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‘ABSTRACT

This thesis dea]s w1th Tocalization results for the e1gen-
va]ues, their sums and products, the singular vaiues ~and the condition
number of a matrix. Part I of the thesis is in tabular form. Here we
Jive Tlocalization results which involve certain bieces of given data.
For example, we attempt to answer the following sample qgsstion:

"Given the data tr A , tr A% and that the eigenvalues of the matrix A
are real, what more can be said about the localization of the eigen—
values of A ?" The different data used is given in the Table of Con-
tents. lle apswer these questions bnly partially, i.e. we do not iﬁc]ude
all known results. Howevér, it is a step in that direction. In Part II
we discuss some specialized topics viz., spectral radius, spread, Gersch-
gorin -disks, singular values and the condition number.~‘Both‘parts of. the
-thesis also include some interesting theorems abouf matrices and eigen-

o .
values.

&
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PREFACE . .
oo

This thesis consists of two parts. Part I is arranged in a
tabular form. It consists of chapters one through thirteen which corres-
pond to thirteen- d1fferent characteristics or properties of. a matrix,
“e.,g9., tr AA , Hermitian, positive definite etc. Each,chabter, say
'chapter t, consists of at most Zt‘] sections arranged in 1ex1cographic
order Further, each section contains localization results involving a
subset of t character1st1cs of the first t chapters. For examp]e,'

2 of a matrix with real eigenvalues are given, then

if Etr A and tr A
theée.pieces of information correspond to chapters 1, 3 and 8, respec-
t1ve1y and localization results are given in sect1on 8 3.1. If for cer-
ta1n p1eces of data no new results are available, we sk1p that section.

This exp1a1ns the existence of gaps between sections in the table of

contents,

In add1t1on to loca]1zat1on results, the first section of each
chapter a]so conta1ns some basic def1n1t1ons and,/or some useful results.
Each subsequent section has results only under the headings (a) through
- (h), whenever'avai1éb1e. Each of these headings contains SOmelspecific

results as indicated below:

’

(a)' For thé spectral radius or the largest eigenvalue.
(b) For the smallest eigenvalue.

(c} For the kth eigenvalue.

(d)"For the spread.

(e) For sum of‘eigenvaTueS.

(f) For product of eigenvalues.
v



(g)- For singular values.

(h) For the condition number.

In Part IT we discuss Som: specialized topics, namely, spectral
radius, spread, Gerschgorin disks, singular values and the condition

number. In each chapter we giVe some theorems and localization results.

2
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THE NUMBERING SYSTEM AND SYMBOLS

Within the text of a chapter a reference to a section in that
chapter will only give the‘number of the section. A reference to a sec-
tion in some other chapter, but in the same part, will be preceded by the
number of the chapter and will be separated by a colon. In case a section
of a different part is referenced, the chapter number will be preceded by
the part number and will be séparated by a colon. For example, if we wish
to refer to section 2 of chapter 4 of Part Il in Part I, we write "11:4:2",
while referring to it in a different chapter of Part II we write "4:2".
Equations and theorems afe referred to by the section number followed by
the equation number or the theorem number in parentheses. Thus if we
refer to Theorem 1 of Section 1 and Chapter 4 of Part II, in Part I, we
write 'Theorem I1:4:1 (1)', while referring to it.in a different chapter
of Part II we write "Theorem 4;1 (1)". External references are always
given in closed brackets. In case a book is referred to, the reference

number is followed by.the appropriate page number.

In addition, we shall use the following symbols:

(1) ! - factorial

(2) i —»\IKTT )

(3)  Jul - 5556#ute value of the complex number u . |

(4) Re(u) - real part of the complex number u .

{5) Im(u) - imaginary part of the complex number 1y .

_(6) ¢m - set of all comb?ex mx1 “vectors. .

‘(7) e; - a vec%or with 1 as the ith component and zeros elsewhere,
(8) I - the identity matrix of order n. . . ' )
(9) A" - transpése of A . - ”

Xiii



A* - conjugate transpose of A .
B - & (A*A") .

1
2
'I *
C - 57 (AA)) .

diag(x],xz,---,xn) - a diagonal matrix with Xx; as the ith

diagonal element.

A>(>)0 - elements of A are positive (nonnegative).
(x;y) - x*y » the inner product of x and -y .
IxI12 - % :
x <y - y majorizes x .
X <yy - y majorizes x , weakly.
Ay .- an eigenvalue of A .
u% - an eigenvalue of B .
Vs ;\ an eigenvalue of C .
o; - a singular value of A .
tr A - fréce of A . = T—~— —

e
- —

sp(A) - max lAi-Aj] , the spread of A .

1,]
spp(h) - nax (Re(2;) -R‘e@j),)*f -
spp(A) - T?; (Im(ki)-lm(kj)) .
det A - determinant of A .
c(A) - the condition number of A .
p(A) - spectral radius of A .

(x,Ax) / (x,x) .

©
—_
>
~—
}
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INTRODUCTION

Given a complex matrix A = (aij) of order n , a complex
scalar A s called an eigenvalue of A if there exists a non-zero
vector x such that (A-AI)x =0 . ThJs A is an eigenvalue of A
if and only if det(A-AI) , called the characteristic polynomial gf A,
is zero.' Since the degree of the characteristic polynomial of A is
n , we conclTude that a matri f order n has exactly, countihg multi-
plicities, n eigenvalues. ?;Z shall always denote the eigenvalues of
A by Ak s k=1 »2,**+,n . e also note that the positive square roots

' B *
of the eigenvalues of the matrix AA » where A 1is the conjugate

transpose of A , are called the singular values of A .

In many applicatipns the approximate location of the eigenval-
ues o?'a matrix suffices and, also, because of the effort involved in o
combyting the eigenva]ugs of A, it becomes expedient to approximate
themfby some means. For example, in many iterative methods for so1ving
a system of Tinear equations the method converges if the spectra] radius
of_4 certain matrix is Tess than one. In the theory of differential equa-
tions the linear homogenous system g§;= Ax is said to have a asymtotically
stable solution if all the eigenvalues of A have negative real parts.
Further, the condition number, c(A) = | 1A IIA_]II , where |]-]| s
a matrix norm, is useful for determining whether or not the system of
Tinear eﬁu;tions Ax = b is well-conditioned. In optimization the condi-
tion number of the Hessian of a certain matrix at the soTution provides a
measure of the sensifivity of the optimal solution. In case of the 2 -

norm or the spectral norm, when A is nonsingular, c(A) = O1/ 9, s the



L

ratio of the largest and smallest -‘ngular values. Thus, an estimate for
gy and o of a nonsingular matrix provides an estimate for c(A) .
Further, as we shall see in Chapter 5 of Part II, for certain matrix norms

we get max lkil / minIAi[ < c(A) . Therefore, bounds for max ]Ail and
i i 1

min Wli] can be used for estimating c(A) .
i A

In this tﬁesis we shall be concerned with the localization of -
the eigenva]ués, théir sums and products, the spectral radius, the spread,

the singular values and the condition number of a matrix.

Localization results abound jn the literature. Marcus and Minc
in their book (see Chapter IIT of [31]) give a brief history of these

results. For exémp]e, in 1909, Issai Schur proved the following:

;IxilzitrAA* , E (1)
JRe(A)? < tr 8% = T (tr m wre(tr 42)) , T(2)
: |
I n(x)% < tr ¢? - T (tr A" -Re(tr 2)) (3)

with equality if and only if A is normal. In 1946, Alfred Brauer proved

{
that, for an arbitrary matrix A ,.

max ]Ail < min (R,C) -, . (4)
i
where
g,
Rf%'aij' : C1\=§’8J1i ;
R = max Ri and C = max Ci

i - g

However, this result was anticipated by Oskar Perron in 1933 and also



\ ) <
follows from Gerschgorin's Theorem, which was proved in 1931 (see [31, '
pg. 145]). Gerschgorin proved that all the eigenvalues of a matrix A

1ie in the disks
|z - akkl-i R, - lakkl s k=1,2,ee0.n (5)

The proof of the above follows readily from the LeCy-Desp]anques Theorem,
proved in 1887. Another well-known result is the Frobenius Theorem for
nonnegative matrices. It states that if A is nonnegative, i.e. aijflo

for all i and j , then

min R, < max [X;] < max Ro . (6)
. ]- .i

The theory of nonnegative matrices, originated by Perron and Frobenious,

has proved to be very useful (see.e.g. [51] and [591).

<:’“ More recently Henry Wolkowicz and Georgé P.H. Styan obtained.
several localization results using traces (see [63] and [64]). For

example, they showed

* . .
k=1 4172 tr MANT/2, o n=ky1/2
lml Sa(n-k+1) i lxkl i (n—") +Sa( k ) ' ’ k—1,2, 2N
. (7)
) 2 _ xR0
where, m=tr A/n and S, T trAA/n - [m

‘A11 the above jnentioned results are included in Part I. Also
included are many other results. For examp]e, in Chapter 2 of Part I we

include the inequalities:

O.i 9 k=1’2’...’n -

—Ir1 X

K
s

Ve

L
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’bhere d%.'s‘afe the MOdu1i of~the‘d1agona] e]ements,‘agranged fn decreas-
ing order. Chapter 5 inc]udes_imprdveﬂ versions of inequgjities (1), (2)

and (3). .In Chapter 6 we give many 1ocalizatﬁoﬁ results ikvoTving row

and co]umn sums, 1nc1ud1ng 1nequa11t1es (4) and (5). Also 1nc1uded are
severa] cond1t1ons which ensure the nons1ngu1ar1ty of a matr1x For example,

it is shown that, det A #0 if . |

- |a,.

laﬁ’aR 11l

In Chapter 7 bounds for eigenvalues are derived by means of the arithmetic-

‘geometric mean inequality. For example, we prove that

(=)™ Jdet A7 < 312 <t AT < (neT) det A2/

tr AA

In Chapter 8 we give necessary and sufficient conditions for a matrix to

have real eigenvalues. Also ineluded are several eigenvalue bounds invol-

1

ving tr A and tr A2 . For example,

k=1 )]/2 < kim+s(ﬂ;—k)]/2 , k=1,2,2=+,n ,

m- s =

where
=trA/n and - 52 = tr A2/ n - m2 ,
and
> Ag.i ° > An .
Chapter 10 deals wi*h nc ‘7¢atfve matrices. ‘ere, we first classify the
nonnegative matrices an” ther s. %z the'r 1ntere$ting spectra] properties.

Chapters 11, 12 and 13 deal witr. ¢ speci. c]assvof matrices, the normal



matrices. Such matrices are always unitari]y diagonalizable. Also, for a
normal matrix the moduli of the eigenvalues, 'Ai, y 1=1,2,°°+,n", are
its singular values. Thus all the results for singular values in previous

-+

chapters hold for the eigenvalues.

In Part II we consider some specialized topics. In Chapter 1 we
discuss the spectral radius. In particular we show that for' certain matrix
norms,

max |31 = o(A) < |[A]]

Also included are some results which improve upon inequality (6) above. In .
Chapter 2 we give results for the spread of a matrix. kIn Chapter 3 we
briefly diécuss Gerschgorin's disks. In Chapter 4 we give several inequali-
~ ties re]ating,the singular values with the'eigenvalues, real singular

values and imaginary singular values. For example,

<

k _ k ‘
T (Al < 1 o, s k=T1,2,0c40n
. il — .7 i
1:] i=

I, ;_Iknl ,

ukiok ) 'k=1a23“'9n s

and
Vi £ 0y s k=],2,f--,n )

where, O s My and . Ve are the singular values, real Singu]ar values
and imaginary singular values of A » respectively. Also included are

bounds for the singular values themselves. For eXamp]e,



;b
max — ) a, ;| <oy,
Iss,tsn-1/st j=1 i=1 J :

o < min R, = min ‘|a..|
n—= 0 § ij

e

In Chapter 5 we briefly discuss the condition number.

Now we shall give some definitions which are assumed throughout
the thesis. First, let A = (aij) be an mxn complex matrix. Unless
otherwise stated we shall always assume that m = n , that is A 1is a
square matrix of order .n . Let Ai » 1=1,2,°+¢,n be the eigénva1ues
of A . Generally, we shall assume that Ai , 1=1,2,°¢2,n aré ordered

as |A1[ L POV RERREE > x|l 5 if complex and as AMp2Ay 2 e 2,

if real. .

Definition 1: A matrix P is called a permutation matrix if each row

and each column of P has some onhe entry unity and all others zero.

Definition 2: For n > 2 a complex matrix A of order n is called

feducib]e if there exists a permutation matrix, P ~such that

D F
PAP' = < ,
. 0 E

where D and E are matrices of order r <n and s respectively™

such that r+s = n . , - O

Definition 3: If a matrix A is not reducible then it is called irreduc-

ible. | | 0



. A . .
Definition 4: A matrix A is called skew-Hermitian if A = -A . 0

>

Definition 5:- Given a matrix A , it is called a scalar matrix, if

A =al , for some complex number ‘o . _ 0

Definition 6: A matrix A , is called nonnegative, 7f aij >0,
1<i,j<n. Incase a;5> 0,1 fii »J<n,wesay A is posi-

tive. - , 0

" Definition 7: A matrix A is called upper triangular if -

i> => 3..=0, -
I8
and lower triangular.if
i< o=> aij =0 .
ft is called a diagonal matrix if aij =0 for 1#3. ' 0
: L . ; * * .
Definition 8: A matrix U 1is called unitary if UU = U U.= 1 . O

Definition 9: If D and E are two matrices of order nxn then they

are called similar ° there exists a nonsingular matrix S such that
[ In case 'S s unitary we say D and E are unitarily

D = SES”

similar. ' : 0

Definition 10: Let A be any mxn matrix and let 1 f_i]_< i2 < eee <

1k'5_m and 1 5_j] < j2 < e < j2 i.” . The kx2 matrix S whose

(a,B)th element is



S ., T ad. . ),

is called a submatrix of A . In case k = ¢ and B =dip= dpemeesiy

J » then S s called a'principal submatrix of "A . If =1, i2_ 2,
1 = 1 = s = eee 7 = Lo <
oee 1k .k and J] 1, 32 2, » Iy 2, then S 1is called-a
g

leading submatrix of A . If a submatrix is both principal and leadi

then it is called a leading principal submatrix. _ gy

Definition 11: . Let S be a submatrix of A of order r < n . Then the

~ determinant of S s called a minor of A of order r . In case S 1s_
a principal submatrix of A ; the determinant of S is called a princi-
pal minor of A of order r . "Finally,if S is a Teading principal sub-

matrix then determinant of : s called a 1eading‘pf1ncipa1 minor of A .
| 0\

Definition 12: Let x and y be any two real vectors. Let the indices -

1],12,---,1h be.such that

Xj Z ¥z 2k,
A Ry, H
and . \
Y. >y.° > eee >y
. 11 12 A1n
If
k k .
Z x'if. z y1 s kv=1,2,"-',n s
=t '3 J=1 'J

7

e

then we say y weakly majorizes x , and write x <w y'. If in addition

7 Xs = ) Y; » we-say y majorizes x and write x <y . s
i i '

s
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o~ CHAPTER ]

! - TRACE A

§1:O Preliminaries.

