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A b s t r a c t

A characteristic feature of living organisms is tha t they respond to the environment in 

search for food and reproductive opportunity. In particular, predators can move towards 

high prey density, which is called prey-taxis. In this thesis we investigate how predators 

actively react to  the spatial configuration of the prey on the landscape rather than passively 

respond, relying on random movement. We derive carefully a prey-taxis model. For tha t 

we use a modified Kareiva-Odell approach and finally a parabolic limit gives rise to a 

prey-taxis model. Alternatively we derive a prey-taxis model from a model with resting 

stages. We incorporate prey-taxis into spatial predator-prey dynamics and study a role 

of prey-taxis on spreading prey population and pattern formation. We find tha t prey- 

taxis alone does not slow prey spread although it does in the presence of an Allee effect 

for the prey. However, prey-taxis does tend to reduce the occurrence of dispersal-induced 

instability in predator-prey systems, where predator diffusion is crucial to dispersal-induced 

instability. In a special case, a Lyapunov function can be constructed for the purpose of 

studying global stability. We also explore some features of a predator-prey-taxis model by 

means of numerical simulations. Fractional step methods are described as the framework 

for simulations. For each case of the diffusion, advection, and reaction terms, the C rank- 

Nicolson scheme, the Nessyahu-Tadmor scheme, the second-order explicit Runge-K utta 

method are considered respectively.
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Chapter 1

Introduction

Mathematical modeling has provided useful tools to understand biological phenomena such 
as disease spread, insect outbreak, animal coat patterns, wound healing, and interspecific 
interactions. There are three main types of interspecific interaction: predator-prey, compe­
tition, and mutualism. In a predator-prey relationship, the predator species benefits from 
killing and consuming the prey species, and the prey population may be regulated as a 
result.

Predation rates are determined to some extent by the predator’s level of satiation, or 
gut fullness. The goal of this thesis is to investigate how predators react spatially to prey, 
depending on their satiation level. In particular, first, we focus on understanding the 
underlying mechanisms for predator dispersal towards high prey density, a phenomenon 
called prey-taxis. Second, we explore how these mechanisms generate spatial patterns such 
as traveling wave in predator-prey interactions.

This research is motivated by the interesting paper written by Kareiva and Odell [46] 
(1987). They investigated the phenomenon that predators (ladybugs) tend to search for 
food in areas of higher prey (aphids) density, and derived the mechanism for this non- 
random foraging. Based on this mechanism, they studied predator aggregation in high prey 
density areas and produced realistic aggregation simulations based on field data. Since the 
mechanism of modeling was analogous to chemotaxis, they coined the term prey-taxis for 
this phenomenon. Although their research has potential applications to various ecological 
phenomena, few papers have been published on prey-taxis in the two decades since the 
original 1987 study. One of the main reasons for this hiatus is the difficulty of collecting 
empirical evidence of prey-taxis. However, new technologies such as field video recording 
and computer motion analysis (see [96, 97]) may enable us to collect the necessary but 
difficult field data including moving speed and turning rates. Thus, it is an opportune 
moment to reintroduce the concept of prey-taxis and resume active research on it.

This research is different from that of Kareiva and Odell in several aspects. First, we use 
rescaling to obtain a parabolic limit to the original hyperbolic system rather than simply 
using a quasi-steady state assumption as in Kareiva and Odell. Second, we use Poisson 
processes to derive turning rates, rather than a third-degree polynomial as in Kareiva 
and Odell. Third, we also consider various types of functional responses, which determine 
the nature of local population dynamics, satiation dynamics and predator dispersal. This 
differs from the approach of Kareiva and Odell, who used Type II functional response and 
considered that local population dynamics of the predator stems only from emigration of
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the predator. Fourth, we show there is another way to derive prey-taxis models from the 
limit of the resting models, in which we consider resting state in addition to right-and left- 
moving states. Fifth, using different local population dynamics of the predator, population 
growth corresponding to the prey density and decaying exponentially without the prey 
instead of the emigration in Kareiva and Odell, we look for traveling wave solutions and 
pattern formation.

In the following sections, we briefly describe predator-prey models, numerical simula­
tions, travelling wave solutions, and pattern formation. Chemotaxis models which motivated 
the idea of prey-taxis are described. Because functional responses are an important factor 
in determining the population dynamics of predators interacting with prey, and regulate 
the mechanism for predator dispersal, we discuss them in a separate section. Finally, we 
give an outline of Chapters 2-7.

1.1 Predator—P rey M odels

In this section, we discuss various forms of predator-prey models. Predator-prey models 
have been studied by numerous people using different frameworks, such as discrete models 
[29], ODE models [99, 5], and diffusion-reaction models [72, 73], In spatially homogeneous 
models, the temporal variation in each species is considered explicitly and the effects of 
their movement are considered implicitly. In contrast, diffusion-reaction models describe 
spatial structures explicitly by means of diffusive motility of species in heterogeneous envi­
ronments, and describe temporal structures via reaction terms. In these models, the effects 
of movement on predator-prey interactions may play an important role in generating spatial 
patterns (see Murray [68]). Diffusion equations have shown that the movement of insects 
and other animals may be very significant [71]. For example, constant diffusion may in­
crease the chance that predators find prey and therefore survive. Models also have shown 
how predators aggregate around high prey density [46] and move towards stimuli [58]. E\ir- 
thermore, the inclusion of directional movement towards prey-rich environments seems to 
increase the chance of predator survival in a heterogeneous prey distribution.

Predator-prey systems may not always be presented in a continuum model. In a patchy 
predator-prey model, predator and prey are assumed to recognize the environment as dis­
crete patches. Thus, the dispersal of prey and predator is formulated in the form of mi­
gration among patches, rather than in the form of continuous diffusion or advection. In 
his thesis [41], Huang assumed that predator foraging activity is the main mechanism by 
which predators move from one patch to another instantaneously. By considering mobile 
and immobile states respectively as well as searching and handling states in the classical 
Holling time budget argument, he formulated four states of the predator population, i.e., 
mobile-searching state, immobile-searching state, mobile-handling state, and immobile- 
handling state. Immigration and emigration of the predator occur during mobile searching 
and mobile handling states. When the prey is also dispersing, he showed that diffusion- 
driven instability may occur for small predator migration rate. Huang considered how 
cross-migration can be generated under the assumption that the predator population has 
a behavioral subgroup with quick transitions between subgroups occurring on a faster time 
scale. This quasi-steady-state assumption in the behavioral transitions produces cross­
migration in the total predator population model. A strong response of predator in the 
case of a cross-emigration response is shown to be able to stabilize an unstable system
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rather than to generate diffusive instability.
In this thesis, we focus on the continuous environment rather than discrete patches. 

Specifically, we extend the diffusion-reaction model to incorporate the concept of taxis into 
spatial predator-prey systems. We save the remainder of this section for the development 
of the first prey-taxis equation and its subsequent works. We first describe the concept of 
taxis.

A characteristic feature of living organisms is that they respond to the environment in 
search for food and reproductive opportunity. One such response is movement toward or 
away from an external stimulus, which is called taxis. Taxis is facilitated by both directional 
behaviours- change of velocity, and turning angle (higher dimension), and nondirectional 
behaviours-change of speed or turning rate in response to stimulus (see Okubo [70]). Cor­
responding to the type of external stimulus, various types of taxis are defined, such as 
aerotaxis, chemotaxis, geotaxis, haptotaxis, prey-taxis and others. The purposes of taxis 
may be numerous, including movement toward food and fleeing from enemies. Taxis can 
thus provide mechanism for optimal foraging [76, 77].

Now we incorporate the concept of taxis into spatial predator-prey models. Temporal 
predator-prey models describe the interaction of predators with prey over a period of time. 
In the simplest form, it is assumed that when a predator encounters a prey, the predator 
may kill the prey and consume it. This may result in the growth of the predator population 
and decline in the prey population. Thus, predator growth depends on the prey. The 
prey is assumed to have self-limitation such as a logistic growth. In addition, the predator 
population decreases exponentially without prey. However, the above assumptions do not 
tell us how the predator-prey interactions occur spatio-temporally. To fully explain the 
spatial interaction between the two species, an important aspect is whether the predator 
perceives the heterogeneous spatial distribution of the prey.

In chemotaxis models, organisms respond to an external chemical stimulus. Kareiva and 
Odell [46] extended the idea of chemotaxis to an insect predator-prey model, in which the 
prey plays the role of stimulus and the predator indirectly senses the external stimulus only 
via internal satiation. They assumed that predators do not necessarily have the memory to 
recognize prey, and cannot estimate prey density. External ways by which the predator can 
sense prey, such as visual and olfactory abilities, were excluded. The only method by which 
the predator can detect the prey density is through its own gut fullness. In other words, 
when the predator is satiated, prey density is high and when it is not, prey density is low. 
Predator movement is determined by the level of satiation. Hence, it is interesting to study 
the direct relationships between satiety and prey density and its effects on the predator 
foraging strategy. To model this process, we consider the satiety as another space and 
time dependent compartment and investigate how satiety combined with predator motility 
generate foraging strategy in complex environments.

The characteristic feature of prey-taxis equations is that taxis is incorporated into dis­
persal terms as an advection term. This result can be obtained via approximation pro­
cedures. Predator-prey-taxis equations were successfully derived in [46] under a so-called 
quasi-steady state assumption, which was used both to derive the chemotaxis equations and 
to estimate the relevant model parameters from experimental data. Macroscopic predator- 
prey interaction equations are derived from the individual movement behaviours which give 
a spatial connection of local predator-prey interactions. There may be various approaches 
to obtain prey-taxis equation. One such approach is that which Hillen and Stevens [35]
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used to derive chemotaxis equations from the parabolic limit of hyperbolic equations. The 
similarity between chemotaxis and prey-taxis comes from the fact that both share the con­
cept of taxis. Thus, the development of the prey-taxis equation inherited those ideas from 
the case of chemotaxis. However,we note the main following difference between chemotaxis 
and prey-taxis equations. Unlike most chemicals, satiety in prey-taxis does not diffuse 
independent of the predator population. The movement of predator population, moreover, 
depends directly on satiety rather than on prey density itself. It is thus one of the topics of 
this thesis to extract satiety equations related to the individual movement of predators.

In contrast to the rich development of chemotaxis models, the subsequent works of prey- 
taxis model are quite limited. Here we review the subsequent works of prey-taxis model 
after Kareiva and Odell introduced their prey-taxis model in 1987. The original ideas of 
Kareiva and Odell were modified in [9] by Cantrell and Cosner to allow the predator and 
the prey to recognize the environment in different ways; relatively high motility of the 
predator helps the predator experience the environment as the collection of patches. Thus, 
the model of Cantrell and Cosner focuses on emigration and immigration of the predator 
between patches. The model thus includes no predator diffusion and taxis terms. It is 
assumed that the prey move slowly and do not jump between patches. These assumptions 
naturally generate multiple temporal and spatial scales; for the temporal scales, predator 
dispersal was considered as very fast, prey dispersal and reproduction were moderately fast, 
and predator reproduction was slow. For the spatial scales, the predator operates on a large 
spatial scale and the prey on a small scale. For the immigration and emigration rate of the 
predator, Cantrell and Cosner considered two aspects: the size of the patch, and the other is 
the average prey density with finite and infinite supply of the predator from the air around 
the patch. Under certain conditions, maximum and minimum patch sizes were calculated 
for the prey to survive without extinction.

The model in [9] was applied in [10] to the situation in which the introduced species 
competes with the resident species for the prey. To understand foraging strategies in the 
competition between two different predator species, Cantrell and Cosner investigated the 
role of the emigration rates. To compare foraging strategies adapted by different species, 
they used the net rates of energy uptake of the old and new species.

The Kareiva and Odell model was applied to estimate the mean travel time of a predator 
to reach a prey resource. To do so, Griinbaum [23] focused on the predator dispersal term in 
the absence of the predator population dynamics. He introduced two statistical indicators. 
One is the expected payoff of satiety per predator per unit of time as a foraging strategy, 
and the other is the travel time statistic of how quickly a predator finds and aggregates 
around a prey. He introduced a family of turning rates with one free parameter called 
the turning threshold A. Then he compared the success of two predator species who used 
different foraging strategies by means of different turning thresholds.

In this section, we reviewed predator-prey models and introduced the development of the 
prey-taxis model by Kareiva and Odell [46], In the next section, we will discuss chemotaxis 
models, which gave a motivation for the prey-taxis model.

1.2 C hem otaxis

In this section, we review the history of the chemotaxis equation, highlighting developments 
that will inform the remainder of this thesis, that is, model derivation, model approximation,
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travelling wave connections, and pattern formation. We begin by describing the concept of 
chemotaxis which inspired the concept of prey-taxis.

In chemotaxis models, an individual’s dispersal consists of two processes: the first is 
random motion, and the second is movement up a chemical density gradient, which is 
considered as chemotaxis.

In earlier work, a chemotactic interaction model was formulated for amoebae with three 
chemicals: acrasin, acrasinase, and a complex from the kinetic reaction between acrasin 
and acrasinase. Keller and Segel [47] assumed that amoebae move up the acrasin gradi­
ent. Under the assumptions that the chemical complex is at steady state and that the 
total concentration of enzymes is constant, they studied amoeba aggregation by finding the 
instability conditions driven by the diffusion and advection of amoebae and acrasin.

In 1971, this chemotaxis (Keller-Segel) model was further applied by Keller and Segel 
[48] to explain travelling bands of the motile bacterium Escherichia coli. They used a pair 
of coupled PDEs,

ds ^
m  = - k t l  +  D

d2i
dx2

db
dt

d_
dx

d_
dx

1 /  S d s

bx{s)di

(1 .1)

(1 .2)

where k  is the consumption rate of the substrate, s the density of the substrate, D  a constant 
diffusion coefficient of the substrate, b the density of bacteria, a diffusion coefficient of 
bacteria, and x(s) chemotactic sensitivity of the bacterium.

Parabolic systems such as (1.1) and (1.2) may arise from related hyperbolic models. 
In subsequent work, a parabolic model was approximated from a hyperbolic model in the 
papers [79, 80]. In the parabolic model, the organisms move in response to an external 
chemical signal with a quasi-steady state assumption. The external chemical signal is 
assumed to diffuse after it is produced from the organism.

In a similar approach, the Keller-Segel equation can also be obtained via the parabolic 
limit process of their hyperbolic model for chemotaxis. Hillen and Stevens [35] showed this 
by considering right moving and left moving subgroups whose movements are determined 
by a one space dimensional hyperbolic model with chemotaxis. The turning rates and 
velocity of the two subgroups are assumed to depend on an external stimulus, which follows 
the diffusion-reaction equation. They also proved existence of a unique solution for a 
hyperbolic chemotaxis equation with spatio-temporally variable stimulus.

Further discussion of one-dimensional hyperbolic models and a multi-dimensional trans­
port model for chemotactic movements was carried and some known results for the Patlak- 
Keller-Segel model were reviewed in Hillen’s review paper [33].

Independently, a chemotaxis advection term was introduced into the Lotka-Volterra 
equations by Pettet and McElwain [75] to describe angiogenesis and wound healing. In 
this model, a chemotactic sensitivity is independent of the density of the chemoattractant. 
Thus the capillary tip n  moves in response to a gradient of chemoattractant a produced by 
macrophages as follows

dn
dt
da
dt
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where f (n ,a)  and g(n,a) are local population dynamics of n  and a respectively. They 
found conditions for the existence of continuous travelling wave solutions, which connect 
the wounded state and the healed state (heteroclinic orbits). Equations (1.3) and (1.4) are 
transformed with travelling wave coordinates z = x — ct

. dn
h { n ,a ) —  =  /i(n , a), (1.5)

da
—  = 5i (n, a), (1.6)

where g | in (1.5) is replaced with 51 (n,a). They also recognized that heteroclinic orbits 
may not always be connected due to a so-called ‘wall of singularities’ when / 2(n, a) =  0. 
No trajectory can cross this ’wall of singularities’ because equation (1.5) is undefined on 
the ’wall’. They mentioned that when a ‘wall of singularities’ occurs, additional analyses 
other than the usual phase plane analysis are required for equations (1.5) and (1.6).

The analysis of Pettet and Mcelwain was continued by Landman et al. [52] based on the 
phase plane analysis and hyperbolic theory used by Marchant [64], in which a discontinuous 
travelling wave solution was considered. In another article, Landman et al. [53] considered 
how cells with chemotactic migration colonize uniformly growing domains via the chemoat- 
tractant wavefront. The mobility of each species is enhanced in an additional convection 
term by the local velocity of domain growth, v(x, t)  and the reproduction dynamics of 
migrating cells is assumed not to depend on a chemoattractant.

The bacteria E. coli and S. typhimurium are observed to generate patterns associated 
with chemotaxis toward the asparate concentration in a liquid medium, under the assump­
tion that succinate concentration is constant. Although linear analysis of this system showed 
no pattern formation, Tyson et al. [94] explained how initial patterns appeared but then 
disappeared as the chemotactic response saturated. In another paper [93], they included 
the dynamics of succinate concentration in the reaction with bacteria density, and from 
numerical simulations found three types of patterns: (i) aggregates occur temporally in 
liquid medium, (ii) S. typhimurium generates a thin bacterial lawn and stationary rings as 
the lawn expands in semi-solid medium, (iii) E. coli forms a swarm ring initially and then 
aggregates in semi-solid medium.

In this section, we discussed chemotaxis models, which motivated the prey-taxis model 
([46]). For chemotaxis models, discontinuous wave solutions were considered and spatial 
patterns have been studied analytically and numerically. In the subsequent sections, we 
will discuss numerical simulations, travelling wave solutions, and pattern formation.

1.3 N um erical Sim ulations

Here we briefly review numerical methods for the numerical simulations in this thesis. The 
models we study consist of three parts: reactions terms, diffusion terms, and advection 
term.

Models for slime molds and for bacteria in Dolak and Hillen [16], which share those three 
components, were analyzed numerically for pattern formation. To do this, a fractional 
step method was used: a one-step implicit method for the reaction terms, a standard 
alternating direction implicit method for the diffusion terms, and the Lax-Wendroff scheme 
for the advection terms. This fractional method enabled us to choose the most efficient and
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accurate methods available for each component of the model. Since advection terms are 
treated as a hyperbolic system by the fractional step methods [95], the numerical scheme 
for the advection terms has to be chosen carefully.

For advection terms Tyson et al. [95] use high-resolution methods, which are based on 
the Godunov method, implemented in the CLAWPACK package (see [55] for details). We 
used high resolution central schemes rather than the Godunov method on CLAWPACK 
because first, we may easily extend one-dimensional codes to higher dimensional ones and 
two species to more than three species and second, high resolution central schemes are more 
easily implemented, but still show accurate simulation results.

For diffusion and reactions terms, we use the Crank-Nicolson scheme and a second order 
Runge-Kutta scheme, respectively.

In summary, in this research we implement efficient and accurate numerical methods for 
each terms via a fractional step method by using MATLAB.

1.4 Travelling W ave Solutions

So far, we have discussed the study of models: chemotaxis models and predator-prey models 
closely related to our own and the numerical simulations of models. We now briefly describe 
the two analysis approaches for our models; travelling waves in this section and pattern 
formation in the following section. In this thesis, travelling wave solutions represent both 
species invasion (prey) and territory expansion (predator).

Travelling wave fronts are solutions to partial differential equations (PDE), which have 
fixed shape and translate at a constant speed as time evolves. These waves are described 
by the so called travelling wave coordinate, z = x — ct with wave velocity c. If U(z) — 
u(x, t) denotes the solution of the PDE, then U is called the profile of the travelling wave. 
Murray [68] illustrates the calculations of travelling wave solutions for various equations 
including the Fisher equation. In the Fisher equation, the diffusion process combined with 
logistic population growth is used to investigate genetic propagation in one dimensional 
space (Fisher (1937), see [68] for detailed discussion). Since then, the Fisher equation has 
been studied extensively in population biology and ecology. The Fisher equation

%  = k“(1 - u) + D§ ? • (1J)

where A; is an intrinsic growth rate and D  a constant diffusion coefficient, is one of the 
simplest models that generate a biological travelling wave solution like the one shown in 
Figure 1.1. Travelling wave solutions can be found using the ansatz u(x, t) — U(z). The 
PDE translates into a system of ODE’s in the travelling wave coordinate 2 , with specific 
boundary conditions at 2 —> ± 00 . In the ODE system, the travelling wave front solutions 
appear as heteroclinic orbits that connect a saddle point to a stable equilibrium or to a
stable limit cycle. For instance, under the travelling coordinate and rescaling of time and
space, the Fisher equation turns into

U" + cU' +  17(1 -  U) =  0, (1.8)

where c is the wave speed with the boundary conditions

U(—00) =  1 and (7(oo) =  0. (1.9)
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Figure 1.1: Travelling wave simulation for the Fisher equation (1.7) with k =  0.8 and 
D = 10.

Phase plane analysis is used to seek heteroclinic orbits (see Figure 1.2). When the wave 
speed c passes the threshold c =  2 , a biologically reasonable heteroclinic orbit begins to 
be generated, that is, there is a non-negative population density. For the scaled Fisher 
equation (1.8), c > 2 guarantees a nonnegative heteroclinic orbit. Applied to predator- 
prey models, travelling wave front solutions represent the spatial transition of the saddle 
point through the unstable manifold to the stable coexistence equilibrium. They show how 
the predators invade an area where prey has already stabilized to its carrying capacity. 
Dunbar [17, 18, 19] demonstrated the existence of various travelling wave trains (travelling 
wave solutions which show periodic behaviours) and travelling front solutions for a diffusive 
predator-prey system. Huang [40] extended Dunbar’s result to the case that prey has 
diffusion term as well. When prey dynamics are regulated by an Allee effect, predator- 
prey systems with constant diffusion terms for both species have a unique travelling wave 
solution [21]. Here an Allee effect is negative population growth at low densities due to 
various mechanisms such as a lower chance of finding mates, less efficient group defense, 
and so forth [1, 57].

1.5 P attern  Form ation

We now describe the second analysis direction for our derived models, that is, pattern for­
mation. Let us assume for now that, in the absence of dispersal, solutions of a predator-prey 
system converge to a coexistence steady state or a limit cycle. The first case corresponds 
to a spatially uniform pattern in prey and predator densities. However, the introduction of 
dispersal with diffusion may generate spatially non-uniform patterns. In general, diffusion 
terms tend to give rise to homogeneous densities over long time. In some cases, however, 
heterogeneous spatial patterns can result (diffusion-induced instability [70], Turing instabil­
ity) . Diffusion-induced instability describes the situation where, in the absence of diffusion, 
the homogeneous steady state is stable to small perturbations, but a diffusion process makes 
it unstable to small spatial perturbations. Murray [68] showed various models which ex­
hibit diffusion-driven instability, and found necessary and sufficient conditions for pattern
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Figure l .2: Travelling wave simulations for the Fisher equation (l.7) with c =  2 and c =  l.

formation. Zero flux boundary conditions are usually used to avoid boundary effects on 
the pattern. Hillen [31] found that a Turing model with correlated random walk produces 
a spatially unstable constant equilibrium under certain conditions for turning rates and 
speeds. Lewis [56] showed that a spatial pattern may occur in a plant-herbivore model, 
in which only herbivores are assumed to move with random motion, herbivory-taxis, and 
density dependent aggregation.

To analyze our models, we first look at systems that are stable to small perturbations 
without diffusion, but unstable to small perturbations with diffusion. Therefore, we can use 
the linear stability analysis, and look for solutions in the form

n,v  «  exp(Ai), (1-10)

where the frequency A is an eigenvalue, n  is the predator density, and v is the prey density. 
A positive eigenvalue, A > 0 implies that the densities of the prey and the predator increase 
exponentially for a short time. We also define a time-independent solution of n(x, t), v(x, t) 
satisfying the spatial eigenvalue problem defined by

nxx +  k2n — 0 and vxx + k2v =  0 (1-H)

with nx = 0 and vx =  0 on the boundary. Here, we consider a small perturbation of the 
system temporally and spatially around the steady state. After solving the eigenvalue prob­
lem defined above, we have eigenfunctions nfc(x), Vk(x) corresponding to the wavenumber 
k. The linearity of the problem gives the superimposed solution as follows:

n(x, t) =  Afc exp(At +  ikx ), (1-12)
k

V  (x, t) =  Bk exp(At +  ikx), (1-13)
k

where the constants Ak, Bk are determined by a Fourier expansion of the initial conditions, 
but these constants are not used. Substituting these n{x, t) and V(x, t)  into the linearized
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system about the steady state, we get the eigenvalues A in terms of the wavenumber k. As
time increases, modes with A(k) > 0 grow and other modes decline exponentially to zero. 
Thus, we can find the range of the wavenumber k for diffusive instability and obtain the wave 
length corresponding to k such that if the domain is small compared to this wavelength, 
diffusive instability will not occur. Using this property, we can determine a critical domain 
size and a maximum population for persistence of the prey population (See Murray [68]). 
This has applications to the problem of the pest population at a refuge level (Ecological 
control strategy : When and where to release biological control agents to reduce the pest 
population).

Prey-taxis allows predators to search more actively for prey, and can generate different 
spatial patterns from those in models with only predator diffusion. Kareiva (1990) found 
(field) experimentally the spatial patterns that predator and prey distribution generate 
a halo of predators (ladybug) surrounding a prey (aphid) outbreak, which may not be 
stable. However, this pattern is generated by a diffusive component. Numerical simulations 
confirmed this result (see [46, 44]). Likewise, he did not explain what role the taxis term 
plays in the pattern formation. By studying pattern formation, we identify the role of prey- 
taxis in prey and predator pattern formation. Linear stability theory cannot always predict 
long term dynamics, but if there exists an invariant set including the unstable steady state, 
these linearly unstable solutions tend eventually to be balanced by the nonlinear terms 
and a steady state spatially inhomogeneous solution occurs [84]. Alternatively, we may use 
nonlinear stability analysis and numerical solutions [56], In addition, singular perturbation 
analysis for the ratio of two diffusion rates near the bifurcation that initiates the pattern 
formation has been used to obtain a heterogeneous pattern for the nonlinear case.

1.6 Functional R esponse

In this section we describe the idea of functional responses. A functional response describes 
the prey consumption rate by an individual predator across a range of prey densities. Holling 
[36] suggested three functional responses based on handling time, under the assumptions 
that prey density is the dominating factor and that predator satiation, environmental tem­
perature, and prey and predator motility do not significantly affect the functional responses. 
Thus, the number of prey consumed, f (v) ,  is proportional to searching time, T s, times the 
prey density v, so we have the equation (See Holling [37]):

where a is the probability tha t an individual predator encounters an individual prey for 
a unit time interval, and a may not be a constant. The searching time, Ts is given by 
Ts = T  — Thf(v),  where T/, is the total handling time and T  is the characteristic (given) 
time. T  is now taken to be 1. Substituting this equation into (1.14) and isolating f (v)  on 
the left side gives

which is a type II functional response if T/, is a constant. Under the assumption that the 
handling time is negligible and a is a constant, we have a type I functional response:

f (v)  = aTsv, (1.14)

(1.15)

f (v)  = av + 0 ( T h)- (1.16)
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Note that equation (1.16) is usually called Lotka-Volterra or described as the absence of any 
functional response (from comment by Chris Cosner). The true form of a type I functional 
response is that f ( V )  is constant for v bigger than some threshold v*. However, for purposes 
of linear stability analysis near v = 0 and near v = vq non-zero steady state there is no 
difference between f (v)  = av and a true type I functional response. Hence, we call a type 
I functional response throughout this thesis without too much confusion.

In area-restricted foraging, predators search more actively in high prey density areas. If 
we assume that a is a linear function with respect to prey density, then a type III functional 
response is obtained:

«■> = TTSSS*- (I'17)
where ao is a linear coefficient and Th is a constant. The type III functional response indi­
cates that predators search more efficiently as the prey density rises. These three functional 
responses are all based on the principle of mass action and a spatially uniform predator- 
prey density. In addition, it is assumed that the interactions between the prey and the 
predator do not generate spatial heterogeneity, and that predators forage independently. If 
the prey population is much bigger than the predator population, the above assumptions 
are satisfied. Cosner et al. (see [13] for details) studied various scenarios of functions a,
i.e. the prey-dependent case, ratio-dependent case, predator-dependent case under differ­
ent assumptions of prey and predator spatial distribution, and derived functional responses 
in 2- and 3- dimensions. In another study, Metz et al. [65] derived functional responses 
based on predator satiation in which the time for digestion, the rate of gut emptying, the 
effect of temperature, and the movement speed of both species were considered instead 
of handling time (see also [38]). In deriving these functional responses, Metz et al. used 
the differential equation of the predator with respect to time t  and satiation s for a given 
prey density. For the gut emptying, a delay term with respect to satiation was used. The 
same method was applied for the functional responses with two different prey items, and 
for two-dimensional satiation state (satiation measured at the different part of gut). See 
[92] for detailed information on various functional responses.

Jeschke et al. [42] developed the steady-state satiation (SSS) equation of functional 
responses by considering five stages of the predation cycle: search, encounter, detection, 
attack, and eating. Classic Holling type functional responses are based on handling time, 
and the SSS equation considers digestion time as well. Because the SSS model takes various 
predation stages into account, the effects of prey defences can be included.

1.7 O utline

In this thesis, we are interested in a mechanism which explains spatial predator foraging 
behaviour in response to a heterogeneous prey environment, and in how foraging directly 
affects predator movement in response to prey density. Here the predator’s satiation level 
is considered as an indicator of a local prey density. As a framework, we focus on the prey- 
taxis model introduced by Kareiva and Odell [46], We analyze the derivation of this model, 
understand the assumptions used, release unnecessary assumptions, and modify some parts 
of the derivation procedure in a mechanistic way. Our derived prey-taxis model is applied 
to study the spatial predator-prey interaction. The rest of this thesis is organized as follows.

In Chapter 2, we develop a model of the interaction between prey and predators. The
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model consists of a predator movement model, spatial satiation variation, turning rate, 
predator temporal dynamics, and prey dynamics. The directional movement of predators 
is described with a 1-D hyperbolic system. A satiation function is derived under the as­
sumption that it is regulated by both prey distribution and satiation. Temporal variation in 
satiation is derived and combined with predator movement to approximate spatio-temporal 
satiation variation. Increasing the satiation level leads to frequent turning by predators, 
which affects predator movement. Turning rate, which is determined only by satiation, is 
derived mechanistically by a Poisson process and is confirmed among four candidates mod­
els via statistical selection procedures. Finally prey spatial dynamics are introduced briefly, 
in which prey dispersal is determined by a diffusion process and local prey population dy­
namics are limited by the interaction with predators. We do not derive prey dynamics 
rigorously.

In Chapter 3, we reduce the number of total equations derived from Chapter 2. First of 
all, we use rescaling and a parabolic limit to approximate the hyperbolic system of predator 
movement. As a result we obtain an equation in the form of (1.2). Here the counterpart 
of chemosensitivity x(s) is called prey sensitivity x(v) depending on prey density v. Prey 
sensitivity and diffusion rate are derived through turning rate and spatio-temporal satiation 
variation. An alternative derivation of prey-taxis is considered using the transition between 
mobile and resting states of the predator. We derive the prey-taxis equation for predator 
spatial variation in the form of an advection-diffusion equation, to which local population 
dynamics reacting to prey density are added.

In Chapter 4, we review the numerical methods used in this thesis. Numerical simula­
tions are done using a fractional step method. For the prey-taxis term, we carefully choose 
high resolution central schemes, such as Nessyahu-Tadmor (NT) scheme, Kurganov and 
Tadmor scheme, etc. For the diffusion terms, the standard second order Crank-Nicolson 
method and the second order Runge-Kutta (RK) method are used.

In Chapter 5, we consider the global pattern in a predator-prey model from Chapter 3 
via travelling wave connections. Here we look at the situation in which introduced predators 
catch up with a spreading prey. We consider two questions: 1. whether prey spread is 
slowed down by the predators and 2. whether it is stopped by the predators. We address 
these questions with diffusion-only dispersal, prey-taxis dispersal, and several other local 
population dynamics. We also consider that predator diffusion rate is small and prey do 
not have spatial mobility. We modify the model which Pettet and Mcelwain [75] considered 
with a nonconstant prey sensitivity x{v) =  Without predator diffusion we consider the 
condition for a discontinuous travelling wave solution. Here so called ‘Hole in the Wall’ 
appears. The full model with small predator diffusion is investigated and compared with 
the approximate model. In the last section, we consider traveling wave speeds to the resting 
models derived in Section 3.6.

In Chapter 6, we consider the spatial pattern formation induced by diffusion and prey- 
taxis combined with various local population dynamics. We perform a mathematical anal­
ysis to find conditions for which prey can persist under the predation pressure.

In the last chapter, we summarize and discuss the results we obtained in this thesis, and 
talk about further research.
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Chapter 2

Modelling Prey—Taxis

In this chapter, we construct mathematical models for area-restricted foraging where the 
foraging strategy depends on the prey density. Since we are interested in modeling directed 
movement of the predator depending on their satiety in detail, we begin the modeling in 
one spatial dimension. The resulting model for non-tumble and oriented movement of the 
predator is a hyperbolic model of correlated random walk for the species, which is coupled 
to a hyperbolic model for the satiation and coupled to a prey-diffusion equation.

Aphids are observed to actively aggregate around their own species to reduce the chance 
of predation [11, 90], even though their grouping strongly attracts predators. Using a math­
ematical model Turchin and Kareiva [90] argued that prey grouping decreases predation 
pressure via two components. First, the probability of prey killed per predator per unit 
of time is a decreasing function of an aphid colony size. Second, the expected number of 
predators attacking an aphid colony is an increasing function of aphid colony size but is not 
increasing as quickly as aphid colony growth.

Our research is motivated by the observation of area-restricted searching of the ladybug 
beetle Coccinella septempunctata in response to the goldenrod aphid (plant lice) in predator- 
prey models. Kareiva and Odell [46] fit their models to field data of the ladybug beetle and 
the goldenrod aphid and showed that the predation by lady beetles at low densities of 
aphid populations seems to be crucial to the control of aphid outbreaks. Therefore, time of 
release of ladybug is an important aspect in the control of an aphid population. Like most 
ladybugs, Coccinella beetles exhibit area-restricted foraging following the consumption of 
aphids. Hungry ladybug predators travel long straight paths without changing direction 
often. As they consume prey, their turning rate is seen to increase, and zig-zag movement 
is observed [46]. Ladybug predators are not able to detect prey visually at distance over 1 
cm.

Predator satiation is an important factor for predator foraging behaviour, hence we 
begin the modeling in Section 2.2 by modeling temporal satiation dynamics. In Section 2.3, 
we formulate a model for spatial movement of the predator and we combine both partial 
models to obtain a movement model for predators that includes the satiation dynamics in 
Section 2.4.

We study the drift-diffusion approximation in Chapter 3, where we also extend the limit 
equation to more than one space dimension.
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+ / - positive/ negative direction moving [N-D]
u

V(x,  t) 
n +(x, t) 
n~(x,t)  
n(x, t)  

r = R(S)  
S(x, t)

K
i p

So = So(Y)

speed at which a predator travels [L/T]
prey density [N/L]
right-moving predator density [N/L]
left-moving predator density [N/L]
total predator density (= n +(x,t) +  n~(x , t )) [N/L]
direction-reversal probability per unit time for predator [1/T]
degree to which a predator is satiated([0,1]) [N-D]
max density of prey [N/L]
flux density of predators [N/T]
steady-state value of S  [N-D]

Table 2.1: Notation and units of the predator-prey-satiation model

2.1 N otation  and U nits

In this section, the dependent functions that are used for our final predator-prey-satiation 
model are summarized in Table 2.1 (Units: L -  length, T -  time, N -  number, and N-D -  
nondimensional).

2.2 Tem poral Satiation  D ynam ics

In this section, we consider satiation dynamics. We first consider a system where there is 
no space dependence. Hence the satiation of a predator S(t) and the prey density V(t) vary 
with time t  only. The satiation S(t) increases each time the predator consumes a victim 
and decreases as the predator digests and excretes. The predation rate depends on the
prey density V{t) experienced by the predators, and on the satiation S(t), since stomach
fullness clearly influences a predator’s inclination toward further predation. The rate of 
digestion, which is the rate at which S(t) decreases in the absence of feeding, also depends 
on S(t). Thus, we assume the existence of a differentiable function f (S ,  V ) that determines 
the satiation dynamics of each predator as follows

^ S I  =  /(«(<), V(t)). (2.1)

Here f (S ,  V) can be understood as the foraging strategy (foraging intensity) of the predator, 
depending on the satiation S  and available food V.

We assume the following condition that is derived from biological reasoning

I  <  »• <2 -2 '

It describes the situation that, as gut-fullness increases, satiation growth rate is slowed. In 
other words, increased satiation makes the predator less efficient in searching for more food 
. This situation may occur because predators tend to kill less prey or because predators 
change the consumption pattern to partial consumption of prey killed [82].
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We also assume that
/(0 ,V ) > 0  a n d / ( l ,  10 < 0 , (2.3)

which says that, for a fixed prey population, an empty gut drives predator to consume prey 
and increase its satiation level, and that, for a fixed prey population, a full gut restricts 
predator from higher satiation.

In Section 2.5 we relate the turning rates to the predator satiation and to the prey 
density. In the final section of this chapter we derive the coupled predator-prey-satiation 
model.

We normalize satiation 5(t) to be within D =  [0,1], Assumption (2.3) is sufficient to 
prove that D  is positively invariant for (2.1).

Lemma 2.1 Assume condition (2 .3 ) and let V(t) be a given continuous non-negative prey 
density, then the region D = [0,1] is positively invariant for the solutions of (2.1).

Proof. We prove that D  is positive invariant by showing that 5(1) starting inside of D 
does not cross the boundary of D. Assume that D  is not positively invariant. Then there 
exists a solution of (2.1) such that initially 5(0) is in D but for some T  > 0, 5(T) is not in 
D. It means that 5(1) crosses the boundary of D  for some t  > 0. At 5  =  0, we first consider 
the case of /(0 , V)  > 0 in condition (2.3) so that we have dS/dt — /(0 , V)  > 0, which means 
that the solution of (2.1) is increasing at 5  =  0, hence it cannot cross the boundary of D 
through 5  =  0. Now we consider the case of /(0 , V)  =  0 in condition (2.3) so that we have 
dS/dt  =  /(0 , V)  =  0. Here we consider 5 1 =  —e for small positive constant e. For such 
Si,  we can see that / (5 i ,  V)  > 0 from the assumption (2.2). Thus a trajectory starting on 
5  = 0 cannot decrease any further. Similarly at 5  =  1, we find dS/dt  =  / ( l ,  V) < 0, which 
means that the solution of (2.1) is decreasing at 5  =  1. In addition, a trajectory starting on 
5  = 1 +  e should decrease due to the assumption (2.2), hence a satiation starting at 5  =  1 
cannot grow any further . Therefore D  is shown to be positively invariant (see [89]). □

When the prey density is held constant for a long time, it will be shown that the satiation 
5(1) approaches the steady-state solutions of equation (2.1) that satisfy /(5 , V) = 0. With 
assumption (2.2), the implicit-function theorem [4] is used to show that 5  is expressed 
uniquely as a function of V. We denote this steady-state value of 5  by S q(V).

