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Abstract

Can AI-driven robots replace sports officials and rehabilitation physicians in

assessing the quality of human activities? An AI judging panel can attend

to every nuance of an athlete’s performance and bring more just and agility

in scoring. The subjectivity of the judging will be removed and no one will

heckle the referee anymore. A trained system can monitor the activities of

movement disorder patients and assess their progress in the rehabilitation ex-

ercise program. There would no longer be any need for the patients to travel

to specialized urban health centers and get feedback on their progress. A

computer constantly tracks their movements at home and evaluates their per-

formance.

The goal of this thesis is to develop some approaches to automatically eval-

uate the quality of humans’ activities from just the video of their performances.

The proposed approaches are mostly based on convolutional neural networks

that have demonstrated their effectiveness in analyzing visual imagery.

We first start with grading a diving routine. A human judge keeps track

of the coordination among the joints throughout the performance as well as

appearance features like amount of splash and smoothness of the flight. The

execution score that the referee provides is then multiplied by the routine’s

degree of difficulty which is obtained from the official benchmark based on

the components of the routine. Inspired by this grading schema, we propose

a virtual refereeing system that involves both pose and appearance features

of a routine in assessing its execution. On the other hand, a difficulty asses-
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sor extracts the components of the flight based on the evolution of the pose

throughout the routine. Finally, the overall score is reported by multiplying

the difficulty and execution scores.

We then extend the AI-driven assessor to be applicable to not only other

short-term sports like gym-vault and skiing but also minute-long activities like

figure-skating. We propose a modular two-stream network that attends to the

hierarchical temporal structure of sports routines and can be easily adapted to

score minute-long activities. Both fine and coarse-grained temporal dependen-

cies of pose and appearance features are involved in the assessment procedure.

In such contortive sports, the athletes usually look for new angles and turns to

configure their bodies in some unusual poses. Such pose configurations are not

covered by existing pose datasets. Therefore, we introduce a pose-annotated

dataset of extreme poses to support experiments in estimating human body

pose with extreme contortions and involving pose features in action quality

assessment (AQA).

We finally explore the application of AQA in rehabilitation assessment. We

develop a self-supervised method that learns the symmetricity and pace of a

normal action from off-the-shelf datasets of healthy people activities. These

transferable features are then used to assess the activities of a movement dis-

order patient based on how impaired and slow they are. The proposed method

not only demonstrated superior performance in rehabilitation progress eval-

uation but also showed a good generalization to infants’ general movements

assessment.
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Intelligence is the ability to adapt to change.

– Stephen Hawking.
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Chapter 1

Introduction

Endowing machines with the ability of automatically deriving high-level under-

standing from the visual world has been a persistent research goal for decades.

Designing such intelligent systems would pave the way for automating many

human-centered tasks. In the field of medical image analysis, a machine is

now able to automatically spot the abnormal cancerous cells in x-ray and

MRI scans. The agriculture sector has witnessed a great progress with the

help of UAVs that autonomously monitor the farmland and detect plant dis-

eases and insects. Self-driving cars remove the need for having a human driver

with the help of image recognition methods that provide a sense of the car’s

surroundings.

In this thesis, we study the automation of a relatively new task, called

human Action Quality Assessment (AQA). The fundamental goal of AQA is

to assess how well an action was done and assign a grade to the performer,

given the video of the performance. This task would have a broad range

of applications in future from automatic scoring of Olympic events to stage

detection and rehabilitation progress assessment of the people with physical

impairments or disabilities. By automating the AQA task, a computer can

then interpret the video of a sports routine and determine the score of the

performer. Deploying such a intelligent system not only shortens the events’

times by accelerating the grading procedure but also safeguards the scores

against the human judges potential misjudgments. Automating AQA can

benefit the rehabilitation services as well. Movement disorder is one of the
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most common neurological diseases affecting one out of ten Canadians [54].

Being monitored for early diagnosis and rehabilitation progress assessment

by a clinician opens the door for getting a better treatment and medication.

However, getting access to a specialist is not easy for these patients, especially

for the ones who live in rural parts considering the Covid-19 barriers. To

address this problem, some recent studies [46], [50], [75] have explored the

collection of data from tracking the patients’ movements by attaching some

sensors to their bodies to be later assessed by a virtual clinician. Nevertheless,

the sensory system is not only expensive to acquire but also impedes the

patients’ movements, affecting the assessment accuracy. Nowadays, everyone

has a smartphone which is equipped with a camera to take videos of daily

living activities. So why not putting one step further and resort to just a

video of the movements? The developed action quality assessment approaches

of this thesis, in both sports analysis and tele-rehabilitation applications, just

take a video of the action to assess the performance.

Although it may seem a trivial task for a human to interpret the visual data,

learning to understand and analyze the content of an image or a video is quite

hard for a machine. The visual data is just a set of numbers to a computer. A

color image is usually represented using a three-dimensional matrix made up

of rows and columns of pixels. The third dimension is used for determining

the intensity of each shade of primary color channels (red, green, and blue) to

form the color of each pixel. A video can be considered as a sequence of these

image frames, containing an additional temporal dimension. In order for an

AQA machine to have a good evaluation of a performance, both spatial and

temporal dependencies throughout the video should be captured.

The AQA task is closely related to a long-standing subfield within the

computer vision called Human Action Recognition (HAR). In HAR, the goal

is to label a video with the action that is being carried out in it. The early

efforts to solve the HAR problem develop handcrafted features like Histogram

of Gradients (HOG) [25], Histogram of Motion Boundary (MBH) [64], and

Extended SURF (ESURF) [69] that embody the appearance and motion fea-

tures of an action. An encoder method like Bag of Visual Words (BoVW)
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(a) Riding a Bike (b) Jaywalking

(c) A gym-vault toutine and its phases

(d) Gait freezing in a part of a
Parkinson’s walking gait (small steps)

(e) An impaired hemiplegic walking gait

Figure 1.1: HAR video samples vs an AQA in sports and health-care

[11] then aggregates these features to recognize the action in a video. With

the advent of deep neural networks, computers were able to extract high-level

semantic features from a video, leading to higher accuracies in performing the

HAR task. In order to get such features in an image, 2D Convolutional Neural

Networks (CNNs) apply a succession of convolutional layers and nonlineari-

ties on the image. A simple approach for HAR is to treat it as the task of

frame-wise classification of the action using 2D CNNs [22]. 3D CNNs [8], [58]

slide a three-dimensional kernel over the video to extract the temporal and

spatial feature representations of the action simultaneously. Although these

networks perform well in HAR, that won’t be the case for AQA. Despite shar-

ing some similarities, there are some differences between HAR and AQA that

may challenge the existing works in HAR to be used for the AQA task.
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Take a look at Fig.1.1. In HAR, one may recognize the action which is

being carried out in a video by looking into a single frame or a set of key

frames of the action. On the other hand, to score the performance of an

action, all frames should be taken into account. For example, a diver may do

a great job throughout the routine but not have a vertical entry to the water.

A Parkinson’s patient may get tired after some time or experience the freeze

of gait and not be able to perform the exercises as good as the beginning. An

AQA agent has to keep track of all of the frames to detect abnormalities and

assess the whole performance. Besides, there is a specific temporal hierarchical

structure for a sports routine. For example, a gym-vault routine is constructed

of some medium term phases like approach, first flight, repulsion ,second flight

, and landing. Each phase itself is comprised of some short-term elements like

twists and saltos. In order for a judge to have a perfect assessment, the

fine-grained temporal dependencies between consecutive frames that form a

short-term element as well as the coarse-grained dependencies that evaluate

the overall smooth performance in medium-term phases should be considered.

As it can be seen in Fig.1.1, there might be a large difference between the

samples of two different classes in HAR. However, there is a subtle difference

between two sports performances. Considering the competitive nature of these

events, specially in final rounds, a non-expert is not even able to discern the

worst performance from the best one in most cases. Rehabilitation assessment

lies in the middle of these two ends of the spectrum. Non-experts are able to

detect the severity of the disease to some extent based on their prior experience.

We have seen lots of normal activity samples like walking by healthy people

throughout our life. Given this information, we are able to have a guess on the

severity of a neuromotor disease based on how impaired and slow the patient

is doing the exercises (see the last row of Fig.1.1).

Another difference between the HAR and AQA tasks is the size of their

correspondent existing datasets. For example, YouTube-8M [2] and Kinetics-

700 [7] datasets provide over 8 million and 600000 annotated video samples

respectively to facilitate the use of DNNs in the HAR task. On the other hand,

there are only 370 video samples of diving videos in AQA-7 dataset [40]. The

4



Figure 1.2: To assess a diving routine both pose and appearance features
should be taken into account. The athletes may contort their body in some
unusual configurations

same thing goes with the KIMORE rehabilitation assessment dataset [6] that

only covers about 400 video samples. The small size of the AQA datasets is

because of the need for having an expert to annotate their samples with the

ground-truth score of each performance. Considering the limited size of the

existing AQA datasets, deploying shallow networks or transferring knowledge

from the related tasks like HAR becomes vital to avoid the well-known problem

of overfitting.

Moreover, unlike the case of HAR in which the appearance-based features

are informative enough for most cases to classify an action, integrating pose

features in the process of assessing a performance is of great significance. For

example, in a diving contest, a judge grades the performances based on both

pose features like coordination among the joints and appearance features like

amount of splash and smoothness of the flight (see Fig.1.2). In rehabilitation

exercise performance assessment, the poor posture of a patient can’t be de-

tected by resorting to the pose features evaluation. The dependencies between

the joints should be accompanied with appearance features to have a good

evaluation over the posture of the body and smoothness of the movements.

To this end, unlike previous AQA studies, our developed AQA methods take

into account both pose and appearance features to grade a performance.

Estimating the pose of the athlete throughout the sports routine has its

own challenges. As evident in Figures 1.1,1.2, the athletes usually contort

their bodies in some unusual configurations to demonstrate the flexibility of

their body and add to the aesthetic aspect of the performance. Current pose
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estimation datasets mostly cover daily living activities like walking, sitting,

etc. The pose estimators that are trained on these datasets don’t show a

good performance in estimating the extreme pose configurations of contortive

sports. That’s why getting access to a dataset that covers the pose annotation

of such extreme cases is felt missing in the literature of AQA.

The goal of this thesis is to address the above challenges and propose some

video-based approaches to evaluate the performance of an action in both sports

analysis and rehabilitation progress assessment applications. Due to availabil-

ity and larger size of the sports datasets, the most of the AQA works have

focused on the sports routine evaluation application. These works rely ex-

clusively on either the appearance or pose features to grade the performance.

The pose-based approaches have built their network upon joint location re-

sults that a pose estimator provides. Since the estimator is trained on normal

activities datasets, the accuracy of the pose estimation in contortive sports

like diving, gym-vault, etc. is poor, affecting the grading accuracy adversely

as well. Moreover, the current AQA approaches treat a sports routine as a

simple atomic action, completely neglecting its complex hierarchical temporal

structure. This fact has led to under-performance of the previous works espe-

cially in minute-long activities scoring that requires capturing coarse-grained

temporal dependencies between distant frames. On the other hand, there are

only a few works that explored the rehabilitation assessment application. The

privacy concerns have limited the access to video samples of patients’ actions.

As a result, the current tele-rehabilitation datasets are small, affecting the

performance of deep neural networks in assessing the performance videos. It

should be noted that the detailed review of the recent works has been brought

in chapter 2.

In what follows, we present the outline of each chapter and explain how we

address the aforementioned issues of the previous works.

In chapter 3, we focus more on grading a diving routine. In a diving

contest, each athlete is assessed based on how difficult the routine was and

how well the diver executed it. The difficulty score is determined based on

the components of the performance like the number of somersaults and twists
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and the position of the flight. To get these components the network tracks

the configurations of the joints throughout the performance. In order to have

a more accurate pose estimation results in extreme contortions of the body

we introduce ExPose: annotated dataset of Extreme Poses that covers 3000

annotated images of diving. On the other hand, inspired by human judges’

grading schema, a virtual refereeing network evaluates the execution of a diving

performance. This assessment would be based on visual clues as well as the

body joints sequence of the action video. Finally, the overall score of the

performance would be reported as the multiplication of the execution and

difficulty scores. The experiments demonstrate that our proposed lightweight

network achieves state-of-the-art results compared to previous studies in diving

grading.

