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Abstract

3D model is a promising type of multimedia content for entertainment, re-

search and education purposes. This thesis addresses the representation

and manipulation of 3D models based on skeletonization, which is a com-

monly used technique to extract a compact descriptor and effectively cap-

ture the topological and geometric structure of 3D models. My research fo-

cuses on the refinement of skeletonization and its applications in 3D model

matching, retrieval, and decomposition. By introducing a framework based

on Scale-Space-Filtering (SSF), I integrate both the global node significance

and the local chain-coded structure for pose-aware model retrieval; then

adopt the topological mapping scheme for skeleton-based model decompo-

sition. Experiment and comparison with state-of-art work on benchmark

databases demonstrate the accuracy and efficiency of this framework.

The first key contribution of this thesis is the improvement of skele-

tonization results. I introduce an adaptive skeletonization framework us-

ing SSF, and propose the notion of node significance and bending measure-

ment to extract the structural features of 3D curve skeleton, hence deriv-

ing a more robust descriptor for model simplification and registration. By

adopting SSF, I conduct dynamic skeleton pruning and smoothing based

on the initial results of thinning. Results of improved skeletonization are

shown compared to other thinning methods along with time performances

of four recent approaches. This approach integrates the connectivity and

the effectiveness in computation, thus it achieves the balance between rep-

resentation ability and speed requirement.

Another key contribution is the development on topology matching and



chain coding techniques for measuring model similarity. To demonstrate

the effectiveness in 3D model classification, I validate the chain code en-

coded skeletons using the Princeton Benchmark database, with particular

emphasize on distinguishing different poses of similar models.

Finally in this thesis I present an effective approach for model decompo-

sition with enhanced semantics. By extracting robust skeleton and mapping

model surface nodes to the decomposed skeleton branches, this method

identifies the topology and geometry information of the 3D model. Thus

it results in more meaningful segmentation components. Experiments on

2194 model demonstrate the advantage of this framework, comparing to

three state-of-art approaches. According to animal anatomy, the proposed

method keeps superio fidelity on four-leg animal models.

Overall, my research in this thesis proposes a novel approach to inte-

grate the global information as well as the local geometry structure of 3D

models into the process of skeletonization. Applications on model retrieval

and decomposition fully proved its effectiveness and accuracy.
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Chapter 1

Introduction

Nowadays, 3D models are commonly used in the entertainment industry of

3D Animation, Movies, Visual Reality and Games. They are also intensively

used in robotics, tracking (visual surveillance), computer-aided design, as

well as surgical training and medical diagnosis for education. Due to the

application demands for interactive 3D graphics, many advanced model-

ing, digitizing and visualizing techniques have been developed in order to

facilitate the creation and rendering of 3D models. Especially recent de-

velopment in laser scanning and webcam reconstruction made it more ap-

proachable to build geometrically precise 3D objects.

Because of the increasing number of 3D assets in databases, a more suc-

cinct representation is necessary for the purpose of automatic model re-

trieval, matching, editing, registration, recognition and manipulation. There-

fore, 3D simplification techniques are studied with intense interests across

disciplines of research groups in computer graphics, virtual reality, robotics,

human computer interaction (HCI), gesture recognition and generation (e.g.,

hand gesture and gait recognition). Many works cast a highlight on the

content-based model analysis. Common 3D model retrieval engine uti-

lize the 2D projections from 3D models such as the model contour and

sketch [51], and a number of model rendering and retrieval systems have

inspired further interests in developing more effective and representative

features to enhance real-time 3D applications with more semantic-aware

interactions.
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Figure 1.1: Examples of skeletons of 3D models.

Content analysis is challenging due to the ambiguity and multiple mean-

ing of both 2D and 3D visual inputs. Compared to 2D objects in images, 3D

models do not need to be segmented from the background, exhibit no pro-

jective deformation, and have no direct boundary parameterizations [52],

and thus have many advantages in model retrieval. However, the repre-

sentation of 3D models is much more complicated than its 2D counterpart,

because of the additional dimension and more diversified formats varying

from meshes to volumes and to point clouds. For efficient real time 3D

model matching and retrieval, a simplified but compact and representative

representation is therefore necessary.

One approach is to extract the “skeleton” of 3D models, which is a graph-

like abstraction of 3D models at the center-line of the original mode, as

shown in Figure 1.1. It contains the essential topology and geometric infor-

mation, thus is a discriminatory and concise way to reduce the complexity

in both dimension and scale. In addition, skeleton is easy to use in the way

of part matching (finding components rather than global matching), visu-

alization (showing the results), intuitiveness (editing by users to refine the

search with perceptual understanding), articulation (dealing with similar

objects of articulated poses) and indexing (having lower dimension in the

search space) in the task of model retrieval. It has many applications such

as model retrieval, 3D segmentation, direct manipulation and so on.

Because human visual system (HVS) is sensitive to changes on the shape
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of an object [47], it is natural and logical to adopt the structural information

into 3D model simplification, such as the 2D contour from a 3D model pro-

jection. However, because the projected contour can vary significantly from

changes of view, this method is not stable to model transformation. On the

contrary, using the skeleton or curve skeletons, which is invariant to isomet-

ric transformations, provides a more effective way for model simplification.

1.1 3D models Simplification and Skeletonization

Skeletonization, as a simplification approach, extracts the curve-skeletons

from 3D models as a compact geometric and topological descriptor. Dur-

ing the recent decades, many efforts have been devoted to the extraction of

curve skeletons, including thinning methods, field-based methods, geomet-

ric methods and etc. Thinning is more computationally efficient, and also

protects the connectivity during computation; Field method usually does

not depend on object orientation, and is less sensitive to noise; Geometric

method performs relatively better in preserving the topology and hierarchi-

cal information with flexible model representations. For the task of model

retrieval, since the connectivity of a skeleton and the speed in computation

is of major concern, thinning is thus more commonly used. Nevertheless,

the result of thinning is highly sensitive to both local and global noises.

Our solution to this problem is to improve the thinning-based skele-

tonization methods with a fast adaptive Scale-Space-Filtering (SSF) and the

notion of node significance. This method provides the ability of noise elim-

ination as well as skeleton registration. The skeletons generated preserve

connectivity, thinness and smoothness in geometric and topological fea-

tures. In order to demonstrate the effectiveness of this proposed refinement

on thinning, I apply the skeleton results on two applications of model re-

trieval and decomposition.

3



1.2 Model Matching and Retrieval

As a result of the increasing number of 3D models, automatic model match-

ing and retrieval has become necessary for searching the huge model repos-

itories. Retrieval techniques are widely studied among the community of

computer graphics, gesture recognition and human computer interaction.

A number of model systems and search engines have been developed by

leading research institutions: the Ephesus search engine at the National Re-

search Council of Canada [43], the 3D model search engine at Princeton

University [38], the 3D model retrieval system at the National Taiwan Uni-

versity [50], the Google 3D Warehouse, Junaio and 3DVIA search engines,

etc. These developments have inspired further interests in enhancing real

time 3D model retrieval techniques.

In 3D model retrieval, there are several factors to be considered:

(1) Representation of the 3D model;

(2) The measurement of dissimilarity;

(3) Discrimination ability;

(4) Ability to perform partial matching;

(5) Efficiency;

(6) Robustness;

Considering these factors, in order to simplify the representation of 3D

model along with the measurement of dissimilarity, it’s ideal to fully utilize

the curve skeleton as the model descriptor in retrieval. The main challenge

is how to generate skeleton that represents the model’s semantic features,

such as the topology and geometric fidelity; and another challenge is to

balance between the trade-off of accuracy and efficiency. My solution is to

adopt the fast linear-time thinning method for skeleton extraction, then en-

hance the results with SSF and node significance. This framework will pro-

duce noise-free skeleton, which also avails the registration between skeleton
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junctions. The reason of selecting thinning to extract skeletons is listed as

follows:

(1) Thinning is commonly used as a simplified representation of the 3D

model;

(2) It can be encoded for the purpose of dissimilarity measurement;

(3) Thinning can discriminate the key features from the original 3D model;

(4) With the connected and unit-width skeleton, decomposed braches from

the skeleton can be used on partial matching.

(5) Fully parallel thinning is computed in linear time, thus it’s fast and effi-

cient;

(6) Thinning results should be improved to reduce both global and local

noises;

As we can see, the refined skeletonization based on thinning is ideal

for model retrieval. Once the representative skeletons of 3D models are

generated, the model matching problem is reduced to skeleton matching.

In order to measure how similar two skeletons are, it is necessary to com-

pute the distance between them. A commonly applied metric is skeleton

graph matching [52], which measures the topology similarity between two

skeleton graphs. However, this approach is limited when comparing sim-

ilar models with different poses, as shown in Figure 1.2, where the same

Armadillo model [51] with six poses are treated as identical in the topology

matching. In many applications including 3D animation, games, computer-

aided design, clinical detection and diagnosis, different poses of a model

can lead to very different cause of actions. Therefore, it is necessary to

take into consideration of both the distance from the topology matching

and the geometrical similarity between two models. In this work, I per-

form topology matching and chain coding [10] based on the robust skeleton

to uniquely discriminate the structures and curvatures of 3D skeletons. It

results in more accurate retrieval results that can distinguish the pose dis-
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Figure 1.2: Pose divergence of the same model.

similarity, as shown in Figure 1.2.

