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Abstract

The aim of this thesis 1is the investigation of the
time-dependent nature of the behavior of rock tunnels. This
investigation was divided into three parts. The first part
consisted of a qualitative analysis of the behavior of a
number of examples of rock tunnels reported in the
literature. The aim of this review was to identify the role
of time in the behavior of these tunnels. In order to
organize the case histories, modes of ground behavior were
defined. The second part consisted of an experimental study
of the time-dependent behavior of a jointed coal under a
constant state of stress. Conventional triaxial tests were
carried out. The results of these tests lead to a simple
creep relationship which shows the importance of the stress
level in describing creep behavior. In the third part, an
analytical study of the stress redistribution and
time-dependent deformations around an opening due to creep
was carried out. This study consisted initially in three
stages: (a) the elaboration of a 3-dimensional
stress-strain-time relationship; (b) the development of a
governing differential equation and its solution by
numerical technique. Based on this solution procedure, the
time-dependent closure of an opening in coal was compared
with the predicted results and a good agreement was
observed. This method was also used to evaluate the effects

of factors such as size of opening and creep parameters on




the time-dependent behavior of openings.
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Chapter 1

INTRODUCTION

1.1 Background

The use of underground space has increased considerably
in recent years. Over $300 billion dollars were estimated by
the National Science Foundation of the U.S. to be spent in
the period of 1970-1990 (about $16 billion dollars/yr) in
the United States alone in  underground excavations
(Bieniawski(1979) ). This figure will at least triple if the
needs of other Jleading western countries as well as
developing countries for works such as mining resources,
railroad and highway tunnels, water and sewer tunnels,
subways and underground power stations are added to this
estimate. At the same time, underground openings are being
used more and more for non-conventional purposes such as
storage installations for water, food and oil, waste
disposal, recreation and military engineering. This fairly
high 1level of construction activities has made clear the
need for heavy investments of time and money in research
leading towards an improvement of the current Knowledge of
the behavior of underground openings.

Research in tunnelling constitutes a very active area
even though many practicing engineers still regard rock
tunnelling as an art. Active research areas cover subjects

such as developments of empirical tunnel design, analytical



modelling of underground openings and rock supporting
structural interaction. At the same time, many
investigations are also being carried out with regard to
excavation methods and contracting practice.

Although the demand is quite high, the design of
underground openings is still plagued with a high degree of
empiricism that has its source in the sometimes unavoidable
lack of information previous to the excavation or simply by
continuation of old practice. A recent trend has been to
establish guidelines for tunnel support requirements on the
basis of previous experience which have been conveniently
codified and translated into some parameters such as
Bieniawski’s and Barton’s rock mass classification systems
for tunnelling purposes (e.g, Bieniawski(1974) and Barton et
2l1(1974)). These methods, even though appealing and handy,
have the serious drawback of perpetuating old tunnelling
practice and of giving a false sense of understanding about
the main factors which control the final performance of an
opening.

Also new concepts have been introduced which consist in
a mixture of tunnelling practice and rational design and the
best example is the NATM (New Austrian Tunnelling Method) .
These methods are based on the accumulated experience of the
personnal involved and have not vyet attained general
acceptance, the reason being basically due to the fact that
the principles are not easily codified and also because of

the skill required by the work force. However, a large
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number of agencies are increasing their experience with this
procedure especially through instrumentation which is
expected to describe in better terms the results of tunnel
behavior.

In the search for sound tunnel design or tunne]
excavation procedures it is of fundamental importance that a
good understanding of the many factors which are known to
control the behavior of underground openings be achieved. In
particular, the processes which describe the transition from
a pre-excavation to a post excavation state of equilibrium
of the rock mass and their time-dependent nature are of

special interest.

1.2 Scope and Organization of this thesis

The design of underground openings involves decisions
associated with rate and size of excavation as well as
lining strategy. The aim of this thesis is to provide a
contribution towards understanding the time-dependent
processes associated with the excavation of tunnels in
rocks. This is achieved in three ways:

1. investigations of the processes leading to
time-dependent behavior of underground openings;

2. experimental data describing the t ime-dependent response
of rock masses:

3. analytical modelling of excavations in creeping rock.



In Chapter 2, the main factors which control the
behavior of underground openings are evaluated as well as
the causes leading to time-dependent behavior. A critical
study of published case-records in the literature is
presented where the aim is to identify the role of the
time-factor in the overall performance of these openings. It
was considered essential for such a study to define the
characteristic modes of ground behavior and then to organize
the concepts leading to an assessment of the role of
time-factor. Section 2.1 describes the main factors which
control the underground behavior whereas section 2.2
considers the causes leading to time-dependent behavior. In
section 2.3 each mode is described and illustrative
case-histories are presented showing the importance of the
lining strategy associated with each mode. Also a general
set of guidelines is presented for the selection of a
particular mode based on rock mass parameters and stresses
around openings.

In Chapter 3 a comprehensive review of the
time-dependent properties of rock masses is presented. The
aim of this review is to assess the present capabilities of
predicting the time-dependent deformations of a rock mass
with especial emphasis on the empirical formulation of creep
laws. In this Chapter the properties such as creep
deformations, t ime-dependent failure and relaxation
properties of rocks are reviewed.

Chapter 4 consists of a description of creep tests
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carried out on a jointed coal with the aim of describing the
time-dependent deformations of a jointed and fractured rock.
This experimental program describe both single-stage and
multiple-stage creep tests.

Chapter 5 reviews some relevant theoretical solutions
describing the time-dependent behaviour of an underground
opening.

Chapter 6 presents the development of a solution for
the time-dependent behavior of an underground opening.
Initially, a governing differential equation is developed
which is presented in Appendix A. This s followed by an
analysis of the results obtained which concentrate on the
zones of stress distribution and rate of tunmnel closure. The
results of a model test carried out by Guenot(1979) are
predicted and the results showed encouraging similarities.

Finally in Chapter 7 the conclusions are presented and

suggestions for further research are put forward.



Chapter 2

DIFFERENT MODES OF ROCK TUNNEL BEHAVIOR

2.1 Introduction

[

The driving of an underground excavation through
stressed ground disturbs jts equilibrium. In responding to
this disturbance, the ground will deform and there will be
an associated stress redistribution around the opening. Both
deformations and stress redistribution reflect the search by
the rock mass for a new equilibrium position. Evidence
produced by case-records reported in the literature
indicates that such a new equilibrium position may be
reached without any help from external sources but, as a
general rule, artificial supports have to be provided in
order to maintain the opened excavation.

Experience also indicates that the passage from the
pre-excavation to the post-excavation equilibrium position
is a time-dependent process. This post-excavation or final
equilibrium position corresponds to the situation where all
the deformations as well as any stress transfer have
essentially stopped. To achieve progress in both designing
and constructing underground openings, it is essential that

the mechanisms involved in such a transition in equilibrium

position be investigated. This investigation is the aim of

the present Chapter.

In the following the Author considers:



a. the mechanisms leading to time-dependent passage
from a pre-excavation to a post-excavation
equilibrium and,

b. the circumstances under which time plays an
important role when maKing decisions in both design
and construction stages.

In section 2.2 the probable causes for t ime-dependent
behavior of underground openings are discussed briefly in a
qualitative form. In section 2.3 the circumstances under
which the time-factor plays an important role on the
behavior of openings in rocks are considered. This is done
by defining modes of ground behavior which are assumed to be
fairly representative of the possible spectrum, The
establishment of such modes constitutes an attempt by the
Author to provide a suitable framework to analyze the
available case-records of tunnelling in rocks. This
framework serves as a basis to collect, in an orderly
manner, the Jlessons Jlearned from the per formance of rock

tunnels.

2.2 Factors controlling the behavior of underground openings

Several factors have been identified as controlling the
behavior of an underground opening. They are:
1. primary factors: this designates all the factors which
are a characteristic of the site in consideration, e.g.,
rock type and rock properties, geological

discontinuities and their mechanical properties, in-situ



state of stress, ground-water regime, etc.

2. secondary factors: this indicates all the factors which
are a characteristic of the opening (geometrical
characteristics), €.g., size and shape of the opening,
depth of the opening, relative orientation of opening
axis with respect to geological discontinuities, etc.

3. tertiary factors: this indicates a1} the factors which
are a characteristic of the constructional procedures,
€.9., method of excavation and lining strategy (type,
sequence and time of installation of supporting
structures) .

At the present stage, it is reasonable to assume that a

combination of these factors controls the mechanisms or

processes describing the pPassage from a pre- to a

post-excavation equilibrium position. Of particular interest

in this thesis is the investigation of the particular
combination which leads to a t ime-dependent transition in

equilibrium.

2.2.1 Causes of time-dependent behavior of underground

openings

The time-dependent nature of the behavior of

underground openings is normally evidenced by observations
such as the increase in deformations of the excavation walls
with time, increase in load or damage of tunnel linings, and
delayed failure of parts or whole sections of an excavation,

Constant maintainance works around openings due to heaving



floors, sagging roofs, delayed roof failures, and breaking
pillars are normal occurrences in deep mines.

The concern with time-dependent behavior of tunnels can
be traced back to Terzaghi(1946) who introduced the concepts
of bridge-action and load-increase periods. The
bridge-action period, tb’ has been defined as '... the time
which elapses between firing the round and the beginning of
the breakdown of the unsupported part of the roof'. The
load-increase period was defined by Terzaghi as ... the
time which elapses until the pressure (on the support
system) becomes fairly constant’. Some of the factors which
control these 'periods’ were identified by Terzaghi; for
instance, the length of the unsuppor ted roof as influencing
the bridge-action period and the empty-spaces between
support and rock as well as the presence of squeezing and
swelling rock are likely to 1increase the load-increase
period.

At present, the technical literature seems to indicate
an agreement on two basic causes of time-dependent behavior
of an underground opening in rocks, namely:

a. advance of the excavation face and,

b. time-dependent behavior of the rock mass.
Figure 2.1 sub-divides these two basic causes into an
extensive list of possible causes which, individually or
combined, may lead towards a time-dependent response of an
underground opening.

The high number of possible causes displayed in Figure
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2.1 as well as their nature indicates the complexity of the
study of the t ime-dependent response of an underground

opening in both qualitative and quantitative forms.

2.3 Modes of Ground Behavior

The final per formance of a rock tunnel is the product
of a combination of the factors discussed in the previous
section. Attempts to describe the important factors and
their effects in the overali per formance of tunnels have

been made by means of model tests ( Heuer and Hendron(1971)

, Myer et al(1977) » Kaiser(1979) ) and analytical
techniques ( Ladanyi(1974) | Gioda and Ghaboussi(1977)
Lombardi(1977) and Guenot (1979) ). The results of those

studies (particularly with respect to the time-dependent
behavior of openings) based on analytical models will be
discussed in Chapter 5,

Another means of investigating the ground response, in
particular ijtsg time-dependent nature, is by analyzing the
per formance of actual excavations. To proceed systematicai]y
with an overview of selected case records, it is necessary
to establish a convenient framework which wil) provide
guidelines for such an analysis.

In the following, broad classes of behavior are
established which can be identified in a practical
situation. The selection of the classes or modes of ground
behavior follows approximately the tunneiman’s terminology

currently in uyse. However, it should be noted that this is
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an attempt to cover the whole spectrum of the behavior of
rock tunnels and one must be prepared to accept that in some
cases there will be over laps.

. The grouping of case histories into broad classes
allows not only the assessment of the role of the
time-factor on the performance of rock tunnels but it can
also be used for the evaluation of other aspects such as
current design procedures, analytical methods, tunnel lining
strategies, etc.

Figure 2.2 constitutes a schematic representation of
the four groups which have been considered initially. For
the sake of completeness, two other modes of ground behavior
could have been included in this figure. They represent the
class of self-supporting openings and the cases when the
excavated material ' flows’' and ‘runs’ into the opening such
as saturated loose sandy gouge materials. These two classes
of modes will not be discussed in this thesis.

Each mode is described by a discussion of the
mechanisms or particular combination of factors leading to
such behavior in order to identify the processes involved in
the passage from pre to .post tunnelling equilibrium.
Particular attention is paid to the time-dependent nature of
this passage and, whenever relevant, typical examples of
deformation versus time curves, and progressive damage of

roofs are given.
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SECONDARY FACTORS

(i) size and shape of the opening

{1i) depth of opening
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opening axis and geological
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TERTIARY FACTORS
(i) method of excavation

sequence and time of
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Figure 2.2 Modes of ground behavior



2.3.1 Fracturing

This mode of behavior comprises a large number of
situations which have been described in the literature as
rockbursts, 'popping rock’, rock slabbing or spalling and
corresponds to the formation and/or propagation of new
fractures around the opening. A comprehensive discussion of
the mechanisms leading to this mode as well as a survey of

illustrative case-records follows.

2.3.1.1 Mechanisms leading to fracturing

The development of new fractures or the extension of
existing ones 1is believed to be caused by large stress
concentrations around openings in brittle rocks which may
cause either tensile or shear failure. These stress
concentrations can be caused by either one or any
combination of the following:

a. large in situ state of stress,
b. size and shape of the opening,
c. proximity of faults, dykes or geologic structure
convenientely oriented with respect to the opening,
d. developments of new workings in the vicinity of the
opening.
To evaluate the possibility of fracturing, several
investigators have suggested that it is useful to consider
the ratio between the maximum principal stress and the
unconfined compressive strength, i.e, o, / g, e.g., Cording

et al(1971) and Cook(1973) . A ratio greater than 0.1 is



generally accepted as leading to failure. Hoek and
Brown(1978) suggested the ratio between the boundary stress,
Og » and the unconfined compressive strength, o, as a
guideline for the assessment of overstressed zones around
large underground openings. The boundary stress, o, has
been defined as the actual tangential stress in the
immediate vicinity of the opening wall. The advantage of
using the value of 'boundary stress’ is that it takes into
account factors such as stress field, size and shape of
openings. A ratio <3?/Q; greater than 0.5 can be assumed
as the first sign of overstressing.

Of particular significance With respect to the overall
stability of the excavation is how fast and how far
fractures propagate around an underground opening. To
describe this failure process and the consequent stress
redistribution, two similar hypotheses have been proposed,
Sperry and Heuer(1972) , Rabcewicz and Golser(1974)

Figure 2.3 illustrates the model proposed by Sperry and
Heuer (1972) in which curves a to d show how the stress
distribution changes with time in the case of fracturing
around the opening. This process is described by Sperry and
Heuer as follows:

!

....instantaneously, the circumferential stress
tends to go to the theoretical elastic distribution,
but in doing so the material at the perimeter is
overstressed and the stress distribution is
approximately as shown by curve a. With increasing
time, fractures begin to form about the tunnel and
the stress distribution first becomes as shown by
curve b, then as shown by ¢ as the fractures
propagate and the load carried by material at the
perimeter drops to zero. After fractures are
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completely formed, wedges loosen and fall, moving
the perimeter to its final position, and the stress
distribution is shown in d. At this time, the ground
in the plastic zone has yielded, but fractures have
not formed completely through the plastic zone, and
the yielded/ground is contributing to support the
opening...

For the sake of simplicity this model has been
formulated based on the behavior of a circular hole on a
homogeneous and isotropic material sub jected to a
hydrostatic stress field. However, one should not over Jook
the effects of non-homogeneities on both strength and
compressibility in concentrating stresses around an opening.

Both the depth to which the ’ fractured zone' extends
before equilibrium is reached and the rate of development of
the failure about the tunnel will depend on the relative
magnitude of in situ stress and strength, and the support
system installed. The assessment of these conditions can
only be made with some confidence by observation of actual
excavations. These questions will be addressed in the next
section.

Implicit in the hypothesis just described is the fact
that the ' failure process’ is quite stable. However, of very
important practical consequence is the situation where very
high strength, massive rocks fail when excavated. This
situation corresponds to the so-called rockbursts which have
been described as ' ...damage to underground openings caused
by uncontrolled disruption of rock associated with a violent

release of energy...’, Cook et al(1966) . The mechanisms of

rockbursts as well as methods for monitoring, predicting and
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controlling rockbursts have been the subject of many
investigations among miners since the phenomenon was first
observed in 1838 in the Kolar Gold Fields in India, e.g.,
Cook et all(1966) and Blake(1972) . Even though these
questions are important for the ground control specialist
only the aspects of ' fracturing’ which are relevant for the
civil engineer will be considered herein.

The evaluation of the potential for fracturing of
certain rock formations constitutes an important question.
This question can only be answered completely after the
excavation is complete but some guidelines for preliminary
estimates are necessary. Table 2.1 constitutes an attempt in
using a well established rock mass parameters such as the
ones defined by Barton et al(1974) to describe the possible
range of rock types which lead to fracturing provided other
factors such as the ratio cg/o;would assume appropriate
values. Unfortunately, no cases could be obtained from the
literature where enough data necessary to compliete Table 2.1

could be gathered.

2.3.1.2 Survey of case records

This section presents a small collection of
illustrative case-records in which ‘fracturing’ of rock has

been observed around the opening.
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Table 2.1 Rock mass parameters vs Modes of ground behavior
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- Navajo Tunnel No.3

This 1is a machine-bored circular tunnel of about 6.3
meters in diameter under a variable rock cover (maximum of
321 meters). The tunnel was built as part of the Navajo
Indian Irrigation Project, New Mexico by the U.S. Bureau of
Reclamation. Details relevant to the geology, excavation
method and equipment are given by Sperry and Heuer(1972) and
Austin and Fabry(1974)

During construction, fracturing developed in several
sections. These failures were condensed into three classes,
which are described in detail in Sperry and Heuer(1972). Of
immediate interest is Class I which describes failure in
massive, homogeneous and dry material. In this case,
fracturing occurred in the roof, side walls and floor. The
average rock cover at the sections considered was about 300
meters and the rock type consisted of sandstone with
unconfined compressive strength varying from 2.07 to 67 MPa
with the weakest 60% of the samples averaging 6.3 MPa. The
ratio o / g averaged about 0.66.

These fractures developed immediately after excavation,
i.e.,between the face and the supported sections behind the
excavation machine. In the roof, these fractures isolated
slabs of rocks of about '... 8 inches thick and two to three

feet in lateral dimension ...’. Under the maximum rock
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cover, similar fracturing occurred in both springline and
invert. These fractures took from a few hours to several
days to appear behind the face and were followed by
ravelling of spalls and loosening of slabs.

Results of tunnel closure given by Austin and
Fabry(1974) suggest that in the roof, the deformations
stabilized very quickly after the installation of rockbolts.
However, both field observations and displacement
measurements were not enough to evaluate the time-dependent
behavior of the opening as evidenced by the propagation of
the fractured zone and its final thickness. The evidences
were certainly erased due to the lining strategy followed
which included a prompt installation of rockbolts after the
excavation. Sperry and Heuer(1972) suggested the use of 1/3
of the excavated diameter as the depth of such fracturing
and potential loosening as a guideline for design of

anchoring depth of rockbolts.

- Large underground caverns

The phenomenon of ' fracturing’ has also been observed
in large underground powerhouses especially associated with
the large stress concentration on the high walls of these
caverns. Cording et al(13871) show the formation of shallow
slabs within 5 ft of the wall surface for the case of Cavity
I and II, Nevada Test site. These caverns were excavated in

tuff with an average unconfined compressive strength, o of
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10.5 MPa. The height of the walls amounted to about‘36m and
the ratio o;/oc’was estimated as being 0.7. No indication ig
given about the propagation of those fractures but, for the
final support, Cording et al(1971) recommended an anchor
length of 1/3 of the height of the wall, i.e., about 12

meters long.

2.3.2 Loosening

The term "loosening’ has been used to describe the
cases where ' ...rock fragments, blocks, and wedges tend to
separate from the surrounding rock mass and move under
gravity into the opening’, (Cording and Mahar (1978) ). This
process includes the ‘overbreak’ which may occur in certain
rock formation immediately or shortly after blasting when
some rock blocks may fall out the roof and shoulders of the

excavation.

2.3.2.1 Mechanisms leading to loosening

Rocks are generally discontinuous masses., These
discontinuities may consist of severa] joint systems,
bedding planes, faults and associated shear zones . They
define a three dimensional array which dissects the rock
mass and, depending Upon relative orientation and spacing,
define blocks of different sizes.

Other properties of these discontinuities such as
degree of separation, aperture, infilling of joints, gouge

material, and strength of ’intact’ material are necessary to
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describe the system. Depending upon the combination of thege
properties, different states of interlocking are reached. As
would be expected, the creation of an opening in such rocks
may trigger modes of deformations which can vary within g
wide spectrum depending basically on the combined properties
of the geological discontinuities and size, shape and
relative orientation of the opening.

The response of rock masses described as unweathered
stratified , jointed massive rocks, crushed but chemically
intact rocks and ‘"blocky and seamy’ to tunnelling was first
described by Terzaghi(1946) in his classical work on rock
loads on steel Supports. Figure 2.4 shows schematically the
process of deterioration of the self-supporting ability of
some jointed rock masses which occurs near the the face of
an unlined opening due to the progression of deformations.
Associated with this deterioration process, Terzaghij
introduced the concept of bridge-action period! as being the
period of time a certain length of excavation could remain
unsupported before failure occurred. With the aim of
defining 1loads for Support design, Terzaghi considered the
existence of a zone around the opening which would be the
final product of the deterioration or ' loosening’ process.
The size of this zone and consequently the load magnitude
varied with the rock type. In Terzaghi’s work, no attempt
was made in quantifying parameters describing the rock mass

'The same concept was reintroduced in the tunnelling
literature by Lauffer(1958) as stand-up time, a term which
is preferred nowadays .
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and the assessment of the rock condition was based on
experience. In Table 2.1, Barton’s rock mass parameters are
used to describe the possible range of rock types which
could 1lead to " loosening ground’ provided other factors
would assume appropriate values.

Terzaghi’s concepts have been codified by other
investigators who have considered the term " loosening’ to
describe the loss of strength or self-supporting capability
of the ground due to 'excessive’ deformations. This concept

can be readily appreciated by consideration of the ground

reaction curve 2 or characteristic line, e.g., Deere et
al(1963) , Lombardi(1970) . Figure 2.5 illustrates this
concept.

In order to understand the concepts illustrated in this
figure one should, initially, consider the type of
experiment involved. It isg assumed that an internal
pressure, % , decreases monotonically and P the external
pressure, remains constant. The deformations are measured
after each change in internal pressure. The curve obtained
by plotting internal pressure, % » versus the accumulated
displacement can be considered in three stages.