Since /(5 , V)  is the rate at which satiation of predator varies, we need to consider two 
processes to express /(5 , V). The one is the rate of satiation increase through consumption 
of prey, and the second is the rate of the satiation decreasing by activity and energy intake, 
such as searching for prey and digesting and excreting eaten prey. For the case of increasing 
satiation, we need to consider the rate of consuming prey with variable satiation, because 
the rate of consuming prey has been observed to vary with respect to predator satiation 
[46]. Therefore, f ( S , V )  consists of energy intake and energy decay terms. The energy 
intake is expressed as a classical killing rate in the form of a functional response g(V) times 
the conversion of killed prey into energy e(5). The second is an energy decay which may 
be proportional to satiation level or may follow a functional response form if we take into 
account an increased energy level due to the partial consumption of prey [82].

In this model, we assume that energy decay is proportional to satiation and does not 
depend on prey density. Then, we have

f ( S , V )  = C i e ( S ) g ( V ) - C 2S, (2.4)
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where C\ converts units of prey into satiation units, and C? is an energy decay coefficient. 
Besides three types of functional responses g(V) introduced by Holling [36], we consider 
a fourth functional form, which has been introduced by several researchers [14, 49]. The 
prototypes of the functional responses that we show in Figure 2.1 are

where a, b, and c are positive constants. We define e(5) =  (1 — S')7, which describes 
how satiation regulates the intention of partial consuming prey. (1 — S) indicates tha t as 
predator is satiated more, an energy intake occurs more slowly for the same prey density.

so that predators show the same foraging behaviour with respect to varying satiation (See 
Figure 2.2).

To find a steady state relationship between So and V,  we need to understand the rela­
tionship g(V) = from equation (2.4) for the four functional responses defined above.

Let Sq(V) be a solution to g(V) =  =  4>(So) providing it exists. Then we have

Lem m a 2.2 (i). $(So) is monotonically increasing, (ii). $(So) is continuously differen­
tiable in [0, 1).

Proof, (i) When we take a derivative of 4>(So) with respect to So, we have 4>'(So) = 
^■(1 — So)_7_1(l — So +  7 S0), which is always positive for So < 1 and nonnegative 7 . 
Therefore <f>(So) is monotonically increasing, (ii) 4>(So) is product of two functions (let, 
4>i(So) =  §^So and 4>2(So) =  (1 -  So)-7 ). 4>i(So) and $ 2(So) are all infinitely differentiable 
in [0 , 1), hence the product of two infinitely differentiable functions is infinitely differentiable. 
□

Thus, <f>(S0) is a one-to-one function on its domain, which implies that the inverse 
function of 4>(So) exists [4].

Lem m a 2.3 Under the assumption that g'(V) exists, let Sc(V) = 4>_ 1(<7(V)), then

Proof. When we differentiate both sides of g(V) =  $(5o(V)) with respect to V,  we have
d9}y^ = i in which is always positive by Lemma 2.2. Thus, d9jy ^  and ^
have the same sign, which shows (2.6). Hence S q(V) and g(V) have the same extremal 
points. □

Note that for Type I, ^  does not exist at V  =  c. We use Matlab to show the behaviour 
of the curve Sq(V) as 7  decreases to zero (See Figure 2.3). As 7  approaches zero, we can

for 0 < V  < ca — —
^  for V  > c 
aV

Type II ,gn (V)
1 + bV 

aV2

(2.5)

Type III ,9III(V)
1 + bV2 

aV
Type IV ,gIV{V)

b + V  + V 2 jc

As 7  approaches zero, e(S) approaches 1 for all satiation S  except for high satiation 5 = 1 ,

S'0(V) > 0 i f f g ,( V ) > 0  
S'0(V) < 0 iff g'(V) < 0 
S'0(V) = 0 i f f g f(V) = 0.

(2 .6 )
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Figure 2.1: Four types of functional response dependent on prey density (V). Type I-IV 
are shown in formula (2.5) and the parameters are: Type I ) a = l l , 6 = l  and c =  10, Type 
II) and Type III) a =  10/11 and 6 = 1  ,Type IV) a =  15/11, 6 = 1  and c =  10.
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Figure 2.2: As satiation S  increases, food consuming expressed by e(S)g(V) is shown to 
decrease. The parameters are: 7  =  0.1, a =  10/11 and 6 = 1 .
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see that 5o(V) has classical functional response forms corresponding to g(V). In addition 
to condition (2.2), Kareiva and Odell [46] assumed the following condition

(2.7)

which describes the situation that as there are more prey, the predator has a higher inclina­
tion to consume prey and it takes shorter time to search for prey so that satiation increases 
more quickly.

Type I, II and III satisfy all required conditions (2.2-2.7) for f (S ,  V)  but Type IV fails 
to satisfy condition (2.7) for large prey density. We have the following property for Type I, 
II and III functional responses

which means that, when V  is held fixed, the equilibrium satiation of the predator’s gut 
should be larger for larger values of prey density. But Type IV functional response does 
not show this kind property of predator. However, releasing condition (2.7) in this thesis, 
we may include Type IV functional response. Without condition (2.7), Sq(V) is not a one- 
to-one function, but the above three Lemmas 2.1-2.3 still hold. For Type IV curve, 5o(V )  
is decreasing for large prey density, which can be explained with the concept of implicit 
prey defense or predator resting for mating or reproduction. The resting for mating or 
reproduction might increase with prey consumption. So(V) is the solution that should 
be observed in predators that forage in a fixed constant-prey density, V,  for a long time. 
Indeed we find

Lemma 2.4 Under conditions (2.2) and (2.3) , the equilibrium Sq(V) of equation (2.4) is 
unique and it is asymptotically stable.

Proof. By the way that Sq(V) is defined, we can see it is assigned uniquely with V. It 
implies that f (S ,  V) can be zero only one time at any fixed prey density. Under condition
(2.3) (/(0 , V ) > 0), and condition (2.2) (d f / d S  <  0), f (S ,  V) is a function of 5  that starts 
nonnegative at S' = 0 and is monotonically decreasing with respect to S.  By equation (2.1), 
we can see that for S  < 5 o (V ), S(t) is monotonically increasing and approaching S'o(V’), and 
for S > 5 o (V ), 5 (t)  is monotonically decreasing and approaching 5o(V ) (Figure 2.4). Thus 
when V  is held fixed at any value, that equation (2.1) has a unique steady-state solution- 
namely, 5 o (V )-  and as t  —> oo, S  approaches 5 o (V ), i.e. Sq(V) is globally asymptotically 
stable. □

A functional response is a per predator consumption rate as a function of prey density. 
In our case, satiation can be interpreted in two ways. The first is to directly account for 
the killed prey, as described by the functional response curves. The second is to assume 
implicitly an energy conversion with a constant energy conversion rate from the killed prey 
to satiation.

Kareiva and Odell used e(S) =  1 — 5  and g(V) = 1+y/„ • They estimated C\ =  0.018632 
m/day, v  =  711.2/m, and Ci  =  2.3384/day. The relation between 5  and V  at equilibrium 
is shown in Figure 2.5. As prey increase, the killing rate approaches a plateau of value v. 
When the killing rate is near this plateau, the satiation equation (2.1) can be expressed as 
a function of satiation only as follows,

- j-  — C\v  — {C\u + C^S .  
at

(2.9)
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Figure 2.3: As 7  decreases to zero, Sq(V) shows similar behaviour corresponding to four 
functional responses (g(V)). With 7  closer to zero, the steady satiation level for a fixed 
prey density increases. The parameters are: 7  =  0.5, 0.3, 0.1 and 0.01, Co =  1/11, Type 
I) a =  11, b =  1, c =  10 and C\ — 1/11, Type II) and Type III) a =  10/11, 6 = 1 ,  and 
Ci =  1/11 , Type IV) a =  15/10, b — 1, c =  1/2, and C\ =  13/11. The arrows show the 
direction of decreasing 7 .
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Figure 2.4: With condition (2.2) and (2.3), for the fixed prey density, all initial values of S  
approach Sq(V).
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Figure 2.5: Satiation equilibrium using the Kareiva and Odell [46] functional form and 
parameters: So =  cfg(vf+ca ■ ^ 1 ~  0.018632, u =  711.2, and C2 = 2.3384
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Figure 2.6: S  = ('Clu~tp'Z+piW°jj jClt/+ ^ ) t))-c i*. Ci =  0.018632, v  =  711.2, and
C% =  2.3384. With different initial satiation, satiation approaches the plateau quickly.

The analytical solutions of equation (2.9) are shown in Figure 2.6 for increasing initial 
satiation 5(0) from 0 to  0.8.

To summarize, it is seen that when the prey density is held constant for a long time, 
the satiation S(t) is expressed uniquely as a function of V, Sq(V).

2.3 Predator M ovem ent M odel

In this section, we derive predator movement model in two ways; the conservation law and 
a discrete random walk.

2.3 .1  D erivation  o f  P redator M ovem ent M od el

Here we derive a mathematical model for predator movement by using the conservation law. 
To motivate the general movement rules we consider a cylinder of fixed cross-sectional area 
A, oriented along the 2:-axis (Figure 2.7). Assuming that all quantities of right- and left- 
moving predators vary with x, let us examine the rate at which the number of right-moving 
predators n + changes in a slice of the cylinder that extends from some fixed x  to x + Ax,  
where Ax is a small constant spatial increment.

The total amount of the right-moving predator ra+ in this slice is n + A Ax.  We assume 
that n + changes (i) due to the fact that a left-moving predator become right-moving and 
vice-versa, and (ii) through flux across the boundaries of the slice. Written as an equation 
we obtain

=  «  +  <«). (2 -10)

The volume factor A A x  converts densities into the total number of predators in the ’’slice” .
To obtain (i), consider that a directional turning rate of the right-moving preda­

tor r + is the probability per unit of time that a right-moving predator reverses. Thus 
f x +AX r+n+Adx is the expected number of right-moving predators within the slice that 
reverse per unit time. Similarly f * +Ax r~n~ Adx  is the expected number of left-moving
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x x  + A x

Conservation Law

Figure 2.7: Equations of balance are derived for flow of predators [concentration n(x,t)} 
with constant velocity, u, along a cylinder with uniform cross-sectional area A.

predators within the slice that reverse per unit time. Then (i) — f * +Ax r~n~ Adx — 
I x +AX r+n+Adx. Derivation of (ii) begins with the observation that the rate at which 
right-moving predator move into the ’’slice” from the left is u A n +(x,t). Because the den­
sity of predator varies with x, the predators generally leave the slice at a different rate from 
that at which they enter, that is u A n+(x +  Ax, t). The net rate at which n + flows into the 
slice through its two sides is therefore

uAn+(x +  Ax, t) — uAn+(x,t) = uA[n+(x + Ax,  t) — n +(x, t)]. (2-11)

Putting everything together, we have

d(n AAx)  _  f  r ~ n ~ A d x— f  r+n +Adx — uA[n+(x +  Ax, t)  — n +(x,t)]. (2.12) 
^  Jx Jx

Dividing by AAx,  and then letting Ax approach zero we obtain the equation

Ar,+ -  -  + + <9n+ /«.,«*r  n  —r n —u ——, (2-13)
ui  ox

which is rearranged as

dt

dn+ dn+ _ _ , ,
+  u —— = r n — r^rv„ , » ^ -  . . . .  (2.14)dt dx

Similarly we can derive a left-moving predator movement equation using left-moving ve­
locity with —u  as follows

dn dn  _ . ,
— u —— =  — (r n — r Tn T).

dt dx
(2.15)

where r + (x, t) is the turning rate of the right-moving predator at time t and position x and 
similarly r~ (x, t) can be assigned for left-moving predators.

A more rigorous derivation can be made without the assumption of small Ax and with 
nonhomogeneous cylinder. Alternatively, (2.14)-(2.15) can be derived as conservation laws 
using the divergence theorem (see [49]) or from correlated random walk (see [100, 91,24,35]).
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1 i +  1i

Figure 2.8: Change of locations on a discrete grid due to the moving and turning values 
described in the text.

For the hyperbolic system (2.14-2.15) on an interval 0 < x < I zero Dirichlet boundary 
conditions are

n +(0, t) =  0 , n~(l,t)  =  0 . (2.16)

No predator can enter at x — 0 and x — I into the domain [24]. However the right-moving 
predators can leave through x  = I and the left-moving ones through x =  0 .

No-flux boundary conditions on an interval are

n + (0,t) =  n _ (0,f), n~(l,t ) = n +(l,t). (2-17)

The left-moving predators arriving at x  =  0 turn into the right-moving predators and 
similarly the right-moving predators arriving at x = I turn into the left-moving predators. 

Moreover, we consider travelling waves on unbounded domains —oo < x  < oo.

2.3 .2  D erivation  from  D iscrete  M od el

In this section, we provide an alternative derivation of the predator movement model that 
is based on a discrete random walk [100].

We discretize an one dimensional domain with stepsize Ax and denote the grid points by 
i — 1, i, and i + 1 and so forth, Right-moving predators move from location i — 1 to location i 
in one time step and left-moving predators move from location i+1 to location i. We assume 
that a predator’s turning can occur immediately after the predator’s arrival at a location 
i, and no turning happens while predators move (see Figure 2.8). The number of right- 
moving predators at location i increases by the immigration of right-moving predators from 
the i — 1 location, but decreases by the immediate turning of some right-moving predators 
after their arrival at location i from the location i — 1, i.e. rf_l ( t)Atnf_l (t) , and increases 
by the immediate turning of some left-moving predators after their arrival at location i from 
the location i +  1, i.e. r~+l(t)Atn^+l(t). Hence we have a discrete right-moving predator 
movement equation as follows

n f  (t + At) = n+ {(t) + rr+l(t)Atnr+1(t) -  r f ^ ^ A t n f ^ t ) ,  (2.18)

and with the similar argument, we can derive the following equation for the left-moving 
predators

n~ (t  +  At) =  n tr+1(f) +  r+_i(t)A tn+L(t) -  r r ^ A t n ^ t ) .  (2.19)
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Moving n/T l (t) to the left-hand side by subtraction and dividing both terms by At produce

(2.20)

n f ( t  + A t ) - n f ( t )  | n f ( t ) - n f _ l(t)
A t  A x / u

At(r7+l(t)nr+l(t) -  r+_1(t)n+ i(t))
A t

n j (t +  At) -  n~(t) n~(t) -  n;+l(t)
A t  A x / u

A t(r+ i( t)n + i(t)  -  r7+1(t)nr+l(t))
A t  ’ }

where At =  A x / u  and A t  can be canceled out from the right term. As A t  and Ax —* 0 , 
we have

971 ^  + u 9U =  r_ 0E(*)><)n _ (a::(f),t) — r + (x(t),t)ra+ (x(t),i), (2 .22)

dU ^ ^  -  u &n =  ~(r~(x (t), t)n~(x(t),t)  -  r +(x(t),t)n+(x(t),t)). (2.23)

Thus equations (2.22)-(2.23) are equivalent with equations (2.14)-(2.15).

2.4 Spatio-T em poral Satiation  D ynam ics

In Section 2.2, we looked at satiation dynamics inside of a predator that is not moving. 
As predators move around for searching food, the satiation variable varies spatially as well. 
Here we extend the derivation from a discrete model to derive a model for spatio-temporal 
satiation dynamics.

Spatial satiation variation is a change of satiation due to a spatial predator movement.
Indeed, Spatio-temporal satiation varies due to the moving behaviour of predators, the turn­
ing behaviour of predators, i.e. the satiation level of right-moving predators S + and the 
satiation level of left-moving predators S~  interchange. The variable n +S + describes the 
satiation (or total amount of eaten food) as transported to the right by right-moving predar 
tors. Note that we assume here that each right-moving predator has the average satiation 
S +. The moving behaviour and the turning behaviour of predators cause the total satiation 
level of right-moving predators at location i to change. It increases by the immigration 
of right-moving predators from location i — 1 to location i by (n +S,+)i_i(t). It decreases 
by the immediate turning of some right-moving predators after their arrival at location i, 
—r/~_l (t)At(n+S +)i_i(t). It also increases by the immediate turning of some left-moving 
predators after their arrival at location i, +r/+l(t)At(n~S~)i+i(t). In addition, satiation 
changes due to the predator activities, such as searching, handling, and digesting prey so 
that satiation variation should be included approximately as n f ( t  + A t )A t f (S / ' ( t  + At) ,V).  
Hence we have a spatio-temporal satiation dynamics inside of right-moving predators as 
follows

(n+S +)i{t + At)  =  (n+5 +)j_i(t) +  r7+l(t)At(n~ S~) i+i(t)
-  r+_1(t)At(n+S +)i- l {t) +  n f ( t  +  At)A t f (S+ ( t  +  At), •)• (2.24)
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With a similar argument, we can derive the following equation for a spatio-temporal sati­
ation dynamics inside of left-moving predators

(n~S~)i( t + At) — (n~S~)i+i(t) +  r+_ l ( t)At(n+S +)i- i( t )
- r r |.1(i)A t(n_ S,_)i+i(i) +  n / (t +  A t ) A t f ( S ^ (t  + At),  •). (2.25)

We move (n+£ +)j_i(t) and (n~S~)i+i(t) to the left-hand side by subtraction, divide both 
terms by At, and rearrange equations (2.24-2.25) as follows

(n+S+)j(t +  At) -  (n+S+)j(t) (n+S+)j(t) -  (n+5+)i_i(t)
A t A x / u

At(r~,,(t)(n~S~)i+i(t) — r/~ ,(t)(n+S +)i-\(t)) , ,
= K 1+1 -- -----------  A t --------+  "* + +  At)> ( 2’26)
(n~S~)i( t + At)  -  (n~S~)i ( t) (n~S~)i( t) -  (n~S~)i+i(t)

A t  A x / u
At(rf_l {t){n+S +)i_],(t) -  r t~ t (t)(n -g ~ )i+i(t)) 

At +  n i (t +  (  ̂+  ^ ) > -)- (2.27)

Here At =  A x / u  and At can be canceled out from the right term. As At and A x  —> 0 , we 
arrive at the hyperbolic model

d(n+J +} +  Ud (n+S+) = r - n - S -  _  r+n+s+ +  n +f ( S +, V),  (2.28)
ot ox

- (nJ  ) -  u d(jlJ  ) =  - r - n - S -  +  r+n+S+ +  n - f ( S ~ , V ) .  (2.29)
ot ox

In particular, if we regard the satiation level of moving predators 5 ± as constant variables 
and the local saitaion dynamics as / ( S ^ ,  V) =  0, then we can see that equations (2.14) 
and (2.15) are considered as a special case of equations (2.28) and (2.29) respectively. Thus 
when we look at the more detailed mechanism such as including satiation dynamics to a 
predator movement, we may understand the more realistic phenomena.

The term n ±S ± denotes the total satiety (or total gut content) of right and left-moving 
predators respectively at location x  and time t. Thus u ^ S * 1 is the flux of gut fullness as 
transported by the moving predator. r ±n±5 ± describes a change in the transport of gut 
contents due to a change of direction of predators. n ± / ( 5 ± , V) describes uptake, decay, 
and consumption of food during the walk of a predator.

The product rule applied to equations (2.28-2.29) and combination with equations (2.14- 
2.15) leads to the following equations for the effective dynamics of satiation, divided into 
gut content transported right/left respectively:

»(?+ /)<?+
—  +  u —  = - ( r -n - /n + ) (S +  -  S~) + f ( S +, V),  (2.30)

=  (r+n +/n -)(S +  -  S ~ ) + f ( S ~ , V )  (2.31)

2.5 Turning R ate

As we saw in the derivations of the predator movement model (Section 2.3) and spatio- 
temporal satiation dynamics, directional turning rates of predators r + and r~ are key
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parameters for the model. In the following we assume that turning is only influenced by 
the satiation and we write r + =  R(S+) and r~ = R(S~).  The turning function R(S)  will 
be derived from experimental data. Kareiva and Odell [46] measured the turning rate of 
ladybug as a function of mean satiation. They fitted the data using a third order polynomial 

I B S  l C*S “l- D S  « In the fitting process, they estimated additional parameters 
simultaneously, such as moving speed u, and parameters for the functional repsonse. We 
propose a mechanistic model for the turning behaviour and fit it to the data. To derive a 
mechanistic model for turning events, we assume that turning events follow a Poisson pro­
cess with rate A . Then e~Xt is the probability of not changing direction in a time interval 
(0,t), or 1 — e~Xt is the probability of changing direction in (0,t). We assume that the 
rate A(S) depends on the satiation S. We assume that the probability to change direction 
in one unit of time 6t is proportional to the relative satiation, so that 1 — e~x(s ') = -a- ,

& max
where Smax denotes a hypothetical maximum satiation and can be obtained by parameter 
estimates as a free parameter. Thus A(5) =  — In • We consider Smax as an un­
known parameter which we fit from the data. Hence as a second candidate for a turning 
function we assume R 2 (S) = —B  In where B  is the strength of this effect. Here it
is the case that i?2(0) =  0. We may generalize to a different situation so that (0) =  A for 
a positive constant A, which results in Rs(S)  =  A — B ln  j • The third candidate
for a turning function is the third order polynomial R a{S) = A +  B S  +  C S 2 +  D S 3. We 
will take the number of free parameters into account and we will use the corrected Aikaike 
information criterion (AICc) to choose the best model from the data of Kareiva and Odell. 
To summarize the candidates for turning functions are:
1. Kareiva and Odell: Ri(S) — A + B S  +  C S 2 +  D S 3, parameters A, B, C, D, predator 
velocity u, functional response parameters.
2. R 2 (S) = - B In > parameters B, Smax.

3. Rz{S) = A — B ln  ( smax-s j, parameters A, B,  Smax•
V ^moi J

4. Ra{S) =  A +  B S  +  C S 2 +  D S3, parameters A, B, C, D.

To fit the turning rates as a function of satiation, we use least squares approximation 
of all four candidates to the data of Kareiva and Odell (Fig. 1. [46]).

We can summarize Table 2.2 by saying that model 4 would be more likely than model 
1, model 2, and model 3 if we only consider the maximum likelihood. However, the models 
have different number of parameters and we use AIC test to compare the models.

AIC =  - 2  log(£(% )) +  2 K,  (2.32)

where K  is the number of parameters and C0\y)  the maximum likelihood, given the data 
y. Note that AIC test considers the penalty of models from the number of parameters and 
a smaller AIC indicates a better model. Especially, the small number of data (13) requires 
using AICc.

AICc =  AIC +  2K{'K  + l ) , (2.33)n  — K — 1
where n is sample size (see [8] for detail).

In this section, we considered the turning function R(S)  from experimental data. Thus, 
the lowest value of AICc gives the best model. Figure 2.9 and Table 2.2 indicate that
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R(S)=1.7115+45.3098 S+-180.172 S2+272.991 S3. R(S)=-26.2683 ln(1-S/0.895388).
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Figure 2.9: Turning rate vs Satiation. Four models of turning rates from Table 2.2 are 
plotted with data from Kareiva and Odell [46]. The parameters of four models are obtained 
from the best fit to experimental data (Fig. 1. [46]).
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Model equation Lmax AIC AICc
Ri = A + B S  +  C S 2 + D S 3 
R2 =  - B ln ( l  -  S/Smax)
Rz = A -  £ ln ( l  -  S/Smax) 
Ri = A + B S  + C S 2 + D S 3

0.0034
5.7784e-04
6.4754e-04

0.0041

19.3957
18.9124
20.6847
19.0072

24.3957
20.1124
23.3513
24.0072

Table 2.2: To compare four models of the predator turning rate R(S),  a Likelihood ratio 
test and the Aikaike information criterion (AIC) are used. In addition, since the number of 
data is less than 40, a correction term to the AIC is added (AICc).

=  —B In ^1 — Snax Ĵ gives the best model (see Table 2.2 and Figure 2.9). It is interesting 
to see that a mechanistic model is as good as or slightly better than other types of models.

2.6 Sum mary: Form ulation o f the  
Predator—P rey—Satiation M odel

In this chapter we derived the predator-prey-satiation model. For that, we considered each 
component of the predator-prey-satiation model except the prey model. The complete 
predator-prey-satiation model consists of three components; 1. the predator movement 
model (Section 2.3), 2. the spatio-temporal satiation dynamics (Section 2.4), and 3. the 
prey model.

First of all, the predator movement model is derived in Section 2.3 and reads

^ + ^  = r - n- . r+„ * ,  ( 2 .3 4 )

= <2-35>

where the turning rates i?(<S±) depending on the satiation is obtained by comparing four 
models in Section 2.5. Here we do not consider birth-death terms for predators in equations
(2.34)-(2.35) because equations (2.34)-(2.35) are not the final form of a model we analyze in 
this thesis. In the next chapter, equations (2.34)-(2.35) are approximated with a parabolic
type single equation and a reaction term is added to the parabolic equation. The spatial
satiation transport through predators is derived in Section 2.4 and reads

d(n+ S +)/dt  +  ud(n+S +)/dx  =  r  n S  — r +n +S + + n+f ( S +,V),  
d(n~ S~) /d t  — ud(n~S~)/dx  =  —r~n~S~ + r+n +S+ + n ~ f ( S ~ ,V

(2.36)
f ( S ~ ,V ) .  (2.37)

Instead of equations (2.36)-(2.37), we could use equations (2.30)-(2.31). Applying the 
product rule to equations (2.36)-(2.37) and cancelling the results with equations (2.34)- 
(2.35) lead to equations (2.30)-(2.31). Similarly equations (2.34)-(2.35) can be obtained 
from equations (2.36)-(2.37) and equations (2.30)-(2.31).

For the prey we assume that they move randomly with local population dynamics related 
to predation,

Vt = eVxx + V(h(V) -  (̂ - + W- l g(F)), (2.38)
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where h(V)  is a prey growth function and g(V) is a predator functional response (see (2.5)) 
as used for temporal satiation dynamics.

For n + and n~ zero Dirichlet boundary conditions were described in (2.16) and (2.17). 
For S + and on an interval 0 < x < L, zero Dirichlet boundary conditions are

S+(0,t) =  0, S~(L,t)  = 0. (2.39)

For the prey dynamics, zero Dirichlet boundary condition is

V(0,t)  =  0, V(L,t)  = 0. (2.40)

No-flux boundary conditions come from

n+ (0, t) S + (0, t) — n~(0, t) S~ (0, t) (2.41)
n~(L,t)S~ (L,t) = n+{L,t)S+(L,t).  (2.42)

With boundary condition (2.17) we have

S +{0,t) = S~{0,t), S~(L,t)  = S+(L,t). (2.43)

For the prey dynamics, no-flux boundary condition is

dV  dV
^ ( 0 , t) = 0 . ^ ( i , , )  =  0 (2.44)

Furthermore, we consider travelling waves on unbounded domains —oo < x < oo.
The significance of this chapter is that we derived the predator movement model (2.34-

2.35) and the spatio-temporal satiation dynamics (2.36)-(2.37). Hence we now understand 
the difference and similarity between prey-taxis and chemotaxis. The predator movement 
model is common for both prey-taxis and chemotaxis. However, the spatio-temporal satia­
tion dynamics are different. In chemotaxis, chemical stimulus move randomly independent 
of amoebae or bacteria. However, in prey-taxis, the dispersal of the level of satiation occurs 
by the dispersal of predators. Hence, different temporal satiation dynamics predict different 
predator-prey interactions. This opens a further research direction.

In the following chapter we will derive a simpler approximation for the model equations
(2.34)-(2.35) and (2.36)-(2.37).
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Chapter 3

Drift—Diffusion Approximation

In the previous chapter, we derived the prey-predator satiation model. Equations (2.34)-
(2.35) and (2.36)-(2.37) describe spatial predator dynamics induced by movement and spa­
tial satiation dynamics caused by both movement and the interaction with the prey, respec­
tively. In this chapter, we find a drift-diffusion approximation for equations (2.34)-(2.35) 
and (2.36)-(2.37).

In order to obtain an approximation, various approaches may be taken. Quasi-steady 
state assumption is one of such approaches. Kareiva and Odell [46] applied the quasi­
steady state assumption to find a parabolic type of the prey-taxis approximation. The 
purpose of this chapter is to eliminate unnecessary assumptions and derive an approximation 
more rigorously. Here we adapt different approaches from that by Kareiva and Odell [46], 
In Sections 3.1, 3.2, and 3.3, we consider constant, symmetric spatially dependent, and 
nonsymmetric spatially dependent turning rates, respectively. With rescaling variables and 
parameters, we approximate the hyperbolic predator movement equations (2.34)-(2.35) 
with the parabolic type of a drift-diffusion equation. The parabolic limit is also used to 
obtain the spatial dynamics of the total predator population composed of the right and 
left moving predators. This parabolic limit procedure provides the main body of the drift- 
diffusion approximation in Section 3.4. The coefficients of the drift-diffusion approximation 
are obtained in Section 3.5 from the spatial satiation dynamics (2.36)-(2.37). As a result, 
this drift-diffusion approximation gives a prey-taxis equation. Alternative derivations of 
prey-taxis equations are achieved from resting models in Section 3.6.

3.1 C onstant Turning R ates

In Section 2.5, we considered a spatially homogeneous turning rate. In Section 2.3, it was 
seen that predator movement equations are determined by a general turning rate. In this
section, we consider constant turning rates and investigate an approximation of (2.34)-
(2.35). In next several sections, spatially general turning rates are considered. We restate 
equations (2.34)-(2.35)

dn+ dn+ A_ _ A+ + f
=  r  n  — r n , (3.1)

ot ox
dn dn /*— — *+ +\ /o o'*
~ d f  ~ U~dx = ~ v  n  ~ r n  )• (3-2)
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For some characteristic time scale T  and length scale L, let e — 4^ be a small parameter. 
We assume that the turning rates can be written as r* = f ^ p ^  (x, t) with r*  constant and 
p± (x,t) — 0(1) with respect to e. First of all, we consider the case that p± (x,t) =  1, that 
is, a spatially homogeneous turning rate. We introduce t* = y , 8 = (fT+^=yz7 , x *

u> =  r +T  and cj) = L r̂~~T+̂ ■ Then equations (3.1)-(3.2) are expressed as follows,

X
L  >

=  “  ujSe2)n -  u5e2n+), (3.3)

e2^ ^ r  “  e<̂ T  ~  "  w<5e2)n_ -  w6e2n+). (3.4)

We assume that turning rates r+ and f~  are constant so that u;, <f> and 8 are constants as 
well. Later we handle the case where u>, <j> and 8 depend on x  and t.

For the simplicity of analysis, from now on we use n t instead of dn/dt ,  and so forth. We 
also rename t* and x* with t  and x  respectively. We define n =  n + + n~  and v — n+ — n~, 
and cancel e on both sides of equations (3.3)-(3.4). Addition and subtraction of equations
(3.3)-(3.4) yields

ent +  vx =  0 (3.5)
e2Svt +  e6nx = e<j>8n — v. (3.6)

We assume that the parameter 0 < e <C 1 is small and that the other parameters 8 and 4> 
are 0(1) with respect to e. What does this mean? There are three possible scenarios:
Case 1. We let the time scale of interest get large (T  large) and let the average turning 
rate — get large but assume that r+ and r~ are similar (r+ -  r~ is 0 (1)) with spatial 
scale, L  — 0(1).
Case 2. We consider the spatially and temporally bounded case ( T  and L  are 0(1)). 
Instead, we let velocity get large (u large) and we let the average turning rate r+t f get 
large with assuming that the difference between f + and r~ is large (f + — r~ is O(T)).
Case 3. We consider spatially and temporally unbounded case; we let the time and spatial 
scale of interest get large (T and L  large) with the relationship of ^  =  0(1), and let f + 
and r~ are very similar ( r+ — r~ is O(e)) with u =  0 (1) and r*  =  0 (1).

Among these three scenarios the second case refers to the parabolic limit. In addition 
to the assumptions we mentioned above, we assume that vt — 0(1). The second scenario 
says that movement speed is large relative to the ratio of characteristic length and time 
scales and turning rates are fast relative to the time scale. In this case, we can study the 
quasi-steady state approximation of equation (3.6). We differentiate once with respect to 
x  and get

vx e8(<fmx rixx)> (3*?)
which is put into equation (3.5) to yield

ent +  e8(<fmx — nxx) — 0. (3.8)

By dividing both sides with e, we have

nt — 8nxx +  <f>8nx — 0. (3.9)

With rescaling variables and parameters, we here approximate the hyperbolic predator 
movement equations (3.1)-(3.2) with a parabolic type equation (3.9).
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3.2 Sym m etric Spatially D ependent Turning R ates

In the previous section, we assume the condition p± (x, t) =  1 so that 6, <f> and ui are 
constant with respect to x  and t  in Case 2. Here we tackle the more general case of non-

<t> and u) as constants, hence we introduce new paramter functions as with new naming, 
d(x,t) =  $0 M ) =  (r { x , t ) - r + ( x , t ) ) L  ̂ ^  = r+(Xjt)T. We restrict
to the case where p(x, t) =  p+(x,t) = p~(x,t),  that is, right turning and left turning 
have the same spatial distribution with different amplitude. Then we have d(x, t) —
<£(x, t) = <f>p(x, t) and Q(x,t) = u>p(x,t), where 6, <j> and io are constants defined as before, 
and equation (3.7) is turned into

The only difference is that equation (3.15) has d(x,t) and <f>(x, t) instead of 6 and <j> respec­
tively.

Steady State Analysis of equation (3.12)
As time approaches infinity, we assume n t =  0 so that the steady state solution of 

equation (3.12) can be considered. Setting n t =  0 and dividing by 6 changes equation
(3.12) into

homogeneous p±(x,t) so that S, <j> and u> are functions of x  and t. We like to keep 5,

vx = —e(d(x,t)nx)x +  e($(x, t)d(x, t)n)x. (3.10)

Since $(x, t)d(x, t)  =  4>8 and d(x,t) = ^  ^ , we have

(3.11)

which is put into equation (3.5). W ith dividing both sides by e, we get

(3.12)

With expanding each term, we have

(3.13)

which is equivalent to

In addition to d(x,t) = 0(1)  and $ (x ,i) =  0(1), we assume px(x,t) =  0(e). 
Thus we have a similar result with equation (3.9)

nt -  d(x, t )nxx +  $(x, t)d(x, t)nx — 0. (3.15)

(3.16)

After integrating, we have

^  +  <M*) = c ,
p(x)

(3.17)
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where C  is determined by initial or boundary conditions. Assuming n(oo) =  0 and n x(oo)
0, that is, predator density at the right end edge of the domain is zero, leads to

nx{x) — p(x)<jm.(x) =  4>(x)n(x). (3.18)

This equation is solved by

n(x) = no(x)exp( f  4>(s)ds), (3.19)
Jo

where no(x) is an initial predator distribution. This solution is expressed in detail as

n(x) = n o ( x ) e x p ^ J  ^  ^ — r  (3.20)

Under constant turning rates, r*  =  r*  the steady state solution (3.20) is

n(x) =  no(x)exp | —-----  ^ x j .  (3.21)

With f~  =  r+, the solution is n(x) =  no(x). However, if we adopt a different boundary 
condition, we may have a different steady state solution (recall that we assumed that n(oo) =  
0 and nx(oo) =  0). Multiplying equation (3.17) by p(x) yields

nx(x) — $(x)n(x) +  Cp(x) =  0. (3.22)

If p(x) is continuous on the domain, then there exists a unique solution of equation (3.22)
[6]. Letting p(x) =  exp( f  —$(s)ds), then the solution of equation (3.22) is

=  J M . X W j j ± c  (3.23J
p(x)

for some integral constant c, which can be determined by an initial condition.
In summary, in this section, it was assumed that turning rates are symmetric and 

spatially dependent. Then an approximation (3.15) of (2.34)-(2.35) was obtained.

3.3 N onsym m etric Spatially D ependent Turning R ates

In this section, we consider spatially general turning rates for an approximation of (2.34)-
(2.35). We now consider r*  =  r ±p±(x, t) where p+ /  p~ so that d(x,t) = (r+(x t)+r-(x t))L2 ’
$ (x ,t)  =  (r (x,t)-r+(x,t))L an(|  f2(x,t) =  r+(x,t)T.  This case is important for the applicar
tion to the satiation based model, since we assume p^ — f?(Sf±) and S +(x,t) and S~(x, t)  
are spatio-temporal functions. Again we assume that d(x, t) and 4>(x,t) are 0(1), then 
equation (3.7) is turned into

vx =  —e(d(x,t)nx)x +  e($(x, t)d(x, t)n)x . (3.24)

We substitute this into equation (3.5) with dividing both sides by e to get

nt -  (d(x, t)nx)x + ($(x, t)d(x, t)n)x — 0. (3.25)
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With expanding each term, we have

nt +  (dx(x , t) -  $(x,  t)d(x, t))nx -  d{x, t )nxx + ($(x, t)d(x, t))xn  =  0. (3.26)

In addition to d(x, t) =  0(1) and $ (x ,f) =  0(1), we assume p ^ (x, t) = 0(e) as before,
which implies that dx(x,t) =  <5>x{x, t) =  O(e) from the following calculations:

A (<r r + p j { x , t ) + r - p - ( x , t )  u
d»(*>*)- ?+p+^ t) + f - p- ( x t ) d(*,t)’ (3-27)

and
= ( r - p- { x , t ) - r + e i ( x , t ) ) L

u
Thus we have a similar result with equation (3.9) up to the order O(e)

rat -  d(x, t)nxx + $(x, t)d (x , t )nx =  0. (3.29)

3.4 Parabolic Limit

In this section, we approximate the hyperbolic system (3.1)-(3.2) with a parabolic equation 
by applying the parabolic limit process.

Addition and subtraction of equations (3.1)-(3.2) lead to the following hyperbolic sys­
tem.

n t +  uvx =  0 (3.30)
vt + unx — -£ n  -  rjv, (3.31)

where n  =  n + +  n ~ , v = n + — n ~ , £ =  r+ — r~ and rj =  r + +  r ~ . In this section, we focus
on a general relation among u, £ and rj in order to lead equations (3.1)-(3.2) to a parabolic
equation like (3.8).

