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Abstract

Most quantum computers are based on elements with many addressable states,

yet restrict themselves to a two-level subset, a qubit. In principle, more states

could be used in each element to form a d-dimensional qudit, increasing the

Hilbert space dimension and thus the computational power of the device. A

qutrit is a three-level qudit, and is a natural first step to working with more

dimensions.

Universal quantum computers require arbitrary single-qudit unitary gates

with high fidelity of control. Commonly, there are some couplings between

levels that are more difficult to control in a quantum system than others, for

example, if they are forbidden transitions by dipole selection rules, if they have

a resonance frequency far off from the other transitions, or if the coupling is

degenerate with another coupling and thus cannot be controlled in isolation.

In this work, we demonstrate full unitary control on an ensemble qutrit

of ultracold 87Rb. We also demonstrate a method for performing rotations

between levels which are not otherwise convenient to couple because of degen-

eracies. We perform the quantum Fourier transform on the qutrit with and

without the synthesized coupling and find similar final state fidelities with each

method. The dominant error mechanism causes loss of purity in the qutrit,

and our analysis suggests this may be caused by inhomogeneity in the dipole

trap.

Our work is directly applicable to more conventional quantum platforms,
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including superconducting qubits, trapped-ion qubits, and neutral single-atom

qubits.
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Preface

Chapter 4 of this thesis was published in Physical Review Applied under the

title “Complete unitary qutrit control in ultracold atoms”. I wrote it together

with my co-authors Dr. Arina Tashchilina, Dr. Logan W. Cooke, and Dr.

Lindsay J. LeBlanc. While I was primarily responsible for the project, A.
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with me to maintain, repair and operate the apparatus, helped to edit the

manuscript, and provided supervision. L. LeBlanc contributed to figure pro-

duction, manuscript writing and editing, and provided guidance and supervi-

sion throughout.

The core apparatus was assembled and fully operational before I joined the

group. It is the product of work by Dr. LeBlanc, Taras Hrushevskyi, and many
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Û

ϕ Phase of a rotation Û
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Chapter 1

Introduction

In the near-century since quantum mechanics was formulated, we have devel-

oped a number of technologies that rely on its foundations. Among these are

photovoltaics, lasers, and magnetic resonance imaging. Now, a new generation

of quantum technologies are being rapidly developed – quantum sensing [23],

quantum networking [33], and quantum computing [24].

Most quantum computers are based on controllable two-level quantum sys-

tems, qubits, but nature frequently provides many more than two levels that

a quantum engineer can manipulate. This thesis develops operations on the

qutrit, a three-level quantum system. The work has been published in Physical

Review Applied [45].

The qutrit used in this work is based on an ensemble of ultracold 87Rb.

Because nature is inherently quantum-mechanical, there are many promising

potential platforms in development as quantum computers. While it is un-

likely that ensembles of 87Rb or ensembles of any other neutral atom will be

the predominant quantum element in future quantum processors, the control

techniques can be adapted to single-neutral-atom processors and to higher

dimensional qudits on platforms such as trapped ions and superconducting

circuits.
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Chapter 2

Background

This chapter provides the necessary background to understand the contents of

this thesis, assuming an undergraduate-level understanding of quantum me-

chanics and linear algebra.

We begin with a broad discission of quantum computing (sec. 2.1) and

atomic physics (sec. 2.2), then discuss qutrit gates (sec. 2.3) and quantum

state tomography (sec. 2.4).

2.1 Quantum Computing

Quantum computing is a very active field, with new and old companies both

investing heavily in the technology in the hopes of building practical quantum

computers before their competitors. This section will motivate the devel-

opments along with the benefits of developing three-level qutrits and higher

dimensional quantum elements into quantum information processors.

2.1.1 Motivations
Why quantum information
processing? The shortest of
answers to this question would
be, why not?

David P. DiVincenzo [24]

The classical computers we use today are incredible machines that have

transformed virtually every aspect of modern life. They are highly adaptable
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and can be applied to almost any task. There are, however, classes of prob-

lems that today’s computers cannot solve efficiently but quantum computers

could. One of these classes are problems that involve simulating fundamentally

quantum processes like materials science and chemistry. In principle, quantum

computers could be used to design drugs and simulate their interactions with

other molecules in the body [16, 40, 66]. They could also help researchers find

better chemistries to build batteries [36]. There are a number of other chal-

lenges that quantum information processing could solve much more efficiently

than any classical processor, such as highly constrained optimization problems

which appear in logistics [61] and finance [60].

2.1.2 Qubits

A bit is a unit of information that takes on the discrete values of |0⟩ or |1⟩.

In isolation, this abstract concept wouldn’t be very useful, but groups of bits

are used to represent meaningful ideas like letters, numbers, and instructions

for the manipulation of other bits. The only one-bit operations are identity,

1̂|b⟩ = |b⟩ and NOT, NOT|b⟩ = |b+ 1⟩ where b ∈ Z/2.

A quantum bit (qubit) is a simple two-level quantum system. Like a clas-

sical bit, a qubit can take on the discrete values of |0⟩ and |1⟩, but it can also

take on any superposition of the two,

|ψ⟩ = α|0⟩+ β|1⟩

= aeiφa|0⟩+ beiφb|1⟩

= eiφa(a|0⟩+ beiφ|1⟩)

(2.1)

where a, b, φa, φb, φ are all real numbers, α and β are complex. Like all quantum

systems, the global phase (φa in eq. (2.1)) can be ignored because there is no

experiment that could distinguish between states with two different values of

φa. Normalization requires a2 + b2 = 1, so there are two free parameters:

a ∈ [0, 1] and φ ∈ [0, 2π). A qubit state can be written as a column vector,

|ψ⟩ =
(
a
beiφ

)
. (2.2)
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|0⟩

|1⟩

x
y

|ψi ⟩

φ

θ

(a)

|0⟩

|1⟩

x
y

|ψi ⟩

|ψf ⟩

Ω̂
χ

(b)

Figure 2.1: (a) The qubit state |ψi⟩ drawn on the Bloch sphere with parameters
θ = φ = π

4
. (b) A rotation about Ω̂ (green) of angle χ brings the state |ψi⟩ to

state |ψf⟩ (red).

It is very useful conceptually to visualize the state of a qubit using the

Bloch sphere. Figure 2.1(a) shows the Bloch sphere representation of a qubit

state. The zenith angle in the visualization is θ = arccos a, with the azimuthal

angle φ, where a and φ are as in eq. (2.2).

There are two categories of qubit manipulations – unitary evolutions and

projective measurements. Unitary evolution of the qubit’s state can be ex-

pressed as a matrix Û in the group SU(2), which means it is unitary (Û−1 = Û †

for the Hermitian conjugate Û †), and has determinant 1 (no effect on the global

phase). The group SU(2) is generated by exponentiating the three Pauli ma-

trices σ̂x, σ̂y, σ̂z. Unitary evolution can be visualized as a rotation around some

unit vector Ω̂ on the Bloch sphere, as shown in figure 2.1(b). Unlike unitary

evolution which has a fully deterministic result, projective measurement is a

probabilistic process. The probability of projecting onto |ξ⟩ is

P (|ξ⟩) = ⟨ψ|ξ⟩⟨ξ|ψ⟩. (2.3)

After a projective measurement, the qubit is no longer in its initial state |ψ⟩,

but in one of the eigenstates of |ξ⟩⟨ξ|.
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2.1.3 Qutrits

Digital computers use binary logic for good reasons. Electric potential is a

continuous variable, and must be sternly wrangled into discrete ranges rep-

resenting |0⟩ and |1⟩1. The electronic complexity of implementing 3-valued

or d-valued logic gates would mean very complicated logic gates and would

require extremely well-characterized transistors to ensure the logic levels re-

main valid. Even if a binary circuit requires more elementary logic gates in its

implementation than a ternary version would, the net benefit of building on

boolean logic for digital computers is undisputed.

Similar to their ubiquitous digital counterparts, most gate-based quantum

computing platforms are based on two-level qubits. Unlike digital computers

though, it is not inherently clear that working with two-level systems is the

optimal way to develop computing power. The dimension of Hilbert space ac-

cessed by a quantum processor is a limitation on the complexity of problems

it can solve. For N quantum elements each with d eigenstates, the dimen-

sionality is dN . We can increase the Hilbert space dimension by increasing

N , the most conventional approach, or also by increasing d. Most quantum

elements used for computing have access to many discrete eigenstates which

can be used for computing, and actively suppress excitations outside of a two-

level subspace. Quantum systems are inherently discrete, and their unitary

gates are inherently continuous, requiring significant calibration to perform

accurately. Thus, some benefits of reducing computational elements to two

levels familiar from digital boolean logic don’t apply to qubits.

A single qutrit can be represented as

|ψ⟩ =

⎛⎝ a
beiφ1

ceiφ2

⎞⎠ (2.4)

which after normalization (a2+ b2+ c2 = 1) leaves four free parameters: b, c ∈

[0, 1], a2 + b2 ≤ 1 and φ1, φ2 ∈ [0, 2π). Though visualizations have been

developed for qutrits, there are none as clear as the Bloch sphere, since the
1Digital logic very strictly defines ranges of electric potential which are acceptable to

represent |0⟩ and |1⟩ at the input of a logic gate, and more restricted ranges for its output.
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state would be best visualized in 4 dimensions. Nevertheless, a qutrit gate can

be seen as a direct extension of the SU(2) qubit gate to SU(3). The group

SU(3) is generated by exponentiating the eight Gell-Mann matrices,

λ̂1 =

⎛⎝0 1 0
1 0 0
0 0 0

⎞⎠ , λ̂2 =

⎛⎝0 −i 0
i 0 0
0 0 0

⎞⎠ ,

λ̂4 =

⎛⎝0 0 1
0 0 0
1 0 0

⎞⎠ , λ̂5 =

⎛⎝0 0 −i
0 0 0
i 0 0

⎞⎠ ,

λ̂6 =

⎛⎝0 0 0
0 0 1
0 1 0

⎞⎠ , λ̂7 =

⎛⎝0 0 0
0 0 −i
0 i 0

⎞⎠ ,

λ̂3 =

⎛⎝1 0 0
0 −1 0
0 0 0

⎞⎠ , λ̂8 =
1√
3

⎛⎝1 0 0
0 1 0
0 0 −2

⎞⎠ .

(2.5)

2.2 Atomic Physics

Atoms have been an invaluable tool for the study of quantum physics for

over 100 years. All atoms of a particular species are exactly the same, and

(especially hydrogen-like atoms) are well-studied and understood. This makes

atoms an excellent platform on which to build quantum technology.

This section covers the energetic structure of 87Rb, the alkali atom used

in our experiments, in section 2.2.1. Two effects that perturb the energy level

structure are discussed – the Zeeman effect (sec. 2.2.2) and the Stark effect

(sec. 2.2.3). The last two sections discuss methods for state manipulation

(2.2.4), and the state of neutral atom quantum computing (2.2.6).

2.2.1 Structure of 87Rb

The information in this section is informed by Daniel A. Steck’s self-published

resource on 87Rb [70].

Rubidium-87 is an alkali metal. It has 50 neutrons, 37 protons, and 37

electrons, one of which is unpaired in the valence shell, so the electronic spin

S = 1
2
. With all lower levels filled, the valence electron has principal quantum

number n = 5 when it is not excited. This work deals exclusively with n = 5.
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The nucleus also has spin, I = 3
2
, so in the ground state where the electron

orbital angular momentum L = 0, we have for the total angular momentum

F = I+ S =
3

2
± 1

2
.

If the nuclear and electronic spins are aligned, we have F = 2, and when

they are anti-aligned, we have F = 1. This interaction between the angular

momentum of the nucleus and the electron gives rise to the hyperfine structure.

The hyperfine F -levels are shown in Figure 2.2a with their 2F + 1 magentic

sub-levels. The two manifolds are split by ∆EHF = h · 6.835GHz.

2.2.2 Zeeman Effect

In the presence of a magnetic field, a perturbing term is added to the atomic

Hamiltonian [3],

ĤZ = −µ ·B, (2.6)

where µ is the magnetic dipole moment of the atom and B is the magnetic

flux density. We operate exclusively in the low-B regime where the hyperfine

splitting dominates ĤZ . We can use perturbation theory to calculate the

first- and second-order corrections to the energies by starting with the λ-

parameterized Hamiltonian

Ĥtotal = Ĥ0 + λĤZ , (2.7)

where for the atomic Hamiltonian Ĥ0 we define the eigenenergies E|F=1⟩ = 0,

E|F=2⟩ = ℏωHF. Following the usual approach [8] we expand the Hamiltonian

and states as a power series,

|ψ⟩ = |ψ0⟩+ λ|ψ1⟩+ λ2|ψ2⟩+ . . . , (2.8)

Ŵ = Ŵ (0) + λŴ (1) + λ2Ŵ (2) + . . . , (2.9)

where Ŵ (n) are the n order eigenvalues for the Hamiltonian, and |ψn⟩ are the

n order corrections to the eigenstates. The eigenvalue equation can be written

as

(Ĥ0 + λĤZ)(|ψ0⟩+ λ|ψ1⟩+ . . . ) = (Ŵ (0) + λŴ (1) + . . . )(|ψ0⟩+ λ|ψ1⟩+ . . . ).

(2.10)
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Gathering terms for λ, the zero-order term

Ĥ0|ψ0⟩ = Ŵ 0|ψ0⟩ (2.11)

is the unperturbed Schrödinger equation where Ŵ 0 are the energies and |ψ0⟩ =

|F,mF ⟩. To first order in λ, we can isolate the energy perturbation Ŵ (1) which

we call the “linear Zeeman shift”

Ĥ0|ψ1⟩+ ĤZ |ψ0⟩ = Ŵ (0)|ψ1⟩+ Ŵ (1)|ψ0⟩

⟨ψ0|ĤZ |ψ0⟩ = Ŵ (1) (2.12)

because while Ĥ0 has several degenerate eigenvalues for each hyperfine level,

it shares an eigenbasis with ĤZ which are |ψ0⟩ = |F,mF ⟩. To second order,

we have the “quadratic Zeeman shift” Ŵ (2)

Ĥ0|ψ2⟩+ ĤZ |ψ1⟩ = Ŵ (0)|ψ2⟩+ Ŵ (1)|ψ1⟩+ Ŵ (2)|ψ0⟩

Ŵ (0)⟨ψ0|ψ1⟩ = Ŵ (1)⟨ψ0|ψ1⟩+ Ŵ (2) (2.13)

which can be simplified by calculating |ψ1⟩, the first-order correction to the

eigenstate.

To second order, we can write the Zeeman term in the Hamiltonian as [31]

ĤZ = µBgFmFB0 +
(µBgFmFB0)

2

ℏωHF

(2.14)

where µB is the Bohr magneton, gF is the Landé g-factor for the hyperfine

manifold F , and mF is the magnetic quantum number defined along ẑ. The

energetic level structure of the ground state of 87Rb in the presence of a weak

magnetic field is shown in figure 2.2b. In this work, the second-order Zeeman

term is negligible, and we find adjacent mF states split by roughly h ·1.25MHz

by a magnetic field of ≈1.8G.

2.2.3 Stark Effect

In the presence of an electric field, a perturbing term is added to the atomic

Hamiltonian [3],

HE = −d · E , (2.15)
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|2,−2⟩|2,−1⟩ |2, 0⟩ |2, 1⟩ |2, 2⟩

|1,−1⟩ |1, 0⟩ |1, 1⟩

∆EHF

(a)

|2,−2⟩|2,−1⟩ |2, 0⟩
|2, 1⟩ |2, 2⟩

|1,−1⟩ |1, 0⟩ |1, 1⟩

∆Ez
∆EHF

(b)

Figure 2.2: The structure of the ground state of 87Rb with the |F,mF ⟩ states
labelled. (a) without an external magnetic field the mF levels are degenerate,
(b) with a weak magnetic field the degeneracy is lifted. ∆Ez is the linear
Zeeman shift, Ŵ (1). In this work, ∆EHF ≈ 103∆Ez.

where d is the electric dipole operator and E is the electric field. Atoms are

polarizable, i.e., an external electric field E will perturb the energy levels in

the Hamiltonian analagously to magnetic fields perturbing energy levels via

the Zeeman effect. Stark shifts take the form [3, 70]

ES = −1

2
α0E2 − 1

2
αF
2 E2

[
3m2

F − F (F + 1)

F (2F − 1)

]
, (2.16)

where α0 is the static polarizability and αF
2 is the tensor polarizability of the

hyperfine manifold F . Both of these are constants that can be found in [70].

2.2.4 State Manipulation Methods

The |F,mF ⟩ state of 87Rb within the ground state 52S1/2 with weak-regime

Zeeman splitting can be manipulated by radio-frequency magnetic fields of

ω/2π ≈ 106 Hz, microwave-frequency magnetic fields of ω/2π ≈ 1010 Hz, or

optical electric fields of ω/2π ≈ 1014 Hz.

Both the radio-frequency and microwave-frequency fields target magnetic

dipole (M1) transitions. These transitions allow ∆mF ∈ {0,±1} and ∆F ∈

{0,±1} within the ground-state manifold. When ∆F = 0, we remain in the

hyperfine manifold, and only the Zeeman splitting separates the states. As a

result, the resonant coupling frequency ωRF will directly relate to the difference

in energy between the two coupled states contributed by the Zeeman term in

the Hamiltonian eq. (2.14), ∆EZ ≈ ∆mFgFµBB0, ωRF = ∆EZ/ℏ. At a weak
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level of splitting the quadratic Zeeman term is negligible, and all adjacent

mF levels are equally coupled. When ∆F = ±1, transitions are made across

hyperfine levels, and the resonant frequency will be near the hyperfine splitting,

∆EHF/h = 6.835GHz. Even in the linear Zeeman regime, five of the nine

transitions will have non-degenerate, unique resonant frequencies,

ω|2,mF ⟩
⏐⏐1,m′

F

⟩ = ωHF +
µBB0(mF +m′

F )

2ℏ
(2.17)

where we have considered only the hyperfine splitting and the linear Zeeman

term, with two frequency degeneracies in the ∆F = ±1 case we are considering,

ω|2,0⟩|1,1⟩ = ω|2,1⟩|1,0⟩,

ω|2,0⟩|1,−1⟩ = ω|2,−1⟩|1,0⟩.