In stage (1), corresponding to AB, the rock mass
responds essentially in a linear elastic manner. This is
reasonable since the deviatoric stresses introduced around

the opening are still very small, In stage (I1),

?The ground reaction curve (GRC) describes the general
response of an opening and can be applied to any type of
ground. The Author, however, decided to explore the GRC only
when referring to " loosening’ .
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corresponding to BC , the rock mass response is controlled
by non-1linear behavior which is indicated by the departure
from the elastic ground reaction curve, see Figure 2.5. This
departure is caused by the reduction in stiffness and
strength of the materia] around the tunnel wall which, in
turn, is caused by weaKening processes such as fracturing
during blasting or excavation procedures, and opening of
discontinuities.

Finally at point C, the rock mass has reached itg
max imum load-bearing capacity under the applied pressuresg R
and P - For deformations beyond point C, equilibrium of
stresses cannot be maintained unless the Supporting pressure
is increased over (p)min. At that stage, gravity forces may
become relevant and should be added to the equilibrium
equations. The process of loosening has been associated with
the stage (II1), as indicated in Figure 2.5 ang corresponds
to the deformations beyond point C.

The actual shape of the ground reaction curve for
deformations beyond point C is debatable, the reason being
due to all the unknowns relative to the progress of stress
redistribution associated with the shear strains past peak
coupled with time effects on the shear strength. In Figure
2.5 bounds to support pressures which can ultimately be used.
in design procedures have been indicated in a qualitative
manner. Not indicated in present discussion are the effects
of gravity especially on the material immediately around the

opening.
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A recent contribution towards the understanding of
’loosening’ has been presented by Ward(1978) in his Rankine

lecture., Ward shows, via a2 wooden block model, the influence

Even though Ward’'s  mode] only considers geometrica]

and relative orientation with respect to tunnei axis, his
results have allowed the identification of three impor tant
stages of collapse, which have compared Surprisingly well
with results observed in the field.

These stages of collapse indicate that increasing
deformations and the eventua]l release of Key blocks or
crushing of others serve the purpose of weakening more and
more the material around the opening. This process ijsg bound
to continue until the opening reaches a configuration which
corresponds to 4 stable stress distribution around the
medium.

The process just descr ibed reflects the progressive
instabiiity of an unlined opening. Next, case records will
be shown which indicate such block release mechanisms ang
its time dependence and also illustrate the lining strategy

associated with this ground behavior,

2.3.2.2 Survey of case records

- Kielder Water Scheme Experiment
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This is a circular tunnel of about 3.3m in diameter
excavated in strongly bedded mudstone with g very low
RQD(0-8%) under a rock cover of 100m. Details of geology of
the site and the project itself are given by Ward et
al(1976)

The experimenta] tunnel is about 100m long and was
advanced initially using a drill and blast technique and the
last sections were advanced using a roadcutter, Altogether,
8 sections of about 10m long each were provided with
different types of supports. A fairly comprehensive
instrumentation program was carried oyt in order to obtain
data for the evaluation of the feasibility of each support
system used in this particular site.

Deformations of the tunnel section as well gas the
eventual failures along the unlined section were reported by
Ward et al(1976) and Ward(13978) . Some of these results are
reproduced in Figures 2.8 and 2.7. Figure 2.6 shows the
vertical displacements in both roof and invert of the
unlined part of the tunnel obtained from a multiple-point
extensometer installed from the surface. The deformations
displayed in these curves constitute the overal]l
deformations due to face advance and the deformations due to
time-dependent behavior of the rock mass.

These observations Constitute an excellent illustration
of the processes involved in the development of deformations

withltime for the case of loosening ground. This case record
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corresponds to a low stress level situation (g, /@, is about
1/20) but still the initial deformations were about one
order of magnitude larger than the predicted elastic
deformations. This suggests that the material around the
tunnel is expanding by opening of discontinuities, movements
along joints and eventual crushing of block corners.

After excavation, inspection of the tunnel indicated a
progressive release of blocks from shoulders and sidewalls
and ultimately the failure of a large part of the roof, see
Figure 2.7. This sequence of events indicates the following
aspects relative to unsupported " loosening’ ground, namely:

a. The increasing deformations cause failures and
subsequent stress redistribution which in turn
causes more deformations;

b. failure or release of blocks can happen in a short
time;

c. size of failure =zone can vary very much and is
difficult to predict.

Ward et al(1976) also presented the results of
instrumentation on lined sections. Altogether, 7 different
combinations of excavation methods and lining types and time
of installation were used. Figure 2.8 reproduces the typical
displacement curves for all the different lining strategies.
It is very clear from these curves that different
combinations of excavation method and lining type differ in
leading the rock mass around the opening to reach an

equilibrium position.
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Unfortunately, two important questions related to the
time-dependent behavior could not be assessed directly from
the data. The first one refers to the amount of load to be
mobilized in the support as a function of its time of
installation and secondly, the amount of deformations
allowed to occur in a lined section before reinforcement is

required.

- Large underground excavations

Problems associated with the design of support systems
for the roof of both shallow and deep large underground
chambers in jointed rock constitute another good example of
" loosening’ ground. The features of particular concern are
associated mainly with the large size of the span of these
caverns with respect to the spacing of discontinuities.

The observation of the performance of those roofs as

well as current engineering solutions can reveal certain
aspects of the time-dependent character of loosening ground.
One well documented case is the Washington D.C. Metro Dupont
Station, a shallow depth opening of about 23m span excavated
in a heavily sheared and blocky schistose gneiss under an
overburden of 30m and rock cover of 10m.
A description of the geology, details about the structure of
the rock and both design and performance of support system
have been presented by Cording et al(1977) and Bawa and
Bumanis(1972)



The selection of this case history serves the purpose
of illustrating the role of time in the special classes of
problems associated with roofing of such large spans,
namely:

a. stability of large individual blocks (wedges) and

b. the effect of excavation by stages and presupport

techniques.

Figure 2.9 shows the geometry of the station, the general
sequence of excavation and the lining strategy associated
with each stage. A pilot tunnel was first excavated to
assess the rock condition along the crown which revealed the
presence of steeply-dipping shear zones closely spaced and
planar, discontinuous and often slickensided Joints causing
the rock to be of a blocky and seamy nature. This rock mass
would present, at this low stress level, the tendency for
large blocks to loosen and either slide or separate from. the
walls and arch of the opening.

Figure 2.10 shows the excavation and deformations
associated with the stage no. 1. Initially, excavation was
advanced at a 6.1m wide and 8.2m high opening supported at
the roof by rockbolts 7.3m long and 1.5m apart. The
sidewalls were protected by a shotcrete layer of 5 cm
immediately following the excavation. Figure 2.10b shows the
progression of the deformations measured at three locations
with time. With increasing deformations occurring in the
sidewalls, the rock above the roof moved and deep

deformations followed.



Figure 2.10c shows the time-dependent behavior of the
rock mass after excavation with some extensometers
indicating a large increase in the rate of deformation. Also
displayed in this figure is the change in displacement
pattern after rockbolts were installed. Even though the
deformations were still not very large, within 10mm, there
was a concern that the integrity of the rock arch above the
crown would be in danger if these deformations were allowed
to cbntinue. For the later sections, the excavation of stage
no.1 was followed immediately by the installation of support
at the walls and a reduction in the height of this stage
from 8.2m to 7.0m which contributed to reduce considerably
both the amount and rate of deformations at the rock arch
above the crown.

The movements in the roof during the widening of the
span (stage no.3) were carefully monitored. The decrease in
rate of deformations with time in addition to a small total
deformation (3mm) were considered as indications that no
worsening of the roof condition occurred during this stage.
This demonstrated the effectiveness of the presupport of the

roof in preventing further loosening.

2.3.3 Squeezing

The term squeezing ground has been applied in the
literature to describe situations where the ’...ground moved
slowly into the opening’ and/or linings were damaged by the

ground which squeezed towards the opening. Typical examples
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of rock masses described as squeezing ground have been
considered by Wahlstrom(1973) , namely:
a. incompetent sheared granite and gneiss (Roberts
Tunnel, Colorado) |,
b. altered schist and gneiss (Vasquéz Tunnel,Colorado),
c. soft to medium clays at moderate depth and clay
shale at greater depths |,
d. fault gauges,
e. poorly consolidated soft mudstones and claystones,
etc.

The phenomenon of squeezing ground in this thesis is
associated with the delayed response of the rock mass when
subjected to shear stresses which develop around the opening
during excavation, i.e., this behavior is essentially due to
rheological behavior of the rock mass. In order to
investigate the conditions under which the ground behaves in
a squeezing manner, the mechanisms leading to creep of rock

mass around the opening have to be considered.

2.3.3.1 Mechanisms leading o saueezing

Two basic hypotheses have been considered in the
literature to describe the stress conditions causing creep
behavior of the rock mass around an opening. The most common
one has been to assume that, immediately after excavation,
the stresses developed around the opening do not cause
failure, i.e., they are smaller than the short-term

strength. It is considered then, that the new state of



stress at any point around the opening causes the ground to
deform with time. The analytical model associated with this
hypothesis as well as some applications will be discussed in
detail 1in Chapter 6. Figure 2.11 illustrates the process of
stress transfer for the case of a hydrostatic stress field
and a circular opening.

A second hypothesis, which is an extension of the
previous one, considers that the state of stress immediately
after the excavation will cause overstress of the material
around the opening. The overstress or failure of the
material described by this hypothesis is different from the
one indicated in section 2.3.1 where the rock mass is more
brittle. The rock mass in this situation responds in a more
ductile manner. The process of stress transfer is
conceptually equivalent to the one described previously,
i.e, creep deformations tend to minimize stress
concentration. In addition to the requirement of rheological
response of the rock mass, the concept of squeezing ground
also reflects the presence of soft to very weak rocks,
especially highly weathered rocks and clayey fault gouge.

Unliike for the previous cases of fracturing and
loosening, the use of Barton's classification system does
not seem satisfactory for the purpose of providing
guidelines to indicate the spectrum of rocks leading to
squeezing since some parameters lose their meaning when
associated with heavily weathered rocks. However, a range of

values based on this classification system has been



tangential and radial stresses

Figure 2.11 Schematic stress transfer during creep around

Ceviatoric stress 1:t=z
causing creep 2:t=

4 stress distribution 3:t=0
N, around the opening 4:t=%>0

circular opening
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suggested in Table 2.1 which provides some consideration

about the potential for squeezing.

2.3.3.2 Survey of case records

Semple et al(1973) presented a number of examples of
tunnelling in ground conditions described as squeezing. Most
of the reported case-records, some listed in Table 2.2,
reflect tunnelling methods consisting in lining the opening
with sets of steel ribs and wooden lagging. An important
characteristic of these case-records is that the rock types
consist mainly of highly weathered rocks, clayey fault
gouges and very soft rocks presenting, in all cases, almost
soft-ground tunnelling conditions at large depths. These
cases cannot be described as being typical rock tunnelling
situations. Therefore, the large deformations or the large
number of stability problems associated with these projects
are essentially due to a very low strength of the material
as compared to the shear stresses mobi 1ized during
excavation.

The main purpose of Semple’s survey was to collect
information relative to the final thickness of sets of steel
ribs as well as its spacing, i.e., the final Tining
necessary to control tunnel closure and reduce deformations
to acceptable values 1in order to continue with the
excavation. This summary revealed a progressive increase in
the ratio h/a, where h=thickness of steel lining and

a=radius of the opening, with the ‘worsening’ of the ground



1n squeezing ground

Table 2.2 Survey of case-records
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conditions. Values of the ratio h/a obtained in typical
cases in soft ground tunnelling were found to be greater
than the ones associated with 'heavy’ squeezing conditions
at much greater depths. This result, however, simply
reflects the concern in shallow soft-ground tunnelling for
reducing the surface settlements to a minimum which is
accomplished by the use of a much heavier lining. No
measurements of deformations associated with the excavation
of these tunnels were reported.

Another survey of case-records in squeezing ground was
presented by Myer et al(1977) . The aim of this survey was
to attempt to identify in practice the factors which
influence the stand-up time of tunnels in squeezing ground
and some relevant solutions to increase this time. In Table
2.2 some of the case-records compiled by Myer are listed.
Two features associated with these case-records deserve
special attention: initially, one should notice the large
spectrum of depths which can be associated with squeezing
conditions and secondly, the material types identified in
this selection of case-records fall into the same group of
rock types as the one observed in Semple’s survey.

It 1is 1important to recognize, however, that these two
surveys collect basically the situations where the rock
types consist essentially of very weak materials and can be
considered as extreme cases in the wide spectrum of possible
types of rock mass leading to squeezing. Also some of these

cases are associated with a somewhat outdated excavation
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procedures which may have added to some of the stability

problems encountered.

- Yarbo No.1 Shaft at Esterhazy, Saskatchewan

This 5, 4m diameter shaft was sunk to reach potash
deposits at depths over 900m. Barron and Toews ( 1963)
describe the results of displacement meéasurements carried
out at a depth of about 925m at an unlined section of the
shaft located on a salt bed above the potash depositg.
Borehole anchors were installed at depths of 0.15, 1.2, 2.8
and 3.0 meters from the shaft surface to measure the radial
convergence of the rock mass surrounding the shaft. The
location of these anchors is shown in Figure 2.12.

Figure 2.13 shows the displacements relative to the
shaft axis versus time for each depth. The creep-like nature
of the deformation versus time curves ijs Clearly evidenced
in this figure. The data indicate a change in the rate of
deformations from an average of 3.8mm/day in the first day
of measurements to a 0.17mm/day after about 40 days which
represents 3 twenty-fold drop in the rate of deformations.
The data displayed in Figure 2.13 have been plotted as shown
in Figure 2.14 which indicates the distribution of radial
displacement with time. At the end of a 40-day period, the
size of the zone affected by the creep deformations can be
estimated as about 7.5m or about 1.5 times the diameter of

the shaft. This Z0ne corresponds approximately to the region
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around the opening where stress redistribution occurs, 1i.e,

the load-bearing zone.

- Giri Tunnel, India

This tunnel, described by Ward(1978), constitutes one
of the many examples associated with Indian hydro-electric
projects in the Himalayas. It consisted of a 5.5 meter
diameter circular tunnel excavated in highly slickensided
and fragmented phyllites at a depth varying between 200 and
300 m. The tunnel was excavated full-face and lined
simultaneously with circular and strutted horseshoe steel
ribs of 150 x 150 mm section at 0.5 m centers with pre-cast
concrete lagging. Figure 2.15 presents some of the measured
tunnel closure versus time. A very large diametrical
deformation of 0.8-1.0 m(about 17%) occurred up to about 100
days when a noticeable decrease in the rate of deformations
was observed.

A sudden increase in deformation rate was observed
after about 220 days which could be correlated with blasting
operations at the approaching face 100m away from the
measuring station. This large increase in deformation rate
stopped after 20 days when again a remarKable reduction in
the rate of closure was observed. Although the Author was
not able to check other data relevant to this case-record,
it seems logical to raise the possibility that most of the

initially high rate of deformations observed was in fact due
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sections of Giri Tunnel, India (Ward(1978))



to the face advancing operations. In that case, the
deformations due to time-dependent behavior of the rock mass
would be small compared with the deformations triggered
during excavation. Ward(1878) wuses this case-history to
point out correctly the need and the importance of yielding

supports with the capability of yielding of up to 20%.

2.3.4 Swelling

Swelling is a term normally reserved to describe the
time-dependent volumetric increase evidenced by some earthen
materials. A complete description of the mechanisms causing
swelling in rocks as well as experimental data supporting
them has been discussed extensively by Einstein and
Bischoff(1875) and Lindner(1976) and include the following:

a. change in the state of stress, specially unloading,

b. water adsorption by some clay minerals, and

c. volumetric change associated with chemical changes
(anhydrite into gypsum, etc).

Of particular interest to the ground control specialist
is the set of conditions leading to swelling around an

underground opening and its particular features.

2.3.4.1 Mechanisms leading to swelling

The following set of events causes this mode of ground
behavior.

Stage no.1 : a stress relief zone is created around the

opening. Wittke and Rissler(1976) considered this stress
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relief zone as represented by regions around the opening
which presented a reduction of the first stress invariant.
By simple elastic calculations, Wittke and Rissler(1976)
showed that zones of stress relief can be created at roofs
and floors and depend on both shape of the opening and ratio
between principal stresses. Figure 2.16 illustrates the zone
of stress relief around a circular opening and a ratio of
principal stresses less than 1.0.

Other factors can also contribute to the creation of
such a stress relief zone. They are: failure of the material
around the opening, damage created during excavation,
loosening of blocks and opening of joints. Also the sequence
of excavation and support installation, especially for cases
which cannot be advanced full-face play an important role on
the size and 1location of the stress relief zones. As a
general rule, the invert wil] be the region where the
maximum stress relief wil] occur.,

Stage no.2: water s needed to start the swelling

process in the zone of stress relief indicated by zones (1)
and (II) at Figure 2.18. This water can be provided by
either one of: air humidity, ground water or any water used
during excavation. Terzaghi (1946) has suggested an internal
migration of water from zones of stress concentration to
Zones of stress relief. Terzaghi observed in some tunnels a
considerable increase in the water content near the walls
and which could not be explained by water provided by air

moisture. Nakano(1979) suggested a similar process but with
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the increase in water content being quite localized along
shear planes created during excavation.

In this context 1large quantities of water are not
necessary to initiate a swelling process. Nakano considered
this process for rocks such as the ones common in
sedimentary (mudstones and shale) and metamorphic (schist,
phyllites, etc) formations in Japan.

Stage no.3: the material around the opening may lose

strength due to either an increase in water content or some
deterioration due to air exposure. This loss in strength
causes further stress relief around the opening which will
accelerate the stage no.2 discussed earlier. Some creep
deformations are probable to occur at this stage which are

difficult to distinguish in the overall process.

2.3.4.2 Survey of case records

The frequent occurrence of cases reporting swelling
conditions during tunnelling has made this mode of ground
behavior of great importance in certain areas, e.g., Central
Europe, Japan and North America. As a recognition of this
importance, the International Society for Rock Mechanics
organized a commission to study the behavior of tunnels in
swelling ground. In a report to this commission, Lo(1979)
presented a list of case records described in the literature
as being examples of swelling. This list covers no less than
11 cases in Southern Ontario, Canada, 6 cases in Norway, 6

cases in Switzerland, 2 cases in USA and 4 cases in Japan



(see Tables 2.3 and 2.4). Most of the case-records
constitute excellent examples of the current
state-of-the-art associated with excavating and supporting
these tunnels as well as the type of tests which have been
proposed to evaluate the swelling potential associated with
a certain formation. Next, a brief summary of these

case-records is presented.

- Case-records in Southern Ontario, Canada

A number of case-records have been registered in
Southern Ontario clearly indicating the effect of the stress
relief zone and the time-dependent volumetric increase in
underground structures in rocks. Table 2.3 lists some of the
reported case-records summar izing briefly the rock
formation, construction procedures and the performance for
each one of them.

The results of measurements of the deformations at the
Wheelpit of the Canadian Niagara Power Co., a 5.5 wide and
50m unsupported trench, since 1902 indicate that these
deformations can occur for a long period of time without
actually coming to a hault. The potential for swelling of
these rocks has been studied by Lee and Klym(1978) who
suggested the free-swell test as a good way to assess the
time-dependent properties of these rock formations. As the
deformations were found to relate in a linear manner with

the logarithm of time the deformations per log cycle was
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potential,

- Wagenburg Tunne] ~ eXperimenta] section

Wittke(1978) described the main Characteristicsg and
geological profile of this tunne] located ijn Stuttgart,

Germany. Associated With the €Xcavation of this tunnel, 3

2.7m and a8 width of 3.0m and were excavated in unleached

the tunnei floor beyond which ng displacements were
Measured. Aftep 2 years the deformations Céased and no
fur ther dispiacements were measured.

In test adit 1] the invert was Constant iy irrigated
since jtg Completion in 1973.  Four 10-m long 5-point
extensometers were installed to record the disp]acements;
two extensometers were instalieq along the axis and two
others along the sides of the adit. Two  zonesg were

considered: one anchored zone consisting of 4 1.4 x 1.4m



rigid plate anchored by eigth 10m- long prestressed anchors
and one unanchored Zone. Three years after the beginning of
irrigation heave up to 460mm occurred in the unanchored
Zone. In its turn, the anchored zone heaved, during three
years, just about 23mm and as a result of this heaving
pressures of up to 2.2MPa were measured along the contact

plate-rock.

- Storage Tunnel in Mari

Einstein ang Bischoff(1975) presented a summary of the
discussions related to the investigations associated with
this opening. Figure 2.18 presents a cross-section view of
the instrumented section which shows the invert cCompletely
excavated in Mar]. Also indicated in Figure 2.18 is a plan
view of the instrumented section illustrating the layout of
the rockbolts installed in the invert. Such a field testing
pProgram was carrijed out in order to assess the efficiency of
rockbolts in reducing heaving of the invert,

Deformations were measured at the surface as well as at
depth by means of multiple-point extensometers. Figure 2. 19
shows the resuits of the measurements at ope extensometer
(E10) located at the unbolted section and their variation
with time. These results clearly Suggest the existence of a
boundary at about 3.0m below the center of the invert
defining two distinct regions as far as swelling response is

concerned. Region (1) immediately below the invert ijg the



C1

region where most of the heave is concentrated. The maximum
heave of the unbolted section observed during a period of 3
years amounted to 76 mm.

Rockbolts were installed at the invert at depths of
2.5,4.0 and 6.0m respectively. Comparisons of the
effectiveness showed that only the bolts 4.0 and 6.0m long
provided a reasonable reduction in total heave (about 60%
reduction over a period of 3 vyears) which is in full

agreement with the results obtained in the unbolted section.

2.4 Final remarks

In the previous sections classes of ground behavior
were suggested and their main characteristics were pointed
out. For each one of these classes the engineering problems
associated with the time-dependent behavior were discussed.
As a first approximation, the following observations can be

made.

- Fracturing

1. No consistent set of field data relative to both depth
of fractured zone and its eventual propagation with time
could be gathered. Available data consists in
measurements of the thickness of the overall damaged

zone which also includes the effects of blasting, e.g.,
Hayashi and Hibino(1968) . The depth of anchoring is a

function of the thickness of this zone and guidelines
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such as 1/3 of the tunnel diameter and wall height (for
large underground openings) have been suggested.