In chapter 4, we aim at proposing an AQA network that is not only appli-

cable to other short-term sports actions like snowboarding, gymnastic vault,

and skiing but also can be used to grade a minute-long sports activity like

figure-skating. As discussed before, there is a hierarchical temporal structure

for most sports routines. Measuring the quality of a sports action entails at-

tending to the execution of the short-term components as well as the overall

impression of the whole program. In this chapter, we present Joints Coordina-

tion Assessment (JCA) and Appearance Dynamics Assessment (ADA) blocks

that are responsible for reasoning about the coordination among the joints and

appearance dynamics throughout the performance. We build our two-stream

network (pose and appearance) upon the separate stack of these blocks. The

early blocks capture the fine-grained temporal dependencies while the last

ones reason about the long-term coarse-grained relations. In order to have a

minute-long activity assessor, we only need to stack more of these JCA and

ADA blocks to involve distant frames temporal relations in the assessment pro-

cess. We further extended the ExPose dataset to cover other contortive sports

like synchronized diving, snowboarding, and skiing and we call the new dataset

Generalized ExPose or shortly G-ExPose. We show that the proposed method

not only outperforms the previous works in short-term action assessment but

also is the first to generalize well to minute-long figure-skating scoring.
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Finally, in chapter 5, we explore the application of AQA in the rehabili-

tation assessment task. As discussed before, unlike the case of sports actions

evaluation, non-expert humans are able to assess the severity of a patient’s

disease to some extent based on their prior observations of healthy samples.

This assessment would be based on how slow and impaired the action looks to

our eyes. Likewise, in order for a healthcare professional to assess the severity

of a patient’s action properly, he/she must be able to evaluate the impairment

and slowness of the performance. These features would be accompanied with

detailed analysis of appearance and pose features that the non-expert is not

capable to capture. Currently, the limited size of the existing AQA datasets

has impeded the previous methods to employ a deep network and capture

the pace and impairment features of an action. In this chapter, we propose a

method that takes advantage of the large set of healthy people actions repre-

sentation from HAR datasets to improve the assessment of patients’ abnormal

movements. A non-expert network first learns the representation of the nor-

mal sequences by estimating the pace and a set of manually inpainted joints

of the pose sequence in a self-supervised manner. In the next step, an expert

network takes these representations as well as the appearance features of the

abnormal sequence to assess the quality of the action performed by a patient.

The results demonstrate that the proposed method not only outperforms the

previous works on Parkinson’s and Stroke patients’ action assessment but also

generalizes well to the new application of infants’ general movement assess-

ment.
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Chapter 2

Related Works

The AQA is a relatively new task that has recently attracted researches to

work on. Most of the existing related works focus on AQA for sports analy-

sis. The availability of sports video footage on media platforms like YouTube

has encouraged the researchers to collect datasets and study the video-based

automatic evaluation of athletes’ performances. Here, we survey the existing

works in both sports analysis and health-care applications.

2.1 Pose-based AQA

Due to the challenges of estimating pose in extreme configurations of athletes’

body and blurriness of image frames, pose-based AQA has been largely unex-

plored. Pirsiavash et al . [44] presented the first model for assessing the quality

of a sports action based on pose features. They first extracted the joints lo-

cation of the video frames using the Flexible Parts Model [73]. At the next

step, they trained a linear SVR on DCT frequency coefficients of the action

pose features to regress the final score. Recently, Pan et al . [39] decoupled

pose features to body parts kinetics and joints coordination, and provided the

score by capturing graph-based joint relations. They proposed joint difference

and commonality modules to represent the coordination among the joints and

motion of certain body parts for consecutive timesteps. The pose features can

be extracted using a pose estimator like AlphaPose [12] or Mask-RCNN [17].

These pose-based networks neglect the collaborative role of appearance-

based with pose-based clues in score awarding. Furthermore, they rely on the
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overall score as the only label that needs to be predicted. In addition, their

pose estimation modules have been trained on regular existing pose datasets

that don’t cover unusual contorted pose configurations of Olympics divers.

The above reasons generally lead to the underperformance of such networks.

2.2 Appearance-based AQA

On the other end of the spectrum, most studies in the realm of AQA rely

exclusively on visual clues of the action in order to regress the score [28],

[41], [42], [71]. Parmar and Morris [42] use C3Ds [58] (inflated counterpart of

2D ConvNet) to capture visual spatio-temporal features of the action and feed

them to a regression framework (SVR, LSTM, and LSTM-SVR) to provide the

final score. Li et al . [28] segment videos to multiple fragments and feed them

to parallel C3Ds, followed by some 2D convolution layers. They discuss that

these fragmented features would have more distinctive power to differentiate a

good performance from a bad performance. Tang et al . [56] proposed a score

distribution learning network that sits on top of I3D appearance features of the

action [8] and models the judges’ disagreement in grading a routine. However,

the heavy computation cost of using 3D CNNs, as well as neglecting the pose

features and predicting only the overall score has affected the performance

of these models. To address the last issue, Parmar and Morris [41] recently

proposed a multi-task approach that jointly learns commentary, action class

details, and AQA overall score based on the appearance features extracted

from C3Ds. Nevertheless, the first two issues still persist in the latter study.

2.3 Temporal Structure Modeling

Extracting the temporal structure of a video has been extensively studied for

action recognition. Niebles et al . [37] model each complex action as a com-

position of some motion segments and use Latent SVM to get the parameters

of the model. To capture the long-term temporal relations, TSN [67] evenly

divides the video into multiple segments and fuses the class score of sampled

snippets from each segment. TRN [77] learns the pair-wise long-term tempo-
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ral relation between sampled frames at different scales and fuses the resulted

features. Recently, Hussein et al . [19] proposed a modular layer that sits on

top of appearance features of a complex action video to learn its long-term

temporal dependencies. All above appearance-based methods have explored

the significance of temporal modeling in action recognition. Here we investi-

gate the temporal structure of an action to assess it based on both appearance

and pose features.

The significance of long-term temporal modeling in a minute-long activity

has made all of the previous sports action assessors only applicable to short-

term routines like diving. A simple way to score a minute-long activity like

figure-skating is to treat it as a short-term one and simply feed the C3D fea-

tures of the routine to a SVR [42]. Recently, Xu et al . [71] proposed multi-scale

skip LSTMs to cover a more broad receptive field. The resulted features are

further fused with compacted local feature representation provided by a self-

attentive LSTM to regress the score of a figure-skating routine. However, not

only the pose features are completely ignored but also the rigid structure of

the proposed method is not applicable to short-term activities. Besides, skip-

ping some frames/clips to have a broad receptive field would result in ignoring

some useful visual clues.

2.4 Pose Estimation Approaches and Datasets

Human pose estimation is the task of localizing human body’s anatomical key-

points or simply put joints. In marker-based pose estimation, a set of sensors

are attached to the body joints to track their location. However, acquiring

the sensors and setting up a motion capture system are both expensive and

tedious. On the other hand, marker-less approaches aim to estimate the pose

from visual modalities such as images and videos. The classical marker-less

approaches for pose estimation use pictorial structure models for the body

skeleton. These methods either represent the skeleton in a tree-structured

model and encode the spatial dependencies between the connected parts as

some templates [45], [49], or form a non-tree model by adding some addi-
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tional constraints to the tree in order to extract occlusion and long-range

dependencies [21], [24]. With the introduction of ”DeepPose” [57], the abil-

ity of deep neural networks (DNNs) to extract high-level features encouraged

more researches to deploy them for pose estimation and get higher accura-

cies. DeepPose uses a refined AlexNet and treats the pose estimation problem

as a CNN-based regression task. Newel et al . [35] hypothesize that both lo-

cal and global contexts should be involved in the joints localization task and

propose a stacked network to perform bottom-up and top-down processing

constantly. Sun et al . [55] emphasize on the importance of maintaining the

high-resolution information throughout a network to get a high estimation

accuracy. Their network called HRNet is constructed of a main stream of

high-resolution representation which is fused by high-to-low resolution sub-

networks’ features. Due to the superior performance of HRNet in comparison

with the other approaches, here we use it as the pose estimator network to get

the joints location.

Among the pose datasets, ”Parse” [48] is one of the earliest containing

only 305 in-the-wild annotated images which makes it unsuitable to be used

for training DNNs. To address this issue, Lin et al . [30] introduce a large-

scale dataset (COCO) that contains more than 200,000 labeled images with

a focus on multi-person occluded scenarios. Andriluka et al . [3] collect about

29000 annotated images covering more rare human poses (MPII). However,

the unusual configuration of the athletes’ poses in a sports routine is not

covered by none of the existing datasets. Here, we introduce ExPose and G-

ExPose datasets of blurry images with annotated joints in extreme contortions

to facilitate extreme pose estimation in sports analytic.

2.5 AQA for Tele-rehabilitation

A common way to monitor and evaluate the actions of movement disorder

patients’ is to attach some sensors like gyroscopes or accelerometers to their

bodies. These devices can provide accurate kinematic and dynamic analysis of

different body parts gait patterns. Zach et al . [74] used a lumbar accelerometer
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to detect Freezing of gait in Parkinson’s patients. Trojaniello et al . [59] esti-

mated the gait temporal parameters of the hemiparetic patients by attaching

an inertial measurement unit (IMU) to their lower back. Using these sensors

improves the accuracy in the gait assessment by minimizing the subjectivity.

However, acquiring the sensory system in the lab environment would be both

expensive and tedious. Besides, the attached sensors may impede the patients

from having their normal movements. Therefore, a new set of studies focused

on assessing the patients’ disease severity from just the video of their move-

ments. Capecci et al . [6] introduced the first freely available video dataset of

Parkinson, stroke, and back pain patients doing a set of daily exercises (KI-

MORE dataset). The samples were annotated with quantitative scores of the

disease severity. Recently, Sardari et al . [51] proposed a view-invariant method

to assess the performance of patients and achieved state-of-the-art results on

this dataset.

Unlike sports action scoring, the samples of rehabilitation assessment have

a lot in common with daily activities like walking and sit-standing covered

by large-scale off-the-shelf datasets. This fact inspired us to learn some rep-

resentations from these healthy samples to be used in assessing the patients’

actions.

2.6 Self-supervised Representation Learning

The goal in self-supervised representation learning is to remove the need for

having an explicit label to learn representations from the data. To this end,

an auxiliary pretext task is proposed to learn transferable features inherently

from the data itself. In each pretext task, a part of the data is kept visible

and the rest is manually hidden. The agent of the pretext task then tries to

estimate either the hidden part itself or some properties of it. At the next

step, the latent representations that were extracted during the pretext task

completion are used to perform the downstream task which is the task that

we actually want to solve. In image-based pretext tasks, masking a part of an

image and trying to predict it [43], estimating the rotation transformation [20],
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and color channel prediction [26] are some of the surrogate objectives that the

model tries to fulfill. The learned representations can then be utilized to

solve a downstream task like semantic segmentation and image classification.

In comparison to images, videos have an extra temporal dimension that may

provide useful information to be adapted to video-based downstream tasks like

action recognition. Video clip order prediction [32], motion estimation [29],

pose sequence inpainting [76], and video pace prediction [66] are some of these

pretext tasks. The non-expert network in chapter 5 is inspired by the last

two to estimate the slowness and impairment of an a patient’s movements.
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Chapter 3

FALCONS: FAst Learner-grader
for CONtorted poses in Sports

3.1 Introduction

Sports is the language of joy and unity. Sporting events are usually among

the top most-watched televised broadcasts [10]. Fairness in evaluation is of

utmost importance to both the competitors and spectators, hence the need

for a structured means to evaluate the athletes and determine the winner. In

recent years, the advent of technology has brought more just and agile refer-

eeing to soccer games by the introduction of video assistant referees (VAR).

However, some popular fields like diving, gymnastics, etc., are still suffering

from the inefficiency of human-based judging systems. For example, in a typ-

ical diving contest, 7 judges score the performance of each athlete. These

judges should be from different nationalities to that of the contestant, limiting

the qualified choices. Furthermore, although the international swimming fed-

eration (FINA) has prohibited the judges from looking at the replays to make

the grading procedure faster, it takes about 40 seconds to report the score for

each performance that itself takes only about 4 seconds. Considering all these

issues, it would be a great help to introduce an automatic grading system to

score the athletes in a faster and more accurate manner by reducing human

intervention. In this chapter we focus on evaluating how a diving routine has

been performed and assigning a grade to the performer

To date, the literature of AQA has been dominated by networks that have
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Figure 3.1: Overall pipeline of FALCONS.

tried to regress the overall score of each athlete as the only label that needs

to be predicted [39], [42], [44], [63]. However, each performance should be

considered as a complex action in which not only the quality of the execution

but also the difficulty of the task contributes to the final score. Nevertheless,

the judges are only responsible for awarding the execution score and the dif-

ficulty score would be determined based on a predefined official benchmark

released by the corresponding federation of that sport. In a diving contest,

the difficulty score of each performance would be awarded based on the type

of rotation, position of diving, number of sommersaults, and the number of

twists according to FINA difficulty look-up table [13]. On the other hand, the

judges award the execution score based on the appearance-based features of

the flight (e.g . smoothness and aesthetic pleasure of the flight, and amount of

splash), and also pose-based features (e.g . angle of entry to the water).