1.3 3D Model Decomposition

3D model decomposition has its fundamental meaning in multiple applica-

tions, such as modeling, shape retrieval, model simplification, texture map-

ping and animation. Thus the demand for automatic model analysis and

manipulation is fast-growing. The segmentation or decomposition of 3D

models indicate the partition of the 3D mesh (point cloud models can eas-

ily be converted to mesh models). Some examples of segmented models are

shown in Figure 1.3. This area has been profoundly studies by the computer

vision and graphics community.

Geometry based segmentation methods emphasize partial consistency

of the generated segments so that each of them is uniform in the sense of lo-

cal curvature or distances. This type of approach is more about the charac-

teristics associated with individual segments. The choice of model decom-

position techniques is application specific, dependent on the requirements

of some expected outcome. Current geometric techniques can be classified

into six categories; namely, region growing, watershed based, clustering,

spectral and field analysis, feature point based and graph based [5]. One
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Figure 1.3: Example of model decomposition.

common weakness of these methods is that they only incorporate local fea-

tures, such as curvatures and normal of the surface, lacking the global se-

mantics associated with the 3D model. Since perceptual quality is very im-

portant in graphics applications, particularly for animations, my work fo-

cuses on performing decomposition with respect to the human intuition of

segmenting a model and its topological layout. For example, in Figure 1.4,

three examples of mesh-based segmentation are shown on the left; and one

topology-based segmentation result from propose method is shown in com-

parison. It can be seen that the horse more is likely to be divided into the

body, head, tail and legs to match the animal anatomy segmentation, in-

stead of into excessive detailed patches on the mesh surface.

Semantic oriented methods have attracted more attention in recent years

due to their appropriateness in mapping the decomposed mesh into per-

ceptually meaningful partial components, for retrieval and animation. Al-

though many research works have looked into generating natural shape

decomposition from a human perceptual point of view, there is no obvious

metric to evaluate the accuracy and quality of a decomposed result. Also,

the granularity of the decomposition is hard to decide for many hierarchi-

cal methods. In this regard, relying on semantically rich surface features is

necessary to decompose a model into meaningful parts, so that these parts

can be perceived as integral components of the 3D model.

In order to make the decomposition operation more effective and accu-

rate, I apply skeletonization of 3D models to guide decomposition, followed
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Figure 1.4: Comparison of model decomposition results.

by mapping surface points onto skeleton branches. This approach has the

advantage of incorporating information from both global shape and local

features, helping enhance perceptual quality. Results have enhanced cor-

respondance between animal anatomy, which is required in animation and

gaming applications.

1.4 Summary

Inspired by the problems of current research works, this thesis will focus on

addressing the following issues:

• Propose an adaptive curve skeleton refinement method to reduce the

noises generated from thinning in a systematic framework.

• Utilize the adaptively scheme of both global topology as well as local

geometry features for effective model representation.

• Adopt the effective topology matching and skeleton coding method

for the evaluation of model dissimilarity.

• Enable the discrimination of similar models with different poses.

• Provide an efficient mapping scheme from labeled sample nodes to

the model surface points to achieve skeleton-based model decompo-

sition.
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1.5 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 reviews related

work in skeletonization, content-based model retrieval and model decom-

position. A detailed discussion of the proposed methodology and algo-

rithms is presented in Chapter 3. Chapter 4 explains the setting of my exper-

iments and compares the results with other start-of-art approaches. Finally,

Chapter 5 gives the conclusion and discusses future work.
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Chapter 2

Review of Related Work

For the task of 3D model representation and manipulation, there are many

research works with diversified application background. In this chapter, a

brief review is provided on the following topics: model and skeleton repre-

sentation; skeletonization; model retrieval and model decomposition.

2.1 3D Model and Curve Skeleton Representations

To simplify the 3D objects into abstract representation, there are two types

of most-commonly used methods: point cloud and mesh-surface. The point

cloud is a set of unstructured points representing the model’s external sur-

face; and the mesh-surface or a polygon mesh or unstructured grid is a col-

lection of vertices, edges and faces that defines the shape of a polyhedral

object.

The properties and extraction methods of skeleton are highly related to

the model representation. An important issue is the type of model repre-

sentations that a shape retrieval system accepts. The most common for-

mat of 3D model is mesh-based, which is defined to support visual appear-

ance [52]. Various formats are introduced to represent the models’ surface

as well as the volume. Such as the implicit surfaces, CSG (constructive solid

geometry), BSP (binary space partitioning) trees, octrees, B-rep (boundary

representation), free form surfaces, and etc.

A skeleton of a 3D model is a compact abstraction of the topological and
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geometric information, which avails effective coarse-to-fine model informa-

tion. Since the definition of skeleton is intuitive in most former works, I first

compile a list of desired properties of skeleton. Based on this criterion I ex-

plore three categories of extraction methods by analyzing their suitability

for the task of model representation.

2.1.1 Definition of Skeleton

One of the difficulties in the process is that the skeleton of a 3D model is

ill-defined, which results in many heuristic methods with fine-tuned pa-

rameters and thresholds for specific application. In 3D space, skeleton is

the medial axis of the shape, a center-spine or stick-figure like 1D represen-

tation within the 3D model. It is a subset of skeletal surface (medial surface),

which is compact and captures the essential geometric and topological in-

formation of the underlying objects.

The skeleton of a region is defined by the medial axis transformation

(MAT) [31]. The MAT of a region R with border B is defined as follows: for

each point p in R, I find its closest neighbor in B. If p has more than one

such closest neighbor, then p belongs to the medial axis (or skeleton) of R.

The closeness depends on the metric used. To be more specific, the skeleton

can be defined in terms of the distance of a point x to a set B, where

d(p, B) = inf
z∈B

d(p, z). (2.1)

The function d can be any metric, such as the Euclidean metric, and

inf
z∈B

d(p, z) indicates the shortest distance of point p to the points in set B.

If more than one z exists, then p is defined to be on the skeleton of the ob-

ject.

However, the definition of skeleton in differed applications is not rigor-

ous. There is also a trade-off between the descriptiveness and sensitivity to

noise of the skeleton [13]. Therefore, this intuitive definition of skeleton is

not adequate to evaluate the “goodness” of skeletons. Instead, I should con-

sider some explicit properties that are important for model representation.
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2.1.2 Desired Properties of Skeleton

Because of the application-specified characteristics of skeleton, I elaborate

the properties that are essential in representing and manipulating the 3D

mode, pruned from the list in [13].

Topology preservation

Though topology information is not complete to distinguish different 3D

models, it is an effective and compact way to pre-classify models into sev-

eral categories without precise comparison at the first stage. Therefore the

topology preservation is the basic requirement in the process of skeletoniza-

tion. It should represent the topological and geometric structure of the orig-

inal 3D model, thus keep the consistency in model matching.

Centeredness

Centeredness indicated the skeleton resided within the 3D model, and the

distances from one nodes on the skeleton to the orthogonalized surface

nodes are desired to be comparable. This feature is helpful in animation

and topological mapping.

Smoothness

Smoothness means the decomposed skeleton should have as less jitter effect

as possible. For example, in visual navigation for medical examination, the

smoothness of the skeleton can guarantee the smooth and fluent camera

movement. Hence improve the viewing user experience.

Connectivity

Connectivity ensures to transverse the skeleton from one endpoint with

junction handling. It is important for constructing a hierarchy of curve-

segments.

12



Invariance

Invariance means the distance between points are preserved in the process

of isometric transformations, in which the characteristics of skeleton should

be preserved after translations, rotations and reflections of the 3D model. In

model retrieval, it is common to have similar objects in different orientations

that should be matched without specific registration and normalization, i.e.,

the shape descriptor must be invariant to object orientation.

Robustness

The skeleton should have weak sensitivity to noise on the boundary of the

object, that is, the skeleton extracted from a noise-free object and the one

from the same objects with noise should be identical or similar.

Reconstructability

This feature shows whether the 3D model is possible to be rebuilt by the

skeleton extracted. Obviously we can use the maximal inscribed balls for

this purpose, which has the center at the skeleton. But this operation also

requires the centeredness of the skeleton to be true. This property reflects

the differences between two models with similar topology.

Efficiency

Efficiency of the curve-skeletonization algorithm is essential in applications

that require real-time processing of skeletons for fast model computations

and search.

Hierarchy

Hierarchical approach is useful to reflect the natural level-of-details on the

complex components of an object, which contains a subset of different scales

of skeletons for multi-resolution matching. This feature is important for

coarse-to-fine model retrieval.
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Junction Handling

The skeleton should be able to distinguish different junctions of the origi-

nal object, reflecting its part or component structure. This implies that the

logical components of the object should have a one-to-one correspondence

with the logical components of the skeleton.

Variability

Variability indicates the ability to handle different object representations,

including voxelized objects, polygonal objects and unorganized point sets

of the input example model.