The fractured zones have to be protected as early as
possible due to: (a) safety reasons especially when
located in the roof of openings (rock falls, slab
detachment), and (b) to arrest any propagation of these
zones.

Time-dependent deformations are very small, maybe of a
much less magnitude than the immediate response. Hence,
the characteristics associated with the lining strategy
are: (a) amount of required support will be a function
of the depth of these zones, (b) support has to be
designed in order to withstand further movements due to
progression of the excavation and (c) supporting
measures must also provide protective shield in order to
avoid deterioration of the material around the opening.
Special attention must be paid to cases of large
underground openings where walls must be protected as
early as possible at the first sign of fracturing. These
large openings are normally excavated in stages and
before each stage is excavated, zones of overstressing
must be protected ideally by rock reinforcement. Actual
modelling of the excavation stages can be done and the
sequence which best minimizes the size of overstressed

zones should be followed.

Loosening
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Chapter 3

REVIEW OF TIME-DEPENDENT PROPERTIES OF ROCKS

3.1 Introduction

The phenomenon of time-dependent behavior of rocks is a
source of many probliems in designing structures in rock.
Foremost amongst them is the need for methods of predicting
the performance of structures in creeping rocks. In order to
address this problem it is necessary to have data on the
stress-strain-time response of rock. The present review
summarizes some of the ideas developed from previous
investigations on time-dependent properties of rocks and, in
so doing, it sets the stage for Chapter 4 which presents the
results of creep tests on jointed coal.

The basis for the study of the time-dependent behavior
of materials can be credited to Andrade(1910) who studied
the behavior of metal wires subjected to constant tensile
stress above the elastic limits to strains up to 30%.
Andrade’s results lead to the proposal of empirical laws
describing the development of deformations with time and the
separation of the creep deformations into three components
:@-flow( transient or primary creep), viscous flow
(secondary or steady-state flow) and tertiary creep. At the
present time, almost seven decades later, an extensive
literature on time-dependent behavior is available covering

both a wide range of materials (such as metals, plastics,

68
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rubber, ice, soijis and rocks) angd applications (such as
mechanical, civil and mining engineering, metallurgy,
geological and geophysical studies) .

The deve lopments during this period of time with
respect to the time-dependent behavior of rocks have been
summar i zed by state-of-the-art reports given by
Robertson(1964) ,Cruden(1969) ang Wawersik(1973) These
reviews have revealed g myriad of stress-strain-time
relationships each credited with a good réepresentation of
experimental data on creep of rocks. Thisg diversity
Certainly introduces Some restrictions with respect to the
usefulness of these relationships for practical
applications. The present review Summarizes the more recent
data on creep of rocks and critically assesses the relevant
information with respect to the analysis and interpretation
of creep data, It also Summarizes the relevant works on
time-dependent failure and on the relaxation properties of

rocks.

3.2 Creep behavior of rocks

At the laboratory scale, the study of time-dependent

types of tests, namely:

a. constant stregs test or creep test : g load,

following a certain history, is applied to g rock

specimen and maintained constant and the resultant
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measures the effect of stress history upon the
deformations.

b. constant strain test or relaxation test : the rock

specimen is deformed, following a certain strain
history, up to a certain strain wvalue which is
maintained constant and the resultant change in
stress with time is measured. This test then
measures the influence of the strain history upon
the stresses on the rock specimen.

C. constant strain-rate test - the rock specimen is

deformed at a constant strain rate and the stresses
are recorded throughout the test. The effect of time
on the material properties is evaluated by
performing tests at different strain-rates on
similar specimens.

Figure 3.1 shows schematically the relationship among
these three types of tests. Although both relaxation and
constant strain-rate tests demonstrate the influence of time
on the behavior of rocks, their interpretation requires the
Knowledge of a creep relationship which basically is the

ultimate goal.

3.2.1 Stress-strain-time relationship

In this section, the t ime-dependent deformations of
rocks under constant stress at room temperature are
reviewed. This is done for two reasons. Firstly, information

obtained from this simple test is relatively easy to collect
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by careful testing and secondly, this is practically the
only information available covering a wide range of rock
types.

Figure 3.2 presents the common idealization of a creep
curve as put forward by Andrade(1810) . In general, it is
widely accepted that such a curve can be divided into three
main regions. Initially, the process of creep deformations
is characterized by a decreasing rate of strain represented
by stage AB. This has been called primary or transient
creep. Following this stage, there is a region where the
rate of strain is constant. This is represented by stage BC
and is the so-called secondary or steady-state creep.
~Finally, there follows a stage CD where the rate of creep
strains increases with time eventually leading to failure.
This region is Known as tertiary creep. |

The existence of these components, at least during the
time of observation in a laboratory, depends on the stress
level at which the test is carried out,e.g. Jaeger and
Cook(1968) . Moreover, it is also accepted that these stages
or ‘processes’ act independently of each other and at the
same time. In the following only the first two stages are
discussed. Data on tertiary creep are still very scarce and
will not be discussed in this thesis.

The analytical convenience introduced by the separation
and independence of the creep stages allows creep data to be
described quantitatively by expressions such as equation

(3.1) where &) represents the total strain, &, is equal
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to the instantaneous or t ime-independent strain,é%(f)
represents the primary creep strain and ﬁ.t represents

the secondary creep strain.

W)= £ + £, 1) 4 Bt (31

Equation (3.1) constitutes the basis for the analysis
of creep data by the so-calied empirical approach which
consists of selecting appropriate functions to describe
both €,&) and  # that best fit the experimental data.
Alternatively, rheological models consisting of springs,
dashpots and sliders , connected in series or parallel or
both, can be used to fit the experimental data e.g.,
Maxwell, Kelvin and Burgers’ models. Creep strains have also
been described in terms of fundamental parameters which are
determined from theories describing the creep process on a
microcospic scale,e.qg., rate process, dislocation,
exhaustion and structural theories.

Table 3.1 displays a small sample of creep data on
rocks covering both a wide range of rock types and different
test conditions. This table clearly indicates the number of
different stress-strain-time relationships which have been

used to describe creep data on rocks.
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For early data on creep of rocks,Griggs(1839) suggested
equation (3.2) as describing his experiments; the term Biogt
represents the primary creep and the term Ct the secondary

creep.

W)= 4+ Blygt ot g,

Griggs’ data were plotted as strain versus the
logarithm of time, as shown in Figures 3.3 and 3.4, and the
parameters A,B were determined from the straight 1line
describing the data at the early stages of the test. The
departure from the initial straight line was assumed to
constitute the secondary creep component,i.e. the term Ct in
equation (3.2). The later data were subtracted from the
straight line and the results plotted versus time. The slope
of the new line yielded the value of the parameter C.

Griggs' approach can be criticized for two reasons.
Initially, the departure from a straight line on a strain
versus logt plot is not a sufficient condition to indicate
the existence of a term such as Ct (see equation (3.2))
,i.e., the presence of a secondary creep. This departure may
simply mean a distortion caused by the semi-logarithmic

plot. Moreover, this interpretation causes some difficulties
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when analyzing data such as the ones indicated in Figure 3.4
where the departure from a straight line would indicate a
negative secondary creep rate. In Figure 3.5 it is shown
that functions such as a power 1aw,£=£,+a‘ﬁb, provide an
explanation for both types of departures on Griggs’ data
without bhaving to call for an extra term such as Ct.
Actually, reanalyzing Griggs' data , Cruden(1969) indicated
that such a power law provided a good representation of the
data.

To avoid any misinterpretation, a much more
satisfactory way of assessing both the existence and the
value of a secondary creep rate is from a plot 1indicating
the variation of the strain rate, obtained from the

experimental data, with time.

3.2.1.1 Primary creep

Logarithm time laws as suggested by Griggs(1939) have
also been used by other investigators for describing primary
creep strain on rocks,e.g.,Hobbs(1970) for siltstones,
shale, mudstone, limestone and sandstone under uniaxial
compression,Chugh(1874) for limestone, sandstone and granite
under both uniaxial tension and compression and
Pomeroy(1956) for coal under bending.

Other investigators have suggested an exponential law
to describe primary creep strain. This creep law is
generally the result of the application of Burger's

rheological model,e.g. Evans and Pomeroy(1966) for coal
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under uniaxial compression and Hardy(1967) for marble under
uniaxial compression. As suggested by Cruden(1971a) , the
time laws describing primary creep can be divided broadly
into two groups consisting of exponential laws and power

laws, equations (3.3) and (3.4) respectively.

E = a exp(-ayt) oo (3.3)
P 4
o - b,
e = b, + ...(3.4)
o
where 6P =primary creep rate and a, ,a, b, b, , are

constants. The logarithm law proposed by Griggs{1939) can be
seen as a particular case of the power law for b,=1.
The power law has also been preferred by Cottrell(1952)

for a variety of materials; Boresi and Deere(1963) ,

LeComte(1965) and Hendron(1968) for rock salt;
Wawersik(1973) for sandstone and granite; Singh and
Mitchel1(1968) for several types of soils and
Roggensack(1977) for frozen soils, etc. Cruden(1971a)

submitted both exponential and power law to severe

statistical tests for the representation of uniaxial
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compression creep tests on marble and sandstone and , for
all the cases, the power law showed a better representation
of the data.

Two important observations have been made with respect
to the power law for describing primary creep in geological
materials. Initially, the parameter b, in equation (3.4),
which represents the hardening effect, has been found to
vary within a very narrow range. Table 3.2 summarizes some
of the pz-parameters reported in the 1literature. Both the
good approximation of the experimental data by the power 1aw
for a wide range of materials and the narrow range of
variation of b& seem to suggest a common 1ink between the
hardening mechanisms for the materials considered.

Secondly, the value of qzhas been found to be fairly
constant within a large range of stress level, (Murayama and
Shibata(1958) and Bishop and Lovenbury(1969) ) for tests on
clays, see Figure 3.6. Wawersik(1974) suggested a constant
value of tato describe the primary creep of Westerly granite
for different stress levels and confining pressure, and
results reported by Cruden(1970) do not show any sign of a
particular dependence of b, upon the stress level for values
up to 85% of the maximum compressive strength.

On the other hand, some creep tests carried out for
long periods of time;i.e.,Bishop and Lovenbury(1969) up to
1000 days, and at high stress level ,Cruden(1971a) , have
indicated a continuous decrease in strain rate with time

and, in both instances, the power law yielded a good
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Table 3.2 Summary of bz-values reported in the literature

Author Rock type bz-values Type of test
' Anhydrite - 0.6% - 0.98
Olivine 0.7 - 0.74
Misra(1962) Granodiorite 0.66 uniaxial compression
(*) Darle Dale Sst 0.88 - 0.92 test
Pennant Sst. 0.88 - 0.98
Solenhofen Lst 0.99 untaxial compression
Griggs(1939) NaCl single 0.79 test
(*) crystals
Cruden(1871a) Sandstone 0.82 - 1.06 unfaxial compression
Marble 0.79 - 1.06 test
Mitchel1(1975) several types 0.65 - 1.0 triaxial compression
of soils tests
Wawersik(1972) sandstone 0.71 uniaxial compression
granite 0.61 test
Wawersik(1974) sandstone 0.72 triaxial compression
test
Nair and Deere(1870) rock salt 0.55 - 0.68 extension triaxial

(*) Original data recalculated by Cruden(1969)
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representation of the creep data. These observations
certainly constitute a threat to the well established idea

of the existence of a secondary creep rate.

3.2.1.2 Secondary creep

A secondary creep stage has been reported by several
authors,e.g., Wawersik(1973) for sandstone, Singh(1970) for
marble, Afrouz and Harvey(1974) , etc. (see Table 3.1).
However, it seems to be a common feature of all these
analyses that such a secondary creep stage was assumed a
priori: its determination being based on best judgment about
the region of the creep curve representing the secondary
creep stage and graphical methods being used to determine
the rate of creep during this stage. This interpretation is
open to strong criticism.

Methods to analyze creep data have been described
extensively by Conway(1967) and, as suggested, the presence
of secondary creep rate must be evaluated by using plots
such as strain rate versus time. The secondary creep rate
would then be indicated by a horizontal asymptotic wvalue,
see Figure 3.7.

The question of the existence of a true secondary creep
rate cannot be resolved simply by considerations of
analytical or graphical techniques. The available data in
the literature as discussed before, cannot be used to either
prove or disprove the validity of this concept. Even the

longest tests on creep of rocks, Price(1964) duration of up
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to 1 year, do not seem to present a strong case for the
validity of secondary creep rate in brittle rocks under a
uniaxial state of stress. However, from the engineering
point of view, it suffices to establish the degree of
approximation one will obtain if effects associated with a
secondary creep stage in rocks are neglected. The question
certainly needs to be investigated in more detail in order

that it can be answered by facts rather than opinions.

3.2.2 Factors controlling creep of rocks

The time-dependent deformations of rocks are themselves
dependent upon a number of factors such as nature of stress
or stress system, stress level, confining pressure, moisture
and humidity and temperature. In the following , some of

these factors will be discussed.

3.2.2.1 Stress system

As indicated in Table 3.1, most of the work on creep of
rocks has been done under a stress state of uniaxial

compression; other stress systems have been used such as

bending ( Pomeroy(1956) and Price(1964) ), uniaxial tension
(Wawersik(1973) and Chugh(1974) ), triaxial compression
(Boresi and Deere(1963) and Wawersik(1974) ), and triaxial

extension (Hendron(1968) and Nair and Boresi(1970) )
Wawersik and Brown(1873) presented tests on granite
which indicated that, in compression, creep accelerated

gradually during tertiary creep providing some warning about
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imminent creep failure whereas in wuniaxial tension, creep
failure was reached suddenly. Results presented by
Chugh(1974) on sandstone indicate that creep strains were
about six times higher in tension than under compression for
the same percentage of failure stress. These results seem to
indicate that the stress system may have a considerable
influence on the parameters describing the creep behavior of
rocks.

More results would certainly be necessary before a
better assessment of this influence can be made. Recently
published data for clays( Cleveland varved ciay and Nevada
clay) suggest that the variations in creep properties
measured under triaxial, plane strain and simple shear
stress state are small enough to be masked by variations

between samples, Wu et al1(1978)

3.2.2.2 Stress level

In equations (3.2), (3.3), (3.4) the constants B,C,a, ,b,
are dependent upon the stress in which the test is carried
out. Tests by Griggs(1940) on Alabaster indicated that both
the rate of strain and the magnitude of strain at any time
are dependent upon the stress level, see Figure 3.8. The
term ’'stress level’ has been used in the literature
sometimes implying the absolute value of stress at which the
test is carried out. This definition is rather meaningless
when dealing with stress systems other than wuniaxial

compression or tension, for geological materials are
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influenced by the confining pressure. Stress level 1in this
thesis refers to the ratio between the stress at which the
test is carried out and the strength of the rock both
referring to the same state of confinement. The absolute
value of stress is referred to simply as stress.
Hendron(1968) and Nair and Boresi(1970) suggest
equation (3.5) for describing the creep strains on rock salt
under both wuniaxial compression and triaxial extension
tests. They suggest a power law to describe the stress
dependence of the creep strains where g = stress

difference, (g -ay) in psi, K=1.87 x 10°'®  and n=2.98

@)= ko i ... (3.5)

Comparing the creep rates at the same deviatoric
stress, o,-o,, Hendron(1968) concludes that the uniaxial
compression test gives a higher strain rate than the
triaxial extension test, and then, suggests that the
uniaxial compression test is too severe to define creep
parameters.

A  structural theory for creep in brittie rocks at room
temperature and uniaxial compression condition based on

crack growth was developed by Cruden(1970) which suggests a
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power law ,such as equation (3.5), to describe the influence
of the stress level on the strain rate. Experiments on
Pennant Sandstone and Carrara Marble showed a good
agreement, in the range between 0.1 and 0.7 of Gar.r With
this theory, see Figure 3.9. For stress levels above 80% the
experiments seem to indicate an increase of the stress level
dependence.

Wawersik(1973) suggested an exponential law such as
equation (3.6) to describe the influence of the stress level
on the strain rate. However, Wawersik points out that the
scatter observed from his experiments was of the same order

of magnitude for both equations (3.5) and (3.6).

b = de ... (3.86)

where A,&.= material parameters and & =stress level.
Applying the concept of creep as a thermally activated
rate process, Mitchell et al(1967) predict a strain-rate
variation which is dependent on a hyperbolic sine function
of stress. As suggested by Singh and Mitchel1(1968) such a
variation could be approximated by an exponential law such
as equation (3.6) within the range of 20-80% of the maximum

strength, see Figure 3.10. Results by Bishop and
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Lovenbury(1969) for creep tests on London Clay suggest the
same exponential law to measure stress dependence, see

Figure 3.11,

3.2.2.3 Confining pressure

Few data have been reported in the literature aiming
specifically at investigating the influence of confining
pressure on the creep behavior of rocks. Robertson(1960)
reported tests on Solenhofen limestone in compression for
confining pressures up to 400 MPa and concluded that
hydrostatic stress greatly reduces the creep rate.
Unfortunately, Robertson’s conclusion refers to data related
to the same deviatoric stress and this result would be
logical since the stress level would decrease with increase
in confining pressure for the same deviatoric stress.

Other factors have been found to influence the creep
behavior of rocks such as environmental conditions( humidity
and temperature) and structural factors such as composition,
orientation of grains, etc. However for the purpose of the
present review it suffices to recognize the fact that the
bulk of the influence of these factors is related with the

constants which describe the relationships above discussed.

3.3 Time dependent failure of rocks

It has long been accepted that the strength of rocks
depends amongst other factors, upon the rate of loading or

elapsed time to reach failure. Also if the applied stress is
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unconf ined compression tests on clay-shales,
Bieniawski(1970) for uniaxial compression tests on
fine-grained sandstone, Peng and Podnieks(1972) for uniaxial
compression tests on tuff, etc. The decrease in strength
with the rate of straining has been expressed by a logarithm
law as equation (3.7) where G, =strength at unit strain
rate, 2 =strain rate, o =strength associated with 2

and m=constant.

G = G _m-ﬂ‘ojﬁ .. (3.7)

(<]

Alternatively, the time-dependent strength of rocKs has
been investigated by static fatigue tests on which sustained
loads are applied and time for failure are noted. In these
tests, the failure process 1is indicated by the tertiary
creep which is associated with a continuous increase of the
strain rate. Griggs(1940) showed that for creep tests under
uniaxial compression on Alabaster immersed in water there
was a critical creep strain which marked the onset of
tertiary creep.

Other parameters have been invoked to explain and
characterize the onset of instability which leads to

failure. Scholz(1968) and Cruden(1970) suggested that
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brittle creep in rocks under uniaxial compression was due to
the formation and growth of cracks in the system by
stress-aided corrosion. As the number and length of cracks
increase the possibility that these cracks will intersect
each other also increases. This gives rise to a new system
of cracks which may well be in a more unstable situation and
then accelerate the process leading eventually to the
failure of the sample,Cruden(1974) . This would imply the
existence of a critical crack density at the onset of the
instability process.

Cruden(1974) associates Griggs’ critical creep strain
as a measure of the critical crack density. Kranz and
Scho1z(1977) consider the onset of tertiary creep as
occurring when a critical value of the inelastic volumetric
strain has been reached. Kranz and Scholz’'s data refer to
uniaxial compression creep tests on quartzite and granite
and Figure 3.13 presents the total inelastic volumetric
strain at the onset of tertiary creep as a function of
stress level.

Using Griggs’ (1940) data and assuming that at the onset
of tertiary creep the power law defined by equation (3.4) is
still wvalid, Cruden(1974) arrives at equation (3.8) which
describes the strength decay with time for rocks under

uniaxial compression.
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_cr_,:<_JE£_)b ... (3.8)
G 4

o [+
where C% zuniaxial compressive strength at t,
,» O =uniaxial compressive strength at t_ , b =material

£
constant. Kranz and Scholz(1977) have described the time for

failure by a relation as equation (3.9)

Jc QT

f - A 60 (3.9)
&

J% ™%

A, =material parameters. A similar relationship has been
suggested by Mitchel1(1975) as describing the time-dependent
strength of clays.

Any dispute on the actual shape of the decrease in
strength with time for rocks seems to be, at the present
stage, of secondary importance due to the rather limited
range of application(uniaxial state of stress) and its
empirical nature. Further elaborations or assumptions such
as critical crack density must be made in order to include
situations other than uniaxial state of stress and to make

possible its application to engineering works.
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- Long-term strength

Of immediate need to the engineer, however, is the
concept of Jlong-term strength which by definition is the
maximum stress sustained by the rock at which failure will
not occur no matter how long the force has been applied.
This long-term strength has been estimated by direct and
indirect methods.

Griggs(1940) , Potts(1964) ,Price(1964) have suggested
that the long-term strength of rock be represented by stress
below which no steady-state creep is present. Unfortunately,
this assumption cannot be verified experimentally due to the
excessive time necessary for observation. A plot of
secondary strain rate versus stress is helpful in defining
the stress corresponding to a 'zero’ secondary strain rate.

Another method, the dilatancy method, is based on
Bieniawski’s discussions on the brittle fracture of rocks
(Bieniawski(1967) . The Jlong-term strength is identified
with the level of stress at which crack propagation becomes
unstable. Wiid(1970) measured both the stress corresponding
to fracture initiation and at unstable crack propagation for
uniaxial compression tests on dolerite in dry and wet
conditions. The decay in strength with time was obtained by
actual strength tests and an estimative of the long-term
strength was made. The long-term strength seemed to be much
closer to the value of the stress defining crack initiation

than the one at crack instability. Sangha and Dhir(1972)



103

suggest the long-term strength 1is defined by the stress
level at which the incremental Poisson’s Ratio becames 0.50,
which corresponds to the onset of significant dilatancy due

to crack growth.

3.4 Creep behavior under variable stress

The previous discussion on creep of rocks has served to
establish the basic dependence of t ime-dependent
deformations with respect to stress and time under a
constant state of stress. However, these stress-strain-time
relationships are very specific and caution must be
exercized when extending these relationships to the more
common and general case of a variable stress condition. In
the following, the available data on creep of rocks under
variable stress as well as the concepts for their
interpretation are discussed.

The creep of rocks under variable stress has been
investigated by the so-called incremental creep test. This
test has also been referred to as step-creep test or
multiple-stage creep test. An incremental creep test
consists in applying loads to a rock specimen in increments
and the specimen 1is allowed to creep between these load
increments, see Figure 3.14. This test procedure has the
feature of providing several creep stages carried out on a
single specimen which makes it very attractive from an

economical point of view.
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For the analysis of the creep data at a certain stress
level the important question to be answered is how the prior
deformation history of a specimen will influence the
results. Several theories have been developed to analyze
incremental creep , each one with a body of assumptions
associated with this influence.

