INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bieedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or iliustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning -
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
800-521-0600

®

UMI






University of Alberta

You CAN’T ALWAYS BE RIGHT ... BUT SOMETIMES IT’D BE NICE: PREDICTING UNIX
COMMAND LINES

by

Benjamin Franklin Korvemaker ©

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2001



il

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et

Bibliographic Services

385 Wallington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-60446-2

Canada

Ottawa ON K1A ON4

services bibliographiques

Your e Voire réldrence

Our Kle Notre rélérence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.



University of Alberta

Library Release Form

Name of Author: Benjamin Franklin Korvemaker

Title of Thesis: You Can’t Always Be Right ...But Sometimes It'd Be Nice: Predicting Unix
Command Lines

Degree: Master of Science

Year this Degree Granted: 2001

Permission is hereby granted to the University of Alberta Library to reproduce single copies of this
thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the
thesis, and except as herein before provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any material form whatever without the author’s prior
written permission.

)
g@/\ U\ [’?/,—?/)"/\J(/@S «
Benjamin Franklin Korvemaker
59 Compton Road
Regina, Saskatchewan
Canada, S4S 2Y2

pute L1 29




University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and
Research for acceptance, a thesis entitled You Can’t Always Be Right ... But Sometimes It'd Be
Nice: Predicting Unix Command Lines submitted by Benjamin Franklin Korvemaker in partial
fulfillment of the requirements for the degree of Master of Science.

Dr. Russell Greiner
Supervisor

lonss EEL

Dr. Renée Elio

N B

Dr. Peter Dixon

Date: NO“ 3012000




If at first you don’t succeed
then skydiving isn’t for you.
— Anonymous



To Christie



Abstract

As every user has his own idiosyncrasies and preferences, an interface that is honed for one user may
be problematic for another. To accommodate a diverse range of users, many computer applications
therefore include an interface that can be customized — e.g., by adjusting parameters, or defining
macros. This allows each user to have his “own” version of the interface, honed to his specific
preferences. However, most such interfaces require the user to perform this customization by hand
— a tedious process that requires the user to be aware of his personal preferences. We therefore
explore adaptive interfaces that can autonomously determine the user’s preference and adjust the
interface appropriately. This thesis describes such an adaptive system — a Unix shell that can pre-
dict the user’s next command and then use this prediction to simplify the user’s future interactions.
We present a relatively simple model here, and then explore a variety of techniques to improve its
accuracy, including a “mixture of experts” model. In a series of experiments on real-world data, we
demonstrate (1) that the simple system can correctly predict the user’s next command almost 50%
of the time, and can do so robustly — across a range of different users; and (2) that it is extremely
difficult to further improve this resuit. Although we conclude that we have extracted all usable infor-
mation from the dataset, improved performance may be obtained by applying the techniques herein
to alternative datasets or domains.



Preface

If the reader is unfamiliar with Unix command lines, a brief detour to Appendix A is recommended.



Acknowledgements

I would like to thank the following for their part in this thesis:

o Julian Fogel (for his computing resources)

o Saul Greenberg (for his Unix command line data)

¢ Russell Greiner (for being my supervisor)

o Thomas Jacob (for doing the initial work with me)

o Christopher Thompson (for creating additional predictors)
o NSERC (for research funding)

e Anonymous subjects (for data collection)



Contents

1 Introduction

2.1
22
23

3.1
32
33
34
35
36

4.1

42

43

44

Scenarios

DocumentWritingExample . . ... ........... ... ... ...
Program WritingExample . . .................. ... o0....
Cumrent“Solutions” . . . . . . . . .t it it e e e e e e e
230 MaKe .. .. i ittt e e e e e e e e
232 AlESES . . . . v h i et e e i i e e e
233 Scripts . ... e e e e e e e e e e

Literature Review

Approach

CombiningExperts . . . . ... ... .. ittt e
4.1.1 Correlationcombiner . . . ... ... .. .. ... ..
412 Democraticcombiner. . .. ... ...... ...t
Alpha Update Rule (AUR) String Predictor . . ...................
421 Updatephase . . ... ....... ... innnnn
422 Predictphase . ... ... .. ...
ParsingCommandLines . .................. ...
43.1 Problems with AssigningSemantics . . . ..................
432 OriginofParsingRules. . . . ........................
433 PamsingDetails . ... ........... ... . . i
434 HowtheParsingResultsAreUsed . . . ... ... .............
Otherpredictors . . . . . . .. .ottt it ittt e ettt it et

O 00 00 N O &

10

11
12
17
17
18



5 Results

5.1
5.2
53
54

Bestpredictor . . .. ... .. ... .. ittt ittt
Bestcombiner. . .. ... ... ... .0ttt

UsingAllPredictors . . ... ... .. ...ttt enreneensneons
Omniscience at Work: Godsin Training . . . .. ..................

6 Future work

7 Conclusion

Bibliography

Index

A Unix Command Line Structure

B AUR Predictor Example

C Evaluation of Command List Size

D Pictures of Our Implementation

D.1

UsingtheTitleBar . . ... .. ... ...ttt i nnnnsns

D2 UsingaSeparateGUL. . ... ... ... ...t nrnennnnn

E Additional Predictors

E.l
E.2
E.3
E4
ES

E.6
E.7

HistoryPredictor . . . ... .. ... .. ittt nnnn
History Weighted Predictor . . . . ... .. ... ..... ... cu...
Last-NPredictor. . . . . . ... ... .. ... . .. .. ..

ES.1 StubFirstPredictor . . . ... ... ...... ... ... . ... ...
ES2 StbLastPredictor . . . .. ... ... ..ttt ennnnn
ModePredictor . . . . ... ... ... ... .. it
CyclePredictor . . ... ... ... . it i it entienoenns
E7.1 EntireCyclePredictor . ..................c........
EJ72 StubCyclePredictor . . ... ... .... ...t reeenenn.

F Algorithms for AUR Predictor

G Data Collection

5
36
37
40
42

49

52

57

61
61
61

65
65
65
66
66
66
67
67
67

69

73



List of Tables

4.1 Predictionsovertime .. ... ... ... ..ottt 23
4.2 Correlation combiner calculated probabilitiesovertime . . . . .. ... ...... 24
4.3 State of correlationtableovertime . . .. ... ... .. .. ... .. ... ... 24
5.1 Performance of each predictoronallusers . . . ... ................ 37
5.2 Performance of each predictor on all users, ignoring trainingdata . . . . . .. ... 37
5.3 Average accuracy where the given predictor is the bestpredictor . . . . . .. ... 38
5.4 Breakdown of best predictortousertype . . . .. .. .. ... oo 38
5.5 Average accuracy where the given predictor is the best predictor, ignoring training

. 38
5.6 Breakdown of best predictor to user type, ignoring trainingdata . ......... 39
5.7 Average accuracy where the given combiner is the bestcombiner . . . . . ... .. 39
5.8 Breakdown of best combinertousertype .. ........ ... ... ... ... 40
5.9 Average accuracy where the given combiner is the best combiner, ignoring training

1 40
5.10 Breakdown of best combiner to user type, ignoring trainingdata . ......... 40
5.11 Accuracy when the correlation combiner and all predictors areused . .. ... .. 41
5.12 Accuracy when the correlation and all predictors are used, ignoring training data. . 41
5.13 Accuracy when the the democratic combiner and ail predictorsareused . . .. .. 41
5.14 Accuracy when the the democratic combiner and all predictors are used, ignoring

training data . . . . . . ..o e e e e e e e 41
5.15 Accuracy when the best combiner and all predictorsareused . . . ... ... ... 42
5.16 Accuracy then the best combiner and all predictors are used, ignoring training data 42
5.17 Accuracy when the best combiner and best predictorsareused . . . ... ... .. 42

5.18 Accuracy when the best combiner and best predictors are used, ignoring training data. 43

A.1 Breakdown of the commands Fred typesin Section2.1 ... ............ 53
A.2 Breakdown of the commands Wilma typesin Section2.2 . .. ........... 53
B.l1 Probabilitytableattime3. .. ... ... ... ... ... . . ... 55

B.2 Probabilitytableattime4. .. ... ..... ... ...t 55



B3
B4
B.S
B.6

C.1
C2

C3
C4

Probability table Bt mE S . . . . .. o v et e 55
Probability table 8t HME 6. . . . . .. ottt 55
Probability table st ime 11 . . . .. ..o\ ottt e 55
Probability table Bt me 23 . . . . . .ottt 56

Average time in seconds taken to select a command for n commands presented. . . 57

Average time in seconds taken to select a command for n commands presented when
command listisinverted. . . . ... .. ... ... ... .. ... . . 57

Average time in seconds taken to select a command for n commands presented. . . 58

Average time in seconds taken to select a command for n commands presented when
commandlistisinverted. . . . ... .. ... ... ... .. ... . 58



List of Figures

2.1
22
23

4.1
4.2

B.l

C.1
C.2

C3
C4

D.1
D.2

Fredtriestowritehisthesis. . ................... ... .. ...,

Exampleinterface . . . . .. ... .. .. ... ... . i 6
Wilma tries to enhance frobnicate. .............. ... ..., ..

Example AUR PredictorStructure . . . . .. ... ... .. ..., 26
Parsing of simple command sequence from FigureB.1 . .............. 34
Samplecommandsequence. . . . . . . .. ...ttt it et e 54
Average time in seconds taken to select a command for n commands presented. . . 58

Average time in seconds taken to select a command for » commands presented when
commandlistisinverted. . . .. ... .. ... .. ... .. . ... 59

Average time in seconds taken to select a command for n commands presented. . . 59

Average time in seconds taken to select a command for n commands presented when
command listisinverted. . .. .. ... ... ... ... .. i 60

Title bar interfacescreenshot . . . . . . . . . .. ... .ttt 62

Separate displayscreenshot . . . . ... ... ...... .. ... . . 63



List of Algorithms

E.l
E2
E3
E4

E.6
F1
F.2
E3
E4
ES
F6

HistoryPredictor . . . ... ... ... ... ... neennn.. 64
History WeightedPredictor . . . ... ... ....... .. ... 65
BackwardsPredictor . . . ... .... ... ... ... . . L 65
SwbPredictor . . . .. ... .. ... e e e 66
ModePredictor . . .. ... ....... ... 67
CyclePredictor . . . . ... .. ... ittt ineenennnenn 68
Tuples::Feed(historyEntry,command) . ..................... 69
Tuples::Starve(void) . ... ... ... .. e 69
AUR-Predictor::AlphaUpdate(command) . . . . .. ... ............. 70
AUR-Predictor::AddChild(branch, sequence) ... ................ 70
AUR-Predictor::CreateChildren(history) . ............ ... ...... 71
AUR-Predictor::Predict(history, scale,incr_scale) . .. .. ........... 72



Glossary

AUl Adaptive User Interface (Chapter 3) .

AUR Alpha Update Rule (Section 4.2) .

CPT conditional probability table.

GBI Graph Based Induction (Section 3.3).

GUl Graphical User Interface.

HCI Human-Computer Interaction.

IOLA Ideal Online Learning Algorithm (Section 3.3) .
IPAM Incremental Probablistic Action Modeling (Section 3.3) .
LMP Longest Matching Prefix (Section 3.3) .

MFC Most Frequent Command (Section 3.3) .

ML Machine Learning.

MRC Most Recent Command (Section 3.3) .

NLP Natural Language Processing (Section 3.6) .
/K Reactive Keyboard (Section 3.3) .

uc Unix Consultant (Section 3.5) .

AUR String Predictor Predicts command lines based on the time of day, day of week, recent
command lines and recent exit codes (Section 4.2).

AUR Token Predictor AUR predictor that uses parsed command lines instead of literal com-
mand lines (Section 4.3).

Backwards Predictor Tries to build a sense of context to predict the next command line (Sec-
tion E.4).

Entire Cycle Predictor Searches the recent history for a command line cycle to predict a short
macro (Section E.7.1).

History Predictor Looks back at the last 100 command lines, scoring commands by frequency
(Section E.1).

History Weighted Predictor Looks back at the last 100 command lines, scoring commands by
weighted frequency (Section E.2).

Last N Predictor Predicts the last N unique command lines (Section E.3).



Mode Predictor Uses the last two command stubs to predict the next command line (Section E.6).

Stub Cycle Predictor Searches the recent history for a command stub cycle to predict a short
macro (Section E.7.2).

Stub First Predictor Uses the command stub to predict the next command line (Section E.S.1).
Stub Last Predictor Uses the last non-option to predict the next command line (Section E.S.2).



Chapter 1

Introduction

“All mail clients suck. This one just sucks less.” —Michael Elkins on mutt, circa 1995

Today there are a wide variety of interactive computer applications, ranging from web-browsers and
searchers, through spreadsheets and database management systems, to editors, as well as games.
As these systems become more complicated — as required to be able to accomplish more tasks,
better — their interfaces necessarily also become more complex. Many of these systems have begun
including tricks to help the users; e.g., if the user begins an empty file with “Dear John,” Microsoft
Word will suggest a “Letter” template; similarly, if the user begins a line with an asterisk (), Word

will change that character to a bullet (o) and go into its “List” environment.

Unfortunately, different users have different preferences, therefore the tricks that are appropriate
for one user may be problematic for another (e.g., not all users like the fact that Word automatically
formats anything starting with “http://”’ as a web link). Moreover, different users want to do different
things with the system, as they have very different abilities, background knowledge, styles, etc. This
realization — that “one size does NOT fit all” — argues for customizable interfaces that can provide
different interfaces for different users, and hence allow each user to have an interface that is honed

to his individual preferences.

Of course, many of today’s application programs can be customized; e.g., most editors and shells
include macro- or scripting- facilities. However, this customization process must typically be done
by the user — this typically means that it is nor done by the user, as this customization process:

1. requires that the user knows how to make this modification (e.g., knows both the names of the
relevant parameters, and how to modify them),
2. requires the user to be aware of his specific preferences, and

3. is usually quite tedious.



This research project, therefore, pursues a different approach: build application systems that can
autonomously adapt themselves to the individual users. In particular, we focus on techniques for
detecting patterns in the user’s interactions, and then using this information to make the interaction
simpler for the user (perhaps by automatically re-setting some system parameters, or defining ap-
propriate new macros). This thesis investigates a specific manifestation of this task: we design and
implement a Unix command shell that predicts the user’s future behavior from his previous com-
mands, and then uses these predictions to simplify his future interactions with the shell. We have
selected ZSH as this shell due to its clean source and powerful scripting language.

Our system is designed around three guidelines, intended to make computers easier to use:

1. We must not impede user productivity. By contrast, other “helpful” systems have a dancing

mascot that pops up and stops users until they click on a button to make it go away.

2. The input to the system must be obtained unobtrusively: no questions, no interviews. While
constantly monitoring the complete state of every file on the computer might help, computer

performance might lag from the overhead of doing so.

3. Predictions should be made even if only a few examples exist, and those predictions should

presented in a timely manner. If not, some users will turn the system off while others will

simply ignore it.

With that in mind, we present a system that observes users typing command lines (and other in-
formation, such as the exit codes those commands return, the time of day, and day of week), then
predicts what commands will be typed next, and provides a way for the user to use those predictions.

For example, suppose Fred is busy working on his thesis, and several times runs the command
*“vi thesis.tex” and followed by “latex thesis.tex”. If only Fred were using our sys-
tem: the computer could assign the right command (“latex thesis.tex”)to the key Fl after
Fred has typed “vi thesis.tex” and tell Fred this. This way, Fred would only have to press

one key, rather than 17. See section Section 2.1 for a more detailed example.

Users tend to repeat the same sequences of commands, and we exploit that. Our work builds upon
a system by Davison and Hirsh[7, 6, 8, 11}, scaling their approach from command stubs to com-
mand lines. Using an enhancement of their algorithm, we predict command lines correctly over
45% of the time'. Following an alternative approach, using multipie prediction sources simultane-
ously, we obtain superior predictions than from a single predictor. This further enhancement can
obtain an accuracy of almost 50% over a wide variety of users. We present a pair of examples in
Chapter 2, illustrating the need for command line prediction, along with alternative, pre-existing so-
lutions. Chapter 3 examines prior work, from alternative predictive interfaces to other Unix-related
IPredicting the last S unique command lines achieves 41% accuracy.

2



projects. Following, in Chapter 4, we describe the architecture of the system: the various methods of
prediction, and how those prediction methods can be used together simultaneously, while algorithm
performance upon the test data is discussed in Chapter 5. Future work (Chapter 6) and conclusions
(Chapter 7) complete the post-mortem by arguing that the relatively simple system appears to have
“gleaned” essentially all of the accuracy possible from the data collected, but that more information
may be gathered from the test data we have obtained.

For the truly curious, appendices follow. Appendix A describes the Unix command line structure,
a useful reference for those not familiar with Unix command lines. A detailed example of our
primary predictor, the Alpha Update Rule (AUR) predictor, is presented in Appendix B. Throughout
the course of research, we explored the effect of changing (a) the number and (b) the order of
command line predictions on users. Appendix C is a summary of this exploration. As this research
did produce a usable interface, Appendix D contains pictures of two alternate representations of that
interface. We also report on a variety of other algorithms using various types of input in Appendix E,
which are used by the combination methods described in Section 4.1.1 and Section 4.1.2, but are
not the primary focus of research. Appendix F presents some of the grittier details of the algorithms
presented in Chapter 4, and Appendix G describes our data collection processes.