The trace of{/A = (aij)nxn , denoted by tr A , is defined as:
\. o ‘ .

trAsla . = (1)
1

o,
)
Cy

For any two matrices H and K , (1) impT?es that

tr HK = tr KH . (2)

It fb]]oWs from (2) that simifar matrices have the same trace.
Using this fact together with Schur's triangularization theorem,_the.

following result follows:

Theorem 1:  For any matrix A and positive integer k ,

_ trak =gk L w)
t.

, S f o : ; ’
Proof: From Schur's triangularization theorem (see e.q. [31, ég. 671)

there exists a unitary matrix U such that T = UfAU is an upper trian-

gu]arimatrix with the eigenvalues of A a]ong the diagonaf. ;Thus,

B {11 T LTy LT

10
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and we have,

k

k * '
tr A" = tr(UTU ) = tr T LT s

which completes the proof.

3

Now we shall derive bounds for the eigenvalues and the singular

values of A which ihvolve only tr A and n .
3} For Al = max A5
i
Givgn tr A s
[tr Al /n < lx]] . 4 (4)

_EquaTity holds if and only if,

Proof: From Theorem (1), we have nlx1l >3 lxi] > tr A,
i

which proves (4). The conditions 7¢r equality are clear.

" The fo]]owﬁhg result is immediate from (3): - .
(e) For sum of eigenvalues: | l..

Given tr A,



(

1100

and

Al < (6)

Equality holds in (6) if and only if Aj = oy A] for some

nonnegative oy y 3 =2,3,000,n .

(g) For singular values:
{
Given tr A,
e _
tr A
"\n*.'ilhlio] ; (7)
ltrAlﬁzp\ilf_ZU]‘ . - (8)
i i ,

1

For normal A , equa]it¥ holds in (7) if and only if A s
a scalar matrix, and equality holds in (8) if and only if

AL T oL A

FRICIS for some nonnegative o5 5 3= 2,300

g
N ) ) i
Proof: From Theorem II:4:1 (1), J Ml <lor s T3ken.
' 1 1

Thus inequalities (7) and (8) are immediate from (4)fand (6).

The conditions for equality are clear from-Theorem 113

and Theorem II:4:1‘(2). ' : Vo~

12



CHAPTER 2

DIAGONAL ELEMENTS

§2:0 Pre]iminéries.\(’

~

The diagonal elements of a matrix provide quite useful nfor-

mation about its eigenvalues. For example, if a matrix A ﬁs diagonally

. -
- ——
=

dominant, that is

-~

{
la..] > 7 Ja..| , i=1,2,-++,n -
i 371 ij
then det A is non-zero (see 6:2). - Also, the eigenvalues of an Her-

mitian matrix A majorize its diagonal elements (see 12:2 (6)).

We 'shall often assume that the diagonal elements , ass

i=71,2,¢+,n, of_»A are ordered as:
| la] 2 Jdpl 2 eee 2 qa |, )

where d. = a5 for some .1 <j<n,di=1,2,0ee,n.

!

Next, we state the necessary and sufficient conditions for
the existence of a matrix with prescribed diagona] elements and eigen-
values or singular values. -The proofs can be found in [32, pg. 230]
and [56], respectively.

Theorem 1: A necessary and sufficient éondition for the existence of a

real (complex) matrix A with real (complex) eigenva1ues A],Az,---,xn

13

~
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and diagonal elements a5 o i =1,2,**+,n 1s:

Y a;s = ; Ao (2)
O

Theorem 2: The necessary‘and sufficient conditions for the existence of
an nxn matrix with diagonal elements a5 s i =1,2,~*+,n and singu-

lar values, Oy 20y 2 **+ >0 are:

(dy o ldplueeesld 1) <y (075000000 ) 3 (3)
n-1 n-1
A (4)

TN

where the = [d.[ 's are given by (1).

C
- Next, we give boﬁnds for the eigenvalues and singular values
of A, which involve only the diagonal e]éments of A and n .
(a) For IA]] = max [A{] :
. i
Given 3,5 5 1= 1,2i-~-,n L
Ligagl< by ENCE
L A

Equality holds if and only if,



[:2:0

Proof: Since tr A =) CPP the result is immediate from
.i

1:0 (4).
g
(e) For sum of eigenvalues:
>
Given a.. , i =1,2,°*+,n, =
i1
lg aﬁl i; p‘j’ . (6)

o \
Equality holds if and only if Aj = aj A1 for some nonnega-

tive. aj s J = 2,3,0¢e.n .

Proof: By definition tr A =] i . Now (6) and the equality.
]' .

conditions fo]]dw from 1:0 (6).

ad
(g) For singular values: .
Let the diagonal be ordered as in (1). Then:
k k ;
z |dl < Z o H] k = ],2,"‘,” ’ . (7)
n-1 n-1
A (s)

Equality holds in (7) and (8) if and only if A is diagonal.

Proof: Inequalities (7) and (8) are clear from Theorem (2).
Further if equality holds in (7) we have o, = Idil .

\
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=100 Thus, tr A =T 025 T Ja,0%=7 la..|?,
? 1 LY. 1] f 11
i isJ i

that is all the off-diagonal elements of A are zero. The

converse is clear.



CHAPTER 3

. )

- TRACE A

§3:0 Preliminaries.

By definition of the trace of a matrix,

tr A2 = 'Z a.. a.. . (1)

Below, we derive bounds for the eigenvalues and the singular

va1ues, which involve only tr A2 and n .
(a) For ]A]l = max ]Ai| : =
, ! ;
- - !
Given tr A? s ' (
1tr A2\1/2
() < Iyl (2)

Equality holds if and only if, A, = Ay = eee =2
Proof: Inequality (2) is immediate from the triangular inequal-

ity and 1:0 (3). Also, the conditions for equality are clear.
. _ .

(e) For sum of eigénva]ues:

The following result follows from 1:0 (3):

17
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Given tr A2 ,

I =tral (3)
1

I A

EXS RSN ()

i 1

Equality holds in (4) if and only if Aj = a A] , for some

nonegative 'aj s J = 1,2,00,n .

O
(g) For singular values:
Given tr A2 ,
2
tr A 1/
(' rn I) & S (5)
and
tr A <o . ()
i

For normal A , equality ho1dsain (5) if and only if A s a
scalar matrix and in (6))1f and only if Aj = aj A] - for some

nonnegative %5 J = 1,2,o22,n .

Proof: Inequalities (5) and (6) follow from (2) and (4) and

Theorem II:4:1 (1). The equality conditions are clear from

Theorems 11:4:1 (2) and 11:0 (7).



[:3:1

§3:1

Given tr A and tr A2 the results of Section 0 and 1:0

can be combined to yield the following:

~(a) For l)\]l = max M].l :
i

Given tr A and tr AZ.,

“
|

2 1/2

(1tr Al [tr A |
max< - , - )i“]l . (1)

Equality holds if and only if all the efgenva]ues_ aré equal.

0

[ -

(g) For singular values:

2

‘9

| / 0 1/2 |
max<ltr;1Al,ltr;’]\|‘>iO] . . (2)

Gi\)eﬁ tr A and tr A

19
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[:3:2 . :

§3:2

In addition to results of Section 1, the following result

holds:
(g) For singular values:

Given tr A2 and the diagonal elements of A

b

2:1/2 .
( max (ltrnA | » max {aii[J <0 - (1)

2,

Proof: Inequality (1) is immediate from 0 (5) and 2:0 (7).

1

20
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CHAPTER 4
*
TRACE AA

. : \
§4:0 Preliminaries. ' -

14

* -
Given an nxn matrix A , by definition tr AA = [aijlz.
1,J
Also, the Euclidean norm (Frobenius norm) of A is defined as:
*
A% = oAt (1)

* ' * % *
‘Further, AA  is positive semidefinite, as (AA ) = AA  and
* * * *
(AA x,x) = (A x,A x) >0 . Thus, the eigenvalues of AA  are real, non-
. L
negative. The positive square roots of the eigenvalues ‘'of AA are

called the singular values of A°'. The re]atfonships among the eigen~

values and the singular values of a matrix are discussed in II:4:1.

As always, we shall assume that the singular values of A are

ordered as:’

It follows from the above discussion that,

Jol=trm . 1)
1 .

' *
Next, we give bounds which involve only . tr AA  and 1 .

21 -~
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(a) For ]A]l = max lkil

(b)

(c)

For

For

i

*
Given tr AA |

;IA

<t m” * (4

Proof: Inequa]fty (4) is cledr from (9) below.

| 0
!An] = min lAil :
o
*

Giwgn tr AA

. ) .

AP . VA . (5)
For normal A equality holds if and only if
A1 = A,] = eee = [l 5 which is so if and only if A = cU,

for some unitary U and scalar c .

Proof: Inequality (5) follows immediately froq (9) below and

the equality conditions are clear from Theorem 11:0 (6).

The following result follows from (9), below:

Al

*
Given tr AA

-

N2 < tr Tk, ks 12,0 (6)
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o (d)

(e)

For the spread:.

. . o
Given tr AA | ‘ . ' !

1/2

sp(A) < (2 tr AAT) (7)

Proof: We have sp(A) 5_|A]|'+ ]AZI <oy *o, . Also, from
- the Cauchy-Schwarz inequality (c:]+02)2 5_2(o]2+022) 5_2'U~AA*,
which completes the proof. _Inequaiity (7) also follows from

1(6) below.

N " o
For sum of eigenvalues: A
GQQén tr AR, | | | h ~
TNl (e mH2 (8)
: .
D2 <t m® | (9

. 1
1

Equality holds in (8) if and only if A s a scalar matrix.

Equality holds in (9) if and only if A isaﬁormal.

|

Proof: Inequality (9) is immediate from (3) and TTeorem )

]l-’
1=1,2,°e+,n, if and only if A 1is normal. . Further, from

IT:4:1 (1). Also-from Theorem I1:4:1 (2) o, = By

the Cauchy-Schwarz inequality we have, |J Ailz <n Zlkilz
- : 1

and equality holds if and only if A1 = AZ = eee = An . Now '

(8) follows from (9)3vwhi1e‘thé‘equa1ity condition follows

23
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. from Theorem 11:0 (7).

i | . ‘ , ' 0

(f) For product of eigenvalues:

*
Given tr AA , : '
. _ . o x Kk ' ' :
'IA]"AZ’...’)\'kI' i<(trkAA >]/2 5o k= ]\,2,"‘,” . (10)
_Proof: The proof is immediate from (6).
(g) For sfngu]&r values:

The results given below are immediate‘consequences of (3).

. *
Given' tr AA

tr AA /n<oi” <tr AA (11)

2 x o S
o <tr AR /k 5 k=1,2,00e,n (12)
1Jol=trm . a (13)

‘]' ' //’ )
O

24
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§4:1.

In this section we shall give results which involve tr AA* .
tr A and n . Most of -the results are proved in [63]. Their proofs

involve the inequalities,

I glPctrm® L feral<TIn] < ntr )2,

1
i f

and the Cauchy-Schwarz inequality.” We shall omit these ﬁroofs. Follow-

ing [63] we define:

m=trA/n and sA2 =tr M /n - Inl2, (1)
(a) For qA]| = max [A.| :
1
N .
Given tr AA and tr A,
ml < 1] < Il s, (=) V2 (2)

Equality holds on the right if and only if A is normal;

Ay = Ag = oee = A, and Ay = cm for some ¢ > 1.
Proof: See [63].
I | ’ D
v I/)'
- ..v. ) . 19
(b) For [ | N m}n e : A
- * »
Given tr AA  and tr A,
| 1/2 trAA (172
Iml = 5 (=012 <y | < (ERAYIZ (3)

PG|
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(d) For the spread:

For

" Proof: See [63].

26

Equéij;y holds on the left if and only if A is normal,

4] = AZ = ese = An_] Qnd A1 = cm for some real nonnegative

'scalar ¢ <1 . Equality holds on the right if and only if

A is normal and IA][ = IAZI = see = lxnl .

a

Al
Given 1 <k <n,

k-1.1/2 tr AAT\1/2 ky1/2

- r n-
I L L e G AT O
Equa]ity\solds on the left if and only if lA is normal and

‘ o\

>\\] = )\2 = eoe =/>\k_'l and Ak = >\k+] = ees = An = C)\] . (5)

for some nonnegative ¢ . Equality holds on the right if and

on]f’if A dis a sca]af matrix.

N R

Proof: See [63].

For any' A,

sp(A) < (2 tr m" - 2 ytr p2)172 | (6)
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Equality nolds if and only if A s normal and (n-2) eigen-
‘va1ues are equal to each other and the arithmetic mean of the.

remaining two.

Proof: See [40] .,

d
(e) For sum of eigenvalues:
Defining,
1 2
M) = zme Lyl (7)
Jj=k
moand sy as in (1), o .
k-1 \1/2 tr AR\ 1/2 2,1/2
Y ~ r n-x*
|m, _SA<n_k+]) i l}‘l(k,g’) _<_ (—n—‘) .+ SA( 7 ) . (8)

Equality holds on the Teft if and only if A is normal,

)\1 = AZ = eee = )\k-] and )\k = >\k+] = ese =')\n = CA] , (9)

with ¢ rea]land nonnegative. Equality holds on the right if

and only if A s a scalar matrix.