As discussed before, existing literature regarding automatic graders take

into account either the pose-based or appearance-based features to regress the

final score of an action, hence suffering from the limited performance [28],

[41], [42], [44], [63]. Here, we decompose the overall score into execution
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and difficulty. For the former, inspired by what a human judge does, we

propose a virtual refereeing system that considers both the pose-based and

appearance-based features as the contributors to the execution score. As for

the latter, we introduce a difficulty extractor module that classifies the task

based on the sequence of body joint arrangements throughout the performance.

Consequently, the difficulty score would be determined by feeding the classes

(e.g . type of rotation and etc.) into the difficulty look-up table. The overall

pipeline of our work is depicted in Fig.3.1.

As mentioned in chapter 1, the extraction of pose features has its own

challenges. In most of the sports video footage, not only the athlete but also

the camera is moving fast to track the athlete during the performance, causing

motion blurriness of the image frames. Furthermore, the unusual configuration

of the athletes’ poses is not covered by the existing datasets [3], [30]. These

facts have limited the performance of the pose estimation networks in such

cases. To address this problem we introduce ExPose, a dataset of extreme

poses which includes 4000 annotated blurry images in extreme body contortion

scenarios. In order to regress the scores based on the extracted joint sequences,

we develop the well-known Spatial Temporal Graph Convolutional Networks

(ST-GCN) [72] to also learn dependencies between unconnected joints. ST-

GCN extends graph convolutional networks to simultaneously capture spatial

and temporal features for action recognition. However, it is only able to learn

correlations between the directly connected joints. This fact may affect the

performance of the automatic grader in which the symmetry of different parts

of the body should contribute to the execution score. To address this issue,

we introduce the idea of virtual super-joints. Each super-joint is simply the

average of its constituting joints’ location and may have connections with other

super-joints.

For spatio-temporal appearance features extraction, we divide the whole

task video into T subtasks, each consisting of N consecutive frames. In or-

der to learn global spatio-temporal features, we follow [16] that applies 2D

spatial convolution filters followed by 1D temporal ones on each subtask. Fi-

nally, the temporal dynamics between the subtasks should be encoded to an
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execution score. However, as the amount of splash plays a greater role than

other appearance features in the execution assessment, not all of the subtasks

should have the same contribution to the score. To this end, we propose

a bridge-connection module that fuses the feature sequence of each subtask

with a contribution weight. This module takes the average of confidence score

of pose estimation in each subtask and maps it to a weight for each. Simply

put, as the performer is under the water in splash capturing frames, the lower

the average confidence score of the subtask, the higher its contribution to the

Exe score.

Finally, the weighted sum of the score of the joint-based and appearance-

based graders generates the execution score (see Fig.3.1). The overall score

would then be calculated by multiplication of the extracted execution and

difficulty scores. To validate the effectiveness of our method we conducted

experiments on existing datasets and demonstrate that our method not only

achieves state-of-the-art results in diving grading but also shows acceptable

generalization to other fields. The main contributions of this chapter are

summarized as follows:

� We introduce ExPose, a dataset of blurry images with annotated joints

in extreme contortions to facilitate extreme pose estimation in sports

analytics.

� We propose a difficulty extractor module that leverages the pose sequence

to determine the type and details of the dive and award a difficulty score

based on the FINA look-up table. This module doesn’t need to be trained

in advance and achieves state-of-the-art results.

� Inspired by human judges grading schema, we present a novel virtual

refereeing system that regresses the execution score by leveraging both

appearance and pose-based features. The results demonstrate the su-

perior performance of the proposed network over previous works with

promising generalization to other sports.
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Figure 3.2: The human skeleton structure in ExPose

3.2 Dataset

ExPose dataset contains 3000 diving and 1000 gymnastic vault images together

with their annotations. The diving images are obtained from four different

individual diving events recorded from side-view on two types of boards. The

springboard images are obtained from men’s 3m final of the 2019 world series

and the platform images are taken from men’s 10m platform finals of the 2016

European aquatics championships in London, 2018 youth Olympic games in

Buenos Aires, and 2019 world series in Sagamihara. The gym vault images

are obtained from three different events; men’s and women’s final of the 2018

Doha world championships and women’s final of the 2018 Glasgow European

competitions.

In order to collect the dataset, we first queried YouTube to get the original

video of each event. Secondly, we filtered out the irrelevant parts of the video

(like the opening ceremony and medal presentation) and extracted the frames

of each video with the frame rate of 10 fps. Finally, we mostly held out the

normal poses of each routine (like approaching to the springboard or after-

landing in a gym-vault routine) to focus more on the main part of the execution

in which the performer contorts his body in some unusual configurations.

For consistency with existing datasets, the annotations have been provided

in MPII dataset format. As depicted in Fig.3.2, this skeleton structure con-

siders 16 joints and 15 bones for the human body.
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Figure 3.3: The pose estimation network should be trained on a dataset which
covers blurry images with extreme configuration of joints. The left side picture
of each column is the result of training HRNet on MPII [3] and the right side
one corresponds to the results of training the network on our ExPose dataset.
As evident, the network trained on our data set better identifies body’s true
joint locations.

As evident in Fig. 3.3, the HRNet pose estimator does a much better job

in estimating the joints location of a contorted body blurry image when it is

trained on ExPose.

3.3 Approach

In the following, we present our proposed network consisting of two modules.

The first module, virtual referee, evaluates the performance execution based

on both of the appearance and pose features. The second module, difficulty

assessor, evaluates the difficulty based on the joints sequence of the action.

3.3.1 Virtual Referee

Fig. 3.4 demonstrates our virtual referee pipeline which is comprised of pose-

based and appearance-based assessors. In what follows we elloborate more on

the details of the two assessors.

Pose-based execution assessor

We use HRNet pose estimation network [55] to extract the pose features of

extreme actions in each frame. The network has been trained on our ExPose

dataset to be able to handle blurry images with extreme body contortions. It

should be noted that the HRNet pose estimator requires the bounding box of

human to estimate the joints location. With the help of DiMP visual object

tracker [4] we would be able to get the bounding box of the athlete in each
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Figure 3.4: Overview of our virtual referee pipeline. This network generates
the execution score of the performer based on appearance features as well
as pose ones. The bridge connector module links these two to increase the
contribution weight for the appearance features with the most importance
(splash).

frame. HRNet takes these bounding boxes and estimates the pose of the

athlete. So the entanglement of DiMP and HRNet can be seen as a pose

tracker.

The extracted joint sequence should be fed into an action regressor that is

able to learn the spatio-temporal skeleton-based features of the action. To this

end, we use ST-GCN [72] that considers the joints of a skeleton as the nodes of

a graph. Spatial edges of the graph connect the structurally neighboring joints

and temporal edges connect the same node in consecutive frames. However,

this network is not able to capture the dependencies between joints that are

unconnected in the predefined skeleton graph.

In order to capture the non-local information (for unconnected joints), we

introduce three levels of virtual super-joints. Each super-joint represents the

average location of its constituting real joints. In the first level, the super-

joints consist of the right leg, left leg, right hand, left hand, waist, and head.
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As a result, we would be able to capture wrists-shoulders and hips-ankles

relationships. The second super-joint level captures dependencies between the

upper body and the lower body. Finally, the third super-joint level extracts the

symmetricity between the left and the right side of the body. The composition

of super-joints is visualized in the upper part of Fig.3.4.

It goes without saying that not only the local relations between connected

joints but also richer dependencies like symmetricity between different parts

of the body should verify how well the action was performed. Thus, the

features of the fixed predefined skeleton body (consisting of all 16 body joints)

as well as non-local features of virtual super-joints levels are fed into four

parallel ST-GCNs to assess the coordination between the joints and between

the body parts (see the upper part of Fig.3.4). The output value of each ST-

GCN module is multiplied by its own contribution weight to account for the

superior importance of some features over others. For example, intuitively, the

contribution weight of the third level of super-joints score should be larger as

it is responsible for the balance of the body during the flight.

Appearance-based execution assessor

The proposed network should not only be effective but also have a lightweight

configuration to act as fast as possible in both training and testing phases. To

this end, we follow StNet [16] structure that instead of using stacked heavy-

weight C3Ds, decomposes 3D convolutions into 2D spatial convolutions fol-

lowed by 1D temporal ones. First, we divide the whole task into T subtasks,

each consisting of N frames (in this case T=17, and N=6). Each subtask is

fed to 2D convolution layers to extract the local spatio-temporal information.

The Conv1 module followed by the 2 SENet [18] layers are responsible to do

so (see the lower part of Fig.3.4). The extracted local features are fed to a

Temporal Modelling Block (TMB), introduced by [16], to get the temporal

features across each subtask. The TMB block is consisted of a 3D convolu-

tional layer followed by a BN3d-ReLU. As the spatial information is already

captured by SENets, the spatial filter size of the 3D convolution for TMB is

set to 1. In order to get deeper correlations, the result of the TMB module is
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(a) Forward Dive (b) Backward Dive (c) Pike vs Tuck

(d) Reverse (e) Inward Dive (f) Twisted and Armstand

Figure 3.5: The type of the rotation, the position, and #twists can be deter-
mined based on joint sequences. In addition, based on the the configuration
of pelvis and thorax, the #sommersaults and first stand position can be de-
termined. The performance of pose estimation should be acceptable to have a
better diving classifier and respectively a better difficulty assessor.

further passed to a stack of SENet-TMB-SENet.

The extracted features (fappi) would contain local spatio-temporal infor-

mation of each subtask as well as temporal dynamics across N frames of each

subtask. In the next step, we should capture the temporal information between

the T subtasks. However, there are some visual clues that should contribute

to the execution score more than the others. Performing a rip entry into

the water making the least amount of splash is more important than other

appearance-based clues like the smoothness of the flight. In order to address

the aforementioned concern, we introduce a bridge connection module to in-

crease the contribution weight of the final subtasks which is where the diver

makes an entry into the water. As discussed before we use HRNet module

to detect the joints in each frame. This module not only provides the joints’

locations but also gives the overall confidence of estimation for each joint. For

example, in the last frames in which the athlete is under the water, the very

distorted visibility of the human body in such frames causes a drastic drop in

the confidence score of its joints estimation. Inspired by this fact, we introduce

a link module to set the weights of subtasks based on the confidence score of

pose estimation in their frames (see the middle part of Fig. 3.4). Given the
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confidence scores of all frames, we first take the average between the confi-

dence scores of each subtask. Thus, considering the output of HRNet as a

F × J × 1 tensor (where F = T × N is the number of frames and J is the

number of joints), the output of the average module would have size T × J .

In the next step, the confidence scores of all joints in each subtask have been

summed to form a T × 1 vector and normalized to (0 − 1) interval. Finally,

the vector is tiled to have the same size as that of the extracted appearance

features (T × C). The Fuser module takes these two (fappi and Wbridge) as

well a scale value (k) to set the contribution of each subtask using the below

formula.

fappo = fappi ⊙ (1−Wbridge(1− k)) (3.1)

As a result, the lower Wbridge a subtask has, the higher contribution to the

score regression it would have. Finally, to capture the temporal information

between the subtasks, the resulting fappo is fed to a Temporal Xception Block

(TXB). This block, introduced by [16], decomposes the temporal dynamics of

the extracted feature sequence into a 1D temporal-wise and a 1D channel-wise

convolutions. Deploying this strategy instead of averaging between the features

of the subtasks has boosted the results in action classification tasks. Finally,

the resulting tensor of the TXB module has been fed to a fully connected layer

to regress a number as the appearance based execution score.

In the end, as evident in Fig. 3.4, the virtual referee calculates the weighted

sum of the appearance-based execution score and the pose-based ones (includ-

ing regressed scores of virtual pose levels) to award the final execution score:

SExef = αappSExeapp + αpSExep + αpL1
SExepL1

(3.2)

+αpL2
SExepL2

+ αpL3
SExepL3

where αapp, αp, and αpLi
represent the contribution weight of appearance-

based, predefined skeleton pose-based, and virtual-pose levels execution as-

sessment.
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3.3.2 Difficulty assessor

Given the joint sequences extracted from the HRNet module and the direction

of filming (west-side or east-side camera), our proposed difficulty assessor clas-

sifies the performed dive and provides the difficulty score based on the FINA

look-up table.

In terms of the rotation type, a performance can be classified into four

different groups: forward, reverse, backward, and inward. The group can be

determined based on the joints position during frames that capture take-off

and entry into the water. For example, when the camera is located in the

east-side of the platform and the athlete faces the front of the board (forward

or reverse; Fig. 3.5a,3.5d), xknee would be greater than both xhip and xankle

(the origin of the coordinates is located at the top left of the picture). On the

other hand, when the athlete takes off with his (her) body back to the water

(backward or inward; Fig. 3.5b,3.5e), xknee would be less than both xhip and

xankle. Another metric that helps determine the group is xankle’s value with

respect to other joints’ positions during frames that capture entry into the

water. As it can be seen in Fig. 3.5a,3.5b,3.5d,3.5e, the joints position in the

take-off frame and entry one together distinct a rotation type from another.