Chapter 2

Scenarios

“If at first the idea is not absurd, then there is no hope for it.” — Albert Einstein

With each new release, computer applications perform more tasks. Side effects of these new tasks are
new configuration options, allowing greater software flexibility. However, this flexibility frequently
also increases the complexity of the application (if not in performing tasks, at least in configuring
the tasks). While many people may like pointing to Microsoft applications (Word, Windows, etc.) as
the epitome of application complexity, the Unix command line suffers from similar afflictions — in
fact, it may be worse. The Unix command line environment is a legacy system, having been around

for decades, and as such, has accumulated unusual behaviors and features throughout its evolution.

For every command the user types, the computer does something. If we watch what the user types,
we notice that he frequently types the same sequences of commands over and over. Given that we
can watch what the user types, and that computers are good at recalling what has been typed before,
we can estimate the probability the ¢ + 1** command will be x, given the previous commands:
P (command;;; = x |command,, ...,command, ) for all possible commands x. We can take the
best one (or even the best five) and help the user by assigning those commands to otherwise unused
keys, the F-keys. By doing so, we can reduce mistakes and typing time, thereby improving user
productivity. Here we present examples of how different commands use different options (quickly
confusing novice users) and how typographical errors may occur — and how we can easily avoid
those problems. In Section 2.3, we explore what solutions are already available, and why those
solutions are not used.

2.1 Document Writing Example

Fred is trying to write his thesis using ISTEX (a typesetting program whose existence spans three
decades and whose use requires multiple steps'). Typically, the steps for using ISTEX are:

» 1By splitting each task into small steps, small changes may not require the entire task to be performed again. Instead,
only relevant subtasks are reexecuted, saving time. When ISTgX was first developed in the early 1980's, this was important.

4



vi thesis.tex
latex thesis.tex
dvips -q thesis.dvi -t letter -o thesis.ps
ghostview thesis.ps
vi thesis.tex
latex thesis.tex
LaTeX Error:
! Emergency stop.
No pages of output
vi thesis.tex
8 latex thesis.tex
LaTeX Error:
! Emergency stop.
No pages of output
9 vi thesis.tex
10 latex thesis.tex
11 dvips -q thesis.dvi -t letter -o thesis.ps
12 ghostview thesis.ps
13 vi thesis.tex
14 latex thesis.tex
LaTeX Error:
! Emergency stop.
No pages of output
15 mail -s ‘I need latex help’ wilma
My thesis keeps blowing up!

AW H W -

16 logout

Figure 2.1: Fred tries to write his thesis.

1. Write document source (document ends in . tex). One common editor is vi.

2. Run I5TEX on (filename) . tex to produce a device-independentfile, creating (£ilename) . dvi.

3. Run dvips on (filename).dvi to produce a PostScript file, creating (filename) . ps.

4. View PostScript file with ghostview, displaying what the document will look like.

At any point (particularly when the document is not complete), the user may return to step 1. When
the user is satisfied with the results at step 4, he will usually then print the document. In Figure 2.1
(typewriter text lines are commands typed, indented lines are relevant output messages
from programs), we see Fred attempting to go through these steps. In the example, a breakdown of
the parameters provided to the command can be seen in Table A.1.

At first, Fred has no problems with the usual steps (lines 1-4), but does not like the resulting docu-
ment. After making some changes (line 5), KIEX has problems with thesis . tex (line 6), requir-
ing Fred to make changes to fix the problem. Once those problems are fixed (lines 7-10), ISTEX likes

the document but Fred does not. Consequently, he makes more changes and it is no surprise that
There are many other good reasons for this model, but that would be a thesis in itself.




Fi [dvips peqnp] F2[bibtex peqnp] F3[vi pegnp.tex) F4Ratex peqnp] F5Qs] | .| i
{/usr/lib/texnf/texnf/tex/latex/base/article,cls
Documant Class; article 1336/10/31 v1,3u Standard LaTeX document class
(/usr/1ib/texnf/texnf/tex/latex/base/sizel0,clo)) {peqnp.aux)
{/usr/1ib/texmf/texmf/tex/]atex/base/onscme . £d) (1] {(peqnp.aux) )
Output written on peqnp.dvi (1 page, 804 bytes),
Transcript witten on .log.

This is dvipsk ight 1996, 1994 Radical Eye Softuare
> TeX outpu%iil.SSS .01.18:2315° -> peqnp.ps

“/tmp/z

“/tmp/z
“/tmp/z

al13712 I i ST “/tmp/z

This is TeX, Version 4199 (C version 6.1)

{peqnp.tex

{LaTeX2e <1996/12/01> patch level 1

Babel <v3,6h> and hyphenation patterns for american, german, loaded,

(/usr/1ib/texnf/texnf/tex/1atex/base/article,cls

Document Class: article 1996/10/31 vi,3u Standard LaTeX document class

{/usr/lib/texmf/texmf/tex/latex/base/sizel0,clo)) (pagnp,aux)

(Zusr/lib/texnf/texmf/tex/1atex/base/omsemr,fd) [1] {peqnp.aux) )

Output written on peqnp.dvi (1 page, 804 bytes),

Transcript. Utz'iiten on peqgnp, log,

~/tmp/z

Figure 2.2: Example interface

ISTEX is unable to process thesis. tex again (line 14). At this point, Fred asks Wilma for help
(line 15) and quits (line 17). Our system can simplify the latex-dvips-ghostview sequence
by assigning the right command to F1 each time. This lets Fred focus on writing his thesis rather
than on compiling it.

Figure 2.2 shows our interface. Here, the titlebar shows a list of predicted commands and the F-keys
those commands have been mapped to.

2.2 Program Writing Example

Another common situation involving repeated multiple steps is program writing. Many computer
Ilanguages require the following steps:

1. Write the program source code.

2. Compile each source code file to an intermediate format called object code.

3. Combine all object code into the destination program. This is called linking.

4. Run the program.



vi frobnicate.c

vi xfrobnicate.c

cc -c¢ frobnicate.c

cc -c xfrobnicate.c -I/usr/X11R6/include

Id -o xfrobnicate -L/usr/X11R6/lib -1Xt -1X11

xfrobnicate

vi xfrobnicate.c

cc -c xfrobnicate.c -I/usr/X11R6/include

1d -o xfrobnicate -L/usr/X11R6/1lib -1Xt -1X11

10 xfrobnicate

11 vi xfrobnicate.c

12 cc -c xfrobnicate.c -I/usr/X11R6/incldue
xfrobnicate.c:2 X11/X1lib.h: No such file or directory
xfrobnicate.c:3 X1l/Intrinsic.h: No such file or directory

13 cc -c xfrobnicate.c -I/usr/X11Ré6/include

14 14 -o xfrobnicate -L/usr/X11R6/1ib -1X11

xfrobnicate.o: In function ‘main’:

OV O30 NN -

xfrobnicate.o(.text+0x3b): undefined reference to ‘XtInitialize’

collect2: 14 returned 1 exit status
15 14 -o xfrobnicate -L/usr/X11R6/1lib -1Xt -1X11
16 xfrobnicate

Figure 2.3: Wilma tries to enhance frobnicate.

Although these steps seem very similar to the IXTEX example above, the steps may be significantly
worse. The command sequence in Figure 2.3 shows Wilma working on a program called xfrob-
nicate, adding Graphical User Interface (GUT) capability to an old program. A breakdown of the
parameters provided to the commands can be seen in Table A.2.

Similar to Fred, Wilma has no problems at first (lines 1-11). However, she starts making mistakes
typing out the various commands to compile xfrobnicate. She misspells “include” as “incidue”
(line 12), and she forgets to tell the compiler to use the “Xt” library when linking xfrobnicate
(line 14). A command shell that predicted Wilma’s next command accurately would reduce typing
mistakes significantly: pressing F1 or F2 is much easier than typing “cc -c xfrobnicate.c -
I/usr/X11R6/include”.

Commands are difficult to remember (and consequently type correctly). A shell that allows the right
command to be executed with one key press would be useful.

2.3 Current “Solutions”

As seen above, (1) users frequently type similar (morein, the same) commands and (2) these com-
mands can be long and complicated — which often leads to errors. We need to simplify this (1)
for efficiency and (2) for reduced mistakes. Naturally, we are not the first to realize that this is
somewhat inefficient, and others have presented solutions that try to eliminate errors and save time.

However, the only widely deployed solutions have been limited in their acceptance. Below we re-

7



view systems that allow users to manually simplify the interface. Chapter 3 then discusses earlier
attempts at automatic simplification.

23.1 Make

In the case of compiling programs, make has been created. A configuration file called amakefile
contains of rules that specify what steps must be taken to get from a set of source code files, to
an intermediate set of object code files, to an executable. make also has a number of built-in
rules that help simplify makefiles. Although this solution has been around for decades, most

undergraduate students still do not use it. For the example in Figure 2.3, a reasonable makefile?
would be:

CPFLAGS=-I/usr/X11R6/include
LDFLAGS=-L/usr/X11R6/1ib -1Xt -1X11

xfrobnicate: frobnicate.o xfrobnicate.o

“make” has enough built-in rules that Wilma would simple have to run “make"” (without any argu-
ments!). Unfortunately, many people do not know how to use “make”, and of those that do, many
are too lazy to use it for small projects.

23.2 Aliases

For other cases, users may take advantage of shell alias facilities to build their own macros. The

macros may even take arguments, becoming their own mini-commands. For the example in Fig-
ure 2.1, the following alias could be created:

alias doc='latex $l.tex && \

dvips -gq $1.dvi -t letter -o $1.ps && \
ghostview $1.ps’

This alias allows Fred to simply type “doc thesis” to run the three frequent steps. The dou-
ble ampersands (&&) represent separation between commands and tell the shell to stop executing
commands if one returns an error. This allows for a chain of commands to be run sequentially, but
stopping at the first error. The backslash (V) is a continuation character which tells the shell that the
alias continues on the next line. The problem with aliases is that the user must modify the resource
file for their shell (a file called “. zshrc” for zsh users). Further compounding the situation is that
the documentation for writing aliases is usually buried in an online manual (called a “man page™)
that many find difficult to read. Novice users have a difficulty remembering the name of the resource

file and for accessing the documentation.

2The astute reader may notice that this makefile is significant shorter than most. However, sufficient information is
present for make to properly run, as it has defanit rules for creating an executable from C source code.




23.3 Scripts

A command shell may also be used to write scripts that will be run. The same commands that are
used for an alias are used for scripts. The difference between the two is that it is easier to write
a script for complex tasks, whereas aliases are frequently used for simplifying single commands.
Thus, the solution written as an alias could also be written as the following shell script (a file called
“1dg”™), whose contents are:

latex $1l.tex || exit
dvips ~-q $1.dvi -t letter -o $1.ps || exit

ghostview $1.ps || exit

In this script, the “| | exit” tells the shell to exit only if an exit occurs. Once again, the documen-
tation problem makes it difficult for some users to write scripts, aithough it alleviates the need for

the user to modify their resource files.

All three solutions provided here have been around for a very long time, yet they are not used as
often as they should be. Some users do not know how to apply these solutions. Others do not even
realize they exist. Better education could improve the acceptance of these solutions. However, not
all Unix users are in an educational environment. With the growing popularity of Linux, there are

many home users and improved training is not an option.

Our approach is more “user-friendly.” Our command line prediction functions by itself, or in con-
junction with existing tools. It leverages knowledge of command lines to learn user patterns quickly,
possibly before the user realizes such patterns exist. We avoid the need for users to tweak and
twiddle with configuration settings and files by predicting command lines. Instead, the best five
predictions (see Appendix C for why we chose five) are assigned to the F-keys. Although these
mappings change after every command, they are consistent in that (1) they do change after every
command, and that (2) the best prediction is assigned to F1, the second best to F2, and so on. By
displaying the mappings to the user, he can then take advantage of them and simply press one key
instead typing in the complete command.

This problem has been approached before, and we explore those approaches in the next chapter.
However, the success of these attempts has been limited, as we shall see.



Chapter 3

Literature Review

“To steal ideas from one person is plagiarism; to steal from many is research.” —Unknown

Our system may be classified as an Adaptive User Interface (AUI), observing and and adapting to
the user. It contains muitiple experts (prediction algorithms designed to exploit facets of command
line patterns) that learn command line usage patterns under Unix-type operating systems and pre-
dict subsequent command lines. A mixture of experts model then uses recent expert accuracy to
combine those predictions (i.e., experts that have a pattern of being wrong will have their predic-
tions discounted, while experts that have been correct will be favored). The five most likely “next”
command lines presented to the user, and the user may use the predictions or ignore them. Through-
out the development, the system has been tested on a collection of real-world command lines, rather
than a randomly generated set.

Langley observes that online learning is critical for an AUI[13]. While a tool may be able to analyze
longer term data each night, its strength will come from its ability to analyze the data on-the-fly
(“making them ‘learning’ systems, not ‘learned’ systems” [13, p. 368]). He goes on to say that rapid
learning is needed, but CPU time is not the issue. Nor should it be, with processing power constantly
increasing (the number of transistors per square inch in an integrated circuit doubles roughly every
18 months[16, “Moore’s Law"], and computing power doubles roughly at the same rate). Rather,
the ability to learn with a small training set — a difficult task for standard statistical methods, but
not for our approach — is what will win. This is a key motivation for our work.

Users use command lines that may be difficuit to type correctly, for one reason or another. Further,
these commands are frequently repeated, presumably in patterns that might be detected. Given this
scenario, we inspect what other researchers have done in similar or related situations.

10



3.1 Greenberg Data

The data we used for testing and analysis was collected by Greenberg. He collected the Unix
traces of 168 users in 1988[9], and analyzed it for improved history facilities (although not for
predictions)[10]. Despite the age of this data, it is a substantial amount: 303,628 command lines.
Consequently, this data was the testing data for our work. As it did not include information we
wanted to consider, we also collected data, and only at the end of research had we accumulated a

similar quantity of command lines. Appendix G is a brief description of our data collection.

3.2 Programming By Example

Cypher uses programming by example with Eager, a predictive system written in Lisp for the Mac-
intosh Hypercard environment[3, 4]. Like our system, Eager also watches user activities and tries to
predict the next steps (so that it might be given the chance to perform tasks automatically). Eager
records events at a high level (such as “click on the OK button™) rather than low-level events (such as
“click at screen coordinates 55,67"), and as a result, is more adaptive to window placement changes.
It also uses the idea of similarity between component (button, text field, check box) labels to build
up pattemns (e.g., “Thursday and Friday” or “the last word of the third field” ). Feedback is provided
to the user by highlighting the anticipated action and uses the user’s actual action to evaluate itself.
The user may also use the Eager icon to have the task completed automatically. For example:

“the user makes a list of the subjects of a stack of messages. The user selects ... and
copies the subject of the first message, goes to the list, types “1.” and pastes in the
subject . .. Then the user navigates to the second message. . ., selects . .. and copies its
subject, goes to the list, types “2.”, and pastes in the second subject ... After the user
navigates to the third message, the Eager icon appears ..., indicating that Eager has
detected a pattern in the user’s actions. Eager does not immediately begin performing
actions; rather, it uses green highlighting to “anticipate™ what the user is going to do
next.”[4, Chapter 9]

Key to Eager’s design were the concepts of minimal intrusion, generalization and validation of
programs without stopping user progress. These concepts were also important to this thesis work.
Although our work does not involve GUI “command” prediction, we also have a system that uses
user activity for feed back and that uses minimal intrusion.

Schlimmer and Hermens create a learning notepad program for pen-based computing{19]. This
notepad program is designed for quickly taking notes for frequently occurring sequences, such as
when recording a number of computer specifications. Since some features are only associated with

11



other features, providing a pick list of previously observed sequences allows user input to be im-
proved (both in accuracy and speed). For example, after observing “Fred ran around the house,”
*“Bill ran around the parking lot,” and “Mary ran around the track,” it can identify that “ran around
the” should be considered a single token. This way, the user might select one of “Fred,” “Bill,”
or “Mary” from a list, the system then fills in “ran around the,” and the user could select “house,”
“parking lot,” or “track,” or they could enter a new location. By providing these predictions and
allowing arbitrary input, the system is reasonably useful. Similarly, we provide a list of commands
that may be selected or simply ignored. Due to differences in application domains, however, we do

not build up commands a token at a time, but provide an entire command line.

Masui and Nakayama have an Emacs program that gives the user two keys: repeat and predict to
improve text editing[15]. Their motivation is that users often do not recognize repetitive tasks until
the tasks have been performed. The repeat key uses Emacs’ built-in history mechanism to look for
recent loops and re-execute them. For example, suppose a user searches for “frobnicate,” changes
*“frobnicate” to “twiddle,” and repeats these steps throughout an entire document. The predict key
uses the current prefix as a match in the recent history and executes that match. Finally, they provide
no advance notification about what these keys will do. Instead, they rely on Emacs’ undo capability
if the results are not desired. While very efficient (if the keys are not used, no overhead processing is
incurred), this model is very inappropriate for our task: some Unix commands are highly destructive
and cannot be undone, such as deleting all files with “xrm -rf” or sending an email message.

Moreover, we tell the user what commands are bound to each F-key.