The |F,mF ⟩ state can also be manipulated by a two-photon stimulated

Raman transition. These transitions are conducted by two detuned electric

dipole (E1) transitions through an intermediate upper level |i⟩. With sufficient

detuning, there are no excitations to |i⟩, only the two-photon process occurs,

which returns the atom to some new |F ′,m′
F ⟩ in the ground state. By selecting

the frequencies, polarizations, and propagation direction of the two driving

laser beams appropriately, these Raman transitions can achieve ∆F ∈ {0,±1}

and ∆mF ∈ {0,±1,±2} if an appropriate intermediate upper level is available

allowed by E1 selection rules.

2.2.5 Rabi Oscillations

Consider three levels within the ground state of 87Rb, |0⟩ = |F = 2,mF = 2⟩

and |1⟩ = |F = 1,mF = 1⟩, and |2⟩ = |F = 2,mF = 1⟩ with linear Zeeman

splitting. We can define a reference energy level based on state |1⟩ such that

the energy of |1⟩ is 0. We can define the energy of state |0⟩ EA = ℏωA,

and the energy of state |2⟩ EB = ℏωB. Radiation resonant with either of

these transitions is non-resonant with any other transition in the atom. The

magnetic field along z sets the Zeeman splitting. If we apply some perturbatory

oscillating magnetic field perpendicular to z of frequency ω, an interaction term

10



F = 2
gF = 1/2

F = 1
gF = −1/2

F = 3

F = 2
F = 1
F = 0

52S1/2

52P1/2

52P3/2

D1

795 nm
377 THz

D2

780 nm
384 THz

6.835 GHz

|2,−2⟩|2,−1⟩ |2, 0⟩ |2, 1⟩ |2, 2⟩

|1,−1⟩ |1, 0⟩ |1, 1⟩

1.25 MHzMWRF

Raman

|0⟩|2⟩

|1⟩
AB

C

Qutrit couplings

Figure 2.3: Level structure of 87Rb with examples of possible state manipula-
tions. Left: the two lowest orbital angular momentum levels S (L = 0), and
P (L = 1). Fine structure, arising from the interaction of orbital and spin
angular momentum J = L+ S, splits the P levels into J = 1/2 and J = 3/2.
Middle: hyperfine levels of the ground (52S1/2) and D2 excited states (52P3/2).
The hyperfine strucutre arises from the interaction of total electronic angular
momentum J and nuclear angular momentum I. Right: Zeeman levels of the
ground state which are split from degeneracy in the presence of an external
magnetic field. The states are labelled |F,mF ⟩. Methods of atomic state ma-
nipulation are superimposed. Radiofrequency (RF) magentic dipole transition
with ∆F = 0 in the linear Zeeman regime where all transitions are simul-
taneously resonant couple adjacent mF states within one hyperfine manifold.
Microwave (MW) magnetic dipole transition with ∆F = ±1 couples states
with ∆mF = 0,±1. In red is a two-photon stimulated Raman transition. Two
electric dipole transitions are driven at large detuning from resonance to one
or more intermediate excited states as allowed by selection rules. Inset: the
three qutrit levels and their coupling labelling convention, A, B, and C.

11



is added to the Hamiltonian,

ĤI = −µ ·B0 sin(ωt+ φ). (2.18)

The magnetic moment is

µ = −gFµBF̂/ℏ, (2.19)

and defining the axes such that B0 = B0x, we have

ĤI =
gFµBB0 sin(ωt+ φ)

ℏ
F̂x

=
ℏ
2

⎛⎝ 0 |ΩA| sin(ωt+ φ) |ΩC | sin(ωt+ φ)
|ΩA| sin(ωt+ φ) 0 |ΩB| sin(ωt+ φ)
|ΩC | sin(ωt+ φ) |ΩB| sin(ωt+ φ) 0

⎞⎠ (2.20)

Since we are considering three transitions (|0⟩ ↔ |1⟩,|1⟩ ↔ |2⟩,|0⟩ ↔ |2⟩),

we have summed each of the above σx-type couplings in eq. (2.20). We have

also defined the Rabi frequency’s magnitude |ΩX | from the matrix element

ℏ|ΩX | = −2⟨m|µ ·B0|n⟩ for each m,n,X.

The atomic Hamiltonian which describes the atomic structure (sec. 2.2.1)

and includes the hyperfine interaction and Zeeman splitting (sec. 2.2.2) can be

reduced to a diagonalized to Ĥat. = ℏ diag(ωA, 0, ωB). The full Hamiltonian is

then

Ĥ = Ĥat. + ĤI

=
ℏ
2

⎛⎝ ωA |ΩA| sin(ωt+ φ) |ΩC | sin(ωt+ φ)
|ΩA| sin(ωt+ φ) 0 |ΩB| sin(ωt+ φ)
|ΩC | sin(ωt+ φ) |ΩB| sin(ωt+ φ) ωB

⎞⎠ .
(2.21)

This Hamiltonian can be simplified by going into the rotating frame defined

by

Ŵ = exp(itĤat./ℏ). (2.22)

The transformation into this rotating frame, ˆ̃H = Ŵ †ĤŴ+iℏ(∂tŴ )Ŵ †, brings

the Hamitonian to

ˆ̃H =
ℏ
2

⎛⎝ 0 |ΩA| sin(ωt+ φ)e−iωAt |ΩC | sin(ωt+ φ)e−iωCt

|ΩA| sin(ωt+ φ)eiωAt 0 |ΩB| sin(ωt+ φ)eiωBt

|ΩC | sin(ωt+ φ)eiωCt |ΩB| sin(ωt+ φ)e−iωBt 0

⎞⎠
(2.23)
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where we have defined ωC = ωA − ωB, and ωC = ωRF is the resonant fre-

quency which couples states |0⟩ and |2⟩. For each of the three couplings in

this Hamiltonian, we shall consider the case where ω ≈ ωX (i.e. a near-resonant

field) and the far-off resonance case. Let the detuning for each transition be

∆X = ωX − ω.
Box 2.1: On the Phase of a Coupling Term

The Hamiltonian eq. (2.23) contains only coupling terms. It is important
to understand what the meaning of the magnitude and phase of the
coupling term will do when a qubit or qutrit is evolving. For simplicity,
let us consider a slightly simpler two-level system,

ˆ̃H =
ℏ
2

(
0 |Ω|eiϕ

|Ω|e−iϕ 0

)
=

ℏ|Ω|
2

(cosϕσ̂x + sinϕσ̂y) . (2.24)

This expansion into the Pauli matrices σ̂x and σ̂y allows us to use the
well-known formula for their exponentiation (the formula can be derived
by series-expanding the functions),

eiφ(n̂·σ⃗) = 1̂ cos(φ) + i(n̂ · σ⃗) sin(φ). (2.25)

Thus we find the unitary evolution operator,

Û = eit
˜̂
H/ℏ

= 1̂ cos
(

|Ω|t
2

)
+ i sin

(
|Ω|t
2

)
(cosϕσ̂x + sinϕσ̂y)

=

⎛⎝ cos
(

|Ω|t
2

)
i sin

(
|Ω|t
2

)
eiϕ

i sin
(

|Ω|t
2

)
e−iϕ cos

(
|Ω|t
2

) ⎞⎠ .

(2.26)

This operator rotates between the states |0⟩ and |1⟩. It can be visualized
as a rotation on the Bloch sphere where the rotation axis is on the x-y
plane, recall figure 2.1. The rotation frequency is |Ω|

2
, and the orientation

of the rotation axis on the x-y plane is set by the phase of the coupling
term, ϕ.
Now we can extend this understanding to the case where we have an
oscillating ϕ = ϕ(t) = aϕ sin(ωϕt + φϕ). When the axis of rotation
rotates much more quickly than rotation along the axis, the net effect
is a precession of the state. In the limit ωϕ ≫ |Ω|, the state will not
evolve, and the Hamiltonian can be ignored.

Now consider the coupling terms |ΩX | sin(ωt+ φ)e±iωX t. We can visualize

the effect of a coupling as drving a rotation on its SU(2) subspace by simply

13



setting all |ΩY | terms to zero. Their amplitude is |ΩX |, and the terms will

oscillate in the complex plane following sin(ωt+φ)e±iωX t. It can be helpful to

expand out the sin to reveal two oscillating terms,

ˆ̃Hnm =
|ΩX |
2

{
ie−i[(ω∓ωX)t+φ] − iei[(ω±ωX)t+φ]

}
. (2.27)

Now consider that in both the upper and lower sign versions of ˆ̃Hnm, one term

will have ω − ωX , which is −∆X , and the other term will have ω + ωX , which

is 2ω −∆X .

ˆ̃Hnm =
i|ΩX |
2

{
e−i(−∆X t+φ) − ei(2ωt−∆X t+φ), +branch

e−i(2ωt−∆X t+φ) − ei(−∆X t+φ), −branch
. (2.28)

We will make the assumption that 2ω − ∆X ≫ |ΩX |. This assumption is

the rotating wave approximation. As we have seen in Box 2.1, terms which

oscillate much more quickly than their Rabi frequencies can be eliminated from

the Hamiltonian. The coupling is finally reduced to

ˆ̃Hnm =
i|ΩX |e±i∆X te∓iφ

2
. (2.29)

We can wrap in the eiφ as the complex part of the Rabi frequency, ΩX =

|ΩX |eiφ. The resonances for A, B, and C are all well separated from each

other. The minimum spacing is between resonances is ωA − ωB ≈ 103|Ω|,

which satisfies the far-detuned criteria. Thus any field resonant with another

transition is always far-detuned. As a result, if ω ≈ ωA, the Hamiltonian eq.

(2.23) reduces to

H̃A =
iℏ
2

⎛⎝ 0 −ΩAe
−i∆At 0

Ω∗
Ae

i∆At 0 0
0 0 0

⎞⎠ . (2.30)

Similar Hamiltonians would be found for transitions B and C.

With zero detuning, eq. (2.23) is a time-independent Hamiltonian, so the

Schrödinger equation can be directly solved. Using transition A as an example,

ÛA(χ, φ) =

⎛⎝ cos
(
χ
2

)
eiφ sin

(
χ
2

)
0

e−iφ sin
(
χ
2

)
cos

(
χ
2

)
0

0 0 1

⎞⎠ (2.31)
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Figure 2.4: Rabi oscillations assuming an initial state |0⟩ and ω = ωA.

is the unitary evolution matrix where we have defined the pulse area χ = |ΩX |t.

The population evolution over a Rabi cycle is shown in figure 2.4 for resonance

with ωA and initial state |0⟩.

In order to solve the dynamics of a system with detuning, it is convenient

to perform a second change of basis from the Ŵ frame eq. (2.22) to the frame

Ŷ = exp

(
it

ℏ
(Ĥat. − Ĥ∆)

)
(2.32)

where

Ĥ∆ = ℏ diag(∆A, 0,∆B). (2.33)

We arrive at the rotating-frame Hamiltonian in Ŷ

H̃Y =
iℏ
2

⎛⎝ −2i∆A −ΩA −ΩCe
it(∆A−∆B−∆C)

Ω∗
A 0 Ω∗

B

Ω∗
Ce

−it(∆A−∆B−∆C) −ΩB −2i∆B

⎞⎠ . (2.34)

If we set ΩB = ΩC = 0, then the Rabi oscillations starting in state |0⟩ are

demonstrated by figure 2.5. The figure shows that for oscillations with mod-

erately high detuning (|∆X | > |ΩX |) oscillation amplitude is significantly de-

creased compared to resonance, and suggests the conclusion we reached earlier

that very high detunings will not couple the states.

2.2.6 Neutral Atom Quantum Computing

Currently, many technologies are being co-developed as platforms for quan-

tum computing. These include superconducting processors (including those
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Figure 2.5: Rabi oscillations assuming an initial state |0⟩ and ω = ωA −∆A.

produced by Anyon Systems, where I currently work), trapped ions (e.g.

IonQ [22] and Quantinuum [62]), photonic systems (e.g. Xanadu [50] and Psi-

Quantum [7]), and neutral atoms (e.g. QuEra [79]). While systems based

on neutral atoms are generally less common and less developed, they boast

significant potential for scalability.

While there are many superconducting qubit architectures being developed,

current processors have at least one separate coaxial cable for every qubit.

Since these processors operate in a dilution refrigerator where cable routing

is a complex and expensive feat, connecting signals to each qubit will prove

a challenge when scaling to higher qubit numbers. Manufacturing variability

will also cause each qubit to have slightly different properties, making chip

characterization and calibration a complicated endeavour.

Trapped ions systems boast good connectivity between qubits and very

high gate fidelities, but the number of ions held in a trap is very constrained.

To build large arrays of trapped ions, many traps are likely to be needed,

which remains an open problem for trapped ion systems [15].

Neutral atom arrays benefit from having perfectly identical qubits. They

can be trapped at the focus of a laser beam. Producing an arbitrary number

of traps is trivial, and groups have developed highly parallelized gates for

control [11].
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|2i
<latexit sha1_base64="+o2Lcdj3CKJrdv5/8s/zuw01xLA=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BIvQU0mKoMeCF48V7Ie0oWy2k3bp7ibsboQS+yu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MOFMG8/7dgobm1vbO8Xd0t7+weFR+fikreNUUWzRmMeqGxKNnElsGWY4dhOFRIQcO+HkZu53HlFpFst7M00wEGQkWcQoMVZ6eKr3FZEjjoNyxat5C7jrxM9JBXI0B+Wv/jCmqUBpKCda93wvMUFGlGGU46zUTzUmhE7ICHuWSiJQB9ni4Jl7YZWhG8XKljTuQv09kRGh9VSEtlMQM9ar3lz8z+ulJroOMiaT1KCky0VRyl0Tu/Pv3SFTSA2fWkKoYvZWl46JItTYjEo2BH/15XXSrtd8r+bfXVYa1TyOIpzBOVTBhytowC00oQUUBDzDK7w5ynlx3p2PZWvByWdO4Q+czx+wbZA9</latexit><latexit sha1_base64="+o2Lcdj3CKJrdv5/8s/zuw01xLA=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BIvQU0mKoMeCF48V7Ie0oWy2k3bp7ibsboQS+yu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MOFMG8/7dgobm1vbO8Xd0t7+weFR+fikreNUUWzRmMeqGxKNnElsGWY4dhOFRIQcO+HkZu53HlFpFst7M00wEGQkWcQoMVZ6eKr3FZEjjoNyxat5C7jrxM9JBXI0B+Wv/jCmqUBpKCda93wvMUFGlGGU46zUTzUmhE7ICHuWSiJQB9ni4Jl7YZWhG8XKljTuQv09kRGh9VSEtlMQM9ar3lz8z+ulJroOMiaT1KCky0VRyl0Tu/Pv3SFTSA2fWkKoYvZWl46JItTYjEo2BH/15XXSrtd8r+bfXVYa1TyOIpzBOVTBhytowC00oQUUBDzDK7w5ynlx3p2PZWvByWdO4Q+czx+wbZA9</latexit><latexit sha1_base64="+o2Lcdj3CKJrdv5/8s/zuw01xLA=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BIvQU0mKoMeCF48V7Ie0oWy2k3bp7ibsboQS+yu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MOFMG8/7dgobm1vbO8Xd0t7+weFR+fikreNUUWzRmMeqGxKNnElsGWY4dhOFRIQcO+HkZu53HlFpFst7M00wEGQkWcQoMVZ6eKr3FZEjjoNyxat5C7jrxM9JBXI0B+Wv/jCmqUBpKCda93wvMUFGlGGU46zUTzUmhE7ICHuWSiJQB9ni4Jl7YZWhG8XKljTuQv09kRGh9VSEtlMQM9ar3lz8z+ulJroOMiaT1KCky0VRyl0Tu/Pv3SFTSA2fWkKoYvZWl46JItTYjEo2BH/15XXSrtd8r+bfXVYa1TyOIpzBOVTBhytowC00oQUUBDzDK7w5ynlx3p2PZWvByWdO4Q+czx+wbZA9</latexit><latexit sha1_base64="+o2Lcdj3CKJrdv5/8s/zuw01xLA=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BIvQU0mKoMeCF48V7Ie0oWy2k3bp7ibsboQS+yu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MOFMG8/7dgobm1vbO8Xd0t7+weFR+fikreNUUWzRmMeqGxKNnElsGWY4dhOFRIQcO+HkZu53HlFpFst7M00wEGQkWcQoMVZ6eKr3FZEjjoNyxat5C7jrxM9JBXI0B+Wv/jCmqUBpKCda93wvMUFGlGGU46zUTzUmhE7ICHuWSiJQB9ni4Jl7YZWhG8XKljTuQv09kRGh9VSEtlMQM9ar3lz8z+ulJroOMiaT1KCky0VRyl0Tu/Pv3SFTSA2fWkKoYvZWl46JItTYjEo2BH/15XXSrtd8r+bfXVYa1TyOIpzBOVTBhytowC00oQUUBDzDK7w5ynlx3p2PZWvByWdO4Q+czx+wbZA9</latexit>

A
<latexit sha1_base64="kkMRDsYDjaeANXXNEh6ZFgAiIqI=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGhInc0WmJsLCGRjwQuZG+Zg5W9vcvungm58AtsLDTG1p9k579xgSsUfMkkL+/NZGZekAiujet+O4Wt7Z3dveJ+6eDw6PikfHrW0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0buF3n1BpHssHM0vQj+hY8pAzaqzUuh2WK27NXYJsEi8nFcjRHJa/BqOYpRFKwwTVuu+5ifEzqgxnAuelQaoxoWxKx9i3VNIItZ8tD52TK6uMSBgrW9KQpfp7IqOR1rMosJ0RNRO97i3E/7x+asIbP+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sqdc8t+a16pVGNY+jCBdwCVXw4BoacA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx+Ka4yp</latexit><latexit sha1_base64="kkMRDsYDjaeANXXNEh6ZFgAiIqI=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGhInc0WmJsLCGRjwQuZG+Zg5W9vcvungm58AtsLDTG1p9k579xgSsUfMkkL+/NZGZekAiujet+O4Wt7Z3dveJ+6eDw6PikfHrW0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0buF3n1BpHssHM0vQj+hY8pAzaqzUuh2WK27NXYJsEi8nFcjRHJa/BqOYpRFKwwTVuu+5ifEzqgxnAuelQaoxoWxKx9i3VNIItZ8tD52TK6uMSBgrW9KQpfp7IqOR1rMosJ0RNRO97i3E/7x+asIbP+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sqdc8t+a16pVGNY+jCBdwCVXw4BoacA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx+Ka4yp</latexit><latexit sha1_base64="kkMRDsYDjaeANXXNEh6ZFgAiIqI=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGhInc0WmJsLCGRjwQuZG+Zg5W9vcvungm58AtsLDTG1p9k579xgSsUfMkkL+/NZGZekAiujet+O4Wt7Z3dveJ+6eDw6PikfHrW0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0buF3n1BpHssHM0vQj+hY8pAzaqzUuh2WK27NXYJsEi8nFcjRHJa/BqOYpRFKwwTVuu+5ifEzqgxnAuelQaoxoWxKx9i3VNIItZ8tD52TK6uMSBgrW9KQpfp7IqOR1rMosJ0RNRO97i3E/7x+asIbP+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sqdc8t+a16pVGNY+jCBdwCVXw4BoacA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx+Ka4yp</latexit><latexit sha1_base64="kkMRDsYDjaeANXXNEh6ZFgAiIqI=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGhInc0WmJsLCGRjwQuZG+Zg5W9vcvungm58AtsLDTG1p9k579xgSsUfMkkL+/NZGZekAiujet+O4Wt7Z3dveJ+6eDw6PikfHrW0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0buF3n1BpHssHM0vQj+hY8pAzaqzUuh2WK27NXYJsEi8nFcjRHJa/BqOYpRFKwwTVuu+5ifEzqgxnAuelQaoxoWxKx9i3VNIItZ8tD52TK6uMSBgrW9KQpfp7IqOR1rMosJ0RNRO97i3E/7x+asIbP+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sqdc8t+a16pVGNY+jCBdwCVXw4BoacA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx+Ka4yp</latexit>