We first differentiate the first equation with respect to t and the second one with respect 
to x. Rearranging the second equation after the differentiation, we have

uvxt = —u2nxx -  u(£n)x -  wr)xv — ryuvx 
= —u2nxx — u(£n)x -  urjxv +t]nt ,2 ,* x (3‘32)

with uvx = —nt. By using the result of differentiating the first equation, i.e. uvxt =  —n«, 
we get

n tt -  u2nxx ~ u(£n)x -  wqxv +  rjnt — 0. (3.33)

If the term including v in (3.33) vanishes, we obtain an equation for n alone. For the scaling 
below we assume that this term wqxv is of low order. To obtain the desired parabolic limit 
we assume that there exist a small parameter e, (for example u~ l ) such that the following 
quantities scale as u  ~  ~  and 77 ~  4f. It is important to note that the sum rj and
the difference £ of the turning rates scale differently with respect to e —► 0. Other scalings 
are possible too but it turns out that the above scaling leads to the most general diffusion 
limit (that includes a drift term ). We give examples where the above scaling is reasonable
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later. To be specific we assume the model parameters, it, rj, and £ are replaced by u e, r)£, 
and which scale as

u£ = - u , & =  -£  and rje =  - , 77, (3.34)
e e

where u, 77, and £ are terms of order one. In addition we assume that

e2it£(rj£)xv —► 0 as e —► 0. (3.35)

That is, even though r)£ is order of 4j, the order of (r]e)x is less than Otherwise we would
keep a term including v.

When replacing u, £ and 77 in (3.33) by ut , £e and t]£, we get

ntt ~ u2£nxx -  u£(^£n)x -  u£(r]£)xv + r)£n t =  0. (3.36)

Then using equation (3.34), we get

e2ntt -  u2nxx -  u({n)x +  r\nt -  eu(r)£)xv = 0. (3.37)

E ntt — 0(1),  then we get the following parabolic equation.

ZL'^ 1
n t = — nxx +  -u(£n)x +  0(e7), (3.38)

77 77

with 7  > 0 As e —> 0,

u2 1
n t =  — nxx +  -u(£n)  a 

77 77
it2

— “t” ^  1
V

u2 (  e(r+ — r~)
 -------  -n** +  u n  (3.39)

I n )
V ) x

e2( r + + j —) xx \ e 2(r+ + r  )
It2 /  r-"*" — r ~

e2(r+ +  7—) Hxx * U(r + — r  ^ 
e(r+ +  r - ) nA

tt? I — r
Tlxx I I I_i_ . _ ••'XX I '■•'fc 1 Ir+ +  r  V r+ +  r

This equation is of divergence form. Dropping e from « £ for simplicity, we define a total 
predator flux as

(  u2 \  dn (  r~ — r+\

Example 1. Especially with the example of r* =  ^  ^  ’ we ^ave limc- > 0  e2(r_ +
r +) =  A  and lime_>o ^  lim«_>o e(r+ — r~) = (~ Axf^)- Here A is some constant
and F  is a prey density. After borrowing chemotactic notation, for e —► 0, we formally get

nt — (Dnx -  xndV/dx)x, (3-41)

with
D = ? j .  (3.42)
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The above formal calculation of a parabolic limit allows two interpretations. Firstly if 
and u are known from experimental data then we derive expressions for the diffusion 

coefficient D and preytactic sensitivity x of the whole population. Secondly if D  and x of 
the parabolic system are given then we choose turning rates r f  and speed ut such that the 
hyperbolic model (2.14) and (2.15) converges formally to the parabolic equation (3.41) 

Now we consider the boundary conditions of (3.41). A Dirichlet boundary condition 
is obtained from equations (3.30)-(3.31) by using a limit process. In section 2.6 the zero 
Dirichlet boundary condition for the hyperbolic system is

n+(0,t) = 0, n~(l , t ) =  0, (3.43)

which leads to n(0,t) =  n~(0,t) = —v(0,t) and n(l,t) — n +(l,t) =  v(l,t). At x  =  0, 
the above statement gives nt(0, t) = —vt (0,t) and equation (3.30) n t(0,t) =  —uvx(0,t). In 
addition, equation (3.31) isolates —vt(0, t) with unx(Q, t) +£n(0 ,t) +rjv(Q,t). Thus we have 
one equation

—uvx{ 0, t ) =  unx(0, t) +  £n(0, t ) +  rjv (0, t). (3-44)

By using the limiting process (3.34), equation (3.44) gives v(0, t) =  0, which leads to 
n(0,t) = 0. Similarly we have n(l,t) = 0.

The no-flux boundary condition for the hyperbolic system is

n+ (0,t) = n~(0,t), n~(l,t) = n +(l,t). (3.45)

Thus for all t we have v(0,t) = n +(0,t) — n~(0,t) = 0 and v(l,t) — n +(l,t) — n~(l,t ) = 0, 
which yield that vt(0, t) =  0 and vt(l,t) =  0. At x  =  0 equation (3.31) leads to

vt (0, t) +  unx(0, t) = -£ n (0, t) (3.46)

since v(0,t) =  0 and vt(0,t) — 0. Therefore na;(0,t) =  — ̂ n(0, t). Similarly we have 
nx{l,t) =

In this section, we approximated the hyperbolic system (3.1)-(3.2) with a parabolic 
equation by applying the parabolic limit process. We also considered the boundary condition 
for the parabolic equation based on the boundary condition for the hyperbolic system (3.1)- 
(3.2). In the next section, we will consider the two coefficients of the parabolic equation 
(3.41).

3.5 P rey  Sensitiv ity  and Diffusion R ate A pproxim ation

In this section, we consider two coefficients of the parabolic equation (3.41). In the last 
section, one example of r ± was introduced. In this section, we consider turning rates as
derived in Sections 2.4-2.5. We will approximate r~ + r + and r~ —r + in equation (3.40) to
find prey sensitivity and diffusion rate in terms of average turning rate and satiation related 
functions. We begin with the assumption of S + — So — g and S~ = So +  g, in which So is 
a temporal equilibrium state of satiation at a given location (see Section 2.2 for detail) and 
g is a small variable (much smaller than 1). Then Taylor expansions of r + and r~ are

r+ =  R (S +) = R(S0 - g )  = R{So) -  ^ ( S o ) g  +  0(g2) 

r -  =  R(S~) = R(S0 + g) = R(S0) + ^ ( S 0 )g +  0{g2)
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u

From these expansions, we get

r “ +  r+ «  2R(S0) +  0 (g 2), (3.47)

and
r  — r + ~  2-j^(So)g + 0 (g3). (3.48)

g here can be identified with e in the parabolic limit formulation. If we now assume that 
R(Sq) ~  0 ( 1 / g2) and (So) ~  0 ( 1 / g2) and in additions ~  0 ( 1 / g) then we find r ~ + r + ~  
0 (  1/e2) and r~ — r + ~  0 ( 1 /e) as was assumed in the parabolic limit. Thus the next step 
is the identification of g to complete the approximation of the prey sensitivity. To estimate 
g, we use spatial satiation variation equations (2.30)-(2.31). Plugging S~ = Sq + g and 
S + = So — g into equations (2.30)-(2.31), we have

^  + “§ - ( l  + “l )  = + A *  ̂  -  & * ■  <^>

7 ST + I  " “ I  =  ^ ( - * » )  +  /(«■• V) + (350)

Since So is a temporal equilibrium state of satiation, dSo/dt = 0 and /(So, V) =  0. Thus 
equations (3.49-3.50) are simplified as

9S0 ( d g  d g \  r~n~ . . d f

dSo dg dg r+n+ s , df r Q t/x (o
+ a t — (- 2i,) +  s s (Sb' F )9 ' (3'52)

With the additional assumptions of dg/dt  1 and =  R(Sq) +  O(g), we have

dSo dg R(S0)n~ d f  f
=  ~ gg (S 0,V)g,  (3.53)

dS0 dg R(S0)n+ n ^ , 9 f
- UW  ~ u e i  = — — ( - 2<>) +  as< s ‘ ’v ^  <3-5 i>

Subtracting equation (3.54) from equation (3.53), we have

* * * = m S , ) f e  +  £ - § ' (* , V ) ) e . (3.55)

Therefore, g is isolated as

9 = ----------------- W -  ■*,-----------------------------, (3-56)
(R(s0) ( ^  + £ ) - U ( S o , v ) )

where is expanded. Prom (3.48) we find,

r -  _  r+ ~  2________ u l § ( s o ) ^ _________ , q i  3n /3 57\
r  r  2 ( f l ( s o ) ( s + S ) - a ( s . . ^ ) )  ( 9 ) ' ( m
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We plug all results into the predator flux (3.40) and borrow the idea of prey sensitivity from
equation (3.41). Then prey sensitivity is approximated as follows:

x{v  „+ „ - )  = _________________________________   (3 58)
(* |S ,(V )]{fl[Sb(V )l(n-/n+  +  » + /„ - )  -  |f [S „ (F ) ,F ]} )

Note that x(V ,n+ ,n~)  is a little different from the approximation by Kareiva and Odell 
[46], who chose

XKo(V)  =  - ’ g l S .P O I f g W  (3  69.
(ii[So(V)]{2i![S„(y)] -  jStSMV), V ]})

If we assume that ^[S'o(VA) ] ^ L(y) > 0 then we can use the inequality ^  > 2 to
observe that 0 < x (V ,n+,n~) < x k o (V). It is seen that x k o (V) is the maximum of 
x{V, n+,n~).  In addition, the formula of Kareiva and Odell has the advantage, that is, 
XKoiy)  does not depend explicitly on the predator populations n + and n ~. Thus we use 
Xk o (V) as a prey sensitivity x (F ) throughtout this thesis.

E xam ple 2. For specific choices of 5 (F ) =  x+vff+xM, f ( S , V ) = ~  AS> 311(1
R(S) = —ailog(l — S/bi),  we analytically calculated prey sensitivity x (F ) for small prey 
density F . We have

x (V) = y  + B  + 0(V) ,  (3.60)

where A = and B  = -  j  A =  2.3384/day, 7  =  0.018632,
v =  711.2/m and u  =  5.87m/day from '[46] and a i and 61 from the best fit of the turning 
rate (see section 2.5).

2
In general, the diffusion rate is r4.+r_ and from the Taylor expansion (3.47)

u2
~  2R[S0(V )}' (3<61)

For the above example 1, we have the following approximation of order 0(1):

D(V)  =  <̂  + E  + 0{V).  (3.62)

where C  =  ^ai-y 311(1 =  “ ■ Thus, we have

> £ ^ _ , ™ + e W . (3.63)

Kareiva and Odell [46] estimated parameters in the prey sensitivity (3.59) and diffusion 
rate (3.61) (see Table 3.5), where R(S) = + fiiS + f o S 2 +PzS*, 5 o (F ) =  x + v ^ + x jv ) ' ancl

=  —(A +  x+y/v)- The diffusion rate D(V)  and the prey sensitivity functions x k o (V) 
are shown in Figures 3.1 and 3.2 as functions of prey density F , respectively. According 
to the estimation of the diffusion rate and the prey sensitivity functions from Kareiva 
and Odell, the diffusion rate is much bigger than the prey sensitivity. To compute the 
prey sensitivity function (3.59), we need to know four functions; f^ [S b (F ) ,F ] , i? [5o(F )],
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parameter value parameter value
u 5.87 m/day Po 1.7115
Pi 45.3098/day Pi -180.172/day
Pz 272.991/day 7 0.018632
A 2.3384/day V 711.2/m

Table 3.1: Parameters used to compute the prey sensitivity (3.59) and diffusion rate (3.61) 
in [46]

-1 O -

1 ooo600 800O 200

V

Figure 3.1: The diffusion rate approximated by Kareiva and Odell [46].
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Figure 3.2: The prey sensitivity approximated by Kareiva and Odell [46],

j § [SoOO], and f n n  In Figure 3.3 we plot these four functions with parameters from 
Kareiva and Odell. In section 2.5, we compared four turning rate models to find the best 
fit to the data from Kareiva and Odell. Those four models are substituted into the prey 
sensitivity function (3.59) of Kareiva and Odell and plotted in Figure 3.4. The best fit of 
the turning rate model (model 2) shows qualitatively similar features with model 1 which 
Kareiva and Odell used. Model 3 and model 4 show negative qualitative when prey density 
is low. In particular, when prey density is low, Model 3 show two singular points because 
i?[5o(K)] =  0 and 2i?[So(V)] — §g(So,V) = 0 make the denominator of x(V) zero (see the 
form of x(V)  (3.59)). It is noted that the prey sensitivity may be negative if we use different 
functional response. With the type IV functional response, g$[iSb(V)] is negative for a large 
prey density so that in the prey sensitive functions, (3.58) or (3.59), for any turning rate 
models x (^0 becomes negative as prey density increases over some threshold density.

In this section, we approximated two coefficients of the parabolic equation (3.41); the 
prey sensitivity and the diffusion rate. The results were compared with the prey sensitivity 
and the diffusion rate found by Karieva and Odell [46],

3.6 A lternative D erivation o f P rey—Taxis Equations 
from R esting—M odel

We now derive prey-taxis equations from models interchanging between resting state and 
directional moving state. Hillen [34] considered the exchange between resting phase and 
directional moving state in n  spatial dimensions to derive taxis equations in a scaling limit. 
Here, as before, we consider a one-dimensional setting. We are interested in the effect of a 
resting compartment for the predators on the overall population dynamics. In the following 
sections we introduce a resting compartment q(x, t ) where the transition rates for stopping
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df/dS vs Prey density Reversal rate vs Prey density
0.8

0.6

g  0.4
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dR/dS vs Satiety x  ̂g-3 dS/dV vs Prey density
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0.6 0.8 200 400 600 800 1000
Prey density V

Figure 3.3: Various functions, f£[Sb(V),V], -R[SoOO], ^ [^ ( V ) ] ,  and used for
approximating prey sensitivity and diffusion rate are displayed vs prey density or satiety 
for the Kareiva-Odell case.
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Figure 3.4: Four turning rate models in Section 2.5 are applied for the prey sensitivity x (^ ) 
in response to prey density V.
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and resuming moving depend on a given prey density V(x, t).
In section 3.6.1 we focus on the moving-resting dynamics without random directional 

changes and without population dynamics. We introduce the method of asymptotic expan­
sions in macroscopic time and space scales. In section 3.6.2 we extend the model to include 
random directional changes and birth and death events in the moving compartment. In sec­
tion 3.6.3 we consider birth and death events in the quiescent compartment and in section 
3.6.4 we study a combination of the previous models.

It turns out that the diffusion and taxis coefficients are scaled by the mean fraction of 
moving predators. The effective population kinetics is given as a convex combination of the 
birth and death terms of the moving and resting phases, respectively. The relative weights 
are given by the mean fraction of the population at resting or moving state.

3 .6 .1  M oving—R estin g  D ynam ics

In this section, for right moving and left moving predators, we introduce a resting state of 
predators. It is assumed that transitions between right- and left-moving states occur via 
the resting state, that is, there is no direct transition between right- and left-moving states. 
The dynamics of the total predator population will be expressed in a parabolic equation.

dn+ dn+ , . . 0(S) , „ ca\
_  +  =  _ a (F, S ) „+  +  — g, (3.64)

dn~ dn~ . . _ f3(S) . .
= _ “ (K S)"  + ~ r 5- (3-65)

^  =  o ( F . S ) ( n + + n - ) - / ? ( % ,  (3.66)

where q(t) is a density of resting predators, a(V, S ) a stopping rate from moving state to
resting state, and 0(S)  a transition rate from resting state to moving state. We assume
that predators that enter the moving state choose either direction with probability

Setting n  =  n ++n~  and v =  n +—n~ and adding and subtracting equations (3.64-3.65), 
we have

nt +  uvx =  -a (V ,  S)n  +  0(S)q, (3.67)
vt +  unx = —a(V, S)v, (3.68)

qt = a (V ,S )n - f i (S )q .  (3.69)

We now introduce the scaling of t  =  e2t and £ =  ex for small 0  < £ <  1. Then equations 
(3.67- 3.69) turn into

e2nT +  uev£ =  — a(V, S)n  +  0(S)q , (3.70)

e2vT + ueri£ — — a(V, S)v, (3.71)
e2qT = <x(V,S)n-0(S)q.  (3.72)

We consider series expansions:

n(r,  0  =  n0(r, 4) +  eni(r, £) +  e2n2(r, 4) +  0(e3) (3.73)

v(t,£) =  vo(t,£) +« ; i ( t ,£ )  + e2V2  (r,£) + 0 ( e 3) (3.74)
q(r) = qo(r) +  eqi(r) +  e2q2(r) +  0(e3). (3.75)
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We introduce these expansions into equations (3.70- 3.72) and collect orders of e:
e°:

e1:

a(V, S)no -  P(S)qo = 0 (3.76)
a(V, S)vo =  0, (3.77)

uvOf =  -a (V ,  S)ni + (i(S)qi (3.78)
un0( +  a(V, S)vi = 0, (3.79)

e2:

n0T +  uvi£ = -a (V ,  S)n2 +  fi(S)q2 (3.80)
v q t  +  uni£ =  -a (V ,  S)v2, (3.81)

q0T =  a(V, S)n2 -  0(S)q2. (3.82)

From equation (3.76), we have qo =  Q̂ ^ no, and equation (3.77) gives wo =  0 so that 
=  vot =  0. Using the result from equation (3.82) and equation (3.79), that is, wi = 

~ a(v,s)n°Z’ e9uati°n (3.80) is rewritten as

(  u \  M ^ S )  \  ,nonx
no' + “ ( “ ^ s ) no* ) s =  - ® '  =  - ( - « s r ’,o) T ' (3-83)

which leads to

' ( ' • W J H s M ,-
Defining a =  no =  no +  qo, we have no =  ^ j^ a . Plugging this into equation (3.84),
we have an equation for the total population (resting population plus moving population)
as follows:

“ T= (385) 

The expansion of the right hand side of the above equation gives

 ̂ +i  U k ) ( a) ( ■ (3-86)
Here term is interpreted as a diffusion term and ^ (^ + ^ ) f«  as a taxis term.

E xam ple 3: We assume specifically that predators tend to change into a resting state 
as energy input increases, e.g. a(V,S) — k S.  Resting predators resume moving as the 
satiation related energy level decreases, e.g. /3(S) — (1 — S'). That is, as a predator is 
satiated, it tends to move into a resting state and as satiation level diminishes, a predator 
tends to resume its mobility for searching food. We recall the notation of So in Section 2.2 
that Sq(U) is a solution to (1 — S)g(V) — k S  — 0. Then we have a(V, So) =  (1 — So)g(V)
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Figure 3.5: In Example 2, the prey sensitivity x(So,V)  and the diffusion rate D(Sq,V)  are 
calculated with rescaled functional response g(F), i.e. V  e  [0,1], and moving speed u used 
by Kareiva and Odell [46].

and (3(Sq) — (1 — So). As a result, a diffusion rate, D(Sq, V),  and a taxis term, xi^o,  V), 
are defined,

n (q  in  = ___________  =  u2(g(V)+K
{ °' ] ( l - S 0)g(V)(g(V) + l)) K9(V ) (g (V)+ K)y

(C V \ =  u2 (  1 A =  u2gy(V)
; (1 -  S0)g(V) I 1 +  g(V))  Kg(V)(g(V) +  1)2 > (3.88)

v

so that equation (3.86) is expressed as follows:

aT = ( d (S0, V)at -  X(So, • (3‘89)

With rescaling prey density, we used the functional response g(V) by Kareiva and Odell 
[46] to draw the graphs of a diffusion rate, D(So, V),  and a taxis term, x(So, ^0- Figure 3.5 
demonstrates that both diffusion rate and prey sensitivity are inversely proportional to the 
prey density V.

3.6 .2  T h e R estin g —M od el Includ ing R ep rod u ction  and D ea th  in M oving  
S ta te  O nly

In this section, we consider that there are direct transitions between right- and left-moving 
states. We also include reproduction and death of predators in moving state (we will
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consider reproduction and death of predators in resting state in the next section) as follows

dn+ dn+ , f3(S) ,+  u —— =  — <x(V, S)n+ H----- -—q — rn  +  rndt dx  2

+ e2 ( ^ n ' ^ n — m(n, S)n+ ) , (3.90)

912 912 nr c\ -  P(S ) + u — — =  — a(V,  S)n  -|------— q +  r n + -  rn

+ e2 — m(n,S)n~^j  , (3.91)

=  a(V, S)(n+ +  n") -  0(S)q, (3.92)

where q(t), a(V, S ), and (3(S) are defined as before. b(n, S) is a birth rate of total moving 
predator population and m(n, S) a death rate of total moving predator population.

Setting n — n+ + n ~  and v =  n + — n~,  and adding and subtracting equations (3.90)- 
(3.91), we have

nt +  uvx = — (o(V, S) +  e2(m(n, S ) — 6(n, S))n +  (3(S)q, (3.93)
vt +  unx =  —(a(V, S) +  2r +  e2m(n, S))v, (3.94)

qt — a(V, S)(n+ +  n~) -  f3{S)q. (3.95)

We now introduce the scaling of r  =  e2t and ^ — ex for small 0  < t  «  1. Then equations 
(3.93- 3.95) turn into

e2nT +  uevg = —(a(V, S ) +  e2(m(n, S ) — b(n, S))n  +  /3(S)q, (3.96)
e2vT +  uen£ =  —a(V, S)v — 2rv — e2mv,  (3.97)

e2qT = a(V, S)(n+ +  n~) — 0(S)q. (3.98)

We consider series expansions as before:

n(r, £) =  n0(r, £) +  eni(r, £) +  e2n2(r, £) +  0(e3) (3.99)
v ( r ,0  =  v0( t,O  + e v i( r ,0  +  €2v2(t,£) +C>(e3) (3.100)

q(r) = qo(r) +  eqi(r) +  e2q2(r) +  0 (e3). (3.101)

We introduce these expansions into equations (3.96- 3.98) and collect orders of e:
e°:

e1:

a ( y ,S )n o -p (S )q o  = 0 (3.102)
(a(V, S) + 2r)v0 = 0 , (3.103)

uvof =  - a (  V, 5)m  +  0(S)qi (3.104)
unog +  (&(V, S ) +  2r)vi = 0, (3.105)
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e2:

nor +  UV\£ =  -a (V ,  S)n2 +  0(S)q2 -  (m -  b)no (3.106)
vqt + uni£ = —(a(V, S) + 2r)v2 — mvo, (3.107)

qor — a(V, S)n2 -  (3{S)q2 (3.108)

From equation (3.102), we have go =  -p ( s j” 0, and equation (3.103) gives vq =  0 due to
r  >  0 so that v q £  — v q t  =  0. Using the result from equation (3.108) and equation (3.105), 
that is, vi — -  (a(vts)+2r)nQ£’ equation (3.106) is rewritten as

n 0 r + «  ( ~ (a ( y  S ) + 2 r ) n°*) i =  - ® r - ( m - 6 ) n o  =  -  - ( m - b ) n 0, (3.109)

which leads to

"° ( ‘ + I P f ) ) .  =  ( (a(V,g) + 2 r )”« ) { +  ( t ~  m)no' <3'110)

Defining a = no — no + qo, we have no =  Plugging this into the equation
(3.110), we have a equation of total population (resting population plus moving population) 
as follows:

aT =  (  7——t t t  ( - J - —o') ] +(b — m )—^—a. (3.111)\ ( a  + 2 r ) \ p  + a  J J  J (3 + a  v ‘

The expansion of the right hand side of the above equation gives

u2 (3
aT = —ai + ~.—U . 1 a ) + { b - m )—-^—a. (3.112)a  5 (a +  2r) \(3 + a  J  ̂  J  v ' 0  + a  v ’( a +  2r)j3+ s . , N, . , c

Here (a“ 2r) term is interpreted as a diffusion term, (a+2r) (/?+a)£Q 38 a taxis term,
and (6 — m ) ^ ^ a  a population dynamics term. It is noted that including reproduction and 
death does not change the diffusion term and prey sensitivity but affects total population 
dynamics. Here we encounter reproduction term (b — which is interpreted as
product of population growth rate (6 — m) and the relative population of reproduction in 
the total population ^ —̂a.

3 .6 .3  T h e  R e s t i n g —M o d e l  I n c lu d in g  R e p r o d u c t i o n  a n d  D e a t h  in  R e s t i n g  
S t a t e  O n ly

In the previous case the population dynamics was happenning only in the moving compart­
ment. Here we assume the opposite, that is, we include reproduction and death in resting
state only again on a slow time scale.

dn+ dn+ . . . (3(S) . _ /o n o \— -  +  u — — — —a(V, S )n+ +  — — q -  rn+ +  rn  , (3.113)
at ox 2

dn~ dn~ . _ f3(S) . _ , .
-  u ~faT = ~ a (V’ S )n + ~ 2 ~ q +  rn ~ rn  ’ (3.114)

=  a(V, S)(n+ + n~) -  (3(S)q +  e2(6 -  m)q, (3.115)
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where q(t), a(V,S) , /3(S), m(q,S) , and b(q,S) are defined as before.
An asymptotic analysis as done above, an asymptotic analysis for n  =  n + +  n~ and 

v = n + —n~ with respect to transformed time and space scales r  =  e2t  and £ =  ex leads to 
a leading order approximation of

n0T + “ ( ~ (tt(V.5)+2,)"0i) i = " ( ^ p P " 0!  “ ~ ‘'i" 0’ (3 U6)
which leads to

Defining a =  n o =  no +  qo, we have no =  ^ j a .  Plugging this into equation (3.110), 
we have an equation of total population (resting population plus moving population) as 
follows:

aT — ( - —U .  - ( —a)  ] + ( b - m ) — -̂ —a. (3.118)
\ ( a  + 2 r ) \ 0  + a  J J  J0  + a  K J

The expansion of the right hand side of the above equation gives

“T ~  ( 7—^ o —a£ +  7—U ( l J ~—1 al  —a - (3.119)^ (a  +  2r)/3 +  a  (a  +  2r) \ 0  + a ) ^  J  0  + a

Here ^ 2r) ++aaZ term is interpreted as a diffusion term, ^ 2r) 85 a tax ŝ term, 
and (b — m) a a population dynamics. As we saw in the previous section, it is noted that 
including reproduction and death in a resting state does not change the diffusion term and 
prey sensitivity but affect only total population dynamics. But it changes the reproduction 
term because the relative population of reproduction in the total population is

3.6 .4  T he R estin g —M od el Includ ing R ep rod u ction  and D ea th  in R estin g  
and M oving  S ta te

In a last case we introduce reproduction and death in all compartments. The result is a 
combination of the effects found in the previous sections. As before we include reproduction 
and death on a slow time scale in resting and moving states as follows

dn+ dn+ , 0(S)  ,
-g j-  +  u~q^-  = S )n+--\---- — q -  rn+ + rn

+ e2 (^ ^ 2  n  — ?n(n, 5)n+^ , (3.120)

dn~ dn~ _ 0(S) ,— u —— =  —a(V, b)n  H----  —q + rn T — rn
dt dx

+ e2 (̂ ^ 2  ̂  n  ~  ^ (n ,  S)n  ^ , (3.121)

^  =  a(V, S)(n+ + n~) -  0(S)q + e2^  -  m j q ,  (3.122)
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where q(t), a(V, S), /3(S), m(q, S), and b(q, S) are defined as before. bi(q, S) and mi(q, S) 
are a birth rate and a death rate of resting population respectively. Then after similar 
computations as before, we have the following result

_  (  “2 0  , u2 f  0 \  \  , (h  -  m i )a  + (b -  m)(3 fo inoN
“' ^ \ k(a  +  2r) /J  +  » “5 + ( ^ T 2 0  ( j 3 T ^ J 5“) { +  J T ^ c  “ • (3123)

Here ^ 2r) ~i3 +^a£ term is interpreted as a diffusion term, (Q+2r) (/3+q)sq 38 a taxis term,
and (bi - mi)£Hb~m)Pa ^  population dynamics. The population growth rate is expressed 
as a convex combination of the moving population growth rate and the resting population 
growth rate

(b\ — m \)a  + (b — m)B a. . 8 .
—------ --------------- --  = i r r z  fet "  + i r r z ^  ~ m)- (3.124p  +  a  p  +  a  p  +  a

Thus the total population growth rate lies on a straight line between the growth rates of 
resting group and moving group. In addition, the location of the total population growth 
rate is proportional to the fraction of time that an individual stays in the moving states 
and in the resting states. Especially, if b = b\ and m  — m\,  then we can see the population 
dynamics (b — m)a.

3.7 Sum m ary

In this chapter we derived a drift-diffusion approximation for equations (2.34)-(2.35) and 
(2.36)-(2.37) by rescaling parameters and taking the parabolic limit. Alternatively, we also 
approximated a drift-diffusion equation from the resting models in Section 3.6.

In Chapter 2 the predator movement model is expressed in two equations (2.34)-(2.35). 
The spatial satiation dynamics of the predator corresponding to prey density are also de­
scribed in two equations (2.36)-(2.37). By the use of approximations, these four equations 
can be collapsed into one equation

nt =  (Dnx -  xndv /dx)x, (3.125)

where D  is a diffusion coefficient, x  is a prey-sensitivity, n  is the total population density 
of the predator, and v is the population density of the prey.

With local population dynamics related to predation, we formulate the complete 
predator-prey-taxis model

vt =  evxx +  v ^f ( v ) -  > (3.126)

nt = nxx -  (x{v)vxn)x +  7n(h(v) -  5), (3.127)

where f (v)  is a prey growth function and h(v) is a predator functional response.
The zero Dirichlet boundary condition for (3.126)-(3.127) is

n(0,t) = 0, n{L,t) =  0, v(0, t) =  0, v(L,t) = 0. (3.128)

The no-flux boundary condition for (3.126)-(3.127) is

nx(0,t) =  - - n ( 0 , i ) ,  nx(L,t) — - ~ n ( L , t ) ,  vx (0,t) = 0, vx(L,t) = 0, (3.129)
u u
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where u is moving speed of the predator.
The significance of this chapter is that we derived a prey-taxis model mechanistically. 

Hence, we understand what determines the coefficients of the prey sensitivity x(v )- That 
is, a different functional response results in a different prey sensitivity. As a result, a prey 
sensitivity could be different from one species to the other.

We obtained prey-taxis models by two approaches by using a parabolic limit (rescaling) 
and considering resting and moving. This gave some idea that a prey-taxis equation does 
not occur by a unique source.

The speed of the predator was assumed to be a constant. However, leg length, which 
differs among species, is one factor to determine the speed of movement [15]. Thus, under 
the assumption of a constant turning rate we may investigate the role of leg length in 
prey-taxis in the future.

The prey-taxis model is the system of two nonlinear advection-diffusion-reaction equar 
tions. Thus analysis of this system will be challenging. We will use numerical simulations 
to support the results of the analysis and demonstrate what analysis may fail to show. We 
consider numerical methods in the next chapter.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

Numerical Methods

In Chapter 3 we derived a drift-diffusion approximation from a hyperbolic system. In later 
chapters, we will use this drift-diffusion approximation to study traveling wave solutions 
and pattern formations to the predator-prey model.

In this chapter we study numerical methods for the predator-prey equations which 
include diffusion, advection, and reactions terms. These diffusion terms, advection terms, 
and reaction terms may be handled by applying one method-an unsplitting method. A 
simple example is the forward-time central-space scheme (FC). That is, it uses the forward 
difference operator in time and the centered difference operator in space. The scheme is 
known to give oscillations near a sharp front [2, 88]. Another example is the scheme FB, 
which uses upwind differencing of the advection term. This scheme is known to smear near 
the sharp front. Kurganov and Tadmor introduced a second order semi-discrete scheme, 
which was applied for the advection term with the central differencing of the diffusion term 
to obtain high resolution for convection-diffusion equations [51]. However, it was noted 
that the ODE solver has to be chosen carefully for unsplit methods unless we can afford 
very small time steps. In general, an unsplit method may more closely model the correct 
equations, but it is harder to obtain high resolution when handling sharp front problems 
[55], Thus to be able to use high resolution methods for discontinuous problems, we adapt 
a fractional step method, which allows us to choose a scheme for each of the diffusion, 
advection, and reaction terms.

In Section 4.1 we review fractional step methods. In Section 4.2 we discuss several 
methods for numerically solving hyperbolic equations for the advection term. The Crank- 
Nicolson scheme is described in Section 4.3. In Section 4.4, some numerical methods are 
considered for the reaction terms.

4.1 Fractional Step M ethods

In this section, two fractional step methods are described: Godunov and Strang fractional 
step methods. A fractional step method is applied to find the numerical solutions of systems 
of predator-prey equations of the form,

vt = evxx + g(n,v),
nt — nxx — (x(v)vxn)x +  f (n,v) ,

(4.1)
(4.2)
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where f (n , v )  and g(n,v) are the local population dynamics of n  and v, respectively, and e 
is small, e <C 1. x(v) is constant or ~  Our full predator-prey model consists of diffusion 
terms for both species, an advection term for the predator population, and reaction terms 
for both species. Thus we adapt a fractional step method, in which diffusion, advection 
and reaction terms are handled independently and individually with the most efficient and 
effective scheme for each case. An approximation process for the full model occurs via three 
split steps. Here the full model can be expressed in the form

Ut = A(U)  +  V(U) + U(U),  (4.3)

where A  is an advection operator, P  is a diffusion operator, and TZ is a reaction operator. 
An operator has the following meaning: if v is any function, then an operator £  converts v 
into a new function Cv. For instance, £  =  is the diffusion operator that transforms v 
into its second partial derivative vxx. Numerical operators are defined as algebraic analogs 
of differential operators. These numerical (advection, diffusion, and reaction) operators are 
obtained by applying three numerical methods for the advection term, the diffusion term, 
and the reaction term, respectively. For instance, we consider a constant diffusion rate, say 
D, and apply the classic explicit scheme under Neumann boundary condition. Then the 
numerical diffusion operator is

V  =

1 — r  r  
r  1 — 2r  r

r 1 — r

(4.4)

with r  =  D p .  the time step size is k — St and the mesh grid size is h =  6x.
In the first step, only the advection term is approximated, i.e. Ut =  A(U),  and trans­

ferred to the (second) diffusion process. Various numerical schemes may be applied for 
approximating the advection equation [55]. Secondly, diffusion terms, Ut = P (t/) , are 
implemented by numerical methods and the new data are passed to the (third) reaction 
process. Finally, reaction terms are handled, i.e. Ut = R(U)  to completely update U at the 
next time step (Godunov splitting [55]), that is,

Ui+1 =  t i (A t)V(At)A(At) (Uj ), (4.5)

where A is a numerical advection operator, V  is a numerical diffusion operator, and 'R. is 
a numerical reaction operator. For the case of Godunov splitting, the length of time step, 
At,  is identical for all three processes. The splitting error was evaluated via Taylor series 
expansions for a general linear PDE with a time step, At,  in [55]. LeVeque showed that 
there is no splitting error for the simple case: n t + u n x =  —fin,  which includes an advection 
term and a reaction term, but not a diffusion term. It is, however, not generally true, even 
with slight modification to the simple example case. Linear PDEs may generate splitting 
error. For instance, n t = (A + B ) n  with differential operators A  and B  may have splitting 
error unless the differential operators A  and B  commute.

Generally the fractional step method gives second order accurate approximation, i.e. 
0 ( A t 2) in each time step and a first order accuracy for an accumulated time period, ^  for 
some fixed T. The Strang splitting takes different combinations of splitting operators used 
in (4.3) in order to give second order accuracy for an accumulated time period, ^  for some
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fixed T. In the first step, the Strang splitting updates data using the advection term with a 
half time step, i.e. A t/2. Approximating diffusion terms are followed with a half time step
as well. In the third step, reaction terms take the full time step. Then the Strang splitting
procedure applies to diffusion operator for another half time step, followed by the advection 
term to update new data, [P +1 ( see [95] for details).

Uj+l = A{A t /2)V{At/2)K(At)V(At /2 )A(A t /2 )(Uj ). (4.6)

Although the Godunov splitting and the Strang splitting are formally first order and second 
order accurate, respectively, the Godunov splitting actually often gives as accurate results 
as the Strang splitting does [55]. It was shown numerically that the Godunov splitting 
generates slightly less accurate results than the Strang splitting if both fractional methods 
adapt the second order Lax-Wendroff method for the advection equation and the second 
order two stage Runge-Kutta method for the reaction equation. The Godunov splitting 
generates much more accurate results than the Strang splitting if the first one uses the 
second order Lax-Wendroff method for the advection equation and the second one uses the 
first order upwind method for the advection equation. Note that for the scalar advection 
equation ut +  aux = 0 with advection speed a, the first order upwind method is written as

Ui+1 =  Ui -  |a |f  (Ui -  I t , ) ,  (4.7)

where i indicates the location of a mesh point, and the second order Lax-Wendroff method 
is

n lc  A*2
u ‘ = u ; ~  2S (t7«  - u <-^ + W a2{u'+' ~  w ‘ + U U y  (4'8)

Furthermore, the Godunov splitting is easier and more efficient to apply. Therefore in 
this thesis high resolution methods for the advection equation are used via the Godunov 
Splitting. For more details on fractional step methods, see [55].

4.2 A dvection  Term s

Here we consider several numerical methods for the advection term of the predator-prey 
equations (4.1) and (4.2). A typical form of a system of non-linear advection equations is 
as follows

< « >

where U is a vector of species (in this thesis, U are two or three variables) and f (U)  is a flux 
function of U. We briefly describe Godunov-type schemes and delve into central difference 
schemes in order to solve system (4.9).

Courant, FYiedrichs, and Lewy recognized in 1928 a necessary condition for convergence 
of the numerical solution to a solution of (4.9) [54], that is, a necessary condition for the 
convergence of a finite-difference approximation to an initial-value problem is that the 
numerical domain of dependence, Dk(xi,tj),  at any grid point contains the exact domain 
of dependence, D(x,t),  at that point, i.e. D(x,t)  c  Dk{xi, tj)• This condition has been 
known as the CFL Condition since then.

For a non-linear system, the CFL condition requires that

| M  |<  l, (4.10)
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for each eigenvalue Xp of the Jacobian matrix of f (U)  where k  is the time step size and h 
the spatial mesh size. Here the Courant number is naturally defined by For stability 
of a numerical scheme, the Courant number is required to be less than 1, which is adapted 
as an important restriction for computing advection terms of the simulations in this thesis.