3.3 Unix Command Prediction

The Reactive Keyboard (RK) by Darragh and Witten uses a tree structure for storage and calculation
efficiency([5]. By assigning special meaning to a few key sequences (ctrl-E, ctxrl-T, etc.), Dar-
ragh and Witten let the user type command lines and provides predictions in an auto-completion style
familiar to users of modern Windows applications. However, ctrl -E is used to accept the comple-
tions, and ctrl-T is used to see alternate completions. RK is designed to improve keyboard entry
for people who are unable to type quickly. However, a significant cognitive overhead is required
to efficiently use the features of RK, similar to the keystroke combination requirements of Emacs.
For example, when Wilma types “cc -c¢ xfrobnicate.c -I/usr/X11R6/include”,the
next time she would only have to type “c” and then ctrl-E — unless an intervening command
begins with “c”. If that were the case, Wilma would have to repeatedly press ctr1-T until the
correct command was displayed. However, RK is written to use Unix facilities available at the
time, and does not compile on modem Unix’s such as Linux or Solaris. Contrary to Darragh and
Witten's work, our desire is not to make users remember yet another obscure keystroke mapping,
but rather make the interface easier to use with a minimal learning curve.

12



Motoda et al. have produced a GUI environment, ClipBoard, which uses Graph Based Induction
(GBI) to construct predicted file operations and suggest them to the user[17, 21]. In order for
ClipBoard to work, however, it does not observe command lines, but rather file /O interactions.
For example, it observes that running “latex thesis.tex”reads “thesis.tex” and writes
“thesis.dvi”. It also observes that “xdvi thesis.dvi”reads “thesis.dvi”. From this,
it can suggest that when “thesis.dvi” has been modified, “xdvi” should be run. The benefits
of this are that no prior experience is required in order to generate scripts. However, it requires a
specially modified operating system to run and lacks the light-weight, easy to plug-in approach we
needed.

In their early work, Davison and Hirsh the next command stub based on the previous two command
stubs, i.e., use stuby_2, stub,_; to predict stub,. They use C4.5[18], a popular algorithm for learn-
ing decision trees. After each use of C4.5, the results were then integrated into TCSH[11] (another
popular Unixshell). The drawback to this approach is that it is offline learning (learning is not per-
formed on the fly, but instead at regular intervals), and not able to adjust immediately to new patterns
observed. They also mention that predicting a one-character alias does not improve user efficiency,
since they use ctrl-g as the keystroke to insert the prediction (two keystrokes!) — a drawback
our approach does not suffer from.

In an attempt to approximate online learning, they compare re-generating the decision tree every ten
commands vs. re-generating daily, and a significant improvement is observed. Additionally, they
use suffix-based matching (described in later papers as Longest Matching Prefix (LMP)), looking
back for a matching sequence, and using the next command stub.

Later, Davison and Hirsh explore a variety of predictors[7, 6): C4.5 (using from 1 to 4 previous
commands), Omniscient (if a command has been seen before, it can always be predicted correctly
[impossible to actually achieve]), Most Recent Command (MRC), Most Frequent Command (MFC),
and LMP. All algorithms used a fixed size window (they considered n = 100, n = 500, n = 1000).
They calculate predictions in an online fashion, using only the preceding n commands. At this
point, they introduce the idea measuring microaverage (the number of commands right over the total
number of commands for all users) and macroaverage (which is the average per person predictive
accuracy, or “average of averages™). Results showed that macroaverage scores were usually (but
not always) higher than microaverage scores. This indicates that users who type more commands
(i.e., the “power users”™) are more difficult to predict. Additionally, they try not counting the first
n = 100 commands as training data. Naturally, this allows the algorithm to improve results by
skipping the warm-up period (as much as 4% for some predictors), but it also eliminates some of
their test subjects from contributing results because they did not type enough commands. The also
tried additional attributes, such as terminal type and machine name, but interestingly, these did not
improve results.

13



They present a learning apprentice, ilash (Inductive Learning Apprentice SHell), which learns by
observing the users interactions (both the commands entered, and pertinent state information from
the shell!), rather than requiring any special training, but requires offline learning with C4.5. This
is done in the same vein as programming by example (see Section 3.2). Davison and Hirsh raise
concern over the time for online computation of predictions (i.e., running C4.5 after each command,
producing significant computational overhead). As we show in the results (Chapter 5) of this thesis,
this is not a concemn for us.

Davison and Hirsh provide a better learning algorithm after finding C4.5 performance poor(8].
The best results from C4.5 are 38.5% macroaverage (37.2% microaverage), having trained on
{(Command;_3,Command;_,) = Command; with their own set of 168,000 command stubs
from 77 users. Although this was an application of a well-known Machine Learning (ML) algo-
rithm, the overhead was high, and did not provide incremental updates. They present the descrip-
tion of an Ideal Online Learning Algorithm (IOLA) and their implementation of one: Incremental
Probablistic Action Modeling (IPAM). The description assumes Command;; is seen to follow
Command;. Whenever an unseen Command; is seen, they initialize the conditional probabil-
ity table (CPT) for (Command;- |, Command;) from a default distribution (command stub fre-
quency with no regard for proceeding command stubs). Updating a CPT has two steps: (1) mul-
tiply all elements (Command;_3, Command;_;) = x, for all x by a, (2) add 1 — « to the row
{(Command;_3,Command;_;) = Command;. This provides approximates a frequency-based
CPT. a = 0.8 is empirically determined to be best.

For example, assume we have the sequence of commands observed in Figure 2.1. After the third
command (dvips) has been typed, the command distribution is as follows: vi %, latex %,

dvips }. The entries:

(vi,latex) = vi(33.3%)
(vi,latex) = latex(33.3%)
(vi,latex) = dvips(33.3%)

are then added to the prediction table. That is, the next time the vi,latex sequence is seen, vi,
latex, and dvips will each be predicted with probability 33.33%. After the fourth command
(ghostview), four more entries are added to the prediction table:

(latex, dvips) vi (25%)

=
(latex,dvips) = latex(25%)
(latex,dvips) = dvips(25%)
=

(1atex,dvips) ghostview(25%).
'The data considered pertinent was machine name, time, date, terminal type, and cusrent directory.

14



The sequence of steps continues, and after the sixth command (Latex) is typed, the table looks

like:
{vi,latex)
(vi, latex)
(vi, latex)
(latex, dvips)
(latex, dvips)
(lLatex, dvips)
(latex, dvips)
(dvips, ghostview)
(dvips, ghostview)
(dvips,ghostview)
(dvips, ghostview)
(ghostview, vi)
(ghostview, vi)
(ghostview, vi)
(ghostview, vi)

vi (33.3%)
latex(33.3%)
dvips (33.3%)

vi (25%)

latex (25%)
dvips (25%)
ghostview(25%)
vi (40%)

latex (20%)
dvips (20%)
ghostview(20%)
vi (33.3%)

latex (33.3%)

A T 2 TR T R R 2R I T R

dvips (16.7%)

4

ghostview(16.7%).

Once the seventh command (vi) has been entered, rather than simply the current distribution of

commands to the table, we update the existing entries by multiplying the {vi,latex) => x rows by

a = 0.8 and adding 0.2 to the row (vi, latex) => vi. Now, the relevant (vi, latex) = x rows

are:

(vi,latex) = vi(46.7%)

(vi,latex) = latex(26.7%)

(vi,latex) = dvips(26.7%).

After the eighth command (1atex), the following rows are added (because although vi,latex

has been seen, latex,vi has not):

{latex, vi)

=
(latex,vi) =
(latex,vi) =

=

(latex, vi)

vi (37.5%)
latex(37.5%)
dvips (12.5%)
ghostview(12.5%).

The final state of the prediction table after the last command (logout) is:

(vi,latex)

= vi(36.7%)

15



(vi,latex)
(vi,latex)
(vi,latex)
(Latex,dvips)
(1atex,dvips)
(Latex, dvips)
{latex, dvips)
(dvips, ghostview)
(dvips, ghostview)
(dvips, ghostview)
(dvips, ghostview)
(ghostview, vi)
(ghostview, vi)
(ghostview,vi)
(ghostview, vi)
(latex, vi)

(latex, vi)

(latex, vi)

(latex, vi)
(latex,mail)
(Latex,mail)
(latex,mail)
{latex,mail)

(latex,mail)

TR A A A TR 2 T R TN R S R R R TR 2R 2N

(latex,mail)

latex(13.7%)
dvips (29.7%)
mail (20%)

vi (20%)
latex(20%)
dvips (20%)
ghostview(40%)
vi (52%)
latex(16%)
dvips (16%)
ghostview(16%)
vi (26.7%)

latex (46.7%)
dvips (13.3%)
ghostview(13.3%)
vi (30%)
latex(50%)
dvips (10%)
ghostview(10%)
vi (31.3%)
latex(31.3%)
dvips (12.5%)
ghostview(12.5%)
mail (6.3%)
logout (6.3%) .

At this point the state of the default distribution table is:

command

frequency

vi

latex

dvips

ghostview

mail

| =] D] 9] LA W

logout

16



This method, IPAM, predicts with 39.9% macroaverage (38.8% microaverage), outperforming C4.5.
This thesis work differs from Davison and Hirsh's work in that :

1. We extend [PAM from being a fixed depth to a dynamically learned depth: our AUR predictor.
2. We predict complete command lines, rather than just the command stubs.
3. We use other attributes, such as time of day, day of week, and command exit code.

4. Instead of a single best algorithm, we use a mixture of experts model because different algo-
rithms are better for different users: the AUR predictor is just one of those experts.

3.4 Collaboration

Lashkari et al. present the idea of using collaboration for improving performance among agents
that would normally learn from scratch for each user{14] (i.e., patterns learned from one user can
be applied to new users). They go on to explain that agents that learn by “watching over the
shoulder” and have a slow learning curve can benefit by finding similar peers (i.e., other users
who have something in common with the user in question). For instance, suppose Fred types
the command lines “vi cw.tex”, “latex cw.tex” and “dvips cw.dvi”. Later, suppose
Wilma types “vi cw.tex” and “latex cw.tex”. At this point, the patterns learned from
Fred could be applied, and even though Wilma has never run “dvips” before, the command line
*dvips cw.dvi” could be predicted. Although this is an interesting and potential useful ap-
proach, empirical results by both Davison and Hirsh and ourselves indicates otherwise([8, 12]. Fur-
ther, although privacy between users is not an issue while testing on historical data, an interactive
interface that provides predictions learned from other users can be a great security risk?.

3.5 Other Unix Domain Research

The Unix Consultant (UC) provides help on the use of commands[2, 20]. At the time of the initial
reports on UC (1989), it was still incomplete and not suitable for life in the real world. Rather, UC
was a test-bed for investigating Al issues. Although the domain for UC is Unix commands, the UC
components which model user knowledge interact with the user in English. The system is able to
assume user knowledge based on what the user says, and to decide what to tell the user based on
what knowledge is known or inferred. KNOME, the user modeling component of UC, tries to tailor
explanations to what the user knows, building on expertise and what has been said before. Since UC
is designed as a help facility, it is acceptable if it is unable to answer user questions (it is “fail-soft™).

2More than once during our data collection, non-commands were accidently pasted into a command session. If a password
was in that pasted data, it could be passed on to other users. We consider this unacceptable.

17



Similarly, this thesis work, while it strives to provide command line predictions, may be ignored by
the user if the predictions are not appropriate (and so it is also fail-soft). However, UC does not

predict command lines, while we do.

Another system, APU allows the manual construction of Unix commands from a Lisp-like language[1].
Although one can see the similarities (and potential integration) with UC, the application to this the-
sis’ current work seems minimal. Rather than learning command sequences, they simply work with
the ability to construct commands from another language. Its skills are more in its ability to ap-
ply known solutions or to construct new solutions by combining other solutions. While APU does

construct commands lines, it does not predict command lines.

3.6 Problem with Current Machine Learning Approaches
The task at hand, predicting command lines, differs from many ML tasks in that :

1. Learning must be performed online (i.c., after each command line is observed) with minimal
delay. Although offline learning algorithms (such as C4.5) can be modified for online learning,
other problems exist.

2. Data points are so sparse that separation into training and testing data sets is unreasonable.
Algorithms such as C4.5 will split the data into two groups, perhaps training with % of the
data and testing with § of the data. If a user has only typed 30 commands, then only 20
commands can be used for training.

3. The range of values for command lines is great. In the Greenberg data, some users have over
1000 different command lines (one has 3160 distinct command lines), while only 10 have less
than 100 different command lines. Decision tree algorithms (e.g., C4.5) perform better when
variables (command lines in this case) have only a few possible values (less than 50), or when

variables are continuous (i.e., numerical values).

Looking at these differences in another way, assume 100 command lines are needed for proper
training, thus 150 command lines must be observed. If a user types one command line per minute,
on average, and types command lines seven hours per day, five days per week, and fifty weeks per
year, reasonable predictions could be expected after almost 3 hours. However, experience shows
that few users type this many commands, (i.e., closer to one command line every three minutes),
and it might take over two days for reasonable predictions.

The domain of Unix command lines does resemble the Natural Language Processing (NLP) do-
main. However, for each command, the meaning of command options (e.g., “~q’") and arguments

(e.g., “cw.ps™) can vary greatly. Additionaily, sometimes redundancies (thoroughly exploited with

18



NLP) exist within a command line, and sometimes they do not. As such, it is difficult to directly
map NLP techniques to our task. In fact, our problem domain is that of “supervised use,” where the
learning task does not act autonomously, but provides a shortcut to a task for a user. Clearly, while
there is overlap with other ML domains and our own problem domain, deficiencies (that we address)

also remain.

As can be seen, much of the prior work touches upon portions of our work: commands are predicted,
user interfaces are non-intrusive, and learning is performed by watching the user unobtrusively.
However none completely solves the problems we face: we desire a complete, yet light-weight

solution. In the next chapter, we see a complete description of our approach.

19



Chapter 4

Approach

“Two wrongs don’t make a right, but three rights make a left.” —Unknown

The goal of this work is simple: predict exact Unix command lines as accurately as possible.
However, we must follow these rules:

1. Observe the user unobtrusively by watching the commands typed.
2. Present a new set of predictions after each command is typed.
3. Present the predictions in a manner such that they can be ignored with no ill effects.

4. No noticeable delays may occur — it should be describable as soft real-time.

The system is evaluated by the number of command lines it predicts correctly. After each command,
it may predict up to five command lines. If any one of these command lines is the correct next
command line (i.e., the one typed by the user), full points are awarded. If none of those command

lines are correct, no points are awarded.

Although this research was motivated by Davison and Hirsh’s work on predicting Unix command
stubs, we do not predict command stubs, but rather the complete command line. Similar to Davison
and Hirsh’s work, we predict the top five command lines. Appendix C provides a full explanation of
why we predict five command lines.

During the early work in trying to predict complete command lines, we noticed that prediction
algorithms developed using data for one user would perform poorly on data from other users. After
analysis, we could determine which was the best long-term predictor for a given user. However, we
believed that the advantage lay in the ability to dynamically select the best combination of prediction
algorithms. Individual prediction algorithms, or experts, couid then be fine-tuned for a specific class
of users, with the expectation that other experts could be fine-tuned for the remaining user classes.

20



Further, overlap between experts could allow for gradients between user classes (e.g., a novice user
gaining experience).

For example, a novice user might only use six commands: “vi cw.tex”, “latex cw.tex”,
“dvips cw.tex”,“ghostview cw.tex”,“mail” and “logout”. Simply predicting the last
five commands works well for such a scenario. However, suppose this user then edits a number of
BIEX files (“vi frobnicate.tex”,“vi foo.tex”, “vi bar.tex"),butstill uses “mail™
intermittently. Along with those commands, the associated “latex”, “dvips” and “ghostview”
commands are used. If the user rotates between various ISTEX files, predicting the last five commands
will no longer perform adequately. However, abruptly switching to a different strategy that only pre-
dicts the “vi-latex-dvips-ghostview” sequence may fail to predict “mail” at first. Thus,
a gradual transitioning between prediction strategies can perform better. Using a separate expert for
cach prediction strategy simplifies this.

In order to do so, we assume each expert E; has used some aspects of the current body of information
2 (previous commands, error code, time, date, etc.), to produce its prediction for what command the
user will type next:

P(E;=y|Q)

where E; = y indicates that expert E; predicts y will be the next command. Additionally, an
algorithm monitors the performance of each expert, providing statistics on expert accuracy. We
can use those statistics to weight the distributions when combining them, in order to pick the best
predictions and leave the worst. Here we present the key components of our prediction system: the
mixture of experts combination mechanism, the AUR predictor, and the parser. The assembly of
these building blocks and integration of the predictors in Appendix E allows us to have predictors of

varying complexity, yet maintain a clean, simple interface.

4.1 Combining Experts

During the course of research, we realized that just as no one prediction method works best for
everyone, no one combination method works best for everyone. Consequently, two combiners were
developed: both try to extract meta-knowledge about the predictors. One iooks at combinations of
predictors, and the other looks at each predictor in isolation. As with many other portions of this
thesis work, simple is often better than complex.

4.1.1 Correlation combiner

The correlation combiner tries to learn when each combination of each set of predictors should be
trusted, and when they should not be. For example, if there are three predictors, and every time

21



predictor] and predictor2 agree and are right (i.e., prediction 1 predicts “1s” and predictor 2 pre-
dicts “1s”, and the correct command is “1s"), then the combiner learns to favor that combination.
The combiner also may learn that predictor3 is never right, and subsequently will poorly weight
any predictions made by predictor3. This indirectly ranks the other predictions by predictor! and
predictor2 (but not predictor3) higher. Thus, it is theoretically possible to create a bad predictor that
improves results. For example, suppose predictor 1 predicts “1s” and “mail”, predictor 2 predicts
*“1s” and “mail”, and predictor 3 predicts “logout™ and “mail”. Since the combination method
has learned that predictor 3 makes bad predictions, “1s” will be weighted higher than “mail”.