B
<latexit sha1_base64="1ao7oiadyODEkq1LQjF029T/aPg=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGhInc0WhJtLCGRjwQuZG+Zg5W9vcvungm58AtsLDTG1p9k579xgSsUfMkkL+/NZGZekAiujet+O4Wt7Z3dveJ+6eDw6PikfHrW0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0buF3n1BpHssHM0vQj+hY8pAzaqzUuh2WK27NXYJsEi8nFcjRHJa/BqOYpRFKwwTVuu+5ifEzqgxnAuelQaoxoWxKx9i3VNIItZ8tD52TK6uMSBgrW9KQpfp7IqOR1rMosJ0RNRO97i3E/7x+asIbP+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sqdc8t+a16pVGNY+jCBdwCVXw4BoacA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx+L74yq</latexit><latexit sha1_base64="1ao7oiadyODEkq1LQjF029T/aPg=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGhInc0WhJtLCGRjwQuZG+Zg5W9vcvungm58AtsLDTG1p9k579xgSsUfMkkL+/NZGZekAiujet+O4Wt7Z3dveJ+6eDw6PikfHrW0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0buF3n1BpHssHM0vQj+hY8pAzaqzUuh2WK27NXYJsEi8nFcjRHJa/BqOYpRFKwwTVuu+5ifEzqgxnAuelQaoxoWxKx9i3VNIItZ8tD52TK6uMSBgrW9KQpfp7IqOR1rMosJ0RNRO97i3E/7x+asIbP+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sqdc8t+a16pVGNY+jCBdwCVXw4BoacA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx+L74yq</latexit><latexit sha1_base64="1ao7oiadyODEkq1LQjF029T/aPg=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGhInc0WhJtLCGRjwQuZG+Zg5W9vcvungm58AtsLDTG1p9k579xgSsUfMkkL+/NZGZekAiujet+O4Wt7Z3dveJ+6eDw6PikfHrW0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0buF3n1BpHssHM0vQj+hY8pAzaqzUuh2WK27NXYJsEi8nFcjRHJa/BqOYpRFKwwTVuu+5ifEzqgxnAuelQaoxoWxKx9i3VNIItZ8tD52TK6uMSBgrW9KQpfp7IqOR1rMosJ0RNRO97i3E/7x+asIbP+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sqdc8t+a16pVGNY+jCBdwCVXw4BoacA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx+L74yq</latexit><latexit sha1_base64="1ao7oiadyODEkq1LQjF029T/aPg=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGhInc0WhJtLCGRjwQuZG+Zg5W9vcvungm58AtsLDTG1p9k579xgSsUfMkkL+/NZGZekAiujet+O4Wt7Z3dveJ+6eDw6PikfHrW0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0buF3n1BpHssHM0vQj+hY8pAzaqzUuh2WK27NXYJsEi8nFcjRHJa/BqOYpRFKwwTVuu+5ifEzqgxnAuelQaoxoWxKx9i3VNIItZ8tD52TK6uMSBgrW9KQpfp7IqOR1rMosJ0RNRO97i3E/7x+asIbP+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sqdc8t+a16pVGNY+jCBdwCVXw4BoacA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx+L74yq</latexit>

C
<latexit sha1_base64="CEmOOqrFoT6Wf1iWGc1XdKqQ92o=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGhInc0WpLQWEIiHwlcyN4yByt7e5fdPRNy4RfYWGiMrT/Jzn/jAlco+JJJXt6bycy8IBFcG9f9dgo7u3v7B8XD0tHxyelZ+fyiq+NUMeywWMSqH1CNgkvsGG4E9hOFNAoE9oJZc+n3nlBpHssHM0/Qj+hE8pAzaqzUbo7KFbfmrkC2iZeTCuRojcpfw3HM0gilYYJqPfDcxPgZVYYzgYvSMNWYUDajExxYKmmE2s9Why7IjVXGJIyVLWnISv09kdFI63kU2M6Imqne9Jbif94gNeGdn3GZpAYlWy8KU0FMTJZfkzFXyIyYW0KZ4vZWwqZUUWZsNiUbgrf58jbp1mueW/Pa9UqjmsdRhCu4hip4cAsNuIcWdIABwjO8wpvz6Lw4787HurXg5DOX8AfO5w+Nc4yr</latexit><latexit sha1_base64="CEmOOqrFoT6Wf1iWGc1XdKqQ92o=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGhInc0WpLQWEIiHwlcyN4yByt7e5fdPRNy4RfYWGiMrT/Jzn/jAlco+JJJXt6bycy8IBFcG9f9dgo7u3v7B8XD0tHxyelZ+fyiq+NUMeywWMSqH1CNgkvsGG4E9hOFNAoE9oJZc+n3nlBpHssHM0/Qj+hE8pAzaqzUbo7KFbfmrkC2iZeTCuRojcpfw3HM0gilYYJqPfDcxPgZVYYzgYvSMNWYUDajExxYKmmE2s9Why7IjVXGJIyVLWnISv09kdFI63kU2M6Imqne9Jbif94gNeGdn3GZpAYlWy8KU0FMTJZfkzFXyIyYW0KZ4vZWwqZUUWZsNiUbgrf58jbp1mueW/Pa9UqjmsdRhCu4hip4cAsNuIcWdIABwjO8wpvz6Lw4787HurXg5DOX8AfO5w+Nc4yr</latexit><latexit sha1_base64="CEmOOqrFoT6Wf1iWGc1XdKqQ92o=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGhInc0WpLQWEIiHwlcyN4yByt7e5fdPRNy4RfYWGiMrT/Jzn/jAlco+JJJXt6bycy8IBFcG9f9dgo7u3v7B8XD0tHxyelZ+fyiq+NUMeywWMSqH1CNgkvsGG4E9hOFNAoE9oJZc+n3nlBpHssHM0/Qj+hE8pAzaqzUbo7KFbfmrkC2iZeTCuRojcpfw3HM0gilYYJqPfDcxPgZVYYzgYvSMNWYUDajExxYKmmE2s9Why7IjVXGJIyVLWnISv09kdFI63kU2M6Imqne9Jbif94gNeGdn3GZpAYlWy8KU0FMTJZfkzFXyIyYW0KZ4vZWwqZUUWZsNiUbgrf58jbp1mueW/Pa9UqjmsdRhCu4hip4cAsNuIcWdIABwjO8wpvz6Lw4787HurXg5DOX8AfO5w+Nc4yr</latexit><latexit sha1_base64="CEmOOqrFoT6Wf1iWGc1XdKqQ92o=">AAAB6HicbVA9TwJBEJ3DL8Qv1NJmIzGhInc0WpLQWEIiHwlcyN4yByt7e5fdPRNy4RfYWGiMrT/Jzn/jAlco+JJJXt6bycy8IBFcG9f9dgo7u3v7B8XD0tHxyelZ+fyiq+NUMeywWMSqH1CNgkvsGG4E9hOFNAoE9oJZc+n3nlBpHssHM0/Qj+hE8pAzaqzUbo7KFbfmrkC2iZeTCuRojcpfw3HM0gilYYJqPfDcxPgZVYYzgYvSMNWYUDajExxYKmmE2s9Why7IjVXGJIyVLWnISv09kdFI63kU2M6Imqne9Jbif94gNeGdn3GZpAYlWy8KU0FMTJZfkzFXyIyYW0KZ4vZWwqZUUWZsNiUbgrf58jbp1mueW/Pa9UqjmsdRhCu4hip4cAsNuIcWdIABwjO8wpvz6Lw4787HurXg5DOX8AfO5w+Nc4yr</latexit>

Figure 2.6: Labelling convention for the three couplings on a qutrit.

2.3 Arbitrary Qutrit Gates

A single qutrit gate (sec. 2.1.3) is significantly more complicated to produce

than a single qubit gate (sec. 2.1.2), i.e. it is the result of 8 generators rather

than 3. We will show how a desired unitary Ûtarget can be produced by decom-

posing the operation into SU(2) steps in section 2.3.1 and how “virtual” phase

gates can be generated to apply some phase to each eigenstate (sec. 2.3.2).

We will derive the dual-tone operator (2.3.3).

2.3.1 SU(2) Decompositions

One method of producing any arbitrary qutrit unitary is to decompose it into

3 consecutive unitaries on two-level subspaces followed by a phase gate [25,

41, 42, 54, 74, 81]. The three two-level couplings in a qutrit are labelled A, B,

and C according to figure 2.6. There are many ways to combine unitaries on

each of these subspaces for full control, for example,

Û I = Ûθ(η, ε)ÛB(χB2, ϕB2)ÛA(χA1, ϕA1)ÛB(χB1, ϕB1) (2.35)

where ÛX denotes a SU(2) unitary on coupling X, χ and ϕ are the pulse area

and phase of the gate, and Ûθ is a diagonal phase gate,

Ûθ(η, ε) =

⎛⎝eiη 0 0
0 eiε 0
0 0 e−i(η+ε)

⎞⎠ . (2.36)

Another equally valid decomposition is

Û II = Ûθ(η, ε)ÛB(χB, ϕB)ÛA(χA, ϕA)ÛC(χC, ϕC). (2.37)
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Table 2.1: Parameters for Operator Decomposition

Decomposition Step, k Ûk a Coupling basis {|m ⟩ , |n ⟩}

Û I = ÛθÛBÛAÛB

1 Ûtarget |0⟩ B: {|1⟩ , |2⟩}
2 ÛtargetÛ

†
1 |0⟩ A: {|0⟩ , |1⟩}

3 ÛtargetÛ
†
1 Û

†
2 |1⟩ B: {|1⟩ , |2⟩}

Û II = ÛθÛAÛBÛC

1 Ûtarget |2⟩ C: {|0⟩ , |2⟩}
2 ÛtargetÛ

†
1 |2⟩ B: {|1⟩ , |2⟩}

3 ÛtargetÛ
†
1 Û

†
2 |1⟩ A: {|0⟩ , |1⟩}

The method for decomposing these SU(2) couplings was provided in the

supplementary material of [42] with typographical errors, which have been

corrected here.

The general method behind the algorithm is as follows. For a target unitary

Ûtarget and some decomposition Ûdecomp. = ÛθÛ3Û2Û1, we apply the terms of

Û †
decomp. such that ÛtargetÛ

†
1 has at least one off-diagonal zero, ÛtargetÛ

†
1 Û

†
2 has

at least four, ÛtargetÛ
†
1 Û

†
2 Û

†
3 has none, and ÛtargetÛ

†
decomp. = 1.

An SU(2) coupling on the basis {|m ⟩ , |n ⟩} of area χ and phase φ can be

expressed as

Ûmn(χ, φ) = exp
{
−iχ

2

[
cos(φ)σ̂mn

x + sin(φ)σ̂mn
y

]}
(2.38)

where σ̂mn
x = |m⟩⟨n|+ |n⟩⟨m| and σ̂mn

y = i|n⟩⟨m| − i|m⟩⟨n|. Each step of the

decomposition has the rotation angle set to

χ = 2arcsin

√
|⟨a|Ûk|m⟩|2

|⟨a|Ûk|m⟩|2 + |⟨a|Ûk|n⟩|2
(2.39)

and the phase set to

φ =
π

2
+ arg

(
⟨a|Ûk|m⟩

)
− arg

(
⟨a|Ûk|n⟩

)
(2.40)

where ⟨a|Ûk|m⟩ is a matrix element of Ûk to be zeroed and Ûk is the remaining

remaining portion of Ûtarget to be implemented. The values of |a⟩, |m⟩, |n⟩,

and Ûk to be used for each step of the decomposition are given in Table 4.4.
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2.3.2 Virtual Phase Gates

While [41] suggests applying far-off resonance fields to perform the phase gate

(see eq. (2.36)), modern qutrit experiments [42, 81] implement diagonal phase

gates virtually, rather than by directly manipulating the atoms. These virtual

phase gates have zero duration and zero error.

Any unitary operators Ûafter that are to be implemented after phase gate

Ûθ are simply phase shifted by the transform

Ũafter = Û †
θ ÛafterÛθ. (2.41)

This effectively “delays” application of the Ûθ operator until the end of the

pulse sequence by modifying each unitary.

= Û1Û2Û3ÛθÛ5

= ÛθÛ
†
θ Û1ÛθÛ

†
θ Û2ÛθÛ

†
θ Û3ÛθÛ5

= ÛθŨ1Ũ2Ũ3Û5

(2.42)

The final Ûθ operator never needs to be applied because after the last operator,

the state is projected via
⟨
ψ
⏐⏐⏐U †

all

⏐⏐⏐n⟩ ⟨n |Uall|ψ⟩, and the phase information is

destroyed.

Several virtual phase gates are easily combined because Ûθ,net. = Ûθ,2Ûθ,1

is also a valid virtual phase gate.

One may be interested to know whether we have found a mathematical

curiosity or a useful tool for avoiding direct application of phase gates. Let us

consider the effect of the transformation eq. (2.41) on each step of the SU(2)
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decomposition. If we have some coupling on A with phase φ and pulse area χ,

ŨA(χ, φ) = Û †
θ ÛA(χ, φ)Ûθ

=

⎛⎜⎜⎝
e−iη 0 0

0 e−iε 0

0 0 ei(η+ε)

⎞⎟⎟⎠
⎛⎜⎜⎝

cos(χ
2
) −eiφ sin(χ

2
) 0

e−iφ sin(χ
2
) cos(χ

2
) 0

0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝
eiη 0 0

0 eiε 0

0 0 e−i(η+ε)

⎞⎟⎟⎠

=

⎛⎜⎜⎝
cos(χ

2
) −ei(φ+ε−η) sin(χ

2
) 0

e−i(φ+ε−η) sin(χ
2
) cos(χ

2
) 0

0 0 1

⎞⎟⎟⎠
= ÛA(χ, φ+ ε− η).

(2.43)

So we have shown that the only effect is a change of phase on this transition,

φ̃A = φA + ε− η. In other words, we can implement the virtual phase gate by

phase shifting the pulse. This property extends to B and C transitions with

φ̃B = φB + η + 2ε and φ̃C = φC − ε− 2η.

2.3.3 Dual-Tone Operator

Instead of the single-toned applied field of eq. (2.18), consider an applied

magnetic field with two tones,

B = BA sin [(ωA −∆A)t+ φA] +BB sin [(ωB −∆B)t+ φB] . (2.44)

We can treat the two terms separately as we did in eq. (2.30) to form the

simplified rotating wave Hamiltonian

H̃ =
iℏ
2

⎛⎜⎜⎝
0 −ΩAe

−i∆At 0

Ω∗
Ae

∆At 0 Ω∗
Be

i∆Bt

0 −ΩBe
−i∆At 0

⎞⎟⎟⎠ . (2.45)

The operation caused by applying this Hamiltonian at dual-resonance (∆A =

∆B = 0) is:

ÛAB = exp(−iH̃t/ℏ) (2.46)

=

⎛⎜⎜⎝
cos(χAB

2
) 0 −eiϕAB sin(χAB

2
)

0 −1 0

−e−iϕAB sin(χAB

2
) 0 − cos(χAB

2
)

⎞⎟⎟⎠ (2.47)
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where we have set the duration of the pulse tAB = 2π√
|Ω1|2+|Ω2|2

and defined

χAB = arctan

⏐⏐⏐⏐ΩA

ΩB

⏐⏐⏐⏐ , (2.48)

ϕAB = arg

(
ΩA

ΩB

)
. (2.49)

The operation ÛAB was discussed in [41] in the context of ion trap quantum

computing. The evolution operator has the form of an effective coupling on

C,

ÛC =

⎛⎜⎜⎝
cos

(
χ
2

)
0 eiφ sin

(
χ
2

)
0 1 0

e−iφ sin
(
χ
2

)
0 cos

(
χ
2

)
⎞⎟⎟⎠ , (2.50)

with an additional phase flip on the first element. We can thus synthesize an

effective C coupling by applying fields at frequencies A and B only.

2.4 Tomography

Because readout of a quantum system is a projective process, information

about a quantum state is destroyed during measurement, making characteri-

zation a non-trivial task. If we have many identical copies of the density matrix

ρ̂, this characterization can be done using quantum state tomography [57].

2.4.1 Density Matrices

A density matrix is a representation of a quantum system which is more general

than a ket |ψ⟩, capturing the purity (1
d
≤ P ≤ 1) of the system. When P = 1

we have a pure state which can be represented as a ket |ψ⟩, and when P < 1

we have a mixed state which must be represented by a density matrix. The

density matrix of a pure state can be derived from its ket,

ρ̂ = |ψ⟩⟨ψ|, (2.51)

and the purity of a density matrix can be calculated simply,

P = Tr(ρ̂2). (2.52)
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The trace of a density matrix is always 1, and in the Schrödinger picture its

evolution is simply

ρ̂2 = Û ρ̂1Û
†. (2.53)

In order to take some projection |ξ⟩⟨ξ| on some density matrix ρ̂, we take the

trace of their product

Tr (|ξ⟩⟨ξ|ρ̂) . (2.54)

It is trivial to show that this reduces to |⟨ξ|ψ⟩|2 in the case of a pure state.