Proof: See [63].



[:4:2

§4:2

Given the diagonal elements, we know the tr A . Hence, all

the results of Section 1 hold. In addition, we have the following:

(g) For product of eigenva]ue§:

\
%

If a., =1 ,14=1,2,++,n and t = (tr A" - n) <1 then:
Cexp(t'/?) (1-61/2) < det A| . (1)

Proof: See [7, pg. 72]. _ ' g

28
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§4:3

. _
When tr AA  and tr A2 are known, clearly the results of

Section 0 and 3:0 hold. In:addit1on, the following bounds for the sum

of the squares of real ahd imaginary parts of the eigenvalues of A -are

given in [39, pg. 309]:

(e) For sim of eigenvalues:

With B = HA+A™) and C = L(a-a*
| 1t —5 )an C—'é_T- ),

7 (Re(x,))% < tr 8% 2(tr A+ Re(tr A%)) 5 (1)

i
I (In(3 )% < tr c? =
i - -

(tr AR - Re(tr A%)) *, (2)

N —

with equality in (1) if and only if equality holds in (2) if

and only if A is normal.

Proof: By Schur's tfiangu]arization theorem, there exists a
unitary matrix [V ~and an upper triangu]ar_matrix T, with

eigenvalues of A along the diagonal such that A = UT'U* .
' : 2 2, *

. * * * * *
Thus, A+ A = U(T+T JU and tr(A+A )T = tr(U(T+T )U ) =
* 2 2 . *9 *
tr(T+T )" = tr T+ tr TS+ 2 tr TT . Thus,
R . * . ™ .
tr 8% > ] (e Trte T8 = L7 o2 (3)
o i , :

“Now, (1) follows byvobsekvf;g that tr BC = %-(tr AA*-bRe(tr AZ))

and that equality holds in (3) if and only if A is normal.

29
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Inequality (2) follows by repeating the above reasoning for

1

* *
57 (A-A) , instead of (A+A)

N —

30
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: *
In this section we shall give bounds which involve tr AA o,

2

tr A~ and tr A . All the results given below, are proved in [63].

We will need the following nofation:

Let the moduli , real and imaginary parts of the eigenvalues of

A, arranged in decreasing order be denoted—by Ai(A), XJ(B) and Ak(C) s
respectively. That is,
A
A](A) > AZ(A) > > An( ) ; (1)
x](B) > AZ(?) > . z.An(B) ;  and (2)
A](L) > AZ(C) > . > )\n(c) , (3)
where,
' (A (B : o '
gl ) s retay) | ang 1, (©) - In(x,) . - (4)

Also we recall that,

tr 82 = %ﬁtr AR+ Re(tr AZ)) and tr C2 = %{tr AA* - Re(tr AZ)) .

(¢c) For A

(i) Let A be an nxn complex matrix. Define

mg = Re(tr A) /n=trB/n , m. = Im(tr A) /n=trC/n ,



1:4:3.1

2
B | b

2

sg” = tr B2/n - m sC2=trc2/n-mC2 a (5)

Then, for T =8B or C ,

D cm s )20 (6)

. Equality holds if and only if A s normal and

Proof: = See [63].

o
(i) With mT , sT as above, for T=8 or ¢,
~s (-2 < (T) (8)
r T - —n
Equality holds if and only if A 1is normal and
(1) o (T = ..oy (1)
X >\] = }\2 = = >\n_] o . ) - s (9)
Proof: See [63].

0

s. as in (5), for T=8 or ¢ and. 1 <k<n,

(1i4) With mT > Sy |

M = ST(ETF?T' k T

..Equality holds on the left if and only if 'A' is normal and

32
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_ .. (T (1) _ e
] 2 k=1 and A K+ n

|
>
—
-—
~——
I
|
>
—
—
~—
—
—
—
~——

Equality holds on the right if and only if A is normal and -

A (T) = )\ (T) = eee = ) (T) and )‘k+](T) = >‘k+2(T) = ese = )\n(T). ("2)

Proof: See [63].

O
(e) For sum of eigenvalues:
(i) With M s Sy for T =8,C , given by (5) and
- (k,2) 2-k+1 &£ "3 ’
J=k
. . . R
. (¢) _ _1 (c) :
Mise) T TR LA ’ 04
.=k g
- ’ / <
we have: _ o ///
. : \\\/'//
k-1 \1/2 = (T) . n-2,1/2 '
mroostaeE) T S A ey St s () o

'. When (k,%) = (1,n) the inequality string collapses. When
(k,2) # (1,n) , eqUa]fty hoﬁds an the left if and only if A
is normal and (11) holds. Further, equa]ify holds on the

fight 1f‘and only if A is normal and,

Proof: See [63].
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(1) If 1<k<f&<n, then for T=A,B or C,

(1) () <s 272 (L 1172

Equality holds .if and oh]y if A dis normal and

(1) = 5 (1) =y (T)
)\.l = )\2 = - )\k s
(1) _ (1) . - (1) . :
A Mag = =g gt Mr 3
(1 o DLy (D)
A = A0l = e = A ) )
n :
| Iy |
where my f - :and for T=A,

for some nonnegative scalars o j=1,2,¢,n

%f: ‘See [63].

(16)

(]
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CHAPTER 5

~

TRACE (AA* - A"A)2

§5:0 Preliminaries.

!

We recall that the Euclidean (Frobenius) norm of a matrix A,

2 *
is given by [[A]]|° = tr AA . Let

* *

D=AA -AA . : (1)

Clearly D s Hermitian and therefore,

2 2

11D[1% = tr D = tr(Mm"-A"A)

By definition, A s normal if and only if D=0 Further, since

* * .
AA and A A have the same diagonal elements, tr D=0 . Thus, for

a nonnormal matrix A, D has both -positive as well as negative eigen-

values. Finally, it is well-known that D is positive semidefinite if

and only if A is normal (e.g. see [16]). For if D is positive semi-
~definite, then tr D = 0. implies that all the eigenvalues of D are
zero. Therefore, from 0 = tr D2 = ! |d
“ i’j -
i, = 1,2,¢+,n . Thus A 1is normal. The converse is trivia].

2 -
'ijl s We have‘ d_iJ - O"

A * *
Now, we give some bounds involving |[]AA - A All , and n .
(g) For singular values:
Given A ,

35
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I N

HNV-A“|152”22<%2 . O (3)
1 .

Proof: Inequality (2) is immediate from (3). To prove (3),

we observe that,

- 2 tr(A%A"?)

2 2

il

* * 2 ’ * * *
| |AA" - A A]] tr(AA -A A) = 2 tr(AA )

2 [1AA7[12 - 211a2])2

I

| A

2 1112 <2 |1al]*

which completes the proof of (3).
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§5:4

In this section we shall give bounds for the sum of the e1gen—

values, which involve, ||A]] and |IAA -A A[l

(e) For sum of eigenvalues:

3

(i) With D as in (1)

2.1/2°
XIH IIAII T 1013172 (1)
Equality holds if and only if
* * R .
A=oalvw +rw ) |, (2)

where o e § with a#0,0<r <1, and _u,w are orthonor-
mal vectors.

Proof: See [25]. ‘ ‘ ‘ ,//) N 0
: \/ \\ ‘)
' v ' \ \\//
(i1) Given [||A]| and ||D|l , ‘
[1A112 - ”];” AR <] lx 2. (3)

Proof: See [20].

37
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§5:4,1

In. th1s sect1on we shall g1ve bounds which involve ||A]] ,
llAA - A All and tr A . All of the results to follow are proved in

[64]. We 11 need the fo]]ow1ng notat1on

Suppose A] 9 eo,An aré complex eigenvalues of A . Define,

A A

ol g eren) L Al =m0 (1)

2 _ 1
/ C 1 _
so that the ordered vectors (Aj ) satisfy

T = A,B,C ;-

and

;lxﬁt“iixﬂ%ﬂ 2 zReu N2 LT I = T (mi))2
} 1 1 . i

Fﬁrther s let

K= Al - L2

A
; (2)
Ke© = 11A11% - Am12 ),
Q1el® - 3 1H1AY2 a6 [18l) > [[c]|
kg = |
||Bl|2 1 iJEUJ—- otherwise,
IIAII :
(3)

= |18]|2 nm1/2 HDII
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(a)

For

(ielt* - g HonAY2 e Jiclf 2 118

Kv”"' . . . 0 )
- 1 11012 | "
]ICII —ﬁ-llAllz otherwise,
(4)
3
-n\1/2
P lell? - (e, )
Finally define,
T,2 T2
AL R
_ -
ST - n - n2 ’ T_AaB,C s (5)
u
A T N
A n i A n ’ -
| - (6)
u_ 2 _trB UL _trC '
Mg = Mg n_ > M M Ty
: Ki™ - |tr T /n
(STU)2 - T - , T =A,B,C |
v 712 7
. - |tr n .
(5.1)% = max {0 , T - },T = AB,C .
Al = m?x PO ' ’ , 7f
" With the above notation:
- . u ) . : .
| mA2 + (n-1) 1/2 sAQ 5_[A]| <my o+ (n--])V2 sAu . (8)

Proof: See [64].
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(b) For IAn{ = mjn Ili,’:

With the above notation:

b (n—]O]/Z 5 u g_lkn] 5_h u. (n-]);l/zbs

Ma A

P

Proof: See f641.

(c). Forv [A

Proof: See [64}. <

(d) For the spread:

. £ u . .
With sA > Sp } as in (7),

3 172 _u
25y < sp(A) < (2n) 7% s,

Further, if n 1is odd, then:

S IO
7. :

: Prdof; See [64].
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(e) For sum of eigenvalues:

(f) For product of eigenvalues:

I

» K
mA2 + (n-k) Y'\](n-])']/2 s * i]p U,

\

where vy = max(k,n-k) ;Wiyth Y = max(n-k+b1,k-1) ,

, “n .
1 u -1/252.

-1
it (L Pyl emyt - ety (e A S
and
' 1 1 172 1/2 . u
{AJI - l)‘kli(J+n_k+]) n SA

Proof: See [64].

Given A,

k | | -
(m + (B2 5,4 k= 1,2,0000m

-

— =X

Proov. The proof is immediate from (10).

<¢

<
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(g) For singular values: ‘ \
. 2 u Cou .
Given A and My > My~ 5 sp7 5 s, as in (6) and (7),

mA2 + (n-])-]/2 SA2 <0, 3 : A - (14)

~ Proof: Since IA][ <op and |A] > o, the above inequali-

ties follow from (8) and (10).

O
(h) For the condition number:
If mA2 - (n.-1)]/2 sAu > Q , then,
m* +s,"/ (n-1)1/2 451 | |
3 77T STy <c(hA) . - (16)
m (n-1) Sa r[,nl .
. IS Y

Proof: As |A1| <o, and lxnl >0, the proof is immediate

~

from (8) and (9).
d



4

i/

I:5:4.3_

§5:4.3

The bounds for the sum of the squares of real and imaginary
parts of the eigenvalues of A , given in 4:3 can be improved when

]]AA*-A*AII » [|Al] and tr A2 are known:

(e) For sum of eigenvalues:

With (AiT) , K" and K" as given by 4.1 (1), 4.1 (2), 4.1

(3) and 4.1 (4),

Proof: See [64]. .

43



I:5:'4..3.1

§5:4,3.1

In this section we shall state bounds for the real and imaginary
v v : . .k *
parts of the eigenvalues of A , which involve ||A|] , |[|AA - A Al ,

tr A% and tr A . | . - i

A1l the bounds given‘be1ow, are proved in [64]. We shall omit

their proofs. We recall that

* '| L %
(A+A) s C=2_1(A"A) s

_ 1
B =2

tr 8% = 3 (tr M +Re(tr A9))  and  tr C? - T (tr A" < Re(tr A2)) .

Also, mt L mt, st s Y for T = B,C are given by 4.1 (5), 4.1

(6) and 4.1 (7). Lastly, we assume that AiT , T =B,C are giVen by
4.1 (7). |
S

(a) * For A]

Given A, then for 7T = B,C :

-2 -1 2 T 1
mp + (n-1) /e Sy f_K] f.mTu + (n-]{ /2 sTu . | (1)
Proof: See [64].
(b) For A
Given A, for T = B,C :
T -
mT2 (n-])]/2 STu.i A f_mTu (n-1) 1/2 sT2 (2)

44
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(c)

(d)

See [64].

Proof:
J
For‘ Ak :
For T =B,C ,
1/2 u T u n-k 1/2
(n k+1) SpoS e Smp+ () |
Proof: See [64].
‘For . the spread:
Given A , then:
2 ' 1/2 u
2 sp” < spp(A) < (2n) sg
[} 1/2
ZSC gspl()<(2n) c;'
Further, if n is odd:
. N L .
25 ny (_n2-1‘)1/2 < spp(A)
B o - R
\ s¢ n/ (%12 < sp (a)
Proof: See [64].
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(e) For sum of eigenvalues:

1<i<j<k<n, then for T =B,C,

Giyen
. k ' ;
8o_J-1.,1/2 w1 T_ _u, -k 1/2 u
m G s T iZj Mosme T sy
: m.X + (n-k) -](n-l)']/2 silv< 1 § AT
. T v ST =Sk
where Yy = max(k,n-k)l;
) :
u . -1/2 2
n—l+1 -Zk A1T Mmoo (k=1) v ](n—1) / ST
] =

where vy = max(n-k+1,k-1)'; and

’AjT"AkT, <3+

Proof: See‘[64];

(d) For singular values:

For T =8B,C,

mT2 + (n—])_?/zlsfz < o

Proof: The inequality is immediate from 4.3.1 (1), as

Re(2;) E_IA][ <o
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CHAPTER 6

ROW AND COLUMN SUMS

§6:0 Preliminaries.

Given a matrix A , its row and column sum§ can be calculated
quite easily. Thus; the bounds for eigenvalues involving %ow(%r éolumnv'
sums can be quite useful. Perhaps, this 1s'the reason thét many inequal-
ities relating eigenvalues and‘row (column) sums are known. The row
(column) sums togefher with the diagonal elements yield very useful

results. The Gerschgorin Theorem (see Section 2) 1is one example.