Recall, each expert E; uses some information  to produce its prediction: P (E; = y|Q2). Our
goal is to combine these individual experts into a prediction P (C = x |2), where C = x is the
composite prediction. To simplify the derivation, assume there are only two experts. We can then

write:

P(C=xI0) = P(C=xEi=yE=z|0)
2 P(C=x|BEi=y,B2=29)x P(E1=y|E; =2,9) x P(By = z|Q)
"0

Y P(C=x|Bi=y,Ba=z)x P(E1 =y|Q) x P(Bp = z|Q)

vlz

where the last line uses the assumptions that the prediction will depend only on the values that the
experts say (i.e., P (C = x |E1 =y, B3 = 2,Q) = P(C = x|E1 =y, E2 = z)); and Ey’s predic-
tion is independent of E,’s given the background @ — P (E} = y|Eq = 2,Q) = P(E, = y|R?).
To simplify, assume that P (C = x |E), = y, B3 = z) = 0 when x ¢ {y, z}, and moreover, that we
can lump together various y # z cases. This means we need only estimate three additional numbers:

P.z = P(C=x|Ex=x,E:=x)
P.y = p(C=x|Ei1=x.E2#x)
P#,= = P(C=x|E\#x.Ba=X)
(Recall Py 4 = P(C =x|E1 # x, B2 # x) = 0 because neither E; nor E, predicts x) . This
means
P(C=x|Q)= P== xP(E=x|Q)xP(Ex=x|Q)
+ P.y xP(Ey=x|Q)x(1-P(E;=x[2))
+ Pi- x(1-P(BE,=x|Q))xP(E2=x|Q).

Of course, this scales to larger sets of experts. In general, if we have k experts, we need to estimate
2% — 1 probabilities.



After each command, the accuracies of all the predictor combinations are updated using the same al-
pha update method as IPAM uses. However, in the event that no predictors were right, the accuracies
of the predictors are not updated (i.e., since we assume Py » = 0).

4.1.1.1 Correlation Combiner Example

To illustrate how the correlation combiner works, assume we have three predictors (each providing
two predictions, as shown in Table 4.1), and Fred is working on another ISTigX document, his thesis.
The commands he types are “gv thesis.ps”,“vi thesis.tex”,and“lpr thesis.ps".
The correlation table can be seen in Table 4.3, the predictions made by each predictor can be seen

in Table 4.1, and the results of combining them can be seen in Table 4.2. The sequence of events is
then:

Time Event

tl Each probability P 77 is initialized equally (see Table 4.3), except the case of all
predictors being wrong (Pyg 4 %) is set to 0.

2 Each predictor makes 2 predictions (Table 4.1) that are combined (Table 4.2).

t3  Theusertypes “gv thesis.ps”.

t4  Predictorl and predictor2 are correct, but predictor3 has not provided a correct
prediction. The correlation table (Table 4.3) is updated accordingly.

t5 Each predictor makes 2 more predictions (Table 4.1) that are combined
(Table 4.2).

t6  Theusertypes “vi thesis.tex”.

t7  Predictor! and predictor2 are correct, and predictor3 is incorrect again. Again, the
correlation table is updated (Table 4.3).

t8  Each predictor makes 2 more predictions (Table 4.1) that are combined
(Table 4.2).

9 The user types “1pr thesis.ps”.

t10  This time, all three predictor are correct, and the correlation table is updated
(Table 4.3).

At time 1, the user has just started the shell. Predictor 1 and Predictor 2 both include the correct
command (“gv thesis.ps”)in their predictions at time 2, while Predictor 3 does not. After the
first update at time 4, the combiner will now weight combinations where Predictors 1 and 2 agree
on a command that Predictor 3 has not predicted. For instance, the calculation made at time 5 to

23

Time

2 — 5 — ] ]
Predictor 1 | gv thesis.ps (90%) [ vi thesis.tex (60%) | latex thesis.tex (80%)
latex thesis.tex (10%) | latex thesis.tex(40%) | 1pr thesis.ps  (20%)
Predictor2 | gv thesis.ps (80%) gv thesis.ps (80%) vi thesis.tex (QOW
vi thesis.tex (20%) | vi thesis.tex (20%) | 1lpr thesis.ps (10%)
Predictor 3 | 1pr thesis.ps (70%) | 1pr thesis.ps (70%) | 1lpr thesis.ps (70%)
vi thesis.tex  (30%) | gv thesis.ps (30%) | gv thesis.ps (30%)

Actual gv thesis.ps vi thesis.tex lpr thesis.ps

Table 4.1: Predictions over time



Time

[7] t5 t8
gv thesis.ps (44.18%) | vi thesis.tex (31.24%' vi thesis.tex (32.08%) |
lpr thesis.ps (31.55%) | gv thesis.ps (30.16%) | lpr thesis.ps (28.72%)
vi thesis.tex (19.77%) | lpr thesis.ps (24.56%) | latex thesis.tex (28.52@

latex thesis.tex (4.48%)

latex thesis.tex (14.02%)

gv thesis.ps

(10.66%)

Table 4.2: Correlation combiner calculated probabilities over time

Predictor Time

Combination tl t4 7 t10
1,2,3 P.__. | 14.28% | 11.42% | 9.13% | 27.30%
1,2,-3  Pa-y | 14.28% | 31.42% | 45.13% | 36.10%
1,-2,3 P.u- | 14.28% | 11.42% | 9.13% | 7.30%
1,-2,-3 P_y» | 14.28% | 11.42% | 9.13% | 7.30%
—1,2,3 Py | 14.28% | 11.42% | 9.13% | 7.30% |
-1,2,-3" Pan | 14.28% | 11.42% | 9.13% | 7.30% |
=1,-2,3 Pss= | 14.28% | 11.42% | 9.13% | 7.30%
—1,-2,-3 Pzyx| 00%| 00%| 00%| 0.0%

Table 4.3: State of correlation table over time

combine the three predictions is:
P(Ey=vi) P(E3;=vi) P(E3=uvi)

P(C = vithesis.tex) = P == =0.1142 x0.6 x0.2 x0
+  Pamg =03142 x0.6 x0.2 x1
+ Pag==01142 x0.6 x0.8 x0
+ Po gy =0.1142 x0.6 x0.8 x1
+ Py o= =01142 x0.4 x0.2 x0
+ Pyag=01142 x0.4 x0.2 x1
+ Py g = =01142 x0.4 x0.8 x0
+ Pauaza=0 x0.4 x0.8 x1
= 31.24%

Note that the second line in this calculation represents the combination of “Predictor I right, Predic-
tor 2 right, Predictor 3 wrong” ( Pe,=,%). Since Predictors 1 and 2 are right (“vi thesis.tex”)
again while Predictor 3 is not, and the combination is further reinforced at time 7. However, for the
last command (at time 9), all three combiners correctly predict that “1pxr thesis.ps” will be the
next command. At this point (time 10), the combiner reinforces the combination of all the predictors
agreeing.

The state of the combination table can be seen in Table 4.3, and the predictions and their probabilities
can be seen in Table 4.1.

4.1.2 Democratic combiner

The democratic combiner uses a simple proportion weighting. Suppose we use a window n = 10.
If a predictor was right the last 8 times, its predictions are then weighted by 0.8. Thus, for all
commands x predicted by all experts E;,

24



P(x|2) =) P(Ei=xIQ) x P(E)
i
where P (E;) = tumberof correct predictions for e |ast n commands.

Although the democratic combiner inherits its underlying data structures from the correlation com-
biner, the method of updating and combing is radically different. The approach is much more
simplistic and designed to work better with large numbers of predictors by reducing the number of
probabilities being estimated (such as seen in Table 4.3). Each predictor’s recent performance (for
variable values of recent that may differ from predictor to predictor) is used to weight the predic-
tions from each predictor. Consequently, the correlations observed by the correlation combiner are
lost. The model for the correlation combiner was that all predictors will predict something, even
if confidence is not high. The great benefit of the democratic combiner is that predictors that may

remain silent (unless reasonably confident) are not penalized.

4.2 Alpha Update Rule (AUR) String Predictor

The first expert is an IPAM[8] derivative. Other than for the first command ever typed by the
user, this expert always has a prediction, usually based on observed patterns. In the event that
no patterns match the current activity, recently seen frequent command lines are predicted. These
patterns may include the command line typed, the exit code of the command line, the time of day,
and/or the day of the week. If the algorithm finds that any of these attributes do not provide any
information (as calculated by information gain), they are not used for predictions. Some users may
have time-specific patterns, such as “every Monday morning, I only read email” or “from 2:00 PM
to 4:00 PM, only ISTEX related commands (vi, latex, dvips, ghostview) are used.” For users who do
have time-dependent patterns, this knowledge can be greatly beneficial. Additionally, each Unix
command has a numeric exit code, typically 0 indicates success while non-zero values indicate an
error condition. However, some commands do not set this exit code, while the exit code from other
commands is frequently ignored. For instance, if *“1s” returns a non-zero exit code, the user is
likely to ignore such information and continue with the task at hand. Alternatively, if “netscape”
returns a non-zero exit code, this frequently indicates that the “netscape” process has terminated
abnormally and is likely to be restarted. This model also plans for future addition of attributes,
allowing the expert to determine what attributes are relevant.

After each time the user enters a command, the predictor updates its prediction mechanism (i.e., it
continually learns). This allows the predictor to evolve over time to changing user activities. With
the updates complete, it proceeds to make a new set of predictions, based on the day of week, the
time of day, commands recently typed and the associated exit codes. The AUR string predictor has

25



Base Node
Alpka
Table
tatistics
Table
z—_\
Command-~1=ls Time=1PM Time=4PM
Alpha Alpha Alpha
Table Table Table
tatistics tatistics tatistics
Table Table Table
— e
’
— ) s 2 s \ = ™
Command-2=mail Command-~1=ls Command-l=mail Command-1=is
Alpha
Table Alpha Alpha Alpha
Table Table Table
Table tatistics tatistics tatstics
Table Table Table
—— L ) _ _J L J

Figure 4.1: Example AUR Predictor Structure

two distinct phases: update and predict, both of which act recursively upon the tree-like structure
such as the one in Figure 4.1.

4.2.1 Update phase

The update phase is further divided into four tasks: (a) update the probability table (AlphaUpdate);
(b) update the statistics table (T'upleUpdate); (c) update all child nodes (or branches) recursively;
and (d) add child nodes (CreateChildren), if necessary. A description of the various processes

follows.

4.2.1.1 Prediction table updates (AlphaUpdate)

A base table, alphaT able, containing the estimated probabilities of commands is maintained. This

table is used for predictions when no usage patterns are observed (i.e., the values in it resemble

26



recent command line frequency). Additionally, until child nodes, which represent usage patterns,
have been created (see Section 4.2.1.3), this is the only source of predictions. Finally, this greatly
simplifies the algorithms by eliminating the need for special cases.

In order to maintain this table and provide probabilities without sufficient examples, we have adapted
IPAM for table updates. After observing a command line, the probability associated with each entry
in this table is decayed by multiplying it by & = 0.95, empirically determined to be a reasonable
global value. The table entry associated the command line just typed (command;) then has its
probability increased by 1 — a = 0.05 (if the entry does not exist, it is added with probability
= 0.05). Should an entry’s probability become sufficiently close to 0, the entry is removed from the
table for efficiency (see Algorithm F.3). All entries have a combined probability of 1. This may be

more succinctly viewed as

alphaTableattimet, A*, isa listof pairs, {(Gcommand, Gprobabitity) }

At {Bcommand, Qprobability X alpha) |a € A%, Gcommand # command,
(@command, Gprobability X @ + (1- a))le € A%, 8command = command,

For example, suppose the base node has an alphaTable :

command, probability | rank
vi foo.tex 4971 2
latex foo.tex 51% 1

That is, two commands can be predicted for the nextcommand: “vi foo.tex"and“latex foo
Further, the last command was “dvips foo.dvi”. The alphaTable is first updated by multiply-
ing the probability in each row by a = 0.95. Next, 1 — a = 0.05 is added to the probability for the
last command, *dvips foo.dvi"”. The alphaTable is now:

command; 4+ probability
vi foo.tex 46.6%%

latex foo.tex 48.5%
dvips foo.dvi 5%

Now, suppose the next command is “vi foo.tex”. After multiplying each entry by  and adding
1 - ato the entry for “vi foo.tex”, the alphaTable is:

command;.+) probability | rank
vi foo.tex 49.2% 1
latex foo.tex 46% 2
dvips foo.dvi 4.7% 3

As this example shows, not only do the probabilities associated with each prediction change, but the

rank (i.e., which is the best prediction) also changes. See Appendix B for another example of how
this method works.

27

.cex’.



This approach of increasing and decreasing probabilities allows us to approximate the real frequen-
cies without sufficient data. Additionally, it allows us to model the change in distribution as a user’s
activities change over time. One flaw to this method is that the first command will have an abnor-
mally high probability. Although this could be remedied by recalculating probabilities after a small

number of commands, such an event should only happen once per user’s lifetime!.

4,2.1.2 Statistical table updates (T'upleUpdate)

Additionally, a base statistical table (used for tree growth) is maintained. This table contains com-
mand, error code, time of day, and day of week, along with a count of how many times each common
sequence has been seen, and a time to live (TTL) counter. The TTL counter is decremented at every
update (see Algorithm F.2) with the formula

D' - {(tcommcmia texit codes tdcyy teimes Leounts ETTL — 1) It € D1t’1"TL > 0} (4-1)

where D = data in Algorithm F.2 and whose structure can be seen in the example below. Addition-

ally, a list of commands, exit codes, times of day, and days of week that have been used for branching
(Section 4.2.1.3) are maintained in the lists RemovedCommands, RemovedExitCodes, RemovedTimes,
and RemovedDays.

If a sequence matches, the TTL counter is restored to a preset value (see Algorithm E.1), and the
new table D" is calculated by (4.2):

key «— (historyEntrycommand, historyEntryezit code, historyEntryrime, historyEntrygay)
keyecommend +— < if k€Ycommand € RemovedCommands
keYezitcode — 4 ifkeYeommand € RemovedEzitCodes
keYuime +— o< ifkeyime € RemovedTimes
keysay «— ©a ifkeyday € RemovedDays

D" — {(tkey,tneztsteount + 1L, TTLRESET)|t € D', tey = key}U {t|t € D', tiey # key}
4.2)
where DV is the result of (4.1). key undergoes changes corresponding to modifications made by the
process in Section 4.2.1.3. For example, suppose a branch has been made for command = 1s, the
step (4.1) has been performed, and the statistics table is:

command exit code | time of day | day of week | count | TTL
b 0 9 AM MONDAY 21 19
vi cw.tex 0 9 AM MONDAY 4 18
latex cw.tex 0 9 AM MONDAY 4 17
dvips cw.dvi 0 9 AM MONDAY 4 16
ghostview cw.ps ] 9 AM MONDAY 4 15

! Here, we assert that patterns leamed during one session will be available for use in subsequent sessions.

T 28



Additionally, suppose the last command was “Is”, run at 9:45 AM on MONDAY. We then calculate
key = (,0,94AM, MON DAY, and update the relevant row in the statistics table by increment-
ing count and resetting the TTL counter:

command exit code | time of day | day of week | count TTL |
> 0 9 AM MONDAY | 22 | 20
vi cw.tex 0 9 AM MONDAY 4 1
latex cw.tex 0 9 AM MONDAY | 4 2
dvips cw.dvi 0 9AM MONDAY | 4 3
ghostview cw.ps 0 9 AM MONDAY 4 4

Suppose the next command is “mail”, run at 9:46 AM. After the update steps, the state of the
statistics table is:

command exitcode | time of day | day of week | count TIL |
ba 0 9 AM MONDAY | 22 | 19
vi cw.tex 0 9 AM MONDAY 4 0
latex cw.tex 0 9 AM MONDAY | 4 1
dvips cw.dvi 0 9 AM MONDAY 4 2
ghostview cw.ps 0 9 AM MONDAY | 4 3
mail 0 9 AM MONDAY i 20

With the steps represented in (4.1) and (4.2) , if a common sequence is not seen for an extended
period of time, it is removed from the statistics table. Suppose that “mail” is then run again,
at 9:50AM, and the update steps are performed. At this point, the command “vi cw.tex” is
removed from the table:

command exit code | time of day | day of week | count 'I'_I'E

] 9 AM MONDAY

latex cw.tex 9 AM MONDAY
dvips cw.dvi 9 AM MONDAY
ghostview cw.ps 9 AM MONDAY
mail 9 AM MONDAY

olo|o|o|o
VI ESFNESE
BM—-o;I

4.2.1.3 Branching for improved performance (CreateChildren)

After observing a command, the statistical table is checked to see if sufficient examples have been
observed that might improve prediction accuracy. If such a condition exists, a child node (repre-
senting an observed pattern) is branched off the base node. The selection criteria for branching is as

follows:

1. Let C = {c € command;_; |ccount > commandipreshold }

2. Ve € C calculate Gain (S, c), given S, the statistical table, where

Gain (S,c) = Entropy (S) — %Entrapy (c) - :—g:-Entropy (A

29



and
(-4

Entropy (S) = Y —piloga s

i=1
The calculations for entropy and gain are borrowed from decision tree theory in ML. However,

we are not creating decision trees.
3. Select the command ¢ with the best gain
4. Perform similar calculations for exit code, time of day, and day of week

5. The command, exit code, time of day, or day of week with the highest gain is then selected
for the branch (see Algorithm E.S).