Mixed states can be used to represent the collective behaviour of an en-

semble of pure states [63]. In the case of a qubit, a mixed state can be drawn

as a vector on the Bloch sphere where the direction is set by its projection to

the nearest pure state, and the length is the purity.

In analogy to the Bloch sphere representation of a qubit, the density matrix

of a qubit can be written as a linear combination of the Pauli matrices and

the identity matrix [73],

ρ̂qubit =
1

2
+

1

2

3∑
k=1

rkσ̂k (2.55)

where σ̂1,2,3 are the Pauli matrices, and rk are the projections of the state on

the Pauli matrices. This can be extended to the Gell-Mann matrices for a

qutrit [73],

ρ̂qutrit =
1

3
+

1

3

8∑
k=1

rkλ̂k (2.56)

where λ̂k are the Gell-Mann matrices eq. (2.5), and rk = Tr(λ̂ρ̂).

2.4.2 Qutrit Projections

After some density matrix ρ̂ is prepared by some experiment, it can be mea-

sured directly by projection eq. (2.54) onto the computational basis states |0⟩,

|1⟩, |2⟩. Doing this directly can determine the final state populations, but will

not reveal the phase relationship between the states or the purity. In order to

fully characterize the density matrix, measurements must be made outside of

the computational basis.
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In order to read-out these phases, a simple χ = π/2 area pulses can be

performed between the states. One potential set of π/2-area pulses that can

be used to characterize a qutrit is given in table 2.2.

Table 2.2: Read-out operators to characterize a qutrit state

R̂k Basis Phase φ Matrix form

R̂1 {|0⟩ , |1⟩} 0 1√
2

⎛⎜⎜⎝
1 −1 0

1 1 0

0 0
√
2

⎞⎟⎟⎠

R̂2 {|0⟩ , |1⟩} π
2

1√
2

⎛⎜⎜⎝
1 −i 0

−i 1 0

0 0
√
2

⎞⎟⎟⎠

R̂3 {|1⟩ , |2⟩} 0 1√
2

⎛⎜⎜⎝
√
2 0 0

0 1 1

0 −1 1

⎞⎟⎟⎠

R̂4 {|1⟩ , |2⟩} π
2

1√
2

⎛⎜⎜⎝
√
2 0 0

0 1 −i
0 −i 1

⎞⎟⎟⎠

R̂5 {|0⟩ , |2⟩} 0 1√
2

⎛⎜⎜⎝
1 0 −1

0 −
√
2 0

−1 0 −1

⎞⎟⎟⎠

R̂6 {|0⟩ , |2⟩} π
2

1√
2

⎛⎜⎜⎝
1 0 −i
0 −

√
2 0

i 0 −1

⎞⎟⎟⎠

In order to show that the operators of table 2.2 form a complete set, it

is sufficient to show that the parameters rk can be determined based on the

projections of the read-out operators chosen. This is demonstrated in table

2.3.
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Table 2.3: Demonstration of the Gell-Mann matrices constructed using read-
out operators R̂k.

λ̂k Construction

λ̂1 R̂†
1 (|1⟩⟨1| − |0⟩⟨0|) R̂1

λ̂2 R̂†
2 (|0⟩⟨0| − |1⟩⟨1|) R̂2

λ̂3 R̂†
3|2⟩⟨2|R̂3 − R̂†

5|1⟩⟨1|R̂5
2

λ̂4 R̂†
5 (|2⟩⟨2| − |0⟩⟨0|) R̂5

λ̂5 R̂†
6 (|0⟩⟨0| − |2⟩⟨2|) R̂6

λ̂6 R̂†
3 (|1⟩⟨1| − |2⟩⟨2|) R̂3

λ̂7 R̂†
4 (|1⟩⟨1| − |2⟩⟨2|) R̂4

λ̂8

(
R̂†

3|0⟩⟨0|R̂3 + R̂†
5|1⟩⟨1|R̂5 − 2R̂†

1|2⟩⟨2|R̂1

)
/
√
33

2.4.3 Maximum Likelihood Iteration

The tomographic measureents of table 2.2 are an over-complete set. Perform-

ing each read-out measurement will determine three parameters – the projec-

tion on each |0⟩, |1⟩, and |2⟩. By measuring with six read-out operators, this

tomographic measurement will set 18 parameters, while a fully-specified qutrit

density matrix depends on only 8 real parameters. We determine the density

matrix using a maximum likelihood method specified in [49].

This iterative method starts from the maximally mixed density matrix

ρ̂ = 1
3

and updates using the equation

ρ̂k+1 =
Q̂(ρ̂k)ρ̂kQ̂(ρ̂k)

Tr
(
Q̂(ρ̂k)ρ̂kQ̂(ρ̂k)

) (2.57)

where Q̂(ρ̂) is defined

Q̂(ρ̂) =
∑
k

∑
n=0,1,2

fk
n

Tr
(
R̂†

k|n⟩⟨n|R̂kρ̂
)R̂†

k|n⟩⟨n|R̂k. (2.58)

Here, R̂k is the read-out operator, and fk
n is the experimentally-measured final

population in state |n⟩ after read-out operator k.
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Chapter 3

Experimental Techniques

This chapter outlines the details of the qutrit experiment. It begins by dis-

cussing the most important parts of the Quantum Simulation apparatus used

for this experiment, then discusses the calibration of operators.

3.1 Apparatus

The system used to generate cold atoms used for this experiment was thor-

oughly described by T. Hrushevskyi in his thesis [37]. More details on the

design, construction and commissioning of the apparatus can be found there.

This section outlines at a high level the techniques used to generate an atomic

ensemble of atoms in their ground state, manipulate those atoms using mi-

crowaves, and read out their final state.

3.1.1 Preparation

Roughly every 30 s, the experimental apparatus prepares a new cloud of ∼ 105

atoms in their ground state with |F = 2,mF = 2⟩.

The experiment is conducted inside an ultra-high vaccuum chamber, with

pressure below 10−9 torr. Within the chamber is a sample of rubidium metal.

When heated, some atoms vaporize in the chamber. A push-beam which

is blue-detuned to the D2 transition is resonant with atoms travelling away

from the beam, and imparts some additional +x momentum on them. These

atoms are directed towards the 2-D magneto-optical trap which reduces their
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(a) (b)

Figure 3.1: (a) Experimental chamber (center) with supporting laser and mag-
netic infrastructure. The open-ended microwave waveguide is labelled A, and
a set of RF-coils producing an x-directional field is labelled B. (b) Diagram
of experimental chamber including the anti-Helmholtz coils, microwave (MW)
waveguide input, imaging beam (Img.), CCD camera, atomic cloud (blue),
and the direction of the Stern-Gerlach force FSG.

momentum in the ẑ and ŷ directions. They then pass into a 3-D magneto-

optical trap which holds them and cools them to around 50 µK. From there,

several stages of evaporation are performed to selectively remove the most

energetic atoms, leaving behind a cooled cloud. In the process, the atoms are

transferred into a two-beam crossed optical dipole trap which holds them in

an approximately Gaussian-shaped potential. These atoms are held within a

Thomas-Fermi radius of approximately 6.5 µm.

An initial state of |F = 2,mF = 2⟩ is prepared by optical pumping. This

makes use use of the cycling transition from the ground state F = 2 to

52P3/2, F = 3 (abbreviated to F ′ = 3) with polarization set for σ+. Con-

sider a scenario where an atom is at |F = 2,mF = −1⟩. When it absorbs a

photon, it will be in the state |F ′ = 3,mF = 0⟩. It can de-excite to either |F =

2,mF = −1⟩ (where it started), or to |F = 2,mF = 0⟩, or |F = 2,mF = 1⟩.

These rates will depend on the Clebsch-Gordan coefficients associated with

those transitions, but the average effect will be an increase in mF . After many
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repetitions the atom will tend towards the state |F = 2,mF = 2⟩. At this

point, absorbing a photon will bring it to |F ′ = 3,mF = 3⟩, which only has

one electric-dipole-allowed de-excitation transition, back to |F = 2,mF = 2⟩.

Thus the atom has entered a cycle, and can continue absorbing and re-emitting

photons indefinitely. After many cycles, the atom has been optically pumped

into the state |F = 2,mF = 2⟩. If the atom begins in |F = 1⟩, a second

re-pump laser which is resonant with the |F = 1⟩ → |F ′ = 2⟩ transition can

be applied. The atoms could then probabilistically decay into either |F = 2⟩

(where they would join the cycle), or back to |F = 1⟩. With both lasers

applied, regardless of which |F,mF ⟩ state at the beginning of pumping, af-

ter many absorption and re-emission cycles the atom will be transferred to

|F = 2,mF = 2⟩.

3.1.2 Microwave Generation

Microwaves are directed towards the atomic cloud using an open-ended waveg-

uide, not aligned with any experimental axis, and resulting in an effectively

unpolarized beam, as shown in figure 3.1a.

Microwave signals are produced using amplitude modulation between an

arbitrary waveform generator and a microwave signal generator. The carrier

frequency is generated by a Berkeley Nucleonics Model 845 Microwave Sig-

nal generator detuned to 100MHz below the hyperfine splitting ωHF. The

baseband signal is an arbitrary waveform generated by Python software and

uploaded to a Tektronix AWG5204 5 GS/s arbitrary waveform generator. The

frequency offset of 100MHz was chosen to ensure that all unwanted sidebands

will be far-detuned from any atomic resonances.

An image of the microwave generation system is shown in figure 3.2. The

Quantum Simulation apparatus is used simultaneously by a variety of projects.

In the interest of ensuring that other experiments are able to operate reliably,

the pre-existing microwave apparatus has not been significantly modified from

its initial state. For this project, the only modification made to microwave

system is the replacement of a simple RF digital direct synthesizer with the
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Figure 3.2: The microwave generation system. (A) input from the microwave
signal generator. (B) input from the arbitrary waveform generator. (C) mi-
crowave mixer (D) amplifier (E) isolator (F) stub tuner (G) output to waveg-
uide.

AWG5204, and integration of the AWG5204 into the system by writing a

Python package. The main microwave amplifier is a water-cooled Microwave

Amps Ltd. AM53-6.6-7-7-40. Its output power can be as high as 40 dBm,

but this is shared across the entire signal, which will include both the upper

(desired) sideband and the lower sideband. Additionally, when the AWG5204

is being used to generate a multi-tone signal, e.g. f(t) = a1 sin(ω1t + φ1) +

a2 sin(ω2t + φ2), the full signal spectrum received by the microwave amplifier

includes sum and differences of ωHF − 2π100MHz, ω1 + 2π100MHz, and ω2 −

2π100MHz in all combinations (see figure 3.5 for spectrum analyzer readings).

In order to not “waste” amplification on unused spectral components, we could

insert a high-pass filter after the mixer with a cut-off frequency slightly above

the carrier frequency. Future users of this device should also be aware of the

potential limitations of the power amplifier’s power supply. When applying a

simple resonant Rabi pulse, it was observed that the duration of the first π

period is shorter than that of the second π period, or the third π period. The

Rabi frequency appears to decrease as a function of the amplifier’s on-time

which might suggest that the power supply or the amplifier is not well-suited

to the intermittent yet high-power control pulses.
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3.1.3 State Readout

The final state of the ensemble is read out using Stern-Gerlach imaging which

consists of applying an mF -dependent force to the ensemble to separate the

states spatially, then probing with a resonant imaging beam and capturing the

absorption image on a CCD camera.

After state preparation and manipulation, the imaging sequence begins by

turning on the anti-Helmholtz coils which creates a magnetic field gradient

∇B along all axes (ẑ and r̂). This spatially-dependent field means there is a

spatially-dependent potential associated with the Zeeman Hamiltonian, which

is the force,

FSG = −∇U

= −∇(−µ ·B0)

=
gFmFµB

ℏ
∂zB0.

(3.1)

Thus the |F,mF ⟩ states experience a force proportional to the product

gFmF . Once the anti-Helmholtz coils have been turned on, the atoms are

then released from the optical dipole trap. This allows gravity to pull the

atoms towards the −ẑ direction while the random momentum of the atoms in

the trap results in the cloud expanding in all directions. Along with gravity,

FSG is an additional force in ẑ which separates the clouds depending on their

state. After allowing the atoms to separate over the course of ∼15ms, a

resonant imaging beam is shone at the atoms, and their shadow is cast on a

CCD camera. This geometry is shown in figure 3.1b.

In order to produce an absorption image of the atomic cloud, the apparatus

uses the same cycling transition from |F = 2,mF = 2⟩ to |F ′ = 3,mF ′ = 3⟩

that is used for optical pumping in state preparation. The use of a cycling

transition means that the same atom can be involved in absorbing several

photons of the same wavelength because after absorption the atom returns to

its initial state, which produces a consistent level of absorption for imaging.

So far we have spatially separated clouds of atoms based on their mFgF

product and taken an absorption image of their positions. Ultimately, the
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Figure 3.3: Typical readout image after processing. Optical depth is the log
of the beam absorption, OD = log I0

I
. The image is oriented vertically, with

both gravity and the magnetic field gradient facing downwards. In this image,
there is substantial population in each of the three qutrit states. They are
split proportionally to gFmF , as shown by eq. (3.1), with gFmF of states |0⟩,
|1⟩, and |2⟩ of 1, −1

2
, and +1

2
, respectively (see figure 2.3).

goal of state-readout is to determine the relative population of atoms in each

cloud. After the atoms have fallen away, we take two more images. The first

uses the same imaging beam power as the atom image, and the second absorbs

only background light and noise. We can then calculate the absorption in the

imaging-plane area A of each pixel,

I0
I

=
V0 − Vb
V − Vb

(3.2)

where I0 and I are the incoming light intensity on the atom and the light

intensity passing through the atoms, and V0, V, Vb are the CCD readings of the

pixel with the imaging beam turned on, with the imaging beam and the cloud

of atoms, and with only background. From Beer’s law, we find the optical

depth is directly proportional to the atomic density n, [29]

dI

dz
= −n(x, y, z)σ(ω)I

log(I)− log(I0) = −σ(ω)
∫ ∞

−∞
n(x, y, z)dz,

(3.3)
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where σ(ω) is the scattering cross section at the frequency ω [70]. Integrating

across the pixel area,

log
I0
I

∫∫
A

dA = σ(ω)

∫ ∞

−∞

∫∫
A

n(x, y, z)dAdz

log
V0 − Vb
V − Vb

A = σ(ω)N

(3.4)

where N is the number of atoms imaged in the pixel area A. Thus the number

of atoms in the a cloud can be counted by summing N for each pixel. With

the sum total of N for each of the three clouds, we can calculate the relative

populations. We call the term log I0
I

the optical depth. A processed image

showing the optical depth distribution of a split cloud of atoms is shown in

figure 3.3.

3.2 Calibration of Operators

Calibration of quantum processors is not a trivial task. As discussed in sec-

tion 2.1.3, unitary operations are inherently continuous and error-prone. Even

if quantum processors are successfully scaled up and run error correction al-

gorithms, the native gates on physical qubits need excellent calibration. For

example, the highest acceptable physical error rate may be around 1% for

some architectures [30]. The uncharacterized and transient background mag-

netic field in our lab makes calibration yet more difficult.

3.2.1 Finding Resonance

Starting from an un-calibrated processor with a functional cooling and trap-

ping sequence, the first step in gate calibration is to set the bias field B0 and

find the resonance frequencies ωA = (E|0⟩ − E|1⟩)/ℏ and ωB = (E|2⟩ − E|1⟩)/ℏ.

Generally, the bias magnetic field amplitude is set by external bias coils such

that ωz = gFµBB0/ℏ ≈ 1.25MHz, which requires a field of ≈1.8G. In prac-

tice, the ẑ axis defining the qubit is approximately aligned with the ŷ axis

of the system as defined in figure 3.1b. Directly before imaging the field is

adiabatically ramped towards the figure 3.1b z-axis so that the Stern-Gerlach

force splits along the correct axis.
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x

y

|0

|1

Figure 3.4: Evolution of a quantum state during an adiabatic rapid passage
(ARP) sequence. The dotted-line trajectory of the state evolution. In this
example simulation, the detuning is swept from 20Ω to −20Ω over a duration
T ≈ 15/Ω, bringing the state from |0⟩ to |1⟩.

Since we cannot be sure what the real magnetic field is at the trap location,

we use adiabatic rapid passage (ARP) [1] to find the resonance between the

prepared initial state |0⟩ and state |1⟩. We begin by setting the background

magnetic field bias coils to produce a field predominantly in the ŷ direction.

We find the resonance of the atoms by sending a slow, linearly chirped pulse

across a wide frequency range. Assuming the pulse sweeps across the atomic

resonance by starting and ending at very high detuning, the atoms will be

transferred to |1⟩. The mechanism can be visualized well on the Bloch sphere,

and is shown in figure 3.4. Once a chirped frequency range is found that

transfers population from |0⟩ to |1⟩, the resonance frequency can be found

by bisection, narrowing the chirped range iteratively. Once the transition

frequency for A was found, the transition frequency for B could be estimated,

assuming linear Zeeman splitting, ωB − ωHF ≈ 2
3
(ωA − ωHF).

In practice, once the approximate resonance is known, it was convenient

to keep using the same resonance frequencies for transitions A and B, so the

magnetic field bias was adjusted when necessary instead of the frequencies. If

significant changes to the bias were necessary to find resonance, ARP could
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still be used by sweeping the magnetic field bias instead of the frequency.

3.2.2 Magnetic field drift and noise

As is discussed in section 3.2.3, our system achieved Rabi frequencies of |ΩA| ≈

2π·8 kHz, making the total gate sequence including state preparation and read-

out approximately 600 µs. A detuning over 0.1|Ω| would result in significant

loss of performance. With a ≈1.8G field, that means the stability should be

better than 0.2G. For perspective, the magnetic field of the Earth at the

University of Alberta is approximately 0.5G with a north-south component

(roughly along the bias) of 0.15G [55].

Our lab is subject to many sources of external magnetic field noise which

are difficult to characterize. Notable among these are 60Hz power line noise,

instrumentation noise, and other nearby experiments.

To decrease sensitivity to 60Hz noise, the experiment’s microwave sequence

is triggered by the power line cycle. This mechanism is not fully character-

ized, so we do not know how repeatable the power line triggering is from one

experimental sequence to the next. We manually adjust a delay between the

power line trigger and the start of the experimental sequence, trying to mini-

mize the drift in experimental results. We expect this is optimizing the start

of the cycle for the time when the magnetic field is near a peak or valley, so

its derivative is instantaneously near zero.

