g € X , £#g , then there exists a p €Y such
that a = f_l(p) 7 g—l(p) =b . Since X is p-Hausdorff there exists

an U, € Ly and VbGL2 with aéUa and b éVb vfrhere-'Uan Vb=¢ .

Consider

W o= (Y X Uam ((7-p) x X € § x L,

W, = (Y x V) J ((¥-p) x X €5 x Ly

2

then G, N Gy g . Furthermore o) e W, and clg) =¥y

1l 2
Therefore
L
~"12 e

is p-Hausdorff.

Since £ and g in the above throren can be chosen to be almost

continuous functions we obtain the following:
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(6.6) Corollary: If (Y, ) 82) has at least two points; tﬁeﬁ 'Agi2[
with graph topology is p-Hausdorff 1ff° (Y, S;, S9) 1is p—Hausdorfffand

Ds

(%, L) is T{ . If, also, (¥, Sl’ 82) has at least two points, then

L :
1
Rq 2 s p-Hausdorff iff (X, Lis L2) is p-Mausdorff and (Y, 8) is T, .

Ue now consider to D = the set of all first kind of discontinuous
. . . -+ "
Functions in the following way. For f €D let f  denote that function

£ (x) = llm+ f(y) for all y € R (reals) . Similarly £ (x) can be

(6.7) Definition: (Almost first kind of discontinucus functions

(5. F.X.D)) £ €{t.F.KD.} iff for any open set rl €L; xS,

=1,2 and A= 1,2, such that C(£)c Uy , C(F) &y there exists

e

ta .

& D such that C(g+)c. Uy s c(g ) .U,y where Y =F (reals)
with the usuel tonology and X = R with 'Ll = {[a,b):a,b & R} while

Ly, = {(a,b] :a,b € r} .

e coustruct an example which is AJF.XK.D.

(6.8) ZIwample: £ is defined as follows:
kst ek

. 1
sin = for x> 0
£() = - 1
2 + sin = for =<0
u 1 for x =1

where the tonolocies are that defined in Definition (6.7)

Also we have the following.



(6.9¢) Corollary: The family of A.F,K.D. with the topolagies in (6.7)
le . . o

is closed in GS .

5

ouw we discuss the relationship between different function
space topologies.
(6.10) Theowen: If (X, L, L2) is p-lausdorff, then p-P topology is
contained in the bigraph topclogy generated by Iy and I

J.J2 .

pproof: Since (¥ Ly, L,) is p-Hausdorff, a singleton is closed in

2

L., i=1,2 . Therefore
i
W= (2xU)U ((Z-2a)xY)
is onen in Lj x S , 1i=1,2, and

Gw = £a,U] = {I € Y“:f(a)c: U} ;

(6.11) Theorem: If (X, L., LQ)' is p-Hausdorff, then the zraph

topology GL x 3 contains compact open topolegy Ky oo
' i

3

~
Ppoof: Consider f € ¥(XK,U) = { fevhif(X)cU€Ss;, , X is Lj-compact},

Since X is p-Hausdorif, K 1is L.-closed, Let

Vv o= (X X U) U ((X - K) X Y)E Lj X Si

[

enant of

e
0

Thei G, = K(¥,U) . Therefore, any open set in « an e

i
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(6.12) Corollary: If (X, Lj, Ly) is p-Hausdorff and Hausdorff with

respect to Ly , 1= 1,2, then

Proof: By (2.12) a p—édmpact set is Li-closed, i=1,2. A?ply

a method similar to (6.11), we obtain the result required.
(6.13) Corollary: If (¥, Ly, L) is p-Hausdorff and ' L;-Hausdorif,
i =1,2 , then we have the following relation:

Pi C ¥ CKi cGLi x Si i1=1,2,

Proof: See Lemmas (3.5), (8.10) and (6.11).

£ a topological space (X, L) is compact and Hausdorff then

Ky = GLi x 8 (See [161) .