The child created then represents the limited situations where the condition occurs. For instance,
if the branch was command;_; = "1s", the probability table for that child will then only contain
command, where command;..; was “1s”, as in Figure 4.1. The probability table for the child
is initialized from the statistics gathered about what command,’s followed the branching criteria
(in this case, what command,'s followed “1s™). This bypasses the probability table skew suffered
by the base node (see Algorithm F.4), and replaces IPAM’s use of a default table (see Section 3.3).
Aside from this difference, the child update behavior is identical to the base node, and as time goes
on, will branch children of its own. Although this growth behavior resembles decision trees, it is not
a decision tree: a single command may be used to update multiple nodes within the predictor, and
multiple nodes may contribute to making a prediction Section 4.2.2).

The branching behavior of the predictor is then further enhanced by allowing branching on multiple
attributes for a single time,_; (e.g., command;_,, exit code,—;). However, in order to do so
easily, we enforce an arbitrary ordering: day of week, time of day, command, exit code (i.e., if
branching at command;— occurs, the next child branch must be day of week;_3, time of day;_2,
command,_2, exit code,_2, or ezit code,—,. This eliminates the possibility of having two nodes
(command;_; = 1s,exitcode;_; = 0) and (exitcode;_; = 0,command;_; = 18), both of which

represent the same state (i.e., by requiring exit code after command, the second node cannot exist).

4.2.2 Predict phase

The prediction phase of this predictor is simpler. Remember, the predictor has a tree-like structure,
beginning with a base node. The base node can make predictions, and so may the child nodes of the
tree. However, a node may contribute to the predictions only if it matches the current command/exit
code/time of day/day of week pattern.

Again, for simplicity’s sake the base node matches all commands, and contributes to all predictions
(although the extent to which it contributes may be limited, see Section 4.2.2.1). Algorithm E6

30



provides the step by step details of how predictions are made by each node. However, these steps
may be more simply represented as:

1. Gather predictions from children (a set of (command, probabilty)).

Ve € children |P, « c.Predict

2. Combine the predictions, adding the probabilities when two or more children predict the same
command.

Vx predicted by one or more ¢ € children |P(x) = Z P.(x)
c€children
3. Ifthe child predictors have provided predictions, use those, ignoring the predictions by parent
nodes.

4. Otherwise multiply each entry in the probability table by scale (described in Section 4.2.2.1)
and use the result.

V{x, P (x)) € alphaTable |P!(x) = scale x P (x)
4.2.2.1 Fine-tuning the predictions

Two parameters are available to alter the behavior of the predictor: scale and scale increment.
scale is the scaling factor applied to the probability for a command. scale increment is the scaling
factor applied to scale by a parent to a child (e.g., if scale = 1.0 and scaleincrement = 2.0,
the parameters provided to the child node will be scale = 2.0 (i.e., scale x scaleincrement)
and scaleincrement = 2.0). Probabilities are then simply summed together, since this tech-
nique provides the best empirical results. By setting scaleincrement > 1.0, child nodes are
favored over the parent nodes (i.e., longer chains will be favored over shorter ones). For values
of scale incremnt 3» 1.0, parent nodes will only be used when child nodes cannot provide enough
predictions (a further compile-time adjustment exists that avoids using parent predictions if any
children provide predictions — we use this setting). Setting scale increment < 1.0 favors the base
node, with child nodes adding a small amount of confidence to the predictions (this setting is not

recommended). Setting scale increment = 1.0 is also not recommended for similar reasons.

4.3 Parsing Command Lines

From the earliest work, we believed that parsing each command line into useful components could
improve prediction accuracy. In particular, the ability to predict command patterns in situations in
new situations can prove immensely valuable. For example, if the sequence “vi thesis.tex”,

31



“latex paper.tex” (see Figure B.1) is seen, and later the command line “vi paper.tex”
is seen, the command line “latex paper.tex” could be predicted because of the common el-

ements “vi” and * . tex”. Predictions that involve the synthesis of new commands in new

situations allows the predictor to “learn” seem “intelligent.” Here, we present a parser whose output
is used with (a copy of) the AUR prediction algorithm above to create the AUR token predictor.

4.3.1 Problems with Assigning Semantics

Unix command syntax has a nasty habit of changing for each command (or at least, for each set of
commands written by different groups of people), making it difficult to create a semantic command
line parser. For example, while many commands use **~-v” to mean “be more verbose,” some com-
mands take it to mean “report program version.” This confusion has led to some people using long
command line options — but once again a split exists. Some long command options are preceded
by one dash, while others are preceded by two dashes. Consequently, we do not try to learn any
semantics about command line options — they are simply tokens that exist. This is not to say that
this issue lies unaddressed: dozens of hard-working people maintain ZSH configuration files that
properly reflect the command line options for each command (or set of commands). In time, this

knowledge may be applicable to command line prediction.

4.3.2 Origin of Parsing Rules

Our command line parsing is based on personal use of Unix command lines, and in particular,
the use of CSH history-expansion capabilities (e.g., “! !” to repeat the last command, or “vi $!"
to use “vi" with the last argument of the last command). The parsing rules are hand-coded and
ordered from simple (and expected to be most likely) to complex (both harder to identify and less
likely to occur). After a match for a command line component is made, processing goes on to
the next component (i.e., the first match is assumed to be the best match — in line with our “simple
works well” experience). The search also looks at the most recent command lines first and only goes
back a few command lines (we only go back 5 command lines for performance reasons). Although
highly complex, or distant, command line patterns are not identified, we do not consider this to be a
substantial issue.

4.3.3 Parsing Details

If the current command line occurs at time ¢, the following sequence of steps is followed for trying
to find a match. In (1), all recent commands are checked. In (2), each command; (1 <i <5) is
progressively checked. In all cases, as soon as a match is found, further processing stops. The steps

are ordered to be progressively more complex and more processing-intensive.

32



1. If command; € (command;-,,...,command,_g), select the most recent one (i.e., if
command; = command;_ and command, = command;_3, (CMD - 1) would rep-

resent command; -3 ).

2. For each whitespace-separated command line component,

(a) See if it matches any command line component from command; -, (e.g., if command; ="a.out”
and command,_, ="cc a.c -o a.out”, (CMD — 1, ARG#3) would represent
it).

(b) Extract all combinations of removing command paths and filename extensions from
command;_1, and see if any of those match (e.g., if command, ="foo” and
command;_) ="cp /tmp/foo .",(CMD - 1,ARG#2,(—PREFIX (1))) would
represent it).

(c) See if removing command paths and filename extensions from command, provides
a match to the combinations found in (b) (e.g., if command; = “foo.bar” and
command;_, ="“cp /tmp/foo .",(CMD —-1,ARG#2,(~PREFIX (1) + .bar'))
would represent it).

(d) See if adding characters to the beginning and end of command components from command,
provides a match to the combinations found in (b) (e.g., if command, = “bigfoot”

and command,_, ="£00", {'big’ + CM D — 1 +' t’) would represent it).

The example in Figure 4.2 shows the results of parsing the command sequence in Figure B.1. As
can be seen in at time 16-21, tight loops can be reduced to “repeat the command that happened three
commands ago,” while the commands at time 03 can only be reduced to “use the second part of
the command and prepend/append these characters.”

4.3.4 How the Parsing Results Are Used

The parser provides us with a rendition of the command line based upon prior command lines, and
can be used in any algorithm that is capable of using discrete command line descriptions?. For this
thesis work, the parsed command line is used in a copy of the AUR predictor (see Section 4.2). Since
it can predict a set of parsed command lines, these predictions can be reconstructed into actual com-
mand lines. For instance, if the prediction for time 24 was (CM D — 3), the reconstructed command
lineis then *. /thesis”. The true benefit comes later on, when a pair of unseen command lines are
seen: “vi frobnicate.tex” and “latex frobnicate.tex”. The first prediction might
be the parsed command line at time 1 (*latex ... *), and the second at time 2 (*dvips ...").
After reconstruction, the predictions are “latex frobnicate.tex” and “dvips frobni-

cate.dvi -o frobnicate.ps”,allowing us to predict command lines never seen before.

2 At this point, such command line descriptions are (a) the literal command ine, (b) command stub, and (c) the parsed
command line.

i3



vi thesis.tex

latex (CMD — 1, ARG#2)

dvips (CMD -1, ARG#2,(~SUFFIX (1) +' .dvi')) -0 (CMD ~ 1, ARG#2,(~SUFFIX (1) +' .ps'))
gv (CMD — 1, ARG#4)

(CMD -4)

1lpr (CMD - 2, ARG#2)

(CMD -2)

latex (CMD — 1, ARG#?2)

dvips (CMD — 1, ARG#2,(-SUFFIX (1) +' .dvi")) -0 (CMD ~ 1, ARG#2, (~SUFFIX (1) +' .ps'))
gv (CMD — 1, ARG#4)

«:ooﬂmcnhwzoo-cg'
o

10 (CMD-5)

11 rm(CMD -1,ARG#?2)

12 cd src

13 vi (CMD -2,ARG#2,(-SUFFIX (1) +' .c))
14 cc(CMD -1,ARG#2) -0 (CMD - 1,ARG#2,(—SUFFIX (1)))
15 {{"./'+),CMD -1, ARG#4)

16 (CMD-3)

17 (CMD-3)

18 (CMD-3)

19 (CMD-3)

20 (CMD-3)

21 (CMD-3)

22 rm(CMD-1,ARG#1,(—PREFIX(l)))

23 cd ..

Figure 4.2: Parsing of simple command sequence from Figure B.1
4.4 Other predictors

In addition to the predictors created for this thesis work, other prediction algorithms have been
implemented3. The history predictor simply measures command frequency over the last 100 com-
mands. The weighted history predictor is similar, but weights more recent commands higher. The
stub first predictor uses the command stub to predict command lines, while the stub last predictor
uses the last argument (with some limitations) on the command line to predict the next command.
The last N predictor predicts the last 5 unique command lines. The backwards predictor and the
mode predictor both attempt to identify some sense of mode or context and use that for predictions.
All of these predictors follow the “simple is better” philosophy we observed during early research,
relying on meta-knowledge in the combining algorithms (see Section 4.1) to identify which predic-
tors are performing reliably and which predictors should be ignored. The details of these algorithms
are documented in Appendix E.

3This work was performed by Christopher Thompson May-August, 2000.

34



Chapter 5

Results

“A program is a device used to convert data into error messages."” —Unknown

The primary goal of this thesis is to produce a Unix shell that observes user activity and predicts
command lines accurately. In order to reasonably evaluate the prediction algorithms, we used his-
torical data, rather than interactive evaluation. This has the added benefit that future work may be
benchmarked against our results. This chapter presents those results, exploring why the best predic-
tor is the AUR string predictor (Section 4.2), and why the worst is the mode predictor (Section E.6).
We also analyze why the correlation combiner (Section 4.1.1) performs poorly relative to the demo-
cratic combinerSection 4.1.2). Finally, we show how accurate we can get if the optimal combination

of predictors and combiners could be known g priori.

For analysis, we have used the data collected by Greenberg (see Section 3.1). The users in this data
are divided as follows:

¢ “Non-programmers,” 25 users with minimal knowledge with Unix. They were office staff
from computer science and faculty from environmental design. These people knew the bare

minimum of Unix commands to get their job done.

e *“Novice programmers,” 55 users with little to no experience with Unix. These were junior

undergraduate students from computer science, just learning how to use the system.

¢ “Experienced programmers,” 36 users with some experience with Unix. These were primar-

ily senior undergraduate students from computer science.

e “Computer scientists,” 53 users with significant experience with Unix. These users repre-

sented faculty, researchers, and graduate students from computer science.

As one might imagine, the number and variety of commands differ from each group, and Greenberg
has performed a detailed analysis of their history usage[10].

35



In the following sections, we present an analysis of our results. We determine what individual
predictor is the globally best predictor, as well as what individual predictors are best for each user.
Similarly, we determine which combiner is best globally and for each user. Finally, we present the
result of using all predictors and each combiner, illustrating full “mixture-of-experts” approach.

5.1 Best predictor

First we consider using a single best predictor. Early research showed that although altering a
values does affect the AUR algorithm performance, the difference between a globally optimal value
of a and an optimal value for each user is very small. Rather, we have chosen the empirically
determined optimal value for a = 0.95 for the string and token predictors (both use the AUR
prediction algorithm). Additionally, we consider ignoring the first 100 commands for each user
as training, after we observed that approximately the first 100 commands are used for the AUR
algorithm to “warm up.”

We consider a number of cases when judging how effective our predictions are. For instance, we
can observe simply the globally best predictor, as is illustrated by Table 5.1. Here, we see that
the overall best predictor is the string predictor, followed closely by the history weighted predictor
(Section E.2). Results do not change significantly if we ignore the first 100 commands for each user
as training data, as seen in Table 5.2. Moreover, the string predictor is the best predictor for 121
(72%) of the users, getting 95163 commands (44.76% microaverage, 46.16% macroaverage) right
(see Table 5.3). Thus, the best predictor is the one presented in Section 4.2.

The similarity between the two predictors may be attributed to the fact that in a degenerate case,
where no noticeable patterns can be detected, the AUR string predictor follows a model very similar
to the history weighted predictor. Therefore, as long as some patterns can be detected, the AUR
string predictor must perform better than the history weighted predictor. The history weighted pre-
dictor performs reasonably well because the primary logic behind it is that users repeat themselves,
which is the premise behind our work.

Potentially more interesting is that the last-N predictor (Section E.3) achieves almost 66% microav-
erage accuracy for 7 users (3 are non-programmers, 4 are novice users), and that the AUR token
predictor obtains over 61% microaverage accuracy over 4 users. Although the history weighted pre-
dictor is the second best predictor, this is primarily due to it being more effective for the Experienced
and Computer Scientist groups, where the last-N predictor fails miserably (see Table 5.4). It seems
that while the token predictor is not effective for many users, when it is effective, it is very effective.

Why is the mode predictor such a bad predictor? This evaluation is unfair towards the mode
predictor (Section E.6) because it does not provide predictions when its confidence is low, unlike the

36



Predictor Microaverage | Macroaverage | Commands right

[AUR String Predictor 43.03% 45.47% 130, 651
AUR Token Predictor 38.08% 41.09% 115,612
| History Weighted Predictor | 41.91% 44.00% 127, 250
History Predictor 39.60% 41.23% 120,224
Stub Last Predictor 31.12% 30.10% 94,503
["Stub First Predictor 32.63% 32.25% 99,071
Last N Predictor 38.39% 41.64% 116,577
Backwards Predictor 24.86% 22.52% 75, 480
Mode Predictor 16.00% 16.15% 48,574

Table 5.1: Performance of each predictor on all users

| Predictor Microaverage | Macroaverage | Commands right
["AUR String Predictor 43.12% 46.15% 123, 672
AUR Token Predictor 38.12% 41.68% 109, 331
History Weighted Predictor | 41.94% 44.56% 120, 285
History Predictor 39.59% 41.61% 113,535
Stub Last Predictor 31.67% 31.14% 90, 830
Stub First Predictor 32.85% 32.82% 94,210
Last N Predictor 38.36% 42.09% 110,037
Backwards Predictor 25.22% 22.82% 72,350
Mode Predictor 15.26% 16.85% 46,628

Table 5.2: Performance of each predictor on all users, ignoring training data

other predictors. This is why it is the worst predictor in our analysis. However, if we simply look
at the times the mode predictor made a prediction, its performance is still lacking. It predicted the
right command 48, 574 out of a total 159, 516 times. This gives a microaverage accuracy of 30.45%
and a macroaverage accuracy of 30.12%. Further analysis of the algorithm reveals that it closely

resembles IPAM, as it uses

(CommandStub,_1, CommandStub;_3) => Command,
U
(CommandStub:_2, CommandStub;—,) = Command;.

However, the “mode identification” seems to provide less information than the sequence does. Sim-

ply, although the inspiration behind the mode predictor is good, the performance is not.