2.2 Skeletonization of 3D Models

The extraction of compact and expressive skeletons for 3D models is critical

for the task of model representation and manipulation. I briefly describe

three major categories of skeleton extraction methods: thinning methods,

field-based methods and geometric methods.

2.2.1 Thinning Methods

To produce a curve skeleton, thinning methods iteratively remove points of

a 3D image from the boundary until no more points can be removed. These

boundary points can be identified by inspecting the 26-neighbourhood in

3D space with a set of templates [13]. Since any single connected object

without holes or tunnels will be reduced to a single point by sequential

removal of boundary points, the approach adopts a constraint called “sur-

face end points” to avoid over simplification of the skeleton. The thinning

method was introduced by Morgenthaler in 1981 [39] and eventually de-

veloped into several sub-methods, including directional or border sequen-

tial thinning [23], subfield sequential thinning [36] and fully parallel thin-

ning [33]. One of the classic thinning is proposed by Ma and Sonka [35] on

3D binary images in 1996, it is widely cited and applied in medical areas
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as a benchmark. Thinning is effective in computation and reliable in keep-

ing the topological information. Thinning is effective in computation and

reliable in keeping the topological information, but it is sensitive to surface

noise and the output skeleton often has jitter effects.

2.2.2 Field-based Methods

The field-based method can be divided into two groups: the distance field

and the general field method. The distance field method is based on the

definition of medial axis transformation (MAT) [31]. It uses a distance func-

tion to compute a scalar or a vector field, which is then used to extract the

curve skeleton by combining thinning or connection of the local maxima

and ridge-points [24]. Instead of the distance function, other types of func-

tion can be used to generate a field and extract a curve skeleton, e.g., gen-

eralized potential function [14], visible repulsive force function [60], radial

basis functions [37] and so on.

2.2.3 Geometric Methods

While both thinning and field methods operate on voxel-based objects, ge-

ometric methods aim at objects represented by polygonal meshes or scat-

tered point sets in continuous space. There are four main types of geometric

methods: Voronoi diagram [9], Cores and M-reps [45], shock graph [30] and

Reeb graph [6]. However, these methods are more computationally expen-

sive because the field value at each point is influenced by more boundary

points. They are also sensitive to noise and junction articulation [13].

2.2.4 Summary of Skeletonization Methods

A comparison of the skeletonization results is intruduced in a review of

Cornea et al. [15], shown in Figure 2.1. It can be seen that distance field

and geometric methods do not generate unit-width skeletons thus needing

post-processing of pruning and connecting to create satisfying skeletons;

thinning can generate connected well-centered and unit-width skeletons,
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Table 2.1: Comparison of thinning, field-based and geometric extraction
methods with desired skeleton properties.

√
means suitable, × means un-

suitable and - indicates possible.
Skeletonization Methods Thinning Field-based Geometric

Topology
√

-
√

Centeredness
√

-
√

Smootheness ×
√

×
Connectivity

√
- -

Invariance -
√

-
Robustness ×

√
×

Reconstructability × - ×
Efficiency

√ √
-

Hierarchy × -
√

Junction - × ×
Variability ×

√ √

but has jitter effects with extra sub-branches; and potential field methods

can provide smoothest skeletons among the results. On the other hand,

though the potential field method generates better results, it is more time

consuming than other approaches. For example for models with 30000 vox-

els, the computational time for potential field is above 50 seconds, while for

thinning the time is less than 5 seconds. Recently, other linear approaches

of skeletonization, such as the Euclidean skeletons from Roerdink et al. [25],

demonstrate its computation efficiency. However, most of the experiments

are conducted on simple 2D images and medical models, while the curve

skeletons are not unit-width. Consequently, among the approaches that

generate curve-skeleton directly, thinning is more effective and preferable

for most applications.

And the suitability of these methods considering ideal skeleton features

is summarized in Table 2.1 with respect to the desired properties for re-

trieval. It can be seen that there is no optimal method for all the properties.

Thinning is more effective to compute, and also protects the connectivity

during computation; Field method usually does not depend on object ori-

entation, and is less sensitive to noise with general field; Geometric method

performs relatively better in preserving the topology and hierarchy infor-
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Figure 2.1: Comparison of related skeletonization
approaches from [15].

mation with flexible model representations.

Among these skeletonization methods, thinning is most computational

efficient and can generate connected unit-width skeletons [58]. Therefore, I

integrate the skeletonization refinement technique with the thinning method.

In order to balance the trade-off between accuracy and speed, I will inte-

grate the refinement from SSF and node significance techniques to enhance

the performance of thinning.

2.3 Content-based Model Indexing and Retrieval

As the amount of various 3D models grows, there is an increasing need

for effective model indexing and retrieval. Though there is text description

attached to each model, it is not sufficient to include the visual features

17



from 3D models. Not to mention the accuracy of most descriptions. In

order to identify what the model actually is, we need to utilize the content

information, such as color, texture and shape. Since color and texture are

easy to use but limited for models like proteins and texture-less models,

I will discuss the adaptation of shape, which includes both 2D views, 3D

mesh and model skeleton.

2.3.1 View-based Methods

View means the 2D projection from 3D models. It assumes that the obser-

vations of similar objects will look similar from the same viewpoint. For

example, the shape of a typical car from in the same view (front and side)

looks alike, as shown in Figure 2.2. It contains the boundary of a shape from

one specific view point. Compatible with using edges and contour in 2D

images for object recognition, using several views of models can downsize

the problem from 3D to 2D. Thus it becomes a matching problem between

multiple sets of images.

The Princeton 3D model Search Engine [38] utilized two views from

user’s painting of the object silhouettes along with one text keyword to

search 3D models. For example, in Figure 2.3 , the user has drawn outline

contours specifying a shape, and the system has returned a set of matching

objects.

The limit of this method is lack of flexibility which misses the 3D ge-

omitic and structural information, which requires a certain amount of dif-

ferent views to cover all the details of the 3D model. At the same time,

the extraction and registration of 2D views are other concerns without user

interaction.

2.3.2 Mesh-based Methods

Given a shape, we need to find a proper measurement that discriminates

this shape from others. Mesh-based methods analyze the general geometric

and structural properties of the model as a whole. It considers the volume,

18



Figure 2.2: 2D silhouettes of cars from front views
and side views.

Figure 2.3: An example of view-based model retrieval
from Princeton 3D Search Engine [38].
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aspect ratio, surface area, curvature or other kinds of numerical descriptions

from the 3D model.

A key issue in model or mesh-based methods is how to deal with trans-

formations. Usually these techniques put the models in a canonical coor-

dinate system in the first step in order to keep it invariant to similarity

transformation, including translation, rotation and scaling. One general

way to deal with transformation is principal component analysis (PCA),

which computes the principle axes of the model to match the correspond-

ing canonical coordinate system.

Several categorize of approaches are briefly discussed as follows.

Feature Distributions and Spatial Maps

This type of methods extracts the distributions of shape features to mea-

sure the global geometric properties. In Osada et al. [41], features include

the angle between three random surface points, distance between one fixed

point and another random point, or two random points, the square root of

the area of the triangle formed by three random points, the cube root of the

volume of the tetrahedron formed by four random points, and etc. These

features are invariant to rotation and translation, but experiment shows that

it performs well only on symmetric models [40].

Spatial Maps also computes the distribution of models, but it divide the

model into sections and calculate the distribution distinctively. Ankerst el

al. [2] introduced a methods involving building and computing the distance

of shape histograms based on the discrete representations of the model. The

shape histograms can be separated into three types: the shell model, the sec-

tor model and the spider-web model, in which the shell model is invariant

to rotation.

Integral Transforms and Special Functions

This method uses the coefficients of integral transforms and other kernel

function, such as Hough transform [61], Fourier transform [57], Wavelet
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transform [1], Radon transform [17] and Laplace transform [21]. These

transforms are applied using their discrete form to create a feature vector

as the shape descriptor.

Information Theory Approach

Page et al. [42] proposed an approach to integrate information theory by

measuring the shape complexity of 3D surfaces. It computes the entropy of

the curvature to build the shape information.

Volumetric Difference

Under the assumption that all the models occupy the volume differently,

volumetric difference first normalize the pose of models, then present the

model in a well-designed structure, such as the OBBTree [27]. The dis-

tance between two structures stands for the differences between two mod-

els. Some user interactions are also helpful in this method.

Local Shape Descriptors

Instead of considering only one point as the feature point, this category

add the relationship among its neighborhoods on the surface. To evaluate

the local properties, curvature and partial matching is combined to join the

local descriptors to a global one [28]. This type of methods do not need

pre-processing of pose normalization, thus are faster compare to other ap-

proaches.

Weighted Point Sets

Based on the point cloud of 3D models, this method sample a set of points

on the model surface, and then weight them to measure the difference be-

tween two models. Tangelder and Veltkamp [54] propose several ways of

creating a weighted point set, using Gaussian curvature, facet normal vari-

ation and the geometric structure. The similarity is measured by adopt-
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Figure 2.4: Conceptual model of skeleton-based 3D
model retrieval [53].

ing the earth mover’s distance, and experiment demonstrated better per-

formance compared to Osada’s method [41].