For nonlinear problems the discontinuous solution may cause the numerical schemes to 
converge to a solution that is not a weak solution even though the CFL condition is satisfied. 
Thus keeping a conservation form for the numerical methods is necessary for the solution 
to converge to a weak solution, which satisfies the integral form of the system (4.9)

f x i + l / 2  r x i-\-l/ 2

/ U(x,t j+i)dx=  / U(x,t j)dx
x i — l / 2  • 'x i - l / 2

f t j  +1 f h  +1
-  / f ( U (x i+i/2, t ) ) d t -  / f (U(x i_ l/2,t))dt

Jtj  Jtj

Dividing both sides by the spatial mesh size h, then we have 

u i+1 = U \ - \  \ j h+1 f (U (x i+l/2,t))dt -  £ +1

(4.11)

(4.12)

where Ui is a cell average on the ith cell, i.e. Ui — f x i+̂  U(x,tj)dx.  If we know the 
right hand side of (4.12), we can update a cell average on the ith  cell at the j  + 1 time 
step. However generally it is not possible to compute the time integrals on the right hand 
side of (4.12). Thus the cell averages, U?, and the average flux along x = x i+l/2, i.e. 
i  I t-+1 / ( U 1/2j t))dt, should be numerically approximated, namely, ui  and F^+l^ ,  re­
spectively. This provides the numerical method of the conservation form

it;7 + 1 -j
=  *  -  KH+m -  f J V '  <4 -13>

with \  = k/h.
This way of using an integral form to get approximations is called a Finite Volume

Method. Equation (4.13) says that the i th  cell average u at the j  + 1 time step is determined
by the i th  cell average u  at the j  time step and the difference of two numerical flux functions 
at two cell edges, i.e. x  = x t_i /2 and x  =  x i+l/2. In order to approximate a solution of (4.9) 
numerically, Godunov-type schemes are widely used. To approximate the numerical flux 
function F3i+1/,2 from the ith  cell average £ J ^ +1 f (U (x i+i/2,t))dt, U{xt+\/2,t) are replaced 
with a piecewise polynomial approximation u(x, t j )  «  u(xi+l/2,t) of the form

P i  ( x ) l x  ( x )  ’ ^ 4 - 1 4 ^

i

where Pi (x)  are piecewise polynomials defined at the discrete cells, X  = [x j-i/2,£*+i/2] 
and lx (x )  is the characteristic function of X  defined by 1x0*0 =  1 for x  6 X ,  otherwise 
l x ( x )  =  0. Generally Godunov-type schemes follow the three steps algorithm [55]: 

Algorithm (Godunov’s method).

1. Given cell average u\, construct a function u(x, t j )  for x £ [xf_i/2,x<+1/2]' Godunov 
himself used a piecewise constant u(x, t j) ,  i.e. u(x, t j ) = u\ for all x  6  [x*_ 1/2> ̂ *+1/2]
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2. Solve the conservation law exactly or approximately with this data to obtain u(x, t 3+i) 
for x  e  [xj_ 1/2, x i+l/2). A Riemann solver is involved in this process.

3. Compute cell averages at the resulting solution to obtain 
Si + 1 = U x £ £ i*(X’t3)dx-

Here we describe how Godunov’s method works with a simple example. With a piecewise 
constant u{x, tj)  — u\ and Courant number less than 1, the flux function is Fi+l/2j  — 
E I t j+1 /(u (x i+1/2, =  i f (u(xi , t j ) )k  =  if we assume that the Jacobian matrix

has only nonnegative eigenvalues for all Uitj. Dropping the bars, a first order upwind 
method for the hyperbolic system (4.9) is expressed as

ui+l = ui -  K f i ui) -  f ( uL i))> (4-15)

here we interpret u\ as the cell average at the j th  time step on the zth cell with Courant 
number less than 1 rather than approximations on the grids. Thus for the general hyperbolic 
systems, eigenvalue computations are required for upwind-style methods.

Among Godunov types methods, central difference schemes have an advantage over 
upwind-style methods for nonlinear advection terms due to the relative simplicity of appli­
cation. The first order central-difference scheme of the Lax-Friedrichs (LxF) method for a 
nonlinear system (4.9) takes the form

«*+1 =  \ ( ui - 1 +  uU l) ~ ^ ( /K + i )  -  /K - i ) ) -  (4-16)

In the conservation form of (4.13), the LxF method takes the numerical flux function with

* t l /2 =  +  / « + ! »  -  -  4 - 0 -  (4.1?)

Due to its simplicity (no Riemann solvers involved), the LxF scheme is straightforward to im­
plement compared to Godunov type methods, which require Riemann solvers as the second 
step in the above algorithm (Godunov’s method). On the other hand, due to ^ (u (  — u\_^) 
interpreted as numerical diffusion, the LxF scheme produces large numerical dissipation so 
that this scheme generates poor resolution of shock discontinuous solutions. Thus several 
high resolution schemes based on LxF type schemes have been presented. Nessyahu and 
Tadmor [69] introduced one of such schemes (the second order NT scheme), which inherited 
the simplicity of the LxF framework -Riemann solver free- but still gained high resolution. 
To improve the resolution, the NT scheme looks for cell averages, u \ , rather than point val­
ues, u\. Since the cell average of u over the interval I x = \xi) x i+\\ is JIxu(£,t)d4,
the NT scheme actually computes on the staggered grids, which can be identified
with the point values, up to second order accuracy. u j ^ / 2 is approximated as follows

C L  =  + « l n )  +  -  / w +,/2)i. (4.i8)

where u \+l^  is estimated by a Taylor expansion as

= (4.19)
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and (ux)f is obtained via the minmod limiter,

=  (4.20)

with minmod(a, b) =  ^[sgn(a) +  sgn(6)] • min(|a|, |6|). {fx){ can be computed from the 
Jacobian matrix of f ( u )  or from a discrete approximation based on neighboring values 

/(« i) , and f ( u { + l) without loss of high resolution [60]. With {ux )\ = 0 and
( fx ) i  =  0, the NT scheme collapses into a staggered form of the LxF scheme.

^i+i/2 =  +  « i+ l)  “  A[ / K + l )  -  /(«?)]• (4.21)

The second-order NT scheme shows high resolution due to the considerably lower amount
of numerical dissipation compared to the amount of the dissipation by the first-order LxF 
scheme. The dissipation in the NT and LxF schemes has an amplitude of 0 ( ( A x ) 2r /  At),  
where r is an order of accuracy. Even though the second-order NT scheme produces rel­
atively less dissipation, a small time step A t  leads to large dissipation. In the case that 
small time steps are required, the second-order NT scheme loses high resolution due to its 
accumulated numerical dissipation (see [51, 69] for details).

Thus, to deal with this loss of resolution, Kurganov and Tadmor introduced Kurganov- 
Tadmor schemes that have smaller numerical dissipation and admit a semi-discrete form 
[51]. For (4.9), the fully discrete second-order central scheme by Kurganov and Tadmor is

u i =  ^ ai - i / 2 w i - i / 2  +  [f _  A(a i—1/2 +  ai+ l /2 ^ w i +
A x  (4-22)

+  ^ a i+l/2Wi+l/2  +  _2_ [(Aai - l /2 )  (U*)i—1/ 2 ) — (Aai+ 1 / 2 (Ux) i+ 1/2) 1 ’

with

ai+l/2 =  m3X ( P 1/2) )  >/» ( ^ ( < 1/2) ) )  ’ (423)

where uf+1j2 =  u\+l — 4 r(iix)(+1 and u7+lj 2 =  u\ +  ^ - { u x)\ are the intermediate values 
of u(x, tj)  at x i+i/2  , and p{A) is the absolute value of the largest eigenvalues of matrix A. 
(ux)\ is defined in (4.20).

Here and w{+l are defined as follows

(4.24)
< : : ,2 = + Ax  -  m u

i+ 1/2

w i + 1 =  u i +  ^ ( ai - l /2  -  a i+ l /2) K ) i

___________^_________\ f (ui + l/ 2 ) -  f(uj+l/ 2 11 (4-25)
1 _ \ | V  ^ '  t —l / 2 , r ' h
1 1 /2  +  i + 1 / 2 '
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where

Ui+l/2,l ~  Ui+l/2,l 2 ~ (4.26) 

Ui+1 /2 ,r  =  ^ + 1 / 2 , r  2 ~  ( 4 -2 7 )

Ui+l/2,l = uf +  A x ( u ^  ( i  -  Aa\+l/2) (4.28)

U\+l/2,r ~  Ui+1 _  ^ X(Ux)i+l(2 ~  Aa,i+1/2)' (4.29)

We can use the Jacobian of /  directly or a componentwise evaluation based on neighbor­
ing values of /(m ^ j), f(u{),  and f(u{+l) for computing f x terms. Finally (ux) j ^ ^ 2 is 
approximated by

r  N J + l  2  • A  “ ? + l  “  ^ + 1 / 2  ^ + 1 / 2  -  ^ + 1  ^(«*)<+i/2 =  ■v-nunmod - .-----------  -,---------- / ----------    . (4.30)
\  (a t—i/2 ai+3/2) 1 +  (ai+l/2 ai - 1/2) /

Setting (ux ) \ + { / 2  — 0 and {ux )\ =  0, we obtain a first order Rusanov scheme.

wJ+1 =  u i ~  ^ ( / K + i )  -  f ( u i - 1)) +  | [ Aai+ i /2(u i+i ~  u °i) ~  Aai - i / 2 K  “  u i-i)]> (4 -31)

where a\+l/2 are the maximal local speeds. The Kurganov-Tadmor fully discrete scheme 
gives high resolution, but it is complicated to implement as shown from (4.22-4.31). On 
the contrary, the semi-discrete version of the Kurganov-Tadmor scheme is relatively easy 
to apply,

d M Hi+l/2(t) -- m(t)  =    , (4 .32)

where the numerical flux on the edge of each cell is

Z J  ^ _ / ( < i / 2  (* ) ) - /(« r +1/2(*)) « m / 2 ( i ) r. +  ^  , „ o o x
Hi+I/2W — 2 2 *+1/2  ̂  ̂ i+1/2( » (4.33)

with u++l/2(t) = ui+i(t) -  Ap(«x)i+i(t) and uT+i/2{t) = ut(t) + ^■(ux)i (t). To compute 
(4.32), any ODE solver may be used. Here we use the explicit Euler method or a two step RK 
method. However, due to a stability restriction, a very small time step is required. In order 
to release this restriction, implicit or explicit-implicit ODE solvers can be used. Kurganov 
and Tadmor use the explicit embedded integration methods introduced by Medovikov (see 
[51] for details).

When (ux)f = 0, the NT, and semi-discrete and fully discrete Kurganov and Tadmor 
schemes become the first order schemes, which generally show better resolution than the 
first order Lax-Friedrichs scheme, but the assumption of (ux)? =  0 leads to the zero flux 
function in our model because the flux function in the predator equation depends on the 
gradient of the prey density. Therefore, in this thesis, a second NT scheme is mainly used 
and fully-discrete or semi-discrete schemes are used to validate the results from the second 
NT scheme.

When we apply conservative methods, such as Gonunov type methods, the following 
Lax and Wendroff theorem gives confidence in a solution, which is a good approximation
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to some weak solution.
T heorem  (Lax and Wendroff). Consider a sequence of grids indexed by i = 1,2, • • • , with 
mesh parameters A:*, hi —> 0 as i —> oo. Let u ^ \ x , t )  denote the numerical approximation 
computed with a consistent and conservative method on the zth grid. Suppose that 
converges to a function u as i —> oo, in the sense made precise below. Then u(x, t) is a weak 
solution of the conservation law [54].
Over every bounded set Q =  [a, 6] x [0, T] in x  1 space

J r T  rb

' /  |u ^ (x ,i)  — u(x,t)\dxdt —> 0 as i —> oo.
0 Ja

We now use Burgers’ equation to compare the numerical methods discussed in this 
section. The conservative form of Burgers’ equation is

ut +  =  (4-34)

Figures 4.1 show numerical solutions to Burgers’ equation computed with the six methods 
described in this section. With k /h  =  0.5, the numerical results are plotted at time t = 1 
with the solid line of the exact solution. The first order Lax-Friedrichs scheme is shown to 
give the most smeared solution while the second order Lax-Wendroff scheme produces os­
cillations, which occur behind the discontinuity. The second order non-oscillatory schemes, 
that is, semi-discrete Kurganov-Tadmor, and NT, show very similar results, but Figure 4.2 
shows that the fully-discrete Kurganov-Tadmor scheme has a better resolution than the 
NT scheme.

4.3 D iffusion Terms

Here we consider the numerical schemes for the diffusion terms. Both predator and prey 
equations have diffusion terms, but there is no cross diffusion term, so we can apply one 
numerical scheme twice for the diffusion terms with the different diffusion coefficients. A 
typical form of a system of diffusion equations is

dU „ d 2U / t n „ .

~dt ~  ( }

where D  is a diffusion coefficient and U is the species we are concerned with. Computa­
tionally a simple classic explicit method, which employs a forward difference operator for 
the temporal derivative operator and a centered difference operator for the spatial deriva­
tive operator, requires a very small time step since its accuracy is 0 ( k  +  h2). Here k 
stands for a time step and h for a spatial mesh size. Furthermore the condition for the 
convergence is severe due to k < On the contrary, the Crank-Nicolson scheme ap­
proximates the diffusion equation at the mid-point of tn and £n+i temporal points, that is, 
( w ) i +1^2 =  (-Df^r),+1//2- It employs centered difference operators for both the temporal 
derivative and the spatial derivative, that is,

u ’ t }  — 2v?+l +  , — 2v? +  v? , \
—  hi +  — ---- h2 ■ (4'36)

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lax— Friedrichs Kurganov—Tadmor
.5

1

0.5

0.7 0.8 0.9 0.7 0.8 0.9
Semi— discrete Kurganov— Tadmor NT

1.6 1.5

1 1

0.5
1
I 0.5

»
\

0.7 0.8 0.9 0.7 0.8 0.9
Lax— Wendroff Upwind

1.5 j--------------------------   1 .5 ------------------------------------------

 ^
1 1

0.5 ■ 1 0.5

0.7 0.8 0.9 0 9
x

Figure 4.1: Numerical solutions and exact solutions to (4.34) are dashed and solid lines, 
respectively, with h = 0.0025, k = 0.00125, and at time t  — 1. The following numerical 
methods are used: (a) staggered Lax-Friedrichs, (b) (Fully-discrete) Kurganov-Tadmor, 
(c) Semi-discrete Kurganov-Tadmor, (d) NT, (e) Lax-Wendroff, (f) Upwind.

1.5

1

0.5

NT
■ — K u rg a n o v — T a d m o r  
—  a x a c t  so lu tio n _______

Figure 4.2: Comparison of NT and (Fully discrete) Kurganov-Tadmor along with exact 
solution to (4.34). Exact solution is a solid line, the numerical solution using the Kurganov- 
Tadmor scheme is a dashed line, and the numerical solution using NT scheme is a dotted 
line with h =  0.0025, k =  0.00125, and at time t = 1.
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Rearranging the above algebraic expression with r = ^  gives

~ rul - i  +  (2 +  2r)ul+l -  r u £ l  = ru3̂  +  (2 -  2r)u\ + ru3i+v (4.37)

where u\ is an approximate solution at the point {ih, jk}.  If there are N  internal mesh 
points along each time step, then the diffusion equation can be approximated with N  coupled 
linear equations of u\ at each time step with i = 1, • • • , N  as follows.

2 +  2r  — r 
—r 2 +  2r  — r N +1l

u \+i
2 — 2r  r 

r 2 — 2 r r

1
»-«•«-» CN
9 

3 
*

i

—r 2 +  2r iV
.

+ I 1 
*

1 to 1 -UN-

which is a generic expression of the C-N scheme in matrix form, namely AU3+1 =  BU3 with 
the vector W  — (u{, , u°N)T. Boundary conditions may change the first and last rows of
matrix A  and B  or the format of AU^+l — BUK For example, under the fixed boundary 
condition, such as 17(0) =  a and U (L) = b, then u30 = a holds for all j  > 1 and u^+ i =   ̂
for all j  > 1 so that we know approximate values of U at two boundary points for all 
time. Therefore there are N  unknown variables left to be computed, that is, « i ,« 2, ■ • • ,u/v 
so matrices A and B  are now N  x N  matrices. For the fixed boundary condition such 
as 17(0) =  a and U(L) — b, there is an extra vector, R  = (2a , ••• ,26)r  in the matrix 
form of the C-N scheme so that the matrix equation form is now AU3+1 =  Bf73 +  R  with 
U — (tti,tt2, • • • ,u n )- With zero boundary condition the vector R  becomes zero. When we 
handle the zero flux boundary condition, i.e. dU/dx  =  0 at the boundary points, the first 
row and last row of A are modified to (2 +  2r, -2 r ,  • • •) and (• • • , -2 r , 2 +  2r), respectively. 
Similarly the first row and last row of B  are modified to (2 — 2r, 2r, • • •) and (• • • , 2r, 2 — 2r), 
respectively. Here u3_ l and u3N+2 are replaced with u\ and u°N, respectively for second order 
accuracy on the boundaries. For the zero flux boundary condition, the matrices A and B  
are (N  +  2) x (N  +  2) matrices and I73 is a size (N  + 2) vector of (u30,u{, • • • ,u3N , l )T .

When we have AU^+1 — BU i or A W +l = B l f t  +  R,  we need to convert J4U3+ =  BU3 
and AUj+1 — B W  + R  into £/3+1 =  A~lB lP  and f/ 3+1 =  A~lBUi  +  A~lR, respectively by 
computing an inverse matrix of A, that is A ~ l . Since the tridiagonal matrix A is symmetric 
and positive definite, the system is guaranteed to have an inverse matrix A -1  at each time 
step computation. Gaussian elimination requires only 0 ( N S) to compute an exact inverse 
matrix A ~ l , which is acceptable compared with expensive advection solvers. We thus use 
direct methods, such as Gaussian elimination or LU (L D LT) factorization rather than 
iterative methods.

The C-N scheme is of 0 ( k 2 +  h?) meaning that temporal and spatial approximations 
for the diffusion equations show second order accuracy. In addition, although large value of 
r  =  such as 40, can generate oscillations in the numerical solution, the C-N scheme is 
unconditionally stable in the sense that the errors approach zero as j  gets larger [83]. Thus 
throughout this thesis the C-N scheme is applied to approximate diffusion terms (prey and 
predator diffusion). For more detailed explanations and examples of numerical scheme for 
parabolic equations you are referred to [2, 83, 88].
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4.4 R eaction  Terms

In this section we consider the numerical schemes for the reaction terms. In equations (4.1) 
and (4.2), local predator- prey population dynamics are described in the form of ODEs. A 
typical form of a system of first order non-linear ordinary equations is

f  =  m ,  (4.38)

where /  is a function of U and the unknown U is a differentiable function with respect to 
time, t.

To handle reaction terms, we replace temporal differential equations with approximate 
difference equations. A simple form is the explicit one-step Euler method as follows

ttJ+1 =  v? +  kf{vP), (4.39)

where v? is a numeric approximation of U at the j th  time step and k is the step size. We 
here use a uniform step size rather than an adaptive one for the simplicity of computing the 
full equations. The explicit Euler scheme is easy to implement to approximate differential 
equations, but it requires very small step sizes to exhibit sufficiently accurate results since 
its accuracy is 0{k).  Therefore improvements on the Euler method have been suggested by 
replacing f{vP) in (4.39) with modified functions, say $fc(u7). Indeed the generic form of 
the explicit one step scheme is

«3'+1 =  v? + k<t>k(v?). (4.40)

The Runge-Kutta method is one of the explicit one-step methods, which produce higher 
accuracy than the explicit Euler scheme (4.39).

For example in a fourth order Runge-Kutta method, $k(tt?") is expressed by

*k(«#) =  ^ ( / l + / 2 + / 3  +  / 4 ) ,  (4-41)

where / i  =  f ( u j ), f 2 = f{u j +  ^fc/i), / 3 =  f{v? + \ k f 2), and / 4 =  f ( u 3 +  fc/3). As a result, 
the RK4 scheme presents fourth order accuracy in time. However, fourth order accuracy 
is not necessary for the simulations in this thesis due to the lower accuracy of the schemes 
used for diffusion and advection terms. Therefore, Runge-Kutta second order scheme is 
adapted for computing reaction terms. The second order Runge-Kutta method used in this 
thesis is expressed by

u»+1 =  ^ («*+«**), (4.42)

where

u* =  v? + kf(vP) (4-43)
u** = u* + kf{u*), (4.44)

so that a modified function, ^ ( u 7') =  ^(2f{vP) + f(v? +  f(v?))).
When the RK2 scheme is implemented as one of schemes for computing the full equation,

(4.42), it needs to be applied repeatedly at each spatial grid point i from 1 to TV (or 0 to 
N  + 1 depending on the boundary conditions) as follows

*4+1 =  ^ « + < * ) .  (4-45)
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where

u* = u? +  k f  (uj) (4.46)
U** = u* + kf(u*),  (4.47)

for i =  1, • • • , N  or i =  0,1, ■ • • , N, N  +  1.
The explicit one-step method for (4.38) with a function /  satisfying the Lipschitz condi­

tion is defined to converge if the global error, £k(tj) = U(tj) — v? approaches zero as k —* 0 
for every t concerned. Here U(tj) is an exact solution of the equation (4.38) at the time 
tj and v? an approximate solution computed from (4.40). How well a difference scheme 
approximates the original ODE is defined as follows. The one-step scheme (4.40) for the
IVP (4.38) is said to be consistent with order p if the truncation error (or local discretization
error), Tk(u) — 0 ( k p) as t  —> 0, that is, if there are positive constants C  and k  independent 
of k, such that || Tk(u) ||< Ckp whenever k < k  and /  6  Cp+l in a given domain [2].

4.5 Sum m ary

In this chapter we reviewed numerical methods for solving spatial predator-prey models 
of reaction-diffusion-advection equations (4.1)-(4.2). Finding numerical solutions of the 
advection part is challenging especially when steep gradients occur [95]. Thus we use a 
fractional step method, which allows us to choose a efficient and accurate scheme for each 
case of the diffusion, advection, and reaction terms.

Fractional step methods were described in Section 4.1. The Strang splitting method 
provides better accuracy than the Godunov Splitting does. However, the difference is not 
quite obvious. The fact that the first requires more computations than the second makes us 
use the Godunov Splitting over the Strang splitting. As a result in the following sections we 
considered numerical schemes for each case of the diffusion, advection, and reaction terms. 
In Section 4.2 we discussed several methods for numerically solving hyperbolic equations 
for the advection term. The NT scheme provides high resolution and is easy to implement, 
so we use the NT scheme for the advection term. The Crank-Nicolson scheme, which is 
well known as a second order method, is described in Section 4.3. In Section 4.4, some 
numerical methods are considered for the reaction terms. Indeed the RK2 scheme is used 
for the reaction terms.

The significance of this chapter is that a fractional step method will be the cornerstone 
of the intensive numerical simulations in the future. We considered eight different schemes 
for an advection term. In further researches we will consider not only different schemes 
for an advection term but also a different combination of three schemes for advection- 
diffusion-reaction terms to reduce numerical errors and increase resolution. To understand 
the efficiency and accuracy of fractional step methods, unsplitting methods need to be 
studied and compared with fractional step methods.
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Chapter 5

Travelling Waves

In this chapter, we consider travelling wave solutions to prey-taxis models. In particular, we 
study the effect of a predator on a spreading prey population, and a discontinuous travelling 
wave solution. We also consider the spread rate of resting models derived in Section 3.6.

Owen and Lewis [72] showed that in some cases the predator catching up to the prey is 
not sufficient to slow down the prey spread. To show this the following system is used

Tt
Vt = evxx + v(f(v)  -  -h(v)) ,  (5.1)

nt = nxx +  ^n{h{y) -  d), (5.2)

where e, 7  and S are positive dimensionless quantities. It is also assumed that e < l .  Here 
v and n  are prey density and predator density respectively for consistency. f (v)  is the 
prey population dynamic per prey without the predator, h(v) is the functional response per 
predator, and 76 is the decaying rate of the predator without the prey. They linearized this 
system about the leading edge of the wave where the densities of the prey and the predator 
are both zero and found that the population dynamics of prey only plays a dominant role 
in the spatial feature of the predator, slowing down (even reversing) the prey invasion. 
Without loss of generality, it was assumed that the diffusion rate of the predator is much 
faster than that of the prey. When the prey dynamics were developed under an Allee effect, 
they applied a singular perturbation analysis to consider the coexistence wavefront after 
the front of the predator arrives at that of the prey and found two conditions for stopping 
the prey invasion. We observe that it may be an interesting topic to see what kinds of 
effects on the predator-prey relationship can be expected by the introduction of prey-taxis 
in the spatial predator-prey interactions. That is, whether it can play a role in stopping 
the prey invasion. Here, we add the prey-taxis term — (x(v)vxn)x to equations (5.1)-(5.2). 
The prey-sensitivity, x(v)> is a nonnegative decreasing function of the prey density.

5.1 P rey  D ynam ics w ith  a Logistic G rowth and T yp e I or II
Functional R esponses

Here, we study the wavefront after the predators catch up with the prey and achieve coex­
istence. In this section, we consider logistic growth, f (v)  — 1 — v, and a Type I functional 
response, h(v) =  v or a Type II functional response, h(v) — . Here we consider various
forms of the prey sensitivity, x(v) -  X, x(v) = £ and *(v) =
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Slow movement of the prey generates a sharp transition in prey population from the 
coexistence steady state to zero population on the right. In this section we consider type 
I and II functional responses, and ratio-dependent functional responses for the local prey 
population dynamics. The dispersals of predators are of three types: zero prey-taxis (x(0) = 
0), bounded prey-taxis (x(0) < oo), and unbounded prey-taxis (x(0) =  oo). The first case 
is the same as the diffusion-only case. However, we may consider the first and the second 
cases under the bounded prey-taxis (x(0) < oo).

The system is considered as follows
Tt

V t  = evxx +  v ( f ( v )  h(v)), (5.3)
V

nt = nx x -  {x{v)vxn)x +  ^n{h{v) -  5), (5.4)

where e, 7  and S are positive dimensionless quantities. It is assumed that t < l ,  / ( v) =  1—v 
is the prey population dynamic per prey without the predator as a part of logistic growth. 
h(v) is the type I or II functional response per predator, i.e. h(v) = v and h{v) =  ,
respectively. 7 8  is the decaying rate of the predator without the prey.

First, we consider the case where prey sensitivity is bounded at zero prey density, i.e. 
x(0) < 00. We transform equations (5.3)-(5.4) with travelling coordinate, z — x — ct (with 
wave speed c) to get

0 = cV' + eV" + V ( f ( V ) - y h ( V ) ) ,  (5.5)

0 =  cN'  +  N "  -  (;x{V)V 'N )' + 7 N (h(V ) -  S), (5.6)

with N(z)  =  n{x,t)  and V(z) = v(x,t).  We consider the travelling wave connection be­
tween the coexistence steady state (n, v) — (no,vo) and trivial steady state (n, v) — (0 , 0) 
with the conditions that lim ^oo N(z) — lim2̂ oo V(z) = 0, lim2_»_oo N(z) — no, and 
lim2̂ _oo V(z) = vo, which describes the situation where an established prey population 
begins to spread along the positive direction and newly introduced predators follow prey 
spreading. Since predator density changes via diffusion and local population dynamics in­
duced by the existence of prey density, initially predators may easily catch up with prey
spread. However, as soon as predators reach a frontier of spreading prey, predator spreading 
speed is slowed down due to the lack of prey density.

We consider whether travelling waves of prey go slower due to the interaction with 
predators. We use linear analysis for this. In a small neighborhood of a hyperbolic equilib­
rium (v,u) = (0,0) for (5.3)-(5.4), flow of the nonlinear system is topologically equivalent 
with that of its linearization [28]. The linearized equations of equations (5.5)-(5.6) are,

0 =  cV' + eV" +  (v f { v ) +  f ( v)  -  h t i (v )V  -  h(v)N, (5.7)
0 =  cN'  + N"  -  {x{v)h)V" + 7hh'{v)V + j(h(v)  -  5)N. (5.8)

The linearized prey-taxis term can be obtained by

(x(v)vxn)x = ((x(*0 +x!{v)V)Vx{h + N))x
= x{v)nVxx + x'{v)n(VVx)x +  x(v){NVx)x +  x'(v)(NVVx)x 
= x(v)nVxx, (5.9)

up to the order V 2 approximation.
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We now look for solutions in the form

N, V  oc exp(Xz), (5.10)

where A is the eigenvalue. A having negative real parts implies that the steady state 
(h ,v ) — (0 , 0) is linearly stable, since, after small perturbation, (n,v) —* (0 , 0) as t —> oo. 
Substitution of (5.10) into (5.7)-(5.8) gives that the eigenvalues satisfy

eA2 + cX + v f ' (v)  + f ( v ) — nh'(v) ~h(v)
—x{v)nX2 +  'yhh'iy) A2 +  cA +  ~f(h(v) — 6) = 0. (5.11)

Since we are interested in the predator-prey-free steady state, i.e. (n,t>) =  (0,0), (5.11) 
becomes

eA2 +  cA +  /(0) -h(0)
0 A2 +  cA +  7 (h(0) -  S)

Hence, A can be computed from two quadratic equations. That is,

=  0. (5.12)

eA2 +  cA +  /(0) =  0, or A2 +  cA +  7 (h(0) — 5) =  0. (5.13)

Analysis about the leading edge of the wave (v , h ) = (0,0) yields

and

=  - ^ ^ - ^ ( 0 ) . (5.14)

=  - C ± ^ - 47 W 0) - J ) | (5 15)

in which A± is always negative if h{0) > 6. Indeed h(0) =  0 for any speed c, guarantees 
that predators have non-negative density from equation (5.15). Thus, from (5.14), the linear 
analysis gives a necessary condition

c2 > 4e/(0). (5.16)

Without predator interruption, prey spread with the Fisher rate of 2 ̂ /e/(0), which provides 
an upper limit of prey spread when prey population is regulated by predator interactions. 
Hence with the bounded prey sensitivity, predators cannot slow down the prey spread in 
the form of travelling waves. Since /i(0) =  0, for any speed c predators have non-negative 
density from equation (5.15). It is shown in Figure 5.1 and Figure 5.2 that predators,
whose prey sensitivity is bounded at zero prey density with type I functional response to
prey of logistic growth, cannot slow down prey spread. In this case predators slow down and
adjust their own spread rate to the prey’s spread rate. Thus predators with bounded prey
sensitivity function are the same as predators with diffusion-only case for their dispersal.

We now consider the case that prey sensitivity is unbounded at zero prey, i.e. x(v) — I  
or x(«) =  £ •

We first consider the prey sensitivity x(v ) — f  in system (5.5)-(5.6). The linearization 
of equations (5.5)-(5.6) about (v, n) — (0,0) is,

0 =  cV'  +  eV" + / ( 0)V -  h{0)N, (5.17)
r v 'n V

0 =  cN'  +  IV" -  / 6—  J +  7 (h(0) -  6)N., (5.18)
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Figure 5.1: W ith logistic growth, / ( d )  =  1 — d ,  type I functional response, h(v) = v, and
zero prey sensitivity (x =  0), introduced predators, which catch up with prey spread, do
not slow it down. Here 6  = 0.75, 7 = 1 ,  and e =  0 .01 . Dashed lines show initial conditions, 
solid lines show solutions up to t—100 at intervals of 5 dimensionless time units.
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Figure 5.2: With logistic growth, f (v )  =  1 — v, type I functional response, h(v) = v, and 
constant prey sensitivity (x =  7.0), introduced predators, which catch up with prey spread, 
do not slow it down. Here 6 = 0.75, 7 = 1, and e =  0.01. Dashed lines show initial 
conditions, solid lines show solutions up to t=100 at intervals of 5 dimensionless time units.
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We look for solutions in the form of

V  — ki exp(Az), N  — k2 exp(Az), (5.19)

Substitution of (5.19) into (5.17-5.18) gives that the eigenvalues satisfy

0 =  cXki exp(Az) +  eA2/ci exp(Az) +  f(0)ki  exp(Az) — h(0)k2 exp(Az),

0 = cAk2 exp(Az) + exp(Az) -  ( b™‘ W * * )  V
\  k iexp(Az) )

+  j(h(0) -  6)k2 exp(Az).

After cancelation in the prey-taxis term, we have

0 =  cXki exp(Az) +  eA2A;i exp(Az) +  f(0)ki  exp(Az) — h(0)k2 exp(Az),
0 =  cXk2 exp(Az) +  X2k2 exp(Az) — (bXk2 exp(Az))'

+  j(h(0) — 6)k2 exp(Az).

Dividing the above equations by exp(Az) leads to

0 =  cXki +  eX2ki + /(O)fci — h(0)k2, (5.20)
0 =  cXk2 +  X2k2 — bX2k2 +  j(h(0) — S)k2.. (5.21)

We now look for non-zero k\ and k2 so that with h(0) =  0 we have the following equation

eA2 +  cA +  /(0) 0
0 A2 -  bX2 + cX +  j( -S ) =  0. (5.22)

Hence, A can be computed from two quadratic equations as before,

eA2 +  cA +  /(0) =  0, or (1 — 6)A2 +  cA +  j ( —S) = 0. (5.23)

The first equation for A is the same as the case of bounded prey sensitivity. When 6 < 1, 
the second equation gives one negative root and one positive root. For b > 1 we have a 
necessary condition for the existence of positive eigenvalues A. The second equation above 
is rewritten as follows

(6 — 1)A2 — cA +  7<5 =  0, (5-24)

where b > 1, and 7 , S > 0. Complex A leads to negative prey density, so

c2 > 4(6 -  1)76 (5.25)

is a condition for prey density to remain non-negative. Thus A =  guarantees
at most two positive roots. In addition to condition (5.25), condition (5.16) has to be 
satisfied for non-negative density. While c2 =  4e/(0) gives a upper bound of prey spread, 
condition (5.16) may give a lower bound. Thus, prey spread rate should be

4(6 -  1)76 < c2 < 4e/(0). (5.26)

If (6 —1)76 > e /(0), there may be no travelling wave connection. This may indicate that as 
predators approach the tip of prey spread they adjust their catching-up speed not to exceed
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the tip of the prey’s spread. In other words, predators change their catching-up speed in 
order not to suffer from the insufficient prey density due to the prey sensitivity. Through a 
series of simulations it is seen that as constant b decreases, the tip of predators catching up 
with prey retreats behind the tip of prey spread, so a predator free zone appears near the 
tip of the prey spread. A diffusion process of the predator tend to make predators smear 
into the tip of the prey spread, but strong prey-taixs makes predators move back. Thus, at 
some distance from the tip of the prey spread, the tip of the predator catching up may be 
formulated. Then predators passively follow the prey spread and eat enough prey behind 
the tip of the prey spread.

We now consider the prey sensitivity x(v ) = Jr in system (5.5)-(5.6). Then the eigen­
values satisfy

0 =  cXki exp(Az) +  eX2ki exp(Az) +  f (0)ki  exp(Az) — /i(0)fc2 exp(Az),

+  7 (/i(0) -  6 )k2 exp(Az).

After cancelation in the prey-taxis term, we have

0 =  c \k \ exp(Az) +  eA2^! exp(Az) +  f (0)ki  exp(Az) — /i(0)fc2 exp(Az),

0 =  cA/c2 exp(Az) +  A2fc2 exp(Az) — (bX^-)' +  7 (/i(0) — <5)/c2 exp(Az).
fcj

Thus the prey-taxis term becomes zero. Dividing the above equations by exp(Az) leads to

0 =  cXki +  eA2fci +  f (0)ki  — h(0)k2, (5.27)
0 =  cXk2 +  A2/c2 +  7(/i(0) — 5)/c2., (5.28)

which is the same as the case of the bounded prey sensitivity. Thus we cannot expect the 
case that predators slow down prey spread.

In this section, we investigated a combination of a logistic growth and a Type I functional 
response and a combination of a logistic growth and a Type II functional response with 
various forms of the prey sensitivity x(w)- We found that the predators fail to slow down 
and stop the prey spread. Hence, we conclude that for Type I and II functional responses 
prey-taxis may not play any role in stopping the prey spread. We will consider different 
functional responses next.

5.2 P rey  D ynam ics w ith  Logistic G rowth and  
R atio—D ependent Functional R esponses

Here, we consider hyperbolic ratio dependent and linear ratio dependent functional re­
sponses in order to examine whether predators may slow down prey spread. In the previous
section, we found that prey-taxis did not play any role in stopping the prey spread. We here 
consider only a diffusion process for the predator. Hyperbolic ratio dependent functional 
response is h(v, n) — and linear ratio dependent functional response h(v, n) — ^  for 
some positive constant /z, u, and d. What h(v,n) approaches as (v,n) —► (0,0) seems to be 
crucial and will be considered during the computation.
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Figure 5.3: With logistic growth, f (v)  = 1 — v, type I functional response, h(v) = v, and 
constant prey sensitivity (x(V) = 1.5/V-), introduced predators, which catch up with prey 
spread, do not slow down prey spread. Here 8 =  0.75, 7  =  1, and e =  0.01. Dashed lines 
show initial conditions, solid lines show solutions up to t=100 at intervals of 5 dimensionless 
time units.
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We are thus interested in the following system
71

Vt = €VXX +  v(f(v)  -  - h { v , n)), (5.29)

nt = nxx +  7n(h(v, n) -  6), (5.30)

We transform equations (5.29)-(5.30) with travelling coordinate, z = x — ct (with wave 
speed c) to get

0 =  cV'  +  eV" +  V{f (V)  -  y h ( V ,  N)),  (5.31)

0 =  cN'  +  N"  +  7 iV(/i(V, N) — 6), (5.32)

where N(z) = n(x, t)  and V(z) = v(x, t). We consider the travelling wave connection
between the coexistence steady state (h , v ) =  (no, wo) and trivial steady state (h, v) =  (0, 0)
with the conditions that lim ^oo N(z)  =  lim ^oo V(z) = 0, lim ^-oo  N(z) = no, and 
lirn^oo V(z) = vq. We now consider the diffusion-only system of equations (5.31)-(5.32) 
to show whether prey travelling waves can go slower due to the interaction with predators.
Here we do not consider the prey-taxis because in the previous sections we saw that prey-
taxis had no effect. We use linear analysis to elucidate what happens at the wavefront. In a 
small neighborhood of the hyperbolic equilibrium (v, u) =  (0,0) of equations (5.29)-(5.30), 
flow of the nonlinear system is topologically equivalent with the one of its linearization. 
Before linearizing equations (5.31)-5.32), we need to consider linear and hyperbolic ratio 
dependent functional response individually and plug each case into equations (5.31)-(5.32) 
to get

0 =  cV' +  eV" + V{ f{V)  -  is), (5.33)
0 =  cN'  + N "  + y v V  -  ySN,  (5.34)

and

0 =  cV1 +  eV" +  V ( f (V )  -  (5-35)

0 =  cN'  +  N" + jN(h(V,  N ) -  *), (5.36)

for linear and hyperbolic ratio dependent functional response, respectively. The linearized 
equations of the linear ratio dependent functional response case are

0 =  cV'  +  eV" + (v f ( v )  +  f (v )  -  is)V, (5.37)
0 = cN ' + N " + 71/V  -  7<5N. (5.38)

We look for solutions in the form of (5.10). Substitution of (5.10) into (5.37-5.38) gives 
that the eigenvalues satisfy

eA2 +  cA +  vf '(v)  + (f ( v ) -  is) 0
7  is A2 +  cA — 7<5 =  0. (5.39)

Since we are interested in the predator-prey-free steady state, i.e. (h, v) =  (0,0), (5.39) 
becomes

eA2 +  cA +  /(0) - i s  0
7 is A2 4- cA — 7 6
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Hence, A can be computed from two quadratic equations, that is,

eA2 +  cA +  /(0) —v = 0, o r A2 +  cA -  jS  =  0. (5-41)

Analysis about the leading edge of the wave (v,h) — (0,0) yields

and

(5.42)

A£ =  - C ± v y  + 4* . (5.43)
2

Thus, linear analysis gives a necessary condition

c2 > 4e(/(0) -  i/), (5.44)

for non-negative prey density. Hence when the predator follows ratio dependent functional 
response, it may slow down or stop the prey spread with diffusion as a searching strategy 
depending on the parameter v. Without predators prey dynamics follow logistic growth, 
but introduced predators lead to a different prey population growth about the leading edge 
of the wave. The main cause of prey slowing down is that prey intrinsic growth rate becomes
smaller due to the potential interactions with predators at the leading edge of the wave, i.e.
/ ( 0) -  v.