5.2 Best combiner

Although the correlation combiner works reasonably well for the Greenberg dataset, for users where
it is the better combiner (given the optimal combination of predictors, determined on a user-by-user
basis), the total number of commands correctly predicted is 1, 792. However, for users where the
democratic combiner is best, the total number of commands correctly predicted is 141, 731. In fact,

37



[ Best Accuracy Number | Commands “Total
Predictor Microaverage | Macroaverage | of Users Right Commands
AUR String Predictor 44.76% 46.16% 121 95,163 212,618
AUR Token Predictor 61.23% 53.32% 4 2,004 3,420

[ History Weighted Predictor | 37.46% 39.85% 28 25,661 68,504
History Predictor 43.81% 47.41% 3 425 970

[ Stub Last Predictor 52.12% 52.12% 1 1,968 3,776
Stub First Predictor 34.40% 36.22% 3 2,828 8,222
Last N Predictor 65.96% 62.61% 7 2,387 3,619

Backwards Predictor 32.61% 32.61% 1 815 2,499
Mode Predictor 0% 0% 0 0 0

Table 5.3: Average accuracy where the given predictor is the best predictor

Best Non- Novice Experienced | Computer

Predictor Programmers | Programmers | Programmers | Scientists

AUR String Predictor 18 45 27 31

AUR Token Predictor 1 2 0 1

| History Weighted Predictor 2 4 7 15

History Predictor 1 0 1 1

Stub Last Predictor 0 0 1 0

Stub First Predictor 0 0 0 3

Last N Predictor 3 4 0 0

Backwards Predictor 0 0 0 1

Mode Predictor 0 0 0 0

Table 5.4: Breakdown of best predictor to user type

Best Accuracy Number | Commands Total
Predictor Microaverage | Macroaverage | of Users Right Commands
AUR String Predictor 45.36% 47.75% 117 89,437 197,178
AUR Token Predictor 61.39% 51.08% 5 1,992 3,245
History Weighted Predictor | 32.23% 4237% 30 25,106 67,436
History Predictor 34.14% 35.31% 3 225 659
Stub Last Predictor 31@ 31.01% 1 120 387
Stub First Predictor 39.63% 39.11% 5 4,994 12,601
Last N Predictor 67.21% 61.60% 5 1,523 2,266
Backwards Predictor 33.44% 33.29% 2 1,022 3,056
Mode Predictor 0% 0% 0 0 0

Table 5.5: Average accuracy where the given predictor is the best predictor, ignoring training data

38




Best Non- Novice Experienced | Computer
| Predictor Programmers | Programmers | Programmers | Scientists
[ AUR String Predictor 16 47 25 29

AUR Token Predictor 1 2 0 2

History Weighted Predictor 3 3 8 16

History Predictor 2 0 1 1

Stub Last Predictor 1 0 0 0

Stub First Predictor 0 0 1 4

Last N Predictor 2 3 0 0

Backwards Predictor 0 0 1 1

Mode Predictor 0 0 0 0

Table 5.6: Breakdown of best predictor to user type, ignoring training data

Best Accuracy Number | Commands Total
Combiner | Microaverage | Macroaverage | of Users Right Commands
Correlation 44.80% 45.30% 9 1792 4000
| Democratic 47.30% 46.14% 159 141731 209628

Table 5.7: Average accuracy where the given combiner is the best combiner

for almost 95% of the users (159 of the total 168), the best combiner is the democratic combiner.
If the number of commands correct is counted instead, the democratic predictor achieves 98.8%
of the optimal mix of both combiners (it gets 141, 731 commands right out of a possible 143, 523
obtained by selecting the best combiner on a user-by-user basis). Although this seems somewhat
surprising, the democratic combiner’s strength lies in its simplicity. By observing the performance
of the correlation combiner on larger command sequences (our own data collection), it appears that
this combiner is likely to perform better in the long term, but we only have 303, 628 commands in
the Greenberg dataset. The democratic combiner, however, can simply ignore predictors that are

wrong and listen to predictors that are right, improving the signal-to-noise ratio.

If the first 100 commands are ignored as training data, similar results occur, although the correlation
combiner becomes the best combiner for a few more novice users. Presumably this is simply due to
the correlation combiner “warming up,” something the democratic combiner does not need as long
to do. Since the macroaverage is a reflection of the final results for users, it is not surprising to see
that if ranked by macroaverage, the correlation combiner is the better combiner when ignoring the
first 100 commands as training data.

The following may be observed from this:

1. The democratic combiner provides the globally best results when the first 100 command pre-
dictions are not ignored as training.

2. The correlation combiner performs best for users with minimal Unix experience.

39



Best Non- Novice Experienced | Computer
Combiner | Programmers | Programmers | Programmers | Scientists
[ Correlation 5 2 1 1
Democratic 20 53 35 51

Table 5.8: Breakdown of best combiner to user type

Best Accuracy Number | Commands |  Total
Combiner | Microaverage | Macroaverage | of Users Right Commands
[ Correlation | 41.75% 47.17% 14 1998 4786
Democratic 47.56% 46.03% 154 134153 282042

Table 5.9: Average accuracy where the given combiner is the best combiner, ignoring training data

5.3 Using All Predictors

To this point, we have determined that we can pick a single best predictor and obtain over 45%
macroaverage accuracy. We have also determined that for some users, the best combiner is the
correlation combiner, but for most, the democratic combiner is better. However, that is when the
optimal combination of predictors is different for each user. For optimal results, we want to have a

pool of experts and use an algorithm to determine what the best combination is.

First, we examine what happens when the correlation combiner is used with all the experts. This is
our original mixture of experts model put to the test. This model obtains almost 42% macroaverage
accuracy (42.5% if the answer to the first 100 commands per user are ignored, i.e., training data) and
almost 40% microaverage accuracy (just over 40% if the first 100 commands per user are ignored
for training). This is actually worse than simply forcing all users to use the AUR string predictor. As
mentioned above, while this is likely the best combiner in the limit, it is not with our limited source
of data.

Next, the democratic combiner is evaluated. We immediately see that it achieves over 46.5% mi-
croaverage accuracy (46.7% without training data) and 48.3% macroaverage accuracy (49% without
training data). Clearly, this combination of experts provides better performance than any single ex-
pert. As mentioned in Section 5.2, the simplicity of the democratic combiner allows it to easily
surpass the correlation combiner.

Finally, we once again explore how results change when the best is selected, in this case, the best

combiner for each user. The results here are identical to the democratic combiner when no training

Best Non- Novice Experienced | Computer
Combiner | Programmers | Programmers | Programmers ; Scientists |
| Correlation 7 2 2 3 |
Democratic 18 53 34 49

Table 5.10: Breakdown of best combiner to user type, ignoring training data

40



Non- Novice Experienced | Computer
Programmers | Programmers | Programmers | Scientists | Overall
Microaverage 37.26% 57.24% 36.53% 31.69% | 39.87%
Macroaverage 38.06% 57.93% 35.15% 30.90% | 41.73% |
Commands Right 9541 44320 27366 39831 121058

Table 5.11: Accuracy when the correlation combiner and all predictors are used

Non- Novice Experienced | Computer
Programmers | Programmers | Programmers | Scientists | Overall
Microaverage 37 .81% 57.60% 36.89% 31.90% | 40.06%
Macroaverage 41.05% 58.52% 35.65% 31.00% | 42.50% |
Commands Right 8737 41428 26308 38432 | 114905

Table 5.12: Accuracy when the correlation and all predictors are used, ignoring training data

Non- Novice Experienced | Computer
Programmers | Programmers | Programmers | Scientists | Overall |
Microaverage 44.19% 60.76% 44.23% 30.59% | 46.52% |
Macroaverage 44.68% 61.95% 43.37% 39.07% | 48.32%
Commands ﬁght 11316 47039 33132 49763 | 141250

Table 5.13: Accuracy when the the democratic combiner and all predictors are used

Non- Novice Experienced | Computer
L Programmers | Programmers | Programmers | Scientists | Overall |
[ Microaverage 44.68% 60.92% 44.58% 39.84% | 46.69%
Macroaverage 47.24% 62.20% 43.91% 39.34% | 49.01% |
Commandsﬁght 10325 43814 31789 48004 133932

Table 5.14: Accuracy when the the demacratic combiner and all predictors are used, ignoring train-

ing data

41



Non- Novice Experienced | Computer
| Programmers | Programmers | Programmers | Scientists | Overall
[ Microaverage 44.19% 60.76% 44.23% 39.59% [ 46.52%
Macroaverage | _ 44.68% 61.95% 4337% | 39.07% | 48.32%
Commands Right 11316 47039 33132 49763 | 141250

Table 5.15: Accuracy when the best combiner and all predictors are used

Non- Novice " Experienced | Computer
Programmers | Programmers | Programmers | Scientists | Overall
Microaverage 44.70% 60.92% 44.58% 39.84% | 46.70%
Macroaverage 47.48% 62.29% 43.91% 39.34% | 49.04% |
| Commands Right 10330 43814 31789 48004 133937

Table 5.16: Accuracy then the best combiner and all predictors are used, ignoring training data

data is ignored, and marginally better when training data is ignored (5 more commands out of over
300, 000 are correct). This is because two users (both non-programmers with very few commands,
one of which is the user with the least total number of commands, 132, the other has 244 commands)
switch to the correlation combiner as the best combiner. This further reinforces the strength of the

democratic combiner.

5.4 Omniscience at Work: Gods in Trainin.

Given those results, we can then speculate about some sense of omniscience: what if we knew
the best predictor for each user in advance? If the best predictor is selected on a user by user
basis, we obtain a macroaverage accuracy of 45.76% and microaverage accuracy of 43.26%. A
breakdown of this can be seen in Table 5.3. Furthermore, if the first 100 commands are ignored as
training data, the macroaverage is 46.55% and the microaverage is 43.39% (the breakdown can be
seen in Table 5.5). Although the distribution of best predictor moves around slightly in this case,
the best predictor remains the AUR string predictor. Finally, if all combinations of predictors and
combiners are considered, the microaverage for the Greenberg data is 47.27% and the macroaverage
is 49.37% (see Table 5.17). Again, ignoring the first 100 commands as training gives 47.47% as the
microaverage and 50.29% as the macroaverage (see Table 5.18). Given our limited omniscience, we

can still benefit from our mixture of experts approach!

Non- Novice Experienced | Computer
Programmers | Programmers | Programmers | Scientists | Overall
Microaverage 45.33% 61.50% 45.01% 40.24% | 47.27%
Macroaverage 46.71% 62.83% 44.30% 39.94% | 49.37% |
| Commands Right 11609 47616 33717 50581 143523

Table 5.17: Accuracy when the best combiner and best predictors are used

42



Non- Novice Experienced | Computer
Programmers | Programmers | Programmers | Scientists | Overall
Microaverage 45.87% 61.72% 45.39% 40.50% | 47.47%
Macroaverage 50.13% 63.30% 44.95% | 30.29% | 50.29% |
| Commands Right 10600 44391 32365 48795 136151

Table 5.18: Accuracy when the best combiner and best predictors are used, ignoring training data.

43



Chapter 6

Future work

“Failure is the opportunity to begin again more intelligently.” —Henry Ford

There are multiple paths that future research could follow. First, although we appear to have gleaned
all the information from the Greenberg dataset, the predictors look at a very small subset of the
attributes available in the data we collected. Although this data has now been collected, its full
potential of it has not been exploited. For instance, the current directory the user is in, the phase of
the moon!, how long a command runs, and the time between commands are all available to us, but
not currently used. However, adding more attributes for the AUR predictors to use is not enough.

Rather, intelligent use of this information is crucial to avoid the curse of dimensionality.

Davison and Hirsh do put forward one interesting idea for future work: automatic execution of non-
destructive commands (or at least ones that could be undone)[6]. While this may not be possible, the
ability to classify commands as “auto-execute” could be useful for some users. For instance, many
people run “1s” (list files) after changing directories, as a way of orienting themselves. This is a
non-harmful command requiring no “undo.”

Although we produced a command shell capable of predicting command lines, we have also con-
sidered the possibility of extracting useful command macros. Informal polling of users has shown
that automatic alias creation would be a valuable asset for most users. The parsing mechanism in
Section 4.3 can be extended to build up macros. A brief attempt to extract macros with those rules
resulted in simple commands strung together with all arguments intact (i.e., unparsed). The creation
of generic, useful commands requires advances on two fronts. First, the parsing component (Sec-
tion 4.3) must be improved. If parsing patterns could be learned from observation, this could greatly
improve both predictors and the macro generation. Second, an actual macro extraction algorithm
should be implemented, as the current method simply reports frequent chains (length three or more)
of parsed commands.

I While the phase of the moon may not be relevant to some users, anecdotal experience in the real world would indicate
that some events are correlated with the phase of the moon.




On a different note, perhaps this thesis work could be integrated with other projects. UC differs from
our work in that it parses user questions and tries to determine the user goal, and provides English
descriptions of how to achieve this goal[2]. A merging of that work with our research could see the
parsing of commands into representations appropriate for goal recognition. Although much more
advanced than our current work, it could provide valuable insight into user modes and long-term
goals.

Finally, and most importantly, this work can be applied to handheld computers, such as the PalmOS
devices. Some have wireless networking capabilities, and Unix command lines are difficult to enter
without a keyboard. If command lines can be accurately predicted and presented in a list, the time
taken to enter a command could be a few seconds rather than a minute. Even more useful would be a
program that watches user activity and learns what words come after other words, both application-
specific and globally. There are currently products that provide a pop-up list of the most likely
words, but they require the user to add words manually and only update themselves when the user
selects words from the list (not when the user enters the words manually). An application that learns
quickly and predicts efficiently has great potential.

45



Chapter 7

Conclusion

“Good judgment comes from experience.

Unfortunately, the experience usually comes from bad judgment.” —Unknown

‘We present an improvement to the Unix command line interface: predicting the next command. We
do so by silently observing command lines typed by the user and making a fresh set of predictions
after each one of these command lines. The manner in which we observe the user and present
predictions is unobtrusive: the user may take advantage of the predictions or she may choose to

ignore them with no ill-effect.

Building upon the work by Davison and Hirsh, who predicted only the command stubs (11, 7, 6, 8],
we predict the entire command line. To improve prediction accuracy, we use a “mixture of experts”
model. This model allows us to have multiple predictors simuitaneously and automatically how
strongly to weight each one. We have a variety of techniques employed in our predictors: the AUR
algorithm allows us to estimate probabilities and track a changing distribution; parsing identifies
latent patterns in command lines and provides the ability to synthesize new commands; the command
line history can be weighted to favor recent commands; and the last five commands simply predicts

those commands.

This combination of complexity and simplicity produces better results than any one predictor. The
best single predictor obtains 46% macroaverage accuracy (that is, the average of averages), while the
“mixture of experts” model obtains 49%. It is important that when predicting command lines that
we be as accurate as possible; the more frequently predictions are correct, the more users will trust
our system. After two years and many approaches, we seem to have extracted all useful information
from the Greenberg dataset.

Although continued improvements with the Greenberg dataset are unlikely, given the limited at-
tributes and limited sample size (some users have less than 200 command lines), we believe that
the additional attributes collected in our dataset can improve prediction accuracy. Thus, while no

46



significant progress is expected on the Greenberg dataset, it is still possible to improve algorithm
performance on alternative datasets. Furthermore, with our dataset it is possible to identify interac-

tions between overlapping command shell sessions. This can be exploited for long-term planning.

These predictions are superior to deployed alternatives: we do not have to educate users beyond
telling them “press F1 to run the prediction assigned to F1.” The deployed solutions such as make-
£iles, shell scripts and aliases all require users to be trained, or at least have a reference manual.
Thus, it is easier to use our system. More importantly, we can inter-operate with the deployed
solutions, allowing the best of both worlds.

Other people have tried to predict Unix commands lines before. Some have limited their task to sim-
ply predicting the command, neglecting the arguments. Some of these “solutions” have often been
bulky, requiring a custom operating system, or requiring the “glue” to be Emacs (a bulky program
in itself). Yet other solutions do not perform adequately in real-time. Our solution is light-weight
in memory usage, runs quickly, and works in any standard Unix environment. Qur predictions are
able to predict not only commands typed before, but able to synthesize new commands from ob-
served patterns (other work was capable of synthesizing new command, but suffered from the need

for a custom operating system).

Finally, the application of this thesis work need not be limited to Unix command lines. While
the hand-coded parsing routines have limited application, the AUR prediction algorithm and the
mixture of experts approach can be applied to other areas, such as the rapidly growing field of mobile
computing. Our efficient use of resources, through our requirements of realtime performance, makes
this an easy step. This is an application of making computers easier to use without the need for faster,

bigger, stronger hardware.

47



Bibliography

{1] Sanjay Bhansali and Mehdi T. Harandi. Synthesis of unix programs using derivational analogy.
gechn;cga; Report KSL-92-02, Knowledge System Laboratory, Stanford University, Palo Alto,
A, 1992.

(2] David Ngi Chin. Intelligent Agents as a Basis for Natural Language Interfaces. PhD the-
sis, Computer Science Division, Univesity of California, Berkeley, 1987. Also available as
Technical Report UCB/CSD 88/396.

[3] Allen Cypher. Eager: Programming repetitive tasks by example. In Proceedings of CHI'9!
Conference on Human Factors in Computing Systems, pages 33-39. Association for Comput-
ing Machinery, April 1991.

[4] Allen Cypher. Eager: Programming repetitive tasks by demonstration. In Watch What I Do:
Programming by Demaonstration, chapter 9. The MIT Press, Cambridge, Massachusetts, 1993.

{5} John J. Darragh and Ian H. Witten. The Reactive Keyboard. Cambridge Series on Human-
Computer Interaction. Cambridge University Press, New York, New York, 1992.

(6] Brian D. Davison and Haym Hirsh., Experiments in unix command prediction. Technical
Report ML-TR-41, Department of Computer Science, Rutgers University, August 1997.

(71 Brian D. Davison and Haym Hirsh. Toward an adaptive command line interface. In Advances
in Human Factors/Ergonomics: Design of Computing Sytems: Social and Ergonomic Consi-
darations, pages 505-508. Elsevier, 1997.

[8] Brian D. Davison and Haym Hirsh. Predicting sequences of user actions. In Predicting the
Future: Al Approaches to Time-Series Problems, number WS-98-07, pages 5-12. American
Association for Artificial Intelligence, AAAI Press, July 1998.

{9] Saul Greenberg. Using unix: Collected traces of 168 users. Research Report 88/333/45,
Department of Computer Science, University of Calgary, Calgary, Alberta, 1988.

[10] Saul Greenberg and Ian H. Witten. How users repeat their actions on computers: principles
for design of history mechanism. In Conference Proceedinds on Human Factors in Computing
Systems, pages 171-178. ACM Press, May 1998.

{11] Haym Hirsh and Brian D. Davison. An adaptive unix command-line assistant. In Proceedings
of the First International Conference on Autonomous Agents, pages 542-543. Association for
Computing Machinery, ACM Press, February 1997.