2.4 Skeleton based 3D Model Matching

Model matching generally consists of the problem of effective finding promis-

ing candidates from the database given a query. Since model retrieval deals

with the matching of an input object model with a huge database of models

for extracting the most similar on through a large number of comparison

operations, an effective descriptor for each model is quite important, for the

model matching is simplified into the similarity measurement of descrip-

tors. I use the term of dissimilarity to indicate the notion of distance: small

distance means the models are similar to each other.
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2.4.1 Conceptualized Retrieval Model

The process of skeleton-based 3D model retrieval is conceptualized by Fig-

ure 2.4, adapted from the shape retrieval survey by Johan et al. [53]. The

query could be browsing, direct query (descriptor query) or sample model

query. Each is transferred to corresponding index and skeleton descrip-

tor for further matching. Since the processes of index search and direct

querying are trivial compared to the example-based querying, I mainly dis-

cuss the descriptor extraction and corresponding similarity measurements

in model matching, which are done identically both offline and online. To

be more specific, there are 3 major problems: (1) Skeleton description; (2)

Skeleton extraction and simplification; (3) Skeleton matching.

2.4.2 Skeleton Matching

Given the skeleton of a 3D model, the model matching problem is reduced

to skeleton matching. In order to measure how similar two skeletons are,

it is necessary to effectively compute distances between pairs of descriptors

using a degree of their resemblance. Commonly, there are two types of de-

scriptors: skeleton graph [52] [7] and chain code [10] [58]. The former is

a classic approach combined with graph matching and is widely adopted,

while the latter is a recent promising work as a more discriminatory de-

scriptor for post difference between 3D models.

To adopt a skeleton as the descriptor in model matching, many researches

focus on formatting the skeleton as a topology graph. By making use of

the well-studied graph matching algorithms, finding the similarity between

two 3D models is reduced to finding the similarity between their skeleton

graphs. Shokoufandeh et al. [18] combined spectral and geometric neigh-

borhood information to match multi-scale blob and ridge decompositions

in a coarse-to-fine manner. This method is based on a metric-tree repre-

sentation of labeled graphs with the metric embedded into normed vec-

tor spaces. But this approach is limited by the fact that two graphs to be
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matched were typically embedded into vector spaces with different dimen-

sions. Siddiqi et al. [44] used spectral graph characterization to match shock

graphs, and Pelillo et al. converted hierarchical matching into a maximum

clique problem. They emphasized on the hierarchical organization of the

graphs by constructing the association graph using graph-theoretic maxi-

mal sub-tree isomorphism. This method converts the problem into an in-

definite quadratic problem using the Motzkin- Straus theorem. Belongie et

al. [4] presented a scheme to measure the similarity between two shapes

by solving the correspondence between points on the shapes and using the

correspondence to estimate an aligning transform.

2.4.3 Skeleton Graph for Topology Matching

Since graph matching is a well-developed topic in the mathematical disci-

pline of graph theory, methods based on skeleton graph are quite popular in

the domain of model matching [16] [48]. The skeletal graph is usually com-

puted directly from the 3D object containing the mean, radius, degrees of

freedom about the joint, degree of importance of a particular joint or node

in terms of the graph and local shape descriptors, which are held at each

node in the graph [13]. An example of node-to-node match between two

models is showin in Figure 2.5.

To decide whether two nodes match with each other, we need to con-

sider two factors: (1) Topological similarity of the sub-trees rooted at the

nodes; (2) Local shape information at the node. The output results of

matching are:

• The number of matched nodes

• The sizes of clusters of matched nodes

• Detailed specification of which nodes are matched

As shown in Figure 2.5, the corresponding colored nodes are matched

based on these factors. Typical method [52] combined a greedy form of
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Figure 2.5: The node-to-node match in two 3D models of
a human and an animal [13].

the bipartite formulation with a recursive depth-first search to preserve the

hierarchical relationships in the graph. Each non-terminal node is assigned

with an eigenvector of the subgraph adjacency matrix rooted at that node

for indexing. Afterward, the problem is formulated as largest isomorphic

subgraph problem, and the matching task becomes finding the maximum

cardinality and minimum weight matching in a bipartite graph [14].

This type of method is robust to perturbational noise because it has small

effect on the eigenvalues [53]. It also supports partial matching from the

percentage of nodes matched in a certain region on a node-by-node basis.

The drawback is that it only computes the dissimilarity from differed topo-

logical and geometric layout, but ignores the pose of the model, i.e., the

orientation of each component. As a result, skeleton graph is not suitable to

distinguish similar models with different curvatures.

2.5 Model Decomposition

3D model decomposition is to segment the surface of mesh models into

subdivisions, according to either geometric or perceptual criterion [3]. It

has wide application potentials in education, entertainment (game and ani-
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mation), CAD and model partial retrieval. Current decomposition methods

can be classified into five groups of region growing, watershed based, clus-

tering, spectral and field analysis, feature point based and graph based [5].

2.5.1 Mesh-based Methods

Mesh-based methods generate a segmentation boundary on the surface mesh

of the 3D model. There are two key factors in this type of methods, one is

the features it uses and the other it the criteria to judge the boundary.

In Region growing [5], first some distinct seed elements are generated,

such as points, triangles and regions. Then they are expanded to grow until

the set of terminating rules are met. It uses the features of Variable-order

approximating polynomials, normal of the point clouds, principal curva-

tures, Dihedral angle of the adjacent triangles and Super-quadrics. The cri-

teria for this method is based on distance of the points from the polynomial

surface, comparative normal orientation, Gaussian curvature by user de-

fined threshold and convexity validation based on the dihedral angles. This

method can be either surface-based or part-based.

In contrast, Watershed based methods [42] adopt the deviation from flat-

ness and curvatures, including Gaussian, mean, root and absolute, to deter-

mine the segmentation boundary based on Watershed function f. The func-

tion is defined as points belong to the catchment basins that the function f

creates; minimum curvatures or normal curvatures with threshold; edges

belong to the catchment basins that the function f create.

2.5.2 Clustering-based Methods

In this category, model decomposition is achieved by an iterative cluster-

ing, which can use various clustering scheme. For example, Attene et al. [3]

proposed a hierarchical method to classify the mesh triangles into clus-

ters. It provides a high-level structure that can be interpreted semantically.

However, it only performs well with narrow range of mesh surface such as

spheres and cylinders.
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There are also other types of method including the Reeb graph, Spectral

analysis, Explicit Boundary Extraction and Markov Random Fields based

methods. Besl and Jain [5] perform region growing in range images. They

initially label the data points using the mean and Gaussian curvature. Using

this labeling, they construct seed regions from which region growing will

occur. The method of region growing fit variables to the growing region and

neighboring data points are added according to their compatibility with the

approximating polynomial. Here the termination criterion is satisfied when

the region cannot grow any further. Their algorithm has been later extended

by Vieira and Shimada [55] to 3D meshes.

The major problem of these methods is that they only incorporate the lo-

cal features such as curvatures and normal of the surface, lacking the global

semantics in correspondence with the topology fidelity.

2.6 Summary

In this section, some former research on 3D model skeletonization, Model

retrieval and decomposition are addressed. The work of this thesis is in-

spired by the current problems that model representation and manipulation

are either locally on surface mesh or globally on feature distribution. There

should be a more intrinsic way to combine these two types of information.

To solve this problem, there are several guidelines for my research work:

• Consider both the local features such as surface shape as well as the

global geometric structures.

• Build a systematic approach to integrate the task of model retrieval

and segmentation.

• Fully utilizes the advantage of skeletonization representation to sim-

plify the measurement of model features.

• Provide a flexible and adaptable scheme for different types of models.
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Chapter 3

Methodology and Algorithms

In this chapter, firstly, an overview of the refined skeletonization approach

is provided in Section 3.1. Section 3.2 proposes the details of generating

skeleton using thinning, the robust skeleton representation of the 3D mod-

els with Scale-Space-Filtering, and the incorporation of node significance.

Then I integrated the chain-coding for effective model matching and re-

trieval in Section 3.3. Another application of model decomposition is dis-

cussed in Section 3.4. It maps the points on the mesh model to each sub-

branch, combining the factors of surface curvature and normal to modify

the boundaries of the segments. The result divides the model according

to the semantic structures and is more feasible for model manipulation in

animation.

3.1 System Overview of Refined Skeletonization

The overview of skeletonization refinements is shown in Figure 3.1. The

input is a sample 3D model, and the output is a refined curve skeleton. To

be more specific, there are three major processes: (1). Extraction of skeleton

from thinning methods; (2). Skeleton pruning; (3). Skeleton smoothing.

The focus is on the last two steps to generate robust skeletons based on the

initial skeletonization results of thinning.

The definition of good skeletonization is actually ill-defined, mostly by

subjective judgment from end users. However, there are several criterions
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Figure 3.1: Overview of the robust skeletonization
framework.

that a robust skeleton representation should meet, such as:

• The representation should preserve the important geometric informa-

tion of the model at different levels of detail. Moreover, it should be

clear from the representation which features belong to coarser levels

of detail and which features belong to finer levels.