Therefore, we have the following.

(6.14) Corollary: If (X, Lys L,) 1is p-compact and p-Hausdorff and

L; ~Hausdorff i =1,2 , then the bigraph topology coincides with the
L
12
p-compact open topology for CSl2 .
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'CHAPTER 7

ALMOST CONVERGENT TOPOLOGY

The study in function space topologies mainly has been
investigated in the space of continuous functions (see [16]). Recently
Kolmogorov [12], Prokhorov [20], and Skorokhod [éé] discussed topologies
on the space of all discontinuous functions of the first kind in connection
with a problem in probability theory. - In the theory of probability, if
the independent variable t is considered to be the time, then it is
impossible to assume the existenpe of an imstrument which will measure time
exactly whence a comparatively weaker topology is considered (see [23]).

In this chapter for the above mentioned purpose almost convergent topology
is considefed and in the end of this chapter one shows Skorokhod !M-conver-

gent is a special case of almost convergent topology.

(7.1) Definition: Let (¥, L) and (Y,S) be topological spaces.
For each pair of open sets U€& L and V € 8§, let

AGUY) = {Fe Y% @ 5O NV # ¢}

an almost convergent topology on zi is that topology which has as

subbasis {A(U,V)} .

The following example provides & motivation to study the topology.
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(7.2) Example: Let fn:[O’l]:* R (reals with the usual topology) 'j

0 on [0,1/2)
£

1 on [1/2,1]
) on [0, 2R-1/20F1) |
£,=) 2% -(27-1)/2 on [(271)/(27*h), (2P41)/(2%*))

1 - on [2M+1/2°%1 | 1]

for’ n=l’2’.l‘.l.l00liﬂ.

since £ ¢ P(1/2, S, (1) = {f & ¥ £(1/2) €. 5,(1)}, where S,(1) is the

open sphere about 1 with the radius » < 1/2, {fn}%ﬁ £ in the point
open topology. However, {fn} »f in the almost convergent topology (we

A
denote as {fn} —3 £ fyon now on).

As the relation with other topologies we have

(7.3) Theorem: A-topology (Almost Convergent Topology) &

P-topoloev (pointwise convergent topology).
&Y \L g F gy

Proof: Let A(U,V) be a subbasic open nbhd in A-topology and £ € A(U,V)

where Ué€&€L, V&S and L, S are topologies in the domain and range
spaces respectively, Then there exist x € U such that f(x)n Vv =14
wvhich implies #(x) € V and £ € P(x,V). Therefore, P(x,V) 1is an open

nbhd of £ and contained in A(U,V).

. Combining the example (7.2) and the theorem (7.3) we have
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(7.4) Corollarv: Almost convergent topology is strictlv smaller than the
pointwise convergent topology except that they..coincide when (X,L) 'is the

discrete.topology.

Proof: The first statement is an easy consequence of previous results. .’
and if (X,L) 1is a discrete space then

. : .
Px,V) = {F ey 1 B(x)€E VI = (f€Y 1 £x)n V£ g}
and x € L which implies P(x,Y) = A(R,V).
As a separation axiom we have
(7.5) Theorem: The set of all continuous functions on X to- Y which
is denoted as C(X) is T, with respect to the A-topology whenever

(Y,8) 1is Hausdorff.

Proof: Let £, g€ C(X) and f # g, Then there exist x € X such that

p = fi(x) # g(x) = qg. Since Y is a Hausdorff space there exist U,V €& 5
with f(x)€ U, g(x) € ¥ and UN Y =@, Since £,g € C(X) there exist

01, Op € L such that x € 07 N0y and

£(C1)c U and g(0,) c V

Thén (5(02) nu)c(vau) = g and (f(Ol) Nnv)c (VvAU) = g

=4

Let 0 =0;MN 0, then x € 0€L and «r* A(0,U), £ & A(0,V) while

£ € A(0,U) and g € A(0,V).
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It is well known that in the pointwise convergent topology
lim £.= £ iff lin fn(x) = f(x) for every x € X. By Corollary (7.u4)
we expect a wider result in the A-topology. In fact we have the following

example.