For getting the position of the dive, the module looks for a specific pattern

among all of the frames. In a pike position, the body is bent at the waist but

the legs should remain straight (see Fig. 3.5c). On the other hand, in a tuck

position the knees should be pulled tightly to the chest. If a position is neither

a pike nor a tuck it would be considered as a free dive. Thus, based on angle

between the lower leg and thigh we would be able to determine the position.

In a regular dive we only have the sideview profile of the performance.

However, in a twisted dive the performer rotates its body around the vertical

axis, exposing the full-body profile during the performance (see Fig. 3.5f).

In order to discern a sideview profile from a frontview one, we have set a

threshold for captured shoulder-width of the athlete during the performance.

The #twists can be determined based on number of the switches from a side-

view to a front-view profile and vice versa.
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In order to get the #sommersaults, the module monitors the relative posi-

tions of the thorax and the pelvis joints along the y-axis. In a normal configu-

ration of the body, the thorax should be located in a higher position than the

pelvis. However, this configuration changes as the body is rotated around the

horizontal axis by performing a sommersault. The module counts the num-

ber of configuration switches to provide the #sommersaults. Furthermore, as

evident in Fig. 3.5f, we can also distinguish an armstand dive from the reg-

ular one by getting the configuration of the pelvis and the thorax during the

take-off frame.

Finally, the difficulty of the execution would be assessed based on the type

of rotation, position, #twists, #sommersaults, and whether it was performed

in an armstand position or not, according to FINA difficulty look-up table. The

resulting difficulty score would be multiplied by the execution score provided

by the virtual referee and the overall score determines the ranking of the

competitor.

3.4 Experiments

Implementation Details

The weights of the all SENet blocks of the appearance-based assessor module

are initialized using the ImageNet pretraied weights. As the first convolution

layer takes 3N channels instead of 3, the same procedure as [8] have been

taken to inflate the ImageNet weights.

The network has been trained for 200 epochs with a learning rate of

0.000075 using the SGD optimizer with the momentum of 0.95 and a batch

size of 10. Mean squared error has been used as the loss function of the regres-

sion. The network is trained and tested on UNLV-Diving dataset [42]. The

videos of the dataset are originally normalized to 103 frames. We ignore the

last frame and feed the rest 102 to the network. The number of subtasks (T)

is set to 17 and each one is consisted of 6 frames (N). 300 videos of the dataset

are dedicated to training and the rest 70 are utilized for testing.
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MTL-AQA Ours (ExPose) Ours (MPII)

Armstand? 98.65 100.00 79.46
Rotation Type 97.30 97.57 69.19

Position 95.14 97.84 53.78
#Sommersaults 95.68 98.92 24.59

#Twists 94.05 94.32 28.65

Table 3.1: The results of diving detailed classification on UNLV-Diving
dataset [42].

3.4.1 Quantitative Results

Diving Classification

To the best of our knowledge, there are only two studies in detailed diving clas-

sification [36], [41]. Table 3.1 shows our results compared to MTL-AQA [41]

which performs better than the other one. Aside from outperforming the base-

line study, the proposed diving classifier runs online without the need of being

trained in advance. It takes the extracted pose sequence from the HRNet mod-

ule and outputs the detailed classification of the dive as well as the difficulty

score. On the other end of the spectrum, the MTL-AQA network uses C3Ds

that leads to high computational cost and a huge impact on both training and

testing phases speed.

Although this chapter is mostly geared towards diving routines, a similar

procedure can be taken to assess the performance difficulty of other sports.

For example, the difficulty score of a trampoline routine would be awarded

based on the #twists and #sommersaults performed in the whole task. As

another example, the difficulty of a gymnastic vault performance is assessed

based on the number of turns (twists), the position of flight phase (tuck, pike,

or stretched), and type of the approach towards the handspring (backward or

inward).

Overall Score Assessment

In order to be consistent with existing literature, we have used Spearman’s

Rank correlation as the evaluation metric of our network. We evaluate our

model on UNLV-Diving dataset [42]. As evident in Table 3.2, our proposed
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Method Spearman’s Corr.

Pose-DCT-SVR [44] 53.00
Joint Relation Graphs [39] 76.30

C3D-SVR (best performing in [42]) 78.00
MSCADC-STL [41] 79.79

Li et al . [28] 80.09
C3D-AVG-STL [41] 83.83
Ours (FALCONS) 84.53

Table 3.2: The results of predicting the overall score of the athletes. Our
network outperforms the previous baselines. All networks are trained and
tested on UNLV-Diving dataset [42].

Ablated Model Spearman’s Corr.

Bridge Blocking 69.11
Virtual Pose Levels Removal 76.68

Only Appearance-based 81.75
Only Pose-based 50.04

Table 3.3: The results of systematically removing the components of the net-
work to study their effectiveness in the final results.

model achieves superior performance than prior methods. The parameters

αapp, αp, αpL1
, αpL2

, αpL3
, and k have been set to 0.9, 0.01, 0.01, 0.01, 0.07,

and 0.9 respectively. It should be noted that [41] also proposes a multi-task ap-

proach in which they augmented the original dataset with captioning to jointly

learn the overall AQA score, detailed diving classification, and commentary.

This implementation resulted in Spearman’s Rank correlation coefficient of

88.08. However, as our method is trained on the original dataset without

using excessive information of captioning we have compared our results with

their single-task approach.

We also conducted an extensive ablative study to evaluate the components

of our network. In the first set of experiments, we blocked the bridge connector

by setting the k scale of the Fuser to 1. As a result, all appearance features

would have the same contribution to the execution assessment procedure. In

order to study the importance of non-local pose features, we removed the

contribution of the virtual pose levels by setting their contribution weights

(αpL1
, αpL2

, αpL3
) to 0. We further set αp to 0, relying only on appearance
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features for execution scoring. Finally, we set the αapp to 0 to evaluate the

Only Pose-based execution assessor. In this experiment, αp, αpL1
, αpL2

, and

αpL3
have been set to 0.1, 0.1, 0.1, 0.7 respectively to have the same scale

as the original method. The results of Table 3.3 show how each component

contributes to the effectiveness of our final model.

Generalization to Other Fields

Here we present the effectiveness of our method tested on an unseen event

from another sport. To this end, we use our pretrained network on the UNLV-

Diving dataset and fit a linear regressor on top of the resulting tensor of Fuser

module to test unseen gymnastic vault routines. We freeze all other weights

of the network to be unbiased around the gymnastic vault performances. As

the weight contribution of the appearance features of each subtask is equally

important, we blocked the bridge connector by setting the scale (k) to 1. All

other parameters have remained the same as before. As we have not provided

the framework for assessing the difficulty of the routine in a gymnastic vault

performance (classifier + lookup table), we resort to the evaluation of our

virtual refereeing system that provides the execution score.

We trained and tested the modified network on the gymnastic vault videos

of AQA dataset [42]. The resulted Spearmann’s Rank correlation for this task

is 27.11. At the first glance it seems that the network is underperforming.

However, it should be noted that the ground truth execution scores awarded

by the judges are close to each other. In such condition, the difficulty score

plays a distinctive role in ranking the athletes. Thus, having an effective

difficulty assessor contributes to higher Spearmann’s Rank correlation. The

promising results of our network on the challenging task of assessing an unseen

event from gymnastic vault show that the proposed network can be generalized

to be used in other sports.

3.4.2 Qualitative Results

Fig. 3.6 presents some qualitative results for classifying the dive as well as

assessing it in terms of execution and difficulty. The visual clues like amount
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…

(a) Ground truth - Rotation type: Backward (Armstand), Position: Free, #Somm: 2,
#Twists: 2.5, Difficulty Score: 3.6, Exe. Score: 22.5, Final Score: 81
Predicted - Rotation type: Backward (Armstand), Position: Free, #Somm: 2, #Twists:
2.5, Difficulty Score: 3.6, Exe. Score: 21.78, Final Score: 78.41

…

(b) Ground truth - Rotation type: Forward, Position: Tuck, #Somm: 4.5, #Twists: 0,
Difficulty Score: 3.7, Exe. Score: 25.5, Final Score: 94.35
Predicted - Rotation type: Forward , Position: Tuck, #Somm: 4.5, #Twists: 0, Difficulty
Score: 3.7, Exe. Score: 27.02, Final Score: 99.97

…

(c) Ground truth - Rotation type: Reverse, Position: Tuck, #Somm: 3.5, #Twists: 0,
Difficulty Score: 3.3, Exe. Score: 17, Final Score: 56.1
Predicted - Rotation type: Reverse , Position: Tuck, #Somm: 3.5, #Twists: 0, Difficulty
Score: 3.3, Exe. Score: 15.21, Final Score: 50.19

Figure 3.6: Qualitative results of our proposed method.

of splash as well as joint configuration during the performance, contribute to

the execution score.

3.5 Discussion

In this chapter we present FALCONS, an engine of grading Olympic diving

athletes, based on execution and difficulty assessors. Similar to what human

judges do, the execution evaluation is based on both visual and pose features of

the action. By introducing the notion of virtual super-joints, we augment the

local correlations between connected joints with non-local joint dependencies

of the action. The extracted pose sequences are also utilized by the bridge
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connector module to increase the contribution of the splash scene among other

appearance clues. For extracting the difficulty of the action we propose a

simple assessor that works on the basis of pose features. Finally, the overall

score is provided by the multiplication of the execution and difficulty scores.

The results show state-of-the-art performance compared to previous studies as

well as acceptable generalization to unseen scenes from other sports.
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Chapter 4

EAGLE-Eye: Extreme-pose
Action Grader using detaiL
bird’s-Eye view

From just a glance at a video or by looking into its key frames, you may

infer what action is being carried out in the video. But what if you are asked

to assess the quality of the action? Judging a competitive sporting event and

awarding scores to the performers needs a keen eye for details while still looking

from the bird’s eye view on the whole routine.

In this chapter we address a few other factors that the previous action

assessment methods have neglected, causing the under-performance of their

networks.

The first factor regards how to model an activity. A sports routine can

be considered as a long-term activity, comprising some medium-term phases.

For example, in a figure-skating contest the athlete phrases his/her program

into intro, verse, chorus, and bridge in unison with the music being played

(see Fig.4.1). Each of these phases is composed of some short-term elements

like jumps, spins, and footwork sequences. The judge should keep track of

the execution of each short-term element to award the Grade of Execution

(GOE) [62]. On the other hand, the athlete’s overall skating skill and compo-

sition of the elements through each medium-term phase are assessed to provide

the Program Component Score (PCS) [61]. The same thing can be applied

to other sports fields. A gym-vault routine is constructed of the approach,
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Multi-scale Temporal Kernels for Fine-grained 

Temporal Dependencies (Short-term Elements)

Approach First Flight Second FlightRepulsion Landing

Intro Verse Chorus Bridge

Coarse-grained Temporal Dependencies

(Overall View)

Figure Skating (5824 frames)

Gym-Vault (103 frames)

Figure 4.1: To assess the performance of an athlete both fine and coarse-
grained temporal dependencies should be captured. The assessment is based
on the coordination among the joints/body parts as well as appearance dy-
namics features.

first flight (a half twist on the ground with fully straight knees and body), re-

pulsion (pushing off from the table with straight legs), second flight (airborne

performance of saltos and twists in a tuck, pike, or free position), and landing

phases (see Fig.4.1). The well-execution of each short-term element like a salto

or a twist as well as having an overall smooth performance in medium-term

phases would result in a high score. Existing methods [39], [40], [71] mainly

rely on short-term temporal relations of few consecutive frames and neglect

the long-term temporal relations that create a holistic view over phases. This

problem escalates in the case of longer activities like figure skating in which

each medium-term phase may take a few minutes to unfold. This fact has

led the most of the previous approaches to be only applicable to short-lasting

activities like gym-vault [33], [39], [40].

The second factor regards where and when to attend more to award the
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score. In typical individual sports footage the cameraman tracks the athlete to

locate him at the center of the video. Thus, there should be a higher attention

on the middle pixels of each frame to assess the performance. In the temporal

domain, the judge may deliberately place some components over some others.

For example, in a figure skating contest as the time goes on the athlete gets

more tired and performing each element becomes more difficult. In order to

acknowledge the skill and stamina of the skater, the judge gives bonus marks

to well-execution of short-term elements in later phases [60]. Thus, the later

parts of the performances are most likely to make the differences between

the athletes’ scores. Another example is gym-vault in which having a perfect

landing in the last frames has a higher contribution than other phases in the

scoring schema. On the other hand, there are some parts in long-term activities

on which the judge may unintentionally focus more on. The PCS score of

each figure-skater is awarded after the whole program which takes about three

minutes to complete. As a result, the composition of the components and the

holistic view of the last medium-phases are remembered most. Overall, there

has been a lack of exploration of these factors in awarding the final score.