• The generation must be computationally efficient.

• The representation should be invariant under rotation, uniform scal-

ing, and translation; otherwise, reliable registration will not be possi-

ble.

• The amount of change in the representation should correspond to the

amount of change made to the curve. In other words, a small change

to model parts should create a small amount of change in the skeleton

representation.

Thinning is effective in protecting the topological invariance and com-

putational efficiency. I aim to keep these features, especially the connectiv-

ity and geometric fidelity to enhance the skeleton output.

Considering thinning-based results, there are two types of noise involved:

one is extra sub-branches, and the other is the local noise on each branch.
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Figure 3.2: A example of the original thinning result
(middle) and its refinement.

Undesired sub-branches are often present in curve skeletons, causing inac-

curate topological matching. Local variations on the 3D model surface also

cause unwanted jitter effect on skeleton branches, illustrated in the mid-

dle column of Figure 3.2. These undesired structures have adverse effects

on applications of virtual navigation, direct manipulation, model indexing

and matching. In order to minimize the global and local noise, I apply an

adaptive refinement technique motivated by Scale-Space-Filtering (SSF). By

combining SSF with skeleton pruning and smoothing, we can extract a ro-

bust skeleton providing precise structural information on a 3D model. The

integration of SSF provides the flexibility to use a dynamic window size

adaptable to a model’s scale. I first conduct skeleton pruning to eliminate

branch noise based on the junction and end point significance. This pro-

cess removes extra sub branches and produces a cleaner graph for topology

matching. Next I apply the Gaussian filter on the pruned skeleton to smooth

each branch. The results of skeleton refinement including both pruning

and smoothing can be seen in Figure 3.2. Since it incorporates local geo-

metric information in the heuristic node-significance without iteration, the

algorithm is simple and fast, which provides results comparable to other

methods with less computational expense. More details on the refinement

technique are given in Section 3.2.
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Figure 3.3: Comparison between VDSM thinning and
refinement of the skeletonization results.

3.2 Geometrically Adaptive Skeleton Refinement
based on Node Significance and Bending Mea-
surement in Scale Space

3.2.1 Skeleton Extraction using VDSM Thinning

Due to the advantages of thinning in topology originality and time effi-

ciency, I will extract skeleton using thinning. Though thinning is aimed at

preserving the connectivity and thinness of the skeleton, it’s found that the

classic methods from Ma and Sonka [35] do not always generate connected

output. A proof is given by introducing P-simple points [34]. To solve this

problem, several efforts have been proposed to modify the original thin-

ning algorithm [34] [58]. And I adopt one of the up-to-date fully parallel

method to extract curve skeletons utilizing the VDSM (Valence Driven Spa-

tial Median) technique [58]. Because it generates both connected and unit-

width curve skeleton without crowd regions, so this method is ideal for the

smoothing and pruning processes.

This VDSM approach works on both 3D binary images and 3D meshes

by the voxelization pre-processing step. It is computational efficient with-

out the need of using control parameters. Some results after VDSM thinning

are shown in the middle column of Figure 3.3.
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3.2.2 SSF Representation and Decomposition of 3D Skele-
ton

A 3D skeleton, as a composition of 3D curves, does not behave like a single-

valued function in general. A parameterization of the curve should be

found which makes it possible to compute the curvature of the curve at var-

ious levels of detail. To simplify the filtering process, I first decompose the

3D skeleton into separate branches by disconnecting them at the junctions

(a point in a skeleton where it has more than two neighbors). The number

of neighbors of a skeleton node is called its degree. As shown in Figure 3.10,

the junction point has degree 
 2, joining several branches of the skeleton

bones; while an end point has degree 1, being at the end of each sub branch.

After decomposition of the skeleton, each sub problem only involves one

curve to be processed, which may include a branch (a part of the skeleton

terminated by a junction or an endpoint) or a circle. In other words, each

decomposed branch from the skeleton to be filtered is treated as a signal

in 3D space. For this three-dimensional signal f : <3 → <, its scale-space

representation L : <3 ×<+ → R is defined in [32] as:

Lk(ε) =
∫
ξ∈<3

fk(ε− s)gk(s)ds (3.1)

where k is the index of branches and g denotes the Gaussian kernel:

gk(ε; tk) =
1

(2π tk)3/2
e−(ε

2
1+ε

2
2+ε

2
3)/2tk . (3.2)

The variance tk of this kernel is referred to as the ’scale parameter’ t for the

branch indexed by k.

3.2.3 Skeleton Pruning by Node Significance

Since the applications of model matching and manipulation based on the

skeleton graph rely on the topological fidelity, the pruning of the skeleton is

essential for effective skeleton registration and matching. The basic idea of

pruning is to distinguish the branches as ’major bones’ or the ’sub-branch
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Figure 3.4: Closest model vertices to the skeleton
node. (a), (b) are two portions of the leg from the
sheep model, in which the cyan and purple lines are the
extracted skeleton branches. And the red nodes are on
the skeleton branches, while the blue ones are vertices
on the surface of the 3D model.

noise’. Usually the major bones stands for the topological structure as a

sketch of the model, while the sub-branch noise is triggered by some sur-

face angle or block. In the field of image processing, pruning has been a

widely studied topic. However, the pruning of 3D skeleton has not been

addressed effectively. Considering thinning results, I notice that the extra

branches are always less significant in terms of length and topological po-

sition. Thus, I introduce the idea of node significance to discriminate unde-

sired extra branches. The significance of each node is computed by travers-

ing the skeleton nodes, which is defined as follows:

S(υ) =
{

0 only i f degree(υ) = 2
∑i∈kυ li + ∑ j∈Cυ d j else (3.3)

where S(υ) means the significance of skeleton node υ; kυ denotes all the

branches connected to node υ and li is the length of the branch; Cυ is the

set of the ten closest model surface vertices to the skeleton node measured

by Euclidean distance, and d j is the corresponding distance. As shown in

Figure 3.4, the red nodes are junctions or end points on the skeleton, and

the blue nodes are the vertices on the surface of the 3D model with closest

distances to the skeleton nodes. All those skeleton nodes with degree two

are intermediate points in a branch to keep the connectivity of the skeleton,
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Figure 3.5: Example of pruning result. (a) and (b)
show the results of skeleton before pruning and after
pruning. The red rectangle shows that the extra sub
branch is removed after pruning.

and they are not critical for the branching structure of the skeleton. So I will

set their significance to zero and only evaluate those junction points or end

points. This definition is also used to distinguish between junction nodes

from the topology and the geometric characteristics of the 3D model.

In many cases, the sub-branches appear near the articulations of models

due to higher curvature of the model surface, as shown in Figure 3.4(a). In

order to remove these noises, I filter each end point with the significance of

this node and its neighboring nodes. Suppose the current end point is υm

and degree(υm) = 1. If S(υ) > 0 and S(υ) <
degree(υm)∑i∈n

S(υn)
degree(υn)

tk×n , in which
S(υn)

degree(pn)
stands for the averaged significance of the whole model nodes and

n is the total number of the junction and end nodes, I will delete this point

along with its sub-branch. tk is the parameter in SSF so that the significance

is normalized to be adaptive to the model scale. See more descriptions in

Section 3.2.4. Repeat this process on each end point and traverse the skele-

ton structure to delete less-important branches. To be noted, only the nodes

with degree of 1 will be removed, as the end node of a sub-branch, while

all the other nodes will be kept. As a result, the pruned skeleton are free

of extra branches, and the total number of junction nodes decreases due to

reduction of sub-branches. In order to join the other branches together, we

need to decompose the skeleton again. For example, in Figure 3.5, the extra

branch on the leg of the sheep model is removed, while the two branches
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Figure 3.6: Results of 3D skeleton simplification
on smoothing by SSF with enlarging size of Gaussian
filter.

(blue and green) separated in (a) are joined in to one sub branch. More ex-

perimental results demonstrate the effectiveness of my approach to delete

noisy branches near the articulations of models, as shown in Figure 4.3.

3.2.4 Skeleton Smoothing integrating Bending Measurement
with Adaptive Filtering

Applying SSF in the 3D skeleton refinement process has the advantage of

generating a spectrum of levels-of-detail and the generation is controlled

only by one-parameter. The conditions (scale-space axioms) that specify the

uniqueness are essentially linearity and spatial shift invariance, combined

with formalizing the notion so that new structures should not be created in

the transformation from fine to coarse scales. The goal is to smooth a skele-

ton (from a fine to a coarser scale) removing local noises and undesirable

sub-branches.