Our lab is host to many instruments, including many power supplies, am-

plifiers, sensors, and lasers. Our main anti-Helmholtz coils, while they are

nominally not passing any current during the microwave sequence, have a

large power supply which produces nearly 400A during the cooling sequence,

and is connected to a large set of coils that could easily produce small fields

from residual current. There are a total of 6 sets of coils near the atoms, any

of which could produce small fields or RF noise to disturb the state of the

atoms (bias coils for X, Y, Z, two sets of RF coils, and the anti-Helmholtz

coils). Because of noise from instrumentation, we have had to move control

electronics for the optical dipole trap acousto-optic modulators (AOMs) a few
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metres further from the experiment than they were first positioned. While

we have not identified a similar issue from lab equipment affecting the mi-

crowave sequence, any device emitting frequencies near ωz ≈ 2π · 1.25MHz

or ωHF ≈ 2π · 6.83GHz could affect the state of the atoms while being subtle

enough for us not to notice.

In addition to our equipment, the experimental apparatus is surrounded

by backgrounds from its neighbouring experiments. Frequently, our data was

taken while the Quantum memory team, whose apparatus is located directly

next to ours in the same lab, was running their equipment. Additionally, across

the hallway, another group operated a 9T magnet. We did not correlate any

effect from their magnet’s ramp-up and ramp-down sequence on our atomic

cooling.

Qualitatively, the most noticeable background source was the 60Hz power

line. Because the compensation mechanism was synchronization, this means

we could expect our bias to drift over the course of its 17ms period. A total

microwave sequence of 600 µs would occur within roughly 3.5% of a period.

3.2.3 Rabi frequency

Once the resonant frequencies for both transitions are found and the mag-

netic field bias was set, the next step is to characterize the Rabi frequencies.

Recall from section 2.3.3, the dual-tone operator requires precise control of
ΩA

ΩB
while |ΩA|2 + |ΩB|2 is fixed. The result is that the operator requires the

Rabi frequencies |ΩA| and |ΩB| both to be well characterized such that their

combination can be well targetted. We know |Ω| ∝ |B0| from eq. (2.20), and

|B0| ∝
√
P where P is the power.

Figure 3.5a shows a recorded power spectrum from the intermediate-frequency

input to the mixer when the AWG is outputting a continuous-wave dual-tone

signal with equal amplitudes at 101.248MHz and 103.73MHz. Note the image

sidebands are present in the spectrum but are suppressed by roughly 50 dB.

The amplified spectrum after mixing is shown in figure 3.5b.

The sideband peaks of the amplified spectrum are suppressed by approxi-
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(a)

(b)

Figure 3.5: Dual-tone power spectra. Note the measurements were taken
through attenuating directional couplers, so the figures provide relative power
between peaks, but not an absolute power measurement. (a) the pre-amplified
spectrum at the IF mixer port with equal power to two tones. (b) a wide
spectrum coupled from the output of the amplifier.
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mately 10 dB. In the amplified spectrum, when two tones are generated each

with 300mVpp in the AWG, their amplitude is similar to driving a single tone

with 85mVpp. This significant reduction likely results from a combination of

sidebands and amplifier saturation at the significantly higher power level. It

would be convenient to operate the amplifier significantly below saturation,

where microwave tones could be added roughly linearly. Unfortunately, our

microwave system is significantly Rabi-frequency-constrained, so maximizing

the possible Rabi frequency is a higher priority than operating the amplifier

in a linear regime. As a result, to perform a dual-tone operation, the relative

amplitudes of each tone and the duration of the operation required were set

manually by adjusting the parameters until the final state fidelity was opti-

mized for each input basis state.

At the start of an experiment, the atoms are in state |0⟩, prepared by

optical pumping. If we wished to apply an operator from the starting state

|1⟩, a resonant π-area pulse was applied before the rest of the microwave

sequence. This completed in roughly 75 µs. To prepare state |2⟩, a second π-

area pulse, resonant with transition B, is applied after the pulse to |1⟩, adding

an additional 60 µs for state preparation. In order to ensure an operator to be

tested experiences the same background magnetic field (synchronized to the

60Hz line), experiments on state |0⟩ started with a 135 µs “no-op” operation,

which was used to fill the gap that would have otherwise been used for state

preparation. Additionally, since transients in the amplifier or the amplifier’s

power supply were suspected of causing the Rabi frequency to change as a

function of pulse duration, the “no-op” was not a blank sequence, but a pulse

of a frequency far-detuned from any atomic transitions.

Figure 3.6 shows a long-duration Rabi scan measured on the system be-

tween states |1⟩ and |2⟩. The top subplot shows a measured Rabi frequency of

approximately 2π · 8.2 kHz. Before this scan, a π-area pulse was used for state

preparation. A potential transient in the amplifier’s output would affect the

preparation pulse, and not the main Rabi scan displayed here. There is one

outlier point near 0.5ms which has all atoms detected in state |0⟩. This is a
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Figure 3.6: Long-duration Rabi scan between states |1⟩ and |2⟩, showing the
cloud fraction in state |1⟩ and the total number of atoms measured.

common indication of a missed trigger by the arbitrary waveform generator,

which can occur if the waveform generator is not ready for triggering before

the atom cooling process is complete. The bottom subplot shows the total

number of atoms detected across all clouds. Note the significant noise in the

total atom number which indicates significant instability in the atomic cooling

and trapping from one shot to the next.

Because Rabi frequencies were difficult to characterize, pulse areas were set

by optimizing the ending populations in each of the clouds when the operator

is applied on top of each input state.

3.3 Experiment concept

Control over the atomic ensemble qutrit was tested by checking the final state

fidelity when applying the quantum Fourier transform to each computational

basis state. The quantum Fourier transform was created by two methods:

single-tone SU(2) rotations, and a dual-tone decomposition.
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3.3.1 The Quantum Fourier Transform

The quantum Fourier transform for a qutrit is

F̂ =
1√
3

⎛⎜⎝1 1 1

1 ei
2π
3 e−i

2π
3

1 e−i
2π
3 ei

2π
3

⎞⎟⎠ . (3.5)

The operator is also known as the Walsh-Hadamard gate [81] as it is an exten-

sion of the Hadamard transform in qubits [41] – it maps eigenstates to equal

superpositions with a natural phase offset. The gate has wide applications in-

cluding Shor’s algorithm [74], error correction [81], and the Bernstein-Vazirani

algorithm [78]. Because it is a non-trivial and important single-qutrit oper-

ation, it was chosen as a demonstrator of the universal single-qutrit control

available using the 87Rb system.

We performed the single-qutrit quantum Fourier transform using two oper-

ator decompositions – one using conventional single-tone SU(2) rotations and

a second incorporating the dual-tone operator to indirectly couple states |0⟩

and |2⟩. The operators were applied to each of the computational basis states,

and the final state was determined by quantum state tomography. The results

are described in section 4.6.
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Chapter 4

Complete Unitary Qutrit
Control in Ultracold Atoms

This chapter contains a full reproduction of Complete Unitary Qutrit Control

in Ultracold Atoms, [45]. As discussed in the preface, this paper was co-

authored with Dr. Arina Tashchilina, Dr. Logan W. Cooke, and Dr. Lindsay

J. LeBlanc. While I wrote the first draft of the paper, many improvements

were made with the help of my co-authors. Figures 4.1, 4.2(a,c), and 4.4 were

all created by Dr. LeBlanc.

4.1 Abstract

Physical quantum systems are commonly composed of more than two levels

and offer the capacity to encode information in higher-dimensional spaces be-

yond the qubit, starting with the three-level qutrit. Here, we encode neutral-

atom qutrits in an ensemble of ultracold 87Rb and demonstrate arbitrary

single-qutrit SU(3) gates. We generate a full set of gates using only two

resonant microwave tones, including synthesizing a gate that effects a cou-

pling between the two disconnected levels in the three-level Λ-scheme. Using

two different gate sets, we implement and characterize the Walsh-Hadamard

Fourier transform, and find similar final-state fidelity and purity from both ap-

proaches. This work establishes the ultracold neutral-atom qutrit as a promis-

ing platform for qutrit-based quantum information processing, extentions to

d-dimensional qudits, and explorations in multilevel quantum state manipula-
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tions with nontrivial geometric phases.

4.2 Introduction

The conventional paradigm for universal quantum computing makes use of

two-level qubits, but higher-dimensional quantum systems offer considerable

advantages. Logical operations and information storage using three-level sys-

tems – “qutrits” – in a larger Hilbert space give way to algorithms that can be

more efficient [78] and allow for more complex entanglement than qubits [17].

Qutrits [25] and higher d-dimensional qudits [32] are valuable as a quantum

resources for speed-up and for improved cryptographic security in transmission

over quantum networks [14, 38, 53]. Additionally, using a third temporary-

state level during the implementation of a qubit gate can significantly improve

fidelities and reduce circuit complexity [12, 34, 38, 44].

While qubits are readily simulated by the polarization of classical light,

qutrits offer an additional complexity that reflects their inherently quantum

properties [25]. Many physical platforms have served as host to qutrits [41,

51, 78], including photonic systems [4, 13, 27, 43, 47, 53, 69], NMR ensem-

bles [25], superconducting quantum circuits [9, 10, 21, 42, 54, 81], and trapped

ions [5, 41, 46, 65, 67]. In contrast to qubit operations, single qutrit gates are

represented by 3×3 unitary matrices in the group SU(3), generated by the

eight Gell-Mann matrices λ̂i [17]. Experimental qutrit demonstrations to date

realized arbitrary operations by decomposing the desired transformation into

three SU(2) operations followed by a diagonal phase gate [41, 42, 74, 81]. In

many physical systems, two of the three SU(2) couplings are accessible, but

selection rules dictated by parity mean that the third is less convenient or even

forbidden. To overcome this, two resonant couplings on the accessible transi-

tions can be combined as a simultaneous dual-tone operator to synthesize the

third coupling [41].

In this work, we demonstrate neutral-atom qutrits in ultracold ensembles,

taking advantage of the well-defined, long-lived, and readily controlled hyper-
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fine transitions in the alkali metals. We synthesize arbitary single-qutrit gates

using two different schemes, both of which require only two couplings in the

three-state manifold (Fig. 4.1). In one of these approaches [41], we show an

effective coupling between two levels that are not simply connected by mi-

crowave fields, establishing a comprehensive set of two-state operations within

the three-state manifold. Our work specifically isolates and controls individ-

ual couplings within a qutrit with simple unitary decompositions that can be

applied, in principle, to other qutrit platforms. This work builds beyond pre-

vious experiments [2, 18] which use highly-parameterized control waveforms

and gradient ascent to effect a target unitary on the space of one or more

hyperfine manifolds. Ensemble systems like ours provide a testbed for gen-

eral quantum information processing with atoms [6, 68], though progress in

atom-based quantum information processing with neutral-atom arrays [11, 35,

58, 68] is rapidly advancing. Adapting the ensemble approach described here

to address individual atoms could be achieved through site-specific gradients,

focussed light shifts, or phase control [71, 75–77], opening up the advantages

of qutrits across atomic quantum computing platforms. More broadly, the

approach to quantum state control demonstrated here will provide tools for

exploring fundamental operations on multilevel systems, including engineering

nontrivial geometric phases in atomic systems [19, 56, 72].

4.3 Single qutrit gates.

A qutrit |ψ⟩ =
∑2

k=0 cke
iφk | k ⟩ is defined by the parameters {ck} and {φk},

four of which are independent after considering normalization and global phase

invariance. A single-qutrit gate, part of SU(3), is defined by eight independent

parameters [74]. In a system with only two (complex) couplings [Fig. 4.1(a)],

sequential operations can be applied to span all eight parameters, followed

by a two-parameter relative phase adjustment, Ûθ(η, ϵ). In one approach [25,

42, 54], a general single-qutrit gate is implemented with single-tone operators,
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Figure 4.1: (a) Schematic representation the three qutrit levels
{| 0 ⟩ , | 1 ⟩ , | 2 ⟩}, where direct couplings (ΩA and ΩB) exist only between
| 0 ⟩ ↔ | 1 ⟩ and | 1 ⟩ ↔ | 2 ⟩, and are associated with unitary operations
ÛA and ÛB. With a dual-tone operator, coupling between | 0 ⟩ ↔ | 2 ⟩
is possible via ÛAB; an additional phase-only operator Ûθ can be applied
across all levels. (b) Energy level diagram of the 87Rb ground-state man-
ifold, with levels | 0 ⟩ → |F = 2,mF = 2 ⟩, | 1 ⟩ → |F = 1,mF = 1 ⟩, and
| 2 ⟩ → |F = 2,mF = 1 ⟩ connected by two magnetic dipole transitions at
microwave frequencies, whose energy difference is controlled by the Zeeman
splitting, EZ.

such as

Û I
gen. = Ûθ(η, ϵ)ÛB(χB2, ϕB2)ÛA(χA1, ϕA1)ÛB(χB1, ϕB1), (4.1)

where χXi = |ΩX|t/2 and ϕXi = arg(ΩX) are the pulse areas and coupling

phases for transitions X = {A,B} with parameter index i, and {η, ϵ} are

relative phase adjustments (see Section 4.8).

In a second approach [41], (sec. 4.8), a dual-tone operator is used to si-

multaneously drive both transitions A and B to synthesize a third coupling

ÛAB(χAB, ϕAB) between states | 0 ⟩ ↔ | 2 ⟩, where the operator duration is ex-

actly tAB = 2π/
√

|ΩA|2 + |ΩB|2 and the parameters χAB and ϕAB are derived

from the complex couplings ΩA,B (sec. 4.8). A general gate is implemented

through a combination of operators such as

Û II
gen. = Ûθ(η, ϵ)ÛB(χB2, ϕB2)ÛA(χA1, ϕA1)ÛAB(χAB, ϕAB). (4.2)

In both decompositions I and II, the first SU(2) operator ÛAB,B is designed

such that Ûgen.Û
†
AB,B has one off-diagonal matrix element of zero. The second

pulse ÛA zeroes three more off-diagonal matrix elements in Ûgen.Û
†
AB,BÛ

†
A, and
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after the third only a diagonal phase remains which is implemented by Ûθ (see

sec. 4.8).

As a particular example of a single-qutrit gate that uses control over all

eight parameters, we consider the Walsh-Hadamard gate, which is the single-

qutrit Fourier transform [41],

F̂ =
1√
3

⎛⎝1 1 1

1 ei
2π
3 e−i 2π

3

1 e−i 2π
3 ei

2π
3

⎞⎠ . (4.3)

This transform has broad applications, such as Shor’s algorithm [74], error

correction [81], implementing the SWAP gate, and the Bernstein-Vazirani al-

gorithm [78]. In the single- and dual-tone operator decompositions described

above, the Fourier transforms are implemented as

F̂ I = eiπ/6Ûθ(−π
6
,−π

6
)ÛB

(
5π
4
, π
2

)
ÛA

(
χI
A, π

)
ÛB

(
π
4
, 0
)
, (4.4)

F̂ II = iÛθ

(
π
3
,−π

2

)
ÛA

(
π
4
, π
6

)
ÛB

(
χII
B,

π
3

)
ÛAB

(
π
4
,−2π

3

)
, (4.5)

where χI
A = arccos(−1/3)/2 and χII

B = π + arctan(1/
√
2).

We implement both the single- and dual-tone Fourier transform operators

to experimentally explore ultracold atomic ensembles as a platform for qutrit

operations, and to compare the two approaches to qutrit operators in terms

of final state fidelity and purity.

4.4 Experimental Methods

In our experiments, we prepare ultracold ensembles of 87Rb atoms, manipulate

the internal electronic states [Fig. 4.1(b)] using resonant microwave pulses, and

measure the results by analyzing the final state via absorption imaging. The

ensemble approach allows us to perform simultaneous experiments on a large

number (∼ 105) of identical atoms using spatially uniform fields, and the

measurement over the entire ensemble gives a statistical measure of the final

state in a single experimental run. The atoms remain coherent for well over

1ms, ensuring enough time to complete all operations in this protocol without

dephasing or decoherence.
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Figure 4.2: (a) A BEC of 87Rb is trapped at the intersection of two opti-
cal dipole beams. Resonant microwave radiation with frequencies ωA and/or
ωB drives transitions between levels. (b) A magnetic field gradient ∇B is
applied to the atoms during time-of-flight, before absorption imaging, spa-
tially separating atomic levels according to their magnetic moments, µi, where
µ(|0⟩) = µB, µ(|1⟩) = −µB/2, and µ(|2⟩) = µB/2, and µB is the Bohr magne-
ton. The colour map represents an absorption image after 25ms time of flight,
with color bar indicating the optical depth of the atoms in clouds associated
with each level. (c) Timing sequence for cooling, state initialization, qutrit
gates Û I,II, and tomography rotations R̂i. (d,e) Example calibration data for
dual-tone operators ÛAB(0.19π, 0) in (d) and ÛAB(0.31π, 0) in (e). Vertical
gray lines indicate the operator time tAB for which the intermediate-state |1⟩
population/amplitude is zero.
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In particular, we prepare 105 Bose-Einstein condensed 87Rb atoms in an

actively stabilized optical dipole trap. The ground 52S1/2 state of 87Rb has two

hyperfine levels, F = 1 and F = 2, separated by ωHF = 2π × 6.835GHz, each

of which hosts 2F +1 Zeeman sub-levels, which are energetically split by EZ ≈

h × 1.25MHz in a weak magnetic field. Using optical pumping, we initialize

all atoms in the spin-polarized input state |ψin⟩ = | 0 ⟩ ≡ |F = 2,mF = 2 ⟩.

All microwave operations are triggered to begin at the same phase of a 60 Hz

line oscillation. Optionally, we use π-pulse operations (ÛA or ÛBÛA pulses) to

prepare initial states |ψin ⟩ = | 1 ⟩ or | 2 ⟩. In this work, we use only microwave

couplings between states of different F to complete operations, avoiding the

radiofrequency couplings between levels in the same F manifold, which would

allow direct |0⟩ to |2⟩ coupling. By doing this, we avoid simultaneous couplings

between all mF states in that manifold, due to the degeneracy of the Zeeman

transitions in a weak magnetic field. The microwave transitions we use are, in

contrast, nondegenerate, even in weak magnetic fields.