In this chapter, we propose EAGLE-Eye a modular two-stream network

that sits on top of extracted appearance-based and pose-based features of a

sports activity and evaluates the quality of the performance. The first stream

is responsible for assessing the coordination among the joints and a variety

of body parts with the help of a stack of JCA blocks (see the upper part of

Fig.4.2). The first blocks capture the short-term temporal dependencies of the

individual joints at different tempos with the help of multi-scale temporal ker-

nels and temporal-wise channel convolutions. By stacking more of these JCAs

both the temporal and semantic receptive field gets more broad, contribut-

ing to capture the holistic view of the performance as well as dependencies of

different body parts/super-joints. Likewise, the second stream captures the

both fine and coarse-grained appearance dynamics with the help of its stacked

ADA blocks (see the lower part of Fig.4.2). The network is also supplied with

some spatial and temporal attention blocks to increase the contribution of the

frames’ middle pixels and last medium-term phases in assessing the sports
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action.

We summarize the contributions of this chapter as follows:

� In order to handle estimation of the pose in the extreme contortions of

the body in different sports, we have extended the ExPose dataset [33] to

cover other sports than diving like synchronized diving, snow-boarding,

and skiing. It is demonstrated that training the pose estimator on this

dataset improves its performance in the extreme pose configurations of

such sports.

� We propose a modular network that quantifies how well an action has

been performed based on both fine and coarse-grained temporal depen-

dencies. Same as the case of human judges grading schema, both visual

and pose clues have been involved in the assessment.

� The proposed network not only outperforms the previous works in short-

term actions assessment but also is the first to demonstrate a good gener-

alization to the case of long-term sports activities like figure-skating. We

further provide a thorough ablation study to evaluate the effectiveness

of each block of the network.

4.1 Approach

This section outlines our proposed action quality assessor. The overview of our

pipeline is depicted in Fig.4.2. Here we delve into each block of the network

and describe the intuition behind them.

4.1.1 Explicit Spatio-temporal Attention

Given the small size of existing datasets in AQA, proposing a simple attention

mechanism that does not make the network deeper is of great importance.

Here, we introduce our simple yet effective AQA-specific attention block to

capture the most important parts of a routine. The first objective of this

block is to model the deliberate higher attention of a judge to the last parts’

short-term elements of a routine in the temporal domain. To this end, we
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Figure 4.2: Overview of our pipeline. The network regresses the score of
each performance based on both pose and appearance clues with attending to
short-term elements as well as holistic view of the performance.

propose an explicit temporal attention block that gradually attenuates the

contribution of the first phases of a performance. Let’s consider the input of

this block as X with the dimension of T×H×W×C in which T is the number

of timestamps, H andW are the spatial size of each frame, and C is the number

of channels. Then the block produces X̃ by element-wise multiplication of the

input feature with explicit temporal importance mask (M e):

X̃h,w,c = Xh,w,c ⊙M e (4.1)

M e
t = a+ (1− a)

t

T
(4.2)

In which 1 ≤ c ≤ C, 1 ≤ t ≤ T , 1 ≤ h ≤ H, 1 ≤ w ≤ W and a is a constant

coefficient 0 ≤ a ≤ 1. As a result, a ≤ M e
t ≤ 1.

The other objective of this module is to increase the spatial attention on

the center of each frame. We propose a spatial attention block that applies

a gaussian importance mask to its feature map input. As a result, the mid-

dle pixels of the appearance features which are more likely to represent the
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Figure 4.3: The overview of a JCA block.

athlete’s body would have a higher contribution in awarding the score.

X̃t,c = Xt,c ⊙M s (4.3)

M s
x,y = e−

(x−µ)2+(y−µ)2

2σ2 (4.4)

4.1.2 Joints Coordination Assessor (JCA)

Our proposed JCA block is responsible for extracting the temporal pattern

of body joints and parts which is depicted in Fig.4.3. Firstly it takes the

T×H×W×C pose heatmaps of the routine in which C represents the number

of joints. This input is fed to a set of multi-scale channel-wise separable

temporal convolutions to capture temporal dependencies of joints at different

scales. Utilizing fixed-size temporal kernels seem to be too rigid to model

the complex temporal structure of short-term elements in a routine. A diver

may perform a somersault and a twist together. These two elements may

have different tempos and it is important to capture temporal dependencies

throughout each element.

The next step is to capture the coordination among the joints. To this

end, a temporal-wise separable channel convolution extracts the dependencies

in the semantic subspace in which each channel represents an individual joint.

In assessing an action, the motion and coordination of different body parts

is also monitored consistently. The symmetry of different body parts during

the performance makes it aesthetically pleasant. In order to systematically

capture such features we employ a set of average pooling with different kernel

and stride sizes along channels. As a result, a variety of body parts/super-

joints at multiple scales are formed. Consequently, the convolution filters of
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the next JCA block would capture the motion and coordination of these super-

joints.

As discussed before, having a holistic view over the performance is of great

importance for assessment purposes. Therefore, a temporal max pooling block

at the end of each branch increases the temporal receptive field. Thanks to this,

the next JCA block would be able to capture longer temporal dependencies.

Obviously, minute-long activities like figure-skating require stacking more of

these JCA blocks to capture the dependencies between distant frames (see

Fig.4.2).

In the case of group activities, the pose heatmap contains more than one

instance for each joint. In such cases the dependence between the joints of each

performer with another should be extracted. For example, in a synchronized

diving contest capturing the symmetry between the performers’ joints is an

important criterion of assessment. The spatial convolution block of JCA is

responsible for catching such dependencies.

Finally, an implicit temporal attention block models the automatic fade of

the first parts of a performance in the judge’s short-term memory. A judge

awards the PCS score of each figure-skating routine after the completion of

the whole performance. Each routine takes two minutes and forty seconds on

average. With the passage of time, the first parts of the performance become

attenuated in the judges memory. To model this effect we propose a sigmoidal

implicit temporal importance mask (M i):

X̃h,w,c = Xh,w,c ⊙M i (4.5)

M i
t =

1 + be
−T
d

1 + be
−t
d

(4.6)

In which b and d are constant coefficients (0 ≤ b ≤ 1, 1 ≪ d ). As a result

1+be
−T
d

1+b
≤ M i

t ≤ 1.

Consequently, the next JCA blocks which are responsible for capturing a

holistic view of the performance would perceive a higher attention on the last

parts. It should be noted that the explicit temporal attention block impacts the

assessment of fine-grained dependencies in both short and long-term actions.
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Figure 4.4: The overview of an ADA block.
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However, the implicit temporal attention block contributes to attending more

on last phases coarse-grained dependencies in a long-term action assessment.

4.1.3 Appearance Dynamics Assessor (ADA)

We further propose ADA blocks to capture the dynamics of appearance fea-

tures. The architecture of an ADA block is depicted in Fig.4.4.

The input to each ADA block is either the output of its previous ADA block

or the output of appearance features extractor backbone (like I3D[8]). At the

first step, a depth-wise separable spatial convolution captures the cross-channel

correlations of the input feature map. It also shrinks the semantic subspace by

a factor of N . As a result, stacking ADAs wouldn’t lead to the explosion of the

number of channels. The proposed AQA head relies heavily on its appearance

features extractor backbone to capture the spatial dependencies. Thus, given

the small changes that the spatial attention block has made, this lightweight

spatial convolution layer suffices in the new setting. Secondly, same as the

case of JCA blocks, multi-scale temporal kernels are employed to capture the

different visual tempos of appearance clues. Finally, as depicted in Fig.4.2,

the resulted feature map of the ADA stream is concatenated with the JCA

stream over semantic subspace and fed to a BN − ReLU − FC layer to get

the final score.

4.2 Dataset

G-ExPose extends ExPose[33] by 7500 annotated images from four different

sports.The G-ExPose dataset contains 2500 snowboarding, 2000 skiing, 1500

synchronized diving, and 1500 gym-vault 2D annotated images. The snow-
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Figure 4.5: Qualitative test-time pose predictions of HRNet[55] model trained
on MPII (first row), ExPose (second row), and G-ExPose (third row), respec-
tively.

boarding images are obtained from 2018, 2019, and 2020 X-games competitions

at Aspen. The skiing images are taken from X-games 2020 ski big air contests

at Aspen and Norway. We extended ExPose to also cover highly occluded

synchronized diving images by introducing a set of 1500 annotated images

from women’s 3 meter springboard and men’s 10 meter platform synchronized

diving finals at 2016 European diving championships in London. We further

enlarged gym-vault samples of ExPose by annotating 1500 images from Rio

2016 Olympics and Stuttgart 2019 world championships women’s vault finals.

In G-ExPose, we followed the same image collection and annotation strategy

that we used in ExPose.

We first present the qualitative results of training the HRNet pose esti-

mator on the G-ExPose dataset. As evident in Fig. 4.5, MPII dataset is not

suitable for estimating the contortive poses of a competitive sports activity

which is taken by a moving camera. Besides, although we demonstrated the

effectiveness of using ExPose in estimating the pose in a diving routine, utiliz-

ing this dataset leads to failure of the estimator in the case of other contortive
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Sports Field MPII[3] ExPose G-ExPose

Diving 47.6 83.7 —
Sync. 3m 27.2 45.2 56.7
Sync. 10m 29.3 53.6 63.9
Skiing 18.8 5.5 30.5

Snowboarding 20.1 9.1 31.0
Gym Vault 24.0 38.8 53.2

Table 4.1: The quantitative results of HRNet pose estimator[55] on the 100 an-
notated images of each extreme sports field when trained on MPII, ExPose and
our G-ExPose dataset. The evaluation metric is the standard PCKh@0.5[3],
[55]. The position of a joint is correctly estimated if its distance with the
ground truth is within 50% of the head segment length.

sports.

Besides the qualitative evaluation, we further quantitatively assessed the

effectiveness of the datasets in extreme pose configurations in comparison with

ExPose and an in-the-wild normal activities pose dataset like MPII in Tab.

4.1. To this end, we first picked 10 videos from each field of AQA-7[40] dataset

and annotated 10 images from each video with a focus on the main parts of

the execution. This dataset contains 1106 sports routine videos as well as their

correspondent score from diving, synchronized diving (3 and 10 meters), gym-

vault, snowboarding, and skiing. As a result, a set of 600 annotated images

from 6 different fields got collected. We then evaluated the performance of the

SOTA HRNet [55] pose estimator on the 100 images of each field when it is

trained on G-ExPose, ExPose, and MPII. As it can be seen from Tab.4.1, the

HRNet which is trained on G-ExPose, outperforms others in the extreme pose

estimation task. It should be noted that there is no conflict between G-ExPose

and AQA-7 source events.

4.3 Experiments

4.3.1 Datasets and Implementation Details

For short-term AQA we follow recent works [39], [40] and evaluate our ap-

proach using the AQA-7 dataset. Each video of the dataset is originally nor-

malized to 103 frames. We follow the same train-test data split as [39], [40].
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In order to get the appearance features of each video, we use the output of

mixed-5c layer of an I3D network pretrained on the Kinetics dataset[8]. Let’s

consider the input video to the I3D model as a T×H×W×3 matrix. The

mixed-5c layer of the I3D network outputs a T
8
×7×7×1024 to be fed into the

ADA stream. To make the both ADA and JCA streams output features with

the same timesteps, the JCA stream is followed by a temporal max pooling

with the stride and kernel size of 8. Besides, an average pooling at the end of

JCA stream reduces the spatial size of the pose features output to have the

same spatial dimension as the ADA stream output. To stabilize the learning

process and capture the complex structure of the data, a BatchNorm-ReLU

layer is embedded between two successive ADA (JCA) blocks.

For our pose features extractor backbone we entangled the DiMP [4] visual

object tracker with the HRNet pose estimator (trained on G-ExPose). The

channel shrinkage factor of the ADA blocks (N) is set to 2. The short-term

attenuation temporal coefficient (a in Eq.4.2) is set to 0.9. The mean and the

standard deviation of the spatial importance mask (see Eq.4.4) are set to 4

and 5 respectively. As discussed before, the implicit temporal attention block

should only impact the long-term activities assessing. Thus, we set the long-

term temporal attenuation coefficient (b in Eq.4.6) to 0 in short-term action

assessment.

For assessing long-term actions we utilize the fc6 layer of C3D network[58]

to get the appearance features of the performance. Since the spatial size of

the extracted features is 1, the spatial attention block is removed.