In the refinement process, I first apply filtering on the coordinates of each

decomposed part separately in 3D space. So each branch will be smoothed

by convolution with Gaussian kernels of increasing window size. I traverse

each decomposed part three times in the x, y and z directions, using the pre-

vious filtered values. The major concern is how to automatically determine

the filter parameters required by the Gaussian kernel. Note that each branch

of the skeleton is associated with a different level of noise and curvature dis-

tribution. It is not trivial to determine the proper window size for SSF. As

shown in Figure 3.6, different window sizes represented by t have strong
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Figure 3.7: An example of angles for significance
computation. The black thicker line shows one branch
and the current node is got by traversing the branch
from starting point to the ending point. The larger
the angles θs(υ) and θe(υ), the larger the curvature of
this branch.

influence on the smoothing effect. Parameter t = 0 indicates the original

skeleton with a lot of local and global noises. Also note that the outcome is

ideal to represent the topology of the sheep model when t = 24. If the scale

parameter keeps increasing, the curve will be suppressed so the skeleton

will change its centerness and might locate out of the model. To address

this issue, I introduce an adaptive strategy in the selection of filter window

size by computing the bending measurement F(bk) of the current skeleton

branch. First I pre-process the skeleton by applying SSF with a small win-

dow size t = 4 to get rid of the local isolated nodes. Then when traversing

each branch, the bending of the current branch is defined as follows:

F(bk) =

∫
υ∈bk

(sinθs(υ) + sinθe(υ))dυ
2× n(k)

(3.4)

in which θs and θe are the angles from the current point υ to the start-

ing and the end point. A 2D example is shown in Figure 3.7. k is the in-

dex of the current branch. n(k) is the total number of points of the branch.

The window size t of the branch k is computed as tk = 1/F(bk) × n(k),

so tk = (
∫
(sinθs(υ) + sinθe(υ))dυ)/2. In this way, the filter is dynamically

adapted to the model geometry and the branch scale, which ensures a better

smoothing result. At the same time, the linear computing without iteration

helps to achieve fast computation.
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Figure 3.8: The computing procedure of skeletonization
refinement.

This method can operate in different scales by varying one parameter tk,

and thus is very effective in controlling the smoothing effect. To summarize,

the adaptive SSF refinement process is composed of several steps, as shown

in Figure 3.8:

Step 1. Decompose the skeleton by dividing the branches at the junction

nodes;

Step 2. Measure the significance Sk(υ) of each node; Determine the corre-

sponding SSF window size tk;

Step 3. Filter the branches with the significance level of its junction points.

If the Sk(υ) of the end point is less than the threshold, delete the node and

the sub branch;

Step 4. Re-decompse the skeleton based on pruned skeleton result;

Step 5. Analyze the filter region based on curvature representation F(bk)

of each branch k; Adjust the scale parameter tk;

Step 6. Apply Gaussian filter to smooth the skeleton with dynamic win-

dow size;

Step 7. Return the pruned and smoothed skeleton structure;

There are two major differences between my algorithm and the tradi-

tional SSF approach: Firstly, this system integrates both smoothing and

pruning under the SSF representation by introducing the node significance;

Secondly, it is adaptive to varied model size and level of noise, thus more

flexible to achieve automatic skeleton improvement.
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Figure 3.9: System overview of model retrieval.

3.3 Encoding skeleton with Chain code for 3D model
matching and pose recognition

Our skeleton-based 3D model retrieval approach contains several steps as

shown in Figure 3.9. The input is a sample 3D model, and the output is

a set of similar models from the model database. The similarity between

two models is evaluated using the chain code metric. To be more specific,

there are three major processes: (1) Generation of a robust skeleton, which

includes skeleton extraction, skeleton pruning and smoothing; (2) Skeleton

encoding using chain code; (3) Chain code matching and model retrieval.

Given the skeleton of a 3D model, the model matching problem is re-

duced to skeleton matching. In order to measure how similar two skeletons

are, it is necessary to effectively compute distances between pairs of de-

scriptors using a degree of their resemblance. In this section, I integrate the

descriptor of skeleton graph [52] [7] and chain code [10] [58] for effective

model matching, along with their corresponding similarity measurements.

Thus it achieves the branch matching from topological node-to-node match-

ing, then compute the dissimilarity scores between corresponding matched

branches.
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Figure 3.10: Result of topology matching of two
skeletons. The size of each node indicates the
significance.

3.3.1 Skeleton Graph Maching

Skeleton graph formulates the extracted skeletons in an undirected graph

for topology matching. Since graph matching is a well-developed topic in

the research of graph theory, methods based on skeleton graph are quite

popular in the domain of model matching [16] [48]. The skeleton graph is

usually computed directly from the 3D object containing the mean, radius,

degree of freedom about the joint, degree of importance of a particular joint

or node in terms of the graph and local shape descriptors, which are held at

each node in the graph [13].

To decide whether two nodes match with each other, we need to con-

sider two factors: (1) Topological similarity of the sub-trees rooted at the

nodes; (2) Local shape information at the node. The output of matching in-

cludes the number of matched nodes, the sizes of clusters of matched nodes,

and a detailed specification of which nodes are matched.

I adopted the method [52] with a greedy form of the bipartite formula-
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Figure 3.11: Chain elements for 3D curves.

tion and a recursive depth-first search to preserve the hierarchical relation-

ships in the graph. Each non-terminal node is assigned with an eigenvector

of the subgraph adjacency matrix rooted at that node for indexing. After-

ward, the problem is formulated as the largest isomorphic subgraph prob-

lem, and the matching task becomes finding the maximum cardinality and

minimum weight matching in a bipartite graph [14]. I incorporate the skele-

ton graph matching method with the significance of each junction node to

achieve the topological matching. Results can be seen in Figure 3.10. The

corresponding color and size on the junction nodes indicate the matching

results. The end points with the nearest junction point are matched by bot-

tom up dynamic programming using the sub-tree edit distance [8].

This method is robust to perturbational noise because it has small effect

on the eigenvalues [53]. It also supports partial matching from the percent-

age of nodes matched in a certain region on a node-by-node basis.

3.3.2 Chain Code Encoding

To obtain the ability for more detailed classification between different poses

of the models, I make use of the chain coding to describe the geometric

structure of each skeleton. The original chain code method was introduced

by Freeman in 1974 [20], and recently adopted for representing 3D tree ob-

jects such as skeleton [10].

In a 3D skeleton, there are five possible descriptor values of the chain

code, defined as follows in [10] [58]:
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Figure 3.12: Orthogonalized skeleton with chain code
expression. The number is the index of each node.
The size and color indicates the significance of
skeleton nodes. The bigger and darker, the more is
its significance.

Chain Element(b, c, d) =


0, if d = c
1, if d = b× c
2, if d = b
3, if d = −(b× c)
4, if d = −b

(3.5)

where × denotes the cross product. The chain code components are

shown in Figure 3.11 [58].

Since there are only a fixed number of orthogonal chain codes, the SSF

refined curve skeleton needs to be formalized by an orthogonalization [10]

process. Because more than one possible descriptor can be chosen depend-

ing on the turning direction relative to the current position, the rule is to

choose the highest descriptor value among the possible steps. The output

skeleton is in a zig-zag representation, as shown in Figure 3.12. Since the

choice of direction and the start point of coding can result in different ver-
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sions of code expression, I decompose the skeleton after topology matching

and encode each branch separately from the junction to the end point in

order to generate a unique representation. Each orthogonalized skeleton is

denoted by a chain code expression starting from its junction node on the

skeleton.

For example, in Figure 3.12, junction node 3 and 5 have higher signifi-

cance compared to end points 1,2,4,6,7, and thus the chain coding goes from

the junction to the end. Meanwhile the significance of junction 3 is greater

than junction 5, so the skeleton branch between them will be encoded from

3 to 5. For each branch in the skeleton, the resulting chain code is enclosed

sequentially in order to distinguish the entire tree hierarchy from the root

to its leaves. Then they are rearranged by the topological matching before

the chain code matching.

To measure the similarity between two chain codes S and P with lengths

ls and lp respectively, where ls ≤ lp, I adopt the stretching and twisting

operations described in [58]. The procedure compares the chain codes from

the two sequences one descriptor at a time, and moves onto the next one

if they are the same. If not, it performs one of the stretching or twisting

operations defined in [58] as follows:

•
∫

s→p - Stretch S by inserting the corresponding descriptor from P. The

stretching operation terminates when ls = lp.

• ϑs→p - Twist(bend) the descriptor in S to match the descriptor in P.

The final dissimilarity score of two skeletons is measured by

D(S, P) =
#ϑ+ #

∫
#S + #ϑ+ #

∫ (3.6)

in which #S represents the number of same descriptor pairs, while #ϑ

and #
∫

represent the numbers of stretching and twisting operations. The

overall distance is calculated by summing D(S, P) on each branch of the

entire skeleton.
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The primary benefit of the chain code approach is higher discrimination

ability, considering both the topology as well as geometry similarity. It can

distinguish various poses of the same model with a dissimilarity score be-

tween 0.06 and 0.19, and the score between different models is over 0.38

in the experimental results, whereas the graph based methods produce no

dissimilarity for the same model with different poses.

One limitation of chain coding is from the orthogonal code, which will

generate artificial stairs effect in a straight diagonal line. To solve this prob-

lem we can introduce a more flexible chain coding by increasing the code to

eight directions.

3.4 3D Model Decomposition based on Skeletoniza-
tion and Topological Mapping

Having the refined skeleton, we can use it to guide the decomposition oper-

ation by mapping surface points onto skeleton branches. This approach has

the advantage of incorporating information from both global shape and lo-

cal features, helping enhance perceptual quality with more semantic mean-

ings.