Hardy(1967) has used Burger’s rheological model and the
linear superposition principle for the analysis of
incremental creep tests under uniaxial compression on
Wombeyan marble. Moreover, Hardy considers a time, t, of
creep between stress increments which is much larger than
the term N2/E2. In this case, (3.10) which represents the
governing equation for Burger’'s model at a constant can

be written as (3.11) for an increment

e)-5_, Z (l ""‘P(‘EJUNZD ot ... (3.10)
/ é; 7
be@). 0o , Ao /) -ézf//\/) Ao . 4
)=+ (- C &t/m) TP E LY

In maKing t much larger than the retardation time(N, /E, ),

the creep deformations at a particular stress are not
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influenced by the delayed deformations from the previous
stages. Hardy also considers that 40 mins. is enough to
erase the ’'memory’ component. However, his results show a
continuous change in the parameters EI,EZ,N,and N2 with the
stress.

Cruden(1871b) extended a structural theory for brittle
creep (Cruden(1970) ) to describe the behavior of a rock
specimen under uniaxial compression when the stress is
raised from S to S after the specimen had been creeping for
a time t, under S . Equation (3.12) describes the
time-dependent behavior of the specimen under Se (in  the
original paper referred to as parent curve) in terms of the
observed behavior after the increment was applied (referred

as daughter curve) and the ratio (S, /S, ).

N-2nm-2

° ° n n-2
£, = (_jf_)[ ___é_.?] . (3.12)
T TEr

!

Q.

Figure 3.15 shows schematically the relations between parent
and daughter curve. Cruden(1971b) has estimated the part OC
of the parent curve using both the observations for the
daughter curve(lat curve AB) and equation (3.12). The
estimate of the parent curve was compared with the

experimental observations, curve 0A, for 16 experiments and
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no significant departure was observed at the 1 per cent
level.

Mitchell et al1(1969) has used the superposition
principle shown in Figure 3.16 to analyze the results of
incremental observations tests on San Francisco Bay mud

under triaxial conditions. This method, described by

equation (3.13), was applied to estimate the creep
parameters, A and « , from equation (3.8) using a single
specimen.

E.‘.(‘-‘z.'l':) é‘. ™ 01(62—0,) o™
E_(;:{—f(é--t’)'(e - 1)+( f) coee (3.13)

According to this method, the creep behavior after the
stress increment 1is independent of the time when the
increment was applied. Mitchell et al(13869) present only one
application of this method and the agreement between the
experimental and predicted results seems to be very good.
However, these authors point out that the parameters,A and

® , obtained by this method may be different from the
ones obtained from a sequence of single-stage creep tests on
different samples.

Other theories have been proposed mainly in connection

with the field of metals. The most common ones are the time
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Figure 3.16 Prediction of incremental creep test by
superposition principle (Mitchell et al(1967))
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and strain hardening theories but they have not been used,

to the best of the Author’s knowledge, to analyze results of
creep data from incremental tests on rocks. However, as will
be discussed in Chapter 6, these theories have been used in
association with analytical studies on the time dependent
behavior of underground openings. Penny and Marriott(1971)
describe the assumptions involved in both theories. Figure
3.17 shows schematically how each theory predicts the creep
behavior after a stress increment. The time-hardening theory
(figure 3.17a) predicts much lower strain rate than the ones
observed for tests on metals (Penny and Marriot(1971)) and
it has the inconvenience of predicting no time-dependent
deformations after the stress increment if the specimen had
been creeping for long periods under a previous increment.
The strain-hardening theory seems to yield a better
prediction of the experimental results for metals{Penny and

Marriot(1971)).

3.5 Relaxation properties of rocks

As discussed earlier in section 3.2 the time-dependent
behavior of rocks is also reflected by the phenomenon of
stress drop under a restrained state of deformations which
has been commonly known as relaxation of stress or simply
relaxation. The use of relaxation tests as a mean for
defining the time-dependent properties of rocks has not been
explored in its full extent and only relatively few data are

available in the 1literature. In the following a review of
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the previous attempts to describe the relaxation properties
of rocks is presented. Lacerda and Houston(1973) presented
data for relaxation behavior of Ygnacio Valley clay and
during these tests the specimens have been Jloaded at a
constant rate of strain varying from 1.1x10-3 to 9x10-5
min-1 and the stress relaxation has been observed from
roughly the same initial stress. Figure 3.18 shows lLacerda
and Houston’'s results and from them the following
observations were made:

a. there 1is a delay in the stress relaxation response;
the logarithm of this time delay being proportional
to the time spent in reaching the initial stress;

b. the stress drop varies in a linear fashion with the
logarithm of time and the slope of such a curve is
approximately the same for all the curves.

The 1linear relationship between stress drop and the
logarithm of time displayed in Lacerda and Houston’'s results
have been observed for other materials such as unvulcanized
rubber,Tobolski(1860) ; Murayama and Shibata{1961) for
alluvial Osaka clay; Vialov and Skibitski(1861) on
overconsolidated clays,etc. From these results the
relaxation behavior seems to be described by equation (3.14)
wheret:delay time ,%=stress associated with t_ ,t = total
elapsed time ,O=current stress and s = slope of the straight

line.
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o= g - s j( ) oo (3.14)

As the elapsed time becomes very large, Murayama and
Shibata’s(1961) results seem to suggest the existence of a
stress level below which there is no relaxation,i.e., curve
versus logt tends to a horizontal asymptotic value.

The work on relaxation of rocks has been very scarce.
Hudson and Brown(1973) ,Bieniawski(1970) and Kaiser and
Morgenstern(1979) have recognized the relaxation of rocks
but there was no attempt to describe the stress drop with
time. Peng and Podnieks(1972) have presented data on the
relaxation behavior of tuff under uniaxial compression.
Unfortunately, these were very short-term tests and the
proposed relationship is valid only for the first 5 minutes

of testing, see equation (3.15).

k-t.exp (-o0i24) ... (3.15)
ted,
where P= load drop , t=time(sec), k=z=constant, t =time

max.
required for load drop to approach asymptotic value.

Another useful characteristic of the relaxation
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behavior of materials is its ability to infer the long-term
strength of a certain material. Vialov(1970) has postulated
that if a relaxation test 1is started near failure, the
equilibrium level reached by the stress can be considered as
the 1long-term strength of the rock. Bieniawski(1970) ,
Pushkarev and Afanasev(1973) , suggest that the Jlong-term
stress strain curve would be obtained by connecting points

representing relaxation stages at different stress levels,

see Figure 3.19.

3.6 Final remarks

The preceeding review has discussed several aspects
related to the time-dependent behavior of rocks and,
whenever possible, similarities with the behavior of other
materials has been pointed out. Based on this review the
following observations can be made:

1. Even though most of the available data on creep of rocks
refers to uniaxial compression tests, reported results
under other stress systems seem to indicate a similar
pattern of behavior.

2. Some investigations have not recognized the influence of
the stress level , rather than the stress value, on the
proposed stress-strain-time relationships. This concept
is of particular importance when comparing results of
creep deformations associated with different stress
systems and also trying to generalize creep

relationships to a multiaxial state of stress.
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Very little information on the influence of stress
history on creep behavior 1is available. Experimental
results describing the creep behavior under variable
stress conditions are needed in order to develop more
general creep relationships.

The 1large number of creep relationships encountered in
the literature seems to be partly caused by a lack of

uniformity in analyzing creep data.



Chapter 4

TIME-DEPENDENT BEHAVIOR OF A JOINTED COAL

4.1 Introduction

In order to pursue the study of time-dependent behavior
of underground openings it was felt necessary to investigate
the time-dependent response of a rock mass when subjected to
a change in stress. It was also decided to concentrate on
the rheological response rather than investigate other
mechanisms, such as swelling, that cause delayed behavior of
a rock. Therefore, the aim of the present investigation is
to assess both the general features of the time-dependent
behavior of a rock mass and the parameters describing this
process at the laboratory scale.

To accomplish this goal two major steps have to be
completed. In the first place, the question of which
material should be used as a 'modelling’ for a jointed rock
mass had to be answered. It was decided to work with a
natural rock-1like material that would possess a well defined
set of discontinuities and yet, where the effects of these
discontinuities could be adequately represented in a sample
of reasonable size; i.e; the spacing between discontinuities
would be in the order of centimeters. For that purpose, coal
from the deposits near Lake Wabamun was selected. A
description of the structure and some properties of this

coal is presented in section 4.2.
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The second question to be resolved was concerned with
the type of tests to be carried out to assess the creep
behavior of the material in question. For that purpose, it
was decided that constant load creep tests under triaxial
conditions would be carried out.

Two main questions were set to be answered, namely:

a. the general pattern of the creep behavior of a
fractured rock-1ike material

b. establishment of a relationship that could predict
the creep deformations under a certain load and load
history.

Eight constant load tests under triaxial conditions
were carried out following different stress histories,
giving a total of about 50 creep stages. To carry out these
tests a simple rig was designed. Section 4.3 presents both
the testing equipment and testing procedures. Section 4.4
presents a summary of results obtained, their analyses and
interpretation, and in section 4.5 the main conclusions as

well as recommendations for further research are given.

4.2 Sample description and material properties

4.2.1 Sampling site

The coal samples used in the present study were
obtained from the coal seams exploited at the Highvale Mine
which is situated on the south shore of Wabamun Lake. The
Wabamun Lake district is west of Edmonton in Tps. 50-54, Rs

3-7, W.5th Mre., and is centered about Wabamun Lake. The
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acess from Edmonton is west via Highway 16.

The major geologic features as well as topography and
drainage of the area in the proximity of the sampling site
have been described by Pearson(1959) and Noonan(1872) . The
bedrock of the Wabamun Lake district is formed by rocks of
late Cretaceous and early Tertiary ages and consists of
sandstones, shales and coal seams deposited in a fresh-water
environment. The coal-bearing unit is continuous at the
Wabamun Lake district and, in most places throughout the
area, it can be divided into two main seams with a few
thinner seams below, see Figure 4.1.

A1l the blocks of coal used to obtain the samples were
obtained from the wupper main seam in the west pit at the

Highvale Mine, see Figure 4.2.

4,.2.2 Sampling procedures

The coal seams at Highvale mine are exploited by a
conventional strip-mining operation. The till cover is
removed by a dragline leaving the coal seam exposed and
light explosive charges are set in boreholes at a depth of
2.4 m on half of the exposed seam to loosen the coal thereby
facilitating the mining operation. The coal is then loaded
into trucks and transported to the Sundance Power Plant, see
Figure 4.2.

Observations of the blast holes exposed along the face
of the bench were made by Noonan(1972) and indicated that

the shatter-zone extended in a fan-like arrangement only
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about 45 cm from the point where the charge was detonated.
Hence, only few, if any, additional fractures would be
created at the top of the seam as a result of blasting.
Blocks from the top of the seam were selected to be brought
to the 1laboratory from which the samples were later to be
drilled. To avoid breakage during transportation only the
blocks without any major apparent fracture were selected.
This rudimentary sampling procedure could be justified
since it was not the aim of this study to produce results
that would be representative of the in-situ coal but rather
to use the samples as a modelling material. However, these
blocks displayed the same structural characteristics and
permitted the cutting of similar sampies to the required

dimensions.

4.2.3 Structure of the Wabamun coal

A detailed structural survey of the upper main seam at
the west pit at the Highvale mine was carried out by
Noonan(1972). Two main sets of discontinuities exist.

The first set consists of bedding planes which, at the
location studied, are horizontal and consist of thin bands
of both bright (vitrain) and dull (durain) coal. Noonan also
described occasional thin bands of shale, discontinuous
laterally and interbedded in the coal. This was also
observed by the Author in one of the samples cut from the
blocks collected at the site. It was also noted that these

coal bands (vitrain and durain) were not continuous
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laterally.

The second set of discontinuities consists of planar,
vertical, discontinuous joints or ‘cleats’ at right angles
to the bedding planes and having an average orientation of N
45° E and average spacing of about 3 cm. The origin of
‘cleating’ in the Wabamun Lake coal was not investigated,
being outside of the scope of this thesis, but the character
of the jointing, i.e., almost perpendicular to bedding
planes and being discontinuous, suggests tensile strains due
probably to regional rebound. As discussed by Evans and
Pomeroy(1966) , these vertical joints tend to concentrate in
the bright bands while decreasing in density or even
becoming non-apparent in the dull bands. This probably
reflects the fact that vitrain is more brittle than durain
and therefore more prone to tensile failure at a smaller
value of strain. The rock bridges along the surface of a
joint could then be associated with the presence of dull
coal. This fact together with the Jlateral and vertical
variations 1in coal properties suggest the difficulties in
estimating the percentage of rock bridges in a particular
joint.

Noonan(1972) also suggested the presence of a
non-planar system of fractures which are not as consistent
as the joints described previously, running prependicular to
both bedding planes and major cleats. These features have
been described in the literature as 'cross-cleats’, e.g.,

Evans and Pomeroy(1966) . The Author observed the existence
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of such fractures along the samples but their density was

low enough to be of no concern.

4.2.4 Material properties

The Wabamun Lake district coal has been classified as a
sub-b1ituminous coal B according to the Canadian
Classification, Pearson(1959). Table 4.1 presents a summary
of some index properties for the Wabamun coal, extracted
from Pearson(1959) and Noonan(1972).

Both deformation and strength properties of the Wabamun
coal have been described previously by Noonan(1972).
Noonan’'s results refer to direct shear tests on both precut
and 'intact’ samples. Shear tests on pre-cut planes parallel
to the bedding planes yielded an ultimate frictional angle
of 30° . The experimental program for 'intact’ samples
included direct shear tests under normal stresses below 1.0
Mpa on samples with discontinuities (bedding planes, joints)
oriented differently with respect to the shearing direction.
Table 4.2 summarizes the peak strength parameters
determined, for several test configurations, assuming the
Mohr-Coulomb criterion as valid. The small values of the
vertical displacement at peak lead to the conclusion that no
geometric component of the shear strength associated with
dilatancy was mobilized.

Additional mechanical properties for the Wabamun coal
have been reported recently by Kaiser(1979) and

Guenot(1979). For Kaiser's data on direct shear tests along
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Table 4.1 Wabamun coal - Summary of index properties

moisture content (%) 21.3 - 26.9
specific gravity 1.58
void ratio 0.340 - 0.484
degree of sat. (%) 85.4 - 100
bulk density (t/m3) 1.36 - 1.38
ash content (%) 11 9 - 14.9
volatile matter (%) 24.4 - 27,4
fixed carbon (%) 38.9 - 42.3

gross (btu/1b) 8000 8720
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Table 4.2 Shear strength parameters at peak for the Wabamun

Sample
configuration
shear plane // bedding;
joints vertical and different

orientations with respect to

shearing direction

shear plane // joints;

bedding vertical and // to

shearing direction

bedding plane vertical and //

to shearing direction;

joints at different orientations

coal

c
(Kpa)

386 - 524

172.5

117.3 - 345

(degree)

40.5 - 41.7

67.8

64 - 65.5
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joints, the Mohr-Coulomb criterion was also assumed as
valid. Moreover, it also assumed that the internal friction
was fully mobilized at peak and its value being numerically
equal to 300, i.e., the ultimate frictional angle determined
by Noonan(1972) on precut samples. Cohesive qomponents were
determined as ranging from 0.85 - 1.92 MPa for normal
stresses between 1 and 4 MPa. The variation in the cohesive
component at peak strength was ascribed to differences in
the degree of continuity of rock bridges along joints
(shearing planes). As in Noonan(1972) geometric components
such as dilation were neglected.

Kaiser(1979) also discusses the behavior of Wabamun
coal under triaxial tests at low confining pressures. Sample
configuration was such that joints were oriented at about 35
with the vertical and bedding planes parallel to the major
principal stress. The reported modes of failure for all the
samples indicate that generally the shear surface followed
the joints with tensile fractures developing along the
bedding planes in one occasion. Degrees of separation?® or
continuity of the joints estimated by eye after the test
(Kaiser(1979) , ranged between 50% - 80%. Again, the
Mohr -Coulomb criteribn was used to analyze the strength data
and the frictional component was assumed to be 30° . The
cohesive component varied between 0.7 to 2.05 MPa at the
peak strength. Young’s modulus obtained from the linear part

of the stress-strain curve varied from 870 - 1300 MPa.

3Degree of separation herein is defined as the ratio between
area of open joint and total area.
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Guenot(1879) presents data for high confining pressure
triaxial tests ( o : 3.5 to 10 MPa) on 3.71cm diameter
samples and joints at different orientations with respect to
the vertical stress. Using the Mohr-Coulomb failure
criterion, Guenot suggests a cohesive component between 1.9

and 2.4 MPa assuming a frictional component of 300.

4.3 Testing procedure

4.3.1 Sample preparation

Large 1lumps of coal were collected in the field, as
described in section 4.2.2, and, after the arrival at the
laboratory, these blocks were coated with latex to avoid
drying and then stored in a moist room. Cylindrical cores of
about 6.90 cm in diameter and different length were drilled
from these blocks. A laboratory drilling machine with a core
barrel of about 7.5 cm in external diameter and
water-operated was used for the drilling operations.
Reaction against the ceiling was provided to the drilling
machine 1in order to avoid unwanted vibrations of the
core-barrel that could damage the core.

A1l the samples were drilled with their long axis
parallel to the bedding planes and at an angle of 30 with
the joints. This configuration would correspond to a
horizontal sample in the field. Figure 4.3 shows the
relative orientation of discontinuities and sample axis

during drilling operations.
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Many problems occurred during the coring operations.
The high degree of fracturing encountered 1in zones inside
the blocks prevented, in many cases, the sucessful coring of
the samples because of breakage of the core. Also, attempts
to drill cores perpendicular to the bedding planes failed
consistently due to shearing and separation along these
planes.

After removing the core from the core barrel, the
samples were cut to a convenient length using a water-cooled
circular diamond saw. Two criteria were used in selecting
the length of the samples: first, the ratio length/diameter
was Kept around 2.5 and second, it was attempted to keep at
least one joint intercepting the sampie along its length and
to avoid joints intercepting the ends. Due to the small
spacing of the joints the latter was not always possible.

The ends were further trimmed in order to ensure a
minimum of non-parallelism between the ends. A sand-paper
belt was used initially without great sucess because pieces
at the periphery were broken off very easily, especially
when joints intercepted the ends. This operation was then
carried out by manually sanding the ends. The ’'parallelism’
of the end surfaces was controlled by measuring the length
of the sample in at least four different positions and in
all cases it was possible to 1limit the maximum deviation to

less than 0.05 .
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4.3.2 Testing equipment

A simple double-lever arm rig capable of applying a
constant axial load was designed and built for the series of
creep tests reported herein. The decision to select a
mechanical system was based mainly on simplicity and the
time for construction. The rig consists of a reaction frame
and two lever-arms (I-section) which would transfer loads
applied at their ends through a loading ram to the sample.
The mechanical magnification for the double-lever arm system
was about 10. Figure 4.4 shows a sectional view of the rig
when assembled.

A conventional triaxial cell for 10-cm diameter samples
was modified in order to accommodate 7-cm diameter samples
by changing both top cap and bottom pedestal. Special
Thompsom linear bushings were used to guide the loading ram
with minimal shaft friction. The triaxial cell used had a
capacity of withstanding confining pressures up to 1380 Kpa
and provision for drainage of the sample provided at both
top-cap and bottom pedestal.

A unit for monitoring axial load, displacement and
confining pressure compliemented the laboratory set up. This
unit consisted of a Fluke data-acquisition system with a
printer unit, a recording device (Techtran #8410), capable
of storing all the information on a cassete tape, and two
power-supplies to provide input voltage to feed the
measuring units. The axial displacements were measured with

linearly variable differential transformer (LVDTs), the
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axial load was measured with a temperature compensated
electrical resistance strain gauged load-cell and the
confining pressure with a transducer. These units were
calibrated regularly and no change in the calibration
factors was observed during the experimental program. The
whole apparatus was kept in a temperature and humidity
controlled room capable of maintaining the temperature

variations within about O.5°C and the humidity within 5%.

4,3.3 Testing procedures and sample properties

Specimen weight, dimensions and a sketch of externally
visible discontinuities for all the samples were recorded
prior to testing. Water content from pieces trimmed from the
ends of the core were determined and, for some samples, the
water content at the end of the test was obtained by using
the whole sample. Each sample prior to set up was enclosed
within a filter cloth and a double rubber membrane as an
extra precaution to avoid leakage in case one membrane was
punctured during the test. Double O-ring and screw-clamps
were used at each end to provide extra sealing along the
contacts between membrane and both pedestal and top cap.

After the application of both confining and
back-pressure, the sample was allowed to consolidate for a
period of 24 hrs. For all tests a small axial load was
applied to seat the 1load plattens against the sample.
Following these preliminary stages, the axial load was

increased up to the level where a creep test was to be
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carried out. The recording of the axial displacement was
initiated in all the cases within 10 sec after the load was
increased. Readings were taken automatically by the data
acquisition system and the time interval varied throughout
the test. At the early stages, readings were taken at every
minute up to the first 10 min of test, changing to 10 min
intervals up to the first 2 hrs. Subsequently, the
strain-rate was small enough to allow for a large time
interval and then, readings were taken at every hour up to
the end of the test.

For the multiple-stage creep tests, after a creep test
terminated, the load was again incremented up to a new level
and another creep test was carried out. This procedure
continued until failure occurred. For the single-stage creep
tests, after the creep test terminated, the sample was
unloaded and the creep recovery was observed for a maximum
period of 24 hrs. After that the sample was loaded, at a
high rate of loading, up to failure.

Table 4.3 summarizes the index properties and the
sample dimensions for the creep tests. The variation of
water content, void ratio and unit weight displayed in this

Table 1is well within the previously reported data by

Noonan(1972) and Kaiser(1979). For all the calculations a
specific gravity of 1.58 was assumed as suggested by
Pearson(1959). Also indicated in Table 4.3 are both

confining and back pressure for each test as well as

estimated vaiues for maximum deviatoric stress and Young’ s
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Table 4.3 Summary of sample and test characteristics
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moduli for the sample tested. These moduli correspond to the
linear section of the stress-strain curves, see fFigures 4.5
to 4.9.