During the training, the backbone networks are frozen. We first train the

EAGLE-Eye network on diving samples of AQA-7 dataset. For assessing other

short-term sports except skiing, we fine-tune the diving pretrained model on

each of the sports separately. The skiing assessor network jump-starts from

the model that is fine-tuned on snowboarding samples. In order to assess

the long-term figure-skating videos, we first pretrain the EAGLE-Eye on the

task of classifying the sports from each other. To this end, we first repeat

each short-term sports video (103 frames) to fit 5824 frames of figure-skating

samples. We then train the network to classify each sport from the other.
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Method Diving Vault Skiing Snowboard

Pose-DCT-SVR [44] 53.00 — — —
ConvISA [27] — — — —
ST-GCN [72] 32.86 57.70 16.81 12.34

C3D-LSTM [40] 60.47 56.36 45.93 50.29
C3D-SVR [40] 79.02 68.24 52.09 40.06
JR-GCN [39] 76.30 73.58 60.06 54.05
AIM [14] 74.19 72.96 58.90 49.60

C3D-(S+M)LSTM [71] — — — —
Ours 83.31 74.11 66.35 64.47

Table 4.2: Detailed results on individual actions of AQA-7[40] dataset that
contains short-term activities. First and second best are shown in color.

Finally, we use the resulted trained weights to fine-tune the EAGLE-Eye for

assessing the figure-skating videos.

In order to assess the effectiveness of the proposed model in long-term

sports activities we evaluate it on the extended version of the MIT-Skate [44]

by [42]. This dataset contains the awarded scores of 171 single figure-skating

videos that take 2.5 minutes on average. In order to normalize all videos to

a fixed number of frames we first extract the frames of all videos at 25 fps .

We then zero-pad the first frames of each video to fit to 5824 frames which

is the longest video’s number of frames. We follow [42] and randomly split

the dataset into 100 samples for training and 71 for testing. Since a figure

skating routine does not involve extreme pose configurations, we train the

pose estimator backbone on the COCO+Foot dataset [5]. In the long-term

action assessing we set b and d coefficients to 0.5 and 1000 respectively.

We train the model for 500 epochs with the learning rate of 0.005 and the

batch size of 20 using Adam optimizer[23]. We use the MSE loss function to

train the model and award the scores, following what other regression-based

AQA methods[39], [40], [42] have done. To be consistent with the previous

works, we use the Spearman’s Rank correlation to evaluate the performance

of the model and compare the predicted scores with the ground-truth. For

further details refer to the supplementary document.
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Method Sync. 3m Sync. 10m Avg. Corr. Skating

Pose-DCT-SVR [44] — — — 35.00
ConvISA [27] — — — 45.00

ST-GCN [72] 66.00 64.83 44.33 —
C3D-LSTM [40] 79.12 69.27 61.65 51.07∗

C3D-SVR [40] 59.37 91.20 69.37 53.00
JR-GCN [39] 90.13 92.54 78.49 —
AIM [14] 92.98 90.43 77.89 —

C3D-(S+M)LSTM [71] — — — 57.69∗

Ours 91.43 91.58 81.40 60.10

Table 4.3: Detailed results on synchronized short-term actions of AQA-7[40]
dataset and long-term figure skating videos of extended MIT-Skate dataset
(171 samples)[42]. First and second best are shown in color. Following [39],
[40], we use Fisher’s z-value to compute the average correlation between all
six short-term sports fields of AQA-7 dataset. The results marked with ∗ are
obtained by reimplementing the correspondent method. [71] reported 59.00
Sp. Corr. for the old MIT-Skate dataset (150 samples) in the original paper.

4.3.2 Results

We first evaluate the performance of our network on short-term activities of

AQA-7 dataset. It should be noted that we have used two ADAs and two

JCAs for assessing a short-term action. As it can be seen in Tables 4.2, 4.3,

the proposed method outperforms the existing SOTA AQAmethods. Its worth

mentioning that the JR-GCN [39] and AIM[14] methods have used the exces-

sive optical flow information while our method resorts to the RGB frames

input. The largest gaps belong to skiing and snowboarding sports. In these

sports’ video footage, the size of the athlete is much smaller than the size of the

whole frame. Therefore, it is not surprising that methods like [40] which only

rely on whole-scene appearance features to regress the score of the performers,

are underperforming significantly. Besides, in such fields the position of each

individual joint is as important as the symmetry of different body parts during

the execution. Failure to grab the board or any insecurity that requires hand

movements to remain stable affects the score negatively. Thus, extracting the

features of some predefined local patches around the joints (which has been

done in[39]) results in neglecting the individual joints position and motion of
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Ablated Model Diving Vault Skiing Snowboard

W/o Explicit Temporal Att. Block 82.66 72.91 62.11 63.23
W/o Spatial Att. Block 82.83 72.11 63.45 61.16

Fixed-size Temporal Kernels 76.71 67.17 55.09 51.99
W/o Channel Avg 81.87 71.24 63.73 62.15
W/o JCA Stream 80.95 70.96 60.46 60.63
W/o ADA Stream 74.30 70.58 57.90 57.90

# JCA and ADA Blocks = K − 1 79.86 72.24 62.55 59.83
# JCA and ADA Blocks = K + 1 81.53 71.18 64.94 62.11
Only Whole-Scene Appearance 63.39 68.72 51.79 50.53

W/o Implicit Temporal Att. Block — — — —
MPII -trained pose estimator 80.19 69.72 62.88 62.95

Ours 83.31 74.11 66.35 64.47

Table 4.4: Ablation study results on individual actions of AQA-7 dataset[40].
We systematically removed the components of our network to evaluate their
contribution to the full model. K is equal to 2 for short-term actions assess-
ment

some body parts to award the score. On the other hand, our pose-based as-

sessment stream not only works intuitively as an action localizer, it also judges

the position of the joints as well as the motion of a variety of body parts.

We further evaluate the performance of our model on the long-term figure-

skating sports activity. In order to have a fair comparison with the existing

works, we changed the appearance features extractor backbone to C3D to

have the same backbone as theirs. Following [71], we feed the output of fc6

layer of C3D network which is pre-trained on Sports-1M dataset[22] to our

ADA stream. As discussed before, long-term temporal reasoning is crucial to

model the judge’s impression of the overall performance of the figure-skater.

To this end, more JCAs and ADAs (here we use 4) are stacked in the long-term

activities assessment. As demonstrated in Tab.4.3, our model generalizes well

to long-term action assessment task.

We conduct a comprehensive ablation study to evaluate the effectiveness

of our models components (see Tables 4.4, 4.5). We first removed the explicit

temporal attention block to uniformly attend to all frames in a short-term

activity. As a result, we are neglecting the fact that having a clean landing

in a snowboarding routine or performing a vertical entry to the water with
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Ablated Model Sync. 3m Sync. 10m Skating

W/o Explicit Temporal Att. Block 90.59 89.72 59.66
W/o Spatial Att. Block 91.50 90.76 —

Fixed-size Temporal Kernels 87.17 86.81 54.53
W/o Channel Avg 89.28 90.43 57.22
W/o JCA Stream 88.70 90.18 55.49
W/o ADA Stream 85.28 85.64 51.11

# JCA and ADA Blocks = K − 1 88.16 89.20 57.72
# JCA and ADA Blocks = K + 1 90.24 88.32 58.41
Only Whole-Scene Appearance 87.83 88.32 44.23

W/o Implicit Temporal Att. Block — — 58.73
MPII -trained pose estimator 86.51 87.94 —

Ours 91.43 91.58 60.10

Table 4.5: Continuation of 4.4. Ablation study results on synchronized short-
term sports fields of AQA-7 dataset[40] samples and long-term figure-skating
samples of MIT-Skate dataset[42]. K is equal to 2 for short-term and 4 for
long-term assessment.

the least amount of splash in a diving performance are the most distinctive

features of the execution[1]. In the second set of experiments we removed the

spatial attention block of the ADA stream. Therefore, we equally attend to

each pixel of the extracted appearance features, no matter whether it belongs

to the background or the athlete’s body. The third row of Tables 4.4,4.5 refers

to the results of using fixed-size temporal kernels instead of multi-scale ones.

Consequently, the same temporal kernel size for capturing complex tempo-

ral dependencies of the two short-term elements that are performed together

would be used. Fourthly, we removed the temporal-wise average pooling of the

JCA blocks. As a result, the coordination among the virtual super-joints/body

parts would not be captured. In the next set of experiments we removed the

whole JCA stream and ADA streams to validate their contribution in the

action assessment. The drastic drop of the performance is because of solely

relying on either appearance dynamics or joints coordination and motion fea-

tures. We further changed the number of JCA and ADA blocks to confirm

the optimality using two blocks. If we only use one JCA block the dependen-

cies among the formed body parts/virtual super-joints would not be captured.

Furthermore, given the small number of frames in short-term activities using
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Figure 4.6: Learned weights of the k=5 temporal convolution in ADA (left)
and JCA(right) blocks for figure-skating. The upper plot refers to the second
ADA(JCA) and the lower one refers to the fourth ADA(JCA). Due to limited
space the first 25 channels have been visualized.

three JCA and ADA does not seem beneficial since it leads to the increase

of the number of parameters and overfitting problem. Next we evaluated the

performance of the network when it only uses the appearance features of the

backbone, by removing the JCA and ADA blocks and completely neglecting

the pose features. We further evaluated the performance of the network in

different numbers of JCAs and ADAs blocks and it turned out that using 4

blocks leads to the best performance. We then removed the implicit temporal

attention blocks, assuming that the all medium-term phases of the long-term

action have the same contribution in the overall impression. It should be noted

that this block is already deactivated in short-term action assessment. Finally,

we assessed the performance of the network when the pose estimator is trained

on the MPII normal activities pose dataset. As listed in Tables 4.4,4.5, the

network achieves its full potential when all of its components are utilized.

We then visualize the learned weights of our model in Tab.4.6 following

[19]. For brevity, we resorted to the temporal kernel with size of 5 and com-

pared the transitions among the learned weights in each channel between two

ADA(JCA) blocks. The upper plot in Fig.4.6 represents the learned weights

of the second ADA(JCA) block. The rapid transitions among the weights in

each channel demonstrate that this block is capturing the fine-grained tempo-

ral dependencies. On the other hand, as depicted in lower plot of Fig.4.6, the

transitions among the 4th block learned weights are smoother, confirming the

fact that this block is responsible for capturing coarse-grained dependencies.
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(a) Diving- Ground-truth score: 102.6, Predicted score: 96.91

(b) Sync.3 Diving- Ground-truth score: 69.75, Predicted score: 72.36

(c) Gymnastic Vault- Ground-truth score: 15.7, Predicted score: 15.81

(d) Big air snowboarding- Ground-truth score: 26, Predicted score: 23.19

(e) Big air skiing- Ground-truth score: 47, Predicted score: 44.20

Figure 4.7: Some qualitative results on short-term actions of AQA-7
dataset[40]
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Figure 4.8: The qualitative results of long-term figure-skating sport (MIT-
Skate dataset [44])- Ground-truth score: 49.74, Predicted score: 47.18

In the end, we present some qualitative results for assessing the quality of

both short and long-term activities as well as their estimated pose sequence.

It should be noted that in the short-term actions the pose estimator is trained

on our G-ExPose while for figure-skating it is trained on the COCO+Foot

dataset [5]. Fig.4.7 depicts the qualitative results for five different short-term

sports; diving, synchronized diving (3m), gym vault, snowboarding, and skiing.

The qualitative results of long-term figure-skating assessment are depicted in

Fig.4.8.

4.4 Discussion

In this chapter, we argue that evaluating the quality of an action requires

incorporating appearance and pose features of the performance in both fine

and coarse-grained temporal scales. To this end, we present a modular two-

stream network that sits on top of extracted appearance and pose features of

an action to assess it. The first stream is composed of a stack of JCA blocks

that are responsible for evaluating the configuration of the joints and body

parts throughout the performance. The other stream assesses the appearance

dynamics of the action owing to its constituting ADA blocks. Empowering

the network with more JCA and ADA blocks leads to capturing long-term

coarse-grained temporal dependencies that represent overall impression of the

program. Our experimental evaluation demonstrates that our method achieves

the state-of-the-art results on short-term action assessment in comparison to

prior works. Moreover, the proposed modular network adapts simply to long-
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term action assessment by stacking more JCA and ADA blocks and outper-

forms the previous works on this task as well.
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Chapter 5

Enhancing Human Motion
Assessment by Self-supervised
Representation Learning

The problem of labeled data scarcity has marred the effectiveness of using

deep neural networks in some fields like medical image analysis. The difficulty

of collecting the images and privacy concerns have led to limited access to

both healthy and abnormal samples. However, that is not necessarily the case

for healthy samples in video-based healthcare monitoring and rehabilitation

movement assessment. In such cases, a healthcare professional asks the patient

to do some daily activities like walking and sit-standing. Then the performance

of the patient is assessed based on posture accuracy of the body parts, motion

smoothness, and the speed of the movements. Although getting such video

samples of the patients that are labeled by an expert is still an issue, there is a

myriad of such daily activities performed by healthy people readily available in

datasets like UWA3D [47] and UTKinect [70]. In this chapter, we address the

question of: how can we learn a representation from these healthy samples to

help develop a more accurate yet shallower network to assess the performance

of patients’ actions?