3.4.1 Topological Mapping with Decomposed Skeleton

With the decomposed 3D skeleton, we now have the topology reference for

model decomposition. The problem is downsized into model points label-

ing according to the label of skeleton branches. First, the major concern of

the mapping operation is to keep the fidelity of the decomposed skeleton

that contains the topological layout of the model. The label of each sub-

branch should be cast on to the model by generating connections between

the skeleton and the mesh model. Since I adopt thinning for skeleton ex-

traction, all skeleton branches are embedded in the model. Consequently,

we can adopt simple mapping methods by using the distance and normal

between skeleton and surface nodes. Also the curvature should be included
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Figure 3.13: Anatomy preserving model decomposition.

to generate more precise boundary of the segments.

There are three factors that I will consider in this process between each

skeleton vertices vr(i) (with category reference r) and model surface points

p( j):

(1) Point distance dp(p( j), vr(i)): the L2 distance between model surface

nodes and skeleton vertices:

(2) Normal vector ni from skeleton point vr(i) to surface points p( j), in

comparison with the local surface normal vector n j. The distance is defined

as:

dn(p( j), vr(i)) =
||ni|| × ||n j||

ni · n j
(3.7)

(3) Local curvature should be consistent to keep the segments uniform.

In order to boost the efficiency of the computation, I randomly select

20% sample points into a set P j, which are from all the surface nodes to be

44



mapped. For each p( j) ∈ P j, I compute its distances against all the skeleton

vertices vr(i):

dr(p( j), vr(i)) = dn(p( j), vr(i))× dp(p( j), vr(i)) (3.8)

Thus p(j) is mapped to category r if the distance between p( j) and vr(i)

is minimum:

argmin
i

dr(p( j), vr(i)) := {p( j) => Set r|p( j) ∈ P j} (3.9)

More specifically, the standard to map one point on the model surface

is that it should be close to the skeleton branch nodes, with skeleton-to-

surface normal vector pointing the similar direction with the surface normal

vectors, also the neighboring nodes should be with the same label according

to curvature similarity.

After labeling the selected sample points, I adopted the idea of water-

shed method [56] in image segmentation to “flood” the label from samples.

Defined on surface nodes, the labeled sample nodes are regarded as wa-

ter source in each regional minimum. The boundary is build when differ-

ent sources meet. The un-labeled nodes are categorized according to those

neighbor nodes which are already labeled. If a collision appears (two con-

tradictory labels), I choose the one with closer surface normal. And results

are modified by refining the boundary with local mean-shift curvature con-

sistency.

3.5 Summary

In this research, I refine the thinning skeleton results by integrating Scale-

Space-Filtering and node significance. After the smoothing and pruning

processing steps, the resulting curve skeleton is more robust to noise. Thus

the improved skeletons eliminate both global structural noise of extra branches

as well as the high frequency local jitter noises.
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Next, I adopt the topology matching and chain coding techniques for

measuring model similarity. This algorithm can generate more accurate

topological and geometrical representation compared to classical thinning

algorithms, with particular emphasize on distinguishing different poses of

similar models.

Finally, I present an effective model decomposition technique with con-

sideration of the model topology. By extracting unit-width curve skeletons,

which are robust to noise, and mapping skeleton branches to model sur-

face nodes, this method accurately identifies the topology and geometry

information of a 3D model, resulting in more semantically rich segmented

components.
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Chapter 4

Experiment and Results

4.1 Results of Refined Skeletonization

In the experiments, I used 1814 3D models from the Princeton Shape Bench-

mark [51] and 380 models from the data set of 3D model segmentation

Benchmark [12]. The model format is Object File Format (.off) with polyg-

onal geometry. Skeletons generated from fully parallel thinning [58] and

from the proposed method were compared.

4.1.1 Adaptive SSF-Refined Skeletonization

Using the algorithm discussed in Section 3.2, the skeletons of 2194 models

are generated to compare with the thinning results. As shown in Figure 4.1

and Figure 4.2, the skeletons from the proposed method are more stable

despite the size, level-of-detail and the model pose changes. It can be seen

that the skeleton generated from my algorithm are more robust to noise both

locally as well as globally. The sub-branches at junctions and points with

large articulation are removed (Figure 4.3). Overall, my approach produces

a better representation of both the topology and the geometric structure of

the models.

Our method improves the result making it noise-free and comparable to

recent approaches [15] [19] [46] [59], as shown in Figure 4.4. The computed

curve skeletons possess the following features, defined in [13], which are

widely analyzed and agreed upon:
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Figure 4.1: Comparison between original and filtered
results.

(1) Homotopy: Ensured by thinning for the reason it only removes the vox-

els that do not alter topology;

(2) Topology preservation: Since the computation is based on each sub-

branch, the topology of skeleton is not sensitive to object orientation;

(3) Thinness (1D): The VDSM thinning guarantees the thinness of the re-

sults;

(4) Centeredness: After smoothing, the skeleton is better centered within

the model;

(5) Junction handling: The approach is able to distinguish different junc-

tions of the original object, reflecting its part or component structure. This

implies that the logical components of the object should have a one-to-one

correspondence with the logical components of the skeleton;

(6) Connectivity: The connectivity is maintained by the characteristics of

thinning;

(7) Robustness: The results are more robust to noise in 3D models. It can

provide match-able topological structures between component-wise differ-

entiated objects;

(8) Smoothness: Adaptively controlled by the filter size and is thus flexible

to ensure smoothness on each branch; and,
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Figure 4.2: Comparison of the proposed method (right)
with the thinning method (middle). It can be seen
that the proposed method eliminates the jitter effects
generated from thinning, producing a smoother skeleton.
Also, the sub-branch noises are removed, which can
improve the accuracy in topological matching.
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Figure 4.3: Decomposed skeleton pruning results. Left
is the 3D mesh model. Middle is the original skeleton
from thinning [58]. Right is the filtered skeleton
with my proposed pruning method. Different color
indicates decomposed skeleton branches. The extra
branches at the legs of each model are removed and the
total number of sub branches is decreased.
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(9) Efficiency: Refined thinning is more efficient than other approaches,

which is essential for applications requiring fast model computations and

matching.

These properties of this framework are in tune with the criterion for ideal

skeletonization in Section 2. Skeletons from the proposed method are more

stable despite size, level-of-detail and pose changes in 3D models. It can

be seen that the skeletons generated by the proposed algorithm are more

robust to noise both locally as well as globally. The sub-branches at junc-

tions and points with large articulation are removed (Figure 4.3) and jitter

noise is eliminated generating smooth and well-centered output. Overall,

my approach produces a better representation of both topology and geo-

metric structures of the models. More results can be seen in Figure 4.4.

4.1.2 Comparative Study on Time Performance

To demonstrate the efficiency of the proposed algorithm, I compare the

running time to four methods, including two classic schemes of potential

field [15] and medial geodesic function [19], along with other two recent

approaches of Reniers’s hierarchical extraction [46] and Wang’s Iterative

Least Squares Optimization method [59]. The topology representation and

smoothness of skeleton results are comparable between this refined thin-

ning and these three approaches. Nevertheless, the running time of this

method is significantly shorter than its counterparts. Table 4.1 shows the

comparison of time performance (in log scale) for 10 typical models.

It is clear from the time expenses that the proposed framework is more

efficient than others, shown with Log(time) scale in Figure 4.5. In Table 4.1,

for ten typical models of plane, ant, hand, armadillo, dog, cow, horse, octo-

pus, rabbit and bird, the number of voxels (No.V) vary from 11140 to 85100,

the proposed method takes less than five seconds for all the models; while

others need much more time, even hours in some cases. For instance, on

the bird model, Dey’medial geodesic function [19] uses more than three

hours(11523 s), Cornea’s [15] and Reniers’s [46] method use about three
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Figure 4.4: Skeletonization and skeleton decomposition
results. The color indicates topological segmentation
of each skeleton. It can be seen that my results are
free of both global noise (extra sub-branches) as
well as local noise (jitter effects on each branch).
Therefore it conserves more fidelity and represent
the topology and geometry structure of the 3D model
superiorly.
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Table 4.1: Computation times Log(seconds) of skeletonization on a 2.6 G Hz
Intel Due core PC with 4GHz RAM.

Running time(s)
Models No.V Dey06 Cornea07 Renier08 Wang08 Proposed
Plane 11140 363 17.5 4.9 2.8 0.8
Ant 15087 531 19.9 7.8 3.6 1.3

Hand 16725 547 23.4 9.2 4.4 1.7
Armadillo 25491 625 39 9.3 7.4 3.2

Dog 32000 892 44 11.2 7.9 2.8
Cow 42384 2221 56 28 8.4 3.5

Horse 52058 2580 125.9 32 10.7 4.3
Octopus 76218 7824 263 54 12.7 3.6
Rabbit 82154 11100 199.53 174 15.2 2.4

Bird 85100 11523 214.7 183 17.3 3.2

Figure 4.5: Running time comparison of five
approaches.
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minutes (214.7 s and 183 s), Wang’s [59] approach needs 17.3 seconds, while

my algorithm needs only 3.2 seconds, significantly improving the time effi-

ciency. From the curves in Figure 4.5, it can be seen that the time expenses

for thinning does not increase proportionally; but, other approaches are

largely influenced by model dimension and complexity. This feature of thin-

ning is required to maintain continuity and consistency in 3D applications.