[12] Thomas Jacob and Benjamin Korvemaker. Adaptive user interfaces: CMPUT 651 project
write-up. Class project, December 1998.

{13] PatLangley. User modeling in adaptive interfaces. In Proceedings of the Seventh International
Conference (UM’99), pages 357-370. User Modeling, Springer Wien New York, June 1999.
Invited Speaker.

(14] Yezdi Lashkari, Max Metral, and Pattie Maes. Collaborative interface agents. In Proceed-
ings of the Twelfth National Conference on Artificial Intelligence (AAAI-94), pages 444—450.
American Association for Artificial Intelligence, AAAI Press, August 1994.

{15] Toshiuki Masui and Ken Nakayama. Repeat and predict — two keys to efficient text editting.

In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI'94),
pages 118-123. Association for Computing Machinery, ACM Press, April 1994.

48



[16] Gordon Moore, 1964. http://www.tuxedo.org/ est/jargon/html/entry/Moore’s-Law.html.

[17] Hiroshi Motoda, Takashi Washio, Toshihiro Kayama, and Kenichi Yoshida. Extracting be-
havioral patterns from relational history data, 1997. Machine Learning for User Modelling
Workshop at the Sixth International Conference on User Modeling (UM'97).

{18] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[19] J. C. Schlimmer and L. A. Hermens. Software agents: Completing patterns and constructing
user interfaces. Journal of Artificial Intelligence Research, 1:61-89, Nov 1993,

{20] Robert Wilensky, David Ngi Chin, Marc Luria, James H. Martin, James Mayfield, and Dekai
Wu. The berkeley unix consultant project. Technical Report UCB/CSD 89/520, Computer
Science Division, Univesity of California, Berkeley, 1989.

[21] Kenichi Yoshida and Hiroshi Motoda. Automated user modeling for intelligent interface. In-
ternational Journal of Human-Computer Interaction, 8(3):237-258, 1996.

49



Index

Adaptive User Interface, 10
AddChild
AUR-Predictor, 70
alias, 8,9
Alpha Update Rule, 3, 17,
40,42,44, 46,47,
AlphaUpdate
AUR-Predictor, 70
APU, 18, see [1]
AUI, see Adaptive User Interface
AUR, see Alpha Update Rule
AUR-Predictor
AddChild, 70
AlphaUpdate, 70
CreateChildren, 71
Predict, 72
auto-completion, 12
auto-execute, 44

Backwards Predictor, 65

C4.5, 13, see [18], 14, 17
ClipBoard, see [17, 21}, 13
collaboration, 17
command, 52

argument, 52

option, 52
conditional probability table, 14
CPT, see Conditional Probabilty Table
CreateChildren

AUR-Predictor, 71
Cycle Predictor, 67, 68

l. 25, 32, 33,35~
54, 66, 69

default distribution, 14

Eager, 11, see [3, 4]
Emacs, 12, 47

fail-soft, 17, 18
Feed

Tuples, 69
file VO, 13
frobnicate, see xfrobnicate, 53

GBI, see Graph Based Induction
Graph Based Induction, 13

Graphical User Interface, 7, 11, 13, 52
GUI, see Graphical User Interface

handheld computers, 45, see mobile comput-
mg

HCI, see Human-Computer Interaction

History Predictor, 64

History Weighted Predictor, 64, 65

50

Human-Computer Interaction, 57
Hypercard, 11

Ideal Online Learning Algorithm, 14

ilash, 14

Incremental Probablistic Action Modeling, 14,
17, 23, 25, 27, 30, 37

Inductive Learning Apprentice SHell, see ilash

KNOME, 17, see [2, 20]

Last-N Predictor, 65
learning
offline, see offline learning
online, see online learning
Linux, 12
Lisp, 11,18
Longest Matching Prefix, 13

Machine Learning, 14, 18, 19, 30
Macintosh, 11

macro, 8, 44

macroaverage, 13, 14, 17, see microaverage
make, 8

makefile, 8

meta-knowledge, 21

microaverage, 13, 14, 17, see macroaverage
mobile computing, 47

Mode Predictor, 66, 67

Moore's Law, 10

Most Frequent Command, 13

Most Recent Command, 13

Natural Language Processing, 18, 19

offline learning, 13, 14, see online learning
Onmniscient, 13
online learning, 10, 13, see offline learning

PalmOS, 45
parse, 45
parsed command line, 33
parser, 32
Parsing, 31, 34
parsing, 31-33, 44, 45
pen-based computing, 11
Predict
AUR-Predictor, 72
programming by demonstration, see program-
ming by example
programming by example, 11, 14

Reactive Keyboard, 12, see [5]
real-time, 20



repeat and predict, 12
RK, see Reactive Keyboard

script, 9
scripts, 9
shell, 8,9, 52, 61
Solaris, 12
Starve
Tuples, 69
Stub Predictor, 65, 66

tcsh, 13
Tuples
Feed, 69
Starve, 69

UC, see Unix Consultant

Unix Consultant, 17, see (2, 20], 18, 45

Windows, 12

xfrobnicate, 7, see frobnicate, 53

zsh, 2, 61

51



Appendix A
Unix Command Line Structure

In the Unix command line environment, a program called a shell is used to enter commands. Al-
though a GUI can be used to perform some tasks, unless a command (or action) is incredibly simple,
parameters must be specified. Specifying parameters with a GUI usually involves highlighting some-
thing (text, pictures, etc.) with the mouse, checking boxes and selecting items from pull-down lists.
In contrast, multiple parameters are specified easily with a Unix command line, but doing so fre-
quently involve complex combinations of dashes and alphanumeric sequences (e.g., “1s -latr”
lists files with details, increasingly sorted by time). Consequently, novice users are frequently trau-
matized when they encounter a Unix command line.

A simple command line can be typically broken into three parts: the command, the command op-
tions, and the command arguments. For example, a user might type the command line

mail -s ‘have you seen my printer?’ fred

This will run the command “mail” with the subject “have you seen my printer?” and the recipient
“fred.” The command option “-s” indicates to “mail” that the next argument (have you seen my
printer?) should be used as the default subject. The subject must be enclosed in quotes because
it has spaces in it, and without spaces, “mail” would not know where the subject ended and the
recipient list started (in fact, it assumes that unless told otherwise, arguments on the command line
are recipients). In recap:

1. mail is a command

2. -s is a command option

3. 'have you seen my printer?’ isacommand argument, given special meaning by

the preceding -s
4. fred is acommand argument
While knowledge of Unix commands is not crucial for understanding this thesis, it is important to
understand that most commands are constructed in this manner. For a further example, in Chapter 2,

two command sequences are given: Fred writing a thesis and Wilma writing a program. Table A.1
and Table A.2 provide breakdowns of those command sequences.

52



command

parameter meaning
vi thesis.tex the file Fred is editing
latex thesis.tex the I5STEX file to be processed into a device-
independent file
dvips -q tells dvips to only report errors
thesis.dvi the file to be processed into a PostScript file
-t letter tells dvips to use letter-size paper
-0 thesis.ps is the destination PostScript file
ghostview thesis.ps is the PostScript file to be viewed
mail -s 'I need latex help’ specifies the subject will be “I need latex help”
wilma is the intended recipient of the email message
Table A.1: Breakdown of the commands Fred types in Section 2.1
command parameter meaning
vi frobnicate.c file Wilma is editing
xfrobnicate.c file Wilma is editing
cc -c tells cc to generate object code
frobnicate.c file to generate object code from
xfrobnicate.c file to generate object code from
~-I/usr/X11R6/include tells cc where to look for additional files
1d -o xfrobnicate tells 14 where to put the destination file
frobnicate.o object code file
xfrobnicate.o object code file
-L/usr/X11R6/1ib tells 1d where to look for additional files
-1Xt tells 14 to use the Xt library when linking
-1xX11 tells 14 to use the X11 library when linking

Table A.2: Breakdown of the commands Wilma types in Section 2.2

53



Appendix B

AUR Predictor Example

This is a simple example of how the AUR predictor in Section 4.2 updates its prediction tables. The
command sequence can be seen in Figure B.1. The prediction table evolves over time in Tables B.1

to B.6.

© a>~:a:o|a-oamar-:35?

(]

vi thesis.tex

latex thesis.tex
dvips thesis.dvi -o thesis.ps
gv thesis.ps

vi thesis.tex

lpr thesis.ps

vi thesis.tex

latex thesis.tex
dvips thesis.dvi -o thesis.ps
gv thesis.ps

lpr thesis.ps

rm thesis.ps

cd src

vi thesis.c

cc thesis.c -o thesis
./thesis

vi thesis.c

cc thesis.c -o thesis
./thesis

vi thesis.c

cc thesis.c -o thesis
./thesis

rm thesis

cd ..

Figure B.1: Sample command sequence



io‘mmandg Probability
[ dvips thesis.dvi -o thesis.ps 4.75%
gv thesis.ps 5.00% |
latex thesis.tex 4.51%
vi thesis.tex 85.74% |

Table B.1: Probability table at time 3

command, Probability
dvips thesis.dvi -o thesis.ps 4.51%
gv thesis.ps 4.75% |
latex thesis.tex 4.29% |
vi thesis.tex 86.45%

Table B.2: Probability table at time 4

command, _ Probability |
dvips thesis.dvi -o thesis.ps 4.29% |
gv thesis.ps 4.51% |
latex thesis.tex 4.07% |
lpr thesis.ps 5.00% |
vi thesis.tex 82.13% |

Table B.3: Probability table at time §

command, Probability |
dvips thesis.dvi -o thesis.ps 4.07% |
gv thesis.ps 4.29% |
latex thesis.tex 3.87% |
lpr thesis.ps 4.75%
vi thesis.tex 83.02% |

Table B.4: Probability table at time 6

command,

Probability |

dvips thesis.dvi -o thesis.ps

7.44?0

gv thesis.ps 7.83%
latex thesis.tex 7.07%
lpr thesis.ps 8.43%
rm thesis.ps 5.00% |
vi thesis.tex 64.24%

Table B.S: Probability table at time 11

55



command, Probability |
./thesis 11.70% |
cc thesis -o thesis 11.11%-__
cd . 5.00%
cd src 2.84% |
dvips thesis.dvi -o thesis.ps 4.02% |
gv thesis.ps 4.23% |
latex thesis.tex 3.82% |
lpr thesis.ps 4.55% |
rm thesis 4.75% |
rm thesis.ps 2.70&
vi thesis.c 10.56%
vi thesis.tex 34.71%

Table B.6: Probability table at time 23

56



Appendix C
Evaluation of Command List Size

The reasons for selecting n = 5 are fourfold: Davison and Hirsh experimentally determined five was
optimal (less than five provided poorer results, more than five provided essentially the same results);
our own initial experiments supported Davison and Hirsh’s results; Human-Computer Interaction
(HCT) literature states the human cognitive limit is 7 & 2; and our own brief testing showed signs of
delay with more than five command lines.

We explored the possibility of predicting more than five command lines at a time. We also explored
what the effects of inverting the list of predictions (displaying the least likely command first, and the
most likely command last). After a brief study, there appears to be a problem with presenting users
with more than five commands, even if improved accuracy could be obtained by doing so. With
this evidence, our early experience that predicting more than five command provides no significant
advantage, and Davison and Hirsh's similar finding, we believe that five commands is the optimal
number. A summary of our results can be seen in Tables C.1-C.4.

Number of Commands Presented

User | 1 | 2 [ 3 | 4 [ 5 [ 6] 7] 81 9 [10|
Ben | 1.24 | 1.31 | 1.56 | 1.53 | 1.83 | 1.77 | 2.08 | 2.03 | 2.09 | 2.38
Chris | 1.62 | 1.45 | 1.41 | 1.45 | 1.67 | 2.02 | 2.15 | 2.59 | 2.54 | 3.17
Russ | 2.44 | 2.90 | 2.21 [ 2.49 | 3.28 | 2.59 | 3.77 | 378 | 3.76 | 4.09
Stef | 1.91 | 2.27 | 2.05 | 4.58 | 2.64 | 2.71 | 2.79 | 3.21 | 3.57 | 3.84

Table C.1: Average time in seconds taken to select a command for n commands presented.
See Figure C.1.

Number of Commands Pres::nted

User | 1 | 2 3 4 1 5 6 7 8 9 10

Ben | 134|127 137148190 1.77 | 2.72 ] 2.12 | 2.03 | 1.97
Chris | 1.03 { 1.10 | 1.24 | 1.40 | 1.51 | 1.66 | 2.13 | 1.85 | 1.86 | 2.11

Table C.2: Average time in seconds taken to select a command for n commands presented when
command list is inverted.
See Figure C.2.

57



Number of Commands

Figure C.1: Average time in seconds taken to select a command for n commands presented.
See Table C.1.

Number of Commands Presented

User | 1 | 2 | 3 [ 4 [ 616 [ 78] 910
Ben | 1.37 | 1.44 [ 1.65 ] 1.79 | 1.86 | 1.84 | 2.19 | 2.27 | 2.29 | 2.33
Chris | 1.10 | 1.45 | 1.54 | 1.77 | 1.66 | 1.83 | 2.00 | 2.13 | 2.23 | 2.35

Table C.3: Average time in seconds taken to select a command for n commands presented.
See Figure C.3.

Number of Commands Presented
User 1 2 3 4 5 6 7 8 9 10

Chris | 0.89 | 1.17 | 1.32 | 1.47 | 148 | 1.67 | 1.74 | 1.93 | 1.99 | 2.08

Table C.4: Average time in seconds taken (o select a command for n commands presented when
command list is inverted.
See Figure C4.

58



Average Time

Number of Commands

Figure C.2: Average time in seconds taken to select a command for n commands presented when
command list is inverted.
See Table C.2.

12 :

o3
3

1 1 I L L 3 1

1 2 3 4 5 8 7 8 9 10
Number of Commands

Figure C.3: Average time in seconds taken to select a command for n commands presented.
See Table C.3.

59



L L

Lo
1 2 3 4 5 6 7 8 9 10

o

&

Number of Commands

Figure C.4: Average time in seconds taken to select a command for n commands presented when
command list is inverted.
See Table C4.



Appendix D
Pictures of Our Implementation

Throughout the course of this thesis work, our goal was to have a predictive shell that could be used
with minimal effort on the part of the user. During the algorithm development, we produced two
different visual interfaces, both of which were used the same way: press an F-key to use a predicted
command. Additionally, both use the ZSH command shell, selected initially for its clean source code
for easy modification. As the prediction methods evolved, we realized that source code modification
was unnecessary, as ZSH's scripting language is extremely powerful.

D.1 Using the Title Bar

Our first method of presenting predictions to users was to modify the title of the xtexrm, a box that
runs the shell. The title can be easily changed after each command, so it is easy for the user to know
what the current mappings of the F-keys are. An enhanced screenshot of such an interface can be
seen in Figure D.1, where th e commands are highlighted with a green background for visibility,
and the predictions can be seen red in the title bar at the top. As can be seen, there is little room in
the title bar for long predictions. Since this situation is made worse when larger fonts are used, we
considered alternate methods of presenting the predictions.

D.2 Using a Separate GUI )

We briefly considered displaying the predictions inside the xterm, before the prompt was displayed.
However, doing so increases the intrusiveness of the predictions, something we want to minimize.
Alternatively, we chose to create a second window that could be displayed above or below the
xterm, increasing the display flexibility for the user, while providing use with additional display
space. Rather than displaying all predictions on one line, we display each prediction on a separate
line. A screenshot of this can be seen in Figure D.2. Although additional screen real-estate is lost to
this display, we believe it to be a superior method.

61



2/duyy,

2pdu3y,,
2/duyy,,
z/dwyy,,

2/dwy/,,

B zoocT EERE
omo._”omc_umn_ uo ual3tTJm un_..nc_om:mc.._.

*(s9jRq $0g “abed Ty tAp*dubad uo uazztTum nding

{ ¢(xne*dubad) [T] (P4*IWISWO aSRQ/XaJR] XD/ JuXaT/Juxal/qlusn/)
(xne*dubad) ((0[9°0T9218/980G/XIR[ /X3 /JUXa]/Juxa3/qL] /dSn/)

SSP[O quUaWNhoop ¥8|eT pJepuels ng*Tna TS/0T/966T 2101340 (ssel] Juaundoq
S]0*91013.0,/950q,/XaJP /X3 /JuUXa/JuXa3 /qL | /usSn/)

*papeo] ‘uewJab ‘ueostuswe Joj sudajjed uotjeusydhy pue {ygea) [aqeg

T 19n31 yoled <T0/2T/966T> 3ZX2Le1

x83 *dubad)

{T*g uoTSJan J) BGTHT’E UOISJap ‘X9l ST Syl
NHNM.HH PRI g =
NH@M.—H_ pARInlD! _; TR
20GST IR
[T] *<oud*xa3)
sd*dubad ¢~ ,GT£238T 10 666T IndIno ¥a)

aJemyjog oRJ [eatpey peeT ‘986T IYBIJRdO] J8G*G YsdIap ST syl
I v RS

*6o]*dubad uo uajjtJam Jdruosued

*(s99IRq $0g ‘96ed T) 1Ap*dubad uo uajzTum Jnding

¢ ¢(xne*dubad) [T] (P#*JWOSwW0O/380G/XIJR] X8/ JUXET/JUXDY/QL] sUSN/)
(xne*dubad) ((0[2*(TaZ1S/9SLq/XSIR] X3/ Juxa/Juxa/qL]susny)

$SP[O JuUaWNJ0p Y8]e puepuels he*Th TE/0T/966T 210TIJe SSe[] Juaundo(
$[9°*9]013e/8S8q,/X3)R /X3 /Juxal/Juxay qr] usn/)

[

T |+ | [Silcd [dubad xayeili4 [xay- dubad 1a]c4 [dubad xayqidlzd [dubad sdiap] 14 |—

Title bar interface screenshot

Figure D.1

62



586/ filesystens
591/ fs/

674/ ide/
s/ interrupts
5/ ioports
44/ keore
M9/ kmsg
948/ ksyns
Uy loadavg
bus/ locks
cadline meminfo
cpuinfo misc
devices wmodules

Figure D.2: Separate display screenshot

63

net/
partitions
pei

scsi/
self@
slabinfo




Appendix E

Additional Predictors

These predictors were constructed by Christopher Thompson as part of a related research project.