We as humans have seen lots of such daily activities in our lives. Our visual

system has learned to be sensitive to anomalies it sees like an abnormal walking

pace or an impaired posture over time [15], [68]. As a result, given a stroke

or Parkinson’s patient movement, we would be able to estimate the severity
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Figure 5.1: An overview of our two-stage pipeline. At stage 1, the non-expert
module is trained on the large-scale, well-annotated source benchmarks of
healthy samples performing daily living activities. At stage 2, the expert
module is further trained on the small-scale and less-annotated target train-
ing set for assessing e.g. disease severity, by taking as input both the learned
representations from the non-expert module and the motion appearance fea-
tures of the target dataset. Note the input to expert module is an RGB video.
However, since we are not permitted to display the raw color images, their
depth images are instead presented here as a substitute.

of the disease to some extent based on how slow or impaired it is. Inspired by

this fact, we propose a Non-expert network that takes the pose sequence of an

activity performed by a healthy person and learns some representations of the

action in a self-supervised manner. As it can be seen from the left side of Figure

5.1, this network has a multi-head decoder with a shared encoder. First, some

slower pose sequences are generated from the normal paced sample by altering

the temporal sampling rate. The goal of the first decoder is to estimate the

sampling rate to be as close as possible to the ground-truth one, given the

representations of the encoder. Secondly, we manually inpaint some joints of

the skeleton in the sequence and the second decoder is employed to estimate

those masked joints. After training this deep network on the large dataset of

healthy samples we would have a representation that is sensitive to the both

pace and impaired posture of the movements.

At the next step, the pose sequences of the target dataset which has a fewer

number of samples are fed to the non-expert encoder to get the representations

of the action. These representations are fed to a shallower Expert network to
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assess the performance of the patient when doing that specific action (see the

right side of Figure 5.1). Since the pose features are not informative enough

to assess the smoothness of the movements and overall posture of the body,

the expert network is further equipped with another stream of appearance

features assessment. These features can come from a backbone network like

the well-known C3D [58] or I3D [8]. The whole network can be seen as a

collaboration of the deep non-expert and shallow expert networks. The non-

expert provides feedback (representations) about the pace and impairment of

an action based on lots of healthy samples it has seen beforehand. The expert

network takes this feedback as well as the appearance features of the video

to quantify how well the action was performed. If the video itself (target

dataset) is not available due to privacy issues or any other reason, the expert

resorts to the pose representations that come from the non-expert to assess

the performance.

Our main contributions in this chapter can be summarized as follows:

� We present a two-stage network to automatically assess the performance

of a patient from the RGB video of doing an action. At the first stage, a

non-expert network learns representations of a large of-the-shelf dataset

pose samples by predicting their pace and impairment in a self-supervised

manner. Finally, an expert network leverages the learned representations

of the target dataset and appearance features of the video to assess the

severity of the disease. To the best of our knowledge, we are the first

to make use of self-supervised representation learning in action quality

assessment.

� The proposed method not only shows a superior performance in com-

parison to previous works in rehabilitation progress assessment but also

is the first to show a good generalization to the case of infants general

movements assessment and their early disease detection.
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Figure 5.2: The architecture of the Non-expert network. The upper decoder
predicts the pace of the sequence and the lower one inpaints the masked joints
of the skeleton.

5.1 Approach

This section outlines our two-stage network and gives more details about each

block of Figure 5.1. At the first stage, an encoder-decoder based non-expert

network learns representations of a pose sequence from an off-the-shelf dataset

in a self-supervised manner. Secondly, the expert uses the encoder and the

representations from the previous stage to assess the performance of a patient’s

action sample of the target dataset.

5.1.1 Non-expert

The architecture of our non-expert network is depicted in Figure 5.2. This

multi-head network aims at predicting the pace and impairment of a pose

sequence without requiring any explicit label and just with the help of the

pose sequence itself. Let’s denote all the joints of a skeleton sequence as a set

S = {Xk
t |t = 1, 2, ..., T ; k = 1, 2, ..., J}, where Xk

t is the position of kth joint in

the tth frame. T is the total number of frames and J is the number of the joints

in a human body skeleton. At the first step, a pace level is randomly selected

from a pool of N temporal sampling rates P = {pi|i = 1, 2, ..., N ; pi ≤ 1}. This

pace level determines how slow the pose sequence should be. Secondly, a pace

adjustment module samples [T × pi] consecutive frames from S. To make the
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new sequence have the same length as S one may repeat the sampled frames or

use their linear interpolation. Here, we use the second approach to make the

new sequence (S ′) fit T frames. As a result, we would have a pose sequence

that is slower than the original one. The smaller pi gets, the slower S ′ would

be. An overview of how the pace adjustment module works is presented in the

lower-left side of Figure 5.2.

The slowed sequence is then fed to our shared encoder (a bidirectional GRU

with two hidden layers) to generate the representations of the sample. Each

of the decoders then takes these representations to do two different pretext

tasks. The first decoder is responsible for estimating the pace of the slowed

sequence (upper part of Figure 5.2). We use the multi-class cross-entropy loss

for the pace decoder head:

Lpace = −
N∑
i=1

pi log p̂i (5.1)

Where pi is the ground truth pace level sampled from the temporal sam-

pling rate pool and p̂i is the predicted pace by the first decoder.

In parallel, the second decoder takes the representations of the encoder as

the initial state of the cells and the manually masked skeleton sequence as the

inputs to the cells of the GRU. In order to get the masked skeleton sequence,

a random part (bi) is first sampled from the set of legs and hands of the body’s

two sides B = {bi|i = 1, 2, 3, 4}. The position of each joint that belongs to

that part is then set to zero . This would result in a new sequence (Ŝ ′). It

should be noted that once a part is chosen, all of the frames in the sequence

would be masked in the same way. As a result, the decoder wouldn’t be able

to estimate the masked part of a frame from its neighbors. For the second

decoder we use the reconstruction L2 loss:

Lrec =
T∑
t=1

J∑
k=1

(X ′k
t − X̂ ′k

t )
2 (5.2)

Where X ′k
t is the ground-truth unmasked skeleton sequence and X̂ ′k

t is the

inpainted one. Although the decoder is able to fill in the masked joints, there
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is no guarantee that the inpainted skeleton is visually plausible. To address

this issue, a discriminator sits on top of the inpainted skeleton to adversarially

make it more realistic. Thus, the inpainting decoder loss should be revised as

follows:

Linpaint = Lrec + αLadv =
T∑
t=1

J∑
k=1

(X ′k
t − X̂ ′k

t )
2+ (5.3)

α
(
log(Disc(S ′)) + log(1−Disc(Ŝ ′))

)
Where α is a constant that adjusts the adversarial loss to make the op-

timization stable. The parameters of the pace and inpainting decoders are

updated w.r.t the Lpace and Linpaint respectively. However, since the encoder

is shared between these two decoders, its loss function should have a touch of

both Lpace and Lrec. Thus, the encoder’s parameters are updated based on the

following loss function:

Lenc = Lrec + βLpace (5.4)

Where β is a constant that controls the weight of two decoders. It should

be noted that per Zheng et al . [76] suggestion, the encoder should stick to

generating the representation regardless of how visually realistic the inpainted

skeleton is. This strategy would help the encoder to focus on capturing the

motion dynamics for the next stage and not to sacrifice it for style and realis-

ticity of the sequence which can be solely handled by the decoder. Therefore,

the Ladv shouldn’t be involved in the encoder’s parameters updating process.

At the end of this stage, we would have an encoder that is going to be used

in the next stage to provide representations for samples of the target dataset.

In other words, the non-expert learns representations by doing the pretext

tasks and the expert uses these representations to perform the downstream

task which is the action quality assessment.

5.1.2 Expert

The goal of our expert network is to use the non-expert representations and

appearance features of a patient’s action to assess it. As depicted in Figure
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Figure 5.3: The architecture of our two-stream Expert. This network takes
the RGB video of a patients action and evaluates it based on both appearance
and pose features. In case due to privacy concerns the videos aren’t provided
and we only have access to the pose sequences, we stick to the lower stream
of the network.

5.3, given the RGB video input, this two-stream network assesses the pose and

visual clues of the action in parallel.

The upper stream is responsible for evaluating the appearance features.

To this end, the video is first fed to a feature extractor backbone like C3D.

The resulted features are then fed to a stack of two appearance assessment

modules to get more high-level spatio-temporal dependencies inspired by [34].

The first block of this module is a point-wise convolution to reduce the number

of channels in the extracted features. As a result, this stream would have

a comparable number of channels to the lower one. At the next step, the

output goes through a set of depth-wise separable temporal convolutions to

capture visual clues with different tempos. Then, a temporal max-pooling

layer increases the receptive field in the temporal subspace. As a result, the

next module of the stack would observe a broader temporal field to capture

long-term temporal dependencies. Finally, the three tensors from the three

branches are concatenated over the semantic subspace.

The lower stream first takes the video and extracts the pose sequence of it

using an off-the-shelf pose estimator like OpenPose [5]or HRNet [55]. The pose

sequence is then fed to the encoder that we trained in the previous stage for the

non-expert. At the next step, a shallow bidirectional LSTM with one hidden

layer takes the resulted representations to get the dependencies between the
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frames. Finally, the output of this stream is concatenated with the appearance

assessment stream and fed to a stack of batch normalization - ReLU activation

- FC to provide the score for the performance.

As a result, our two-stage network not only takes advantage of the large

off-the-shelf datasets to learn representations of a movement but also isn’t sus-

ceptible to be overfitted to the small target dataset. Intuitively, the non-expert

function resembles what humans do. It provides some generic representations

about the sequence. The expert which could be the healthcare professional

in the real world knows these representations and is able to do more detailed

analysis about both pose and visual clues to evaluate the patient’s performance

.

5.2 Experiments

5.2.1 Implementation Details

Dataset: We use the off-the-shelf UWA3D [47] and UTKinect[70] datasets

to train the non-expert network on the pretext task. The UWA3D dataset

contains 30 daily living actions (e.g. sitting down, bending, etc.) performed

by 10 subjects from 4 different views. The dataset has a set of 1075 sequences

in total. The UTKinect dataset consists of 200 samples of 10 actions like

walking, picking up, etc. performed twice by 10 subjects. The non-expert is

first trained on the UWA3D and the learned parameters are then used as the

pretrained weights for training the network on the UTKinect dataset.

The expert network is trained on the target KIMORE dataset [6] to do

the downstream task of action quality assessment. This dataset collected a

set of 78 subjects performing 5 different exercises like squatting and moving

a bar. 44 of these subjects are healthy people (29 males, 15 females) and 34

of them (15 males, 19 females) are suffering from motor dysfunctions due to

Parkinson’s, stroke, or lower back pain. All of the samples are labeled with

clinical scores by a healthcare professional. This dataset is the only accessible

and publicly available annotated dataset at the time of writing this thesis.

To further assess the performance of the proposed method we study its
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generalization to the new task of infants’ general movement assessment. To

this end, we trained the expert network on the dataset of infants’ neuromo-

tor risk evaluation released by [9]. This dataset consists of 19 at-risk infants

playing with a toy and a set of 85 healthy samples from YouTube. A clinician

has annotated the at-risk infants’ movements into low, moderate, and high

risk for motor dysfunction and getting cerebral palsy (CP) in the future. CP

causes stiffness of the joints which affects the normal pace, symmetricity of the

movements, and overall balance of the infant. A CP patient may not bring

both hands together when playing and weakness of the joints causes delays

and slowness in performing the movements.

Training Details: The temporal sampling rate pool in the non-expert net-

work contains five different pace levels: 0.6, 0.7, 0.8, 0.9,1. The slower pace

levels represent the severe cases of the disease and p = 1 is the normal pace

of a healthy person. The reason behind using these levels is to cover all lev-

els of severity based on a recent claim that the average motor frequency of

Parkinson patients walking is 0.94
1.3

slower than that of healthy people [38]. The

encoder and both decoders of the non-expert network have two hidden layers.

In order to get the appearance features of the target dataset samples, we use

the output of fc6 layer of the C3D network, pretrained on UCF101 dataset

[53]. The off-the-shelf pose estimator of the expert is an OpenPose network

that is trained on the COCO+Foot dataset [5], [30]. The coordinates of each

skeleton sequence are scaled to be in the range [−1, 1]. The first frames of

each sequence are zero-padded to fit to the longest sequence number of frames

(743). The number of units in the layers of the non-expert’s encoder, decoder,

and discriminator are 1000, 1000, and 200 respectively. The experts single

layer encoder consists of 100 units. The learned representation dimension is

the same as of the input frames. The adversarial ratio (α) in Eq.5.1.1 is set

to 0.01. The pace prediction weight (β) in Eq.5.4 is 0.2.