In interactive deformation of 3D objects, skeletons are essential in the

sense of leading the kinematic movement of each subdivision.The topologi-

cally segmented skeletons provide a promising potential to manipulate ob-

jects by controlling each branch of the deformable model, distributing the

movements to other divisions from the junctions. It preserves the geomet-

ric features better than original thinning, and is more effective for compu-

tations leading to real-time animations.

As illustrated in Figure 3.10, the user can select branches of the skeleton

to control the model. Since topological matching is achievable by skeleton

decomposition, the user can simply create template movement for similar

skeletons, thus generating similar motion for a diverse set of animal or ob-

ject models.

4.2 Model Matching and Retrieval with Chain Cod-
ing

After the SSF Refinement of the skeletons, I encoded them with chain codes

for model matching. In this experiment, I used 10 types of models from the

data set of 3D decomposition Benchmark [12], including Human, Airplane,

Ant, Octopus, Fish, Table, Teddy, Hand, Armadillo and Fourleg, with 200

models in total.

Due to the smoothed and pruned effect on the refined skeletons, the

average length of the chain codes was decreased by 23% compared to the

original skeletons from thinning. I measured the similarity between each

model by computing the pair-wise distance of each two models. Generally,
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Figure 4.6: Average precision-recall curve of the 10
types models. The axises stand for normalized units of
precision and recall. Blue curve represents the result
from original skeleton by thinning, and the red curve
shows the result of refined skeleton.

given one input sample model, the performance of the retrieval engine is

measured by the precision-recall (PR) curve. If the returned model belongs

to the same type of the input model, it is regarded as a correct return. Based

on the pair-wise distance, the average PR curves of my approach and the

thinning method are shown in Figure 4.6. Both axises stand for the normal-

ized unit of precision (among the retrieved models, how many are correct)

and recall (among all the model which should be matched, how many are

found). The accuracy of this retrieval system is better due to more precise

topology and less local jitter noise of the skeletons. Notice that the similar

models within the same type are not identical with variations in position

and pose. The ranking of returned models are dependent on the similarity

in poses. In other words, the models with identical or comparable poses are

with higher ranking, which is useful in pose recognition.

In order to demonstrate the discrimination of model poses, I selected five

models from the Armadillo type, including various poses of hug, jump, hit,
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Figure 4.7: Five poses of the Armadillo model in
two versions. The first three do not have ears and
the tail. The poses of each model are (from left to
right): Hug, jump, hit, hop and dance. The distances
between their chain codes are shown in Table 4.2.

hop and dance (See Figure 4.7). I first employed the topology matching of

the skeleton from Sundar et al. [26]. Results are marked with correspond-

ing colors in the skeletons. I compute the distances between the models

by generating their chain codes of the SSF-refined skeleton branches. The

distances between chain codes are shown in Table 4.2, from which we can

see that the topological matching is the dominating factor in the computa-

tion of chain code distance. Thus different models without similar topology

will have the distance larger than 0.38; while the models with similar topol-

ogy have distance scores under 0.20. At the same time, the distance scores

greater than 0.06 and less than 0.19 suggest similar models with different

poses. Therefore, the topology matching is dominating; in compensation,

it can also identify the pose discrepancy. To notice in Table 4.2, the score

between hop dance and other three models are larger than 0.19. The rea-

son for this is these five models are not exactly identical. For the last two

there is an pair of ears, thus the graph matching not matched for these two

branches, which raised the dissimilarity scores.
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Table 4.2: Distance of chain code on two types of the Armadillo model with
5 poses

Hug Jump Hit Hop Dance
Hug 0.0 0.15 0.17 0.43 0.45
Jump 0.0 0.10 0.38 0.42
Hit 0.0 0.42 0.32

Hop 0.0 0.20
Dance 0.0

4.3 Results of 3D Model Decomposition

The results of model decomposition are generated from the topology match-

ing between skeleton and the 3D model, considering the model curvature

as well as surface normal vector. Results can be seen in Figure 4.8.

I compare with 3 algorithms: Random Walks (RW) [29], Shape Diameter

Function (DF) [49] and Randomized Cuts (RC) [22]. 380 meshes across 19

object categories are from the Princeton benchmark for 3D mesh decompo-

sition [12], including Human, Cup, Glasses, Airplane, Ant, Chair, Octopus,

Table, Teddy, Hand, Plier, Fish, Bird, Armadillo, Bust, Mech, Bearing, Vase

and Fourleg. Comparison results are shown in Figure 4.9. From the results

we can see that my topological mapping methods reflect the semantic struc-

ture clearer than other approaches.

In order to generate natural movement of the models, the kinematic an-

imations are highly dependent on the topological structure or the 3D mod-

els. For instance the four-leg animals, as a typical model in most animations,

are more feasible to be segmented based on animal anatomy. As shown in

Figure 4.4 and Figure 4.10, I achieved a more accurate match between the

animal anatomy on a horse [11] and the decomposition results. I evaluate

the results of “horse” model in Figure 4.10 by using a metric function dis-

tance comparing to other three algorithms. Firstly, I manually register the

segmentation cuts (the closed line separating two model segmentations) to

the ground truth of animal anatomy by pairing the nearest cuts. Then er-

ror of automatic segmentation is defined as the Euclidian distance between
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Figure 4.8: Results of model decomposition. The left
column is the original model; the middle column is the
model with its extracted skeleton; and the right column
is the decomposition result.
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Figure 4.9: Comparison decomposition results with
Random walk, shape diameter function and randomized
cuts.
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Figure 4.10: Mapping between animal anatomy
decomposition result.

Table 4.3: Metric distance on anatomy of horse model.
Methods RW DF RC Proposed

No. of Segments 11 16 11 11
Metric Distance 1 0.79 0.84 0.45

position of nodes within the registered pair of cuts, plus the length of non-

paired cuts (additional cuts without a counterpart in the ground truth). At

last I normalize the distance within 1 and 0.

Results are shown in Table 4.3: the lower the metric distance, the closer

it’s to the anatomy criterion of segmentation. The topological mapping from

the decomposed skeleton provides more semantic information of the model

which meets better the requirements in animation and model manipulation.
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Chapter 5

Conclusion

In this thesis, I introduced an effective skeletonization refinement technique

based on Scale-Space-Filtering and Node Significance to remove undesir-

able branches and noises from 3D curve skeletons, and thus it improves the

performance of 3D models matching and retrieval. I applied an adaptive

scale parameter in the pruning and smoothing processes. By transform-

ing the filtered skeleton into the chain code representation, this technique

presents a better descriptor of the topology and geometric structure for 3D

models. Also it provides a balance between computational time and accu-

racy.

This method is demonstrated by the experiments, using over 2000 mod-

els, to be effective in distinguishing similar models with different poses,

with the capability to classify models using both skeleton graphs and cur-

vature deviations in sub-branches. While the skeleton graph approach is a

more stable tool for the abstraction of complex models with arbitrary topol-

ogy, the chain code metric embraces more discrimination ability in pose

recognition. Compared to the skeletons directly generated from thinning,

my results prove to be more robust to noise and can perform better in chain-

coding for 3D model matching and retrieval. Finally, with the noise-free

skeleton results, I utilized topology mapping to improve the performance

of 3D models decomposition. From mapping the sample surface nodes to

decomposed skeleton branches, I achieved efficient model segmentation by

applying watershed flooding algorithm. Results represent the topological
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fidelity with the capability to match the global and local topology informa-

tion with skeletonial presentation.

5.1 Contributions

The contribution of this thesis can be summarized as follows:

• Propose an adaptive skeletononization refinement method using Scale-

Space representation, which effectively reduces noises in preparation

for the subsequent model mapping and labeling process.

• Introduce the significance of junction node for pruning, which effec-

tively reduces noises in preparation for the subsequent chain coding

step.

• Enable the discrimination of similar models with different poses in

model retrieval in addition to the topological matching, which is use-

ful for applications requiring pose detection.

• Utilize the topology and geometry features for effective mesh model

decomposition, adding more semantics fidelity.

• Provide an efficient mapping scheme from labeled sample nodes to

the model surface points with watershed flooding algorithm.

5.2 Discussion

This method is limited in the case of models without obvious topological

layout. For example, the flat convex and concave polygons model with-

out any branches. In this case, the curve skeleton also does not fit well in

the task of model retrieval and decomposition. The intrinsic advantage of

skeletonization is to distinguish the models by its outline and shape infor-

mation, thus if this key assumption is missing, this framework will also be

limited on these models.
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5.3 Future Research

In future work, I will extend this technique to the discrimination and mea-

surement of more complex 3D structures, e.g. human anatomical structures

such as veins, which require high precision. Also, due to the focus on se-

mantic and pose discrimination, I willl look into the application of anima-

tion from model decomposition with its skeleton counterparts. The poten-

tial advantage will be a natural mapping between the model surface and

the manipulating junction and axises.
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