Figures 4.5 to 4.9 present the stress-strain curves for
the tests reported herein and the stress level at which
creep tests were carried out are also indicated in these
figures. The stress history followed by each particular test
is indicated in Figure 4.10.

The values of maximum deviatoric stress indicated in
Table 4.3 constitute the best estimate extracted from the
corresponding stress-strain curve for each test. Unlike a
strain controlled test, a stress controlled test does not
allow an accurate measurement of stress and associated
strain near failure, let alone any measurement of the post

failure region.

4.4 Creep behavior from laboratory tests

4.4.1 Analysis of creep data

The analysis of a constant deviatoric stress test
consists basically of two steps: first, data-handling or
processing of the obtained raw data and second, the
presentation and interpretation of the processed data. The
overall shortening of the sample, 4L , was measured at
convenient time intervals after the load application and
transformed into engineering axial strain by the expression
e=0AL/L , where L represents the initial length of the

sample. The variation in strain with time can be displayed
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graphically by several plots as & vs. t, £ vs. logt and
log £ vs. logt, the most common one being & vs. t. At this
stage, it is convenient to make a few remarks about this set
of data, i.e., the creep strains and elapsed time.

The time-dependent strains during a creep test cannot
be evaluated with complete confidence. Figure 4.11 shows an
idealized total strain versus time curve for one typical
creep test where tirepresents the elapsed time between the
load application and the time when the first measurement was
observed, (€,) . The value of t depends on the nature of the
available measuring unit and the methodology of the test.

For all tests reported it was possible, in using an
automatic reading and recording unit (data acquisition), to
cut this first reading time down to less than 15 sec.
However, the assumption that (&) - C?@L wou id be
equivalent to an 'instantaneous deformation’ cannot be
supported. Experimental data obtained by Evans(1958) at high
rates of loading suggest that the amount of time-dependent
strain involved in the value of (QJV'(E{)O can reach the
40% range. Evans reported variations from 15%, 19% and 40%
for respectively granite, concrete and sandstone. Based on
Evans’ results, Cruden(1969) suggested the range of 0 to 40%
of the 1immediate deformations as being part of the
time-dependent strains. Therefore, caution must be exercised
when analyzing data based on creep strain as they are
normally underestimated.

The interpretation of creep data can be done basically
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by two approaches: (a) in terms of creep strains or (b) in
terms of strain rate. This step consists of finding a
convenient mathematical relationship involving stress level
and elapsed time to fit the experimental data. The use of
creep strain data or analysis 1in terms of strain is
subjected to the restrictions imposed by the uncertainties
with respect to the time-dependent component of strain as
discussed above. On the other hand, the analysis of creep
data in terms of strain-rate involves the estimation of the
strain-rate from the initial data. The strain-rate at a
certain instant of time is independent of uncertainties with
respect to the actual amount of creep strain provided it is
treated as the rate of change of total strain (which is
Known accurately).

The strain-rate at a particular instant of time, t, is,
by definition, the first derivative of the function relating
the total strain, £, with the time. Since the total strain
is Known only at certain times, t , the estimation of the
strain-rate has to be done by numerical differentiation.
Figure 4.12 presents a typical set of measurements,
(¢, {£3 , from which strain-rate has to be estimated. The
simplest approach would be to approximate the strain-rate at
time t*=(tH+ t.)/2 by (Eg-ém\/(ti— Hﬂ%

This approach, however, presents some difficulties.
Small fluctuations in the output voltage of the LVDT and
also temperature caused some observations of strain at time

ti to be smaller than the observations at time, t , which
-
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corresponds to a negative strain-rate which is not
physically possible for the present test conditions. This
started to happen more frequently when the increase in
strains during the interval [él-, z“-_,] was of the same order
of magnitude as the accuracy of the measuring system. A
possible way of avoiding such inconvenience 1is to
progressively increase the time interval be tween
observations in order to compensate for these fluctuations
in the measurements.

Cruden{1969) proposed a technique which ‘corrects’ the
original data in the following way. If a situation occurs
that € < (:“,_l , a new observation &%= (c;+e, /2 is defined
associated with a time += ({.+4.)/2 | The new observation,
Ef is given a weight, w*, which is equal to the sum of W;
and W For the original data, all the observations have a
weigth, W, equal to unity. This process is followed until
all the 'observations’ are such that every strain is greater
than the previous ones. From the new set of observations the
strain-rate is calculated using the simple approach
mentioned earlier.

A new technique was introduced which allowed the
estimation of the strain-rate using the original set of data
without having to correct them. This technique consists of
approximating the strain-rate in the interval (Eq, thz,
i.e., at t.=( 54+E“)/2 by the slope of a least-squares
straight line fit to the observations at Eﬂ,t(and Ew. As the

time of testing increases, an interval such as (t ,t ) can
-2
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be used and in this case 5 points are involved in the
regression analysis. The computer program written to handle
these calculations was set up in such a way that 1lines of
zero or negative slope were neglected.

This method proved to be very sucessful smoothing the
creep data obtained, as indicated by the relative small
scatter observed in plots of strain-rate vs time to be
discussed later. Strains rates obtained by this method were
compared with the ones obtained using Cruden’s approach
described previously and similar results were obtained but
with a small scatter. For all future reference in this
thesis, this technique will be referred to as the

linear-regression method.

4.4.2 Single stage creep tests

This section describes the results and interpretation
of nine single-stage creep tests carried out under a

triaxial state of stress.

4.4.2.1 Typical results

Natural materials usually exhibit considerable
variations in properties between samples. Carefully
conducted experiments on creep properties of materials have
indicated that in spite of all the precautions with respect
to sample quality, reproducibility and testing procedures
the variations between results can be very large, e.g., Wu

et al1.(1978).
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Without entering into considerations about the
mechanisms leading to creep to explain the quantitative
differences in a creep experiment program, it is reasonable
to assume that the creep response is greatly affected by the
structure of the material. In particular, for the highly
fractured coal used in this experimental program one should
expect quantitative variations between samples.

Based on these considerations, the major aim of the
experimental program was to investigate the general pattern
of creep response and the possibility of expressing this
behavior in a simple relationship suitable for engineering
applications. For all the results obtained, the raw data
were reduced and strain-rate was estimated according to the
linear-regression method described in the previous section.

In order to avoid any preconceived idea about the
particular creep relationship to be used in attempting to
match the experimental results, logarithmic plots of the
axial strain-rate vs time were prepared for all tests
including the ones corresponding to first-stage loading in
the multiple-stage creep tests. This form of presenting the
results is particularly suitable for analyzing the general
pattern of creep behavior of a particular test.

Results of a typical test are displayed in Figure 4.13
as curves of strain vs time and Jlogarithm of strain-rate
versus time. Even though one could be tempted to assume that
a region of constant strain-rate had been reached by

considering strain-time data on Figure 4.13a, the
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strain-rate versus time plot shows a continuous decrease of
the strain-rate with time.

As discussed in Chapter 3, the methods to analyze creep
data can be divided into three categories: rheological
methods, physical theories and empirical methods. The
application of physical theories such as dislocation, rate
process or structural theories of creep to the
time-dependent behavior of rocks which are heterogeneous and
complex in composition and structure would require a very
sophisticated experimental program. The use of rheological
model (e.g., Kelvin, Burgess model, etc.) requires
determination of a large number of parameters thereby losing
a valuable element of simplicity. The empirical approach
constitutes a natural alternative which could be used
readily for engineering purposes and which requires only a
limited number of parameters to describe behavior during a
creep test.

The empirical approaches assume the existence of three
different creep processes, the so-called transient or
primary creep, steady-state or secondary creep and tertiary
creep, acting independently and at the same time, which can
be included in a single expression describing the creep
deformations or creep rate under a constant state of stress

as equations (4.1) and (4.2).



éc_:" &P'.'éss"'&{ (41)
e = &+ & + E (4.2)

where,
S Ec = creep strain and creep strain rate
P E? = primary creep strain and strain rate
%s 'grs = secondary creep strain and strain rate
ST g{ = tertiary creep stréin and strain rate

The tertiary component of creep 1is normally not
considered in empirical relationships. This is primarily due
to the lack of experimental data on this component. Equation
(4.2) can be simplified and rewritten as equation (4.3)

o

which now assumes that both components p and €& are a

Mo

function of stress. For a particular value of stress, o, the
question is to determine the function f;(t) which best

describes the experimental data.

£ =fE- LM+ 36 (4.3
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From logarithm plots of strain-rate versus time the
secondary creep rate, g'(c), is indicated by an asymptotic
value approached at large times. Alternatively, other forms
of plots of strain-rate versus time could be used for the
same purposes. Rigorously, at any instant of time both
components act independently of each other but their
relative importance for the overall process at small times
and at large times are very different. At small time the
secondary creep rate has a small influence on the creep
strain-rate while at large time it overcomes this difference
and must be considered. On the other hand, the separate
existence of a secondary creep stage has been severely
criticized , Mitchel1(1975). Even for materials such as ice
and frozen soils the concept of secondary creep rate has
been subjected to criticism, Roggensack(13877).

The logarithmic plots of strain-rate versus time for
eight different tests at various confining pressures
displayed in Figures 4.14 to 4.17 indicate no sign of an
asymptotic value of strain-rate during the time the test was
carried out. The longest test was carried out for about 120
hrs. Therefore, no attempt was made to separate the primary
and secondary component of the creep strains for the tests
reported in (1is section.

In Chapter 3 the use of power law or exponential
representation of strain rate versus time was discussed and
it was concluded that the power 1law relations are more

suitable for the purposes of this research. The power law
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relationship between strain-rate and time is represented by

1 1

equation (4.4) where € = strain rate and ‘a’ s a
constant for a certain stress level.

° - m

E= a-t (4.4)

This equation is represented by a straight 1line 1in a
logarithm plot of strain-rate versus time. The pattern of
the experimental data displayed in Figures 4.14 to 4.17
seems to suggest the use of the power law to fit these
results. A computer program to carry a regression analysis
based on the least-squares method was employed to analyze
the data. The results of these regressions are summarized in

Table 4.4 which displays, for each test, the two

1 !

coefficients, 'a’ and 'm', characterizing the power law.

The goodness of fit indicated by the coefficient of
correlation for most of the tests indicates the validity of
the power Jlaw as providing a good approximation to the
experimental data. For test CT3, which indicates the Jowest
9oefficient of correlation, the output voltage at the
data-acquisition was not set properly at the beginning of
the test and there was a loss in accuracy of the results due

to this fact.
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Table 4.4 Single-stage creep tests - Summary of regression

Test

cTi
cT2
cT3
cT4
cTe
CT7/st1
cT7/st2
cT8

CcT9

Dev. Stress
(c| = cs) vma

0.70
0.50
1.60
2.20
2.18
2.88
6.00

3.57

analysis

Stress level
(*)

. 184
A
.26
.58
.44
.43 - .47
.95
.63 - .67

.60

(*) calculated based on estimative

displayed in Table 4.3

a
(10-4/min)

o 0 o0 O o o

Q

.275
.240
. 188
.297
. 301
.2614
. 100
.268

.368

o O © O

o O O ©o

.896
.856
.819
.882
.040
.93t
.810
.919

.994

coefficient
correlation

- 0.976
.991
.894
.971
.958
. 969
.955

.992

|
o 0O © o 0o O o O

.986
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The two parameters, ‘a’ and 'm’, representing the power

law are constants for a certain stress level. The parameter

’ 1

a’ represents the potential for creep, or strain-rate at

unit time, during or under a certain stress level whereas
7

'm’ represents a hardening-parameter describing the rate of

decrease of the strain-rate with time.

1 7

The hardening-parameter m' varied between 0.82 and

1.07 as tabulated and there was no indication of any

! 1

relationship between m' and the stress level as indicated
in Figure 4.18. Based on these results an average value of
0.9 1is recommended for the Wabamum coal. This result seems
to be in agreement with other investigations which suggest
that m 1is very much independent of the stress Tevel,
e.g.,5ingh and Mitchel1(1968) and Bishop and Lovenbury(1969)

The scatter in the results certainly can be associated
with the differences between samples. However, it may be
argued that Figure 4.18 shows a weak dependence on stress
level. Table 3.2 presents a summary of m-values reported in
the Tliterature for rocks and soils which indicates a range
of variations similar to the one obtained here.

Even though the experimental data are not sufficient to
allow more elaborate discussion, it is important to realize
the qualitative value of the reported findings. A highly
fractured rock-like material can also be described by a
power law which suggest that whatever mechanism has lead to

creep, the overall effect can be described by a simple time

law. This result comp lements the observation of



1.3

1.2

1.1

E 10

2 0.9

[T}

£

o 0.8

£
0.7
0.6
0.5

Figure 4.18 Variation of parameter m with stress level

Stress level

1l x:test CT6
' X
i 8 o}
o
+ [0 o
e
L ®
0 0.2 04 0.6 0.8 1.0

162



163

Cottrel1(1952) who discusses the validity of a power law for
a wide variety of materials.

As indicated in equation (4.4), the primary creep rate
has been considered as a combination of two terms, one
depending only on the elapsed time, t , and another
depending on the stress level, ‘a’ . From the previous
discussions in Chapter 3, two types of stress functions have
been used to describe the time-dependent deformations of
geological materials, i.e, the power law (Deere and
Boresi(1963); Cruden(1971)) and the exponential law (Singh
and Mitchel1(1968) and Wawersik(1972)) respectively
represented by equations (4.5) and (4.6).

a.:k(“; > ... (4.5)

2= 4Ae ... (4.8)

where K,n and A, « are material constants. The parameter
O in equation (4.6) represents the stress level. Singh and
Mitchel1(1968) have shown that equation (4.6) can actually

be obtained by convenient simplifications of a more general
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equation based on the rate process theory.

The variation of the parameter ‘a’, tabulated in Table
4.4, with the stress level is displayed in Figure 4.19. This
figure also includes some of the results of multiple-stage
tests. The general pattern of the data suggests a trend very
similar to the simplifications proposed by Mitchell,
especially the fast increase of the parameter a for values
of & above 80%. Unfortunately, the variation for low values
of T could not be observed from the experimental data and
the only two tests carried out at values of o less than 20Y%
have given a rather high strain-rate. These high
strain-rates were probably caused by crack closure since,
for these two tests, a sequence of loading and unloading was
not applied. The departure from the straight line indicated
in Figure 4.19 by the dotted line simply means that a
progressive reduction in strain rate for values of stress
level approaching zero must be expected.

The limited number of tests and the scatter present in
Figure 4.19 certainly precludes a more conclusive discussion
about the stress function controlling the creep behavior for
the fractured coal. As a first approximation, the results
seem to indicate a promising similarity with experimental
data reported for soils, Singh and Mitchell1(1968), and
therefore, eligible for representation in terms of an
exponential law. Values for A=1.0x10-5/min and '’ & ‘= 1.9
are recommended for the Wabamum coal.

Combining both equations (4.5) and (4.6) one obtains
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equation (4.7) which, from the previous discussions,
represents a good approximation for the creep data reported

here.

The use of empirical equations such as (4.7) to
describe the creep behavior of a natural material represents
a great simplification of a highly complex process and no

attempt was made to link the material parameters, 'A’', ‘&',

] 1]

and m with physical properties. Any further discussions
about the validity of such an equation to describe creep
behavior must be put in an engineering perspective. Such an
equation fullfils the basic requirements of engineering
applications, i.e, describes the behavior of the materials
for a large range of stress level, 20% to 80%, using a small
number of parameters determined from a reduced number of

experiments.

4.4.3 Multiple-stage creep tests

This section describes the results and interpretation
of five multiple-stage creep tests under different confining

pressures, carried out on the jointed coal for a total of 38
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creep stages. The testing procedures followed have been
described in section 4.3.3. The aim of these tests has been
to provide general information concerning the response of
the material when subjected to a change in stress after the
sample had been creeping for a certain period of time under
a lower stress level,.

This question is a necessary consideration in order to
establish creep relationships which are able to predict the
creep behavior under a general stress history. The tests
discussed next constitute only a first step towards this

goal.

4.4.3.1 Typical results and discussions

Indicated in Figure 3.14 is an idealized representation
of a multiple-stage creep test. The sample is loaded up to
an arbitrary stress level and allowed to creep for a certain
period of time. Then the stress level is increased and again
the sample is allowed to creep under the new deviatoric
stress. Figure 4.10 indicates the stress history followed by
these tests.

For each creep stage the axial deformations were
recorded and reduced in a manner similar to that reported in
section 4.4.1., 1i.e., the strain rate was estimated and
logarithmic plots of strain-rate versus elapsed time after
the stress level was incremented were prepared. Figure 4.20
displays a typical result, test CT4, showing the variation

of strain-rate with time after the stress level was
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increased from 58% to 79% of the maximum deviatoric stress.
The sample had been creeping for 4 days before the stress
level was raised. _

For most of the stages a great similarity was observed
between the results of the variation of strain rate with
time and the equivalent results for the single-stage creep
tests reported in section 4.4.2. The strain-rate showed a
continuous decrease with time and also the pattern of this
decrease seemed to suggest the same power law relationship
obtained for single-stage creep tests. These findings are in
full agreement with previously repor ted results of
multiple-stage creep tests on rocks (Marble and sandstone;
Cruden(1971b)) and soils (Semple et al.(1973)).

For the interpretation of the results of a
multiple-stage creep test, i.e., to relate the results of
the several stages with each other, some additional
hypotheses are necessary. These hypotheses basically consist
in defining the influence of the previous stress level,
stress increment and elapsed time before the stress level
was raised.

Initially the experimental data were analyzed assuming
that, for each creep stage, equation (4.4) would be a
reasonable approximation for the data. A regression analysis
was performed in order to obtain the parameters a and m
describing that equation. The results for all the creep
stages are summarized in Table 4.5 which also shows the

coefficient of correlation for the regression. For most of
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the creep stages the tabulated results indicate that
equation (4.4) provides a good approximation for the data,
e.g., tests CT1, CT4, CT6.

However, some of the creep stages, especially for test
CT2 equation (4.4) provided a poor representation of the
variation of the strain-rate versus time. This occurred
consistently every time the stress increment was very small
which suggests that the new stress level did not erase or
overcome the effects of the previous increment.

Another interesting feature about the results of this

] ’

interpretation was that the value of the parameter m lay
within the same range obtained for the single-stage creep

tests, see Table 4.5.

4.4.3.2 Stress-strain-time relationship

The previous discussion lead to the conclusion that the
power law given by equation (4.4) provided a good
approximation for most of the creep stages. However, this
does not answer the question about the relationship between
stages , i.e., how one stage can be predicted from the
previous ones, if this is possible.

Several theories have been developed to take into
account the influence of the stress history upon the creep
behavior of a material. From the study of creep in metals,
theories such as time-hardening and strain-hardening have
been suggested. Penny and Marriott(1971) provide a good

outline of these theories.



Table 4.5 Summary of multiple-stage creep tests

Test

CT1H
cs1
cs2
cs3
cs4
csS
csé
cs?7
cs8

CT2
csi
cs2
cs3
cs4
cs5
cs6
cs7
cs8
cs9
cs10
csii
csi2
csi3
csi14
csis
csi6
csi7
csi8
csi19
cs20
cs21

CT3
csi
cs2
cs3
cs4
cs5

CT4
cst
cs2

CTe
csi
cs2
cs3

Dev. Stress
(cn - OS).KPI

700
1000
1300
1500
2000
2500
2900
3300

500

630

200
1100
1350
1600
1800
2300
2350
2650
2850
3000
3200
3270
3240
3550
3700
4000
4350
4500
4640

1600
2900
3950
4650
5100

2200
3000

2200
3250
4700
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Stress level ] m coefficient

(10-4/min) correlation
. 184 0.275 0.896 - 0.976
. 263 0.058 0.714 - 0.844
. 342 0.152 0.939 - 0.923
. 394 0.071 0.816 - 0.896
.526 0.526 0.960 - 0.953
.658 0.192 0.953 - 0.927
.763 0.097 0..745 - 0.949
.868 0.370 0.965 - 0.967
107 0.240 0.856 - 0.991
135 0.058 0.746 - 0.898
194 0.114 0.810 - 0.942
237 0.082 0.812 - 0.95¢
291 0.114 0.843 - 0.954
345 0.065 0.763 - 0.912
. 387 0.055% 0.703 - 0.928

A de ok ok ok ok ok ok data not recorded ok ek ok ok ko

.506 0.030 0.947 - 0.512
.5714 0.045 0.719 -~ 0.916
.614 0.043 0.680 - 0.870
.646 0.020 0.609 - 0.942
.689 0.033 0.653 - 0.916
. 704 0.016 0.600 - 0.890
.698 0.018 0.626 - 0.880
.76% 0.030 0.642 - 0.874
.797 0.038 0.684 - 0.962
.862 0.090 0.744 - 0.946
.837 0. 107 0.740 - 0.990
. 970 0.133 0.625 - 0.993

** increment caused immediate failure ***+t*%*
0.264 0.188 0.819 - 0.894
0.479 0.176 0.866 - 0.880
0.652 0. 169 0.843 - 0.957
0.768 0. 140 0.877 - 0.784
0.842 0.229 0.812 - 0.966
0.578 0.297 0.882 - 0.974
0.790 0.474 0.924 - 0.994
0.444 0.301 1.040 - 0.958
0.656 0.381 1.060 - 0.959
0.950 {1.010 1.070 - 0.958
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Alternatively, the incremental form of a rheological
model, generally applying the principle of superposition,
has been used for rocks, e.g., Hardy(1967). More elaborate
procedures are described by Cruden(1971b) who applied three
formal theories and one structural theory of creep to
describe the results of incremental creep tests on Marble
and sandstone.

Equation (4.8) and (4.9) represents the time-hardening
and strain-hardening theories associated with the power Tlaw
described by equation (4.4). Figure 3.17 illustrates how
these theories consider the effect of the stress history
assuming the behavior under a single-stage test. For
time-hardening theory the behavior after the stress level is
increased, can be represented by curve CD whereas the
strain-hardening theory states that curve BD 1is a better
approximation for the creep behavior for the second creep

stage.

E = A e t ... (4.8)
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The strain-hardening theory expresses the current
strain-rate as a function of the current strain, i.e., after
increasing the stress to another level, the strain-rate
follows the original curve but 1is corrected for the
accumulated creep strain which occurred during the previous
stage. As discussed previously in this Chapter, the values
of creep strains are not as reliable as the strain-rate due
to the difficuities in establishing the instantaneous
strain. The use of the strain-hardening theory to adjust the
experimental results would be subjected to a certain
discrepancy once the key parameter, the accumulated creep
strain could not be defined accurately. Therefore, the use
of this theory was disregarded while analyzing the results
of the step-creep testé reported herein.