The linearized equations of the hyperbolic ratio dependent functional response case are 
more complicated than the ones of the linear ratio case, so we need to consider three different 
N /V ,  i.e. N / V  — 0, N / V  is constant, and N / V  =  oo as (V, N) —> (0,0). For N / V  =  0, the 
linearized equations of (5.35)-(5.36) are

0 =  cV' + eV" + (vf'(v)  +  /(ti))V, (5.45)
0 =  cN'  + N "  + 7 /xAT -  7 8N. (5.46)

Substitution of (5.10) into (5.45)-(5.46) gives that the eigenvalues satisfy

eA2 +  cA +  v f ( v )  + f(v)  0
0 A2 +  cA +  7 /i -  j 6 = 0. (5.47)

Since we are interested in the predator-prey-free steady state, i.e. (h, v) = (0,0), (5.47) 
becomes

eA2 +  cA +  /(0) 0
0 A2 +  cA +  7 /i — jS = 0. (5.48)

Hence, A can be computed from two quadratic equations, that is,

eA2 +  cA +  /(0) =  0, or A2 +  cA +  7 /i — 7 # =  0. (5.49)

Analysis about the leading edge of the wave (v,h) — (0,0) yields

v  _  - c  ±  sjc2 -4 e /(0 )
^  — • (5'5°)

and
\N  _  - c  ±  \ /c 2 -  47(/i -  S) 
A ± “  2 '

(5.51)
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Thus, linear analysis gives a necessary condition

c2 > 4e/(0), and c2 > Ay{n — 5) (5.52)

for non-negative prey density. Hence when predators follow a ratio dependent functional 
response with the assumption that n /v  —► 0 as (v,n) —> 0 , they do not slow down or stop 
the prey spread with diffusion.

For N / V  constant, say 6, the linearized equations are

0 =  cV' + eV" +  (t>//(i>) +  f (v)  - fi8
d6 + 1W,

0 =  cN'  +  N" + y- -N  -  ydN.d6 + 1

Substitution of (5.10) into (5.53)-(5.54) gives that the eigenvalues satisfy

eA2 +  cA +  vf '{v) + f(v)  -  3^ -  0
0 A2 +  cA +  7 ^ -  -  7 6

=  0.

(5.53)

(5.54)

(5.55)

Since we are interested in the predator-prey-free steady state, i.e. (h, v) = (0,0), (5.55) 
becomes

eA2 +  cA +  /(0) -  3^ -  0
0 A2 +  cA +  73^ 5- -  yd

Hence, A can be computed from two quadratic equations, that is,

=  0 . (5.56)

eA2 +  cA +  /  (0) ^  = 0, or A2 +  cA -I- 7  J *  -  76  =  0.d0 + l  ■ >dB + \

Analysis about the leading edge of the wave (D,h) =  (0,0) yields

- c ± v/c2 -  4 6 ( 7 ( 0 ) - ^ )

(5.57)

and

aX =

A+ =

2e

- c ± ^ c a - 4 7 ( a^ r - 5 )

Thus, linear analysis gives a necessary condition

c2 > 4e(/(0) -  dg/^ 1), and c2 > 4y(
+ 1 - 6)

(5.58)

(5.59)

(5.60)

for non-negative prey density. Hence when predator follows ratio dependent functional 
response with assumption $  =  constant, it can slow down or stop the prey spread with 
diffusion as a searching strategy depending on the parameters /q d, and 0.

For N / V  = 00, V /N  = 0 so that the linearized equations are

0 =  cV' + eV" +  (€>/'(»>) +  f (v )  -  ^)V,

0 = cN' + N"  +  y - V  -  ySN. 
a

(5.61)

(5.62)
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Substitution of (5.10) into (5.61-5.62) gives that the eigenvalues satisfy

eA2 +  cA +  vf '(v)  + f(v)  -  % 0
7 $ A2 +  cA — 7 6

= 0. (5.63)

Since we are interested in the predator-prey-free steady state, i.e. (n, v) =  (0,0), (5.63) 
becomes

eA2 +  cA +  /  (0) — ^ 0
7$ A2 +  cA -  7 8

Hence, A can be computed from two quadratic equations, that is,

=  0. (5.64)

eA2 +  cA +  /(0) — ^  =  0, or A2 +  cA — j d  =  0. (5.65)

Analysis about the leading edge of the wave ( v , n )  =  (0,0) yields

= ------- 1 ----- j j --------------- . (5-66)

and

A" =  (5.67)

Thus, linear analysis gives a necessary condition

c2 > 4e(/(0) -  £ ), (5.68)

for non-negative prey density. Hence when predator follows ratio dependent functional 
response with assumption y  =  oo, it can slow down or stop the prey spread with diffusion 
as a searching strategy depending on the parameters /x and d.

In summary, the case of N / V  =  0 is described as predator population decreasing much 
faster than prey population. Because of that, predators may stay a little distance from the 
tip of prey spread. That is, at the leading edge of prey spread, prey enjoy the non-predator 
environment so that prey intrinsic growth rate is preserved. The case of N / V  =  0 (constant) 
is that the decreasing rate of predator population is proportional to the decreasing rate of 
prey population at the leading edge of prey spread. In this case prey and predator coexist 
near the prey and predator zero state. Thus the new intrinsic rate of prey population 
dynamics related to predator interruption is /(0) — a combination of /x, d and 8 . For 
instance, bigger /x tends to slow down or even stop the prey spread under the fixed d and 
8 . For the case of V / N  =  0, predators still patrol the area near the head of the tip of prey 
spread. In other words, predators roam around the prey free area and prepare to attack 
the front of prey invasion so that the intrinsic rate of prey population decreases due to 
the predators’ ambush, i.e. /(0) — Therefore increasing /x tends to restrict prey spread. 
Figures 5.4 and 5.5 demonstrate prey spreads with fi = 0.1 and /x =  0.95, respectively. It is 
noted that the case of /x =  0.95 shows slower prey spread than that of /x =  0.1.

5.3 P rey  D ynam ics w ith  an A llee Effect

In the previous sections, we used linear analysis to find the prey spread rate. However, 
when the prey dynamics include an Allee effect we cannot use linear analysis (see [57]).
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Bounded prey sensitivity w ith  ratio dependent functional response and
w ithout Allee effect 
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Figure 5.5: With logistic growth, f (v)  =  1 — v, linear ratio dependent functional response, 
h(v,n) =  and constant prey sensitivity (x = 0), introduced predators, which catch up 
with prey spread, can slow down prey spread. Here v — 0.95.
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Instead of linear analysis, Owen and Lewis [72] used a singular perturbation analysis of the 
wavefront for the diffusion-only case. In this section, we follow the analysis of Owen and 
Lewis [72] to find a necessary condition for the predator to stop the prey spread, i.e. c =  0. 
They require the following two conditions in order to have zero wave speed solutions. The 
conditions restrict the values of vo and 6 .

f  v( f(v)  — h(v))dv =  0, (5.69)
Jo v

[  vf(v)g'(v)dv = [Ug(t>s)2. (5.70)
Jvo

Here vs is the value of v at the coexistence steady state and g(v) =  (see Appendix 
D for detailed analysis). The meaning of two conditions (5.69)-(5.69) will be considered in 
subsequent paragraphs.

A singular perturbation analysis of the wavefront consists of two steps and each step 
ends up with one condition. The first step is finding the stationary wave solution of a 
completely immobile prey. The temporal steady state of system (5.3)-(5.4) with x =  0, and 
zero wave speed leads to

0 =  v(f(v) -  ^ h(v)), (5.71)

0 =  nxx +  ~fn{h(v) -  8 ). (5.72)

Figure 5.6 A shows the initial distributions of the predator and prey density. Predators 
spread forward and eventually they stop moving forward since there are no prey to sustain 
the population for x  > 20. Figure 5.6 B shows the distributions of the predator and prey 
density after 500 time units, which is regarded as a stationary wave solution to equations 
(5.71) and (5.72). In Figure 5.6 B, there is one point at which the predator curve crosses the 
prey curve. At this point, the predator density is n  =  no and the prey is v = vo = g~l (no). 
The value vo is in the condition (5.70) and this vo can be computed from equation (5.70). 
In this case vq is the peak of the prey curve.

Now we consider the meaning of condition (5.69). When prey move slowly compared to 
their predators, a transition layer appears at the front (see Figure 5.7. B). Condition (5.69) 
says that in the transition layer predator density is assumed to be constant, say n — no, 
rather than slowly decreasing as we can see in Figure 5.7 B. Then in the transition layer, 
the prey equation is

0 =  vxx + v(f(v)  -  — h(v)),. (5.73)
v

The sign of wave speed c is determined by the sign of

/  v ( f ( v) ~ — h(v))dv (5-74)
Jo v

(see [68] for details). Thus zero wave speed occurs when Jq° v( f(v)  — ^ h(v))dv = 0 for 
nonzero ^o- However, the logistic growth f(v)  =  1 — v gives positive f j °  v( f(v)  — h(v))dv 
for non-zero vo, which gives the same result from the linear analysis, that is, positive 
wavespeed. In contrast, when considering an Allee effect, for example, f (v)  = k ( l —v)(v—a) 
may give v(f(v)  — ^h (v ) )dv  = 0, which is shown as condition (5.69).
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Figure 5.6: Stationary wave solution to equations (5.71) and (5.72) with logistic growth, 
f (v)  = 1 — v, type I functional response and h[y) =  v. Here 6  =  0.7, e =  0, and 7 = 1 .  
In A, dashed and solid lines show initial predator and prey distribution, respectively. In B, 
dashed and solid lines show predator and prey distribution, respectively, at t=500.
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Figure 5.7: Stationary wave solution to equations (5.71) and (5.72) with logistic growth, 
f (v)  = 1 — v, type I functional response and h(v) = v. Here 8  =  0.7, e =  0.01, and 7 = 1. 
In A, dashed and solid lines show initial predator and prey distribution, respectively. In B, 
dashed and solid lines show predator and prey distribution, respectively, at t = 10.
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In summary, when we examine whether predators can slow down or stop the prey spread, 
we need to consider two steps. First, we need to find i>o and no- Second, we put these vo 
and no into condition (5.69) and see whether this no and vo satisfy the equality (5.69).

Before we derive a necessary condition for stopping prey in the predator-prey model 
with prey-taxis, we note that a singular perturbation analysis of the wavefront can be 
applied for the case without an Allee effect. We now use an example to see how a singular 
perturbation analysis of the wavefront can be used for the case with an Allee effect.

We now consider f ( v )  = k(v — a)(1 — v) and h{v) — v. Substituting g(v) = f(v) ,  
h(v) = v, and f{v)  =  k(v — o)(l — v) into condition (5.69),

rvo

I kv((v — a)(l —v) — (vo — a)(l — v q  ))dv 
Jo

i vo(—3̂ 0 + 2 4- 2a) n 
~  12 ~

Thus vo is 0 or from the condition (5.69).
First, we substitute v q  = 0 into (5.70) with v3 — 5, which leads to

J  vf(y)g'(v)dv -  ^ 8 g(vs ) 2

,2 (  i V\ ,  , , v, ^  < 5 ( l - 5 ) 2( 5 - a ) 2 '= Jc2 v(— 1 +  v)(v — a)(2 v — a — 1 )dv —

= - k 2S
2  (6 8 4 -  1553 -  15<53a +  40S2a +  10d2 +  10a2^2 -  30da -  30a28 +  30a2)

60 
=  0 .

The last equation shows that 8  =  0 or 6<54 — 15<53 — 15<J3a +  40^2a + 10<52 +  10a?8 2 — 30<5a — 
30a25 +  30a2 =  0, which can be expressed as a polynomial in a as follows

(1052 -  305 +  30)a2 +  (-1553 +  4052 -  305)a +  654 -  1553 +  1052 =  0, (5.75)

which is quadratic with respect to a so that we can find the roots. The coefficient of a 2, 
1052 — 305 +  30, is positive for all 5 and the constant term, 654 — 1553 +  1052 is positive for 
all 5 except for 5 =  0, in which case the constant term also becomes zero. The coefficient 
of a, —1553 +  4052 — 305 is negative for 5 > 0. Therefore we can expect two positive a ’s in 
terms of 5 for 5 > 0. However, the determinant, (—1553 +  4052 — 305)2 — 4(1052 — 305 +  
30)(654 — 1553 +  1052), is negative so that there is no real root. Thus vq cannot be zero. 

Second, we substitute vq =  into (5.70) with vs =  5, yielding

fJVQ

Vs  I

vf{v)g'{v)dv -  - 8 g(vs)2

Is2 „ (_ 1  +  «)(« -  a)(2t; -  a -  1 )dv -  ^ =  Q.
tVQ

We can rearrange the above equation into

—k 8
2 (654 -  1553 -  1553a +  4052a +  1052 +  10a252 -  305a -  30a25 +  30a2)

60
_  o/c2 +  a)3(^ ~ +  ^a2)

1215
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D iffusion-only case w ith type I and Allee effect
1-

0.8

0.6

delta

0.2

0.1 0.2 0 . 3 0 . 5

Figure 5.8: When vo = the relation between S and a to satisfy equation (5.76) is
drawn with the straight line 6  =  a.

We can simplify to get

-<5((10<52 -  30(5 +  30)a2 +  (—1553 +  40<52 -  306)a +  6<54 -  15<53 +  10<52)

=  J - ( l  +  a)3( 2 - l l a  +  2a2). (5-76)
81

When we consider the condition for the existence of the coexistence state, that is, a < 5 < 1, 
Figure 5.8 shows that there exist pairs of (a, 8 ) to satisfy the condition that predators with 
diffusion-only dispersal and a type I functional response on the prey may stop the prey 
spread with an Allee effect, a is approximately located between 0.28 and 0.5 while 8  is 
between 0.28 and 0.91. 5 determines a, say ao, for prey stopping. For a > ao, the prey 
retreats, and for a < ao, the prey spread slows down.

It is noted that when we apply these two conditions (5.69)-(5.70) to the situation where 
the prey population growth is logistic or shows an Allee effect, the predator density is 
slightly overestimated in the transition area (see Figure 5.7. B). With logistic growth, the 
overestimated predators fail to stop the prey spread. Therefore the predators from the exact 
solution cannot stop the prey spread. In contrast, with an Allee effect, the overestimated 
predators stop the prey spread, however it does not guarantee that the predators from the 
exact solution may stop the prey spread. As the prey diffusion rate e increases, the error 
estimate increases. Thus, the parameter a shown in the Allee effect would have to increase 
for predators to stop the prey spread as e increases.

We now resume finding the stopping conditions for the case of prey-taxis. Recall that 
a key difference between our model and the model of Owen and Lewis is that prey-taxis is 
added in our model. To find a spread rate, we study the wavefront after the predators catch 
up with the prey and the coexistence is observed. Slow movement of the prey generates a
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sharp transition in prey population from the coexistence steady state to the zero population 
on the right.

We now want to find out whether predators with a prey-taxis strategy stop prey spread, 
i.e. c =  0. First we consider a constant prey sensitivity, i.e. x (v) =  X• Here we aim to 
find two conditions like (5.69)-(5.70) for predators with prey-taxis. Basically, we follow the 
steps in Appendix D.

Due to the zero wave speed we consider the temporal steady state of the following system

ft = evxx +  v ( / ( f )  -  ^ h(v)) , (5-77)

n t =  nxx -  (xvxn)x +  yn(h(v) -  6 ), (5.78)

where the constant x  is the prey sensitivity of the predator and e, 7 , 5, / ( f ) ,  and h(v) are 
the same as before (see (5.1)-(5.2). Later we will consider various forms of f (v) ,  and h(v)). 
The stationary system is as follows

0 =  evxx +  v ( / ( f )  -  > (5.79)

0 =  nxx — (xvxn)x +  yn(h(v) -  S). (5.80)

Transition layer. Rescaling the spatial coordinate to £ =  ^=, equations (5.79)-(5.80) 
are written as

0 =  v #  +  v ( / ( f )  -  ^M v)) . (5-81)

0 — n ^ -  (xf£«)f +  £7n(h(v) -  S), (5.82)

which is the stationary front solutions of (5.77)-(5.78)). In addition, the boundary con­
ditions are: lim^-too fg(£) =  0, lim ^oo f (£) =  0, and limj_k_00 f  (£) =  vo- As 6 -* 0, n 
follows n #  — (xvgn){ — 0. Integrating this equation, we have — x vi n  =  Co. As £ —> ± 00 , 
n^ —> Co, since —> 0 . For large |£|, n^ «  Co. Integrating one more time, then for large |£|
we have n  «  Ci£ +  Co where Co and Ci are integral constants. However, for any non-zero
constant Co, a different sign of £ generates a negative population for the predators, i.e. if 
Co > 0, then for negative large £, n  becomes negative. Thus, Co must be zero. We now 
have nf — x vt n  =  0 for all £ and =  0 for large |£|. Isolating n on the left side and v on 
the right side, we have

=  xf£- (5.83)

This can be integrated directly with respect to £ so that

ln(n(£)) -  ln(n(—00)) =  f  x ^ d 4  =  x M O  ~ «(-<»)), (5.84)
J — OO

Since n (—00) =  no, a constant to be determined, we have
n(£) =  no exp(x(f (0  — fo))- Thus, we have a single equation for v ,

Vf( + V f /(„ )  -  "°«P (X (»(0 — 0))M„)N =  0j (5 .85)
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where the boundary conditions are: lim£_>±oo^ ( 0  =  0 , lim^oo v(£) =  0 , and 
lim ^ -o o t;^ )  =  g- 1(no) =  vo. Multiplying equation (5.85) by dv/d£, and integrating with 
respect to £ from — oo to oo gives us

( 5 -8 6 )

The first term is integrated directly and the second term is done by using a change of 
variables from £ to v, to get

£  ,  ( /(» )  -  ~  ”° » /»(,)) dv =  Q. (5.87)1 f d v \ 2
2 [ d t

Applying the boundary conditions and no =  g(vo) yields

j T  » ( /(» )  -  S M  "  *’°)) M -l)  dv = 0, (5.88)

which determines vo consistent with a stationary solution.
Right-hand outer solutions. We now consider equations (5.79)-(5.80) setting e =  0 so 

that v and n  satisfy

0 =  v(f(v)  -  -h(v)) ,  (5.89)
V

0 =  nxx -  (xvxn)x +  7n(h(v) -  5). (5.90)

From equation (5.89), v = 0 or n =  g(v) — Since we are looking for right-hand outer
solutions, we here focus on v =  0 so that in equation (5.90) vx becomes zero and we get

nxx — 7  5n = 0, (5.91)

with boundary conditions: lim ^oo n(x) — 0 and n(0) = n\  — no exp(—x^o)- This equation 
(5.91) is the same as (D .ll). Therefore after applying boundary conditions we get

nix)  =  n i exp(—\ / j 6 x), or equivalently — —no exp(—xi’o) \ f l$-  (5.92)
dx

Left-hand outer solutions. We now consider the other outer layer. Recall that with­
out prey-taxis, in the transition layer n  was constant so that equation (D.13) played the 
role of a boundary condition to find left-hand outer solutions. However, the prey-taxis 
term makes the procedure of matching the solutions more complicated. Here we consider 
the conserved flux in the transition layer so that ( ^  — x n ^ )  = (*jj — Xn ^ )

( ^ )  =  —no exp(—x^o)V7?- The last equality comes from matching the inner solution
x = o o

and the outer solution of the transition layer and the right hand outer solution, n — g(v) 
is put into equation (5.80) to get

nxx -  (xvxn)x +  7n(h(g~l (n)) -  d) = 0, (5.93)

with boundary conditions: n(0) =  no, limx_>_OC)n(x) — n s,
(ilc -  Xn%) — —no exp(-x^o) V7 >̂ and ^y(-oo) =  0 , which satisfy the conservation of

x = 0

flux in the transition layer.
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Multiplying equation (5.93) by dn/dx — xndv/dx,  and integrating with respect to x  from 
—oo to 0 we find

/ 0 /  ̂  ^  \
{nxx -  {xnvx)x +  7n(/i(p_ 1(n)) -  5)} ( - j ^  -  dx = 0. (5.94)

As we did for the analysis in the transition layer, the first term is integrated directly and
the second term is done by using a change of variables from £ to n, to get

(5.95)

With the change of n  with v in some part of the above expression, the second part is turned 
into rvo rno

/  1 9 {v)(h(v)g'(v) -  h(v)xg(v) +  Sxg{v))dv -  / -ySndn. (5.96)
Jvs Jna

Applying the boundary conditions to equation (5.95) and no =  g(vo) yields
rva pva

7 /  g(v)h(v)g'(v)dv + j x  g2 (v) ( 6  -  h(v))dv
J Vo Jv0

=  —7  s («o -  n i) , 1 / dn
2

1  f  dn 1
+ 2 \ t i c ~ Xnlhc) Jx=o

r(g2 (vs) - g 2 (vo)) , 1 2 /  ̂ , n \ si
= 1 $---------- 2-------- +  2  V exp ( - 2x^0 b<5,

which gives a condition that the left- and right- hand outer solutions match at no if and 
only if

[Vs r v s

/  vf{v)g'{v)dv + x  9 2 ( v ) ( 6  -  h(v))dv =
J v 0 J v 0

d ( f lb s )_ _ g b o ))  +  exp(-2x«o)<5,

after 7  is canceled from both sides.
Thus, we have the following two conditions in order for zero wave speed solutions and 

those conditions restrict the values of do, <5, and x-

j T  » ( / M  -  3(n )  eXP(x(” ~ 1,0>) *(«)) dv -- 0. (5.97)

[  vf(v)g'(v)dv + x  f  g2 (v)(S -  h(v))dv =
J v 0 J v 0

6 (g (vs) ^ g bo)) +  exp(-2xvo)S. (5.98)

If X is zero, then conditions (5.97)-(5.98) reduce to conditions (5.69)-(5.70). It is noted 
that for the diffusion-only case the predator density is constant in the transition layer, but 
including prey-taxis allows the predator density to vary in the transition layer. Therefore 
when we match the right-hand and left-hand outer solutions we need some adjustment.
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Second, we consider x(v)  =  £ as the form of prey-taxis and the outcome for the stopping 
conditions. We follow a similar procedure as before. Then from the transition layer analysis, 
we have

jT °  v ^ f (v)  -  ^ - h ( v )  ^ dv = 0. (5.99)

In the transition layer the predator-prey relationship is

/  \  <>I v \
n = no ( i )  . (5.100)

and as v —> 0 , we have n —> 0 . Thus the right-hand outer solution is

(Itin(x) =  0, or equivalently ^ -(0 ) =  0. (5.101)
ax

For the left-hand outer solution, we can follow similar steps as before. Conservation of flux
across n = n 0 gives % -  l ^ n \ (v,n) = (vo.no) =  £  -  *a?nW )  =  (0,0). Since g* =  0 at
(v, n) =  (0,0), we need to find v<n) — (0,0). As v —> 0, we first compute from
equations (5.79) and (5.100). If /i(0) =  0, then the linearization of equation (5.79) with n 
given in equation (5.100) near v — 0 is

0 =  evxx + f(0)v.  (5.102)

Multiplying both sides by vx and integrating it leads to

C = t f  + m Y ’ (5'103)

with integral constant C. We apply the boundary condition, that is, v = 0 and vx =  0, 
then we have C = 0. Rearranging the above equation gives

^  =  ± J = M .  (5.104)
v V e

Since e is a constant, —> 0 as (v,n) —> (0,0). Indeed, zero flux occurs across n = no- 
Then the matching procedure between right-hand and left-hand outer solutions gives

r  vf{v)g'(v)dv + b H  ^ ^ ( 6  -  h{v))dv = 5 ^ ^  ~  . (5.105)
J v  o Jvo v  2

In this section, we found that when there is an Allee effect of the prey the predator 
may stop the prey spread. We considered this problem with two prey sensitivity functions, 
x(v) = x  and x(v) — Then we found two necessary conditions (5.97)-(5.98) for stopping 
the prey spread.

5.4 D iscontinuous Travelling W ave Solution

In this section we take a look at the case that prey are immobile and predators take mainly 
directional movement with weak diffusion. We modify the model, which Pettet and Mcel- 
wain [75] considered, with a nonconstant prey sensitivity x (v) — When an approximate
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model with the assumption of no diffusion is considered, we look for the existence of discon­
tinuous solutions. Then we put the diffusion term back and consider the role of the diffusion 
term with respect to discontinuous solutions. This problem originated from wound healing 
Macrophage generates growth factors (prey) and endothelial cells (predator) eat growth 
factors. Understanding this model will give an insight how the wound heals and give a 
guideline for more efficient wound healing.

5 .4 .1  T r a v e l in g  W a v e  A n a ly s is

In this section, we begin travelling wave analysis with the phase plane analysis. Here we 
consider the following system

Tt
Vt = v(f(v)  -  —h(v)), (5.106)

n t = enxx -  (x(v)vxn)x +  jn(h(v)  — S), (5.107)

where f (v)  = 1 — v, h(v) =  v, and x(v) =  b/v are mainly considered. Here it is assumed
that the prey have a negligible ability of movement and predators are able to move directly
towards high prey density. In addition, predators are assumed to have small diffusion- 
induced dispersal. As e —> 0, we have approximate equations as follows

vt — i>(l — v — n), (5.108)

n t =  - ( - v xn)x +  7n(v -  6 ). (5.109)v

With travelling coordinate, z = x — ct with wave speed c, the system becomes

—cvz — v ( l —v — n), (5.110)

- c n z = - ( - v zn)z +'yn(v -  6 ). (5.111)v

Thus vz is isolated as vz = — v{l -v~n) _ Substituting this result into equation (5.111), we 
have ^

—cnz =  ~^nv(l — v — n) +  -(1 — v — 2 n)nz + 'yn(h(v) — 6 ). (5.112)

Here we put n z terms together into the left hand side as follows

— (c +  -(1 — v — 2 n))nz =  \ n v (  1 — v — n) +  771(1; — 6 ). (5.113)
c c2-

When c + | ( l  — v — 2 n) =  0, equation (5.113) becomes singular. Thus the curve 
c + ^(1 — v — 2n) =  0 becomes a barrier so that phase plane trajectories cannot cross this
curve. The coexistence steady state of equations (5.106) and (5.107) is

(» „ n a) =  ( $ , l - * ) .  (5.114)

Depending on where the coexistence lies, we may not expect a continuous connection be­
tween the prey-only state (v , n ) =  (1,0) and the coexistence state (vs,ns) — (5,1 — 5)
(see Figure (5.9)). When the coexistence state is located below the wall of singularity, i.e. 2
K  = 7 - > 1 — S, there may be a continuous connection from the prey-only state to the
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Wall o f singularity
0.7

wall of singularity

/
coexistence state (5,1-5)

0.4 •

0.3 -

coexistence state 1-5)

prey only

0.2 0.4 0.6 0.6

Figure 5.9: Wall of singularity n =  K+£ v is drawn with two possible locations of coexistence 
states. K  = 0.3 and two 5 =  0.5 and 6  =  0.8.

coexistence state, however when the coexistence state is located above the wall of singu­
larity, i.e. K  < 1 — 6 , there will be no continuous connection from the prey-only state to 
coexistence since trajectories cannot cross the wall of singularity. One exception to this is 
when the n  nullcline, \n v ( \  —v — n) +^n{h{v) — <$) =  0, intersects the singular curve. This 
intersection point is called the ’hole in the wall’ (see [75] for detail). Thus the hole in the 
wall is the intersection point (s) of the following two curves

c -i— (1 — v — 2n) —  0 (5.115)
c

—  v — n) +  7n(t) — d) =  0, (5.116)

equivalently

n = K + l ~ V  (5-117)

n — \ —v +  K ^ V ~ 6 .̂ (5.118)
v

Since an equation collapsed from equations (5.117)-(5.118) becomes a quadratic equation, 
there may be no intersection, one intersection, or two intersections depending on the pa­
rameter K.  The number of intersections can be computed from the number of solutions

°f = + (5 .i i9)
2 v

or equivalently
v 2 +  ( K -  1 -  2K j)v  +  2K~f8 =  0. (5.120)
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2.5

0.5

0.5 0.55 0.6 0.750.65 0.7 0.8 0.85 0.9 0.95 1
Intersection 5

Figure 5.10: Determinant curve, equation (5.122) shown in dashed line and K  =  1 — 6  is 
shown in dotted line with 7  =  1.

The condition for two intersections is when v has two roots, i.e.

( K  -  1 -  2K'y)2 -  8X^6  >  0, (5.121)

similarly the condition for one intersection is

( K  -  1 -  2^ 7 )2 -  8K^6  =  0, (5.122)

and the condition for no intersection

( K  -  1 -  2K'y)2 -  8 K j S  <  0. (5.123)

Here we assume 7  =  1 for the simplicity of analysis. On the right side of the curve 
(see Figure 5.10), there is no intersection, i.e. no hole in the wall. On the curve, there 
is one intersection, i.e. one hole in the wall. On the left side of the curve, there are two 
intersections, i.e. two holes in the wall. Thus when K  <  1 — 8 there are always two holes, 
but when K  >  1 —  6 three cases may occur; no hole, one hole, or two holes.

The v and n values of the hole in the wall then are respectively

Vh = K + 1 ± ^  + 2 K  + K < - 8 K 6  ( 5 _1 2 4 )

a t  K + 1  V 1  + 2K + K * - S K 6  , K10R,N h = — -  =F------------- j --------------• (5.125)

When there are two holes, if S > 5 , one v-value of two holes is larger than 1 and the 
other is less than 1. If 6  < then both v-values of two holes are less than 1. Recall that 
(v,n) =  (1,0) is the prey-only steady state. When there is no continuous connection from
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the prey-only state to coexistence due to the wall of singularity, we may have a discontinuous 
connection of two states.

The ^-intersections of ra-nullcline (5.118) are

^n-nullcline (5.126)

The ^-intersection of n-nullcline , K,_nnnPijnp =  +  ^ l +2K+2K2~iKS is larger than 1. It
is also seen that v-values of the holes in the wall are located between the two ^-intersections 
of n-nullcline (5.118).

In this section, we began with considering the travelling wave coordinates, and converted 
a  system of two PDEs into a system of two ODEs for the phase plane analysis. However, 
we found ‘the wall of singularities’, which prohibits us from doing the phase plane analysis. 
The existence of the singular barrier may require a discontinuous solution. Hence, we will 
consider shock conditions next.

5.4 .2  Shock C ond ition s

Here we consider the possibilty of a discontinous connection from the prey-only state to the 
coexistence state via transforming equations (5.108) and (5.109) into a non-linear hyperbolic 
system. When K  < 1 —6, there is no continuous connection between the coexistence steady 
state and the prey-only steady state due to the singular barrier lying between those two 
steady states. Thus we cannot use phase plane analysis. Instead, we view the model in the 
form of a hyperbolic system. To do so, we introduce a new variable w  =  v x . Then equations 
(5.108) and (5.109) turn into

vt — u(l —v — n),
n t  =  - x ' { v ) w 2 n  -  x ( v ) w x n  -  x { v ) w n x  +  7 n ( v  -  <5)  

w t  — w  — 2 v w  — w n  — v n x ,

which can be expressed in matrix form as follows

d_

d t

V ‘0 0 0 '
a

dx

V r  ( 1 — v  — n )

n + 0 X ( v ) w X { v ) n n 7  n( v  — 5)  — x ' ( v ) w ^n

w 0 V 0 w w  — 2 v w  — w n

(5.127)
(5.128)
(5.129)

(5.130)

Provided w > 0 , there are three real distinct eigenvalues, i.e. Ai =  x^ w. — V x (v)w^+Avx(v)n

< X2 = 0 < A3 =  *(v)w _|_ y/x (v)ŵ +4vx(v)n eqUations (5.127-5.129) are a strictly
hyperbolic system. Thus system (5.130) allows shocks in any of the three characteristic 
fields.

We are looking for travelling wave solutions moving at a positive speed c  > 0 so that 
the jump occurs in the A3 field. In order to find jump conditions, equation (5.130) is now 
changed in the conservative form as follows

d_

d t

V
d

n
d x

w

0
x ( v ) w n  

—v(l —v — n )

v ( l  — v  — n )

= 7 7 1 (1 1  —  8 ) -----1

O

1

(5.131)
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For U = (v,n,w),  the system is now in the hyperbolic system form of Ut +  Ax — C. 
Rankine-Hugoniot jump condition in the fcth field is

[U]sk = [A]

where [U] denotes the jump in U and the shock speed. Applying the jump condition for 
A3 > 0 , then we have

M«3 =  0, (5.132)
[n]«3 =  [x(v)«m] =  x(v)[ton] (5.133)
[io]s3 =  — [v(l — v — n)] =  v[n], (5.134)

with [w] = Vr — Vr . We assume travelling wave solutions so that positive speed, c > 0 leads 
to [u] =  0, that is, Vr  = Vr . With w =  vz  =  — and S3 =  c, equation (5.133) is
[n]c -- — ̂ ^ - t) [ ( l  — v  — n)n], which is expanded as ( N r  — N r )c =  —^ ^ v ( ( l  — v)  — (N r  + 
N r ) ) ( N r  — N r ). Thus if N r  /  N r , for v  =  Vr  =  Vr  we have the jump condition

c2
N r  +  N r  = 1 — V  -|---- . . —  1 — V + K  (5.135)

x ( v

with x(v) = £ and K  =  y .  Indeed, it is noted that the average of N r and N r  is located 
on the wall of singularity, i.e. ^ l+nr = l~v+K . Equation (5.134) always holds.

Uniqueness of the discontinuous wave solution can be shown by the Lax entropy condi­
tion. A jump in the fcth field is admissible only if

Afc(Ui) > Sfc > Ak(UR).

Equation (5.133) and w =  — gjve the shock speed

_ _ x ( V ) W R sJ x 2( V ) W I + A V X ( V ) N l  

83 _  2 +  2 
and eigenvalue A in the 3rd field is

x(v)w ^ x 2 ( v ) w<1 + 4 vx(v)n  
A3 =  ^ — +  2 ’

which yields

, ,r,  , x (V )W L J x Hv) W I + * V x (V)N l 
M U l ) = -----2-----+ 2  '

, , x m w R , j x * ( v W l  + i v x (V)Ns
A3 (Ur ) = -----------+ ---------------------------------- .

Therefore a jump in the 3rd field is admissible since

A3(Ur ) >  S3 >  \ z (Ur ),

provided that N r > N r , which leads to Wr > Wr  from the relation w =
Here we found the necessary conditions for the existence of a discontinuous travelling 

wave solution. The shock speed was computed. We will consider the proof of the existence 
of a discontinuous solution.
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5.4 .3  E x is te n c e  o f  T rav e lin g  W aves

Here we consider the existence of traveling wave solutions as K  varies given 8 . For each 
parameter space, we investigate travelling wave solutions. We begin with the existence of 
continuous wave solutions connecting the coexistence state (vs,n s) =  (5,1  — 8 ) and the 
prey-only state (v,n) = (1,0) of an ODE system (5.110) and (5.113).

Linear stability analysis says that the prey-only state (v, n) =  (1,0) is a saddle as long as 
8  < 1. Thus there is one stable manifold and one unstable manifold. The stable manifold is 
tangent to an eigenvector (^rj* 1)> which lies above the v-nullcline n  =  1 — v, corresponding 
to a negative eigenvalue at prey-only steady state (v,n) =  (1, 0).

The Jacobian matrix of equations (5.110) and (5.113) at the coexistence state (vs, n a) = 
(d, 1 — <5) is

8  8
J  = (1—5)(5—AT) (1 -5 )5

i f —1+5 K - l + S
(5.136)

The trace of J  is

and the determinant of J

SK
*<•» = <5'137>

det<J> = (5138)
If det(J) < 0, that is, K  < 1  — 8, the system (5.110) and (5.113) has a saddle at the
coexistence state (vs,n s) =  (<5,1 — <5). When K  >  1 — 8, the trace of J  is positive and
tr ( J )2 — 4det(J) is

/ T . o  ^  / T X  8 K { 5 K 8 - 4 K  +  4 - 8 8  +  482) 
tr ( J )2 -  4det(J) =  — *------  ̂+   (5.139)

in which the 5K 8  — 4K  +  4 — 8(5 +  4<52 term determines the sign of tr ( J ) 2 — 4det(J). That is,
if K  > — ̂ ^ 4  , tr ( J )2 — 4det(J) is non-negative so that the coexistence state is an unstable
node. If K  < — 5̂^4  > then tr (J )2 — 4det(J) is negative so that the coexistence state is an 
unstable spiral.

In Figure 5.9, when the coexistence state is below the singular barrier, i.e. K  > 1 — <5, it 
is noted that the coexistence state is an unstable spiral or node. On the other hand, when 
the coexistence state is above the singular barrier, i.e. K  < 1  — 8, the coexistence state is 
seen to be a saddle.

First of all, we consider a node( or spiral)-saddle connection, i.e. K  > 1 — <5. When there 
is no hole in the wall, Figure 5.11 shows a typical feature of the phase plane of equations 
(5.110) and (5.113). We follow the proof of the existence of a traveling wave connection in 
[20]. The prey-only steady state (v ,n ) = (1,0) is a saddle, so there is a unique trajectory 
T landing on (1,0) via a stable manifold. We follow this trajectory T back into the region 
P A B  bounded by P -A  line (a part of the v-nullcline), A -B  line, and P - B  curve (a part 
of the n-nullcline). Then it must either lead to  a steady state in the closed region P A B  or 
cross the boundary.