Amplitude- and phase-controlled microwave signals, tuned near ωHF, are

resonant with the “A” | 0 ⟩ ↔ | 1 ⟩ ≡ |F = 1,mF = 1 ⟩ and “B” | 1 ⟩ ↔ | 2 ⟩ ≡

|F = 2,mF = 1 ⟩ transitions with typical Rabi frequencies |ΩA,B| ∼ 2π×2 kHz.

These two microwave tones, timed appropriately, effect the unitary operations

ÛA or ÛB when used alone, and ÛAB when driven together (see sec. 4.8). Fig-

ures 4.2(c,d) show the dual-tone operator ÛAB acting on initial state |ψin ⟩ =

| 0 ⟩ for varying pulse times: at the operator time tAB, the results show the pop-

ulations distributed between | 0 ⟩ and | 2 ⟩ only. This distribution is controlled

by the parameters χAB and ϕAB, which themselves depend on the amplitudes

and phases of ΩA and ΩB.

To effect a general single-qutrit gate, up to three of these operators are

applied to the system, along with relative phase control (see sec. 4.8). To

decipher the amplitude and phase information of the resulting output state

qutrits |ψout ⟩, we perform tomography by applying rotation operations to

the system (see below for details). After the operations are complete, the

atoms are released from the trap and the populations |ci|2 of each level in
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the qutrit are measured via absorption imaging: the three levels are spatially

separated by a Stern-Gerlach magnetic field gradient in time-of-flight, and

counted simultaneously in a single absorption image [Fig. 4.2(b)].

4.5 Tomography

To determine the full effect of the single-qutrit gates, we perform quantum

state tomography on the final states |ψout⟩ for each of Û I
gen and Û II

gen acting

on three orthogonal input states, |ψin ⟩ = {| 0 ⟩ , | 1 ⟩ , | 2 ⟩}. Eight linearly

independent projections of the qutrit state are required to fully characterize

its density matrix ρ̂ = 1̂
3
+ 1

3

∑8
k=1⟨λ̂k⟩λ̂k [17].

To perform the tomography, read-out operators R̂i (Table 4.1) are ap-

plied before projective measurement. Table 4.2 shows how the orthogonal

Gell-Mann matrices can be constructed from these projections. The usual

projection operation ⟨ψout|χ⟩⟨χ|ψout⟩ extends to Tr(|χ⟩⟨χ|ρ̂out) when a density

matrix ρ̂out is substituted for the pure state |ψout ⟩. We measure three pro-

jections for each of the six read-out operators, ⟨R̂†
i |0⟩⟨0|R̂i⟩, ⟨R̂†

i |1⟩⟨1|R̂i⟩, and

⟨R̂†
i |2⟩⟨2|R̂i⟩, and in total, we measure 6 × 3 projections, which are not all

linearly independent.

An iterative maximum likelihood technique [49] allows us to estimate the

density matrix ρ̂ while maintaining the condition Tr(ρ̂) = 1. Using the function

Q̂(ρ̂) =
∑
i

∑
j=0,1,2

f i
j

Tr
(
R̂†

i |j⟩⟨j|R̂iρ̂
)R̂†

i |j⟩⟨j|R̂i, (4.6)

where f i
j is the cloud fraction found experimentally in eigenstate |j⟩ after the

read-out operator R̂i is applied, we iterate through

ρ̂i+1 =
Q̂(ρ̂i)ρ̂iQ̂(ρ̂i)

Tr
(
Q̂(ρ̂i)ρ̂iQ̂(ρ̂i)

) (4.7)

until convergence, having begun with the maximally mixed density matrix

ρ̂0 = 1̂/3 (Ref. [17]).
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Table 4.1: Read-out operators used for quantum state tomography. They are
all π/2-area pulses.

R̂i Basis Phase φ Matrix form

R̂1 {|0⟩ , |1⟩} 0 1√
2

⎛⎝1 −1 0
1 1 0

0 0
√
2

⎞⎠
R̂2 {|0⟩ , |1⟩} π

2
1√
2

⎛⎝ 1 −i 0
−i 1 0

0 0
√
2

⎞⎠
R̂3 {|1⟩ , |2⟩} 0 1√

2

⎛⎝√
2 0 0
0 1 1
0 −1 1

⎞⎠
R̂4 {|1⟩ , |2⟩} π

2
1√
2

⎛⎝√
2 0 0
0 1 −i
0 −i 1

⎞⎠
R̂5 {|0⟩ , |2⟩} 0 1√

2

⎛⎝ 1 0 −1

0 −
√
2 0

−1 0 −1

⎞⎠
R̂6 {|0⟩ , |2⟩} π

2
1√
2

⎛⎝1 0 −i
0 −

√
2 0

i 0 −1

⎞⎠

Table 4.2: Demonstration of the Gell-Mann matrices
constructed using read-out operators R̂i.

λ̂i Construction
λ̂1 R̂†

1 (|1⟩⟨1| − |0⟩⟨0|) R̂1

λ̂2 R̂†
2 (|0⟩⟨0| − |1⟩⟨1|) R̂2

λ̂3 R̂†
3|2⟩⟨2|R̂3 − R̂†

5|1⟩⟨1|R̂5
1

λ̂4 R̂†
5 (|2⟩⟨2| − |0⟩⟨0|) R̂5

λ̂5 R̂†
6 (|0⟩⟨0| − |2⟩⟨2|) R̂6

λ̂6 R̂†
3 (|1⟩⟨1| − |2⟩⟨2|) R̂3

λ̂7 R̂†
4 (|1⟩⟨1| − |2⟩⟨2|) R̂4

λ̂8

(
R̂†

3|0⟩⟨0|R̂3 + R̂†
5|1⟩⟨1|R̂5 − 2R̂†

1|2⟩⟨2|R̂1

)
/
√
32

1 One of 4 possibilities shown
2 One of 8 possibilities shown
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Figure 4.3: Reconstructed density matrix elements from the measured values
ρ̂out (green, left bars) and for the modelled, expected density matrix ρ̂theory
(blue, right bars) for the Fourier operation F̂ II |0⟩. The real (upper) ℜ(ρ̂) and
imaginary (lower) ℑ(ρ̂) parts of these elements are shown. Error bars show the
range of each matrix element across all N = 10 tomographic measurements.
As a Hermitian operator, the main diagonal of ρ̂ is real.
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Table 4.3: Fidelity and purity found by maximum likelihood estimation after
state tomography for two decompositions of the single-qutrit Fourier trans-
form. Errors shown are the standard deviation of values across the N to-
mographic measurements. State preparation and measurement errors are not
removed.

Operator |ψin ⟩ N P F Fpure

F̂ II

|0⟩ 10 0.93(4) 0.91(2) 0.95(2)
|1⟩ 10 0.92(3) 0.91(2) 0.96(2)
|2⟩ 10 0.90(6) 0.86(4) 0.92(2)

F̂ I

|0⟩ 15 0.90(8) 0.92(6) 0.98(3)
|1⟩ 12 0.88(8) 0.87(5) 0.95(3)
|2⟩ 16 0.89(4) 0.89(7) 0.95(7)

4.6 Results

We applied the Walsh-Hadamard decompositions F̂ I and F̂ II on three input

computational basis states |0⟩, |1⟩, and |2⟩ and characterize the output state’s

density matrix, ρ̂out. Figure 4.3 shows one such density-matrix reconstruction,

after applying F̂ II to the state |0⟩. For each tomographically measured ρ̂out

(resulting from one of F̂ I,II acting on an input basis state |n ⟩), we calculate

the quantum state fidelity [39]

F(F̂ , |n ⟩) = ⟨n|F̂ †ρ̂outF̂ |n⟩ (4.8)

and purity P(ρ̂out) = Tr(ρ̂2out). Table 4.3 shows that the single qutrit gates

operate as expected for all input basis states, and that the two decompositions

produce states with similar fidelities and purities.

The ensemble approach taken in this work gives excellent statistics and

provides a fast path towards calibrating the pulse areas and phases. However,

this approach is not without its limitations, which we see in the values for both

the fidelity F and purity P . After averaging each measurement over N ≥ 10

experimental trials [Fig. 4.4], we find that variations in the results decrease

with increasing N , but the average values remain similar to the single N = 1

trial. This indicates that shot-to-shot noise is not a significant contributor to

the infidelity and impurity of these measures. In contrast, we find that the

impurity of the final states impacts the fidelity: if we assume the nearest pure
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state is achieved before calculating the fidelity using Eq. 4.8 by estimating

that state as

ρ̂→ ρ̂− 1̂/3

P(ρ̂)
+

1̂

3
. (4.9)

we find better Fpure than F , indicating that a significant part of the infidelity

arises from loss of purity. Spatial inhomogeneities in the coupling fields or the

environment experienced by atoms may cause position-dependent evolution

and appear as a loss of ensemble purity. Our analysis (see sec. 4.8) suggests

the dominant effect is dephasing of the qutrit due to Stark-shift inhomogeneity

in the optical dipole trap: atoms in the centre of the trap have a detuning on

the order of 400Hz relative to those at the edges, and because the atoms are

cold and move little during the operation time, this difference does not average

out over the course of a gate sequence. A probable source of the the remaining

infidelity is imprecision in the calibration of individual operators.

4.7 Discussion

We successfully demonstrated arbitrary SU(3) control in neutral alkali atoms

using the Walsh-Hadamard (Fourier transform) single-qutrit gate, while im-

plementing the resonant dual-tone operator ÛAB. We find that two different

decompositions of arbitrary SU(3) gates using three SU(2) rotations result in

comparable fidelities. The dual-tone operator ÛAB is particularly useful for

qutrit operations in platforms where one coupling is forbidden or inconvenient

to use, not only in the ultracold atomic states used here, but also in systems

such as superconducting qutrits [81] and ions [41]. In our experiments, for

example, we harnessed UAB to perform each tomographic read-out operation

in a single step, while previous works [9, 81] have needed several pulses to

prepare some projections.

When decomposing SU(d) operations into SU(2) steps, the number of op-

erations scales quadratically with d. In the future, alternative approaches to

SU(3) operations could be implemented by decomposing via Householder re-

flections rather than SU(2) operations, which scales linearly with d by applying
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Figure 4.4: Gate quality metrics F , P , and Fpure after averaging over N
experimental scans. The upper plot shows the residuals for results with respect
to the average over N = 15 scans, and the lower plot shows the variance of
the results (given as the variance between the maximum and the minimum of
each metric): left blue bars: F , middle yellow bars: P , right green bars: Fpure.
While the variance reduces with more averaging, as expected, there is minimal
change in the average value (seen via the residuals), suggesting that random
errors from one experiment to the next is not a dominant error mechanism.
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dual-tone time-dependent pulses with detuning [74]. Additionally, optimiza-

tion using quantum control techniques is promising for increasing the speed

and fidelity of qutrit and qudit operations [59, 64]. Refs. [2, 18] have used

phase-modulated signals for quantum control in 133Cs using d = 7 and d = 16.

Using two fully independent transitions A,B with their own modulations may

lead to faster and more efficient optimized gates.

Looking forward, the two-qutrit operations necessary for universal quan-

tum information processing [46, 48, 78] will expand the scope of these initial

demonstrations, whether in ensembles [26] or single-atom arrays [35]. Oppor-

tunities in broader areas, such as for holonomic computing [21, 28, 80, 82, 84]

will also take benefit from a comprehensive control over the multilevel state

systems developed for qutrit and qudits. While there is increasing potential for

neutral atoms to serve in these roles, the general techniques for quantum state

control over qudits apply across platforms, and developments across fields will

rapidly accelerate this capabilities for all systems.

4.8 Supplementary Material

4.8.1 Operator Derivations

Here we provide details of the the operators necessary for the SU(3) decom-

positions Û I and Û II.

Derivation of Coupling Operators

The coupling operators ÛA, ÛB, and ÛAB are produced by driving resonant

microwave couplings between states {|0⟩ , |1⟩} and {|1⟩ , |2⟩}, as shown in

Fig. 4.2(a). In general, when such a resonant dual-tone field is applied to

a three-level system, the lab-frame Hamiltonian in the basis {|0⟩ , |1⟩ , |2⟩}T is

Ĥ = ℏ

⎛⎝ ωA |ΩA| sin (ωAt+ φA) 0
|ΩA| sin (ωAt+ φA) 0 |ΩB| sin (ωBt+ φB)

0 |ΩB| sin (ωBt+ φB) ωB

⎞⎠ ,

(4.10)
where ωX, φX and ΩX are the resonant frequency, phase, and Rabi frequency

for the transition X ∈ {A,B} shown in Fig. 4.1. A useful rotating frame for
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this analysis is generated by the rotation

Ŵ =

⎛⎝eiωAt 0 0
0 1 0
0 0 eiωBt

⎞⎠ . (4.11)

After transforming the Hamiltonian into this frame ˆ̃H = Ŵ †ĤŴ+iℏ(∂tŴ )Ŵ †

and applying the rotating wave approximation, the new effective Hamiltonian

is

ˆ̃
H =

iℏ
2

⎛⎝ 0 −ΩA 0
Ω∗

A 0 Ω∗
B

0 −ΩB 0

⎞⎠ . (4.12)

where ΩX = |ΩX |eiφX is the complex coupling parameter. A single-qutrit gate

operation performed by applying this Hamiltonian for some duration t is

Û = exp(−i ˆ̃Ht/ℏ). (4.13)

As one ingredient in our decomposition, we consider SU(2) coupling gates

realized by applying a single tone field. If, for example, we impose the condition

ΩB = 0 to eq. (4.12) before using this Hamiltonian to calculate the evolution

(4.13) for some duration tA = 2χA/|ΩA|, we find a gate operating only on the

|0⟩ ↔ |1⟩ subspace

ÛA(χA, φA) =

⎛⎝ cosχA −eiφA sinχA 0
e−iφA sinχA cosχA 0

0 0 1

⎞⎠ , (4.14)

which provides amplitude and phase control for the targeted coupling between

|0⟩↔|1⟩. Similarly, for the condition ΩA = 0 and duration tB = 2χB/|ΩB|, we

have

ÛB(χB, φB) =

⎛⎝1 0 0
0 cosχB e−iφB sinχB

0 −eiφB sinχB cosχB

⎞⎠ (4.15)

which achieves the same for for the targeted coupling between |1⟩↔|2⟩.

To implement ÛAB, both coupling terms in (4.12) are generally non-zero.

If we restrict the pulse duration to tAB = 2π/
√

|ΩA|2 + |ΩB|2 as was first

53



explained in Ref. [41], we find the resonant dual-tone operator first shown in

that paper,

ÛAB(χAB, ϕAB) =

⎛⎝ cos(χAB

2
) 0 −eiϕAB sin(χAB

2
)

0 −1 0
−e−iϕAB sin(χAB

2
) 0 − cos(χAB

2
)

⎞⎠ , (4.16)

where to simplify the expression we have defined χAB = arctan |ΩA/ΩB| and

ϕAB = arg(ΩA/ΩB). Under this condition for the operator time, the coupling

is directly between the states |0⟩↔|2⟩

In addition to the SU(2) couplings demonstrated here, a diagonal phase

gate is required to span SU(3).

Virtual Phase Gates

While Ref. [41] suggests applying far-off resonance fields to perform the phase

gate

Ûθ(η, ε) = exp

⎛⎝iη 0 0
0 iε 0
0 0 −i(η + ε)

⎞⎠ , (4.17)

recent qutrit experiments [10, 42, 54, 81] have implemented diagonal phase

gates virtually, by manipulating proceeding control fields rather than by ma-

nipulating the atoms directly. As they are adjustments to control fields, these

virtual phase gates are efficient and have zero duration [52].

Any unitary operators Ûa that are to be implemented after phase gate Ûθ

are simply phase shifted by the transformation

ˆ̃Ua = Û †
θ ÛaÛθ. (4.18)

This effectively delays application of the Ûθ operator until the end of the pulse

sequence – notice the location of Ûθ in the following operator sequence.

Ûgen. = Ûa3Ûa2Ûa1ÛθÛb

= ÛθÛ
†
θ Ûa3ÛθÛ

†
θ Ûa2ÛθÛ

†
θ Ûa1ÛθÛb

= Ûθ
ˆ̃Ua3

ˆ̃Ua2
ˆ̃Ua1Ûb.

(4.19)

Several virtual phase gates are easily combined by tracking the accumulated

η and ε through the operator sequence.
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The remaining final Ûθ operator never needs to be applied because after the

last coupling operator (including tomography pulses), the state is projected

via
⏐⏐⏐⟨n|Ûgen.|ψ⟩

⏐⏐⏐2, and the phase information is destroyed.

In our experiment, the read-out operators R̂i are applied after the diagonal

phase gate Ûθ, so these pulses are phase shifted in practice, and modified pulses
ˆ̃Ri are generated:

ˆ̃R1,2(φ) = R̂1,2(φ+ ε− η), (4.20)
ˆ̃R3,4(φ) = R̂3,4(φ− η − 2ε), (4.21)
ˆ̃R5,6(φ) = R̂5,6(φ− ε− 2η). (4.22)

4.8.2 Fourier Transform

The Fourier transform F̂ does not have determinant 1, i.e. it is not a member

of the group SU(3), however, iF̂ is in the group, so the operation can be

achieved up to a global phase. The decomposition F̂ I differs from (4.3) by the

change of basis |1⟩ ↔ |2⟩, and the decomposition F̂ II differs from (4.3) by the

change of basis |0⟩ ↔ |1⟩.

4.8.3 Decomposition of Operators

The supplementary material of Ref. [42] shows an algorithm for decomposi-

tion of any arbitrary qutrit gate Ûgen. into SU(2) steps using two single-tone

couplings. We show a version of the procedure that works for either single or

dual-tone decompositions here for clarity and because we suspect that expo-

sition has typographical errors. A SU(2) coupling on the basis {|m ⟩ , |n ⟩} of

area χ and phase φ can be expressed as

Rmn(χ, φ) = exp
{
−iχ

2

[
cos(φ)σmn

x + sin(φ)σmn
y

]}
(4.23)

where σmn
x = |m⟩⟨n|+ |n⟩⟨m| and σmn

y = i|n⟩⟨m| − i|m⟩⟨n|. Each step of the

rotation has

χ = 2arcsin

√
|⟨a|Ûk|m⟩|2

|⟨a|Ûk|m⟩|2 + |⟨a|Ûk|n⟩|2
(4.24)
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Table 4.4: Parameters for Operator Decomposition

Decomposition Step, k Ûk a Coupling basis {|m ⟩ , |n ⟩}

Û I = ÛθÛAÛBÛA

1 Ûgen. |2⟩ A: {|0⟩ , |1⟩}
2 Ûgen.Û

†
1 |2⟩ B: {|1⟩ , |2⟩}

3 Ûgen.Û
†
1 Û

†
2 |1⟩ A: {|0⟩ , |1⟩}

Û II = ÛθÛAÛBÛAB

1 Ûgen. |2⟩ AB: {|0⟩ , |2⟩}
2 Ûgen.Û

†
1 |2⟩ B: {|1⟩ , |2⟩}

3 Ûgen.Û
†
1 Û

†
2 |1⟩ A: {|0⟩ , |1⟩}

and

φ =
π

2
+ arg

(
⟨a|Ûk|m⟩

)
− arg

(
⟨a|Ûk|n⟩

)
(4.25)

where ⟨a|Ûk|m⟩ is a matrix element of Ûk to be zeroed and Ûk is the remaining

remaining portion of Ûgen. to be implemented. The values of |a⟩, |m⟩, |n⟩, and

Ûk to be used for each step of the decomposition are given in Table 4.4, and a

Python implementation of the general decomposition is provided in listing ??.