Both time-hardening and strain-hardening theories were
discarded when analyzing the results of the multiple-stage
creep tests. Both theories predict a strain-rate versus time
behavior which is strongly non-linear on a logarithm plot
and therefore incompatible with the observed linear results.

In order to study the possible relations between creep
stages, an incremental form of equation (4.7) associated
with the superposition principle was adopted. Figure 4.21
displays the concepts involved in translating the creep
strain curve after the stress increment in terms of the
creep strain curve corresponding to the previous stress
level('memory function’) and the stress increment. Equation

(4.10) describes the creep strain rate at any time, t, after
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the increase in stress.

' As -m
€=Ae t 4 Ae (t-t) ... (4.10)

To analyze the data for a particular multiple-stage
creep test the following procedure was adopted. Initially,
the results of the first creep stage are analyzed following
the methodology in section 4.2.2 and equation (4.9) is
fitted to thé data. At the end of this_step, the parameter m
is Known as well as the term 443“07 for the particular
value of o .

Next, the results of the subsequent increment are
reduced and the strain-rate versus time plot is obtained.
Equation (4.10) can be used at a particular value of (t - t
) and a second equation is obtained which allows for the
determination of a set of parameters ‘A’ and '&'. Equation
(4.10) can be extended to include more increments and
therefore all the other other stages can be predicted.
During this process the parameters A, m and & are
assumed constant for any increment. This hypothesis will be
discussed later in this section.

Table 4.6 summarizes the creep parameters obtained by

using this method of analysis. Figures 4.22 and 4.23 show
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typical predictions of the experimental data using equation
(4.10) and the tabulated parameters. These results seem to
indicate that such an approach predicted the experimental
data rather well. In Appendix C, the results of the
predictions of the experimental tests by using this approach
are indicated in Figures C1 through Ci1. In particular for
the test CT3 and CT1 the predictions are acceptable for
stress levels up to 80% of the maximum deviatoric stress.

However, two points must be considered before any
further discussions. First, the parameters tabulated in
Table 4.6 must be compared with the ones obtained in section
4.4.2 for single stage tests and second, the particular
stress-history followed by the multiple-stage tests must be
considered.

As indicated in Table 4.6, the estimated parameters,
‘A and ' & ', for tests CT! and CT2 showed a large
departure from the predicted ones using single-stage tests.
This departure reflects the fact that for stress levels
below 20%, equation (4.7) does not provide a good
approximation for creep behavior if the parameters are
maintained.

The behavior at low stress levels can be represented by
a power law but with a different set of parameters. This
fact indicates that in order to obtain creep parameters from
multiple-stage creep tests, the increments of stress level
as well as the initial stress level (first creep stage) have

to be greater than 20%. Test CT3 indicates this observation.
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creep strain

Figure 4.21 Schematic representation of superposition
principle for incremental creep tests
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btained from
ary of creep parameters o
fable 4.6 Sumlt){ple -stage creep tests

Test m A alpha
(10-6/min)

CT1t .90 4.036 10.51

CT2 0.85 . 5.531 13.44

CcT3 0.82 16.430 0.52

(*) tests c7¢ and CT6 were analyzed as
single-stage creep tests
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This finding represents a reduction on the efforts to
establish creep parameters by carrying out several
single-stage creep tests on different samples.

In general, one should expect that the creep behavior
of a material is greatly influenced by the stress history.
For the tests discussed here, a very particular stress
history was followed. For each creep stage enough time was
allowed for the strain-rate to decrease by a factor of more
than 1000, which implies a comparatively slow process by the
end of the stage. This means that after a new Jload
increment, the contribution from the previous increment to
the new rate will not be felt at the early stages of the
test.

In order to extend the validity of equation (4.10) to
describe incremental creep tests, more experiments have to
be carried out following other stress histories such as, for
instance, decreasing the time allowed for creep under a

particular load.

4.4.3.3 Time-dependent fajlure process

As 1is well Kknown, rock specimens subjected to a
constant and high stress level will eventually fail after a
certain period of time. The failure process under creep
conditions 1is characterized by an increase in the
strain-rate and this stage is known as tertiary creep.

Very few quantitative results on failure of rocks under

creep have been reported. Work by Wawersik(13973) and Kranz
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and Scholz(1977) seem to suggest a criterion to mark the
onset of the failure process but no attempt was made to
describe the process afterwards.

In order to investigate the time-dependent failure for
coal, all the test reported here were carried out to failure
by adding stress increments. Unfortunately, in only one of
the experiments, test (T2, could the failure process be
observed within a reasonable length of time, i.e., about 400
min. For all the other tests, the samples failed abruptly
after the load increment was applied.

Two important features could be observed during the
analysis of these tests. For all the tests which failed
abruptly, the strain-rate was still decreasing with time at
the moment of the load application. For the particular test
during which failure could be observed, the zone of
transition be tween the regions of decreasing and
accelerating strain-rate was very narrow, Figure 4.24.

It is of particular interest to compare these results
which reported failure processes for soils. Test results on
both overconsolidated and normally consolidated clays have
indicated that the transition zone between decreasing and
increasing strain-rate presented the same feature, e.g.,
Singh and Mitchel1(1968) and Bishop and Lovenbury(1969).
Even though there is a scale effect on logarithm plots of
strain-rate versus time on this interpretation, these
results seem to support the concept of equation (4.7) being

applicable up to the onset of failure. However, more
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experimental results are needed before a more substantial
body of conclusions can be drawn with respect to the
quantitative representation of the time-dependent failure

process in rocks.

4.5 Final remarks and recommendations

The previous sections described a limited experimental
program on the creep behavior of a jointed coal. The
analysis of the data have suggested a very close qualitative
similarity between the creep behavior of this coal and other
materials. Quantitatively, it seems that an empirical
relationship as equation (4.7) describes the creep behavior
of the jointed material.

This relationship was shown to be valid for a region of
stress level between 20% and 80% of the maximum compressive

strength and it also has the advantage of being described by

| only three parameters easily determined in an experimental

program. For stress levels below 20% and above 80%, the
behavior of the material cannot be described by the same set
of parameters.This suggests, at least, three different modes
of behavior which need to be distinguished more clearly.
Time-dependent strains were observed under different
stress histories and the results were reasonably
approximated by an incremental form of equation (4.7) and
the superposition principle. A method for determining creep
parameters from multiple-stage creep tests was presented and

it is suggested that the results can only be compared with
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single-stage creep tests if the increments are within the
range of stress from 20% to 80% of the short-term strength.
Further investigations are necessary to evaluate this
question mainly with respect to the influence of the stress

history.



Chapter 5

REVIEW OF ANALYTICAL STUDIES ON THE TIME-DEPENDENT BEHAVIOR
OF UNDERGROUND OPENINGS

5.1 Introduction

This Chapter presents a survey of the currently
available solutions for the time-dependent behavior of
underground openings. This survey concentrates on both
reviewing and summarizing the main body of assumptions
introduced in order to solve this class of boundary-value
problems.

In section 5.2, the modelling of the time-dependent
behavior of an underground opening is discussed. Three
stages in the modelling process are considered, each with
its own set of necessary simplifying assumptions. They are:
statical system, load quantities and material modelling. In
section 5.3, some of the relevant theoretical studies on the
time-dependent response of openings are reviewed. Published
results of comparisons between measured and predicted
performance are described. Finally, 1in section 5.4, a
summary of the discussions 1is presented and relevant

conclusions for further research are indicated.
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5.2 Modelling of time-dependent behavior of openings

As indicated previously in Chapter 2, two basic causes
lead to time-dependent behavior of an opening, namely
t ime-dependent change in boundary conditions and
t ime-dependent response of the rock mass. Among the
mechanisms leading to time-dependent response of the rock
mass one can distinguish between rheological properties
(e.g, creep and relaxation) and hydrodynamic properties
(e.g, consolidation and swelling). Obviously, these
mechanisms are governed by different equations and are
physically distinct. In this Chapter, only the situations
dealing with the rheological properties of the rock mass
will be considered, unless noted otherwise.

Ideally, 1in the model]ihg of the rock mass behavior,
all the factors which are known to influence t ime-dependent
behavior should be taken into account. However, this would
generally not be practical nor feasible. Substantial
simplifying assumptions must usually be made in order to
solve the boundary-value problem. To organize the concepts
involved in this question, it is important to break down the
modelling process into three stages, namely: statical
system, load quantities and material modelling. In the
following, the main assumptions related to each one of these

stages are discussed.

5.2.1 Statical system and load quantities

In principle, the excavation process (i.e., rate and
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sequence of excavation) as well as the initial state of
stress within the rock mass have to be simulated to
correspond as closely as possible to reality. The simulation
of both the statical system and the load quantities for the
analytical modelling of the time-dependent behavior of
openings follows from the same considerations as the case of
time-independent solutions.

The simulation of excavation through a stressed medium
is illustrated in Figure 5.1 and it consists of unloading
the med ium along the excavated perimeter. Chang and
Nair(1973) discussed the techniques to simulate an
excavation sequence, or unloading process, when the medium
is modelled by finite elements. External boundaries should
be chosen so as to include the zone within which stress
changes would occur due to excavation and Kulhawy(1974)
suggested the use of 7 to 10 times the diameter of the
excavation. Aiyer(1969) suggested the same distance for
studies of stress redistribution around openings in creeping
ground.

Openings are usually considered as 2-dimensional, which
cannot model the typically 3-dimensional effects that occur
adjacent to an excavation face or near portals.

The in-situ state of stress before the excavation
represents the most important type of loading to be
considered. However, the determination of the state of
stress in rock masses is not simple. The most common

procedure is to consider o, , the vertical stress, as the
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Figure 5.1 Unloading of stressed medium to simulate
excavation
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overburden pressure, ¥$h , and o the horizontal

k '
stress, as being some fraction of o, . However, exceptions

to this are expected to occur due to rock structure and

topography.

5.2.2 Material modelling

Ideally, a model for a rock mass should take into
account all the discontinuities and planes of weakness. In
addition, such a model should provide the means to consider
the influence of stress system and stress history as well as
strain history on the response of a rock mass. Evidently,
such a model is far from being developed and its apparent
complexity would preclude its application. In order to make
the problem soluble, simplifying assumptions relative to
particular aspects of the rock mass are necessary. The role
of these assumptions has to be understood otherwise there is
the risk of overestimating the practical use of the
analytical solutions.

A complete review of the models used to generate
t ime-dependent deformations in rocks was presented in
Chapter 3. Those results basically described the behavior of
rocks under very particular state of stresses (such as
uniaxial). However, the solution of a boundary-value problem
requires that more general stress-strain-time relationships
be used. In the following, the generalizations leading to
the formulation of a 3-dimensional relationship of models to

describe the time-dependent behavior of rock masses are
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discussed.

In general, deformations or strains associated with a
change in stress are separated into two components. For
simplicity, let us consider first the situation where this
stress change occurs in a small time interval and the
stresses remain constant afterwards. Thus, after a certain
period of time, 4t, the change of total strains can be

written as in equation (5.1).

{M}*:{AE}J{AZ} e (5.1)

where,
{AE A = change in total strain

{Aa
.

{AE}

= change in instantaneous strain

time-dependent strain

5.2.2.1 Instantaneous strain component

For the solution of a boundary-value problem,
constitutive relationships have to be provided to solve for
the ' instantaneous’ component of strains. A number of models
have been described in the literature to simulate this rock
mass response and its discussion is outside the scope of
this thesis. These models include: elastic, elasto-plastic

(strain-hardening and strain-softening). Daemen(1975)
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presented a good review of these models and applications.

5.2.2.2 Time-dependent strain components

The time-dependent deformations are normally considered
as the sum of two components : volumetric and deviatoric,

see equation (5.2).

iaz}z{az} +{AE} ... (5.2)
v d

One assumption has been to consider {AEL, as being zero.
This assumption is borrowed from the theory of classical
plasticity because the creep strains are considered to be
essentially plastic.

The validity of this assumption for rocks has not yet
been fully established. Wawersik(1974) presented the results
of creep tests on sandstone under triaxial compression in
which volumetric creep was measured. Wawersik's results
showed a considerable change in volume with time during
creep. These resulfs indicate that the volumetric component
of the creep strain tensor may not be zero for certain
cases. Assuming a zero volumetric change it is implied also

that changes in the hydrostatic component of the stress

tensor are irrelevant and do not produce t ime-dependent
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deformations. It is possible however that certain rocks such
as weathered and soft rocks show a time-dependent response
for a change in the hydrostatic stress component.

For brittle, fissured rock masses, volumetric creep can
occur during crack closure and also due to compression of
bedding surfaces and closure of  joints. Kaiser(1979)
considered the volumetric creep of coal as being represented
by a 3-parameter solid with a long retardation time.
However, no experimental data have been produced to indicate
the validity of this law. This question certainly deserves
more investigation, especially the relative order of
magnitude of volumetric and deviatoric creep strain.

The deviatoric creep component, {Az}d , has been
described by a large variety of models most of which have
been reviewed in Chapter 3. Next, the generalization to a
multiaxial state of stress of some of the models previously

considered will be described.

- linear viscoelasticity

This theory has been used very frequently to solve
t ime-dependent boundary-value problems in rocks.
Essentially, this theory assumes that the time-dependent
deformations are a 1linear function of the stresses, which
for the uniaxial compression creep test 1is expressed by

equation (5.3).
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material behavior. For instance, Figure 5.2 displays a
typical time-dependent closure for the case of an unlined
opening and hydrostatic state of stress. This figure shows a
continuous decrease in the rate of closure with time.
Hannafy(1876) presented results (see Figure 5.3) which
indicated a constant rate of tunnel closure after a brief
period of rate decrease. That may well be due to the
particular stress-strain-time relationship used by Hanafy
(see Table 5.1). Further reference to studies describing
patterns of and the influence of several parameters on the
t ime-dependent behavior of underground openings can be made
to Nair et al.(1968) ,Aiyer(1969) and Semple et al(1973)

Comparisons between results of actual measurements of
the time-dependent deformations of underground openings and
the predicted performance by using methods such as the ones
displayed in Table 5.1 constitute a necessary condition to
assess the soundness of the combination of assumptions
involved in each of these methods. Winkle(1970) described
the results of time-dependent closure of a 10-in diameter
hole drilled into a large pillar at a 1050m deep potash mine
in Moab, Utah. This hole was drilled parallel to the ground
surface and the closure was measured at a distance of about
10-in from the opening wall.

Figure 5.4 shows the measured deformations as well as
the results of the predictions made by using a
visco-elasto-plastic model and three different sets of

parameters. The results labelled as Carlsbad parameters



——\ "o
\\ N
. ; i \\; '9
! N 4: 1 —\; .;
N\ ! 1 T T
N— |-
X \\ |
n_ R \ Al
e I Nt 2
[} z 2\ "
E > " -
: -~ QI‘ "o x:.
T T + -
n ' H— ‘\
15 l i\ \
A— ' \ 1]
x o \ !
R =
~S O [
D Ow °X )
. e O [o] -
~ M %
g nja '3
% olm !
\ o
1
1y
)
\
\

Figure 5.2 Typical time-dependent closure of cylindrical

Ui/ ol ‘o=2y0 o/n

opening (after Aiyer(1969))

203



204

SEANOW Y ‘g >

) < z T 0
I } I I | _
SN 2 ‘Il _
000002 0000$T couoot 00065 0 ...
Troo-
i { {
- % AU

i

| .
=
7
'
<
[—]
<

1

[
-
<

E
N , . ¥sd 01 X 5970 = 3 . a -Jreo
. L . 1£°0 = a _ J
2'G SINIOd A
2'8'V SiNIod —— : $11J¥3404d J1d0UI0ST
: v
L . ! : ! : 950

(after

CASVISS T vIavd

Hanafy(1976) )

ST 0 LN

Figure 5.3 Time-dependent closure of circular tunnel



205

constituted the prediction when using the creep parameters
obtained from uniaxial compression creep tests on sampfes of
Carlsbad potash. These particular predicted results lead to
a very different pattern of deformations as can be observed
in Figure 5.4 by comparing the variations of rate of opening
closure with time and to a large difference in the amount of
deformations especially for short times.

Also indicated in figure 5.4 are the predicted
deformations by using a set of creep parameters obtained by
Serata(1968) for rock salt and associated with the same
visco-elasto-plastic model. Again, large differences in the
amount of deformations can be observed, the deformations
being overestimated by as much as 300%. Also, the rate of
tunnel closure seems to be much higher than the one actually
observed. Finally, the results of the predicted deformations

]

using ‘' improved’ parameters are shown to compare well with
the observed deformations.

Hanafy(1976) described the results of time-dependent
deformations of an underground intake tunnel for a large
filtration plant near Toronto, Ontario. This tunnel is a
circular opening of 4m diameter at a depth of 6im and
located in Collingwood Shale. Figure 5.5 shows the results
of comparisons between the observed creep closure 9 days
after the installation of the instruments and the predicted
deformations by using the creep law described in Table 5.1

and for distinct values of the stress ratio K ( o h/co v).

Large differences of up to 200% were observed for the creep
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closure and the difference diminished for points inside the
rock mass.

The comparisons described in the previous examples seem
to discourage the use of such approaches for evaluating
creep deformations of underground openings. However, it is
important to recognize that actual measurements can only be
started some time after the excavation has passed through
the measuring section and this fact generally leads to the
inevitable 1loss of an unknown amount of deformation. This
very often neglected feature makes comparisons between
absolute magni tude of deformations sometimes very
questionable. As concluded in Chapter 2 a much more
important and reliable source of informations is the rate of
tunnel closure which does not depend, for a particular time,
on the wvalues of the initial deformations. Therefore,
comparisons between predicted and actual performance as a
means of évaluating the adequacy of the use of analytical
models to predict time-dependent behavior of underground
openings must consider the rate of tunnel closure as a

reliable parameter.

5.3.2 Time-dependent stress distribution

Another feature associated with the time-dependent
behavior of an opening is the progressive stress
redistribution which occurs as a result of creep
deformations. Even though stresses do not contribute as a

directly observable quantity, it is of paramount importance
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to recognize the transfer mechanism associated with
time-dependent deformations and to discuss its effect on the
overall equilibrium of an underground opening. The main
features of the process can be illustrated in Figure 5.6
which shows the variation with time of tangential, radial
and 'effective’ creep stress around a cylindrical opening
for the situation of an isotropic medium and hydrostatic
state of stress. Initially, stress redistribution occurs in
such a way that there is a decrease in the tangential stress
near the opening wall and an increase for the zones further
away from the wall (Aiyer(1969) ). This decrease in stress
leads to the creation of a relaxation or unloading zone*
around the opening. This stress transfer process occurs at a
decreasing rate as indicated in Figure 5.6 where the bulk of
stress change occurred within the first day of creep. Also
both radial and 'effective’ stress change with time but by a
smaller amount than the tangential stress.

Parametric studies showing the influence of creep
parameters, stress field and shape of opening on the stress
redistribution with time have been reported by Nair et
al(1968), Aiyer(1969) and Semple et al(1973). The process is
similar to the one described above and displayed in Figure
5.6 the only difference being one of scale. On the other
hand, this stress redistribution process has been described
differently by Hanafy(1876) who indicated an increase of

‘As discussed previously in Chapter 2, the creation of such
relaxation or unloading zones can be caused by factors other
than time-dependent deformations.
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tangential stress around the opening wall, i.e., the
opposite trend presented by the other methods. That may well
be due to approximation effects of the stress at the center
of the finite element. Also, this process is not recognized
by the theory of visco-elasticity when solving this class of
boundary-value problem.

More important is to recognize that stress
distributions are rarely measured which precludes the use of
compar isons between predicted and measured performances to
assess the validity of the obtained results. Osmanagic and
Jasarevic(1976) reported the results of tangential stress
measurements around a 2.0m diameter circular opening at a
400m deep salt mine in Yugoslavia. These results reproduced
in Figure 5.7 show a reduction of the tangential stress near
the wall which indicates a pattern similar to the results of

stress redistribution displayed in Figure 5.6.

5.3.3 Time-dependent loading of linings

Deformations imposed on the lining will cause an
increase in load on those linings. The final load to act on
the permanent lining was studied by Aiyer(1963) who
considered the effect of both time of installation and
stiffness of the 1lining on the final load on the lining.
Figure 5.8 shows typical results. Aiyer concluded that for
values of h/a greater than 0.04, where h=thickness of lining
and a=radius of the opening, there is no remarkable

reduction on the time-dependent deformations around the
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Figure 5.6 Stress distribution around an unlined cylindrical

opening (Aiyer(1969))
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opening.

Ladanyi(1974) presented a closed-form solution for the
determination of the time-variation of the 'true ground
pressure’ acting on the rock mass. Figure 5.9 illustrates
Ladanyi’'s approach which consists in establishing the
equation of the ground reaction curve assuming a number of
simplifying assumptions. The variation of each material
parameter with time 1is assumed to be known and lines of
equal time or isochrones can be drawn up to the values
defined by the long-term ground reaction curve. Associated
with this, the lining installation can be considered by
taking into account stiffness, gaps and time of
installation. Ladanyi’s approach considers the case of a
circular opening, hydrostatic stress field, lining in a form

of ring and a homogeneous and isotropic medium.

5.4 Final remarks

As seen in the previous sections, several studies on
the time-dependent behavior of openings have been carried
out. Even though these studies have attempted to describe
the behavior of openings several drawbacks can be pointed
out associated with them.

1. The description of the material modelling is still very
limited and based on too many assumptions. A more
general stress-strain-time relationship for rocks is
needed which embraces both effects of volumetric and

shear creep.
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The present available solutions describe the change in
both stresses and deformations around the opening as a
function of an equivalent creep stress. However, as
suggested in Chapters 3 and 4, the creep deformations
seem to be a function of the stress level which describe
the ratio of mobilized shear strength of the material.
To wunderstand the real effect of creep behavior of the
rock mass on the overall time-dependent response of the
opening, this concept has to be included in the final
solution.

Several attempts have been made to describe the
deformations occurring around the opening and
compar isons between observed performance and predicted
deformations. These attempts have not provided good
correlation which leads to the discouraging feeling of
not being able to represent the physics of the process.
On the other hand, the discrepancy may well be due to
the fact deformations are normally measured only a

certain time after the excavation is done.