First, in the closed region PAB,  there are only two steady states, the prey-only steady 
state and the coexistence state. Since vector fields in the closed region push the trajectory 
T increasing along the v axis and decreasing along the n axis, it is easily checked that the 
trajectory T originally did not leave the prey-only steady and returns the prey-only steady,
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Continuous connection o f two steady states via phase plane

v nullcline0.9
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prey density v

0.8
prey only state

Figure 5.11: Coexistence state is located below the wall of singularity and an unstable node. 
K  = 0.45 and 6  = 0.6 are used to demonstrate a continuous connection from the coexistence 
steady state to the prey-only steady state. Vector fields are shown in terms of +  and —.

i.e. no homoclinic orbit. Thus if any, we would follow the trajectory T back to another 
steady state, that is, the coexistence state.

Second, we can exclude the situation that the backward trajectory T does not cross 
the boundary. From vector fields, v is strictly increasing on the trajectory T. Therefore 
T cannot come through the side AB.  In addition, n is decreasing and v is increasing in 
the closed region P A B , so all trajectories approaching the line P A  approach from the left. 
Therefore T cannot get back to this line PA.  Similarly, so all trajectories approaching 
the curve P B  approach from the left. If all n values of P B  are smaller than that of the 
coexistence state, i.e. K  < 8 , T cannot get back to this curve PB.  With K  > 1 — 8 , we 
have 8  > 0.5. specifically Figure 5.12 shows that K  < 8  guarantees that the coexistence 
steady state is an unstable node. Therefore one place the trajectory T possibly leads to is 
the coexistence state and we have the existence of a wave connection.

So far, we considered the one of seven cases with K  > 1 — 8 , i.e. G region in Figure 
5.12). In region A, there are two holes, the coexistence state is an unstable spiral, and 
n values of P B  near the coexistence state is bigger than one of the coexistence state. In 
region B, there is no hole, the coexistence state is an unstable spiral, and n  values of P B  
near the coexistence state is bigger than the n  value of the coexistence state. In region C, 
there is no hole, the coexistence state is an unstable node, and n  values of P B  near the 
coexistence state is bigger than that of the coexistence state. In region D, there are two 
holes, the coexistence state is an unstable node, and n  values of P B  near the coexistence 
state are bigger than tha t of the coexistence state. In region E, there are two holes, the 
coexistence state is an unstable node, and all n values of P B  near the coexistence state are 
smaller than the one of the coexistence state. In region F, there is no hole, the coexistence
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Condition for a spiral and a node
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c u r v e  2
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Figure 5.12: Curve 1 and curve 2 denote K  = — and S = respectively.

state is an unstable node, and all n  values of P B  near the coexistence state are smaller 
than that of the coexistence state.

With K  < 1 -  6 , in region G, there are two holes, the coexistence state is a saddle, and 
n  values of P B  near the coexistence state is bigger than the coexistence state value. In 
region H, there are two holes, the coexistence state is a saddle, and all n  values of P B  near 
the coexistence state are smaller than the coexistence state value. Next, we consider the 
case that n values of P B  near the coexistence state is bigger than one of the coexistence 
state, i.e. K  > 6 . Figure 5.12 indicates that the coexistence state is either an unstable 
spiral or else an unstable node. Unless there is a limit cycle around the coexistence state, 
the trajectory T possibly leads to the coexistence state, but more work is needed. Figure 
5.13 demonstrate phase plane, in which the vector fields around the coexistence state show 
a spiral behaviour.

The proof of the other cases of the existence of continuous or discontinuous travelling 
wave solutions and their uniqueness needs to be studied. We also need to show whether a 
travelling wave solution is uniquely determined for given parameters b and S. If the wave 
speed c is uniquely determined, K  is fixed, so we can easily determine whether the solution 
is continuous or discontinuous. For that, we need to do intense simulations.

We did numerical experiments where the wave speed is uniquely determined given 6  

and b and prey sensitivity function x(«) =  First, we chose 6  =  0.5 and found the wave 
speed c =  0.4 and K  =  0.16. Thus the solution is discontinuous as shown in Figure 5.14. 
However, more simulations need to be done for various parameter space.
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Continuous connection o f two steady states via phase plane
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singular barrier
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Figure 5.13: Coexistence state is located below the wall of singularity and an unstable 
spiral. K  =  0.9 and 8  =  0.4 are used to demonstrate a continuous connection from the 
coexistence steady state to the prey-only steady state. Vector fields are shown in terms of 
+  and —.

Traveling Wave Connection

TS 0.6
I

prey density

Figure 5.14: When 8  =  0.5, numerical solution computed wave speed as c =  0.4, so K  = 
0.16 < 1 — 8  — 0.5. Singular barrier, v - and n -  nullclines are drawn together, dx = 0.01, 
dt =  0.005, and t  = 5 are considered. NT scheme is used for the simulation.
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5 .4 .4  Full M od el

Now we look at the full equations (5.107)-(5.107) and consider the role of a diffusion process 
in a discontinuous travelling wave solution. For that, we consider an inner expansion around 
the singular barrier. With travelling coordinate, z = x -  ct, the equations (5.107)-(5.107) 
are transformed to

- c v z = v ( f ( v ) -  ^H v) ) ,  (5.140)

- c n z -  ~(x(v)vzn)z +  7n(/i(v) -  8 ) + enzz, (5.141)

or equivalently

—cvz = v ( l —v — n), (5.142)

- c n z =  i(x (v )u (l —v — n)n)z +  7n(v -  6 ) +  enzz, (5.143)

With x (v ) = v ’ equations (5.142-5.142) are

=  w )
c

—(c +  -(1 — v — 2 n))nz = -^nv(  1 — v — n) +  7n(v — 6 ) +  enzz. (5.145)

Here we consider the inner expansion of equations (5.144-5.145) around the singular barrier
with z — zq =  e£ so that

( 5 . 1 4 6 )

b b
—(c +  -(1 — v — 2 n))n£ =  e-^nv(  1 — v — n) +  £7 n{v — 6 ) +  nzz. (5.147)

With regular expansion of v and n, i.e.

v =  vo +  ev 1 +  0(e2) (5.148)
n — no +  eni +  0 (e2), (5.149)

the leading order terms are calculated as

—cDog =  0 (5.150)

- ( c  +  ^(1 -  v0 -  2no))no^ =  n 0̂ . (5.151)

Therefore vq =  constant and uq^  +  (c (1 — — 2«o))nof =  0- The last equation is
integrated as no( — |tiq +  (c + 1  (1 — «o))no +  .4 =  0 with integral constant A. We can 
isolate nof so that no^ =  fup — (c +  |(1  — vo))no +  A. Depending on 6, c, and A, there 
may be two equilibrium points, one equilibrium point, or none (see Figure 5.15). If there 
are two equilibrium points, let N l  = n^, N r  =  n j, then is the extremum of the
quadratic, which lies on the singular barrier since q(no) = — (c +  |(1  — vo))no +  A
and q'(no) =  2 |no  — (c +  |(1  — vo)) so that ^(no) =  0 gives rise to no =  K + 2  ~v = n°^np-

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Inner expansion

Figure 5.15: Two discrete points are smoothly connected through inner expansion.

Figures 5.16 and 5.17 demonstrate the situation that introduced predators spread into the 
area in which prey density reaches its full carrying capacity so that the predator and prey 
density approach the coexistence steady state. In other words, the prey-only steady state, 
(v ,n ) =  (1,0), is connected to the coexistence steady state, (v,n) — (6,1 — 6 ). Figure 
5.16 demonstrates a discontinuous connection between the prey-only steady state and the 
coexistence steady state. In Figure 5.17 those two steady states are connected smoothly by 
the help of a diffusion process.

In this section, we applied a prey-taxis model to wound healing. In particular, we 
considered the case that prey (growth factors) are immobile and predators (endothelial 
cells) take mainly directional movement with weak diffusion. Without diffusion, the prey- 
taxis model exhibits rich possibilities of a discontinuous travelling wave solution. Even 
though we found some necessary conditions for the existence of a discontinuous solution 
and computed a shock speed, more work needs to be done to understand the mechanisms 
for wound healing.

5.5 C om parison o f th e W ave Speeds for R esting  M odels

In this section we take into account the wave speeds for the resting models in Section 3.6. 
Here we consider two states, moving and resting states. In a moving state, there are two 
subgroups as before, right-moving and left-moving species. Then we investigate the spread 
rate of the total population and compare the result with that found from other approaches. 

The classic diffusion-reaction model is

|  = f l g + f ( n ) , ( 5 . 1 5 2 )
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Traveling Wave Connection
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Figure 5.16: From the left predators invade rightward to the area in which prey dominate 
upto its full capacity, e =  0 .

Traveling Wave Connection
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Figure 5.17: From the left predators invade rightward to the area in which prey dominate 
upto its full capacity, e =  0 .1.
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where D is a diffusion rate and F(n) the population dynamics. In particular, when the 
population growth function F(n)  is logistic growth, i.e. F(n) = 7o«(l -  n / K)  with intrinsic 
growth rate 70 and carrying capacity K,  equation (5.152) is the well-known Fisher equation
[57, 68, 72]. The wave speed c of the Fisher equation asymptotically converges to the
minimum wave speed, c2 =  470D.

When a population’s dispersal shows a correlated random walk rather than random walk, 
the population dynamics can be eventually combined with telegraph dispersal as follows

dn  1 d2n  u 2 d2n  1 dF(n)
! T t = - Y r T » + T r M + T r - k l  + F{n)' ^

where r  is an individual’s turning rate and u  an individual’s speed [32]. The diffusion process
(5.152) is the limit of the telegraph process (5.153) as r  and u go to 00 while ^  goes to

2
a constant, say D  =  When the intrinsic growth rate 70 is relatively small compared 
to the turning rate r, the wave speed was computed in [39] as c2 =  j~ ^ r^ u2. When we 
then consider the diffusion process as a limit of the telegraph process, the diffusion rate D 
is equivalent to D — which allows us to compare the wave speeds for diffusion-reaction
(5.152) and telegraph-reaction (5.153) models with the ratio

—  =  -r -n r — TT < (5-154)cdiff (7o/2r + 1)

where and c ^ e are the wave speeds of diffusion-reaction (5.152) and telegraph- 
reaction (5.153) models, respectively [39], Since the wave speed for the telegraph-reaction
(5.153) model was computed under the restriction of relatively small 70 compared to r, the 
comparison ratio (5.154) is close to 1. In addition, as a limit of the telegraph related wave 
speed, the diffusion related wave speed leads to a slight overestimate.

In the classic Fisher equation (5.152), individuals move randomly without having a rest, 
which excludes the situation that sometimes individuals take a rest for various reasons such 
as handling food. In [59], Lewis and Schmitz consider two subgroups. The first group is a 
subgroup in the moving state with diffusion process and the second one is one in the resting 
state allowing only local dynamics with a moving subgroup. They consider population 
spread with the following model,

dn (fin
- ^  = D - ^  -  an  + 0q -  fin (5.155)

^  =  a n  -  j3q +  7og(l -  q/K),  (5.156)

where q(x, t) is a population density in the resting state, a  is a transition rate from moving 
to resting, (3 is a transition rate from resting to moving, and ^  is a death rate of the 
individuals in the moving state. Reproduction is assumed to occur only in the resting state, 
but death occurs in both the moving and resting states.

In particular, when 70 is very small, the transition rates a  and f3 are equal, and /x =  0, 
the minimum wave speed of the total population, say a =  n +  q, was computed in [59] as 
c2 = 70-D (see also [25]). Recall that D  can be approximated as D  =  ^  (see [39] and section 
3.4).

In equation (5.155), the dispersal term of the moving population is determined by a
diffusion process. Now we consider the case that a correlated random walk is the primary
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dispersal mechanism. Section 3.6.4 deals with the similar situation with models (5.155)-
(5.156), that is, where a correlated random walk is the primary dispersal mechanism with 
reproduction in the resting state and death in the moving state. If the resting population 
shows logistic growth, we have

y y  +  u - =  -a (V ,  S)n+ + q ~ rn+ rn ~ ^ n+' (5.157)

 U~ ^T  = ~ a (V, S)n~ + q +  rn+ -  rn~ -  f i n ' ,  (5.158)

^  =  a(V, S)(n+ +  n~) -  (3(S)q + e2 F(q), (5.159)

with F(q) = 7 i^(l — q/K).  When the death rate of the moving group is zero, i.e. fi = 0,
the resting and moving groups are combined via rescaling to lead to the total population 
spatial dynamics of the diffusion-advection-reaction equation (see section 3.6.3 for details),

a T = ( l — a ^  a€ +  7—U o \ ^  )  a l  + -^ (a)> (5.160)\^(a +  2r)/3 +  a  4 ( a +  2 r) + a J  ̂  J

where a is the total population and F(a) — 7 i ^ ^ a  ( l  — .
We now compare the wave speed of (5.160) with that of (5.155)-(5.156).
First, we consider the case that the transition rates a  and (3 are equal and constant as 

Lewis and Schmitz did in [59] and as shown in equations (5.155)-(5.156). Then equation 
(5.160) leads to a diffusion-reaction equation as follows

+  F(a) ' (5161)
, c-2Ct'f —

since =  0 and We now recover the original scales, i.e. r  — e2t and ^ — ex
to get

v?
°t =  2(a +  2r )axx + € F ^ '  (5.162)

2
which is the form of the Fisher equation. Now the diffusion coefficient is D = 2 (a+2r) anc  ̂
the intrinsic growth rate is ^  with 70 =  e27 i. Here the diffusion coefficient is determined
by the turning rate r  and the transition rate a, which were disregarded when the diffusion

2 2
coefficient was originally calculated as O =  | r .  However, D = ^oes not contradicted

2
with D = at all. We revisit equations (5.157)-(5.159) with the same rescaling in Section
3.6. The leading term of q is qo = f m ,  which we put into equations (5.157) and (5.158) 
to get leading terms of the right and left moving groups, Uq and rip. With the original 
coordinates, we have

~ d t  +  U~^x = ~ a (V’ S ^no + +  "o ) “  rno + rno ~  Mno - (5.163)

~m~ ~  U~&x =  +  ~~2 ^  +  n0 ) +  rn o ~ rn o “  > (5.164)
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which are rearranged with the additional assumption /x =  0 as follows

dn£ dn£ . a (V ,S ). . . a(V,S).  _ , ^^ L + u_ i  = . (r + _ L _ iK  + (r + _L _J)no, (5.165)

_ J L _ „ _ A  =  (r +  _ L _ _ iK + _ (r +  _ L ^ i ) no- .  (5.166)

Thus the turning rate here is r  +  and twice the turning rate is 2r  +  a(V, S'), which
2

explains why D — 2(a+2r) • Therefore, the minimum wave speed of the model of (5.155)-
(5.156) is c2 =  j^+2 r)lo- It is interesting to note that the intrinsic growth rate of the total 
population is half that of the resting group. Also, the diffusion coefficient here is slightly 
different from that derived in [59], i.e. the diffusion coefficient of the total population is 
the half that of moving group D = which is independent of the transition rate a. We 
label the wave speed from equations (5.155) and (5.156) crtl_cjjg- and that from equations
(5.157)-(5.159) cm_hyper, where ”m” denotes multiple states of a species. The comparison 
between the two wave speeds is shown by the ratio

5 2 i2 [E 5 !; =  J < 1- (S.187)Cm-diff \ j l + a / 2 r

If the turning rate r is very big compared to the transition rate a, then becomes
approximately the same as cm_hyper> i-e- cm—diff ~  cm -hyper Thus the ratio ^  is an 
important factor that makes two models different. As a limit of cm-hyper’ cm-diff lea(Is 
to a slight overestimate. Thus we may interpret as a special case of cm-hyper
Likewise, the models of (5.155)-(5.156) are a special case of the resting models in section
3.6.

We considered the case of a  — 0  and fi = 0. We now release these restrictions for the 
more general case of a, 0, and fj, in equations (5.155) and (5.156). Then the total population 
equation of combined moving and resting groups is obtained in [34] as follows

-  =  ( j h * * + D ( f h )  A  + F (o ) ’ (5168)

where a is the total population and F(a) =  ^1 — pp^a
Likewise, equations (5.157)-(5.159) lead to

at = ( f ax + . ( - J — )  a )  + F(a). (5.169)
\  (a  +  2r) 0  +  a  (a +  2r) \ 0  +  a j x J x

2
If a  and 0  are constant and D  =  ^ , the comparison between the two wave speeds is the

same as (5.167), i.e. T  < 1. Figure 5.18 shows that the ratio of wave
speeds of the two resting models, (5.155)-(5.156) and (5.157)-(5.159), decreases from 1 to
0.817 as the ratio a / r  increases from 0 to 1. Thus an increased transition rate, given a 
fixed turning rate, reduces the invasion speed of a species with the resting and moving 
states compared to that of a species only with the moving state. From equation (5.169) the 
diffusion coefficient is D = 2r) p+a • H a  is big, in other words, moving individuals take
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Comparison of Traveling Wave Speeds
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Figure 5.18: A ratio of wave speeds of two resting models, (5.155)-(5.156) and (5.157)- 
(5.159), decreases as a a / r  ratio increases

a rest very often, so the diffusion rate decreases. Alternatively, small /3, which means that 
resting organisms rarely launch into the moving state, reduces the diffusion rate of the total 
population.

This result has important implication for interpreting model prediction. For examples, 
Holmes [39] calculated turning rates from diffusion rates and moving speeds. Kareiva and 
Odell computed the moving speed of ladybugs by using a diffusion rate and a turning rate 
estimated from field data. However, those turning rates, which Holmes found, may consist 
of both turning rate and transition rates as D = 2(Q*+2r)» as a result, those turning 
rates may be an overestimate. Likewise excluding the transition rates between resting and 
moving subgroups may lead to an underestimate of the population moving speed.

A comparison of the wave speeds for diffusion-reaction and telegraph-reaction models, 
which was studied using empirical data in [39], indicates that the wave speed difference 
between the two models is at most 7.3 %, and that the wave speed for diffusion-reaction 
model is a slight overestimate. However, comparison of the wave speeds for diffusion- 
reaction (5.155) and (5.156) and hyperbolic-reaction (5.157)-(5.159) models of moving and 
resting subgroups predicts that the wave speed difference between the two models may 
increase depending on the transition rates between the moving and resting states. Indeed, 
the main difference between those two models is that the wave speed for hyperbolic-reaction 
models of moving and resting subgroups also depends on the transition rates between the 
moving and resting states, whereas the wave speed for diffusion-reaction models of moving 
and resting subgroups is independent of these transition rates.

Invasion speeds of cabbage butterflies were computed in [39]. Holmes considered two 
populations with three or seven generations per year and an adult life expectancy of 10 
or 20 days, respectively. For the first group with 3 generations per year and a 10 day life 
expectancy, the diffusion coefficient is D = 3.87 km2/y r and an individual’s moving speed 
is u = 21 km/yr. Because the intrinsic growth rate of cabbage butterflies is relatively small 
compared to the diffusion coefficient (9.0 per year vs. 3.87 km2/yr), the derivations of the 
invasion speeds for diffusion-reaction and hyperbolic-reaction models of moving and resting
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subgroups are valid. We apply these results to diffusion-reaction and hyperbolic-reaction 
models of moving and resting subgroups.

First we consider the model (5.155)-(5.156). Since D =  3.87 km2/y r applies to  the 
total population, the actual diffusion coefficient for the moving population is twice that,
i.e. ^moving =  2D =  7.74 km2/y r (see [59]). From the diffusion approximation that

2
Dm0ving =  ff> we can compute the turning rate r  =  28.49 /y r which can be converted 
into 9.5 per generation or 0.95 per day. However, it has been reported that in a single day 
the butterflies tend to move in straight lines and they only change directions from one day 
to the next, so the turning rate 0.95 per day seems to be an overestimate (A turning rate 
of 0.5 might be more reasonable since on each new day an individual butterfly picks a new 
direction randomly (0.5)).

Now we consider the hyperbolic-reaction model of moving and resting subgroups, and 
take the limit approximation (5.162). Here the diffusion coefficient D = 2 fa+2r\ anc  ̂ the 
individual moving speed u gives a+2r — 56.98 per year or 1.9 per day. With tne assumption 
that the turning rate r =  0.5, we come to the conclusion that the transition rate a  =  0.9 
per day. If we consider a 10 day life span, there are only 9 new days, so 4.5 turns per 
generation may be expected and the transition rate a  =  10 per generation is obtained. 
Converting these data to a daily scale gives us Figure 5.19. We consider 15 and 30 time 
(day) units, representing a butterfly population with 3 generations per year and a 10-day 
adult life expectancy. Thus, the wave solutions project the butterfly spread for one year. 
Figure 5.19 shows tha t the approximate model (5.169) is an overestimate of the full model
(5.157)-(5.159).

The second butterfly population with 7 generations per year and a 20 day adult life 
expectancy gives the diffusion coefficient D =  18.05 km2/yr and an individual moving 
speed u = 98 km/yr. With these results, the turning rate of the diffusion-reaction model 
of moving and resting subgroups is r  =  19.00 per generation or r = 0.95 per day, which 
is almost the same result as for the first butterfly population. For the hyperbolic-reaction 
model of moving and resting subgroups, the transition rates are 1.0 per day with the same 
assumption of the turning rate r — 0.45.

So far, we considered the diffusion coefficient of the resting models, with which the 
reproduction function determines the wave speed of the population. We now consider 
the reproduction function F(o) in the approximate model (5.168). Recall tha t F{a )  = 
/7°/j+aa ( l  — — fJ,0 +aa- The intrinsic growth rate is now 7°^Tq 18• The bigger a
tends to increase the intrinsic growth rate and the bigger /3 tends to decrease that.

It is interesting to note that a resting model may be thus able to explain the appearance 
of Allee effect. Here for the simplicity of example, we assume that K  is very big so that 
we can disregard the term of p i ^ a / K .  In addition, we assume that the death rate fj, is a
function of a. With n  — roa+A' { l+A)a+a2 for SOme positive constant A,  the local population
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Comparison o f Traveling Wave Speeds
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= 0.6
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Figure 5.19: Traveling wave solutions to full model (5.157)-(5.159) and approximate model 
(5.169), with butterfly data, a  =  0  — 1 per day, u =  0.7 km per day, r =  0.45 per day, 
70 =  0.3 per day. A, 15 days after release; B, 30 days after release.
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D ensity dependent death rate
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Figure 5.20: Density dependent death rate fi — 0,62 11̂ 7q+Q2 is plotted.

function F(a) is now

F (a) = ~ ^  (5.170)

=  a  +  p ( r o a  -  ( r o a  +  A -  (1 +  A)a +  a2)) (5.171)

=  ^ - ^ ( - A  +  (l + A )a ~ a 2) (5.172)

=  ^ ( l - a ) ( a - A ) .  (5.173)

in which an intrinsic growth rate is negative, i.e. —^ 3  even though at a =  0 , a death 
rate /x = jg smaj}er than ro for big (3, i.e /3 > a  +  Here we demonstrate how an
Allee effect may occur and how it acts in the full model (5.157)-(5.159) and an approximate
model (5.169). To do so, we use, for example, K  =  1 and /x =  °-7- 1-55°+q2 Figure 5.20
shows one candidate function of the death rate /x(a), which determines that the population 
has a high death rate at low and high densities and a low death rate at intermediate density. 
Here the intrinsic growth rate of the resting group is 70 =  0.6, which is bigger than the 
death rate of moving group /x =  0.47, at a =  0. This could represent, for example, efficient 
group defence but also greater disease spread at high density. Thus the population may 
have a lower death rate at intermediate density, which may represent the optimal size of the 
population. Figure 5.21 demonstrates traveling wave solutions to full model (5.157)-(5.159) 
and approximate model (5.169). At 15 and 60 time units after release, the approximate 
model still shows forward spreading due to small A. In contrary, the full model shows 
much slower spreading. It is also noted that even if the population spreads forward in the 
approximate model, it may retreat in the full model.
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Comparison of Traveling Wave Speeds
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Figure 5.21: Traveling wave solutions to the full model (5.157)-(5.159) and the approximate 
model (5.169), showing an Allee effect, a = 0.5 /3 = 1.5 u =  0.7, r =  0.45, A  =  0.4, 70 =  0.6. 
A, 15 time units after release; B, 60 time units after release.
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When there are two states, moving and resting, the spread rate of the total population 
decreases not only as the turning rates increase but also as the transition rates increase. 
Moreover, an Allee effect may occur due to the different transition rates between the moving 
and resting states, which reminds us of diffusion-induced instability. Without exchanging 
two states, there is no Allee effect shown, but with exchanging two states, there may be an 
Allee effect occurred.

5.6 Sum m ary

In this Chapter, we considered travelling wave solutions to prey-taxis models. In Sections 
5.1-5.3, we considered a predator-prey system given by

vt = evxx +  v(f(v)  -  -h (v )) ,  (5.174)
V

nt — nxx — (x{v)vxn)x +  7n(/i(v) -  5), (5.175)

where e <C 1.
In Sections 5.1-5.2, we considered logistic growth and various functional responses: type 

I and II functional responses as well as ratio dependent functional responses. We used linear
analysis to investigate whether the predator may slow down and stop prey spread. It was
shown that without an Allee effect, the predator with any type of functional response cannot 
stop prey spread. However, it was seen that the predator with ratio dependent functional 
responses can slow down the prey spread. We found that prey-taxis is not involved in this 
slowing down phenomenon.

In Section 5.3, we considered an Allee effect in the prey growth term and derived the 
conditions for stopping the prey spread with prey taxis. For x(v ) = X the conditions are

f - ( / w  _  g W e » ]<b = 0 , (5 176)

f V a f V 9

/  vf(v)g'(v)dv + x  92( v )(6 -  h(v))dv =
J V 0 J v 0

6 (92(vsh :  ?2(vo)) +  l_g2 (Vo) exp(_2XVQ)S. (5.177)

If X is zero, then conditions (5.176)-(5.177) reduce to conditions (5.69)-(5.70) that Lewis 
and Owen [72] found.

In Section 5.4, we considered that the prey have no mobility and the predator motility 
is determined by a directional movement and small diffusion.

vt = v(f(v) -  (5.178)
V

n t =  enxx -  {x{v)vxn)x +  7n(h(v) -  6), (5.179)

where f(v )  — 1 — v, h(v) =  v, and x(v ) — b/v. We first considered an approximate model 
with e  =  0 and found this approximate model may have a discontinuous travelling wave 
solution under shock conditions. The shock speed was calculated. Regions for a continuous
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wave and a discontinuous wave were considered. The diffusion coefficient e played the role 
in connecting a discontinuous solution smoothly.

In Section 5.3, we considered the wave speeds for the resting models in Section 3.6. 
Furthermore, we compared the results with those Lewis and Schmitz found in [59]. The 
comparison between the two wave speeds was shown by the ratio

rates between the moving and resting states produce an Allee effect to the total population.
The significance of this chapter is as follows. With prey-taxis an Allee effect is a 

necessary factor for the predator to stop the prey spread. Ratio dependent functional 
responses enable predators to slow down the prey spread but not stop it. In the last section 
we found that an Allee effect may occur under certain circumstances independent of the 
difficulty of finding a mate. Hence, when we attempt to control pest, it needs to be studied 
how we can generate an artificial Allee effect for the pest, because an Allee effect is a 
necessary factor for the predator to stop the prey spread.

cm-diff
(5.180)

with a turning rate r and a transition rate a. It was also noted that the different transition
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Chapter 6

Pattern Formation

In this chapter we investigate the potential of spatial pattern formation for predator-prey 
taxis model (5.3)-(5.4). For the predator-prey systems with diffusion, it is noted in the 
book of Okubo [70] that an Allee effect and a density dependent death rate of the predator 
are necessary to generate spatial patterns. Jorne [43] argued that the inclusion of species 
migration (advection) as an additional transport process may increase the possibility of 
pattern formation. In this chapter we investigate pattern formation induced by dispersal 
terms for the spatio-temporal predator-prey taxis system (3.126)-(3.127). Furthermore, 
we consider the role of the prey taxis term as an initiator or an inhibitor of spatial patterns.

6.1 P attern  Form ation in P rey Taxis System s

The ability of the predator-prey taxis system (3.126)-(3.127) to exhibit a spatial pattern 
crucially depends on the parameter functions h(v) (or h(v, n ) for ratio dependent functional
responses), 6(n), and f(v) .  Thus we study various typical cases separately. An overview of
the cases and the corresponding results is given in Table 6.1.

In this section we focus on constant x(v ) =  X■ The predator-prey taxis system derived 
in Section 3.7 reads

vt =  evxx +  v(f(v) -  -h (v)) ,  (6 .1)
v

n t = nxx -  (xvxn)x +  jn{h(v) -  5{n)), (6.2)

on an interval [0, L] with homogeneous Neumann boundary condition given by

^ (0 , t )  =  0, vx(L,t) = 0, nx(0,t) = 0, nx(L,t) = 0. (6.3)

We first consider (6.1)-(6.2) for the general / ( v), h(v), and S(n), and study the specific
functional forms later. We assume that a non-trivial coexistence steady state (v3, n s) exists.

We first investigate the stability of the coexistence equilibrium with respect to spatially 
homogeneous perturbations. For that we set all spatial derivatives in (6.1)-(6.2) equal to 
zero and linearize about (vs,n s)

Vt = (vaf ( v a) +  /(««) -  nah'(v3))V -  h(va)N  (6.4)
Nt =  j n 3h'(v3)V  +  7 (h(v3) -  8(na) -  8'(ns))N, (6.5)
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Section functional 
response 
h(v) or h(v,n)

death rate 
8(n) — 8 + vn

prey
growth f(v)

pattern
formation

6 .1.1 Type I constant logistic no
6 .1.2 Type II constant logistic no
6.1.3 Type I density dependent logistic no
6.1.4 Type I density dependent Allee yes, with 

diffusion
6.1.5 Type I density dependent Allee yes, with taxis 

and diffusion
6 .1.6 linear ratio constant logistic no
6.1.7 hyperbolic

ratio
constant logistic yes, with taxis 

and diffusion

Table 6.1: The possibility of pattern formation is considered in spatial predator-prey system 
(3.126)-(3.127) with various functional responses, h, prey population dynamics, / ,  and 
predator death rates, 8. We study Type I functional response of the form h(v) = v, Type 
II functional response of the form h(v) = linear ratio functional response of the
form h(v ,n ) =  and hyperbolic ratio functional response of the form h(v,n ) =  d%+v-
Constant death rate means 8(n) — 8 and density dependent death rate means 8(n) — 8+vn. 
In the logistic growth rate, we have f (v )  = 1 — v, and for an Allee effect we have f(v)  = 
K (  1 — v)(v — a). The parameters a , i/q, fj., d, v, K ,  and a are all positive constants.
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where \N\, | V| -C 1. Thus, we have

(  (vsf'(ys) +  f ( v s) -  nah'(vs)) ~h(vs)
V 7n sh'(vs) l(h (vs) -  8(na) -  <5'(ns))

(6 .6)

We look for solutions in the form

V,N<x exp(At), (6.7)

where A is the eigenvalue. Negative real parts of A imply that the steady state (vs,n s) is 
linearly stable. Substitution of (6.7) into (6 .8) gives

To investigate pattern formation induced by spatial movement, we assume that (vs,n s) is 
linearly stable for the purely kinetic equations (no spatial terms).
Assumption:

A + D <0, AD -  B C  > 0, (6.11)

which guarantee linear stability, that is, Re(A) < 0.
Now, we consider the full reaction-taxis-diffusion system (3.126)-(3.127) and again 

linearize about the homogeneous coexistence steady state, (vs,n s),

where |iV|, |F | <c 1. Here, we consider the small perturbation of n  and v so that the product 
of two small terms, VXNX and VxVx, can be disregarded. Therefore, we have the following 
linearized system

(vaf ( v s) +  f ( v s) -  n s/i'(us)) -  A - h ( v a)
7nah'(va) 7 (h(vs) -  6(ns) -  8'(n

Hence, the eigenvalues A satisfy the following quadratic equation

=  0. (6 .8)

(6.9)

where

A = (vaf ' ( v s) +  f ( v s) -  n ah'(va)) 
B  =  - h ( v a)
C  =  ~rnah!(va)
D = 7 (h(vs) -  6(na) -  <J'(ns)).

(6 .10)

Vt = eVxx + (vsf ( v s) +  f ( v a) -  nsti(vs))V -  h(va)N
Nt = Nxx -  x n sVxx + ^ n ah'(va)V  +  7 (h(va) -  8(na) -  8'(na))N,

(6 .12)

(6.13)

(6.14)

We look for solutions of the form

V, N  oc exp(At +  ikx ), (6.15)
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where V  and N  satisfy zero flux boundary conditions (6.3) on the interval [0, L\. Substitu­
tion into (6.14) gives the dispersion relation between eigenvalues A and wavenumber k. The 
dispersion relation A(k) gives the growth rate of the corresponding mode. The eigenvalues 
A are determined by the roots of the characteristic polynomial

A  -  ek2 -  A B  
C + x n sk2 D  — k2 — A =  0 ,

which can be simplified as follows

A2 -M i(fc2)A +  M2(fc2) =  0,

where

and

M i(k2) = A  +  D -  (1 +  e)k2

(6.16)

(6.17)

(6.18)

M2(k2) — AD — B C  +  ek4 — (A +  eD + B x n a)k2, (6.19)

with A, B, C  and D  defined in equations (6.10). Nonnegative e and k? guarantee M i(k2) < 
A + D  < 0 for all k, so the only way A (A;2) can be positive is the case that M 2(k2) <  0 for 
some k2. Hence a necessary condition for pattern formation is A + eD + B x n s > 0.

In the following subsections we consider specific choices for the functional responses, h, 
the death rate of the predator, 8, and the growth of the prey, / .

6 .1 .1  T y p e  I  F u n c t i o n a l  R e s p o n s e ,  C o n s t a n t  P r e d a t o r  D e a t h  R a t e  a n d  
L o g is t ic  G r o w t h

In this subsection we consider f(v)  = 1 — v, h(v) = v, and 8(n) = 8. The coexistence steady
state is (vs,n s) — (<5,1 — 5), which is biologically relevant for 0 < 8 < 1. Then A, B, C  and
D  defined in equations (6.10) are as follows

A  =  -8 , B  = -8, C =  ' y ( 1 - S ) ,  D = 0, (6.20)

and M i(k2) and M 2(k2) are now

M i(k2) = - 8  -  (1 +  e)k2 (6.21)
M 2(k2) =  $7 (1 -  8) +  ek4 +  (8 +  SXn3)k2. (6.22)

We note that M 2(k2) > 0 for all fc, hence the homogeneous steady state is linearly stable.

L e m m a  6.1 Assume f{y) =  1 — v, h{v) =  v, and 8(n) =  8, then no pattern formation 
occurs about the coexistence steady state, (ys,n s) — (8,1 — 8) for the system (6.1)-(6.2).

In Figure 6.1 we use x  — 6.5 and random initial conditions. The solution approximates 
the coexistence equilibrium (vs,n s) =  (0.75,0.25) for t —> oo. Thus Figure 6.1 confirms 
Lemma 6.1.

Although not treated analytically, we tested a nonconstant prey-sensitivity x (v ) = y- 
Also here initial perturbations are damped and (vs,n s) is stable (see Figure 6.2)
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Diffusion—taxis w ith constant prey sensitivity

0 .6 -

spatial grids time step

spatial grids time step

Figure 6 .1: Coexistence steady state is shown to be asymptotically stable for the system 
(6.1-6.2) with x  =  6.5, f (v )  = 1 — v, h(v) = v, and 6 = 0.75. Spatial grid size is dx = 0.25, 
and time step dt = 0.05 with 60 time units. Here the coexistence steady state is (v3,n s) = 
(0.75,0.25).
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Diffusion—taxis w ith non-constant prey sensitivity

0.6 -

spatial grids time step

Figure 6.2: Coexistence steady state is shown to be asymptotically stable for the system 
(6.1)-(6.2) with x (v ) — i t ,  f ( v ) = 1 — v > h(v) = v, and S = 0.75. Spatial grid size is 
dx = 0.25, and time step dt = 0.05 with 60 time units. Here the coexistence steady state is 
(va,n 3) = (0.75,0.25).
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6 .1 . 2  T yp e II F unctional R esp on se, C onstan t P redator D ea th  R a te  and  
L ogistic  G row th

We now consider type II functional response, h(v) — t; as in Lewis and Owen [72], 
S(n) =  8, and f(v)  — 1  — v. Thus the coexistence steady state is
K ,» s )  =  ( (i+a-s) > which is biologically relevant for 0 < 8 < 1. In this case

A = ~ fr+ ~ a1- ~d ? ’ B  = ~ 5’ C = ^ 1 ~ 6)’ D = 0’ (6-23)

and M i(k2) and M2{k2) are now

= - SQ + a - S )  ~  (1 +  ^  ( 6 ' 2 4 )

M2(fc2) =  <57(1 -  5) + e/c4 +  (<5 +  5xns)k2. (6.25)

We note that M2 (A:2) > 0 for all k, hence the homogeneous steady state is linearly stable.

Lemma 6.2 Assume f(v )  — 1 — v, h(v) =  7 *7 ^ +  and 6(n) — S, then no pattern formation 
occurs about the coexistence steady state, (v3,n s) =  ( )  / or the system
(6. 1) - ( 6.2).

It is noted that type II functional response does not play any role for pattern formation
versus type I. Figure 6.3 shows a numerical solution with x  — 6.5 and randomly chosen
initial distribution. We observe that the coexistence equilibrium (v s,n s) — (0.6,0.2667) is 
stable.

6 .1 .3  T yp e I F unctional R esp on se, D en sity  D ep en d en t P red ator D ea th  
R a te  and L ogistic  G row th

We now include competition in the predator death rate, so the predator death rate is 
5(n) = 8+vn. In addition, we consider type I functional response, h(v) — v and f (v )  =  1—v. 
Thus the coexistence steady state is (vs,n s) = {7 7 ), which is biologically relevant for
0 < 5 < 1. In this case

5 + v 5 + i/ 1 - d  1 - d , s
a  = b  = — > c  = 7 t ~i— ’ B  = V6-26)1 +  1/ 1 + 1/ 1 + 2/ 1 + 2/

and M \{k2) and M2 (A;2) are now

M i(k2) = A + D - { I  + e)k2 (6.27)
M2(k2) = AD -  B C  +  ek4 ~ ( A  + eD + B Xn s)k2. (6.28)

We find A < 0 and D < 0 for biologically relevant 5, which result in A +  D < 0. Moreover, 
B  < 0 and C > 0 give rise to AD — B C  > 0. In addition, A < 0 ,D < 0, B  < 0, and 
AD — B C  > 0 give M 2(k2) = AD — B C  +  eA;4 — {A +  eD +  B x n s)k2 > 0 for all k. Hence 
we note that M 2(k2) > 0 for all k, hence the homogeneous steady state is linearly stable.