4.8.4 Signal Generation

To generate microwave signals with arbitrary phase, frequency, and amplitude

control, we mix the output of an arbitrary waveform generator with a mi-

crowave signal. The microwave signal is detuned 100MHz below the hyperfine

splitting of 87Rb, and is produced by a BNC Model 845 Microwave Signal Gen-

erator. A Tektronix AWG5204 controlled by Python software produces signals

at 5GS/s which are pre-amplified before being combined with the microwave-

frequency signal in a double-balanced mixer. The mixed signal is amplified by

a 25W microwave amplifier before being directed towards the atoms through a

waveguide. Higher Rabi frequencies would certainly be achievable with higher

microwave power or a more focused beam.

4.8.5 Error Mechanisms

In this section we discuss and evaluate some mechanisms in our system that

could cause the fidelity and purity errors from table 4.3 in the main text. We
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note that dephasing is not a leading source of error, as our T ∗
2 times are well

over 1 ms.

Detuning

When performing manipulations using our apparatus, we frequently find re-

adjusting magnetic field biases necessary to keep the two generated frequencies

resonant with the atomic frequencies ωA and ωB. This field instability of order

30 minutes is a limitation of our system, and not a limitation of neutral atom

computation in general. Because of concerns about the continued resonance

of operations, in addition to frequent checks of the biases we average final

populations for tomographic tests as discussed in the main text.

We numerically simulate the operations F̂ I and F̂ II, adding detuning de-

liberately,

Ĥdetun. = ℏ

⎛⎜⎜⎝
ωA OA 0

OA 0 OB

0 OB ωB

⎞⎟⎟⎠ (4.26)

where we have defined OX = |ΩX | sin [(ωX +∆X)t+ φX ]. Moving into the

rotating frame,

ˆ̃
Hdetun. =

iℏ
2

⎛⎜⎜⎝
0 −ΩAe

i∆At 0

(ΩAe
i∆At)∗ 0 (ΩBe

i∆Bt)∗

0 −ΩBe
i∆Bt 0

⎞⎟⎟⎠ , (4.27)

and, setting ∆ = ∆A = −∆B for each of the decomposed SU(2) steps, we

generate the curves of figure 4.5. If detuning applied equally to all atoms in the

ensemble was a strong error mechanism in our system, we would expect to see

lower F for the dual-tone F̂ II than the single-tone F̂ I, and we would not expect

to see a drop in P . In our experiment, the fidelity for both decompositions is of

a similar magnitude, and we observe a significant drop in P , so this detuning

model does not explain the main error mechanism present.
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Figure 4.5: Simulated effect of detuning on the final fidelity measurement,
averaged across the states |0⟩, |1⟩, and |2⟩, where Ω2 = |ΩA|2 + |ΩB|2.

Stark Shifts Caused by the Optical Dipole Trap

During the application of microwave pulses for state manipulation, the atomic

ensemble is held in a two-beam crossed optical dipole trap. This laser with

approximately 0.4W of power holds atoms in place by creating a 3D Gaus-

sian trap with depth 6 µK. The potential experienced by the Bose-Einstein

condensed atoms near its centre is approximated by a spherically symmetric

harmonic oscillator with trap frequency ωho ≈ 2π × 100Hz. The 105 atoms

are held within a Thomas-Fermi radius RTF = 6.5 µm.

In a hyperfine manifold, we expect Stark shifts to take the form [3, 70]

ES = −1

2
α0E2 − 1

2
αF
2 E2

[
3m2

F − F (F + 1)

F (2F − 1)

]
, (4.28)

where α0 is the scalar polarizability of the ground state, αF
2 is the tensor

polarizability for hyperfine level F , mF is the Zeeman sub-level, and E is the

electric field strength.

The scalar Stark shift will perturb the energy of both the |F = 1⟩ manifold

and the |F = 2⟩ manifold equally. As a result, regardless of the position of the

atoms in the trap, all atoms will simultaneously be resonant. At the centre

of the cloud, both levels are shifted by about h × 6.0 kHz. At RTF from the

centre, the shift is about h× 5.9 kHz, a difference of about h× 100Hz.

The tensor Stark shift perturbs the energy of the |F = 1,mF = 1⟩ = |1⟩

state without having an effect on |F = 2⟩ states. As a result, atoms in the
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Table 4.5: Simulated reduction in fidelity, purirty, and purity-adjusted fidelity
due to trap-induced Stark shifts.

Operator State P F Fpure

F̂ II

|0⟩ 0.953 0.980 1.009
|1⟩ 0.950 0.974 1.008
|2⟩ 0.953 0.980 1.009

F̂ I

|0⟩ 0.963 0.981 1.006
|1⟩ 0.965 0.986 1.007
|2⟩ 0.965 0.986 1.007

centre of the trap will have different resonant frequencies for both transitions

ωA and ωB from atoms at the two ends of the trap. The magnitude of the

tensor shift for |1⟩ is h × 25.8 kHz at the centre of the trap and h × 25.3 kHz

at RTF. The probability distribution function is [20],

n1D(r) =

∫
4π

r2dΩn3D(r)

=

∫
4π

r2dΩ
µ

g

(
1− r2

R2
TF

)
=

4πµr2

g

(
1− r2

R2
TF

) (4.29)

where r is the radial coordinate, mRb is the mass of an 87Rb atom, µ =

mRbω
2
hoR

2
TF/2 is the chemical potential, and g = 4πℏ2a/mRb is the coupling

constant. We can obtain the mean Stark shift,

⟨ES⟩ =
∫
dr n1D(r)ES(r), (4.30)

and assuming our frequency calibration is accurate to this mean, the detuning,

∆(r) = ES(r)− ⟨ES⟩. (4.31)

To evaluate the purity and fidelity decay caused by the tensor Stark shift,

we sample 1000 detunings from ∆(r), weight them by n1D(r), and calculate

the ρ̂out found by tomography from this distribution comparing it to the ρ̂ for

Stark-shift-free evolution. The results are shown in table 4.5.
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We also perform the same purity recovery algorithm from (4.9), with results

shown in the table. As expected, the purity recovery algorithm results in a

perfect fidelity. We conclude that it is plausible that the relatively low purity

and some of the error in F we find in the main results (table 4.3) may be

caused by Stark shifts from the optical dipole trap.

Calibration

For a high fidelity operator, the many control pulses used in our experiment

including Ûprep., ÛA, ÛB, ÛAB, and R̂i must simultaneously have their pulse

durations calibrated accurately and the detuning for both tones must be neg-

ligible (less than 0.025|Ω| ≈ 2π × 50Hz as suggested by figure 4.5).

To find the resonant frequencies, the duration and frequency of the two

tones were adjusted manually until 100% of the atomic population was trans-

ferred between the states. The duration of each operator was also calibrated

manually by starting from each computational basis state and scanning the

operator duration to finding the point where the population transfer matches

theory.

In the ideal case, we would assume Ω is constant during the application

of an operator, and we could determine the Rabi frequency to high precision

by performing long pulses χ = nπ. In our system, long pulses would not be a

good calibration technique because the Rabi frequency Ω is not constant over

longer time periods. This may be a limitation of our microwave amplifier or

magnetic field bias stability. To account for this effect, each pulse duration

was calibrated individually for its position in the pulse sequence, and only

short pulses were used in the experiment.

Our current microwave system is not optimized for high Rabi frequencies.

A rectangular waveguide is aimed towards the atoms from a distance of ap-

proximately 15 cm before the microwaves are allowed to propagate through

free space. The microwaves which impinge on the atoms are sent off-axis and

do not demonstrate any significant degree of polarization, driving σ+, σ− and

π transitions. Work is underway to improve this system significantly by using
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a helical antenna to generate well-defined σ± polarizations based on the work

of Ref. [83].
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Chapter 5

Conclusion

This work has demonstrated a single-qutrit gate, the quantum Fourier trans-

form, on an ensemble of 87Rb. This gate was decomposed into SU(2) rotations

in two ways, one of which required a rotation between levels of the qutrit with-

out an easily controllable coupling. Rotation on that coupling was synthesized

by sending a resonant dual-tone operator. Both decompositions produced

similar final state fidelities, showing that the dual-tone operator had similar

performance to a conventional resonant gate. This was the first experimental

demonstration of the resonant dual-tone operator, and the first qutrit demon-

stration in ultracold atoms.

The control mechanisms demonstrated here on an ensemble of atoms are

quite general. For any three-state subset of a controllable quantum system, if

two couplings are more easily addressable than the other, then driving the two

preferred couplings can effectively mediate a transition as though they formed

the third.

Inhomogeneity in the optical dipole trap which holds the atoms appears to

be the most significant error source. This causes atoms near the edge of the

trap to evolve out of phase with those in its center, which gives the ensemble

qubit a badly-defined phase and thus a loss of purity.

5.1 Project Extensions

This section discusses possible extensions to the qutrit project.
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• Continuing with only one qutrit, this project could be extended to look at

more sophisticated, optimized pulse shapes. For example, Vitanov [74]

shows that decomposing gates by quantum Householder reflections scales

much better with qudit dimension than two-level unitary rotations. A

decomposition of this type could be tested on the Quantum Simulation

system. This would require a good calibration of the Rabi frequencies,

which is a challenge with the current microwave system.

• More powerful magnetic field biases could be used to deliberately induce

a significant quadratic Zeeman term, which would fully separate the

control frequencies for each of the microwave resonances. This could be

used for fully RF control of a qutrit in the F = 1 hyperfine manifold,

or for controlling up to all 8 of the hyperfine states, which would yield a

Hilbert space equivalent to 3 qubits.

• The Quantum Simulation system is limited to only one ensemble cloud of

qutrits. The natural extension into a multi-qutrit system would require

a new system. While multi-qutrit gates on atomic ensembles could be

achieved [26, 68], switching to single-atom qutrits in a lattice would likely

be a more effective approach. These single-atom qutrits could use the

same two-qudit gates developed for qubits. For example, a desired gate

between states |2⟩ ⊗ |2⟩ and |0⟩ ⊗ |0⟩ could be achieved by a coupling

between |1⟩ ⊗ |1⟩ and |0⟩ ⊗ |0⟩ preceeded and proceeded by π gates on

the B coulings.

5.2 The Future of Quantum Computing

It is an exciting time in the field of quantum computing. Meaningful research

is being carried out by groups across academia and industry. Currently, almost

all of that research is based on qubits. In principle, a switch from qubits to

qutrits or higher-dimensional qudits on many leading architectures would be

simple. Making that change would reduce the required number of qudits to

reach a desired Hilbert space size, and could reduce the number of two-qudit
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gates, leading to higher overall system fidelities. Alternatively, an existing

system could access a larger Hilbert space by switching to from qubits to

qutrits. For example, converting an eight qubit system into an eight qutrit

system would expand the accessible Hilbert space by a factor of 25.

The vision of an error-corrected quantum processor is still far from reality,

but there is a lot of interesting work to be found along the way. I hope that we

continue to see rapid development and sustained interest in pushing the field

forward from private industry, academia, government agencies, and of course

from enthusiastic graduate students.

64



References

1A. Abragam, “The adiabatic theorem, adiabatic passage”, in The principles
of nuclear magnetism (Clarendon Press, 1961), pp. 34–36.

2B. E. Anderson, H. Sosa-Martinez, C. A. Riofrío, I. H. Deutsch, and P. S.
Jessen, “Accurate and Robust Unitary Transformations of a High-Dimensional
Quantum System”, Physical Review Letters 114, 240401 (2015).

3M. Auzinsh, D. Budker, and S. Rochester, Optically polarized atoms (Oxford
University Press, London, England, Aug. 2010).

4A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and
A. Zeilinger, “High-Dimensional Single-Photon Quantum Gates: Concepts
and Experiments”, Physical Review Letters 119, 180510 (2017).

5T. Bækkegaard, L. B. Kristensen, N. J. S. Loft, C. K. Andersen, D. Pet-
rosyan, and N. T. Zinner, “Realization of efficient quantum gates with a
superconducting qubit-qutrit circuit”, Scientific Reports 9, 13389 (2019).

6S. D. Barrett, P. P. Rohde, and T. M. Stace, “Scalable quantum computing
with atomic ensembles”, New J. Phys. 12, 093032 (2010).

7S. Bartolucci, P. Birchall, H. Bombı́n, H. Cable, C. Dawson, M. Gimeno-
Segovia, E. Johnston, K. Kieling, N. Nickerson, M. Pant, F. Pastawski, T.
Rudolph, and C. Sparrow, “Fusion-based quantum computation”, Nature
Communications 14 (2023) 10.1038/s41467-023-36493-1.

8J.-L. Basdevant, Lectures on quantum mechanics, 2nd ed. (Springer, 2016).
9R. Bianchetti, S. Filipp, M. Baur, J. M. Fink, C. Lang, L. Steffen, M. Bois-
sonneault, A. Blais, and A. Wallraff, “Control and tomography of a three
level superconducting artificial atom”, Phys. Rev. Lett. 105, 223601 (2010).

10M. S. Blok, V. V. Ramasesh, T. Schuster, K. O’Brien, J. M. Kreikebaum,
D. Dahlen, A. Morvan, B. Yoshida, N. Y. Yao, and I. Siddiqi, “Quantum
Information Scrambling on a Superconducting Qutrit Processor”, Phys. Rev.
X 11, 21010 (2021).

11D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S. Ebadi, M. Kalinowski,
A. Keesling, N. Maskara, H. Pichler, M. Greiner, V. Vuletić, and M. D.
Lukin, “A quantum processor based on coherent transport of entangled atom
arrays”, Nature 604, 451–456 (2022).

65

http://dx.doi.org/10.1103/PhysRevLett.114.240401
http://dx.doi.org/10.1103/PhysRevLett.119.180510
http://dx.doi.org/10.1038/s41598-019-49657-1
http://dx.doi.org/10.1088/1367-2630/12/9/093032
http://dx.doi.org/10.1038/s41467-023-36493-1
http://dx.doi.org/10.1038/s41467-023-36493-1
http://dx.doi.org/10.1038/s41467-023-36493-1
http://dx.doi.org/10.1103/PhysRevLett.105.223601
http://dx.doi.org/10.1103/PhysRevX.11.021010
http://dx.doi.org/10.1103/PhysRevX.11.021010
http://dx.doi.org/10.1038/s41586-022-04592-6


12A. Bocharov, M. Roetteler, and K. M. Svore, “Factoring with qutrits: Shor’s
algorithm on ternary and metaplectic quantum architectures”, Physical Re-
view A 96, 012306 (2017).

13Y. I. Bogdanov, M. V. Chekhova, S. P. Kulik, G. A. Maslennikov, A. A.
Zhukov., C. H. Oh, and M. K. Tey, “Qutrit State Engineering with Bipho-
tons”, Physical Review Letters 93, 230503 (2004).

14D. Bruß and C. Macchiavello, “Optimal Eavesdropping in Cryptography with
Three-Dimensional Quantum States”, Physical Review Letters 88, 127901
(2002).

15C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-ion
quantum computing: Progress and challenges”, Applied Physics Reviews 6
(2019) 10.1063/1.5088164.

16Y. Cao, J. Romero, and A. Aspuru-Guzik, “Potential of quantum computing
for drug discovery”, IBM Journal of Research and Development 62, 6:1–6:20
(2018).

17C. M. Caves and G. J. Milburn, “Qutrit entanglement”, Opt. Commun. 179,
439–446 (2000).

18S. Chaudhury, S. Merkel, T. Herr, A. Silberfarb, I. H. Deutsch, and P. S.
Jessen, “Quantum Control of the Hyperfine Spin of a Cs Atom Ensemble”,
Physical Review Letters 99, 163002 (2007).

19Z. Chen, J. D. Murphree, and N. P. Bigelow, “SU(2) geometric phase induced
by a periodically driven Raman process in an ultracold dilute Bose gas”,
Physical Review A 101, 013606 (2020).

20F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of bose-
einstein condensation in trapped gases”, Rev. Mod. Phys. 71, 463–512 (1999).

21S. Danilin, A. Vepsäläinen, and G. S. Paraoanu, “Experimental state control
by fast non-Abelian holonomic gates with a superconducting qutrit”, Physica
Scripta 93, 055101 (2018).

22S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C.
Monroe, “Demonstration of a small programmable quantum computer with
atomic qubits”, Nature 536, 63–66 (2016).

23C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing”, Reviews
of Modern Physics 89, 1–39 (2017).

24D. P. DiVincenzo, “The physical implementation of quantum computation”,
Fortschritte der Physik 48, 771–783 (2000).

25S. Dogra, Arvind, and K. Dorai, “Determining the parity of a permutation
using an experimental NMR qutrit”, Phys. Lett. A 378, 3452–3456 (2014).

26M. Ebert, M. Kwon, T. G. Walker, and M. Saffman, “Coherence and Rydberg
Blockade of Atomic Ensemble Qubits”, Phys. Rev. Lett. 115, 093601 (2015).