E.1 History Predictor

See Algorithm E.1. This predictor looks back at the last n = 100 commands and predicts based
on frequency. The rationale behind such a predictor is that a user spends a lot of time doing the
same thing over and over. It is much more likely that the next command will be a command that
was executed recently rather than a command from long in the past. This combiner does not weight
more recent commands higher, unlike the predictor in Section E.2. Each command line “votes” on
what the next one will be, with each vote worth the same amount (i.e., P (x) = £2Lcemmands=x ¢,

# of comma:
a window no greater than 100 commands).

Algorithm E.1 History Predictor
i: LOOKBACK + 100
2: length « |history|
3: start — max(length - LOOKBACK,0)
4: fori = start...length—1do
5:  8COT€history, + +
where history is the command line history, and history; is an individual command line.

E.2 History Weighted Predictor

See Algorithm E.2. This predictor looks back at the last N commands and predicts based on fre-
quency, in a manner similar to the history predictor in Section E. 1. The rationale behind this predic-
tor is the same: the recent past is a better indicator than the long-term past. However, this combiner
weights more recent commands higher. Each command line “votes” on what the next one will be,
with each vote worth as much as the weighting. The specific weighting function is as follows:

1. For histories longer than n = 100, look at only the last n entries, otherwise, look at all entries.

2. Each line contributes BRsenX2 .. weighting.



Algorithm E.2 History Weighted Predictor
1: LOOKBACK « 100
2: length « |history|
3: start « max (length - LOOKBACK,0)
4: divisor «— (length — start) x lengthogtartl
s: fori = start...length — 1 do
6:  SCOTehistory; + = ‘ﬁ":v:a_r:rﬂ

E.3 Last-N Predictor

This predictor simply predicts the last n = 5 unique command lines, looking back as far as needed.
The rationale behind this predictor is even simpler: a user will often use the up-arrow to re-enter a
command. While there is minimal intelligence behind such a predictor, its performance provides a
reasonable baseline for other predictors to beat.

E.4 Backwards Predictor

See Algorithm E.3. This predictor makes a prediction based on context. The rationale behind this
predictor is that although certain groups of commands naturally fall together, there is also a lot of
noise. For example, perhaps a user normally edits a source file, then compiles, and repeats. However,
one time, the user takes a look at how many lines of code is in the source file. Still, the computer
should be able to guess that this was just noise and make the same prediction again. The backwards
predictor keeps a running total of what preceded a given command, weighting the command at
time,—) higher than at time,_2. When it comes time to make a prediction, it looks at the last two
commands the user typed in and selects the commands that have the highest count. For additional
robustness against noise, it uses command stubs to predict the command lines.

Algo_rithm E.3 Backwards Predictor
PREV_2 VALUE ~3
PREV_1 VALUE « 5
: length — |history|
: if length < 3 then
return §
fori =2...length—1do
prev — history;—2
prevy « history;~,
curr « history;
graph [curr] [prevy] + = PREV_2 VALUE
11:  graph[curr] [previ]+ = PREV_1_VALUE
12: prev «— historylengtll-z
13: curr « historyiengen-1
14: for all item € graph do
1S:  score[iteMcommand] + = iteMycorefprev] + iteMycore(curr]
16: return score

VNS W -
o S er MY o e

-
e

E.5 Stub Predictor

See Algorithm E.4 for both predictors. These predictors have been described as a rather stupid pre-
diction method, simply looking back through the history of commands and providing a probability
for each of them based on a stub from the command. The behavior of the algorithm is affected
through getStripped (). The stub first predictor predicts based on the command stub. The stub last
predictor uses the last non-option argument.

65



Algorithm E.4 Stub Predictor
1: length « |history|

if length < 2 then

return §
current «— Ristoryiength-1
last — historylength-ﬁ
currentStripped «— getStripped (current)
lastStripped — getStripped (last)
if length = 2 then

statSiastStripped—last++
10: statScurrentStripped—current++
11: if Jitem € statsiastStripped|it€Mcommand = currentStripped then
12: iteMeount + +
13: else
14:  StatSiastSeripped — StalSlastStripped U (currentStripped, 1)
1s: for all item € statScyrrentStripped 40
16:  SCOTeitem.command+ = item.score
17: return score

eRPI2BREWUR

E.5.1 Stub First Predictor

This predictor uses the frequency of first stub in command line for predictions because a user work-
ing on a specific file tends to execute the same commands. This algorithm works by looking at each
stub and seeing what comes next. It makes its prediction based on this. For example, consider the
sequence of commands “emacs foo.txt", “blarf foo.txt”, “ls” “emacs bar.txt”,
“blarf baz”, “emacs bar.txt”. The user will most likely type “blarf baz" next, since
every time “emacs <something>" is typed, “blarf <something>" follows.

E.5.2 Stub Last Predictor

This predictor uses the frequency of last stub in command line for predictions for similar reasons.
However, the algorithm looks at the opposite end of the command line. It should be noted that the
stub for a given command line will be the last thing on that line that does not immediately appear to
be a switch. For example, the stub for “foo bar baz -~1"is “baz”, in contrast with our usual
definition of a stub. Similarly, “foo -al bar” has “bar” for a stub. However, “foo -1 -h"
has two options specified, so “foo” is the stub and consequently, this predictor degenerates into a
Stub First Predictor for many command lines.

E.6 Mode Predictor

See Algorithm E.S. This predictor makes a prediction based on what mode a user is in, but may stay
silent. The rationale behind this predictor is that users tend to repeat the same set of commands at
very different times. For example, a user may start up an xterm, check email, check the newsgroups,
and finally start Netscape. This sort of pattern occurs often but may be interrupted by long delays
of semi-random commands. This algorithm works by predicting a command based on the stubs of
the previous two commands typed in. If it has seen that pattern before, it predicts. If it has not,
it stays silent. The key difference between this and the AUR predictor described in Section 4.2 is
that this one may stay silent, while the AUR predictor has a default table used in new situations. A
col ence of this silence is that although it has a high accuracy rate when it predicts, it predicts a
much lower number of correct commands compared to other algorithms.



Algorithm E.5 Mode Predictor

1: length — |history|

2 iflength < 4 then

3: retarn®

4 fori = 2length—2do

5:  prev2 « history;—a.stub

6: prevl «— history;-,.stub
7. curr — history;.stub
8:
9:

curr «— history;4+1.stub
it Jitem € graphlitem.prev2 = prev2anditem.prevl = prevlanditem.curr =
curr anditem.nezxt = nezt then

10: tteMeount + +

il:  else

12: graph — graph U [curr, prev2, prevl, next, 1]

13: prev2 «— historyiength-2-Stub

14: prevl « historyiengen—1.stud

15: curr «— histoTYiength-Stub

16: for all item € graphlitem.prev2 = prev2anditem.prevl = prevl anditem.curr = curr

do
17:  SCOTCitem.next+ = item.count
18: return score

E.7 Cycle Predictor

See Algorithm E.6. This prediction algorithm is significantly different from the rest. It provides no
benefit to historical data analysis, but rather provides a helpful hand during interactive use. Conse-
quently, we have no performance data for it. For example, if a user types “make £oo” followed by
“gdb foo", the predictor will predict “make foo; gdb foo”. Itexists in two flavors, one that
uses the complete command line, and one that uses command stubs.

E.7.1 Entire Cycle Predictor

This is a macro-generating predictor that uses the entire command line. Quite often, a user ends up
typing the same set of commands in over and over. While we can predict each one in turn, we may
also be able to predict all of them at once. Any reasonable Unix shell allows the user to combine
multiple commands with either a semicolon or ampersands separating each. The algorithm builds
up a graph of which command followed which, and then searches through this graph, for a chain
of commands that begin and end with the current command. If one is found, the entire cycle is
predicted as a single command.

EJ72 Stub Cycle Predictor

This is a macro-generating predictor that uses command stubs. Similar to the predictor in Sec-
tion E.7.1, it searches for cycles. However, it uses command stubs for the graph, continuing to
predict a chain of complete command lines. We are unclear whether or not the use of stubs will
provide any significant improvement.

67



Algorithm E.6 Cycle Predictor
1: LOOKCYCLES « 128
2: length — |history|
3: if length > 1 then

4: fori = max(length - LOOKCYCLES +1,1)...length — 1do

s current «— history;

6: previous «— history;—,

7 if Jitem € graph |item ommand = Previous, itemeoun: = max then {replaceInGraph}
8 if 3neighbour € itemyeighbourtist |RESGROOUT command = current then

9: neighbourcoune + +

10: else

1 itemneighbourlm — it37"1:.eighlmm'liat U (cu"ent: 1)

12: {addToGraph}

13: graPhprevious «— grapPhprevious U (current, 1)

14: return searchCycles (graph, current, current, count = 4)

1: searchCycles (graph, current, target, count)

2: CYCLELENGTH ~— 4

3: results — 0

4: if count = 0 then

s:  retorn

6: if item € graphlitemcommand = current, iteMmeoyne = max then

7. {Take the most frequent neighbor and look at what follows it!}

8: for all neighbour € itemn ighbourtise do

9 if count < CYCLELENGT H and neighbour command = target then

10: results — results U target

1k else

12: deeper «— searchCycles (graph, neighbourcommand, target, count — 1)
13: for all entry € deeper do

14: results — results U neighbourcommana+’;’ +entry

15: return results

68



Appendix F

Algorithms for AUR Predictor

This appendix contains a brief step by step description for key components of the AUR predictor.

Algorithm F.1 Tuples::Feed(history Entry, command)

1: key — historyEntry

2: if keYcommand € RemovedCommands then

3. keYeommand — REMOVEDCOMMAND
4: if keYezie code € RemovedExitCodes then

S:  keYezitcode — REMOVED EXIT CODE
6: if keyrime € RemovedTimes then

7. keYiime — REMOVEDTIME

8: if keyday € RemovedDays then

9:  keyday — REMOVED DAY

10: if 3t € data [tkey = key then

1t: ¢prr — TTLRESET

122 teount «— beoune +1

13: else {Add a new item}

14:  tgey = key

15: tppr — TTLRESET

16  teount — 1

172 data — data Ut

Algorithm F.2 Tuples::Starve(void)

1: forallt € datado

2 trrre—trrr-1
3: iftrrr <0 then
4 data — data - ¢

69



Algorithm F.3 AUR-Predictor::AlphaUpdate(command)
1: total — 0
2: for allt € alphaTabledo

total «— total + tprosabitity

4: for allt € alphaTabledo

5:  tprobability — tprobabitity/total

6:  Iprobability — lprobability X @

7

8

9

w

: if 3t € alphaT able|t.ommand = command then
torobability “ Cprobabitity + (1-a)
: else
10: t=(command,1-a)
11:  alphaTable — alphaTableUt

Algorithm F.4 AUR-Predictor::AddChild(branch, sequence)
1: S + tuples.EachSampleFor (branch)
2: total — 0
3: forall s € S do
4 total — total + Scount
s: bootstrapTable — 0
6
7
8

: foralls € Sdo
bootstrapTable — bootstrapTable U (Scommand, 2513t )
: ¢ — Predictor (branch, sequence, bootstrapTable)
9: children « childrenUc

Where:
S is a set {command, count) of all possible commands that branch could predict.
branch is a command, exit code, time of day, or day of week.
If a command line occurs at ¢time;, this branch examines the command line at time;—sequence t0
predict the next command.

bootstrapTable = {(snext, %zt ) |3 € S, total = 1.5 Teoun: }

bootstrapTable is a calculated probability table to initialize alphaT able for the new child node.
schildren is the set of all child nodes for this node.

70



Algorithm F.§ AUR-Predictor::CreateChildren(history)
Ordering is: Day of Week, Time of Day, Command, Exit Code, Root

1: S « tuples;.EachSample ()

2: sizeg + tuples,. TotalSamples
: Hg — Entropy (S, sizeg)
: SI « tuples;_,.FachSample ()
: sizeg, — tuples,_,.TotalSamples
Hg, — Entropy (51, sizes,)
itTY PE < Command then

Be « tuples;.Commands() {(command,count) in tuples;}

: #TYPE < Exit Code then
1. Bg « tuples;.ErrorCodes() {(exitcode,count) in tuples;}
11: ifTY PE < Time of Day then
12 B « tuples,.Times () {(time,count) in tuples.}
13: Bg, +~ tuples;_).Commands() {(command, count) in tuples,_,}
14: Bg, — tuples,—,.EzitCodes() {(exit code, count) in tuples;— }
15: By, — tuples,_1.Times () {(time,count) in tuples,-,}
16: Bp + tuples;_.;.Days () ({day,count) in tuples,_;}
17: RemoveNonOptions (B)
18: if B = then
19: return
20: G «~ Gain (B, S, sizeg, Hs)
21: best — maxG
22: AddChild (best, sequence + 1)
Where:
tuples is a set ((command, exit code, time, day, count) = predicted command)
S is a set (predicted command, count), all possible commands to predict from tuples, (line 1).
Similarly for S7 and tuples, ;.
sizes = 3% s.count, sizes) = 35 s.count
Hg = Entropy (S, |S|), Hs:Entropy (S1,|S1))
Bg and B, are sets of {command, count), B¢ C tuples;,Bc, C tuples;-, .
Bg and BE, are sets of {exit code, count), Bg C tuples:,Bg, C tuples;—;.
Br and Br, are sets of (time, count), Br C tuples;,Br, C tuples;..1.
Bp is a set of {day, time), Bp C tuples;-;.
G is a set of (value, gain) representing the gain from splitting on value
best = max9%® (G)

D3 I TR T

71



Algorithm F.6 AUR-Predictor::Predict(history, scale, incr_scale)

: last « |history|
: me — last - SEQUENCE
: ok — false
: f SEQUENCE = (0 then
ok — true
else if TY PE = Command and COMMAND = Ristoryme.. COMMAND then
ok «— true
: else if TY PE = Exit Code and ERROR = historyme.ERROR then
ok — true
: else if TY PE = Day of Week and DAY = historyme. DAY then
ok — true
: else if TY PE = Time of Day and TIM E = historym.. TIME then
ok — true
: if ok # true then
return §
: for all child € children do
temp = child. Predict (history, scale x incr_scale,incr_scale) {Recursive}
forall p € tempdo
if 3q € predictionsipcoMmanp = qcommanp then

qPROB + qPROB + PPROB
else

predictions «— predictionsU p
: forall p € alphaTable do
if 3q € predictionslpcommanD = gcomMmanp then

qPROB + qPROB + qPROB X Scale
else

predictions «— predictions U (p x scale)
: return predictions

T eYwenNouswe

—
W N

EIPRREBRBEREEIRL®

72



Appendix G

Data Collection

Although the Greenberg dataset is key in our evaluation, we also have our own data, collected for
over a year, although on a smaller set of users. To address the limitations of the Greenberg data, we
began our own opt-in data collection, collecting:

e command line

e exitcode

o time command started and ended (with sub-second accuracy)
¢ host identification

¢ all environment variables and shell settings (this includes the current working directory be-
cause it is contained in the PWD variable)

o all shell aliases

Further, all data was collected into a multiplexed log file so we have exact sequencing of all com-
mands for all users, even if the system clock on the computers in use became out of synchronization.

The collection of this data is accomplished by using two functions provided by ZSH and a small
helper program. This allows us to instrument ZSH without modifying or even examining the source.
The helper program simply observes the current time and sends a message (to a log server) contain-
ing the command or exit code and all environment variables. By abstracting the collection mecha-
nism from zsh, we can easily upgrade either component.The functions used are:

preexec If this function is defined, it is executed each time before the command line is run. This
lets us know what the command is and when it is started by calling the helper program with
the command line.

precmd If this function is defined, it is executed each time before the shell prompt is displayed. We
u:ed this to know when the command has ended, and to call the helper program with the exit
code.

When a user’s account is modified to use ZSH, they are told how to disable the logging with the
command “BigBrother off.” As well, users are informed when each shell starts that they are
contributing to data collection, and reminded on every command line that “Big Brother is Watching”
through another ZsH feature, the right hand prompt.

The helper program and example ZSH scripts are currently available from
http://www.cs.ualberta.ca/~benjamin/AUI/NotSoBigBrother-0.1.tar.gz.

Davison and Hirsh collected data for a lesser period (between two and six months)[7, 6], but greater
number of subjects &77) than we did. Similarly, all subjects knew their sessions were being observed
and could turn it off. They also ran into problems with the data collection — they exploited the
history mechanism in a manner similar to our initial data collection — and as a result, lost history
traces when sessions terminated abnormally’.

!'We encountered similar situations with our initial data collection. Later datn collection was done on a remote machine
and thus avoided such pitfalls.

73