Lem m a 6.3 Assume f ( v ) =  1 — v, h(v) = v, and 5(n) = 8 + vn, then no pattern formation 
occurs about the coexistence steady state, (vs,n s) =  ( f ^ ,  {7 7 ) for the system (6.1)-(6.2).

Figure 6.4 shows a numerical solution with % =  6.5 and randomly chosen initial distri­
bution. We observe that the coexistence equilibrium (vs,n s) = (0.792,0.208) is stable.
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Diffusion—taxis w ith  constant prey sensitivity and type II response

0 .6 -

spatial grids time step

Figure 6.3: Coexistence steady state is shown to be asymptotically stable for the system 
(6.1)-(6.2) with / ( v) = 1 -  v, x  = 6.5, h(v) — and 6 = 0.9. Spatial grid size is
dx =  0.25, time step dt =  0.05, and a = 0.2 with 60 time units. Here the coexistence steady 
state is (vs,n s) =  (0.6,0.2667).
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0.6 -

D iffusion-taxis w ith  constant prey sensitivity

0.4-i
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— — ^ r 72oo 1400100

spatial grids
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.. o o o i 200 1400100
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Figure 6.4: Coexistence steady state is shown to be asymptotically stable for the system 
(6.1)-(6.2) with x =  6-5, f (v )  =  1 — v, h(v) = v, and 5(n) =  0.75 +  0.2n. Spatial grid size 
is dx =  0.25, time step dt = 0.2, and 7 = 1  with 60 time units. Here the coexistence steady 
state is (vs,n s) =  (0.792,0.208).
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6 .1 .4  T yp e I F unctional R esp on se, D en sity  D ep en d en t P red ator  D eath  
R a te  and A llee  E ffect w ith  D iffusion  O nly

In this subsection we consider an Allee effect on the prey population dynamics f (v )  = 
K (  1 — v)(v — a) with 0 < a < 1 and K  = ^ ^ 2  > h(v) — v, 5(n) — 6 + un, and without 
taxis, i.e. x  =  0 and ^ > 0 is a constant parameter. Here the parameter a is a threshold, 
below which the prey population declines Okubo et al. [70] argued that a predator-prey 
model with dispersal may generate diffusion driven instability if the mortality of the predator 
depends on the population density and the per-capita growth rate of the prey is determined 
by an Allee effect. Note that the trivial steady state (v,n) =  (0,0) is locally stable because 
for (v,n) =  (0,0) the characteristic polynomial (6 .8) has two negative eigenvalues, A =  —7 5 
and A =  —Ka. We assume biologically relevant parameters region 0 < 6 < 1 and a < 1. 
For the prey-only steady state (v,n) = (1,0) the characteristic polynomial (6 .8) has one 
positive eigenvalue A =  7(1 — 5) and one negative eigenvalue A =  —K (  1 -  a).

For the homogeneous coexistence steady state (v3,n 3), we find

A = K vs( 1 +  a -  2vs), B  = - v 3, C — 7n3, D = - ^ n su, (6.29)

and M i(k2) and M2 (A;2) are given by

M 1(k2) = A + D - ( l + e ) k 2 (6.30)
M2{k2) = A D - B C  + ek4 -  (A + eD + B Xn s)k2. (6.31)

It is noted tha t the sign of A  depends on the sign of 1 + a —2vs. We here set v =  Hence,
when vs > v, A  is negative and when vs < v, A  is positive. Recall that the coexistence
steady state (vs,n s) comes from the intersection of the two nullclines: v — S — un = 0 and
K (  1 — v)(v — a) — n  =  0 (see Figure 6.5).

First, we consider vs > Since vs > v we find that at v — v the f-nullcline is above 
the n-nullcline. This means that K ( l  — v)(v — a) > which translates into the condition

a +  1 < 2(6 +  v). (6.32)

For this case we prove stability.

Lem m a 6.4 Assume that h(v) = v, 6(n) = 8 +  un, f(v )  = K (  1 — i>)(v — a), and x  =  0. 
I f  a — 1 2(5 I u), then no pattei*n fornnation occurs about the coexistence steady state,
(vs, n s) for the system (6.1)-(6.2).

Proof. The condition a +  1 < 2(5 +  v) implies that vs > -Mp-. Hence A < 0. In 
addition, we find B  < 0, C > 0, and D < 0 and A < 0, B  < 0, and D < 0 imply 
M2 (A:2) =  AD -  B C  +  ek4 — (Ae + D + B x n s)k2 > 0 for all real k. Hence, we cannot expect 
diffusion-taxis driven instability about the coexistence steady state.D

In Figure 6.5 it is noted that vs should be between a and 1, i.e. a < vs < 1, otherwise
ns is negative. In Lemma 6.4, we considered that vs > and found no pattern. Thus we 
now consider a < v3 < v = First we investigate how many v3 may exist between a and 
v, and then we find conditions for the existence of vs between a and v.

The v vaules for the coexistence steady state are obtained from

K { l - v ) { v - a )  = ' ^ - ,  (6.33)
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The two nullclines and the coexistence steady state

V  = a

V  = 5

N  = K {  1 - V ) ( V  - \ )

/

Figure 6.5: The v-nullcline N  = K ( l  — V )(V  — a) is shown as a solid curve. For two values 
of v we show the corresponding n-nullcline, N  = as a dashed line and a dash-dotted 
line. The equilbrium (vs,n s) is the intersection of the nullclines. We have chosen two values 
of v so that vs < v for and vs > v for 1/2 with v\ <
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which is a quadratic equation, so there are up to two real roots v depending on the param­
eters a, v, and 6. Equation (6.33) is rearranged as follows

K v v 2 — {Kv{ 1 +  a) — l)v +  K va — 6 = 0. (6.34)

When a < 6, Figure 6.5 shows that equation (6.34) has two real roots. Here V  = 6 is a 
x-intersection of the n-nullcline and V  = a is a x-intersection of the x-nullcline. One root 
is bigger than a and the other is less than a. Thus, for the root less than o, n s would be 
negative, which is not biologically relevant. Hence, when a < 6 equation (6.34) has one 
biologically relevant root. In addition, vs < v leads to

a > 2 (8  + v ) - l .  (6.35)

Therefore, for
2{8 + v) -  1 < a < 8, (6.36)

the biologically relevant coexistence state exists and its v value is located between 8 < v s < 
v.

When a > 8, we may expect two positive roots from equation (6.34). For that, K v a >  8 
and K v ( l  + a ) > 1 are required, in addition to the positive discriminant {K v(l +a) — l ) 2 — 
4K v(K va  — 8). The discriminant implies a < Av + 1  — Ay/v — v8. However, the assumption 
K va > 8 implies a > which contradicts a < Av +  1 — A\Jv — u8, because
2u+6-2g/v2_±5v > 4^ ^  i _  4y/v  _  u§ Thus we cannot have two positive roots. In sum, in 
order to have a biologically relevant coexistence steady state we found conditions (6.36). 
Under assumption (6.36) the biologically relevant solution of (6.34) is given by

vs =
K v  +  K va  -  1 +  y /K 2v2a2 + (~2K v -  2K*v2)a +  K 2v2 + 1 -  2K v + AKv8

2Kv

The discriminant in (6.37) is zero for

(6.37)

K v  + K va  — 1 l +  o 1 
2 =  W v  = —  ~ 2 K i '  (6'38)

(6.37) and (6.38) give a condition for the existence of the coexistence steady state,

1 +  a (1 -  a)2 
vs > v  = — ----------— , (6.39)

which will be used to show that AD — B C  > 0, whenever vs exists.
We find A > 0 from the condition vs < -Mp (6.36). Additionally, from (6.29) we

find B  < 0, C  > 0, and D < 0. The stability conditions require that A + D < 0 and
AD -  B C  > 0. The condition A  +  D < 0 leads to a condition

A + D = K vs(l +  a — 2vs) — yn sv  (6.40)
=  K vs{ 1 +  a -  2vs) -  7 (vs -  8) < 0, (6-41)

which with n sv = vs — 8 is rearranged as

K v s(l + a - 2 v s) < j ( v s - 8 ) .  (6.42)
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= K v s ( 1 +  a — 2vs)

T he ex istence o f positive vs

Figure 6 .6 : Plot of the left and right hand sides of (6.42) as function of v s. The region of
A + D  < 0 is where the dashed line lies above the curve.

In Figure 6.6 we plot the left and right hand sides of (6.42). As 7  varies from zero to infinity, 
the intersection of K v s( 1 +  a — 2vs) and j ( v s — 6) changes from vs = 4 ^  to vs — 6. Given 
a value for vs we can always choose 7  small enough such that condition (6.42) is not true. 
Thus 7  should be greater than a minimum value, 70 . Here 70 =  wjiere js
computed in (6.37). Therefore for 7  > 70, we have A  +  D < 0.

Thus a biologically relevant vs is in the interval

( £ 1 +  a (1 — a)2\  o + 1  ,a
max (41 -------8v ) SV’ < —  (6 43)

We found that (6.43) holds under assumption (6.36).

T heorem  6.1 Assume that h(v) = v, S(n) — 8 +  un, f ( v ) =  K (  1 — v)(v — a), and x  =
0. I f  a satisfies condition (6.36), then (i) the coexistence steady state (vs,n s) exists, (ii) 
AD — B C  > 0, (Hi) i f  in addition, there exists ei > 0 such that for each e < ei there
exists an nonempty interval [A7 , £2] of unstable modes, so we may expect diffusion driven
instability about the coexistence steady state, (iv) if  e > ei, then (vs,n s) is linearly stable.

Proof. (i) It was shown that condition (6.36) implies the existence of a unique positive
root vs. (ii) When a positive vs exists, vs satisfies condition (6.43). Now we consider the 
condition for AD  — B C  > 0.

AD -  B C  (6.44)
=  - K v s( 1 +  a -  2vs) jn su +  7nsvs (6.45)
=  -  Ku(  1 +  a -  2vs)) > 0, (6.46)

which holds if vs > 4 p  +  Indeed, this is true by condition (6.43). Therefore AD — BC  
is always positive under the assumption of the existence of a coexistence steady state, (iii) 
Mi (A;2) and M2 (A;2) are now

M i(k2) = A + D - ( l  + e)k2, (6.47)
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and
M2{k2) = (—ek2 +  A ) ( - k 2 + D )~  BC, (6.48)

with A =  K v s(l +  a -  2vs), B  = - v s < 0, C — j n s > 0 and D  =  - 7 nsu < 0.
A  +  D  < 0 guarantees M i(k2) =  A + D  — (I + e)k2 < 0 . Hence instability can only occur 

if M2(k2) is negative for some real k. M 2{k2) is rearranged as A D - B C  + ek4 -  (A + De)k2. 
If e > 1, then D < 0 gives A + D e < A  + D < 0 ,  hence M2(k2) is always positive, which 
results in no diffusion-driven instability for e > 1. Therefore e should be strictly less than
1. Indeed, setting eo =  Kv~ ^ ( ^ s )V‘^> f°r 6 < eo, we have A +  De > 0 and M 2(k2) can be 
negative for some k.

Setting T  — k2, M2(T) =  0 may have two roots (see Figure 6.7)

K v J l  + a -  2us) -  €7 nsva %fP
r .,2 = -------------------- s -------------------- (6.49)

with P  — K 2v2 + 2K 2v2a +  2Kvse^nsu — 4K 2v^ +  K 2v2a2 + 2Kvsae^nsv — 4K 2v\a + 
e272n 2v 2 — 4e7n sv K v 2 + 4 K 2v4 — 4evsj n s. Then critical Tc is

_  K v s{ 1 +  a -  2vs) -  e'yrisVs 
J-c— 2e ’ (6.50)

for P  =  0. For P  > 0, are real numbers. P — 0 is a quadratic equation with respect to 
e. Hence P  — 0 has two roots ei and e2 with ei < e2 such that for e < e\ or e > e2 there 
exist real ki and k2 with A7 < k2. These ei and e2 are found by the quadratic formula. 
Moreover, it is seen that e2 > eo > ei- Thus for e < ei there exist real Aq and k2. For 
unstable modes k  6  [ki,k2] with Aq =  \fT[  and k2 =  \/T2, eigenvalues A are given by
A =  Mi(fc )±VMl(fc ) 4M2(fc ) j jence) for < k < k2, we have Re(A)> 0 and we may 
expect diffusion driven instability about the coexistence steady state (see also [81]).

(iv) if e > ei, then M2(k2) is always positive for all k. Hence we cannot expect diffusion 
driven instability about the coexistence steady state.□

Segel and Jackson ([81]) also considered diffusion driven instability in a predator-prey 
interaction . They used 6(n) — un  and f{v) — 1 + Kv,  and found the wavelength of the 
instability (see also [70] for general discussion on diffusion driven instability in a predator- 
prey interaction).

In particular, for e <C 1, we can approximate two values of A;2, say A;2 and A;2, so that 
for ki < k < k2, M 2(k2) is negative. To find A;i and k2 we set T  — k 2 and M 2(T ) =  0,

eT2 ~ { A  + eD)T  +  AD -  B C  = 0. (6.51)

Letting e =  0, equation (6.51) has a unique solution, T  = AD~̂BC, which is positive due 
to A > 0 and AD — B C  > 0. To find a second root for e <  1 we use a rescaling, 
T  = ^  +  Ti +  ■ • •. Plugging this rescaling into the equation (6.51), we have the leading 
term as follows

Tq -  AT0 = 0. (6.52)

Thus nonzero Tq = A  leads to T  «  A . With small e, it is seen that A > AD^ BC. The equa­
tion (6.51) is quadratic with positive leading coefficient and two positive roots. Therefore 
for AD^ BC < T  < y , M 2(T) is negative.

For example, we consider an interval [0, L] with homogeneous Neumann boundary con­
dition given by (6.3). If kn = ^  in fAq, Â ] of (6.49) with positive integer n, then pattern
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The positive real part o f eigenvalues vs. wavenumbers

wavenumbers of unstable nodes

Figure 6.7: Plot of the eigenvalue A(k2) as a function of T  with T  =  k 2.

formation occurs. Thus we can calculate a minimum domain size for pattern formation. 
Since ki < kn < fo, we substitute kn =  ^  and rearrange the inequality with respect to L. 
Then we have rnr ,  n7r

< *T’
which should hold for some n. Therefore, the minimum length for possible instabilities is 
L* = and for L < we cannot expect pattern formation.

In Figure 6.8 we show phase portraits of the predator-prey system (6.1)-(6.2) without 
dispersal terms. As 7  increases, the coexistence steady state bifurcates from an unstable 
spiral to a stable spiral. From simulations with various 7 , it is noted that an unstable limit 
cycle occurs for a certain range of 7 . When 7  is smaller than the lower bound of this range, 
the coexistence steady state is an unstable spiral. When 7  is bigger than the upper bound of 
the range, the coexistence steady state is a stable spiral with nonempty basin of attraction. 
Figure 6.9 shows that the stable coexistence steady state without dispersal terms becomes 
unstable if diffusion terms are introduced. As a result patterns are generated.

6.1 .5  T yp e I F unctional R esp on se, D en sity  D ep en d en t P red ator D eath  
R a te  and A llee  E ffect w ith  D iffusion  and P rey  Taxis

Now we consider the reaction-diffusion-taxis system (6.1)-(6.2) for x / 0 .  f(v )  =  K{ 1 — 
v)(u — a) with 0 < a < 1 and K  =  h(v) = v, and 5(n) =  6 +  un. We have shown in
the previous subsection that for x =  0 pattern formation may occur. In this subsection we 
consider how the conditions of pattern formation change if x is introduced.

L em m a 6.5 Assume a, S, and e satisfy instability conditions of Theorem 6.1 Then there 
exists a x* = - - ? ‘ )+£7(t,a such that the coexistence steady state (vs, ns) for system
(6.1)-(6.2) is linearly stable for each x >  X*- For x  < X* there exists an interval [fci, £3] ° f  
unstable modes.

Proof. M i(k2) and M 2 {k2) are now

M i(k2) = A + D - ( l  + e)k2, (6.54)
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Phase plane analysis of the temporal equations
1.8

1.6

1.4

1.2
stable spiral

%
§T3
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0.6

0.4 - - stable node

0.2

0.1 0.2 0.3 0.4 0.5
prey density

0.6 0.7 0.8 0.9
No d ispersal

Figure 6 .8: Coexistence steady state is shown to be locally asymptotically stable for system 
(6.1)-(6.2) without dispersal terms and with f (y )  = 16(1 — v)(v -  0.5), h(v) =  v, and 
8(n) = 0.6 +  O.ln. Time step is dt = 0.01 and 7  =  13. Here the coexistence steady state is 
(va,n 3) =  (0.695,0.952).

and
M2(k2) =  AD -  B C  +  ek4 -  (A +  e£> + B Xn s)k2, (6.55)

where A , B, C, and D  are defined in (6.48). Here Mi (k2) is the same as in the case of 
diffusion-only (6.47) so that it is negative for all k. But M 2(k2) is different by the term 
B Xn a. Setting M2(k2) =  0 and T  =  k2, we obtain after rearrangements

eT2 -  (A + eD)T  +  AD -  B C  — B Xn sT. (6.56)

Figure 6.10 shows three typical situations of intersections of the left hand and the right 
hand sides of equation (6.56). In the diffusion-only case, we saw that there may be two 
roots, T\ and T2, of eT2 — ( A + eD)T  +  AD — B C  — 0 under the conditions that A + eD > 0. 
Between T\ < T  < T2, eT2 — (A +  cD)T  +  AD  — B C  is negative. Ti =  k 2 and T2 — k\. 
In order for M 2(T) to be negative, the left hand side of equation (6.56) should be less than 
the right hand of the equation (6.56). In Figure 6.10, the region T3 <  T  < T4 where the 
solid curve is below the dashed line makes M 2(T) negative. As we can see in Figure 6.10, 
T3 is always greater than T) and T4 smaller than T2 for positive X. As X gets bigger, the 
slope of the line of the right hand side of equation (6.56) is steeper so that for X > X* there 
will be no intersection of the curve and the line (see Figure 6.10). In that case, M 2(k2) is 
always non negative, which leads to negative eigenvalues and to stability. In Theorem 6.1, 
for x =  0 we found a threshold of eo =  Kv‘y (^ Is )V‘^• F°r X /  0, the threshold for pattern
formation is e\ =  Kvsil+°~<2"*^~v‘xn‘ < eo- Thus as x gets bigger, ei requires smaller value 
e for pattern formation.fi

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D iffusion-only

spatial grids time step

spatial grids time step

Figure 6.9: Coexistence steady state is shown to be locally unstable for system (6.1)-(6.2) 
with x(^) =  0.0, / ( v) = 16(t> — 0.5)(a — 1), h(v) =  v, and S(n) =  0.6 +  O.ln. Spatial grid 
size is dx =  0.25, time step dt — 0.01, and 7  =  14 with 60 time units. Here the coexistence 
steady state is (vs,n s) — (0.695,0.952).
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The role o f prey-taxis to  generate instability

f i (T)  = eT2 -  (A + eD)T +  AD -  BC

Figure 6.10: Plot of the left and right hand sides of equation (6.56) as a function of T  with 
T  = k2. The solid curve is from the left hand side of equation (6.56) and the dashed lines 
are from the right hand side of equation (6.56). As x varies, the number of intersection 
changes from zero to two. Note that B  is negative.

Therefore prey-taxis tends to reduce the occurrence of dispersal-induced instability. 
Furthermore, it is noticed that predator diffusion is crucial to dispersal-induced instability. 
Prey-taxis pushes predators into high prey density area, otherwise predators move opposite 
direction. Thus, prey-taxis seems to reduce predator diffusion. In prey only situation, prey 
diffusion is considered as a rate of making heterogeneous prey distribution homogeneous. 
Prey-taxis seems to make this process faster. Thus,prey diffusion seemingly increases due 
to prey-taxis. When prey diffusion is large enough, we may not expect pattern formation 
from Theorem 6.1.

Figure 6.8 shows that the coexistence steady state for the spatially homogeneous predator- 
prey system (6.1)-(6.2) without dispersal terms is stable. In Figure 6.9, introducing the 
diffusion term generates patterns. Figure 6.11 shows that when we introduce a large prey- 
taxis term patterns disappear.

6 .1 .6  Linear R atio  D ep en d en t F unctional R espon se, C onstan t P redator  
D ea th  R a te  and L ogistic G row th

We now consider the linear ratio dependent functional response, h(v,n ) =  with f(v)  =
1 — v and S(n) =  6 and uq is a constant parameter. Thus the coexistence steady state is 
now (v3,n s) — (1 — i/o, ^ (1  — w o ) ) ,  which is biologically relevant for 0 < mo < 1. In this case

A — —(1 — m o ),  B  = 0, C  =  7 mo, D = - 6 ,  (6.57)

and M i(k2) and M2(k2) are now

M x(k2) = A + D - ( l + e ) k 2, (6.58)
M 2(k2) = A D -  B C  + ek4 ~ ( A  + eD + B Xn s)k2. (6.59)

We observe that A  < 0 ,D < 0, B  =  0, AD — B C  > 0, and M 2(k2) =  AD — B C  +  ek4 —
(A + eD + B x n a)k2 > 0 for all k. Hence the homogeneous steady state is linearly stable.
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spatial grids time step

Figure 6.11: Coexistence steady state is shown to be locally asymptotically stable for system
(6.1)-(6.2) with x(v) — 6.5, f ( v ) =  16(t; — 0.5)(t; — 1), h(v) = v, and 6(n) = 0.6 +  O.ln. 
Spatial grid size is dx = 0.25, time step dt = 0.01, and 7  =  14 with 60 time units. Here the 
coexistence steady state is (vs,n s) = (0.695,0.952).
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Lem m a 6 .6  Assume f(v )  = 1 — v, h(v) =  u q and 8(n) — 8 + vn, then no pattern 
formation occurs about the coexistence steady state, (vs,n s) =  (1 —i/o, ^ (1  —i/o)) for system 
(6.1) - ( 6.2).

6 .1 .7  H yp erbo lic  R atio  D ep en d en t F unctional R espon se, C on stan t P red a­
tor D ea th  R a te  and  L ogistic  G row th

We now consider hyperbolic ratio dependent functional response, h(v,n) = d((v+v with 
f(v)  = 1 — v and 8{n) = 8, and p  > 0 and d >  0 are constants. Thus the coexistence 
steady state in this case is (vs,n s) — ( ); which is biologically relevant 
for 8 < p < d + 8. In this case, we have

B  = _ * '  (6.60)
dp p dp p

and M i(k2) and M2 (A;2) are now

M i(k2) = A + D - ( l + e ) k 2, (6.61)
M 2(k2) = AD -  B C  +  ek4 -  (A +  eD + B Xn s)k2. (6.62)

In this case pattern formation is possible.
We now consider conditions that A  +  D  < 0 and AD — B C  > 0. For A < 0, it is seen 

that A  +  D  < 0 and AD -  B C  > 0. For A  > 0, AD -  BC  = { n ~ W ^ + s)s 7  is positive 
due to the fact of 8 < p < d + 8. However, A  +  D  <  0 is not always true. Since A  is 
independent of 7  for the fixed parameters p, d, and 8 and the magnitude of D  is linearly
increasing as 7  gets bigger, A  +  D changes its sign over 7  from positive to negative. That
is, for 7  > ~ ^dii?-6)6 ^' A + D  becomes negative. Thus 7  > 70, with 70 =   ̂ >
implies that A +  D < 0.

Lem m a 6.7 Assume f ( v ) =  1—v, h(v) =  <̂ (w) =  8, and x  =  0. (i) I f  {dp—p 2 +82) >
0 , no pattern formation occurs about the coexistence steady state, (vs,n s) for system (6.1) -
(6.2).
(ii) Assume {dp—p 2 +82) < 0. I f  there exists ei > 0 such that for each e < ei there exists an 
nonempty interval [A7 , k2] of unstable modes, so we may expect diffusion driven instability 
about the coexistence steady state, (Hi) in case (ii) if  e > ei, then (vs,n s) is linearly stable.

Proof. (i) First, (dp — p 2 + 82) > 0  implies A < 0. In addition, we find B  < 0, C  >  0, 
and D < 0. Thus M i(k2) < A +  D < 0 for all k, so the only way A(k2) can be positive is 
the case that M2(k2) < 0 for some k2. Since B  < 0, A < 0, and D < 0, we find

M2(k2) — AD -  B C  + ek4 -  (A + eD)k2 > 0. (6.63)

Hence, we cannot expect diffusion-taxis driven instability about the coexistence steady 
state.

(ii) Second, we consider (dp — p 2 + 82) < 0 ,  which gives A > 0. However, it is seen 
that AD — B C  > 0. In addition, for 7  > 70, it is straightforward to show that A + D < 0, 
which implies that M i(k2) =  A  +  D — (1 4- e)A;2 is still negative. However, M 2(k2) = 
ek4 — (A  +  eD)k2 + AD — B C  could be negative if A +  eD is positive. Indeed, when e is less 
than eo =  — ^, A  +  eD is positive. Thus M2(k2) can be negative. With the same
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steps in Theorem 6.1, we can find ki and with k\  2 =  (fj? — dfi -  82 — ed(i~/8 +  ed'yS2 =f 
a/Go + G\e + G^e2) j (2ed/x) where

Go =  (—dfj, +  fjL2 — 82)2 (6.64)
Gi =  2 d(fi — 8)'y8(fi2 — d^i — 2 fj,8 + 82) (6.65)
G2 =  7 2 8 2 d2(fi — 8)2. (6 .66)

For Go +  Gie +  G ^ 1 > 0, £1,2 are real numbers. It is seen that Go > 0 and G2 > 0.
However, Gi is not always positive. The discriminant is now G2 -  AGqG2 =  4d2/ry2<$3(/z — 
6)3(d — (j, + 6) > 0 for the biologically relevant 8 < /z < d + 8. Hence, there exist ei and 
£2 with £1 < £2 such th at for e < £1 or e > £2 there exist real /q and &2 with A7 <  /c2-

£1,2 =  Gi 2G2 4G°G2. Moreover, it is seen that £2 > eo > £1. Thus for e < ei there
exist real A7 and Furthermore, for k\ < k < hi we have Re(A)> 0 and we may expect 
diffusion driven instability about the coexistence steady state.

(iii) If e > ei, then M2 (A2) is positive for all k. Hence we cannot expect diffusion driven 
instability about the coexistence steady state.D

Alonso et al. [3] also considered a hyperbolic ratio dependent functional response for 
pattern formation by using numerical exploration of the parameter space.

Now we can follow the argument of the case including an Allee effect. Thus the reaction- 
diffusion system may show diffusion-driven instability depending on parameters /i, d, 8, 7 , 
and £. Furthermore, prey-taxis term tends to limit the occurrence of dispersal-driven 
instability (see subsection 6.1.5 for the full argument).

In Figure 6.12 we show phase portraits of the predator-prey system (6.1)-(6.2) with 
hyperbolic ratio functional response and without dispersal terms. As 7  increases, the co­
existence steady state bifurcates from an unstable spiral to a stable spiral. Figure 6.13 
demonstrates that the stable coexistence steady state without dispersal terms becomes un­
stable if diffusion terms are introduced. As a result patterns are generated. Figure 6.14 
shows that when we introduce a large prey-taxis term patterns eventually disappear.
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Phase plane analysis of the temporal equations
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Figure 6.12: Coexistence steady state is shown to be locally asymptotically stable for system 
(6 .1)-(6 .2) without dispersal terms and with h(v,n ) =  0 osn+ii > f ( v) =  * -  ^(n ) =
0.76. Time step is dt = 0.005, and 7  =  15. Here the coexistence steady state is (vs,n s) = 
(0 .2 , 0 .211).

6.2 G lobal Stability

In the previous section, we showed that without both the Allee effect and the density 
dependent predator death rate, diffusion and prey-taxis do not change the local stability 
of the coexistence steady state. We choose one of the cases without pattern formation to 
study the global stability of (vs,n s). We consider f(v)  =  1 — v, h(v) = v, 8(n) = 8 +  un, 
and x (v ) =  y f°r the spatially homogeneous case of system

Ti
vt =  evxx + v ( f ( v )  h(v)), (6.67)v
«t =  -  {xvxn)x +  7n(h(v) -  6(n)). (6 .68)

on an interval 12 =  [0, L\ with homogeneous Neumann boundary conditions given by

vx (0, t) = 0, vx (L,t) = 0, nx(0, t) = 0, nx(L,t) = 0. (6.69)

Lyapunov function,
V =  d v+  f ni^— ^ d h ,  (6.70)

Jv, V Jna 7«

has been used to show the global stability. We will show that V(v,n)  =  f n V(v,n)dx is a 
Lyapunov functional for the full spatially dependent problem (6.67)-(6.68).

T heorem  6.2 For f(v )  =  1 — v, h(v) = v, 8(n) = 8 +  un, and x(v) =  in the case of 
boundary condition (6.69), we assume that Ae'y > ^ -62. Then there exist positive invariant
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spatial grids time step

Figure 6.13: Coexistence steady state is shown to be locally unstable for system (6.1)-(6.2) 
with h(v,n) = 00°5̂ +ti, / ( v) =  1 — v, and 6(n) = 0.76 and with x (v) — 0.0. Spatial grid 
size is dx =  0.25, time step dt =  0.01, and 7  =  15. Here the coexistence steady state is 
(v„n.)  =  (0 .2 , 0.211).
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0 .6 -

Diffusion—taxis w ith  constant prey sensitivity

spatial grids time step

0.3

spatial grids time step

Figure 6.14: Coexistence steady state is shown to be locally asymptotically stable for system 
(6 .1)-(6 .2) with h(v,n) = 0 05n+v ’ f ( v ) ~  — v > ^(n ) =  ^-76 =
Spatial grid size is dx =  0.25, time step dt =  0.01, and 7  =  15. Oscillations are eventually 
seen to be damped out. Here the coexistence steady state is (vs,n s) =  (0.2,0.211).
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sets N l  such that for all (v,n) £ N l  the functional, V (v,n ), defined in (6.70) is a Lyapunov 
functional for system (6.1)-(6.2). For 4e7 > b2^-, V (v,n)  —► 0 as t —> oo, s o  ( v , n) —► 
(t>s, n s), and the coexistence steady state is asymptotically stable.

Proof. Setting N l = {(v ,n)\V (v,n) < L} for L  large enough, then we claim that the 
level sets N l are positive invariant. When (v,n) =  (vs,n s), V (v ,n )  becomes zero due 
to V  =  0. Otherwise, V  is positive in N l because for v > vs and n  > ns, and 

are positive, respectively and for v < vs and n < n s, and are negative 
respectively. Hence the functional, V(v, n) is bounded below. Since V  = v — vs ln(v) — vs +  
vs ln(ns) +  ln(n)-%+"* ln(n«); ^  is straightforward to see that limu_»o,n-»o V(v, n) = oo
and l i m ^ o o , ^  V(v, n ) =  oo. Since =  JQ ^ d x  and = f n ^ d x , V(v, n )
is continuously differentiable for v ,n  > 0. The next step is showing that for (v ,n ) £ N l 
dV/dt is negative definite for a certain parameter space.

dV/dt = f
Jn dt

v -  vs . n - n s .■v H---------- ndx=  /
t  « -  v ya  ( 6 ' 7 1 >

=  /   - V x x  +  ( v  -  v s ) ( f ( v )  -  n ) d x
Jn v
r u

+  J  ^  3 ( e n x x  -  ( x ( v ) v x n ) x ) +  ( n  -  n s ) ( v  -  6  -  u n ) d x .

We arrange the right hand side of this equation into two parts; one including the local 
dynamics and the other on including the dispersal terms. First we look at local dynamics

( v  -  v s ) ( f ( v )  — n )  + (n -  n s ) ( v  — 6 — v n ) d x
Jn

=  ( v  -  v s ) ( f { v )  -  n s  +  n s -  n )  +  ( n  -  n s ) ( v  -  6 — v n ) d x
Jn

= ( v  -  Vs ) ( f ( v )  -  n s ) + (n -  n s)(v  -  6 -  v n  -  v  + v s ) d x
Jn

=  /  ( v  -  v s ) ( f ( v )  -  f ( v s ) )  +  (n -  n s ) ( v s -  S -  u n ) d x  
Jn

(see [7] for the case of a constant death rate of the predator). Here ( v — v s )  and ( f ( v )  — f ( v s ) )  

have the opposite sign with f ( v )  = 1 —1> so that ( v  — v s ) ( f ( v )  — f ( v s ) )  is negative. Similarly, 
(n — n s) and ( v s — 6  — v n )  have the opposite sign due to ( v s  — 6 — v n )  — v ( n s — n ) .  Therefore 
f n ( v  — v s ) ( f ( v )  — n )  +  (n — n s ) ( v  — 6 — v n ) d x  is negative unless ( v ,  n )  — ( v s , n s ) .  We now 
take into account the dispersal term of (6.71) by using integration by parts with zero flux
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boundary condition

/J n

v - v s n — n s
■Vx x  i ---------- (enxx -  (x{v)vxn)x)dx

q v 7  n
v — vs n — n a 

~vx + (enx -
lcv 7  n  i an

-  /  ( — - )  ( t f e ) 2 + 6 P — K ) 2 - ( ^ - ^ )  X ( v ) n v x n x d x  
J n '  v  / v  \  ' y n  J n  K ' y n / n

= ~ f  M 2 + e ( ^ - ^ )  K ) 2 - ( ^ - ^ )  X(v)nvxnxdxJ q \  V Jv \ j n  Jn \ j n J n

=  -  f  - | ( ^ x ) 2 +  e - ^ - f a s ) 2 -  — x i y ) v x n x d x
J n v l n l n

=  -  f  X TA X dx,
Jn

where X  = ( Vx'\ and A — ( . 27” ^   ̂ J. Thus the matrix 4̂ is symmetric.
\ n x J  \  Z-ynXy”) e ^n? J

Hence if A  is positive definite, all eigenvalues of the matrix A are positive. Here tr(^4) =  
^  is positive. Thus a positive determinant A (A) — — j ^ p x {v )2 guarantees
two positive eigenvalues for the matrix A. As a result, for (v, n) 6 N l  ^  < 0. Hence the 
level sets Nl are positive invariant. With the specific example of x(v) = we have the 
condition for positive eigenvalues that 4e7 > ^ b 2. For the special case of x(v) — 0, i.e. 
diffusion-only case, the matrix A  is always positive definite for N l . Therefore the functional 
V(v,n) is shown to be a Lyapunov functional under the condition specified above.D

6.3 Sum m ary

In this chapter we considered pattern formation for a predator-prey taxis model of reaction- 
diffusion-advection type given by

V t — zvxx +  v(f(v ) -  ^ h(v)), (6.72)

nt = nxx -  (x(v)vxn)x +  jn (h(v) -  S(n)) (6.73)

with a constant prey sensitivity, i.e. x(v ) — X- We considered various reaction terms: for h 
including type I and II functional responses as well as ratio dependent functional responses. 
We considered constant and density dependent death rate S of the predator, and a logistic 
growth or an Allee effect in the prey growth term.

The combination of a type I functional response, a constant death rate of the predator, 
and a logistic growth rate of the prey was shown in Section 6.1.1 to not generate a spatial 
pattern. In Section 6.1.2, a type I functional response was replaced with a type II functional 
response, however this combination also failed to show a spatial pattern. In Section 6.1.3 
a density dependent death rate of the predator was studied instead of a constant death
rate. The combination of a type I functional response, a density dependent death rate of
the predator, and a logistic growth rate of the prey cannot produce a spatial pattern. An 
Allee effect was considered in Sections 6.1.4 and 6.1.5 instead of a logistic growth rate of 
the prey. In these cases, pattern formation occurs for certain parameter values (Theorem
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6.1). However, in general we observed that a prey taxis term stabilizes the coexistence 
steady state of system (6.72)-(6.73) (Lemma 6.5). In Section 6.1.6 a linear ratio functional 
response was considered. The combination of a linear ratio functional response, a constant 
death rate of the predator, and a logistic growth rate of the prey was shown to not generate 
patterns. However, in Section 6.1.7 it is seen that a hyperbolic ratio functional response 
can lead to pattern formation (Lemma 6.7). In summary, the following functional forms 
support spatial pattern formation:
— a hyperbolic ratio dependent functional response, h(v,n) —
— a density dependent death rate, e.g. 8(n) = 8 + vn  and an Allee effect, e.g. f(v )  =  
K(1 — v)(v — a).

For the global stability of the coexistence steady state, in Section 6.2 we considered 
the case of Section 6.1.3. We derived a Lyapunov functional and proved the existence of 
invariant regions. Moreover, the global stability of the coexistence steady state follows 
(Theorem 6.2).

The significance of this chapter is that prey-taxis is a process that makes the coexistence 
of predator-prey interactions stabilized. In other words, prey-taxis plays a role in homo­
geneous environments. In the long run, it tends to carve heterogeneous environments into 
homogeneous environments. At an initial pest onset, prey-taxis helps predators to move 
towards high prey density. Hence, when pesticides are used at this moment, pesticides need 
to be selected carefully. Otherwise, pesticides would kill all predators before prey would be 
controlled. As a result, there will be more severe pest onset following. In particular, we 
found that a combination of an Allee effect of the prey and a density dependent death rate 
of the predator generates spatial patterns. In this case, due to spatial patterns prey exhibit 
the local onset and predators patrol high prey density areas. If pesticides expel predators, 
the local prey onset will be the global onset.
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Chapter 7

Concluding Remarks

The response of living organisms to the environment relies on two basic instincts; living and 
death instincts. Individuals move toward where they increase a chance of living and move 
away from high predation risk.

The purpose of this research was to investigate how predators actively react to the 
spatial configuration of the prey on the landscape rather than passively respond relying on 
predator’s random movement. To this end, the level of predator satiation was assumed to 
mediate the prey-taxis process such that predators search more actively in high prey density 
areas. Subsequently we incorporated the concept of prey-taxis into spatial predator-prey 
dynamics to understand the underlying mechanisms for predator dispersal towards high prey 
density. Then we explored how these mechanisms generate spatial patterns in predator-prey 
interactions.

In Chapter 2, we derived a predator-prey satiation model, which consists of five equa­
tions. The complete predator-prey satiation model consists of three components: a pair of 
hyperbolic equations for the predator movement model, a pair of hyperbolic equations for 
the spatio-temporal satiation dynamics, and the prey model. Lastly, the turning rates of 
the predator, which depend on the satiation level, was obtained using a Poisson process. 
The system of five equations is not amenable to analysis, so we considered simplification.