66

http://dx.doi.org/10.1103/PhysRevA.96.012306
http://dx.doi.org/10.1103/PhysRevA.96.012306
http://dx.doi.org/10.1103/PhysRevLett.93.230503
http://dx.doi.org/10.1103/PhysRevLett.88.127901
http://dx.doi.org/10.1103/PhysRevLett.88.127901
http://dx.doi.org/10.1063/1.5088164
http://dx.doi.org/10.1063/1.5088164
http://dx.doi.org/10.1063/1.5088164
http://dx.doi.org/10.1147/JRD.2018.2888987
http://dx.doi.org/10.1147/JRD.2018.2888987
http://dx.doi.org/10.1016/S0030-4018(99)00693-8
http://dx.doi.org/10.1016/S0030-4018(99)00693-8
http://dx.doi.org/10.1103/PhysRevLett.99.163002
http://dx.doi.org/10.1103/PhysRevA.101.013606
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1088/1402-4896/aab084
http://dx.doi.org/10.1088/1402-4896/aab084
http://dx.doi.org/10.1038/nature18648
http://dx.doi.org/10.1103/RevModPhys.89.035002
http://dx.doi.org/10.1103/RevModPhys.89.035002
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
http://dx.doi.org/10.1016/j.physleta.2014.10.003
http://dx.doi.org/10.1103/PhysRevLett.115.093601


27“Experimental quantum cryptography with qutrits”, New Journal of Physics
8, 75–75 (2006).

28G. Feng, G. Xu, and G. Long, “Experimental Realization of Nonadiabatic
Holonomic Quantum Computation”, Physical Review Letters 110, 190501
(2013).

29C. J. Foot, Atomic physics, Vol. 7 (OUP Oxford, 2004).
30A. G. Fowler, A. M. Stephens, and P. Groszkowski, “High-threshold universal

quantum computation on the surface code”, Physical Review A - Atomic,
Molecular, and Optical Physics 80, 1–14 (2009).

31S. Ganesh, “Modelling spin-1 87rb bose einstein condensate to study ground
states under inhomogenous magnetic fields”, MA thesis (KTH Royal Insti-
tute of Technology, 2019).

32Z. Gedik, I. A. Silva, B. Çakmak, G. Karpat, E. L. Vidoto, D. O. Soares-
Pinto, E. R. DeAzevedo, and F. F. Fanchini, “Computational speed-up with
a single qudit”, Sci. Rep. 5, 14671 (2015).

33N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography”,
Reviews of Modern Physics 74, 145–195 (2002).

34P. Gokhale, J. M. Baker, C. Duckering, F. T. Chong, N. C. Brown, and K. R.
Brown, “Extending the Frontier of Quantum Computers with Qutrits”, IEEE
Micro 40, 64–72 (2020).

35L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G.-O. Reymond,
and C. Jurczak, “Quantum computing with neutral atoms”, Quantum 4, 327
(2020).

36A. Ho, J. McClean, and S. P. Ong, “The Promise and Challenges of Quantum
Computing for Energy Storage”, Joule 2, 810–813 (2018).

37T. Hrushevskyi, “Quantum gas apparatus for Bose-Einstein condensation of
87 Rb”, MA thesis (University of Alberta, 2017).

38S. S. Ivanov, H. S. Tonchev, and N. V. Vitanov, “Time-efficient implementa-
tion of quantum search with qudits”, Physical Review A 85, 062321 (2012).

39R. Jozsa, “Fidelity for mixed quantum states”, J. Mod. Opt. 41, 2315–2323
(1994).

40Y. Kawashima, E. Lloyd, M. P. Coons, Y. Nam, S. Matsuura, A. J. Garza,
S. Johri, L. Huntington, V. Senicourt, A. O. Maksymov, J. H. Nguyen, J.
Kim, N. Alidoust, A. Zaribafiyan, and T. Yamazaki, “Optimizing electronic
structure simulations on a trapped-ion quantum computer using problem
decomposition”, Communications Physics 4, 1–9 (2021).

41A. B. Klimov, R. Guzmán, J. C. Retamal, and C. Saavedra, “Qutrit quantum
computer with trapped ions”, Phys. Rev. A 67, 7 (2003).

67

http://dx.doi.org/10.1088/1367-2630/8/5/075
http://dx.doi.org/10.1088/1367-2630/8/5/075
http://dx.doi.org/10.1103/PhysRevLett.110.190501
http://dx.doi.org/10.1103/PhysRevLett.110.190501
http://dx.doi.org/10.1103/PhysRevA.80.052312
http://dx.doi.org/10.1103/PhysRevA.80.052312
http://dx.doi.org/10.1038/srep14671
http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1109/MM.2020.2985976
http://dx.doi.org/10.1109/MM.2020.2985976
http://dx.doi.org/10.22331/q-2020-09-21-327
http://dx.doi.org/10.22331/q-2020-09-21-327
http://dx.doi.org/10.1016/j.joule.2018.04.021
http://dx.doi.org/10.1103/PhysRevA.85.062321
http://dx.doi.org/10.1080/09500349414552171
http://dx.doi.org/10.1080/09500349414552171
http://dx.doi.org/10.1038/s42005-021-00751-9
http://dx.doi.org/10.1103/PhysRevA.67.062313


42M. Kononenko, M. A. Yurtalan, S. Ren, J. Shi, S. Ashhab, and A. Lupascu,
“Characterization of control in a superconducting qutrit using randomized
benchmarking”, Phys. Rev. Research 3, L1042007 (2021).

43B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien, K. J. Resch,
A. Gilchrist, and A. G. White, “Manipulating biphotonic qutrits”, Physical
Review Letters 100 (2008) 10.1103/physrevlett.100.060504.

44B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J.
Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, “Simplifying
quantum logic using higher-dimensional Hilbert spaces”, Nature Physics 5,
134–140 (2009).

45J. Lindon, A. Tashchilina, L. W. Cooke, and L. J. LeBlanc, “Complete uni-
tary qutrit control in ultracold atoms”, Phys. Rev. Appl. 19, 034089 (2023).

46P. J. Low, B. M. White, A. A. Cox, M. L. Day, and C. Senko, “Practical
trapped-ion protocols for universal qudit-based quantum computing”, Phys-
ical Review Research 2, 033128 (2020).

47H. Lu, Z. Hu, M. S. Alshaykh, A. J. Moore, Y. Wang, P. Imany, A. M. Weiner,
and S. Kais, “Quantum Phase Estimation with Time‐Frequency Qudits in a
Single Photon”, Advanced Quantum Technologies 3, 1900074 (2020).

48M. Luo and X. Wang, “Universal quantum computation with qudits”, Science
China Physics, Mechanics & Astronomy 57, 1712–1717 (2014).

49A. I. Lvovsky, “Iterative maximum-likelihood reconstruction in quantum ho-
modyne tomography”, J. Opt. B 6, S565 (2004).

50L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais, T. Vincent, J. F. F.
Bulmer, F. M. Miatto, L. Neuhaus, L. G. Helt, M. J. Collins, A. E. Lita, T.
Gerrits, S. W. Nam, V. D. Vaidya, M. Menotti, I. Dhand, Z. Vernon, N.
Quesada, and J. Lavoie, “Quantum computational advantage with a pro-
grammable photonic processor”, Nature 606, 75–81 (2022).

51D. Mc Hugh and J. Twamley, “Trapped-ion qutrit spin molecule quantum
computer”, New J. Phys. 7, 174 (2005).

52D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow, and J. M. Gambetta,
“Efficient Z gates for quantum computing”, Phys. Rev. A 96, 022330 (2017).

53G. Molina-Terriza, A. Vaziri, R. Ursin, and A. Zeilinger, “Experimental quan-
tum coin tossing”, Phys. Rev. Lett. 94, 040501 (2005).

54A. Morvan, V. V. Ramasesh, M. S. Blok, J. M. Kreikebaum, K. O’Brien,
L. Chen, B. K. Mitchell, R. K. Naik, D. I. Santiago, and I. Siddiqi, “Qutrit
Randomized Benchmarking”, Phys. Rev. Lett. 126, 210504 (2021).

55National Centers for Environmental Information, World Magnetic Model
Mangetic Field Calculator, (2023) https://www.ngdc.noaa.gov/geomag/
calculators/magcalc.shtml#igrfwmm.

68

http://dx.doi.org/10.1103/physrevresearch.3.l042007
http://dx.doi.org/10.1103/physrevlett.100.060504
http://dx.doi.org/10.1103/physrevlett.100.060504
http://dx.doi.org/10.1103/physrevlett.100.060504
http://dx.doi.org/10.1038/nphys1150
http://dx.doi.org/10.1038/nphys1150
http://dx.doi.org/10.1103/PhysRevApplied.19.034089
http://dx.doi.org/10.1103/PhysRevResearch.2.033128
http://dx.doi.org/10.1103/PhysRevResearch.2.033128
http://dx.doi.org/10.1002/qute.201900074
http://dx.doi.org/10.1007/s11433-014-5551-9
http://dx.doi.org/10.1007/s11433-014-5551-9
http://dx.doi.org/10.1088/1464-4266/6/6/014
http://dx.doi.org/10.1038/s41586-022-04725-x
http://dx.doi.org/10.1088/1367-2630/7/1/174
http://dx.doi.org/10.1103/PhysRevA.96.022330
http://dx.doi.org/10.1103/PhysRevLett.94.040501
http://dx.doi.org/10.1103/PhysRevLett.126.210504
https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml#igrfwmm
https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml#igrfwmm


56V. Novičenko and G. Juzeliūnas, “Non-Abelian geometric phases in period-
ically driven systems”, Physical Review A 100, 012127 (2019).

57M. A. Nuelsen and I. L. Chuang, Quantum computation and quantum in-
formation, 10th anniversary (Cambridge University Press, Cambridge, UK,
2010).

58S. Olmschenk, R. Chicireanu, K. D. Nelson, and J. V. Porto, “Random-
ized benchmarking of atomic qubits in an optical lattice”, New J. Phys. 12,
113007 (2010).

59S. Omanakuttan, A. Mitra, M. J. Martin, and I. H. Deutsch, “Quantum
optimal control of ten-level nuclear spin qudits in 87Sr”, Physical Review A
104, L060401 (2021).

60R. Orús, S. Mugel, and E. Lizaso, “Quantum computing for finance: Overview
and prospects”, Reviews in Physics 4 (2019) 10.1016/j.revip.2019.
100028.

61I. Othmani, M. LaDue, and M. Mevissen, Exploring quantum computing use
cases for logistics, tech. rep. (IBM Institute for Business Value, 2022).

62J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. All-
man, C. H. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer, C. Ryan-Anderson,
and B. Neyenhuis, “Demonstration of the trapped-ion quantum CCD com-
puter architecture”, Nature 592, 209–213 (2021).

63Qiskit Team, Qiskit Textbook, 2022.
64J. Randall, A. M. Lawrence, S. C. Webster, S. Weidt, N. V. Vitanov, and

W. K. Hensinger, “Generation of high-fidelity quantum control methods for
multilevel systems”, Physical Review A 98, 043414 (2018).

65J. Randall, S. Weidt, E. D. Standing, K. Lake, S. C. Webster, D. F. Mur-
gia, T. Navickas, K. Roth, and W. K. Hensinger, “Efficient preparation and
detection of microwave dressed-state qubits and qutrits with trapped ions”,
Physical Review A 91, 012322 (2015).

66M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, “Elucidating
reaction mechanisms on quantum computers”, Proceedings of the National
Academy of Sciences of the United States of America 114, 7555–7560 (2017).

67M. Ringbauer, M. Meth, L. Postler, R. Stricker, R. Blatt, P. Schindler, and
T. Monz, “A universal qudit quantum processor with trapped ions”, 2021.

68M. Saffman, “Quantum computing with atomic qubits and Rydberg interac-
tions: progress and challenges”, J. Phys. B 49, 202001 (2016).

69C. Schaeff, R. Polster, M. Huber, S. Ramelow, and A. Zeilinger, “Experimen-
tal access to higher-dimensional entangled quantum systems using integrated
optics”, Optica 2, 523 (2015).

70D. A. Steck, Rubidium 87 D Line Data, tech. rep. 2 (Self Published, 2010),
p. 31.

69

http://dx.doi.org/10.1103/PhysRevA.100.012127
http://dx.doi.org/10.1088/1367-2630/12/11/113007
http://dx.doi.org/10.1088/1367-2630/12/11/113007
http://dx.doi.org/10.1103/PhysRevA.104.L060401
http://dx.doi.org/10.1103/PhysRevA.104.L060401
http://dx.doi.org/10.1016/j.revip.2019.100028
http://dx.doi.org/10.1016/j.revip.2019.100028
http://dx.doi.org/10.1016/j.revip.2019.100028
http://dx.doi.org/10.1038/s41586-021-03318-4
http://dx.doi.org/10.1103/PhysRevA.98.043414
http://dx.doi.org/10.1103/PhysRevA.91.012322
http://dx.doi.org/10.1073/pnas.1619152114
http://dx.doi.org/10.1073/pnas.1619152114
http://dx.doi.org/10.1088/0953-4075/49/20/202001
http://dx.doi.org/10.1364/OPTICA.2.000523


71L.-M. Steinert, P. Osterholz, R. Eberhard, L. Festa, N. Lorenz, Z. Chen,
A. Trautmann, and C. Gross, “Spatially programmable spin interactions in
neutral atom arrays”, arxiv.org, 2206.12385 (2022).

72S. Sugawa, F. Salces-Carcoba, Y. Yue, A. Putra, and I. B. Spielman, “Wilson
loop and Wilczek-Zee phase from a non-Abelian gauge field”, npj Quantum
Information 7, 144 (2021).

73R. T. Thew, K. Nemoto, A. G. White, and W. J. Munro, “Qudit quantum-
state tomography”, Phys. Rev. A 66, 012303 (2002).

74N. V. Vitanov, “Synthesis of arbitrary SU(3) transformations of atomic
qutrits”, Phys. Rev. A 85, 032331 (2012).

75Y. Wang, A. Kumar, T.-Y. Wu, and D. S. Weiss, “Single-qubit gates based
on targeted phase shifts in a 3D neutral atom array”, Science 352, 1562–1565
(2016).

76Y. Wang, X. Zhang, T. A. Corcovilos, A. Kumar, and D. S. Weiss, “Coherent
Addressing of Individual Neutral Atoms in a 3D Optical Lattice”, Physical
Review Letters 115, 043003 (2015).

77Y. Wang, S. Crain, C. Fang, B. Zhang, S. Huang, Q. Liang, P. H. Le-
ung, K. R. Brown, and J. Kim, “High-Fidelity Two-Qubit Gates Using a
Microelectromechanical-System-Based Beam Steering System for Individual
Qubit Addressing”, Physical Review Letters 125, 150505 (2020).

78Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, “Qudits and High-Dimensional
Quantum Computing”, Front. Phys. 8, 589504 (2020).

79J. Wurtz, A. Bylinskii, B. Braverman, J. Amato-Grill, S. H. Cantu, F. Huber,
A. Lukin, F. Liu, P. Weinberg, J. Long, S.-T. Wang, N. Gemelke, and A.
Keesling, Aquila: quera’s 256-qubit neutral-atom quantum computer, 2023.

80Y. Xu, Z. Hua, T. Chen, X. Pan, X. Li, J. Han, W. Cai, Y. Ma, H. Wang,
Y. P. Song, Z.-Y. Xue, and L. Sun, “Experimental Implementation of Univer-
sal Nonadiabatic Geometric Quantum Gates in a Superconducting Circuit”,
Physical Review Letters 124, 230503 (2020).

81M. A. Yurtalan, J. Shi, M. Kononenko, A. Lupascu, and S. Ashhab, “Imple-
mentation of a Walsh-Hadamard Gate in a Superconducting Qutrit”, Phys.
Rev. Lett. 125, 180504 (2020).

82P. Zanardi and M. Rasetti, “Holonomic quantum computation”, Physics Let-
ters A 264, 94–99 (1999).

83Y.-G. Zheng, L. Jiang, Z.-H. Zhu, W.-Y. Zhang, Z.-Y. Zhou, B. Xiao, and
Z.-S. Yuan, “A compact gain-enhanced microwave helical antenna for 87rb
atomic experiments”, Review of Scientific Instruments 93 (2022) 10.1063/
5.0088161.

84B. B. Zhou, P. C. Jerger, V. O. Shkolnikov, F. J. Heremans, G. Burkard,
and D. D. Awschalom, “Holonomic Quantum Control by Coherent Optical
Excitation in Diamond”, Physical Review Letters 119, 140503 (2017).

70

http://dx.doi.org/10.48550/arXiv.2206.12385
http://dx.doi.org/10.1038/s41534-021-00483-2
http://dx.doi.org/10.1038/s41534-021-00483-2
http://dx.doi.org/10.1103/PhysRevA.66.012303
http://dx.doi.org/10.1103/PhysRevA.85.032331
http://dx.doi.org/10.1126/science.aaf2581
http://dx.doi.org/10.1126/science.aaf2581
http://dx.doi.org/10.1103/PhysRevLett.115.043003
http://dx.doi.org/10.1103/PhysRevLett.115.043003
http://dx.doi.org/10.1103/PhysRevLett.125.150505
http://dx.doi.org/10.3389/fphy.2020.589504
http://dx.doi.org/10.1103/PhysRevLett.124.230503
http://dx.doi.org/10.1103/PhysRevLett.125.180504
http://dx.doi.org/10.1103/PhysRevLett.125.180504
http://dx.doi.org/10.1016/S0375-9601(99)00803-8
http://dx.doi.org/10.1016/S0375-9601(99)00803-8
http://dx.doi.org/10.1063/5.0088161
http://dx.doi.org/10.1063/5.0088161
http://dx.doi.org/10.1063/5.0088161
http://dx.doi.org/10.1103/PhysRevLett.119.140503

	Introduction
	Background
	Quantum Computing
	Motivations
	Qubits
	Qutrits

	Atomic Physics
	Structure of Rubidium-87
	Zeeman Effect
	Stark Effect
	State Manipulation Methods
	Rabi Oscillations
	Neutral Atom Quantum Computing

	Arbitrary Qutrit Gates
	SU(2) Decompositions
	Virtual Phase Gates
	Dual-Tone Operator

	Tomography
	Density Matrices
	Qutrit Projections
	Maximum Likelihood Iteration


	Experimental Techniques
	Apparatus
	Preparation
	Microwave Generation
	State Readout

	Calibration of Operators
	Finding Resonance
	Magnetic field drift and noise
	Rabi frequency

	Experiment concept
	The Quantum Fourier Transform


	Complete Unitary Qutrit Control in Ultracold Atoms
	Abstract
	Introduction
	Single qutrit gates.
	Experimental Methods
	Tomography
	Results
	Discussion
	Supplementary Material
	Operator Derivations
	Fourier Transform
	Decomposition of Operators
	Signal Generation
	Error Mechanisms


	Conclusion
	Project Extensions
	The Future of Quantum Computing

	References