Chapter 6

THEORETICAL STUDY OF TIME-DEPENDENT BEHAVIOR OF UNDERGROUND
OPENING

6.1 Introduction

To generate solutions for the t ime-dependent behavior
of an underground opening, analytical methods of different
degrees of complexity can be formulated. In order to assess
the factors which ought to be considered in the formulation
as well as the relevant parameters and features describing
the time-dependent behavior of an opening, it 1is advisable
to start with a simple formulation and increase,
progressively, the complexity of the analytical model.

In this Chapter, a solution for the t ime-dependent
behavior of a long hollow-cylinder under hydrostatic
stresses and plane strain conditions was obtained. This
solution consists of essentially three steps: the
elaboration of a 3-dimensional stress-strain-time
relationship; the development of a governing differential
equation and its solution by a numerical technique. In the
following, the necessary steps for the solution as well as
the assumptions made are discussed.

Section 6.2 presents the proposed solution. The
formulation of the material modelling as well as the
development of the governing differential equation are

discussed. This section also presents the solution procedure

217



218

and the computer program written to solve the differential
equation. Section 6.3 presents an analysis of the validity
and accuracy of the proposed solution. This is done by
comparing the measured tunnel closure in a model test
carried out by Guenot(1979) and the results predicted by the
analytical procedure outlined in section 6.2.

Section 6.4 presents the results of a parametric study
carried out to assess the influence of factors such as size
of the opening, creep parameters and t ime-independent
properties on the time-dependent behavior of an opening.
Especial attention is paid to the rate of tunnel closure and
some aspects of the stress path and strain history for the
material around the opening. Finally, section 6.5 presents

the summary and the conclusions obtained from this chapter.

6.2 Proposed solution

The nature of the assumptions associated with the
formulation of material modelling calls for the use of a
simple model for the time-independent solution. Therefore,
it was decided at this stage, to study the case of a linear
elastic medium with a coupled rheological behavior, under
plane strain conditions and using a 2-dimensional

formulation.

6.2.1 Material modelling

In order to describe the time-dependent deformations

occurring around an opening, the empirical creep
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relationship developed in Chapter 4 and described by

equation 6.1 was used.

fo]]
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n

(6.1)

In equation 6.1, the term G represents the stress level
which is defined as the ratio between the current deviatoric
stress and the short-term strength. For the purpose of
modelling a 3-dimensional state of stress, the material was
assumed to follow the Mohr-Coulomb criterion, i.e., the
maximum shearing strength being defined by two parameters, c
and @7 In that case, the stress level can be calculated as
indicated by equation 6.2 where o, and o,are respectively the

maximum and minimum principal stresses.

— Ty - Ty cn-cs
=z —m-—rr

= (6.2)
£ (o, %) Re cos @+ (6,+0,)smd

In this formulation the intermediate principal stress,

g, ., is assumed as having no influence on the shear strength
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and therefore is not considered. Even though this hypothesis
constitutes an over-simplification of this question, the
Author considers it justifiable in order to maintain a
simple model. As defined by equation (6.2), the stress level
can be calculated without any difficulty in accommodating
alternate failure criteria.

Equation (6.1) only describes the maximum principal
strain rate. In order to consider the strains which occur in
other directions, equation (6.3) was used to describe the
volumetric strains which occur during creep. Even though no
consistent experimental evidence exists which describes the
volumetric strain during creep, the use of such a
relationship is believed to be a convenient approximation.
At the same time, equation (6.3) is general enoug: to allow
for further improvements when more updated relationships are

developed.

< c [

c
£/+£-Z+£~5=kfl e, (6.3)

For the case of k=0, the common assumption of no-volume
change due to creep is recovered. In addition, the creep
strains which occur in the principal directions are related

to creep strain €f' as described by (6.4)., where Pn and



221

Pm are assumed to be constants. Again, available
experimental data is not enough to provide a consistent
picture for the actual relationship between strain

components and so, (6.4) is considered as being reasonable.

c c
éz = - Pm 6,
(6.4)
< <
63 = - Pn 6,

6.2.2 Governing equation

In Appendix A, equation (6.5) was developed. This
differential equation constitutes the governing equation
describing the change in radial stresses with time for the
case of a 2-dimensional axisymmetric plane-strain

boundary-value problem.

d? d
k,grz(Aq)+ kzzﬂ-(Aq) =k, (6.5)

In this equation, the terms K, , k. and 4 are

a function of both Aor and d/dr(A6r) and they are defined in



222

Appendix A. The solution of this type of differential
equation has been discussed by Fox{(1957) . In order to solve
(6.5), a numerical scheme based on finite differences was
used. This scheme cénsists of writing (6.5) in terms of
finite differences for points in an equally spaced mesh. For
three subsequent points along the mesh, i.e., (i-1), i and
(i+1) and replacing A46r by 'y’', equation (6.5) can be

written as equation (6.6).

GI, - 5y . <4, = 9 ... (8.6)
where,

a. = k,[ k’z
/ hZ  2h
b. _ 2 ky
J = - K2
CJ' = k” + é/z

42 A
d, = ks

The boundary conditions for the problem in question,

i.e., an wunlined opening, are that (@QL =0; yi1=0 and
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OL)“,=po; yn=0 at any time, t, where @ﬂ), = radial stress at
the opening wall, Cb})n = radial stress at the external
boundary, and y1 and yn are the changes in the radial stress
at the same locations. Subject to these boundary conditions
and using equation (6.6) for each point along the finite
difference mesh, a system of (n-2)x{(n-2) equations can be
set up for each time step, At, and solved by trial-and-error
by assuming an initial set of values for yi. This process
continues until the difference between the values of yi’'s
obtained in consecutive iterations reaches a pre-established
value or a maximum number of iterations is exceeded which
indicates a non-convergence of the solution.

A computer program was written to solve equation (6.6)
according to the scheme just discussed. The listing of this
program is presented in Appendix B which also describes the

input data and their format.

6.3 Accuracy of proposed solution

Due to the highly non-linear nature of the eqguation
(6.1), no closed-form solution which uses this equation to
solve the boundary-value problem in question could be found
in order to compare with the solution procedure outlined in
the previous section. The results of the model tests
reported by Guenot(1979) constituted an alternative to check
out both the accuracy and validity of such a procedure.

In these tests, blocks of jointed coal with dimensions

of 60x60x20 cm with a circular opening of 12 cm diameter at
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the center were Jloaded at the block surfaces and plane
strain conditions were maintained. The external Jloads were
maintained constant for a period of time during which
measurements of tunnel closure as well as internal radial
deformations were taken. A complete description of testing
equipment and methodology as well as discussion of results
is presented in Kaiser(1979) and Guenot(1979). For these
tests, the coal used was essentially the same as that used

by the Author in the creep tests described in Chapter 4.

6.3.1 Performance of model tests

The prediction of the results obtained in these tests
involved two steps. Initially, the parameters to be used
during the analysis were selected and secondly these
parameters were employed in the computer program listed in
Appendix B.

The test selected for analysis was the loading of the
model test to a stress of 4.8 MPa with a ratio between
horizontal and vertical stresses of about 1.06. Using
Guenot’s numbering system, this test will be referred to as
MC-3.1.

Figure 6.1 shows the results of tunnel closure versus
the external stress during the 1loading of the sample.
Following an initial clearly non-linear stage, the
stress-strain curves show a linear trend. This fact lead to
the choice of a 1linear elastic model for the initial

behavior. For the Young’'s modulus a value of E equal to 1000
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MPa was chosen which corresponds to an average value of E
obtained in the Jlaboratory tests by Kaiser(1979) and the
ones reported in Chapter 4 of this thesis. A value of u=0.30
was selected on the basis of calculations of the initial
strain for the model test. This value is also close to the
one used by Noonan(1972).

The selection of the shear strength parameters was made
by initially assuming that the Mohr - Cou lomb failure
criterion would represent the short-term strength of the
coal. Based on the previous results of direct shear tests
(Noonan(1872)) and triaxial compression tests (Kaiser(1979))
on the Wabamum coal, the following parameters were selected
as representing average conditions: c=2.0 MPa and p@50°.

The time-dependent behavior of this coal was described
in Chapter 4 based on the results of triaxial tests. The
parameters describing the creep behavior were the ones
obtained from the results of the laboratory tests and
summarized in Figure 4.19. They correspond to A=1.0x10-5/min
and ® =1.9 and m=0.9.

The assumption of no-volumetric creep strain was made,
i.e., in equation (6.3) k=0, and the value of Pm was also
assumed to be zero. The Pm=0 assumption is equivalent to
considering the value of 5: as zero. However, for plane
strain conditions, it is the total strain in that direction
and not the creep strain which 1is zero. To check the
sensitivity of the solution to this assumption, preliminary

runs were carried out and for the cases associated with
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Pm+Pn=1 (equivalent to k=0). The results indicated n and
time-dependent closure for values of pm in the range between
0 and 0.3. Even though, no experimental data has been
produced to suggest the range of Pm, there is no reason to
believe that Pm assumes values greater than 0.2. Therefore,
it was concluded that to use pm=0 would not have any
noticeable influence on the present study.

Figure 6.2 shows the model test and the finite
difference mesh used during the prediction of the results.
The comparisons were made for the 1st. loading stage of the
test MC-3.1 as described by Guenot(13979), which corresponds
to a 4.8 MPa stress applied at the boundary and a ratio
between stresses of 1.06. In the simulation a ratio of 1.0
was used.

Figure 6.3 presents the results of tangential and
radial stress distribution around the opening as well as the
stress level variation with time. As can be observed from
these figures, the stress distribution hardly changed with
time which seems to indicate that the creep tests carried
out at constant stress level are a good representation of
the stress condition around this particular opening.

Figure 6.4 presents a comparison of the measured and
predicted time-dependent tunnel closure for the model test.
In this figure, curve (1) represents the results obtained if
only the creep strains due to shear stresses are considered.
Four measurements in different extensometers are indicated

in that figure and the predicted ones falls at just about



"

Figure 6.2 Model test and finite difference mesh
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the average between the measured values which indicates a
good approximation of the order of magnitude of the
time-dependent deformations.

At the same time, as discussed in Chapter 5, it is of
value to describe not only the deformations but also the
rate of tunnel closure. Figure 6.5 displays a comparison
between the measured rate of tunnel closure and the
predicted rate. Again, in this figure, curve (1) indicates
the results obtained if only creep strains due to shear
stresses are considered. These results suggest that the
proposed solution procedure yields results which are
representative of the actual deformations and therefore
describe quite well the physics of the deformation processes
around the opening in the model test.

In addition, values for the internal measurements were
interpreted by the proposed method. The observed
time-dependent radial strains were compressive at all times
whereas the predicted radial creep strains, based on creep
strains due to shear stress, were extensive. According to
Kaiser(1979) this behavior is due to the fact that creep
components due to both hydrostatic as well as deviatoric
components of the stress tensor act on the sample. Ffor the
values around the opening the value of creep due to the
hydrostatic component would be greater than the creep due to
the deviatoric component which would yield a net compressive
radial creep strain.

In order to verify the assumption of hydrostatic creep



231

7N\

—_ [ Vo4
z E -’—’ :1.08
— SIGMAV<KFA>
& 4781 .6
(s TZERO<HRS>
03 {.2 T
oz
w § 1
-

o’$ 1 T

0 20 40 60 80 100 120 140 1g0
REL.TIME <HOURS>

Figure 6.4 Comparison of measured and predicted tunnel
closure



Figure 6.5

STR.RATE<//HRS>

£z lluu.i ] uh.u.l T u.u»1 . lnn..‘ T

L 1ibit

Juuul l]l-l*l-lll] 1 lll!L‘" luum[

STR.RATE<Z/HRS>

1 LJIHII]

1"||m-{ ] ln,-'v_,'! UmJ 1 |'l'v"! [N

1
285 2.5 25§ 25 2 5

100 ETioom T inms T T T RN
| i i I

10-3 -é

10—8 L]l"l!’ ] nmv-’ ‘ “vu-' ' '1""" L
< 2 5

o

25 2§ § 25
1072 107! 109 10! 102 103

REL.TIME <HRS>

232

Comparison of measured and predicted rate of

tunnel closure



233

strain, the results presented by the computer program were
corrected to include such a component. The following
strategy was used to evaluate the necessary correction. The
values of the radial creep strains obtained from the first
row of extensometers, at about 3.5 cm from the opening wall,
were used as the results to be matched after applying the
correction. This is indicated in Figure 6.6.a as curve (a).
Curve (b) represents the results predicted by the solution
procedure which predicts extension at the position in
question. If curve (a) is to be reproduced after applying
the correction to the results, a radial creep strain versus
time curve as indicated by curve (c) has to be super imposed
on the obtained results.

This correction was compared with the values of creep
deformations measured at the end of the block during the
experiments which represents a situation of almost
hydrostatic state of stress. As can be observed in Figure
6.6b, the value of the correction is within the same order
of magnitude as the observed measurements. This procedure
was further checked now as a way to obtain the value of the
radial creep strain for the second row of extensometers,
i.e., at about 8.5 cm from the tunnel wall. Curve (e) in
Figure 6.6a is the result of the correction applied to curve
(d) which is the radial creep strain predicted by the
computer program. This curve compares well with the obtained
experimental data.

Assuming that the value of the creep radial strain due
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to the hydrostatic component is equal to the tangential
creep strain, the value of the tunnel closure presented in
Figure 6.4 was corrected and is shown as curve (2) in that
-figure. In Figure 6.5, points were plotted to illustrate the
new rate of tunnel closure as compared with the experimental
data. This comparison shows that even though the correction
strategy may be considered too crude, the results indicate a
good agreement between observation and prediction.

However ,no experimental data describing the creep
behavior of coal under hydrostatic condition was repor ted
and therefore further analysis cannot be carried out. Also
the analytical solution used in this thesis does not
consider the creep behavior due to hydrostatic component of
the stress tensor. More data may be necessary before further

elaboration of this question.

6.4 Results of parametric studies

The preéent section describes further investigations on
the time-dependent stress and strain distribution around a
circular opening within a hydrostatic stress field. Initial
investigations were made to assess aspects of the
time-dependent behavior of an opening such as the stress
redistribution process and the increase in deformations with
time and their dependence upon factors such as size of
opening, creep and time-independent parameters of the rock
mass. Table 6.1 presents a summary of the runs of the

implemented program in which some parameters were varied in
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order to assess the influence of these factors. At the
present stage, the analysis has been carried out considering

unlined openings.

6.4.1 Time-dependent stress distribution

Figure 6.7 shows the stress distribution versus radial
distance from the tunnel wall for different times for the
set of parameters corresponding to case Ci. Times up to
about 6 days were considered. In this figure, two aspects
relative to the time-dependent behavior of an underground
opening are illustrated. Initially, the change in the
tangential stress with time must be considered. There is a
progressive stress transfer towards the inside of the rock
mass which represents physically the tendency to reduce the
shear stress causing creep.

The process of stress redistribution can be
characterized by two variables, namely:

4. the time after which variations in stresses are

negligible and

5. the size of the unloading zone.

Both variables are a direct function of the creep properties
of the medium, i.e., the magnitude of creep parameters and
stress level. The results presented in Figure 6.7 show a
reduction of 31% in the first hour for the tangential stress
at the wall whereas this drop reaches 47% for the first day
of creep. After the first day, say to the first week, only

49% of the drop occurs which indicates that most of the drop
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Table 6.1 Summary of the cases analyzed during the
parametric study

ok

Case Material Parameters(s) Geom. Characteristics Remarks( )

Run A(min-1)] Alphal m [E(kg/cm2) R(m) Ah(m)

.z =o©-90
Cct Sx10-5 4.0 |0.9 10000 5 0.25 - 10 f
c2 5x10-5 4.0 |0.9 10000 2 0.10
-4 ,-0.Q\
c3 1x10-5 | 2.0 |o.9 | 10000 5 0.25 _oq2xio t
c4 1%10-5 2.0 {0.9 50000 5 0.25

(*) For all cases :

o

(**) é =

Po=50 kg/cm2

(10-4/min)

Alpha

4.0

4.0

Po=20 kg/cm2

(10-4/min)

Alpha

4.0

4.0

E=50000 kg/cm2

K

(%/hr)

6.55

19.65

22.92

3.27

1.63

0.327

EK

( 10+4xkgx%
32.75
98.25
114.60
16.35

8.15

t1.635

E=10000 kg/cm2

K

(%/hr)

16.37

22.37

6.55

0.327

EK

u=0.30 : c=20 kg/cm2 ; 0=50

rate of tunnel closure/ tunnel radius

/hrxcm2)

(10+4xkgx%/hrxcm2)

16.37

22.37

6.55

0.327



Table 6.1 Summary of cases studied (contn.)

(10-4/min)

0.5

0.033

(10-4/min)

Po=50 kg/cm2

Alpha

E=10000 kg/cm2

K EK
(%/hr) ( 10+4xkgx%/hrxcm2)

16.37 16.37
3.27 3.27
1.08 1.08
6.55 6.55
1.63 1.63
0.442 0.442

E=10000 kg/cm2

K EK
(%/hr) (10+4xkgx%/hrxcm2)
16.37 16.37
22.93 22.93
6.55 6.55
0.327 0.327
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or stress redistribution occurs within the first day of
creep. It is interesting to compare the stress
redistribution process indicated in Figure 6.7 with the one
obtained for the case of Figure 6.3 where a different set of
creep parameters was used. In this case, no important stress
redistribution occurs which indicates the sensitivity of the
system with respect to the creep behavior of the medium. The
change in the creep parameters is equivalent to a change in
the creep rate of about 40 times.

The size of the ’‘unloading =zone’ as shown by the
comparison of the cases displayed in Figures 6.7 and 6.3 is
also a function of the creep parameters. For the first case,
the zone of rock located within about one radius from the
opening wall is unloaded. This unloading process corresponds
to a loss in ring stress and may lead to a reduction in the
self-support ability of the rock mass around the opening.

As also indicated in Figure 6.7, the radial stress
distribution does not show much variation as compared with
the variation in tangential stress. A reduction in the
radial stress contributes to a loss in the ability of
carrying load by the ring of rock in the immediate vicinity
of the opening. This fact suggests that the radial stress
distribution is much less sensitive to the creep
deformations than the associated tangential stress
distribution.

The influence of the creep parameters on the stress

redistribution is further illustrated in Figure 6.8. This
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consists of a plot of the ratio between the drop in
tangential stress at the end of one hour of creep and the
external applied stress (which represents a measure of of
the stress redistribution) and the parameter K=Aé!which is a
measure of the creep potential of the material. Two curves
are shown in this figure, each associated with a different
value of the Young's modulus, E. For the same set of creep
parameters, the greater the modulus E (the stiffer the
system) the more stress redistribution will occur. In Figure
6.9, a new plot is presented for the same set of data now
considering the parameter EK defined as the ‘system creep
potential’ which represents a combined effect of the
stiffness of the system and the material creep potential.
The two curves now coincide showing that regions of stress
redistribution potential can be assessed for a given value
of EK. In the same figure, is also illustrated the effect of
the opening size which does not affect the previous
relationship.

- As would be expected due to the highly non-linear term
;l, the time-dependent behavior is influenced by both o
and the strees level, © , which in turn is defined by the
external pressure, po, and the shear strength parameters. In
Figure 6.9, a number of curves relating the stress
redistribution parameter, Sr, and the system creep
potential, EK, is shown to illustrate the effect of the
stress level. During the course of this study the parameter

o« was shown to influence sets of curves such as the one
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presented in Figure 6.8.

In Figure 6.10 another aspect of the influence of the
creep parameters and stress level on the stress
redistribution 1is illustrated by plotting the ratio between
the total closure at the end of one hour and the initial
tunnel closure versus the stress redistribution factor. This
relationship also proved to be independent of both the
Young’'s modulus and the opening size. Again, the effect of
the stress level is indicated by the three curves also

illustrated in this figure.

6.4.2 Stress level

Considering that the behavior of a rock mass is
controlled basically by the stress level, it is important to
consider the variation of the stress level around the
opening for various times. Figure 6.7c presents the stress
level plotted against radial distance for different values
of time for the set of parameters corresponding to case (1.
This definition of stress level has been given previously in
section 6.2. At the same time, the parameters controlling
the failure envelope are assumed constant with time. Under
those circumstances the variation of stress level with time
may be considered as one way of measuring the disturbance in
equilibrium of the medium and its rate as the
reestablishment of the equilibrium process.

Considering an initial ‘elastic’ stress distribution,

the stress level reaches values of less than 25% at points
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as close as one radius from the wall. If it 1is considered
that such a small stress level does not cause appreciable
creep strains, the area of both movements and stress
redistribution is more or less concentrated around the
opening. With time the area of relevant creep movements does
not change considerably and the unloading process is more or
less concentrated around the cavity.

The variation of the stress level with time is also a
function of the creep parameters in such a way that the
larger the creep movements, the greater the change in stress
level. This fact can be readily observed by comparison of
Figures 6.7c and 6.3c. For these two cases, a change in
creep parameters equivalent to a 40-fold variation in strain
rate was used.

As indicéted in Figure 6.7c, the maximum change in
stress level occurs very near the opening wall and, for case
Ct, this change corresponds to about 25%. For points outside
this range the change is smaller not reaching values greater
than 15% and shows an increase in stress level with time as

a result of the stress redistribution process.

6.4.3 Strain accumulated during creep

The third question related to the time-dependent
behavior of an opening is the one considering the state of
straining undergone by each element around the excavation.
It is particularly important to consider the deformations

during the transition period, i.e., from the pre- to
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post-excavation equilibrium. The validity of the assumptions
made previously with respect to stress path and strain
history can now be adjusted on the basis of these results.

Figure 6.11 presents the variation of the stress level
with the tangential strains for different values of times
for the set of parameters associated with case Ci. As can be
seen from this figure, for elements near the wall the stress
level decreases even though the tangential strain increases.
The decrease in stress level tends to stabilize after a
certain period of time. Elements in different positions
behave in a somewhat different way from each other.

The diagram presented in Figure 6.11 also suggests that
the tangential strain more or less follows a path which
certainly does not take into account any limitation from the
rock point of view in terms of accumulated displacements.
The rock is considered as able to take the calculated
displacements. This question has not yet been fully
investigated but some previously reported data supports the
idea that Jlong duration loads tend to increase the ability
of rock to deform without failing in a brittle manner e.g.,
Bieniawski(1970) and Kaiser and Morgenstern(1979)

It is also interesting to notice that several curves
can be plotted as isochrones of stress level versus
tangential strain for different times. The curves
demonstrate the reduction in stiffness with time especially

for the areas near the opening.
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6.4.4 Time-dependent deformations

Another important aspect of the time-dependent response
of an opening 1is the variation of both tunnel closure and
internal radial displacements with time.