In Chapter 3, we investigated approximations of the predator-prey satiation model, 
which resulted in a prey-taxis model. The prey-taxis model consists of two components; 
the spatial predator dynamics and the spatial prey dynamics. A pair of hyperbolic equations 
for the predator movement model and a pair of hyperbolic equations for the spatio-temporal 
satiation dynamics were collapsed into a parabolic equation for the spatial predator dynam­
ics. In addition to analyzing the resulting system, numerical solutions also provide some 
insight into the prey-taxis model, so we considered numerical methods next.

In Chapter 4, we discussed numerical methods for simulations of the prey-taxis model. 
Fractional step methods were described as the framework for simulations. For each case 
of the diffusion, advection, and reaction terms, the Crank-Nicolson scheme, the Nessyahu- 
Tadmor scheme, the second-order explicit Runge-Kutta method were considered respec­
tively. In the next two chapters, we analyzed prey-taxis models to investigate spatial 
patterns; for a large spatial scale, we considered travelling wave solutions and for a small 
scale, we studied pattern formation.

Owen and Lewis [72] found predators may not slow down prey spread without an Allee 
effect in the prey dynamics by means of linear analysis and singular perturbation analysis.
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In Chapter 5, we derived the conditions for the predator to stop the prey spread with prey- 
taxis incorporated. A ratio-dependent functional response was not previously considered 
but we included it here. We also considered a special case of the predator-prey model with 
prey-taxis, in which the predator diffusion rate is small and the prey do not have spatial 
mobility. Then we found the condition for a discontinuous travelling wave solution without 
predator diffusion. Here the so called ‘Hole in the Wall’ appears. Subsequently the full 
model with small predator diffusion was investigated and compared with the approximate 
model without predator diffusion. We also considered traveling wave speeds to the resting 
models and found that the spread rate of the total population depends on a turning rate, 
transition rates between moving and resting states, moving speed, and an intrinsic growth 
rate.

In Chapter 6 , we found that the following functional forms support spatial pattern 
formation: a hyperbolic ratio dependent functional response, a density dependent death 
rate, and an Allee effect. A diffusion process tended to induce instability. In contrast, we 
observed that a prey-taxis term stabilizes the coexistence steady state of prey-taxis models.

The significance of this study is two-fold; first, this research refreshes a prey-taxis 
concept in predator-prey interactions. We investigated the derivation of a prey-taxis model, 
and opened possibilities of various forms of prey-taxis models. Hence, this research may 
lead to active studies on prey-taxis in predator-prey dynamics. Second, understanding 
prey-taxis can be applied for biological control strategies.

Investigating travelling waves enables us to understand how the prey population can be 
controlled by the predator released as biological control agents. A specialist and a generalist 
predator are said to show Type II and Type III different functional responses respectively
[92]. Hence understanding the mechanism of the predator response to spatial prey density 
helps us to select a proper control agent. In addition, we may be able to diagnose the 
sources of failure and success in biological control campaigns. As a result, we could suggest 
management possibilities that are likely to be successful.

Prey-taxis models can be applied to medical applications. For instance, a wound healing 
model was considered in Chapter 5 and we considered a discontinuous travelling wave 
solution. Understanding this model will give an insight how the wound heals and give 
a guideline for more efficient wound healing. Adding strong prey-taxis seems to speed up 
wound healing (prey-taxis may be correlated with wave speed), but more work is required.

Studying pattern formation provides ideas of a critical domain size and a maximum 
population for persistence of the prey population. This has applications to the problem 
of the pest population at a refuge level (Ecological control strategy : When and where to 
release biological control agents to reduce the pest population).

This thesis can be broadened in three directions; first, modelling with different functional 
responses and satiation dynamics, extending the models to two dimensions and considering 
more than two species; second, validation of models with field data; and third, analysis of 
two dimensions models. We discuss more details of future directions in the next section.

Future directions
When we formulated the predator-prey satiation model in Chapter 2 and the prey- 

taxis model in Chapter 3, we considered a Type II functional response. The selection of 
functional responses affects not only the population growth of the predator but also the 
satiation dynamics, which may result in different prey sensitivity x(v)- F°r instance, it is 
noted that prey sensitivity can be negative for a type IV functional response. This negative
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prey sensitivity may generate spatial patterns without an Allee effect. It is noted that some 
predators prefer attacking a particular size of prey group [50], which may support a  type 
IV functional response.

Mobile species may show different functional responses from Holling type functional 
responses. Vucetich et al. [98] compared three types of killing rates of wolf predation: 
prey dependent, predator-prey ratio dependent, and prey and predator dependent killing 
rates. They indicated that in the wolf-moose interaction, ratio dependent killing rates 
show a better fit than other types (see also [92] for more explanation). We may incorporate 
satiation dynamics into deriving ratio dependent functional responses. Here the growth of 
satiation depends on predator and prey densities and the level of satiation. Hence, we will 
have a different type of prey sensitivity.

Simple predator-prey interactions may not be enough to explain the diversity and com­
plex webs of interactions so that higher order interactions have been emphasized (Kareiva
[45]). Losey and Denno [63] studied the aphid anti-predator defensive behaviours. The 
most popular method adapted by aphids is dropping from plants and fleeing from the pri­
mary habitat in which they reside. Generally, their dropping rate is proportional to their 
population density and predator size, and inversely proportional to the habitat quality. 
After dropping from the plant, prey need to overcome desiccation, starvation and ground- 
foraging predators before prey settle down on new plants. Losey and Denno [61] compared 
the dropping tendency of two aphid species according to their abilities such as relocating 
speed and off-plant survival. Foliar-foraging and ground-foraging predators have different 
abilities to attack prey, i.e. different moving speed and prey-sensitivity. Losey and Denno
[62] found the synergistic effects on regulating prey density from the positive interactions 
of foliar-foraging and ground-foraging predators compared to their individual effect on sup­
pressing aphid populations. Hence, it is worth considering a model of two predators and 
one prey for investigating biological control strategies.

The modelling framework in Chapters 2 and 3 could be modified to investigate the 
effect of prey defences. Prey tend to adjust their relative position to the predator to reduce 
predation risk [27, 67, 96, 97]. We may apply the concept of prey-taxis to prey escape 
response to predator density. It may refer to predator-taxis. For instance, crayfish (prey) 
exhibit different activities depending on the presence of a predator (bass). An increased 
predation risk restricts crayfish foraging and increases anti-predator behaviour such as 
shelter seeking [22, 30].

For predator-prey interactions, satiation dynamics are determined by the predator’s 
satiation level and prey density. We may develop this idea further, and show that satiation 
dynamics may be used to classify types of species interactions. If the satiation level of one 
species is independent of the satiation level of the other but depends on the other’s density, 
then the interaction is classified as predator-prey. If the satiation level of one species 
positively correlates with the satiation level of the other but is independent of the other’s 
density, then the interaction is mutualism. If the satiation level of one species negatively 
correlates with the satiation level of the other’s density but is independent of the other’s 
density, then the interaction is classified as competition. Thus the concept of prey-taxis may 
be applied to  various other phenomena in ecology. In particular, interspecific interactions 
of competition are a matter of obtaining resource (prey). Hence, we may incorporate prey- 
taxis into competitive interactions and consider the role of prey-taxis in winning strategies 
to obtain more resource (prey) and in dominating the other competitor. We may also
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consider the role of prey-taxis in mutualism models. Here the satiation dynamics may be 
related to mutualism.

Results in this thesis were obtained theoretically. Hence, the next step should be vali­
dating prey-taxis model with field data. For that, we may collect data from the literature. 
To do field experiments, we need to investigate a field experimental design (see Appendix 
B for example).

The modelling framework in this thesis is based on a one-dimensional landscape. In 
two dimensions chemotaxis models with spatial patterns have been considered [94, 95, 16]. 
With a two-dimensional prey-taxis model we may explain various spatial patterns from 
phytoplankton and zooplankton interactions. The phytoplankton shows vertical and hori­
zontal spatial distributions in response to physical processes such as upwelling, thermoclines 
and eddies [87]. On the other hand, the mechanisms of spatial pattern formation of the 
zooplankton, which are foraging on the phytoplankton, are not explained well with only 
physical processes. Various biological approaches have been contributed to indicate the 
characteristic features of the spatial structure of the zooplankton with respect to the spatial 
structure of the phytoplankton. Steele and Henderson [85, 86] studied spatially homoge­
neous nutrient-plant-herbivore models with deterministic phytoplankton growth rates and 
stochastic zooplankton mortality in which trajectories can approach limit cycles. Steele and 
Henderson [87] added the same diffusion terms to the zooplankton and the phytoplankton 
for the spatial variation. They considered a logistic growth for the prey and a type III 
functional response, and allowed stochastic effects on the predator mortality. Here, the 
zooplankton-phytoplankton model, with diffusion coefficients determined by the water cur­
rents and a nonlinear reaction term including a stochastic element, showed the spatially and 
temporally complex structure. Rothschild and Osborn [78] studied the effects of small scale 
turbulence on the predator-prey contact rate, which is determined by the product of the 
prey density and the effects of the predator-prey motility and the mean square turbulent 
velocity. The active and passive motilities of each species increase the contact rate. At 
different spatial and temporal scales, different types of interactions may occur.

The existence of travelling wave solutions to predator-prey models has been considered 
by many authors [68]. However, the existence of travelling wave solutions to prey-taxis 
models has not been considered. The sufficient conditions for the existence of discontinuous 
travelling wave solutions were considered in Chapter 5. However, the proof of the existence 
of such solutions and their uniqueness has not been completed. It will be a challenge to 
prove the existence of travelling wave solutions and their uniqueness to prey-taxis models.

There are various methods that can be used to show the existence of such a heteroclinic 
connection; we single out two approaches: 1. the Conley connection index (topological 
method), and 2. analyzing the property of trajectories of the ODE system with Wazewski’s 
theorem.

The basic steps involved in proofs by using the Conley index theory are as follows. 
First, construct a homotopy of the four-dimensional system to a system with an invariant 
two-dimensional subsystem on which the dynamics are those of the standard one-species 
problem. Second, prove the existence of a wave speed for which the heteroclinic orbit 
occurs in the two-dimensional subsystem. Third, construct a homotopy back to the original 
problem, and last conclude that for some wave speed the heteroclinic orbit persists and 
hence the travelling wave exists for the original problem. To construct a homotopy, two 
(Conley index) or three (connection index) invariant sets should be defined. The Conley
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index is associated with isolated (maximal) invariant sets in some compact neighborhood N  
(isolating neighborhood). A suitable isolating neighborhood N  allows the connection index 
and Conley index to be defined. Since the index is invariant under continuation (homotopy 
invariant index), the equations are deformed to a simpler case where the index is nontrivial. 
This implies the existence of an orbit which stays in the isolating neighborhood for all time 
[12, 84], For instance, using the Conley index approach Mischaikow and Reineck [66] proved 
the existence of various types of travelling waves solutions to reaction-diffusion equations 
which model two-species predator-prey nonlinear interactions. These include the existence 
of bistable waves (providing a transition between two stable steady states), Fisher waves 
(providing a transition from an unstable steady state to a stable steady state), higher­
dimensional analogue (n—dimensional system) of Fisher waves, which all correspond to 
heteroclinic orbits in a four-dimensional system of ordinary differential equations. Moreover 
they find homoclinic travelling waves (often called a travelling pulse or a solitary pulse: 
providing a transition starting and ending at the same steady state), using the Conley 
index, continuation arguments, and the connection matrix and transition matrix theory. 
When prey dynamics are regulated by an Allee effect, predator-prey systems with constant 
diffusion terms for both species have a unique travelling wave solution. Gardner [21] showed 
the existence of such travelling wave solutions by using a connection index argument (see 
Conley and Smoller [12, 84] for details).

For the second approach, a particular Wazewski set is constructed and then the Wazewski 
theorem and the Lasalle Invariance Principle indicate that a positive orbit approaches the co­
existence equilibrium after it leaves the saddle point through the unstable manifold (see Ap­
pendix A for more details). As an example of the second approach, Dunbar used Wazewski’s 
theorem [17, 18, 19]. He demonstrated the existence of various travelling wave trains (trav­
elling wave solutions which show periodic behaviours) and travelling front solutions for a 
diffusive predator-prey system by using shooting techniques, invariant manifold theory, and 
the qualitative theory of ordinary differential equations. By modifying Dunbar’s methods, 
Huang [40] extended Dunbar’s results to the case that the prey has a diffusion term as well. 
When a Hopf bifurcation occurs in the reaction term, the existence of the connection orbit 
from the saddle point (prey only at its carrying capacity) to  the limit cycle around the 
coexistence equilibrium is shown in a similar way [19].

The concluding chapter began with addressing the goal of this research. Then the results 
of the thesis were presented by chapters. Subsequently the contributions of this thesis to 
research community were presented and further research directions were described.

We conclude this thesis with contemplating the goal of this thesis and its potential 
extensions. The purpose of this research was to investigate the mechanisms of spatial 
predator-prey interactions. Our perspective on predator-prey interactions was not that 
predator-prey interactions occur by chance but that predator-prey interactions are gener­
ated by the active foraging behaviours of predators. In previous predator-prey models, this 
perspective was disregarded. In contrast, we considered satiation dynamics and turning 
rates of the predator to understand predator-prey interactions. In particular, the level of 
the predator’s satiation related to prey density was considered as a key factor to determine 
predator-prey interactions. Hence, understanding the key factor leads to understanding 
the interactions, which are seemingly complex. This approach enables us to understand 
underlying mechanisms causing phenomena. We conjecture that our approach may be used 
more widely to understand ecological phenomena such as animal learning behaviours and
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evolution in ecology. Moreover, the mechanisms for formulating habits and dispositions of 
an individual could be derived. The mechanisms of the evolution of virulence would be 
understood in this perspective.
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A ppendix A

Definitions and Theorems

A .l  N otation  and U nits

The following notation and units for the variables are used in this thesis.
(Units: L -  length, T -  time, N -  number, and N-D -  nondimsensional.)

D efin ition  (W azewski se t [12]) Let T be a topological space and let R  denote the 
real numbers. Let a continuous function from T x R  —> T be denoted by (7 , t) —► 7  • t. 
This function is called a flow on F if the following conditions are satisfied for all 7  G T and 
s ,t  € R:
(a) 7  ■ 0 =  7
(b) 7  • (s +  t) = (7  • s) ■ t
For T ' c T  and R! C R, let T' • R! be the set of points 7  • t  such that 7  G T' and t G R '.

D efinition  Given W  c  T, let W ° be the set of points 7  G W  such that , for some 
positive t ,7 • t  £  IT. For yo G W°, define T(yo) =  sup{s : yo • [0, s] C IT}. T(yo) is called an 
exit time. Let W ~  be the set of points 7  G W  such that, for any positive t, 7  • [0, t) <f_ W . 
The set IT-  is contained in W ° and is called the exit set of W. The set W  is called a 
W azeski set if the following conditions are satisfied:
(a) If 7  G W  and 7  • [0,t] C cl(TF), then 7  • [0,t] C W,
(b) IF -  is closed relative to W°.
D efinition: A subset A of a topological space X  is a s tro n g  defo rm ation  re tra c t of X
if there is a continuous function r  : X  x  [0,1] —> X  such that: (1) for x  G X ,  r(x,0) =  x  
and r(x, 1) G A ; and (2) for x  G A and a G [0,1], r(x,cr) — x. The function r  is called a 
s tro n g  defo rm ation  re trac tio n .

T heo rem  If IT is a Wazeski set then IT-  is strong deformation retract of W ° and W° 
is open relative to W.
Wazeski Theorem shows that if IT is a Wazeski set and IT-  is not strong deformation 
retract of IT then IT\IT° is not empty, i.e. there exist solutions which stay in IT for all 
positive time.

T heo rem  (Invariance P rincip le) Let V  be a real-valued function and let P e { i G  
R? : V(x) < &}, where k is a real number. Suppose further that V  is continuous on the 
closure U of U and C 1 on U with V(x) < 0  for x  G U. Consider the subset S  of U defined
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+ / - positive/ negative direction moving [N-D]
u

V(x, t) 
n +(x,t) 
n~(x, t) 
n(x,t)  

r = R(S) 
S (x ,t)

K
Jp

So = So(V)

speed at which a predator travels [L/T]
prey density [N/L]
right-moving predator density [N/L]
left-moving predator density [N/L]
total predator density (= n +(x,t) + n ~ (x ,t))  [N/L]
direction-reversal probability per unit time for predator [1 /T]
degree to which a predator is satiated([0,1]) [N-D]
max density of prey [N/L]
flux density of predators [N/T]
steady-state value of S  [N-D]

Table A.l: Notation and units of the predator-prey-satiation model

by =  {x e U : V(x) = 0} and let M  be the largest invariant set in S. Then every positive 
orbit that starts in U and remains bounded has its w— limit set in M. [26]

P o incard -B end ixson  T heo rem  [26, 74, 89]. Suppose that x ' =  f (x )  is a planar 
system with a finite number of equilibrium points. If the positive orbit 7 +(x°) of x° is 
bounded, then one of following is true:

•  The w-limit set u(x°) is a single point x which is an equilibrium point and ip(t, x°) —► x  
as t  —> +oo.

•  u>(x°) is a periodic orbit T and either 7 + (x°) =  w(x°) = T or else 7 +(x°) spirals with 
increasing time toward T on one side of T.

• uj(x°) consists of equilibrium points and orbits whose a- and u>- limit sets are the 
equilibrium points.
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A ppendix B

Literature review

In this appendix, two prey-taxis related articles are reviewed.
U sin g  s p a t ia l ly  e x p lic it  m o d e ls  t o  c h a ra c te r iz e  fo ra g in g  p e r fo rm a n c e  in  h e t ­

e ro g e n e o u s  la n d sc a p e s
Griinbaum [23] focused on the predator dispersal term without predator population 

dynamics. He computed two statistical indicators ; one is the expected payoff of satiety per 
predator per unit of time and the other is the travel time statistic of how quickly predator 
find and aggregate around a prey, and how quickly they get to homogeneous predator 
distribution.

He began with the following master equation for the predator redistribution

f  =  <B 1 >

where P(t, x ) is the predator density at time t and position x, D  is the diffusion coefficient of 
predators, and U describes the directional movement of predators due to external stimulus. 
The diffusion coefficient D  is assumed to vary in space. The advection term, U, is presented 
as U — x fjr  with prey density V(t, x). x  is a taxis coefficient.

The equilibrium solution of equation B.l was computed with reflecting boundary con­
ditions for both predator and prey populations,

„ d ( „ d P  a v  \
d i  V dx ~  X~dx )  ’

where both sides are integrated

c =  jD̂ _ x ^ P ,  
dx dx  ’

with c for integral constant. Reflecting boundary conditions justify c =  0 so that predator 
density distribution is computed explicitly,

P(x) = P0p(V(x)),p(V) = exp Q T

where Pq is a constant determining the total predator population, and Vi is prey density. 
With the result of predator distribution, the expected payoff is calculated

_ J0L S(V (x))P (x)dx f 0L S(V(x))p(V(x))dx  

foL P{x)dx J0L p(V{x))dx
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with 0 the left end location of the domain, L  the right end location of the domain and S  a 
satiation function of V.

The expected time, T, to reach a resource peak is an estimate of the travel time taken 
by a predator that starts from a low-resource area to make its way to a resource center. 
T  is a useful indicator of how long it takes the forager distribution to reach equilibrium, 
so it can help determine how long the expected payoff experiment should run. For the 
computation of T, the left boundary has a constant flux condition (foragers are added 
at the low-resource end), and the right boundary has a zero-density condition (foragers 
that reach the resource peak are removed). The equilibrium forager distribution is then 
calculated with the following steps; since P  is zero on the right end due to the zero-density 
condition, that is, P(L) — 0, c =  D ( L ) ^ \ x=l . After rearranging the equation, we have

lp a p  = W p a* + T>aV’

which can be integrated as

With moving lnP(O) to the right side and removing ’In’, then we have 

P M  =  P (0 )„ (F (* ) )« P ^  

but this result is not the same as the author’s calculation

p ^ - p ^ v ^ C w m w m dx'- (R2)

And the travel time statistic is
r L

T  =
I  I

with the resource distribution fixed in time. Even though the travel time statistic can be
_ rL p ( x )dx

expressed only with predator distribution, T  = Q po — , how the travel time statistic was 
computed in the original article is not clear.

Griinbaum applied the expected time statistic and pay-off statistic to aphids and lady­
birds interaction according to the data by Kareiva and Odell. The diffusion coefficient, 
D = and prey-taxis coefficient, x =  were use<i to calculate the specific
pay-off and travel time statistic, where r  =  r ( s ( v ) )  (remark: D  =  2 R ( s 0 ( v ) )  anc  ̂ X =

~  R ( S o ( V ) ) ( 2 R ( S 0 { V ) ) - d f / d S \ S 0 ( V ) , V \ ) ) -  t ^ L' S  c a s e > =  exP (fv(0) ~  r ( ^ )  ^  —
t ( E (0 ) ) '3/2 =  R (S (V ))3/2 -  R (S (V (0)))3/2 =  R (S(V ))3/2 with the implicit assumption of 
R (S (V (0))) =  0. Therefore, the expected payoff is as follows

^  f 0l S (V (x))R (S(V (x)))3/2dz
f 0L R (S(V (x)))V 2dx
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Using p(V)D(V) =  R(S(V))3/ 2i£-t =  ^ R (S (V ) )1/2, the expected travel time is

? = 4  [ L (R (S (V {x )) f/2 f L R (S{V (x ')))-V 2dx')dx. 
u  JO J x

For a simulation, he used

w  =  ^ . v „  =  io 7 m -‘.

He introduced a family of turning rates (R (S ) = 3.19+7.43( qf )A with 5o =  0.0379), 
which has one free parameter (A) except for satiation variable. If the turning threshold (one 
parameter) is changed, the turning rate R(S) shows different qualities. Griinbaum computed 
different turning thresholds , the expected payoff (in the ladybug case, it is satiety) for 
foraging strategy, and mean time to reach resource. He then compared the success of two 
predator species who used different foraging strategies, due to different turning thresholds. 
He says the significance of the turning threshold in that ladybirds tend to remain in aphid 
patches above the threshold and leave patches below the threshold. Thus the turning 
threshold, A, is highlighted as the essential link between the ladybirds’ area-restricted search 
and the patching-leaving criteria from foraging theory. He used simulations to show the 
effects of the turning threshold. He said that comparing behavioral thresholds in different 
species of predators may provide important insights into the ecological circumstances that 
give one species a competitive advantage over another.

In sum, Griinbaum worked on the results of steady state solutions of predator dynamics 
and did some simulations of prey-predator dynamics without predator population dynamics.

M odels for predator-prey system s at multiple scales
Out of Kareiva and Odell’s models [46] Cantrell and Cosner [9] focused on the migration 

effects of the predator on the persistence of the prey with the assumption tha t the prey 
population and the predator population experience space and time on quite different scales; 
The time scale for predator dispersal is very fast, the time scales for prey dispersal and 
reproduction are moderately fast, the time scale for prey dispersal is relatively slow. These 
assumptions are based on the phenomenon that the predator and the prey recognize the 
environment in different ways; Relatively high motility of the predator helps it experience 
the environment as the collection of patches. With these assumptions, Cantrell and Cosner 
did not need to use prey-taxis term and diffusion term in the predator dynamics. The 
prey-taxis term and diffusion term were excluded, and they could focus only on emigration 
and immigration of predator between patches as a dispersal for the predator. It is assumed 
that prey move slowly and do not jump between patches. Thus, only prey equations have 
diffusion term, which is different from the articles that exclude prey diffusion and include 
only predator diffusion for the simplicity of analysis. It is assumed that the predator ag­
gregation response is so rapid that the predator number is immediately adjusted to prey 
densities. Thus, quasi^steady-state assumptions are used to incorporate the predator pop­
ulation dynamics into the prey population equations. Instead of considering the predator 
dynamics, Cantrell and Cosner focused on the prey persistence by the relationship between 
patch size and prey density due to the presence of predators.

They consider two cases in that the total predator population , saying C, is finite or 
unlimitedly supplied. For the finite case,

N

C = P A + Y dPn ,

n= 1
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where PA is the number of predators in the air, Pn is the number of predators on nth  
patch, and N  is the total number of patches. For the unlimited supply of predators, Pa — 
constant.
The master equations are

IuPa ~  EnPn,

n ( d2vn d2vn \  ( vn \  ( P n \
D { - d ^ + w > + r v ~ K > ^ - c { - t i ) v^

where 0 < x < ln , 0 < y < ln for the domain and vn(x ,y ,t)  =  0 for x =  0 ,ln , y = 0,ln . 
The nth  patch is considered as a squared area, i.e. 1% — An =  area of the n th  patch. vn 
is the prey density on the n th  patch. The parameters I n and En describe the per capita 
immigration and emigration rates on the n th  patch.

The choices of hypotheses which are most crucial in determining the qualitative struc­
ture and properties of their models are the choices between finite and unlimited predator 
populations and between dependence on purely geometric factors and dependence on prey 
densities in the per capita immigration and emigration rates In and En . For the immigra­
tion and emigration rate of the predator, Cantrell and Cosner considered two aspects: the 
one is the size of the patch, and the other is the average prey density with finite and infinite 
supply of predator from the air.

The focus was on examining the effects of changing the size of patches on the prey 
persistence of the models. In their models the coupling between patches occurs only in the 
equations for the predator populations, and those are coupled only in the case where the 
total predator population is finite.

Unlimited supply of predators with immigration and emigration depending only on geo­
metric effects

Under the quasi-steady state assumption for predator dynamics, I uPa  — EnPn — 0, 
Pn = is calculated and prey dynamics is described as

dvn „ ( d 2vn , d*vn \  f  vn \  (P A{In/E n) \  /oox
-ft =D(ap- + - v J +r(1--Kr"-ci— il— )'•"■ (B'3)

The immigration and emigration rates are assumed to be I n = il%, and En = el% for 
constants i, e, p, and q. The specific hypothesis is that p = 2 and q = —1, since the patch 
size is considered to be the main factor of the immigration rate as randomly falling out 
of sky on the patch, and the perimeter/area ratio is reasonably assumed to be the main 
factor of the emigration rate. A patch shape is assumed to be a square for the simplicity of 
analysis.

Most of the effects of the patch size on the prey in their models depend on the following 
result.
T heorem  B . l  Let D, R, and B  be positive constants. The model

dv ( d2v d2v \  2

for 0 < x < l , 0 < y < l , t > 0 ,  v — 0 for x =  0, /, y  =  0,1
has a unique equilibrium v*(x,y) with v*(x,y) > 0 for 0 < x < I and 0 < y < I and with
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v —> v* as t —► oo if v(x, y, 0) > 0, v(x, y, 0) ^  0, provided

R  -  (2tt2D/12) > 0. (B.4)

The equilibrium v*(x,y) increases for each (x,y)  if R  is increased. If B.4 does not hold, 
then all positive solutions approach zero as t  —* oo.
Remark: n2D /l2 is the principal eigenvalue for —D{

Since there is no coupling between patches in prey equations, n  can be deleted for the 
simplicity of calculation. If we change the equation B.3 in the form of Theorem B.I., we 
have

dv f  SFv d2v \  rv2 . .,
di = D{w + w ) +rV~~K~ cP̂ e)l ”

for 0 < x < I, 0 < y < I, t > 0, v =  0 for x  — 0, /, y  =  0 ,1.
The quantity corresponding to R  in Theorem B.l. is

R  = r -  cPA(i/e)P~q- 2-,

The inequality corresponding to B.4 and characterizing when the prey can persist is

r  -  cPA-P ~ q- 2 — > 0, or equivalently r  > cPA- lp~q~2 +  . (B.5)
e l 2 e P

If I is too large, then lp~q~2 —> oo given by p — q — 2 > 0. Too small I turns the left hand 
size into infinity due to l~2 term. This case thus yields a maximum patch size which will 
sustain a prey equilibrium as well as the usual minimum patch size.

Finite predator supply with immigration and emigration depending only on geometric 
effects

Using InPA =  HnPA =  i(C  — Pk)ln, the model becomes

k= 1
dvn r , f d2vn , d2Vn \  ( Vn \ f P n \
Ht =  +  w ) +ryl - K ) v’' - cVW)'’’'’

where 0 < x < ln, 0 < y < ln for the domain and vn(x ,y ,t)  = 0 for x = 0,ln , y  =  0, ln. 
This system is coupled in the predator equations, which are independent of the prey.

W ith the quasi-steady-state assumption, the number of predators on the n th  patch is 
calculated as Pn = . *cjv " p_,— . Thus prey equations become

* 2̂ fc=i lk +e

dvn ( d2vn d2vn \  rv2 (  icCl?Tq~2 ^
Si = D [ a ?  +  W ) +■^ ■- x  -

for 0 < x < ln, 0 < y < ln, vn(t,x ,y )  = 0 for x — 0,ln , y — 0,ln, n =

d2vn d2vn \  rv2 (  icCln~q~2 \d v n  n  ( d 2 v n  d 2 v n \  r v 2

-3T = D(a? + -%rJ+r,,”- - r -
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for 0 < x < 0 < y < ln, vn(t,x ,y )  = 0 for x  =  0 ,ln , y — 0,ln, n  — 1,
For each n, the quantities corresponding to B  and R  in Theorem B.l. are

icC, ] p ~ q~ 2
B  = r /K , R  = Rn = r -  n

the inequality corresponding to B.4 and characterizing when the prey can persist is

irC,lp ~ q ~ 2

r  > i V *  ]p~q + e +  (27r^ //2)' (B’6)l 2^k=ilk + e

In this case, it was shown that there would be a maximum patch size which could sustain 
a prey population.

For the density-dependent model, the total prey population on patch n  at time t  was 
used for the average prey density on the nth  patch. Vn =  / 0in / Qln vn(x,y ,t)dxdy = total 
prey population on patch n  at time t .  The basic form of the predator equations in the 
density-dependent model is

dP
-£■  = InPA ~ llE nPn/Vn.

It is assumed that predator aggregation occurs at a much faster rate than prey dispersal 
and dynamics, which yields the quasi-steady state.

P n  =  ( I n P A / E n l l ) V n ,

which changes prey dynamics as

+  - J h i E A v V
dt - u \ d x i  +  dy> ; +TT  K J Vn \ E ni i ) Vn n-

Unlimited supply of predators with immigration and emigration depending only on geo­
metric effects and the prey density

With the assumptions of /„  =  il^ and En = e /ln, the predator population was calculated 
with a quasi-steady-state assumption;

P  = (i/e)PAlp- q~2V.

Since the unlimited predator case generates a decoupled case, n is ommited for the simplicity 
of analysis. Thus the prey equation is

%  = ■D (0 ■+ 0)  + 1r 0  -  T i)  • ■- (B-7)
where zero density boundary conditions are used. Due to the V  term in equation B.7, 
Theorem 3.1. cannot be applied to this case so that Cantrell and Cosner [9] introduced 
some other theorems for the condition of prey persistence due to the predator presence. In 
this case they showed that there must be an inverse relation between patch size and average 
prey density V.

Finite predator supply with immigration and emigration depending on geometric effects 
and the prey density
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With the assumptions of In =  il„ and En =  e/ln, the predator equations become

dPn _  ,;2 
dt = HuPa ~  elnPn/Vn

=  t i - e ln P n /V n .

The quasi-steady state assumption then yields

dvn , d2vn \  ( vn \  cP*(V l,...,Vn)
^  = D {-dxS- + W ) + r ( 1 ~ K > ' ' ' ' ----------- i |--------

where P * ( V 1 , V n) are the solutions of 0 =  i(C  — Ylk=i Pk)ln — elnPn/Vn in terms of the 
average prey density in each patch.

For this scenario, Cantrell and Cosner considerd a single patch case and many patches 
case. In the single patch case, it is shown that a maximum prey population will occur for 
some finite patch side, I, and the population will be smaller on the patches of larger size. 
In the case of many patches, the similar result may occur according to parameter values.

In sum, Cantrell and Cosner were concerned with the persistence of the prey population 
due to the migration of the predator without predator mobility on each patch, which is not 
quite related with what this thesis is interested in. Nonetheless, the methods that were used 
to find the patch size for the prey persistence would be applied to consider the biological 
control in this thesis.
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A ppendix C

Numerical Codes

In this appendix, we introduce numerical codes for the spatio-temporal predator-prey- 
taxis system (3.126)-(3.127). In particular, we focus on the codes for the advection term. 
Because RK2 scheme and Crank-Nicolson scheme are well known, we do not include those 
codes in this appendix. Among the numerical schemes for the advection term, the code for 
N-T scheme will be presented written in MATLAB. This code is for one species and was 
used for computing numerical solutions to Burgers’ equation in Section 4.2 and in Figures 
4.1. However, this code is easily extended for two species by modifying the flux function, 
function n =  ntmethodld(a,dt,dx,q,theta);

%% NT Scheme
%% a: old data of a species, nstar: midpoint valuse n f+1̂ 2
%% n: updated data of a species
%% dx : spatial grid size, d t : time step
%% theta gives a choice of minmod
%% q : number of grid cells
%% f is a flux function
e=0.5*(dt)/dx;

%% finding ax at t — P and x  =  Xi 
for i=2:q;
ax(i)=rminmod(a(i+l),a(i) ,a(i-l) ,theta)/(dx); 
end
ax(l)=0; ax(q+l)=0; %% on the boundary 
%% finding f x a t t = P and x — x* 
for i=2:q
/ x(i)=rminmod(f(a(i+l)),f(a(i)),f(a(i-l)),theta); 
end
/z ( l)—0; / X(q+1)=0; %% on the boundary 
%% computing the midpoint value n^+1 2̂ 
for i= l:q + l;
nstar(i)=a(i)-0.25 e / x(i); 
end
%% updating data
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for i=2:q;
n(i)=0.5(a(i+l)+a(i))+0.125*dx*(aI (i)-a;r(i+l))-e*(f(nstar(i+l))-f(nstar(i)));
end
n (l)= a(l); n (q+ l)= a(q+ l); %BC 
function x=rminmod(X,Y,Z,theta)
%%minmod limiter 
a=X-Y; 
b=X-Z; 
c=Y-Z;
if a>0 & b>0 & c>0
x=min(min(theta*a,0.5*b),theta*c);
elseif a<0 & b<0 & c < 0
x=max(max(theta*a,0.5*b),theta*c);
else
x=0;
end
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A ppendix D

Singular Perturbation Analysis of 
the Wavefront

In this appendix, a singular perturbation analysis of the wavefront, which Owen and Lewis 
([72]) used, is described in detail. We consider the temporal steady state for system (5.3)- 
(5.4) with x  =  0 and the zero wave speed c =  0 given by

0 =  evxx +  v ^f ( v ) -  i (D-l)

0 =  nxx +  7n(/i(t>) -  <5). (D.2)

Transition layer. Rescaling the spatial coordinate to £ =  equations (D.1)-(D.2) are 
written as

0 =  vti  +  v ( /(v ) -  ^ h(v)) , (D.3)

0 =  +  ejn^hfy) — 6), (D.4)

which is the stationary front solutions of (5.3)-(5.4). In addition, the boundary conditions
are: l i m ^ i o o  v ^ )  =  0, l i m ^ o o  v(£) =  0, and l i m ^ ^ _ o o  v(£) — v q .  As e  —> 0, the n
equation ends up with =  0. Integrating this twice, n satisfies n  =  Co£ +  Ci where Ci 
and C2 are integral constants. We are looking for nonnegative predator population, n  > 0. 
Since for large |£| non-zero Co eventually make a negative population for the predator, Co
should be zero and then the predator population is constant in the region of this transition
layer, saying n = no- Thus, we have a single equation for v only,

+  v ( f (v) -  ~  °> (D-5)

where the boundary conditions are: lim^-too vg(£) =  0, lim ^oo v(£) — 0, and lim ^ -o o t;^ )  = 
g~l {n0) =  t’o- Multiplying equation (D.5) by dv/d£, and integrating with respect to £ from 
—00 to 00 gives us

< D ' 6 >

The first term is integrated directly and the second term is done by using a change of 
variables from £ to v, to get

1(1) (d -7)
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Applying the boundary conditions and no =  g(vo) yield

J  v ( f ( v )  ~  ~ ~ K V)^ dv =  0 , (D.8)

which determines vq consistent with a stationary solution.
Right-hand outer solutions. We now consider equations (D.1)-(D.2) setting e =  0 so 

that v and n  satisfy

0 =  v ( f (v)  -  , (D.9)

0 =  nxx +  jn (h(v) -  6). (D.10)

From equation (D.9), v =  0 or n =  g(v). Since we are looking for right-hand outer solutions, 
we here focus on v =  0 so that in equation (D.10) we get

nx x - j 6 n  — 0, (D .ll)

with boundary conditions: lim2^ 0On(x) =  0 and n(0) =  no. The general solution of (D .ll) 
is

n(x) =  A  exp( yj j6x)  +  B exp (— y/ySx). (D-12)

With the boundary conditions, we have

n(x) =  no exp(— y/'ydx), or equivalently ^ ( 0 )  =  —noy/^yS. (D.13)
dx

Left-hand outer solutions. We now consider the other outer layer. Recall that in the 
transition layer n =  constant so that equation (D.13) plays the role of a boundary condition 
to find left-hand outer solutions. Now n =  g(v) is substituted into equation (D.10) to get

nxx -  7n(h(g~l (n)) -  S) = 0, (D-14)

with boundary conditions: n(0) =  no, lim ^ -o o  n(x) =  ns, ^j(O) =  —no^/yE, and ^ ( —oo) 
f). Multiplying equation (D.14) by dn/dx, and integrating with respect to x  from —oo to 0 
we find

/  { 1 ?  + 7n (h(9~l (n)) -  5)} ^ d x  = 0. (D.15)

As we did for the analysis in the transition layer, the first term is integrated directly and 
the second term is done by using a change of variables from £ to n, to get

1 / d n \ 2l 0 rno
2 \J Ix )  -oo + J  T™(% (™)) -  <5)dn =  0. (D.16)

' n ,

Applying the boundary conditions and rearranging equation (D.16) yield

2, 1 /  d n \  f m
I jn h lg  (n))dn = — ~ ( 3— J + /  7 nSdn (D.17)

Jna 2 \ d x )  x=0 Jna

= -^7<5no +  )pEr% -  \ lE n 2s) (D.18)

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



which gives a condition that the left- and right- hand outer solutions match at no if and 
only if

fn‘ 1
I nh(g~l (n))dn = -5v?a, (D.19)

J n o  ^' n o

which can be translated in terms of v as follows

f  vf(v )^ (v )d v  = ^ ( a a)2, (D.20)
Jv0 ^

by using a change of variable with n =  g(v). Thus we have the following two conditions in
order to have zero wave speed solutions and those conditions restrict the values of v q  and S.

jT °  « ( f ( v )  ~ dv = 0, (D.21)

/  vf{v)g'(v)dv  =  \dg(vs)2. (D.22)
Jvn L
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