We shall use the following standard notation for the various

sums :-
Ry = Z |a1JI ’ CJ =] lajj’ s 1 <i,d<n o, (1)

J i
P1 = Ri - la]il , QJ = C. " ,ajjl‘ép_ T<i,Jj=<n , (2)
R =max R, ‘and C = max C. o (3)

i Jj
Also,
el x; la. .| x,
re=y e -y W1 (4)
LR S oK

where, X; >0 and i,j = 1,2,°+,n . Further, we shall assume that

11,12,---,1n is a permutation of the integers 1,2,+++,n such that, -

re >Tr. > eee>r, . ' (5)
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As a]Ways we shall assume that the cbmp]ex eigenvalues of A

are ordered as,

values of

also true

(a)

For

onal matrix with [d

I N (6)

A

Before we give bounds for eigenvalues, observe that the eigen-

A and, A' are the same. Thus, bounds involving row sums are

for column sums.

Now, we give the bounds which involve only row and column sums.
IA]I = m?x Ikil D

With R as in (3),

Iqlsr o - (7)

If A is irreducible, IA][ = R if and only if

Ry =By == =R and A=¢e%071 PD, where D is a diag-

17 %2
=.]', P:(l

number. In fact if ri/ is as in (4), then:

i

ii' aijl) and 6 'is a real

Il < max e . (8)
Il

[N

Proof: Inequa11ty (7) follows from Gerschgorin's Theorem
below. The conditions for equality are given in [50]. Inequal-
ity (8) follows when (7) is applied to X~ TAX , -

X = diag(x1,x2,---,xn) .

48



[:6:0"

49
~(b) For lAn] = m;n IAil :
If Ry or Ci is zero for some 1 <1 <n, then
A =0 . :
| ()
Proof: The proqf follows from (15) below, or more simply that
A must be singular.
J
{d) For the spread:
With r, as in (5),
_ i
k
sp(A) < p\]l + le =riot s (10)
~ ' 1 2
. Proof: Since sp(A) 5_|A][ + lle » (9) follows from (11)
beTow,'when a=1 and 2 =2 . 0
O Y
. .
(e) For sum of eigenvalues:
(1) With r. , k=1,2,-.e,n as in (5),
: k
2 o 2 a
) P EE) rooos a20,1<2<n (11)
k=1 . k=1 k ;

Proof: See [50].
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(i1) Given A ,

Proof: From (21) below, J 012 = [|A]]C <7 Ri2 . Now, the
i i .
result follows from 4 (1), below. o
’ J
(f) For product of eigenvalues: \
(i) Given 1 <2 < n and r; o asin (5),
=T = k
L £
Iixl <or, (13)
A Y
In particular,
,Q,l | 2
Tl <mr (14)
1K Ty
and for 2 =n ,
n
|det Al < TR, (15)
1

When A s irreducible, .

k -
=T R, for k=1,2,000,2n |,
-]

50
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if and only if

L}

])\], = ’)\Zl = e = MQI = R] = R2 = eos = R

Proof: See [50].

(ii) If Ry or C. =0 for some 1 < i ggn » then:

‘ ldet A| = 0

Proof: Proof is immediate from (15).

d
- {q) For singular values:
(1) Given A,
1/2 2,1/2 ]
R/n'"¢ < m$x (§ lag 51777 <o <7t +t,) (16)
o < min (] [a..lz) /2 ¢ min R , (17)
YR AN .
i i
k 1 2k
Lol <m T % a20,k=1,2,00e0n (18)
. = i =
1 1 1
~and”
CRE/m2cto <TR (19)
1 i i
where, bti ; 1=1,2,+++,2n are R. , C. :.i = 1,2,+++,n e

1 kE

arranged in decreasing,srder.
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Proof: 'An application of the Cauchy-Schwarz inequality yields

Ry / n! Z la 2 1/2 . The second inequality in (16) and
; ,

: &
the inequality on the left in (17) follows from Theorems 1I:4:4
(1) and I1:4:4 (6). Further, it is known that the eigenvalues

of the matrix, : | Y

.
are + ] * Oy scato for if AA x = ozx » then setting

Q]—‘

y = "X e have' Ay = +ox . Thus with z' = (6,y)' ,we .72

'have

J
Pz = (Ay,A*x)' = (igx,igy)' =+o0z .
Now, the inéqua]ity on the right in (16) and inequality (18)

follow. from (11) with x, =1 , 1

| A

i<n. Also, with o =1

“the inequality on the right in (19) follows from (18)'35

Z R{ = Z Ci'. The inequality on the Teft follows f?pm (20)

below.

- {
Given. A,

=tr M <JRE (20)
L ' v
. . R 3 2
Proof: Since. Z o, ; rAA = 7 a..|°, we have
, . : .3 1J

z)/w igR?. Also, zRZ ALY |)2
2

nv_Z IﬂijQ n Z 0," , by the Cauchy -Schwarz 1nequa]1ty
i



1:6:0 | ', |

53
Another apphcatmn of the Cauchy Schwarz mequahty y1e1ds
Z R /n)? < X R
’ 0._A.
(iii) Given A:,
e
I II R. (21)
i 1=
Proof: From Theorem II:4:1 (1), T o, = ldet A] : Now (21)
“follows from (15).
":z“."/gd
o

i

’ .
% g2 gh iy SN 0y
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§6:2

In this section we shall give bounds for eigenya]ues when the
diagonal elements and row (column) sums are known. In particular, we

+

~ discuss the diagonally dominant matrices: X .

‘. ’
&A . - /

Definition 1: Gived:an nxn matrix A , if

Tagil > T Jacil =P, 4=1,2,-ee0n \
9 i ij i .
. e
u{,thén we say A is weakly diagonally dominc., . If, all the 1neqda1—!
ities in (1) are strict, A is callec diago:a]ly dominant.
\ : : ‘ ' « - O

Clearly, oge may ‘'also define aiagonally- dominant matrices which ORI

inolve Q;''s instead of Pi?s s i =1,2,000n . o e
Now, we give the bounds for the eigenvalues. We note that all

e

the results involving R, (or P.) hold for C; (or Q) jg§o. i

‘(a)‘ For Ay = max'ple .

~
‘e

"fIf .0 <a f_} "‘t'heph:

[

e ,)\] | < max ,,(_'a"i'i, + Pia. Q] ) o (2)
: ; - . > b 9 1:0‘ . ) - .
j_ T ' llll f_m?X’(laij[E%“aPi + (T-a)Q;) ' | (3)
g &N, | |
5 where P. and Q; are given by 0 (2).
- Proof: See [i}ﬁ?ﬁgf 1511, R . ' .
\-7 4’*;. - ) . N 'j._.y_;:.‘ s
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(b) .

(c)

For

d}

'
g

For:

(1)

A

0\5\5/—/_\~

O

A | = min |X,]
n . 1
'] .
If A is diagonally dominant, then: e
0 f:n;hg{a11l -P;) 5-l%nlﬂ . ‘ (4)

Ha
©o

4
%

[ .
\
o

Proof;? Inequa11ty £4 is 1mmed1ate from the Gerschgor1n S

Thebrqm be1ow

Wy

THe following result is Qﬁvﬁh?ﬁH I3j% Pg. 159]:

A ot
1

Let: A. be such that

Further, if the. 1nequa11t1es‘K5)”E¥e strict, then so are the

’A 1nequa]1t1es (6)

Now, the proof%fo]]qws from the inequalities (5). . e

, Pfodf' If X 15 any eiaenvalue of A: theH%from the Gersch- |

gorin's Theorem" be]ow ‘there ex1sts 1 g_ibg_ﬁ such that,

-, 7 Re(}) -»Re(aij) <P - _ S

‘a

W e | : p - I
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(i1)

(i)

3

56

(Gerschgorin's Thenrem), ot P; be ab in 0 (2). Then every
1 i NS

I

~

eigenvalue of 3 Ties in at least one of the disks: ‘éf;
N L
lZ - ai-|| i P1' > 1 ='.|92,“"n > ~‘;‘TF&}?%':;“(7)
in the complex plane. Furthermore, a set of m disks having no' T
point in common with”fhé réméfning n-m disks contains exactly . Q;?;

m eigenvalues of A ,

Proof: If Xk is an eigenvalue of A , then det(A-AkI) = y

K]

Now (7) follows from the Lévy-Desp]anques-Theorem, below,.Since b
i

A - kk " cannot be diagonally dominaht. Further, in case a

-set of m disks (m<n) has no point in common. with the remain-

ing (n-m) dfsks, it follows by the continuity argument that

this set contains exact]y‘ m eigenvalues (e.g. see [26, pg.

7

2261). RN - .
SN |

Sla e
o I
r)

,The‘f0110wing two resu]ts,arg_prbved 1nti§1,‘pgs; 1&9 ;151]:

)

n(n-1)

With P. , i =1,2,-++,n, as in 0 (2), define the -

ovals of Cassini,

{zl_lz-aﬁllz-a}“) PP i =2 12 (8)
|

Then, each éigen&é]Ue of A lies in at least one of the ovals.

D v
ijen AJ,,eaEh;of its‘eigenva1ues Ties on or inside one of
the disks, 5
o . }J
. .
]z-a1ql Eia Q1] “ o <a<sl 9 =1,2,000,n (9)
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a8

(f) For product of eigenvalues:

(i) (Lévy-Desp]anque§ Theorem). If A is diagonally dominant then

det A # 0.

Proof: If det A =0, then thessystem Ax = 0 has a nontriv-"

“ial solution x . Let lkkl = max [x.| . Then,
i

Hagl Ixl = 17 ape xil < Ix] P,
kk k. 7k kq J k k

i.e. !akkl f-Pk » which contradicts the fact that A 1égdjégf‘l;~ =
onally dominant. Hence det A# 0 . . ? ‘ "afgﬁ‘é)
S . . ,
The above diagonally dominant assumptioq,canlﬁé weakened for -
irreducible matrices: oo R
(i1)- If A is irreducible and
’Q ' V : ’ la11[ ip] ] 1 = ]’2,..’,>n. s . (]0)
with equality in at most (n-1) cases then:
) e ll‘é
-det A#0 . - o - o
© Proof: See" [54]. | “ ) S
’ " . 0
Below, we give severat.other confitions which gdérantee the
‘nonsihgularify of A,
The following results are proved in [2], pgs.-149w31501'
- . ﬁ 5. o

]
)

ot
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~
(iii) If A. is such that .
- 3 = ese ' * - N - ‘\
laﬁl lajj,'>P1Pj s 1,] 1,2, Ny 1 £ J g (113
then det A #0 . .
. [ O
|
_ : | o R vy
(iv) Given 0 <a <1, if¥
- anq 1-a _ .... .
Iah.l > P, _Qi' , 1= 1,20, (12)
then det A # 0 . o
g
The following result is cited in [2]:
'(v»):-,a Let Ry =P, .and
1-2-1 R n }
R, = la l v la- l ! i = 2,3,%°¢,n . ; e (]3)
T it lattl t=i+] 1T T
If,.
’a1], > R1 s 1% ],2,"':n s
. then ,det A # 0.
A ' “ 0
i) If (v above holds and fof{ 2<i<n,
S 'ii]law“Rt'“; saa T eyl
o L. o= and L. = |a,;a - H
ST = lattl e
t2 i, thert ¥

58
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1
=
+
-
S

| A
a
D
t
I=

A
o

Proof: See [2].

O
(vii) If a;; =15 R <1, p= max P, <1 and P = L P, then:
e (1-p)"/P < Jaet Al . (15)
Proof: See [7, pg. 711.
0
(v_ih') If A 1is diagonally dominant t_hen:
ldet Al < T )
= la..] -P. . o - L
where dy = laggl - Py .- o
Proof: See [26, pg. 228]. ' - o
) '. . B D ’
(g) For singular values: i
(i) Given A,
max(vR/n]/2 , max laﬁl) <0 (16)
S j .

Proof: The -'p‘ro’of,a;is immediate from 0 (16) and 2:0 (‘3).
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D
The following results are proved in [28]:
(i) Let A be an mxn matrix. Define:
. kilas s k.,
rpo= ) o~ el =y Fl-la..l » 1=1,2,°+,min(m,n)
i L.k, i Lok, Ji .
J#i i J#i i
5. = max(ri,ci) ;a5 = ,aiil ~and
o n k.lai.] B ,
max._. ) _;%?_JL_ , for m>n
ntl<i<m j=1 i ‘
"_' s = ,u B .M_A_:: vé“(
o e
max v —— ifor m<n
m+l<i<n j=1 j " ‘

where ki >0, 1 =1,2,++-,max(m,n) are any positive numbers

and a, ="max(0,a) , for‘any real a .

Then each singular value of A 1lies in one of the intervaTs:

B.i = [(a1-s1)+aa-i+s1] EH] o= ]’2’.7.’” >

Bhe1 = 0,81 . o~

.-

If m=n.orif m>n and a; 2 s;¥s i=1,&-ug1,t&n

Bn+1 is not needed in the above statement. Furthermore, every
interval of the union of Bi” i=1,2,e++,n+1 (n for m=n),
contains exactly k singular values if 1t‘confains k dnter-

vaTslgf BJ’BZ""’Bn.j

60
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(iii) In (i1) B, = 1,2,°++,n can be replaced by

&
Gy = [ ul 1= 1.2,000n
£
where-
2 , 2
!L.=m1’h /az-ar.+c—i—'-c~i »/az—ac+L-Ll
i i 4 2 1 779 4 2 ?
g ‘ - ) 5 . ;,__) > )
| U. = max /ﬁ-2+ar.+gL-4~ﬁ- /ﬁ 2+a;w¥iL-+ii
i L B 4 - 2’ i i 4 2
'for i=1,2,*++,n , where if one of the numbers in the mini-
mum is not real, we omit it. oot
0
(h) For the condition number :-
If A 1s diagoné]Ty dominant then:
max R / n/2 nin R, < c(A) . - o 17)

ne T T

Proof: Since A is diagona]]y dominant the Le;yeDesp1anques
Theorem implies that det A is nonzero. Thus, o, > 0.