The non-expert network is trained for 300 epochs on each of UWA3D and

UTKinect datasets with the learning rate of 0.0003, decay rate of 0.9, and

batch size of 55 using the Adam optimizer [23]. We follow the same data

split as [51] and use 70% of the samples for training and the rest for testing.
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Method Ex #1 Ex #2 Ex #3 Ex #4 Ex #5 Avg.
C3D [58] 66.00 64.00 63.00 59.00 60.00 62.40
I3D [8] 45.00 56.00 57.00 64.00 58.00 56.00

EAGLE-Eye [34] 70.85 67.34 64.62 65.23 62.42 66.09
VI-Net [51] 79.00 69.00 57.00 59.00 70.00 66.80

Ours 75.59 72.87 69.96 74.67 72.31 73.08

Only Expert 68.42 66.43 67.81 66.97 63.11 66.55
Only Non-expert (U) 60.76 56.98 37.75 59.61 54.52 53.92
Only Non-expert (S) 63.92 60.85 54.44 56.82 57.85 58.78

Only Non-expert (U+S) 66.53 60.09 61.05 59.71 61.11 61.70
C3D as expert 70.19 69.42 67.11 64.59 66.38 67.54

W/o Skeleton inpaint 71.13 68.19 67.60 71.20 66.82 68.99
W/o pace prediction 73.34 70.94 70.84 71.28 69.07 71.09

Table 5.1: Detailed results on the KIMORE dataset [6]. First and second
best are shown in color. The lower lines show the ablation study of the network.

The MSE loss function is used to update the parameters of the expert network.

The expert is trained for 1000 epochs with batch size of 25. The other training

settings of the expert are kept the same as the non-expert’s. In order to be

consistent with existing AQA studies [39], [42], [51], the Spearman’s Rank

correlation has been used as the evaluation metric for the results.

5.2.2 Results

The results of our network on the KIMORE dataset are presented in Table 5.1.

As it can be seen, our method outperforms the previous works and baselines

by a large margin. It should be noted that Sardari et al . [51] presented a few

architectures with different backbones and here we reported the one with the

best performance.

In order to evaluate the effectiveness of the network’s components, we con-

ducted a comprehensive ablation study (see the lower rows of Table 5.1). First,

we removed the unsupervised representations of the pretext tasks and resorted

to the expert network to do the downstream task of action evaluation. In this

setting, we initialized the encoder of the expert with random weights. As ex-

pected, the performance of the network dropped significantly. That’s because

we are completely neglecting the first stage of the network that provided help-
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Method Ex #1 Ex #2 Ex #3 Ex #4 Ex #5 Avg.
Skl. Recon. 69.17 67.53 70.02 65.39 63.73 67.17

Skl. Recon. + Pace 68.53 69.12 69.53 68.14 64.33 67.93
Mot. Pred. 70.53 70.92 68.17 70.43 68.54 69.72

Mot. Pred. + Pace 72.18 69.92 70.35 71.18 70.46 70.82
Order Rec. 65.67 67.29 66.38 67.83 60.52 65.54

Ours 75.59 72.87 69.96 74.67 72.31 73.08

Table 5.2: Our self-supervised vs baselines on KIMORE and NW-UCLA

ful high-level features about the action. Second, we removed the expert and

only used the non-expert network to regress the final score. In this setting

(U), we fixed the encoder weights from the previous stage training and put a

linear regression layer on top of the representations of the encoder. During the

downstream task training, only the regression layer parameters get fine-tuned

to study the effectiveness of the learned representations from the pretext tasks.

We also studied the effect of initializing the encoder with random weights (S)

and using the pretrained weights of unsupervised (U+S), while the expert is

completely removed. As it can be seen, using the unsupervised representa-

tions of the pretext task as the pretraining weights for the supervised AQA

task results in a better performance.

We further evaluated the performance of the model when the non-expert

network sticks to one of the pace prediction and skeleton inpainting heads to

capture the unsupervised representations. As expected, the model reaches its

full potential when both of the heads are utilized. It seems that the inpainting

head contributes more to the performance of the network. Intuitively, when

trying to inpaint a random masked part of the skeleton, the model tries to

analyze the dependencies between the body parts and the neighboring frames.

However, in the pace prediction head, the model sees the skeleton as a whole

and gets the dependencies between the frames to find the pace of the sequence.

Thus, the inpainting head may provide richer representations than the pace

prediction one.

In the next set of experiments, we are going to explore the effectiveness of

the proposed self-supervised learning approach in human motion assessment.
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To this end, we evaluate the performance of the two-stage model when other

self-supervised baseline objectives have been set during the non-expert net-

work training (see Table 5.2). For the skeleton reconstruction objective, we

mask-out the whole skeleton and let the decoder reconstruct it. In motion

learning baseline, the second half of the frames are masked and the decoder

tries to predict them given the previous frames (first half). The contribution of

adding the pace prediction head to these two have also been studied. Finally,

inspired by [29], we shuffled each sequence and asked the decoder to estimate

the correct permutation. To this end, we first segment the whole sequence

into 25 parts and shuffle these segments. For this baseline, we remove the dis-

criminator and change the decoder to classify the order of the segments by the

cross-entropy loss. As can be seen in Table 5.2, our proposed self-supervised

approach outperforms the baselines in abnormal movement assessment. Intu-

itively, to the human eyes, an impaired sequence is the one in which a part

of the body moves in an abnormal way compared to the rest of the skeleton

joints. The strategy of randomly masking a part of the skeleton and estimating

it given the rest of the joints helps to capture local correlations between body

parts and gives the representations a sense of symmetry. The complimentary

pace prediction head helps to add a sense of slowness of the movement to the

representation. As a result, we would have a representation that contains the

information that the assessment should be based on. As evident in Fig. 5.4,

the patient can not complete the whole cycle of an exercise at the same time of

healthy sample. That’s when having a representation that has a sense of the

movements’ slowness and right arm’s impairment helps to have an accurate

assessment.

It should be noted that we do not claim to provide the best self-supervised

approach for human action recognition. The resulted representations of the

non-expert is a good fit to the downstream task of abnormal movement as-

sessment which is based on impairment and slowness of a movement. The

results of the proposed two-stage network on NW-UCLA action recognition

dataset [65] are shown in Tab. 5.3. For action recognition , you may ignore

the labels of the target dataset sequences and use them for pretext task train-
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Method NW-UCLA
Skl. Recon. 82.54

Skl. Recon. + Pace 82.71
Mot. Pred. 84.31

Mot. Pred. + Pace 84.15
Order Rec. 83.92

Ours 84.02

Table 5.3: Our self-supervised vs baselines on NW-UCLA action recognition
dataset

𝑇 = 0 𝑇 = 8 𝑇 = 16 𝑇 = 24 𝑇 = 32
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Figure 5.4: Figure4: The cycle of the exercise is not completed in an abnormal
sequence of the KIMORE dataset. The ground truth score:23; Predicted scores
of the baselines: Skl. Inpaint: 16.71, Skl. Inp. + Pace: 21.38, Motion + Pace:
19.45, Skl. Recon. + Pace: 30.72

ing. On the other hand, due to the scarcity of the target dataset samples in

abnormal movement assessment, the downstream and pretext tasks use dif-

ferent datasets. However, it should be noted that these two datasets have to

share something in common. Otherwise, the learned representations from the

pretext task can not be used for the downstream one. As an example, using

the representations of a pretext task on normal daily living activities dataset

would not help the case of sports action assessment which involves lots of

contorted poses.

We finally evaluated the generalization of our method to the new task of

infants’ general movement assessment as the downstream task for the expert

network. To this end, we used the infants’ neuromotor risk dataset [9] to train
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Method Avg. F1 Score
EAGLE-Eye 0.83
Only Expert 0.80

Only Non-expert (U) 0.69
Only Non-expert (S) 0.80

Only Non-expert (U+S) 0.86
Full Model 0.89

Table 5.4: The results of the model on the infants neuromotor risk dataset [9].
U and S stand for unsupervised and supervised settings. The experiment that
is labeled by (U+S) uses the pretrained unsupervised weights to jumsptart the
downstream supervised task.

our model. Since this task is relatively new, we compared the performance

of our full model with the ablated models as the baselines for this task. As

evident from Table 5.4, we get the best results when all of the components

of the model are deployed. Since the infants dataset is annotated with 4 risk

levels and not a score, we use the cross-entropy loss to update the parameters

of the model and micro-averaged F1 score as the evaluation metric to compare

our results with the baselines. As the two pretext and downstream datasets

have to share a common distribution, the non-expert is fine-tuned using the

healthy samples of the infants dataset. Otherwise, there would be a significant

difference between what the non-expert tries to encode from the adults dataset

and the infants samples that the expert tries to score in the second stage of

the network.

5.3 Discussion

In this chapter, we developed a two-stage network to assess the performance

of a humans movements. At the first stage, a non-expert network is trained

on an off-the-shelf dataset of daily living activities to concurrently perform

the pretext tasks of skeleton inpainting and sequence pace prediction in a self-

supervised manner. The learned representations by the non-expert as well

as appearance features of the target dataset samples are then fed to an ex-

pert network to perform the downstream task of action quality assessment.

Our experimental evaluation demonstrated that our method not only outper-
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forms the existing works and baselines in rehabilitation progress assessment

of patients, but also shows a good generalization to the relatively new task of

infants’ general movement assessment.

65



Chapter 6

Conclusion & Future Work

In this thesis, we presented some neural-network based methods to address the

problem of action quality assessment in both sports analysis and rehabilitation

progress evaluation applications.

In chapter 3, we developed a diving routine assessor that regresses the

overall score of the performance based on the difficulty of the program and how

well it was executed. The proposed assessor takes into account both visual

clues(e.g. amount of splash) and pose features (e.g. coordination among the

joints) to evaluate the routine. Since the unusual pose configurations of the

diver’s body is not covered by existing datasets we introduced a dataset of

4000 diving and gym-vault images, accompanied with their pose annotations.

The experiments and ablation studies demonstrated the effectiveness of the

components of the proposed method in assessing a diving routine.

In chapter 4, we put one step further and extended the action qual-

ity assessor to be applicable to other second-long sports like snowboarding

and skiing as well as minute-long sports activities like figure-skating. To this

end, we proposed a modular two-stream network that is capable of extract-

ing both fine and coarse-grained temporal dependencies of a sports routine.

The network is comprised of some blocks that are responsible for assessing the

coordination among the body parts and appearance dynamics. By stacking

more of these blocks, the network would be able to capture distant frames

temporal dependencies of the long-term figure-skating routine. We further ex-

tended the dataset of chapter 3 with 7500 annotated images of four different
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fields (skiing, snowboarding, synchronized diving, gym-vault) to facilitate the

assessment of athletes’ performances of these sports.

In the end, in chapter 5, we explored the application of AQA in reha-

bilitation assessment and movement disorder stage detection. We developed

a two-stage network that evaluates the patients’ movements based on how

impaired and slow they are. At the first stage, a multi-head non-expert net-

work performed the pretext tasks of pace prediction and skeleton inpainting

at the same time. This stage’s function is analogous to what non-expert hu-

mans have learned about normal pace and symmetricity of the human body

while doing daily activities. Then, given a new abnormal action, non-expert

humans would be able to assess the severity of disease to some extent. The

non-expert network is trained on off-the-self large-scale datasets of healthy

people’s daily activities like walking. At the next stage, an expert network

takes the learned representations of the previous stage to perform the down-

stream task of AQA. The expert network is trained on the target dataset of

movement quality assessment. Our experiments showed that deploying the

self-supervised pace and impairment representations of the first stage helps to

have a more accurate movement assessment.

For future research, there would be some exciting directions that we delve

into here:

� As discussed in chapter 3, there is a hierarchical temporal structure

for a sports routine. Quite recently, two large-scale hierarchical video

datasets for fine-grained action understanding in gym-vault (Finegym

[52]) and figure-skating (MCFS [31]) have been introduced. Performing

the fine-grained HAR task on a sports routine would result in getting

the detailed components of the action which can benefit the grading

process. For example, knowing the number of saltos in a gym-vault

routine and the temporal localization annotation of each is an extra

information that helps the computer to assess the performance based

on them. Thus, intuitively, transferring knowledge from fine-grained

HAR to AQA should lead to a better grade estimation than using the
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pretrained weights of coarse-grained HAR or random weights.

� In a figure-skating routine, the athletes try to perform their movements

as most coherence as possible to the played song. One interesting idea

is to extract features from both audio and video channels and assess the

alignment of these two sources of information, as an important element

in figure-skating grading schema.

� The other interesting line of work can be the exploration of pose and

shape estimation for contortive sports. The beginning of each routine

usually starts with normal poses. Therefore, tracking the pose and at-

tending to the temporal dependencies between the frames may contribute

to getting a more accurate extreme pose and estimator. Estimating the

shape of the athlete, would pave the pay for enlarging the existing AQA

datasets by synthesizing other views of a performance. Besides the ani-

mated video of the performance can be used for educational purposes.
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