(7.6) Example:

2% ~on [0,1/2)
5 52/
2-2x% on [1/2,1].
2 2
£, = [ 2% on [0,1/2°)
2-2%x  on [1/22, 1/2)
~2+2% on [1/2,3/22)
22.2%  on [3/22, 1]
£, = 2Px on [0,1/27)

28- 20x  on [2M-1/27, 1]

A
Since dyadic fractions are dense in [0,1] {fn} »> £

where

1 on rationals
f=i
0 on irrationals
- o~ A _ A::,
Moreover, let £ =1 and £ =0, then {f} - and {fﬁ} > £
~ -~ ~
where ‘Ekx)l\ f(X) = § and both £ and f are continuous functions. In
A P~
fact if {fn} » £ and the graph of f 1is dense in the graph of £ then

A=~
{fn} -+ f also.
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There is an interesting relation between A-topology and
Skorokhod H-topology which he denoted as li,-topology (see [23] p.2665 in
‘the space of all functions whiéh ape’ defined on the interval [0,1] ..
whose range space Y is a complete separable metric space, and vhich at

every point have a limit on the left and are continuous on the right.

(7.7) Definition (Skorokhod): R[(xl, £(21)), (%5, f(x2))] = ‘Xl - %9
+ d(£(xy), £(x,)) where a(£(xy), f(x;)) is the distance of £(xy) and

f(xy) in Y, {fn} is said to be M-convergent to f iff

1lim sup Int
ne (x5 £(x)) € CLE) (g, £(x,) € C(Fy)

where C(f) = {(x, §(x)) : x €[0,11} .

Let U = 8(x, i/n) = {z: |x-2] < 1/n, z€ X} and V =
Sd(f(x), 1/n) = {y: a(£(x), ¥) < 1/n, y € ¥} then A = (U V)
is an element in the A-topology and {f} »> £ in the A-topology
iff G(fh) n (Un x V) = @ at each point x € X -and R 2> M, for some
fixed N, i.e. £ € A(Un,Vn) for .2‘3.Hx . Therefore, Skorokhod Ili-

topology is a special case of A-topology.

The almost convergent topology has an another aspect with respect
to Fourier series, The following is well known in the theory of Fourier

series.
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Let £(x) be a function defined in —m<x<w, and

outside this interval defined by the egation £(x + 2m)

= f(x) . If

f(x) has a finite number of points of

discontinuity of the first kind and a finite number of

maxima and minima in the interval  -w < x < 7 , then

it can be replaced by the series

(=]
+ 2 (a_coskx + b, sinkx)

a .-
0
/2 kel K
with
m
ay = /7 f(t)cosktdt
-
T
by = /7 £(t)sinktdt (k = 0,1,25004)
-7

which converge at every point x =

~to the value

+ -
£ (xg) + £ (x3)
2

Let £ be as in the above statement.
. . ‘ N .
every open nbhd of (x, € (x)) and (z, £ (x)) in X x Y

"~
usual topology) has non-empty intersection with C(f) and

wnere

%y ©of the interval

Then it is obvious that

(%, ¥ has the

c(®



5l .

The series

n
{s,= 299 * % (akcos}::f. +_-;r,]?inkx) }

¢

in the A-topology .

R

- =
ana r

converges to

A
2=,

£s a generalization of A-topology in the bitopclogical space we

have the following.

(7.8) Definiticn: Let (X, L, L2) and (Y, S3, §p) be bitopological

% .
topcleay on ¥ is defined with the subbase

Imost converzent

ang?
D-a2

7 26N T £ 6 .

Ai(d,:
wvhere U € L; and V€ S5 , i=1,2. 1If c6; is generated by
{2;(U,¥)} then
/!