Now (17) is clear from 0 (16) and 0 (17)t
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§6:4

s

In this section we shall give bounds which involve only row

sums and tr AA* .

a (e)- For sum. of eigenvalues:

- Define,

J
1 2\1/2 1 . ¢ 2
p=r (1 lei-c 1) and q = (] jr.r |
N yg Tk ik K
For any'matrix A ,
Sy 42 2 2 |
& | | STl - (pa)? o
. 5 |
In.fact p = ||PAQ|| and q = | |QAP|| , where, P = %—J 2
Q= I-P and all the elements of J are-one. Further, if’

Pq # 0 then equality holds in (1) if and only if,
Cy = PAP + QA0 + ()2 pag + (2% ap

is normal while if pq = O'vequa1ity holds in (1) if and only
if, C, = PAP +QAQ is normal. |

Proof: See [25}.

(f) For product of.eigenvalues:

Let a;; =1, P, < 1,0 =1,2,eee,n .
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p=maxP. , P=7]P
: 1

*
t=trAA~n and q = max |a..|

i#J
Then:

2 2. 2

Proof: See {7, pg. 72].

.i

<

.-

1]

|det A]

63
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§6:5

.~

*° *
Given the row sums R, , and |[AA - A A|| we have the follow-

j
ing bounds for the sum of eigenvalues:

(e) For sum of eigenvalues:
* *
Given D =AA -A A, we get

%

2‘ RTZ/n -n 1/2 HDH Z ‘ .:?‘.i‘:«

-1 o)

i P ' , {Ellhhﬂ
“ < (] r2)2 Blias
. ’ i

/

Proof: Inequality (1) is immediate from 0 (20), 5:4 (1) and

T4 (3).

(1)
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: ' - o

¥ | . DETERMINANT

§7:0 Pre]iminaries. .

Given A , the determinant of A , written det A i defined
as, -

det A = OZS sgn ¢ ? ad(i)i , . (1)
n

where Sn ., is the symmetric gfoub of order n and sgh o is one if o}
is an even permutation and negative one iF g is an’odd permutation. It
can be shown that det(A-AI) = (-1)MA" +’(-1)”‘1c1x”‘] +’(-1)”"2c2A“‘2'+

et to where ' c. is the sum of all the principle mfn;?s of order r |
of A, T1<r<n (e.g. see [26,‘pg.>54]). Thus, takjng A=0, we get

det A = c, =N AZ,"' oo - (2)

since Cy is also” the sum of a11 products of the n eigenvalues of A

taken + ' at é time. ATternat1veTy, s1nce the determinant of a tr1angu-

W

“ lar matrix. 1s the product of its d1agona1 e]ements, and s1nce similar

- matrices have the same determinant, (2) also follows from Schur's triangu-

1ari2ation'Thedrem. ’
Now, we give the results whf@h'invo1ve only det A .
. 1,
(a) For ]A]f = max [A.] 3
: SR R

Given A ,

65
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et A" < 3] | (3)

When A s normal, equality holds 5f‘aﬁ only if A =cU ,

LI

for some scalar c¢ and unitary U .

Proof: Inequality (3) is immediate from (2). The equality

'u"‘conditionsffolTow from Theorem 11:9.16).

Iyl = min INE

Given A,

AL < ldet Al S

n
0
c

'v

When A is normal, equality holds if and only if A
for some scalar ¢ and unttary U ., , -
Proof: Inéqua]ity (4) is.clear. The equa]ity conditions

l

follow from Theorem 11:0 (6).

- U
(e) For sum of éigenvalies: .
Given A, '
‘ @ ,
n |det A]a/n 5_Z-|A1]a' s a>0 . (5)
T " * )
For normal A , equality holds if and only if A = cU for
' some scalar c and unitary U . | 4 e
S
‘ - e

. . ] .
¥ . B
. - s
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Proof: Inequé]ity (5) follows by an app11cation of the arith-

metic - geometric mean inequality to, ldet Al® ]A 1% 2|“ ‘s

A,1% 5@ >0 . Equality holds in (5) if and on]y if
IA]I ¥&]X2| = ees = IAn[_, which for normal A happens 1f and
only if A=cU, for some scalar ¢ and ﬁnmtary u .(see -

" Theorem 11:0 (6)).

; -0
(f) For product of eigenva]ués:\‘
~Given A, . i ,
u L o
: A 32 “es A, = det A 3 o (6}
i O
(g) For singular values: ‘ '4>_. , ,‘:i
ijen»'A R s  §1
- I |det A|]/n <‘0] ‘},;;“; f;-‘VA/ ] S A7)
o % det A]V/0 ey T e
Te o n et Al 7e® , azo L -~ (10)
. E : | ) . o
L ; v o ;
Equality holds in (7) if and only if equality ho1d5 in (8) if
. and only if eqﬁa]ity holds in (10) if and only 1f A cU for
K - some nonnegat1ve c and unitary U, -
* \ ._f/;"}‘

igé



b.

E(K)‘f‘.\:" .

1:7:0

Proof: .. From Theorem II:4:1»(1)'we have |det A] = 010, 0, .. E’

’ theorem (see Theorem II 4: O (4)), A =c ”V . The converse 1s'

i

w
%

. . ' '1":51:? P o7
Now, inequé]ities (7) and (8)" are c]ear Inequality (10) fOTTo%§ Wl

‘ From the ar1thmet1c-—geometr1c mean 1nequa11ty Further, eq&@]—

r - .
. s

[N

ity in (7) or (8) holds if- -and on]y 1f

, \ .
iy v -
).‘

W g, =g ="’-- = K‘ Id ’q AI]/n | 'l . (”‘)

Further, equa]1ty 1n (10)'h01d§ if and on]y if (11) holds. Héw-’ :

ever, 1f (11) holds vthen from the S1ngu1ar va1ue decompos1t1on

. ea . o o .. . *n.;.
trfv;a]. 4 o ¢ .

N
, <. . B
. . . . . “ P g -
o . ! . PN .
A o Py . ,
i d N
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lns?:lk‘é‘
iy
)

gl Vand \iﬂﬁAv'are‘known, then results of Section 0 and -

w110 can be{'i‘i‘g d to yield 1mproved bounds for the eigenvalues and the
:k

s!ngu]ar va]ueshof A . In add1t10n,the fo]1qw1nngower bound for‘4c(A),

ho]ds’ 3«& ) o S ;, '
. et . N : N Cew Foy
_ .- T ey T o )
- (h) For the conditien number: - FO ‘ .
o - ‘ R o B
¥ .. I¥ det A4 o'm,_the'n': o .
R o _ U R . ‘ -
- S Itr Al e (A) (1)
LA . ’ . w ke Ed o
LR “ o . ‘ n ,det AI :ff . ) C e
. Rt , o R -, ] - . 5 o P
} Lt ‘ B o R . . \ ‘
R AR A For norma1 A, equa]1ty )
v,a_‘f - o " sca]ar matr1x -
o< l_‘ J.»::\{;‘
t Y. i .’«’.

LY B

: o }5 Proof ﬁInequa]1ty (1) i
Further for norma1 A'; 1f equa11ty holds 1n (1

@?ﬂ'_- Cily IA]J = [;r Al /n, wh1ch 1mp11es ”A] 7 A, N&Wcz/’df’

from the Theb}emf11:0 (7), A mustsbe q,spa1ar The converse

) then ecessar- ;7/

ié:clear,j e "," - 5@ 2 ,



§7:2 - IR
det A and the d1agona1 e]ements of A , res%%ts of
In add1t1on ‘the fo110w1ng resulit for the.

(h.
Given

Sections 0, 1, 130 and 2 0. hold.

’condition_numbef’ho]ds;%:,. o N

PO P
4

O ot
-~
4«

~ (h) For the conditfon number: *
) L . .’.“ . -. R ; A, ‘3 . 5

i ’ - - ’ ,[ ) N N e - ' ; .
I det B#°0 then, ok - - ' ‘
g ST T D O e -

__.‘ i ) - 0";‘:) . t . =2 ,'I. X N . }J v . ‘,‘
..‘_:.:v. B ‘1‘ .

i
o S R X ‘ {j:‘hlj:‘ j) : . S (gj . Tt ‘i LT
o pfivjded aétrA #0 T o am ‘ . - ._,;
E .“ ' ‘.’% C% U ‘ R . - -“ ’ . Tk a.‘ "‘ . .
Proof: = Sifce- “dét A 5:401 e Unl;.(Sée Theorem I1:4:1: (1)}, L
det A0 1ﬁb11es d; >0 . Now, (1) follows ficom 1:0 (4)~ e

vand,.‘j.Zv.'O‘ (3). .

n“-. ~
& [
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o det A and tr Az‘ are known then the resu]ts of Section 0

‘and 3:0 nold. In add1t1on if det \\,ﬁ/non zero, we have the following:

{

‘ ‘h .

_(h) For the condition®number:

’ . . -~

If det A# 0, then:

= (o P2 oLt gy
]/2 ld t AI][n — P‘ 1& .o S o

. , . - . . N .“.‘4
: . .“.A - fvi“g‘f
> ! e . v e

. . . o - " N . ‘ e
" Proof: The proof is immediate ‘from 3:0 (2) and 0 (ﬂ).w; T
o . - ¥ : ST g £
o _ v g
A u,
- : ) ; v“ )
o bl ‘ P

O g y .

o . iy

_ , b
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§7:4 ; ‘ "
I.. this section we shall give results Which involve 'det A and'
tr Aﬂ* Their proofs involve the use of the arithmetiCa-geometric mean
1nequaL1ty w1ttmeyer and Welner used the same 1dea to der1ve‘bounds for .
a real%?pos1t1ve definite matrix (see [7 Pg. 691). X . o
. ’ . C . V"\"j
hss | (a) For 11113= m?xllki|‘:
‘ . =7 n‘
Given A ,
v 4?£”-' 5
([ a1 ) , 2
det Al < IA ]
. (tr AR - |detﬁ$@|2/” 'ﬁa
. e
o '_ o . fftr)ﬂﬁ‘ (n 1) &IdEt AI
L P o . tr ART
‘Proof App1y1ng the ar1thmet1c —geometrwc ‘mean 1nequa11ty to’ "f
IA |2 ll lz IA IZ , we have, : : o
n (\,) ' ’ 1S ( a .
SR, | , I Iy l%- IA 12 | y
T | lqe.;Al A2 ( o > e/
> - - .l [} . ’
’ Wy L x . . .
Now Z 1A112 iétr'ﬁA 1mp1ies\the inequality on the left, as K
j g B . o . ) -
‘ ‘ ’ ! - N ‘ ’ - . ,‘.,».j‘:
|det Alf:?* < |A112 . Also, solving for the second IATIZ SN g
~1in (2), we obtaimg ' : . - _ ~
S -‘fz‘?-;»fs‘i-:f S o e 2] o
i - A / n- ]) ;
Ly |2<zn| . (ldetFl_> T
which’ y1e1ds the ‘inequality on the r1ght, since - _[\;
M|2<ZIA|2<trAA . i



R A3 2¥'

S # . '
(h) " For. lAnl = min IA1| ‘
~ S |
G1 Vén A ’ ' ,"'viu‘

Mr AA

K \r i ‘ ' ot

"Proof: *If A .= 0 then (4feis é1ear In’ case_ A # 0 app]y-vv';

‘ ing the ar1thmet1c geomet&gc mean 1nequa]1ty to )
‘3; dag 1%, l [@n 1J.:, we have*J L

wh1ch estab11shes the left h§§§;51de 1nequa]1ty NoQ,'if
An & 0 then the 1nequa11ty on the r1ght ho]ds Let:ixn 0.
Then
1A 12 < DR |27- (n;]) ldet Al%\ 1/n-1
T | - n
12 < fam '2/nv . ’ o R
. and IAnl < |det Al , yields the right-hand-side of -(4).
(C)u'ipr l}\kl . . | . ) .
. G1ven A _ ' i.n .
@w}u\ S /9+ %5?‘% |
. "c‘ N . v
A" 2 1/n ]
2] itrAA*-(nl K ldet Al® e
L tr an*

\

.‘.)'
; r,_z,: P2

Proof: As_in the proof of 1nequa11ty (4), the ar1thmet1c-

geometr1c mean 1nequa11ty gives,

- ' L ' . X . * l
(—D—l'*)n " ldet A% < 1% < e M- (ne1) et A L (4
v . ' .- ‘? . .

el ) n-1 .
N l'” Vg2 e\
n-1 Cs l\n,‘ n-1- ’

73
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1A 12

T T 2\1/n-1
b (2" 2
oL L>‘k| < z p\]_,’_ ~ (n- (Idet Al >

¥

Now 'usin"g’i»“ "'Z J'A’._l ,J:r AA +, we.get l)\ 12 <tr A /K , which
R cﬁ . 1"»"

M together with the ahove 1nequa11ty proves~«(5).

W 2 s = o : e
e , - N 4 e y ’

]
[

For. the spread; - .

o ) s
\"X:} -Gwen A, "

R Pty - s
I S T AP AN O

T e {( L Pnol Z/n) "ldet M?}'ﬁw TN S
.. . o . tr AA Idet A, . ’ N.'L?;“’ . ] . ij-{,, & )

o~
) .. e NIRRT n

g L y{tY‘ AA -(n1 !det Alz/n V 2 SP(AV);";..“' : (6)“

.......

N Proof: Inue‘('qii,a']'f'ityo (6) is irrmedia:te from .:_Q;),a;apd»., (8). -
‘ L. ..,«»:(ﬂ_, . . ) . DR SR L - . ‘ % ' . Y D

@ 5 |

"(g) For singular values: . ®

Given ~ A ,

' ©n- -1 n-1 2 2
det A
<tr AA" - |det A|2/”) | T

<trAA ; (n=1) <_di&l_>””1

tr AA

-1 \n- -
(_an> ldet A[ n2 < tr am” = (n-1) |det A,Z/n ; (8)
tr AA / h '

) \an‘d, ‘v ‘ : ' ’ : ) : o . - § |
&t‘ o "-.v;';l"? .'2 . ',:*_v k det A 2 Vn-1w, - - ' :- T
s - 5 Iokl < tr AA - (n-]v) (—‘—;—l—> I . ‘ (9)

ut.r AA
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Q : : v
@®.