Figure 6.12 gives the curve of tunnel closure versus
time for case C1 and Figure 6.13b shows the same data
plotted as rate of tunnel closure versus time in a double
log-scale. Two important features are illustrated in these
figures. Initially, the rate of tunnel closure shows a
continuous decrease with time for the model used and
secondly, this decrease can be conveniently represented by a
power law with respect to the elapsed time. This power law
corresponds to a straight 1ine when the data are plotted in
a double-log scale.

The continuous decrease in rate of tunnel closure
displayed by this solution procedure indicates a
time-dependent stable process where an equilibrium position
is finally approached. This process certainly reflects some
situations in the field. As the model which was used does
not provide for any deterioration of rock mass properties
such as decrease in strength with accumulated displacement
or creep acceleration due to this decrease in strength, it
is not possible to model the onset of an unstable situation.

The final aspect considered is illustrated in Figure
6.13a which displays the variation of the radial
displacements versus radial distance for different values of

time. It is also encouraging to note the similarity in
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pattern of deformations with the reported measurements of
variation of radial displacement with time for the Yarbo

No.1 Shaft described in Chapter 2.

6.5 Summary and conclusions

The following conclusions were reached from the
analyses presented in this Chapter:

1. The creep behavior of rock mass is related to how close
the material 1is to the short-term failure strength. If
the failure criterion is expressed in terms of stresses,
the creep behavior can be expressed in terms of stress
level. A method to describe the creep behavior in terms
of stress 1level is presented and its inclusion in an
analytical technique is discussed.

2. A solution for the time-dependent stress distribution
and the time-dependent deformations around an opening
was presented. The case considered took into account the
creep law described previously and a differential
equation was developed. This differential equation was
solved nummerically and a computer program was written.

3. This solution procedure was checked against a set of
measurements of opening closure and the results of
comparisoh between predicted and obtained closure were
satisfactory.

4. The time-dependent behavior was described as being
associated with a time-dependent stress redistribution

and a t ime-dependent deformation. The stress
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redistribution process was seen to be highly dependent
on the creep properties of the medium. High creep
behavior leads to a considerable redistribution around
the opening especially with respect to the tangential
stress.

5. The time-dependent deformations were described by both
deformations and rate of deformations. The rate of
tunnel closure was shown to decrease in a linear manner
with the time when plotted in a double log scale. This
pattern is similar to measurements described in the
literature for the behavior of model pillars in salt
(King(1974) ) and the early stages of closure of
openings in salt (Baar(1975) ).

6. Based on the comparisons of measured and predicted
deformations for the model test, it was concluded that
the solution procedure suggested provides results which
are within the range of the expected behavior. The
assumptions made in order to solve this boundary-value
problem have to be understood specially the limitation
regarding the elastic behavior of the medium immediately
after the excavation. However, this does not invalidate
the use of the creep relationship described as well as
the solution procedure.

More research has to be done in order to include cases
such as non-hydrostatic state of stress and non-circular

openings.



Chapter 7

FINAL REMARKS

7.1 Conclusions

The aim of this thesis is to provide a contribution
towards understanding the t ime-dependent processes
associated with the excavation of tunnels in rocks. This is
achieved in three ways:

a. 1investigations of the process leading to
time-dependent behavior of underground openings;
b. experimental data describing the t ime-dependent
response of rock masses;
c. analytical modelling of excavations in creeping
rock.
In the light of the discussions presented throughout this

thesis the following conclusions were reached.

(a) In-situ time-dependent response of rock tunnels

The understanding of the processes involved in the
passage from a pre- to a post excavation equilibrium is of
fundamental importance in advancing our current tunnel
design practice . The evaluation of these processes is of
great value if it is done through the observation of the
performance of actual case-records. From the outset of this
research, the Author was aware of the many difficulties in

undertaking such a study due to the 1lack of a sufficient
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number of well documented case-records. A common feature of
reported cases is that many of the factors which control the
opening behavior such as rock mass properties, stress field,
sequence of excavation and lining strategy are not properly
described.

Four different modes of ground behavior were postulated
initially. The mechanisms leading to these modes were
described and illustrative case-records associated with each
one of them were presented. From these considerations the
following observations with respect to the role of the
time-factor associated with each mode can be made.

For the cases of 'fracturing’ and ‘loosening’ the
discussions suggested that the role of time-factor is
secondary since prompt protection of the excavated rock is
normally required. This need 1is due to the difficulty in
predicting accurately the weakening process associated with
increasing deformations (or increasing delay in 1lining
installation) of the tunnel wall. Also, failure in this type
of ground may occur without warning and the size of blocks
and slabs which may detach from the roof certainly justify
strong safety measures.

Many of the reported cases considered as squeezing are
associated with very weak ground (fault zones and weathered
rocks) at great depths (see Table 2.2). In these cases, the
ground around the opening is overstressed and the
deformations associated with the excavation must be expected

to be high. The main concern in these circumstances is to
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control the deformations during the excavation which is
normally done by choosing a convenient excavation sequence
and lining strategy. Cases such as Tauvern and Giri tunnels
demonstrate the need to account for large deformations by
using flexible linings. More informations relative to the
size of the overloaded zone around the opening are needed as
well as measurements of time-dependent deformations after
the effects of the face advance can be neglected. An
understanding of these deformations is considered essential
before the loading of the supports and time of ring closure
can be assessed with more confidence.

Also included in the category of squeezing ground are
the cases of openings 1in rocks which do not present any
problems of overall stability immediately following
excavation but deform continuously with time. Measurements
of tunnel closure versus time, such as the ones shown for
the Yarbo No.1 shaft, are more or less creep-like curves.
This class of squeezing ground is addressed during the
analytical section where the effects of creep behavior are
modelled.

Some of the case-records described as swelling also
reveal the same characteristics of weak ground (fault zones
and weathered rocks) and at relatively great depths. These
cases present the same general set of problems of stability
during excavation as discussed earlier for squeezing ground.
Again, the initial stability is the main concern which is

demonstrated by a number of case-records in Jdapan (see Table
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2.3). Also, information on the deformations which occur
after the effect of excavation advance becomes negligibie
are needed in order to understand the loading of the 1lining
which occurs afterwards. Cases where the initia] stability
of the opening is not the main concern, such as some cases
in Eastern Canada and Germany, have suggested that changes
in the first stress invariant and hydration must be
accounted for to explain the time-dependent deformations.
However, these classes of case-records have yet to be
described effectively as far as the stress-strain-time laws

for these materials are concerned.

(b) Rheological response of rock mass

A review of the stress-strain-time relationships which
have been used to describe the time-dependent behavior of
rocks was presented in Chapter 3. Many of these
relationships refer to wuniaxial compression tests and
relatively intact rock sampies. A very 1large number of
different expressions was noticed that may be associated
with different ways of analyzing and interpreting the
experimental data. It was also observed that for the
interpretation of the data an arbitrary relationship (either
empirical or associated with a rheological model) is often
assumed a priori and the parameters are adjusted to the data
by curve fitting techniques. The analysis of the data is
normally done in terms of creep strains despite experimental

evidences that suggest that creep strains are not accurately
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known due to the question of obtaining the proper zero
reading. On the basis of these findings, the Author feels
that the establishment of a standard way of analyzing creep
data would provide means to compare the results of creep
behavior either for the same rock group or within different
groups.

several constant axial load tests were carried out
under triaxial conditions in order to assess the creep
behavior of a fractured coal. The results were analyzed in
terms of strain rate. This approach is more reliable since
the strain rate value is not sensitive to error in the creep
strains.

An empirical stress-strain-time relationship was
obtained which described 1in a satisfactory manner the
experimental data. A continuous decrease in strain rate with
time was observed in all tests. This empirical relationship
consists in the combination of a power law describing the
dependence of the strain rate with time and an exponential
law describing the dependence of the strain rate on the
stress level.

This relationship  was found to describe the
experimental data in the range of 20-80% of the short-term
strength and only three parameters are necessary to describe
the material behavior. This is of great value from the
engineering point of view due to the reduced number of
parameters and the relatively large range of application. No

attempt was made to attach any physical meaning to the
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1

parameters even though the t ime-exponent ‘m clearly
indieates a ’strain-hardening’ effect whereas the term
’/73“ i+ preflects the creep potentia\ of the material.

Only one test was carried out UP to a stress level
where creep failure occurred. This test indicated that the
strain rate was decreasing with time until the acceleration
process occurred. This fact is in aggreement with previous
observations both in rocks and soils. Another jmplication of
this fact 1is the absence of a period of steady-state creep.

A series oOf multiple-stage creep tests was also
described and an incremental form of the stress-strain-time
relationship obtained from single-stage creep tests was
found to fit the results very well. The use€ of this type of
test to describe the creep proberties must be explored in
more depth due to its attractiveness in providing

considerable jnformation by using only one sample.

(c) Analytical modelling of © enings in creeping rocks

The analytical capabi\ities to evaluate the
time-dependent pehavior oOf underground openings were
discussed in Chaptler 5. Several formulations have been
presented and some were used to match results of
observations. However, these formulations have failed 1O
proper\y take into account the influence of the stress level
on the,time-dependent behavior.

Based on the empirical relationship obtained during the

experiments, 2 solution procedure was formulated which
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included the elaboration of a 3-dimensional
stress-strain-time relationship. In order to assess the
validity of the assumptions made during the developments of
the 3-dimensional relationship, this solution procedure was
used to describe the behavior of a 12-cm opening in coal.
The comparison between the predicted results and the
measurements obtained by Guenot(1979) showed that both
tunnel closure and rate of tunnel closure can be represented
quite well by the solution procedure outlined in Chapter 6.

Due to the nature of this model test (load applied at
the ends of the block) and the fractured nature of the coal,
compressive radial creep strains were measured during the
tests. These strains could not be reproduced by the solution
procedure since the creep relationship used did not take
into account the creep due to the hydrostatic component of
the stress tensor. The correction procedure applied to the
results predicted previously proved to be reasonable in
order of magnitude and the changes in both tunnel closure
and rate of tunnel closure did not modify the initial
aggreement between predicted and measured deformations.

A modest parametric study was carried out in order to
display some of the general features of the t ime-dependent
behavior of an underground opening. For this study, all the
cases were modelled as actual excavations, i.e., loads were
reduced at the opening walls.

It is shown that the stress distribution around the

opening changes with time and that this redistribution
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process is more pronounced the greater the creep properties
of the medium. This dependence is by no means obvious due to
the highly non-linear nature of the creep relationship.
However, it is expected to reflect the combination of the
system stiffness (represented by E-value), the creep
parameters and the initial stress level. A unique
relationship was shown to exist between the creep strain
number, CSN, (defined as the ratio of the tunnel closure at
t=thr. and the tunnel closure at t=o) and_}he system creep

o
potential, EK, (defined as the product E.A.e where E=Young's

modulus and A, o = creep parameters) for the same initial
stress level and & . This relationship is independent of
the size of the opening and the Young’'s modulus.

The rate of tunnel closure was found to vary linearly
with the time when plotted in a double log-scale with the
results being also independent of E and the opening size.
The predicted ‘strain-hardening’ for the relationship
between rate of tunnel closure and time is very similar to
the value obtained in the laboratory.

Even though the solution procedure is not general
enough to consider cases other than circular openings and
ratios between stresses differing from 1.0, the previous
comparison suggests the validity of the approach and this
procedure is bound to give good results when other solution
methods are used such as finite elements in order to include

more general cases.
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7.2 Suggestions for further research

The investigation of the performance of available
case-records must continue. Only through these observations
can one assess the influence of the many factors on the
overall behavior of the opening. The concept of modes of
tunnel behavior can be used to classify the case-records and
also to direct the attention to the questions associated
with each mode and which must be addressed (see Figure 7.1),
More effort must be spent when publishing or organizing data
relevant to tunnel behavior by describing rock mass
parameters ( either Barton’'s or Bieniawski’s) and both
excavation sequence and 1lining strategy. The experience
gained from previous excavations can only be readily used by
other if the data are well codified. The use of the modes of
ground behavior may be helpful in achieving this goal.

Even though much progress has been attained in the
past, the knowledge about the rheological behavior of rock
masses is still quite Timited mainly due to the 1lack of
experimental data covering stress systems other than
uniaxial and triaxial compression. In particular, creep
deformations must be recorded not only in one direction in
order to evaluate the relationship between strains in
principal directions and but also to assess the amount of
volumetric creep. Experiments describing the time-dependent
volumetric changes associated with a hydrostatic state of
stress are of immediate need in order to both isolate the

ammount of creep due to shear stress and to include the
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relationship in analytical techniques. The cases of
fractured rocks at low stress level as well as weathered
rocks may be examples showing this need.

Both material modelling and analytical techniques must
be extended to include the cases where the material around
the opening is overstressed or fails immediately after
excavation. These conditions are particularly important in
weak ground (fault zones and weathered rocks) at medium to
great depths. Studies on these aspects would contribute to
the understanding of the factors such as optimum excavation
sequence and lining strategy in order to minimize stability
problems of both ground and 1ining structures.

The study of other aspects of the time-dependent
behavior of openings such as ’'stand-up’ deserves special
attention in the future. The analytical study must
concentrate on the amount of creep strain which is actually
tolerated by the material, in particular the tensile strains
near the opening wall. This question is of particular
importance when associated with the stability of unlined

openings.
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Appendix A

Development of governing differential equation

General

In the following, a differential equation is developed
which describes the time-dependent change in stresses as
well as the time-dependent deformations for a circular
unlined opening in an isotropic and homogeneous material
subjected to a hydrostatic state of stress. Two-dimensional,
plane strain and axisymmetric conditions are also assumed.

To solve a time-dependent boundary problem, both
compatibility and equilibrium equations must be valid at all
times. For the case of small displacements these equations
are described as (A.1) and (A.2) for the conditions imposed

above.

L Ly
= %' G (A.1)
A% . L(s-g)=0 e (A.2)
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In the above equations, & and & are the total
strains at the radial and tangential directions and o,
and S, are the total stresses at the same directions. The
longitudinal total strain, & , is assumed to be zero at
all times. It is also assumed that at any particular instant
of time, t, the creep strains are such that volumetric

strains due to creep caused by shear stress may occur and

are described by equation (A.3) below.

Z+—€Q+E =k.Ze . (AL3)

where &, & and EE are creep strains at radial,
tangential and longitudinal direction respectively and 'K’

is a proportionality parameter assumed constant.

Governing differential equation

Consider the i-th time increment, At, such that
t=t_ -8t . At the end of the (i-1)-th time increment, or)
and (%), are the current total stresses and (g,)., and (&),
are the current total strains which include both a
t ime- independent and a t ime-dependent component. Assuming
that the time-independent component can be described by the

theory of elasticity, it follows that:



Ce)., = (€)%« cen© . (A.4)

-1

(&) - (593: . (er)‘_c coo o (ALS)

During the i-th time increment, there will be a change
in stresses which are followed by both elastic and creep
deformations. These changes will occur in every direction,
i.e., radial, tangential and longitudinal. 1If d4¢, AG@
and AQ& are the changes in stresses during this time
increment, it follows from the elastic theory that the

time-independent components are:

(he) _;_[Ac,_ v(Ao‘e+A\r€)] e

e
CAEGB:_EL./»A%_y(AUr+AGQ)‘/ ce (AT

CAC,—,)i ?L[Ao%_v(,dcr,+ooe)] ....(A.8)
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From plane strain considerations, it follows that Aﬁé =0

or,

(86)°+ (86)°- o o (A.9)

In addition, the Author has introduced the possibility
of volumetric change due to creep caused by shear stress.
This has been done by assuming that the creep strain
increments in the radial and longitudinal directions can be
written in terms of the tangential creep strain increment as

follows:

(Agr)c':—}bn (Aée)c ....(A.10)

(be)% - R (8g) o (AL

where pn and pm are assumed as constants. Due to the lack of
experimental results describing this type of relationship,
the expressions (A.10) and (A.11) are considered to be
acceptable for initial discussions. More investigations can

be made and these expressions may be changed without many
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additional complications.
Applying equations (A.1) and (A.2), i.e., compatibility
and equilibrium equations, at the end of the i-th time

increment, it follows that:

&), + (8¢) _ (ee)[_ + b . ri[ p
! dr (e)t-_,* A"e] oo (AL 12)

Equations (A.13) and (A.14) can both be rewritten as:

d _ +rd (s
&)~ (&), - " 7,[(69).-,] « 8= bg " (85)) ... (A.14)

1)+ o, - <oe>f_,]+ 200y L (M0 =0 )
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As both the strains and stresses at the end of the
(i-1)th  time-increment obey the compatibility and
equilibrium equations, equations (A.14) and (A.15) can be

further simplified to:

ad
Ae, = b2, + Y;;~(°%;> ....(A.18)

d () + = (%9,-0q) _, (A7)
dv r

where AEY and A% are the total strain increments during
At and Ao, and 49, are the change in stresses during At.

Equation (A.16) can be further developed as:

(AE,)Q+ Cber)c-; be.g)e'l' Cb€e>c+ Yﬁ_[@%)i CAEe)C] ... (A.18)

where the superscripts ‘e’ and ‘c’ mean elastic and creep

respectively. Combining (A.6) and (A.7) into (A.18), it
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follows that:

ZcL Ao,-v(A%+A%)] + (Ac,)c-_-g’[zig _v(oor+%y

c r d A /4 ©
» (8E) +EC’?[A%_V(AG,+AGE)]+ rd (s¢) e (A19)

Combining equations (A.8), (A.8) and (A.11) it follows that:

da, _—_-V(Ao;_ +A%>+7Z‘( E(A%)C

....(A.20)
Using (A.20) and (A.10) into (A.19), the following
expression can be obtained:
(JH')/M-M = (“+B) (4e “rra-v)d (g
3 ! r - - ¢ " .9) +E d’;‘ 9)
X a#)d () + rU-RY) 4 (beN© o (A.21)
E dar v T ™ dr ®
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The creep strain increment |, CA€9)? during the time
increment is estimated by assuming that the stresses at the
time (ﬁ}|+'b£/2 ) remain constant during the time interval
and also that these stresses can be approximated by
(6,+ 8% /2 ) and (g +8a,/2 ). Additionally, the time-strain
hardening is assumed to be valid in order to describe the
effects of the previous strain history on the creep behavior
of materials. Based on these considerations and also on the
fact that creep strain rates depend on the current stress

level it follows that:

% & -

C0e )= ne  (4,+8%) . st oo (8.22)

[

where "A",' % ', and 'm’ are creep parameters (see Chapter
4 for discussions on the creep law) and ©; represents the
current stress level. Finally, using (A.17) and (A.22) into

(A.21), it follows that:

201-v%) d¥(8a) - 3r (=¥ 4 &g ¥
- L0 ) A700) = 30 (D d (6)y _ Crep,) e (¢ 86) ot +
_ag -m
+ rO-prliae G +8t) Ot .d;-:q. ... (A.23)
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Equation (A.23) constitutes the governing differential

! equation for the time-dependent boundary-value problem.
This equation can be further extended by substituting
the stress level, ©O; , by its proper value. Assuming that

the Mohr-Coulomb criterion is valid, it follows that:

_ e { @), - (Gr)(_'} + (09) - Caqy)
O

..o (AL24)

(1]

= lcw¢ +c?a',,¢{(0;;)[_’+ (O'r }+st‘n¢{Aoé+Acrr}

where c and/ﬂ'are the shear stength parameters. Equation

(A.24) can be rewritten as:

k, + 40 - AT,

Qi
a

... (A.25)

ko + 3mp (85, +07,)

where:

ko= 2] @)

(-

= C O-r)(._'}

kQ - 4cco.s¢ + °‘25"n¢{(0-9)‘..’+ Co'r)c'_,}
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Also equation (A.23) can be rewritten as:

dz d 625‘_- 07_4.‘
_ksﬁ(w,)_k"a;(oa,):kse vk e . ... (A.26)

Sla
]

~

ks = rz(l—yz)/f'

K . 3 (- /E

-m
ky “*ﬁ)4(€q+‘&&) st
k. oorCr-puv)da (4, + 0tz) ot
To further extend equation (A.26), the term d o has

dr
to be calculated. Thus, using (A.24) it follows that:

db, 4 4 N
d_r'.+ 6—,’—(00‘,)-0- YE} CM’)][’(Z + 5"”95 {e?&fr + rj% Aa’rf‘]

Z ——
le

d
[k' + rﬁdaj/éﬁ-smsé 3140,-/- rfi_zAa;f
— \dr dr dr? . (AL2T7)
4o ?

dr




where

K, = I(Z + st {Aor+ rc%Aa',}

Equation (A.27) can be rewritten as:

d 2 d?
dg; ky dirbd' t I‘B{WM'} + Ky 3700 vk
-T: . /( P24

where
1(7 = "'Sl'n¢-j-;k-' + kz + Q?AO;_ Slh¢ —_ 3k[ 5/‘)7¢—I‘ %ﬁz
ky = - Rramg
J(a = kz Y 4 °?"5"’1¢ AC',- - Y’(‘ Sl'n¢
dk d |
kg = ke (57)+ 2omg (Yoo, -k (L)

Using equation (A.28) into (A.26), it follows that:

d2
-L d—-rLAO" -—k"ddréd' =k5e +

2 2
. ;(fée_ fé-——-dz;+é rAcf,f.;.é&%Ad;.,.

2
%
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. (A.28)

.(A.29)
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or,

k, 4240 + k 2dg = ky ... (A.30)

where: X,

~
1

!
W

f

"

2

Equation (A.30) represents the short form of the
governing differential equation which describes the change
in radial stress with time. To evaluate the components
Aqe , b0y and (AG.-) and CA%), equations (A.2), (A.22) and
(A.6) through (A.8) have to be used.
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Appendix B

Computer program to integrate the developed differential

equation

In the following, a computer program is described and
its listing presented, where the differential equation

(A.30) described in Appendix A is integrated numerically.
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Appendix C

Comparisons between measured and predicted results of

multiple-stage creep tests

Next, the figures showing the comparisons between the
measured and predicted results for the multiple-stage creep
tests CT1, CT2, and CT3 are presented. The stress history
associated with each test is indicated in Figure 4.10 and
the parameters A and ' @« ' obtained from the analysis of

these tests are indicated in Table 4.6,
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