1 function snace.

fronw (7.4) we have

(7.3) Corollary: a3 ?; »
space we discuss the fcllowing.

2 separation axiom in the S

£As
Lyo . . ‘ :
(7.10) Theorem: (0312 » G, ) is p-Tj whenever (Y, 815 Sp) is p-Tp.

& ¥ such that

L‘!
ot
-h
-
¢
m

(@
[o}]
o}
[of

D, £,
g s oleka e a 512
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p = f(x) # g(v) =q. Since 'Y is p-Hausdorff there exist U € S;,

Ve Sj’ such that

fx) € U, glx) §V and UNV =9,

12
S12
0, € Ly such that x € 03 N 0, and £(01) U and g(Oz)clﬁl.

where i,=1,2 and 1 #3. Since f,g€C there exist 0;€ L,

Then

(f(Ol) NVY)cunvs=¢g and

(g(oz)N V) UNY

"
=

which implies

.Al(nl,U) e al s A2(O’v) € Ci2

23]

f & A,(04,U) and 3§ £,(01,U) while

g € Ay(0,,V) and £ & £,(0,V) .

and the statement is proved.

Similarly we can show

IJl2

(7.11) Theorem: (CS
12

s al,aQ) is p-T, whenever (Y, S5, S,) is p-Ti.
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HOTATIONS AND CONVENTIONS

The set of all almost continuous functions

Fi(¥, Ly, Ly) =+ (¥, 8,5 5,)
Ly (or Sl) - closure of A
Lz(qr 82)— closure of A

Li-closure of A

Complement of A
{f ¢ v* : F(UUNV #8 , vhere U g Li, V€ 84

Almost convergent topology which is generated by

A;(U,V)

The set of all p-continuous functions.

f:(x, Ll’ L2) > (Y’ Sl’ 82)

FEYF(X)E UV, SN U 8 # S(KIAV, UE Sy

K’é S, and K is (12)-connected set}
The topology generated by fE(K,U,V)}

The set of all p-connected mappings

Fi(X, Ly, L2) > (¥, Sy, S,)



¢;(K,0,v)

C topology

G topolog

iff

Ki(or K topolozy)

Vool
K(A,B)

:_;;_57 : .
{f ¢ YX:f(K) cUu v‘, F(YNUF ¢ # f(K)f\ VV',IU, ve S;
.and X is p-connected set} o - |
{(x,8(x)): % & X}

The first axiom of qountability
The second axiom of countabili?y
Connécted open topolog;

The topology generated by {K(A,V):A is a p-compact

and v & 83}
The topology generated by {C;(K,U,V)}

{f € Y;0(£)C U g I x S}

X
{Y,GL }

1 X 8° GL2'x S
{GU : UE L x 8}
Graph topology

If and only if

The set of all integers

Compact open topology on f : (X, Lj) ~ (Y, S3)

(£ €v': 2(n) < B}



LSC

LUX

N
p-
PC

p-K

Lo

p-X(C
S12

)

p-K(ULX)

 ~58 =

Lower semi continuous with respect to L

The set of

USCL and

1
The set of

Pairwise

Point open

p-compact open topology

Lyp

all real valued functions that are both

LSC
Ly

all positive integers

topology

Cq with p-K topology

12

ULX with. pQK topology

Pseudo quasi-metric

PC topology with range space (Y’Si)

The set of all real numbers

Adjoint tovology of

usc

and
Ly

LSC
Ly

L

1

Wersts V, i.e. {UUV : UEL;sl

'The set of all real valued functions that are both

Upper semi continuous .w.r.t. L

ith respect to



‘ f759‘_ g
V(N)  sup (Inf)

Conventions:

Ye will often use the following:
(L) Li(si_) will mean a topology for X(Y)

(2) If it is clear from the context we frequently do not use any

subscript: e.g. ¥ instead of Yy

‘
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