“',IID,V. . _ : . . < 2 . ' *

vl Proof: Since [det A| = Oy Ty ee Un and } o;" = tr AA,

o 1
3
{5

the above 1nequa11t1es can be proved w1th the arguments s1m11ar

to those used to prove (1), (4) and (5).-

i []
g
. (h) For the condit%on'anbéF: ,
Given A, if det A#0 , then:
_] ‘. - . . .
)" w
(t AA(n lc)i t AIZ/" T?SCZ(A)'
r AL |de \ &
W ) ..
|det A]2 1/n | A
-( N—)" ,} SN
< tr AA ' o g
- det A] : I
ths ' ‘ W
‘ - where, , °
p = min(tr B /0, tr A= (n-1) |det A|Y/M) - .
Prodf' Proof fo]]ows“from the 1nequa11t1es (1), (4) and the = - .
fact that ‘o 2 < tr AR i n_f)' ' ‘ | «
n A
0-
% 2 ’
. . - r .
. : 4
~ L'y
% ‘ 5 ‘
| P .
- L
- . .
s « 3 ( . «
- X
X | . |
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" ‘Given det A and HAA*’ix\ Al|” we have the following result: .
(h) For the condition number: - S B @ L
Given A , if |det A| # 0, then: o
Ml o :
v/ Nen e . M
. | ‘ o | ) v ‘- » o '
" g " Proof: Inequality (1) is immediate from 5:0 (2) and 7:0 (8).
’} ‘ ' ) . . [ W . \ . D
iy ‘ g . ; .
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§7:5.4
In this section v«a sha]]vgive results which involve . det A.,
- ) * * ok ‘ )
tr AA- and [[AA -A A]| . Their proofs run along the same lines as of
those proved in 7:4, except that now we yse the inequality 5:4 (1), wh‘icré}
says, |
12 4 2k k0172
D12 <= (Al - T a2 (1)
1 . . . . .
instead of | |'>\1.]2 < |]A] 12, e shall thus omit these proofd, =
i S
- ' 4&“5\9 : ) =
. - . . ) ":"w):% o N y i . . g
(a) For [x;] = max I)\.liéiﬁtié?m{ﬂ", L TG N :
. 1 i 1 \Q%,f ; . L ‘:/ .
- o A . o
' With q as given _by-(]),
g n-1 Y | "2
- \q - |det Al -
. Lo
T ~ det A 1/n1 )
. : . N < n ])(‘%—?qg—é[}—ﬂs T e (*2),‘
» . -' A i 4 - D“’
(b) For un| =min A,].
e . ! a 3 1 ? . , o
. W1th q%as in (1), ) \
o (ﬂq—‘l “Idet A2 < ] Sa- (n-1) [det A2 (3)
. . ' o - D

77



(d)

B T

Wi

. o SRR - e
“_ { (n 1), } & - {Q‘(n-]) Idet-AlZ/n_} .

o kljd‘ef A2, 1/n-1
(¥ < a- (oo (I AL, Ve

where q “is as defiged by (1).« - » <
e o

For the spread:

‘-

Given -A "and q .gs.above, . & U

e

(4. |det A|M)

K

,.k=],2’-n-’n

CoAg

S 78
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57:6 _A / : ' | i _
. \\_\\—L : | . | :  ¥w.‘

Given the row sums,

we have . -
12 ' ; N S )
DI ey = TRA (peg)? (@)

i i
. TS Ay (B 202 0 .
(L desmc ) wa== (] [F=r |9V c.=Ta., -
igk i 7k | n& jzk ‘j,~5k - § it T 5

S|— "

where, p =
‘ : » Lo e 31\ . ‘ g e e
> and re = Z aij (see 6:0 (12)). " Thus, h]]ﬁ%ﬁe“ﬁesu1}s of-7:4 hold-with
£ o T B i
tr AA replaced'dy vy as'defingd by (2).- In-addition ‘we have the fol- o
Towing: ) SRR ._‘ - p ) - o R \ |

5

. .
‘g. B
N PPN PR

* (h)" For the condition number:

Given A, if det A # 0 , then:
K's ¥ .

maxRi - ’ P 3 - ‘ ,.‘A:‘..'#:fi- ;

<C(A) . . N, -
' et AN Co ‘ G e

s AN - Ty

- “Proof: The proof is clear from 6:0 (16) and 7:0(8) .. . T
. : : Pa ! -

A <A )

-
4
\
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, zero determ1nant)

'rTheo;em'1:

n. ‘. ;
CHAPTER. 8
R REAL_EIGENVALUES
R & R
" paries.
§8 0'»Pre11m1nar1es . -
R e e oo -
- "‘1@"_‘ ; ‘ . ST e T . o .o ;
3 SIDGE G1ven the matr1x A ,_1ts e1genva1ues need not be rea] Even
,»v"’ 1\?

However thenefeilgg,y//
e <
L}

‘aFor examp]e, i the order: nzfd¥
S .

1f A ‘1s rea], a]] 1ts e]genvdﬁues can. be comp]ex

& l

-

fro : C

. Tn'.._l . a@ '4 ) ' "% . ‘ | " " ‘ ) A\’
“." Below, we state some nECessary and suff1c1enf cond1t1ons fon -

P ‘..l

- m(<n) -e1genva1ues of A to be rea1 The - prode can be found 1n [12]

. Lo . i
5 . - Y
o » N . - o

4 . R * . .

L . A
a » B L r .

Iﬁ A has m 'd1st1nct rea1 ecgenvalues, then there 15 a ﬂf S
s pos1t1ve sem1def1n1te ﬁatr1x S

of, rank m such that AS E N SA 3

converse]y, g1ven any such S s then A must have at]east m rea] e1gen—

va]ues, and if m oz

nf, then ‘A s d1agona11zab1e._ { f BN Lo

1SJ) | e iki";’_‘.a = 1,2,2+4n .' .Define_

: - T Ty
an nxn matr1x , %Ze J = ri srjvjand suppose that

o

.. S ¥
u o

for some rea7 ¢ > - %- (Ok_”c > - %. //%ﬁ

1f A has rea] trace or real non-

Then A has all 1ts elgenvalues rea1 (and; A

_ is
d1agona11zab1e ific# - _.) o oL ,

G P

‘_.‘O



1:8:0 . | R, -

o
1

Since the eigenvalues A; 5 1= 1,2,004,n , of A dre given
to be real in thiS’chaptéy, we shall always assume (uﬂ1egspbfherwise )

stated) that they are ordered as:

z ;‘-,-‘n- "5' | . : (])

[

81
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. In this section we shall give bounds for eigenvalues which
\ .
involve only tr A and n .

(a) For A] = max'x{ :
i
Define,
m=tr A/n (1}
Then
m< A (2)

Proof: Trivial.

(b) For An = m}n A1

Given 'm as in (1),

An <m . : . _ (4)

Equality holds in (4) if and only if (3) holds.

AY

Proof: Trivial.

82



1:8:3 \ ‘ »

Let the eigenvalues of A be ordered a«

IA]I > |>‘2| 2" i .{)‘ni

A

Given tr A2 , using the fact that the eigenvalues of A" are real we

~ obtain the following results:

(c) For l:

Given tr A2 ,

] < (e A2 7108 k= 1,200 00

Proof: Trivial.

\

A

(f) For product of eigenvalues:

Given tr AZ |

2/n

(det A) < tr A2/ n

Equality holds in (2) if and only if:

Proof: The proof follows at once by an application of the
—_— , .

arithmetic - geometric mean inequality to ki , 1=1,2,°+,n.

83



(g) For singu]ér values:

a3,

\

)
Given tr A2 .

o <] < (e a2 2 (4)
(01 P on)?/n_i tr A2/ n o (5)
et AZ:Z 01-2 . - (6)

3

Proof: Inequa]ities‘(4) and (5) follow: from Theorem II:4:1
(1) and the inequalities (1) and (2) respectively. Inéqua]ity
(6) follows using Theorem II:4:1 (1) and the fact that

) Aiz = tr A
k

84
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§8:3.1

Many locaiization results can be obtained using the tr A ,
tr A2 and the fact that the eigenvalues of A are real. A family of

such results is derived in [37] and [63].

A1l the results to follow are.proved in [37].and [63]. We

shall omit their proofs. We shall need the following notation:

m=tr A/n and s? = tr A2/ n—m2 . (1)
(a) For Ay = max Ag
L
With m and s as in (1),
172 1/2 A
m+s(n-1) 5_A1,§_m-+$(nf1)%._]\. PN (2)

Equality holds on the left (right) if and only if the (n-1)

largest (smallest) eigenva1hes of A are equal.

Proof: See [63].

g
(b) For A, = min A, S
1 . X hal
With m and s as in (1)
‘m-s(n—1)]/2 <A 5_m-$/(n-1)1/2 . (3)

n

Equality holds on the left (right) of (3) if and only if
equality holds on the left (right) of (2).

Proof: See [63]. . v 0
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(c) For Ak :

Ay = A, = eee =X and A

Given A ,

-1 .1/2
nos( )12

1/2 ] E (a)

n-k
K <mEs)
FEquality holds on the left of (4) if and only if

1 k-1 k n

YN

and on the right of (4) if and only if

A :oon:'}\

1 K " and Ak+1 = een = An . (6)
- X
Proof: See [63].
— ‘ .
(d) For the spread: -
‘ . /.-ﬂ\

Let s be givén by (1). Theng\
2s < sp(A) < (2n)
When n > 2 , equality holds op the right if and only if

= = eee = = l y .
Ag = Ag = As1 =5 g+ ) | (8)

In case n 1is even, say n = 2q , then equality hoids on the

left of (7) if and only if

i
>
[}
.
.

1}
>
—
w
~—

2 q 9+l

Furthermore, if n 1is odd, say n = 2g+1 , then:

=

A, = ees = ) and A, = ese .= ) (5.

«‘>/zs . | '(7) |
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2s n/(n2-1)1/2 < sp(A)

Equality holds in (10) if and only if'(9) is true. -
.-' ﬁ .- N
Proof: See [63]. '
(e) For sum of eigenvalues:
(i) If we define,
].2 o N
Mi,2) T TR E Yoo S

and m and 52 as in (1), then:

k=1 11 ' -2
m- Sl < g gy s

For (k,2) =(1,n) , (12) Gollapses and equality always holds.
When (k,%) # (1,n) eqha]ity holds on: the left of (12) if and

only if .
A_I = )\2 = see = )\k-] and }\k = >\k+] :\..- = }\n‘ . (']3)
and on the right if and only if .:
: | . N . | . . i 'ﬂ \\
Ap = A, = oeee =2 and Mar T g T A, - ()
Proof: See [63]. ' . ‘

. . ¢ -" ’
or % =

n , the bounds for }A(k 2) can be improved:

(10)
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(] ,’Q’) -

(k,n)

v

+~ ‘ -
(n-1)172

"s(n-2
)72

n s(k=1)
(n-k+1)(n=1) /2

S_s
(1) 172

Equality holds in (15) if and only if

Proof:

A
= ees = )

See [63].

) if and only if

if

if

. when

when

when

88

n
L x
(15)
L2 3
< 2+
(16)
k‘z.% +1
n
when £ <-§
_n
when 2 =5 (17)
N
when - 2 > 5 -
k < g-+ ]
k = 14 (18)
k > §-+1
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(i11) With m and s2 as before,

/2L, 1172

M T M L8 k = n-2+]

Equality holds, if and only if,

Proof: See [63].

(f) . For ratios of eigenvélues:
(i) Define,

kg T e/ g s 15#<25@ ;

and

If tr A >0 amh
N

/’ (2-1) tr X (tr A)2

and

, 1<k<f<n



1:8:3.1

c-+k-+{n'i+] (C+k)(n-2+1—c)}]/2

kg
c-+k_5{ﬁ:§¢T-(c+k)(n-z+1-c)}‘/2

Further, equality holds in (24) if and only if.

Proof: See [37].

Remark 1. For & = k+1., (24) yields:

m-+s(ni501/2
A/ Map < - ;
Kook n-s/(2K) /2
with equality 1f and only if
M = hy = eee = h 0 and A= A, = e = A
(ii) Define, \
A=A

k "2

So T T 0 Izk<azn
k2 )\k+)\2

If tr A >0 and for t = max(k,28-n-1) ,

2

(t-1) tr A2 < (tr A)2

Then:
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(iii)

and

5 < {{c+k) (n-2+1~ c)}178' (n- 2+P*kjfis .
kg ~— 1/2 =177,
(c+k){k(n 2+1)}1' e 4 ftg+k n- z+1aed ( _2+1- k)

N . o

, (29)

‘where c is given by (22). Equa1ify holds if and only if

(25) holds.

Proof: See [37].

Given k > 1 (or 2<n) the best lower bound for dkz is 0.
If k=1 and % =n then for trA>0 ,'we have:

<8 (30)

2m(n-])]/2~+s(n—2) -

where m and s are as given by'(1). Equality holds if and

only if | | : | )
y‘y )\2 = }\3 = ee = An
\\
)
Proof: See [37]. :
0
With
2
(k Ak (n-2+1) Al) , _
ke 2, 7= o 1sk<en (31)
k - +(n-2+1) X .
ff tr A 3;0 and k Ak-+(n-£+]) Kz >0 , then:

91 .
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Equatity holds if and only if (25) holds.

Proof: See [37]. _ Sy | o

Given A, \\\L,//f//ﬂ/

R R . - (33)
A THA : '

4tr>A 1" "n ~

For n > 2 , equality holds if and only if X]-+An # 0 and

}\]2+>\n2 ] X :’I
)\2 = }\3 T oeee = An_] = TT . e /
1 n L
Proof: See [63]Q
T 0
(g) For singular values: '0
Given m and 52 as in (1),
m+s/ (n-1)"/2 <o (34)
When '
- 2 2 |
Ar A >0 and (n-1) tr AS < (tr‘A) , - (35)
then:
o <m-s/ (n-1)1/2 . (36)

n

2 P ' .
b e,
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\-/
Further, if A is Hermitian then An >0 implies thaf A s
positive definite. Also, then equality holds in (34) if and
only if, C o -
. }\] = )\2‘ = v e = )\n_] .
and equality holds in (36) if and only if
S T

Also the inequalities (3) and (35) imply that X; >0 . Thus,

Arom Theorem 11:4:1 (1), o, <A and (36) follows from (3).

Fimally, if A is Hermitian then,\ >0 implies that A is

positivé definite, -which in turn implies that;‘-oi = Xi s

i = 1,2,+°+,n. (see 13:0 (11)). Thus equality conditions fol-
Tow from”the eqda]ity conditions in the inequalities (2) and
(3).

S

(h) For the céndition number:

,

If trA>0 and c¢ >0 , where .

- 2 N
C_m%__..(n_]) 5

theh:

Proof: Inequality (34) follows from (2) and Theorem II:4:] (1).
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Proof:

In case' A is Hermitian, equality holds in (37) if andmon]y 

if A is a‘posiyive scalar matrix..

The proof is immediate from inequalities (34) and (36).

P

0
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§8:4

(

*
- Given tr AA and that all the eigenvalues of A are real,

in addition to the results of 4:0, we have the following result:

(e) For sum of eigenvalues:

D

*
Given tr AA |

2

*
tr AS = ] Aiz.i tr AA . (1)

1

Equality holds if and only if A s Hermitian.

Proof: Since the eigenvalues are real, (1) is clear from 4:0
(9). Also, we have that equality in (1) hoids if and only if
A is normal. Thus, the result will fo]lbw, if we can prove
that a normal‘matrix has real eigenva]ues if and-only if it
is Herr .. Sufficiency is clear. To prove the necessity,

* Y
we wriz2 A = JDU , where U is unitary ar.

dia~" i,/\,.--.-,An) with real eigenvalues As
) *

‘ *
i=1,2,-++,n . Then we have, A = (UDU")" = A , which

N
proves that A is Hermitian. *
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CHAPTER 9

REAL MATRIX

§9:0 Preliminaries.

Given real A , its characteristic polynomial det(A-AI) has
real coefficients. Thus complex eigenvalues of a real matrix occur in
conjugate pairs and, if the order n of A 1is odd then it has at least
one real gigenva1ue. Further, if n 1is even and det A < 0 then A
has at least two real eigenvalues. The following theorem provideé a
necessary and sufficient condition for a real matrix to have real eigen-

values: .

’

Theorem 1: Let A be a real nxn matrix, with eigenvalues, xi
i=1,2,+*+,n . Then there exists a real orthogonal matrix U and a
triangular matrix T such that A = UTU' , with By = Ay s

i=1,2,+»+,n 1if and only if the eigenvalues of A are real.

Proof: (See (32, pg. 497]. .

—
~

~In this chapter we sﬁa]] consider a general real matrix.
' However, sevéral special types'of‘rea1 matrices exist. Nonnegative
)
matrices are dealt with in the next chapter. Unless, otherwise stated

we shall assume that the zigenvalues are ordered as:

12 ] 2 e > A
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§9:4.2

*
Given tr AA aqd the diagonal elements of a real matrix, we
have the following results: .

(a) For [A

1| = m?x lxi] :

Given real A ,

[AE < max Jag | + (tr a - ) as
i

iq
j

Proof: Since IA]] <oy the proof follows from (3) below.

O
(b) For fkn['= m}n IAi] :
Given real A , ‘ T
. o, 2.1/2
m}n |aiil - (tr AR - g'aii ) / j_lkn[ . (2)
//
Proof: From TheoremﬂLI:&?i (1), we have o, 5_]X6| . Thus
(2) follows from (4) below.
d

The following result is given in [7, pg. 67]:
(g) Fo- singular values: <«

Given real A,
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and

g

1 i
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‘(c) for A
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[}

§9:6
The following result involving row sums of a real matrix is

given in [54]:

K :

-3

Let A be a real, irreducible matrix such that a.. >0,

' 1T <i<n, 255 < 0 for all i # j . Further, assume that A
is weakly diagonally domiﬁant. Then X =0 1is an eigenvalue

of A if and only if

Ja;;=0 , i=1,2,0en ., N eD

Proof: If (1) holds then clearly A =0 is an eigenvalue of
A_, with corresponding éigenvectqr x = (1,1,°++,1)" . Conver-
sely, let x be an eigenvector cd??éshgnding to the -zero eigen-
value of A and r be one of the 1ndice; qu_ﬂh1ch_

[x;]5 i =1, 2, ... nis maximum. Finally, suppose the pth

N
relation in (1) is not an equality. Then we have

{

\ a_ > ; ‘]a .
'\;\.‘ pp J' p pJ !

and Ax ='0 implies,

.appxp = k;p apk xw% ’

and \\

"o Upt = 2 1ok
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Thus Ixrl > |xk| for at least one value of :k and

e Pl € Il

which gives a . < k;r lark' » unless a_, =0 for which

lxr] >_|x1| . If this, however, is the case, then the rth
row contains n-s zeros where s is the number of suffixes

j for which Ile = |xr| . A1l the s corresponding rows

contain n-s zeros in the same places. But this implies A

is reducible. Therefofe, , o=

o
gl = Dl = e = x|

and (1) folliows. O

100"
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§9:6.2

o
In this section we shall giQé resu1t§ which involve row sums
’ . /~":/’-\\. .
and the diagonal elements. |
\ . \\
e : \\ : \“
N The following result is we]l;known:(e.g. see [15, pg. 2611):
: PACE :
\; ) _ / {
. e v
. ’ 4
(c) fo%’ A
: . \“_/’;-

Let A be a real matrix with positive diagonal elements. If

A is weakly diagonally dominant, that is,

a.; >P.= 7 |a

i 'l , 1= 1,2,"',n s . (])
J7F1 ‘

1J
then:

) >0 , 1= 1,2,¢0¢,n . (2)

Further, in case ai% <0, 1i=1,2,-=+,n, then:

= 1,2,""‘,n .

el
1]
Lo
>
S
A
o
-
I

[f th2 inequalities in (1) are strict then so are th

arnd |
Proo ™ :he Gerschgorin's Theorem (see 6:2), for each
eigenva. o7 7, there zxists 1 < i < n , such that
T
11 1

"Thus we hav-=,
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|Re()) - aiil < P,
which yields (2) if all the diagonal ‘elements are positive and

" (3) if they are all negative.
U

- (f) For product of eigenvalues:

If the diagonal elements.of A are positive and A is diagon-

al1y dominant, that is,

- then det A >0 and

? (aii-b1) < det A 5_? (ai1+b ) (4)
-’_where
T la | ( < n)
a "< 1 <n
b. =
;
0 (i = n)

Proof: Since A s diagonai]y dominanﬁ, we conclude that‘
strict inequality holds in (2).. Thus all the'real eigenvalues
are positive,q Now, as the complex eigenvalues of A occur in
conjugate pairs, we conc]ude that det A > 0 . The proof of

(4) is given in [39, pg. 33].
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~ CHAPTER 10

NONNEGATIVE MATRIX

§10:0 Preliminaries.

Given a real matrix A = (aij) with 355 >0, 7, =1,2,°*,n
then A is called nonnegativé. In case aij >0 for all
i,j = 1,2,-+=,n , then A is said to be positive. MWe shall write A>0,

if A is nonnegative and A >0 if A is positive.

As we shall see, nonnegative matrices have some very interesting

spectral properties. Such matrices arise in various applied fields of

study. Further, given a matrix A , if we define |A] = (] |) then

a..
1J
o(lA]) , where .po(A) is the spectral radius of A , that is,

o
P
™
'\./
| A

max |A1| . Thus, an upper bound for p(]A]) provides an upper
.i (

. bound for p(A) . In fact if A 1is nonnegative and B = (bij) is such

ke
—_
. I
il

that lb].j| < a,

i5 » Ted = 12,0000, then o(B) < o([B]) < o(A) .

In this section we shall first classify the nonnegative matrices

and then state some important theorems regarding thgm.

Definition 1. Given é nonnegative matrix A , it is called primitive if
k
>

there exists a pbsitive iﬁteger k such that A 0.

O
Clearly a positive matrix is primitive. We shall denote the

(i,j) th element of A" by a (m) , where m is a positive integer.

1J
The following result provides another definition for an irreducible matrix.
It is proved in [31, pg. 122]. | |

103



1:10:0 T ~ | 104

Lémma 2. Given a nonnegative'matfik A , 1t is ﬁrkeducib]e if and only
if for each 1i,j (1 <i,J <n) there exists a poéitive integer o
m=m(i,j) .such that aij(m) >_O‘.
| Given any matriX A, ff ajj #‘0 s VEJ 5 1,] = 7,250 ,n
then A is irreducible. A matrix-with a row or column of zeros is reduc-
ible. In fact a reducible matrix must have at Teast n-1 .zeros (see [15,
rtég. 2641). Furthermore, a brimitiVe maFrix (in par;icular a positive

matrix) is always ﬁrreducib]e, but the converse is not trﬁe. For example,

] 0 ee-
0O 0 1 e 0
p e
O LELIE ] ]
.I LN O N

is irreducible but is not primitive (see [37, pg. 1231). However, we

have the following result.

Theorem 3. . If- A s nonnegative, irreducible and a5 > 0 for some i,

i,1<i<n then A is primitive.

Proof: See [21].

We shall further classify nonnegative, irreducible matrices.

To accomplish this we shall need the following definitions:

Definition 4: Given indices i,j , 1 <i,J<n,, wesay i leads to

J , and write i > j , if there exists a positive integer m , such that -
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aij(m) >0 .

Definition 5. If i+ j and j -1 thenwe say i and j communi-
“cate, and write

i3 .,
Definition 6.

If i+i , 1 <1 <n, then d(i) , called the period of.
the index

i, is the greatest common divisor of those k for which
(k) '
4i >0

. : D
Remark 7. Given an index i such that a;,; >0, 1< <n, then
d(i) =1 . .
o
Lemma 8. Given A nonnegative, if i"and J are su;h %hat 1++j
then d(i) = d(j). |

Proof: See [Si, pg. 14].

Lemma 9. Giyen a nonnegative, irreducible matrix A , all indices have
the éame period. A

Proof: From Lemma (2) for a nonnegative, irreducible matrix, given
indices i and j , i++j . Now the result follows from Lemma (8)
O

Now, in the definition below we classify nonnegative, irreduc-
*~ ible matrices:. '

Definition 10.

A nonnegative, irreducible matrix A is called cyclic
with period d 1if the period of any one of its indices satisfies

d > 1
and is called acyclic if d=1. |

0
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Below, we give the precise relationship between a nonnegative,

irreducible matrix and a primitive matrix.

Theorem 11. A nonnegative, 1rreducib1e, acyclic matrix is primitive and

conversely. _ |

Proof:' See [51, pg. 18].

In view of the above discussion, in this .chapter we shall give
results for_nonnegative, nonnegative irreducible, cyclic and acyc]ic or

i~

primitive matrices. We also note that if A is reducible, i.e.

0 E ,

where D and E are pxp and gxq complex matr%cés, then the 'n
eigenvalues of A are the p eigenvalues of- D and gq eigenva]ues of
E (see [37, pg. 23]); Thus if- A is reducible the problem of docating -

the eigenvalues of° A can be solved by considering irreducible matrices ..

~of smaller order.

As we shall see, the Targest eigenvalue in modulus of ‘a non-
negative matrix is always nonnegative. Usually, this eigenvalue is
denoted by r and is often called the Perron root of A . Throughout

this chapter we shall assume that the eigenvalues of A are ordered as:
/ !

rEa 2 Dol z gl e > !}nl

e S
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The' following four theorems are given in Chapter 1 of [51].

Theorem 12. If A is nonnegative, then there exists an eigenvalue r ,

such. that:

(i) r ‘is real and nonncgative; \
‘ ; .

(ii) r can be associated with nonnegative left and righf»eigen—
{

vectors; o ‘ : '

2

(iii) r = Ay > |A1-| ) 1 - 2,3,%+4,n ;

- =" ~ 1) = 1] - -

is an eigenvglde of. B, then |[B] < r . 4 ,

Below, we give ‘the Perron - Frobenius Theorem for primitive -

, matrices:

)

Theorem 13. If A dis primitive then, there exists'an'eigenva10e‘ r

such that:
(1) r .is real and positive;
(i) r .can be associated with positi}e‘1eft and right eigenvectors;_
(iii) r = Ay > lxil , 1 = 2,3;-ﬁ-,n 1

Kﬂv) f is a simp]e'éfgenvalue of A ;

(v) the eigenvectors assoqiated‘with r are unique te constant

mu1t§p1es;

(vi) If 0<B <A and B is an ligenva]ue of B then [B] <r .

Moreovef, B=r . implies B=A",
: / . 7 0
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¥

Next, we state the Perron - Frobenius Theorem for a nonnegative,
irreducible matrix:

Theorem 14. If A > 0 is irrediucible, then all the results of the prev-

ious theorem hoid except that (iii) is replaced by a @éaker result:

P22 ], 1= 2,300, . Further, if A RSV PYY
oi2Tk/8

1
O
v,
—
-
[ ]
L ]
L]
-
IS
]
—
-
(@]
-+

then they are the & distinct roots, Ay k =

AWortao | N

~Theorem 15. If A is cyclic with»period d > 1 , then there exist d
exactly d distinct eigenvalues with Al = X1 . In fact these eigen-

values are ‘A1e12“k/d ,. k = O,],...,d-] :
‘ O

Below, we summarize the eigenvalue inequalities most of which
follow from the above theorems.
(c) For Ak :

(i) Given A nonnegative (primitive) then A1 is nonnegative
' . [ ]
(positive) and
l)‘kl i(<) r :A]
Further, ‘XH‘ is simple for A nonhegative,_irreducib1§,
0

(ii) If A s cyéﬁ’c with perjod d > 1 then there are exactly d

~ distinct eigenvalues with modulus Aq 5 in fact

1 e12'ﬂ’k/d , lk’= 0,]?"...’d_]
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L

(e) For sum of eigenvalues:
(i) Given a nonnegative matrix A ,
k
0O <tr A" , k>1

Proof: Trivial.

(ii) If A is cyclic then,

trA=7) X, =0
1-1

Proof: The proof is immediate from Theorem (3).
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§10:1
In this section we shall give results which involve only tr A
and n
(a) For r =.A] = m?x‘|k1|. . -
(i) Given A nonnegative (primitive), -
tr A/n < (<) r . | : (1)

[

Proof: Inequality (1) is immediate from Theorems 0 (12) and

0 (13).. | -

(ii) If A>0 is irreducible and tr A > 0 then:

trnA <7 (2)

Proof: From Theorem O (3) we have that A s primitive. Now

{2). follows from the previous result.
O

(c) For Ak :

If A 1s cyclic with period d > 1 then:

trA/n < A, 1 =1,2,e00d (3)

Proof: Inequality (3) is immediate from (1) and Theorem 0

(15). : ' : | .
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(e) For sum of eigenvalues:

The following result is given in [6, pg. 88].

Given A. nonnegative and tr A ,
(tr A)" f_nm'] Z Xim =™ e AT o (4)
i

Proof: From Holder's inequality we have,

Now, (4) follows from 2 (2) below. -

O
(g) For singular values:
Given A > 0 , for any positive integer m ,
(tr A)T g_nm_] ) oim . (5)
3 .
Further, if A s ¢cyclic with period d > 1 - then
d o
dtrA/n< ) o, . : ' (6)
i=1 : ,

Proof: Using Theorem I1:4:1 (1), inequalities (5) and (6)

follow from (4) and (3) reSpective]y.

11
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§10:2

Here we shall give bounds which involve the diagonal elements

(a) For r = A] = max IAil :
i

The following result, due to FrobeniuscjngETJ—known:
If A >0 iis irreducible, then:

m?x a; <ro. (M)

Proof: From Theorem 0 (14), there exists a positive vector 'x

such that Ax = A1x . Thus, we have

1,2,-'-;n

>
>
~1
Q
~
> .
=
A\
jo3]
—
—_
>
-
—_
1]

1% 7

Now (1) follows as X > 0 for i =1,2,°++,n.

(e) For sum of eigenvalues:

The following result is given in [6, pg. 88].

>

. B
Given A nonnegative, then for any positive integer k ,

Z a..k < tr Ak
S DI

Proof: Trivial.
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-~ §10:3
In this section we shall give bounds which involve tr a2 .

Most of the results are immediate from the theorems of Section O.

(a) For r = A] = max [Ail :
.i

If A, is nonnegative (primitive) then:

(er a2/m)12 < ey e O

(c) For. A

If° A is cyclic with period d > 1 then:

) -
_(tY‘nA )1/2 < I}\il s 1=1,2,000,d . | (2)

~-(e) For sum of eigenvalues:

‘The following result is given in [6, pg. 88]:

‘Given A nonnegative and a positive integer m > 1 , then:
(tf A2)m §_nm—1 tr A2m , . (3)
(tr A)Z.i ntr AZ . | . (4)

Proof: The diagonal elements of A2 are Z LR .
K

i=1,2,+++,n . Thus, from the Holder's inequality,

(tr A2)m‘§_nm'] y () a
: -1k

a )m
ik%i/

113
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and from 2 (2),

(tr Az)m < n™ T g p2m

e - —

E

which proves (3). Inequality (4) follows from 1 (4).

0
(g) For singular values:
If A dis nonnegative (primit;ve) then:
tr A%/ n < (<) 612 . ' (5)
Further, in case A is cyclic with period d > 1 then:_'
2 d -
dtrA/n< J o . . (6)

114
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§10:5.4.3

In this section we shall give bounds for the imaginary parts
— . .
of the eigen%]ues of A . Their proofs are given in [64]. They involve
the use of the facts that A] is real and that the complex eigenvalues

of A occur in conjugate pairs. We shall omit these proofs,
As in Chapter 5, let,

Goent® - Loon®V2 0 s Jicin s s

8
kY= . (1)
‘ .\II(‘HZ - 1p11° otherwise
L 12 11412 ’ ’
“and
3 . .
2 . 2 n"-ny1/2. :
KC HICH™ - (_48 ) ool o, ‘ (2)
: 'l * '| * . * . 4
-where, B=§(A+A) . C’=2—1.(A-A) and D= AA -AA .,
Finally, let the eigenvalues of A be ordered as:
Im.(A]) > Im(}\z) > see > Im(xn)_
(c) For Xk :
Forj n>3 and KCu and KCQ as above,
1 20172 1 u1/2
{max(0 ;{ K )1 < Im(xl) < (= Ko ) ,

where p = [n—é—]—] . Also for' k < [%] ,

m0y) < G k'
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Proof: See [64].

(e) For sum of eigenvalues:

siven 1<jcks B3 =p and kY k" as in (1) and
(2), |

w0 lz( Im(x .) < (—l— K lJl)‘]/2 ;

’k»-j+1j il = 2k e ;

2

. k
{max (0 ,]— KCSL)}V2 < %Z Im(r.) 3
2p : 1

"and -

Pk -k Y |
() - In(A )| < [___C__L} 20, a1 Ve

‘Proof: See [64]. ) . !
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§10:6

In this section we shall give results which involve only the

row or column sums. We recall that,

The following is a well-known result due to Frobenius:

(a) For r = Ay = max lxi] : \ . @
qi

(i) Given A>0,

min Ri < r < max Riv . (2)
i i -

Further, if A is irreducible then equality on either side

“implies equality throughoqp.

Proof;> If we prove (2) for a positive matrix then by continu-
ity it will also hold for A nonnegative. So we assume
A>0. If x 1is a positive eigenvector corresponding to r

then, Ax = rx . Thus,
gaikxk=rx' 4 i = 1,2,000,n

which gives,

. < .. Max X.
romax X. __E A, max x; o,
i i
. ' ‘
r min x, >} a, min x,
. i — ik .
1 , k i

~Now since min X >0, (2) follows. Further, for irreducible
i , o /

<2
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(c)

~(41)

For

118

A, let equality hold on one side of (2) only. Then we can

increase or decrease the e]ements of A (keeping A drreduci-
ble) so that all row sums become equal and r %s unchanged.‘
But from Theorem 0 (14)rif B is such that 0 < B < A then,
p(B)lf_p(A) and equality‘holas only if .B = A, Tﬁus we have

a contradiction, which completes the proof.
0

Given A >0,
, (3)

where x is any positive vector. In case A is irreducible,

equality on either side of (3) implies equality on both sides.

Proof: For given x = (xi) >0, let X = diag(x],xz,-°-,xn).

Then the rgsu]t.f011ows when (2) is applied to X1 Ax .

Ak :

If A dis cyclic with period .d .then:

min Ri f_lAi| < max Ri s -1 = 1,2,000,d . - {4)
i : : j . .

Proof: The proof is immediate from Theorem 0 (15) and (2).



Iy
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(g) For singular values:
Given A >0,

min R, <o - (5) |
i

Proof:. Since A] 5_01','(5) follows from (2).
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§10:6.2

120

Here, we shall give bounds which involve only row sums and the

diagonal elements of A :

(a)

(g)

For

Proof: ‘See [8].

r=a = m?x |Ai| :

~If A>0 is irreducible then:

min M(i;j)_f_r < max M(i,j) , Lo (1)
173 | 1% . o
where,
co T Y- 172 .
M(19J) - 2 {af1+ajJ+[(a1] aJJ) +4 P1PJ] } ’ (2)
and ‘ .
P. = J ;“>13j = 1,2,%%,n

~.

For singular values:

If A>0 is irreducible then,
min M(i,3) <oy , (3)
i#] |

where M(i,j), is given by (2)]

Proof: Since A1 <0y (3) follows from (1).
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§10:7 .

Here we‘sha11 give results which involve only det A . Their

proofs are immediate from the theorems of Section 0.

@

(a) For r = A1 = max |Ai|
i

If A is nonnegative (primitive) then:

1/n

Idet Al < (<)r o - | (1)

(c) For. A
If A ds cyclic with pekiod d > 1 then:

ldet AIV™ < X |, k= 1,2,0ee,d . (2)

)

(g) For singular values:

Given A- nonnegative (primitive);

1/n

]det Al < (<) o

\
"\

‘Further, if A is.€yclic with period d > 1 then:

d |det A]V/M <

<
i

[N s Yol
Q
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Given the row sums and the det A , we have the following 10Wer

bound for the condition number:

(h) For the condftion numbey:

Given A, if det A f 0 then:

ST .
0 <min R,/ [det AIYT < o cen)”,
i T

where R, = § 33

Proof: The above inequality is immediate from 6 (2) and the

fact that lAn] < |det AI]/n . Note that det A # 0 implies,
min R, > 0 . ) ‘ 5
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Given A > 0 and that the eigenvalues Ai s i=1,2,++-,n

of A are real, let Az AZ 2 eee 2 An . Since A s nonhegative

tr A= ] A, 20 . When the eigenvalues of A are such that
1

2
exists a symmetric matrix S , with A s i=1,2,--+,n as its eigen-

2022, 2 ¢e0 2 An’ then these two facts guarantee that there

values (sée [6, pg. 90]). However, with this information one cannot R

1

conclude that A is symmetric. For example,

1 2
A=
0 3 s
is.nonhegative, with A oE 3 and AZ =1 . But A 1is not symmetric.

S D



CHAPTER 11

NORMAL MATRIX

§11:0 Preliminaries.

* * "

The matrix A is called normal if AA = A A. Thus, Hermitian,
Unitary and Skew - Hermitian matrices are examples of normal matrices.
Normal matrices have some special properties. In general a matrix is

diagonalizable if all its eigenvalues are distinct. However, a normal

matrix is always unitarily diagonalizable. Below we give some properties

of a normal matrix.

N First we give some conditions which are equivalent to a matrix

being normal. Their proofs and several other equivalent conditions can

0

be found in [16].
s

Theorem 1. Given A , each of the following conditions is equivalent to
\ ] .

A being normal:

* )
(i) AR - A"A s positive semidefinite.

, o

(ii1) A can'be represented as a polynomial in A .

(iii1) A can be reduced to a diagonal form by a unita%y similarity.

transformation.:

(iv)l Z ]Ailz = tr AA* .
i

(v) The singular values of A are ESE I RYY IS D)

N

124
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' " *
(vi) The eigenvalues of ] (A+A*) and - (A-A") are precisely
2 21

Re(ii) and Im(Ai) s 1 =1,2,---,n , respectively.

The following results are well-known (e.q. see [31, pg. 64]).

Theorem 2. Given normal A , it is Hefmitian if and only if its eigem

values are real.

. . : . *
Proof: Let the eigenvalues of A be real. Then A = UDU -, for some
unitary matrix U and real matrix D = diag(A],AZ,-~--,An) . and

* * %
A =(UDU) =A. Thus A is Hermitian. The converse, is trivial.

a
Considering the matrix iA  the above Theorem yields the fol-
Towing:
~ Theorem 3. Given normal A , it is skew - Hermitian if and only if the
eigenvalues of A are purely imaginary.
v ! v 0

Theorem 4. Given normal A , it is unitary if and only if the eigen-

values of~ A have absolute value one.
| Proof: Given -]Ai] =1,1 = 1,2,+++,n , Theorem (1) implies a; =1 ,

i =1,2,-++,n . Thus from the Singular value decomposition theorem °

(see Theorem II1:4:0 (4)), we get A = UV for some unitary matrices U

and V . Now, as the product of two unitary matrices is a unitary.

matrix, we‘conc]ude that A is unitary. Conversely, A unitary implies
* - ’

AA =1 and again we have g; = 1, 1 =1,2,-+,n . Fiha11y, from

Theorem (1), o; = ]A1I‘= 1 , which comb]etes the proof. P
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°

The following results are given in [45] and [46]:

Theorem 5. The diagonal elements of a normal matrix A are its eigen-

values if and only if A 1is a diagonal matrix.

Proof: Let LR .= 1,2,+--,n be the eigenvalues of A then, from
'Theorem,(1), laiil s 1 = 1,2,+-,n are the singular values of A .

Thus, tr AA" = Yo ]2

sely if A is diagonal then c]ear1y a. .

ST a2 aivee e s )
a;51° = ) lass ] » gives ay, 0,1#3 . Conver

i=1,2,--+,n are its eigen-

i1 ?
values. | _ . ‘ 0
Theorem 6. Given normal A, :
M1 =Dl === n ], (1).

if and only if A = cU , for some scalar ¢ and unitary U .,
Proof: Proof follows at once from the Singular value decompoéition
theorem (see Theorem 11:4:0 (4)). | ' -
Theorem 7. Given normal A then:

Ay m g = eeee =, (2)
if and only if A s a scalar matfix. N

y . . g

Proof: From Theorem (1), there exists a unitary U. such that A = upu” y
where D = diag(A1,A2,---,An) . Thus from (2) A = Ap UL = ApI. The

converse is clear. ' N
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Remark 8. From Theorem (1), we have that for a normal matrix

&i = IAiI s 1= 1,2,029,n . Thus, bounds for ]Ail's are also va]id

for o, 's. In view of this we shall not give bounds for singular vé]ues
explicitly. We also notice that Re(A;) and Im(ri) , i = 1,2,2++,n

*
are the eigenvalues of Hermitian matrices, B = % (A+A Y and

* o
C = é% (A-A") , respectively. Thus, bounds for real and imaginary parts

of the eigenvalues A can be derived by considering B and C .

127
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In this section we shall give results which involve only the

diagonal e]ements of A.
(a) For IA]I = max || :
; i
Given A,
max lags b < 12y

Equality holds if and only if A 1is diagonal.

_ Proof: Sii:?/%or normal A , gy = IA]I , inequaiity (1) is

immediaté from Theorem I1:4:4 (7). Thé‘conditiqn for equality

is clear from Theorem (5).

(c) For i :
Given A ,
max Re(a..) < max Re().) ;
. 11 - . 1
i i
max Im(a;;) < max Im(A;) 3
i L '
min Re(kij < min Re(ajij ;
i i
and : min Im(3;) < min Im(a;;)

1 1

Proof: As mentioned in the Remark (8), for normal A, Re(Ai)

g

and Im(ki) » 1 =1,2,---,n are the eigenvalues of Hermitian

128
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IR JUUN I * -
matrices “B = (A+A') ~and: C = il (A-A) respectively.

A1l of the above 1nequalitiés follow from the fact that if P

is Hermitian then Ap S min pis < max piy < A (see 12:2 (1)
‘ i
and 12:2 (2)) .

. (d) For the spread:

Given A ,

1/2 1/2

3 ‘max ]éij]_i sp(A) . (6)

max fa; ;| <3
- ._1 sd -~

i

. Proof: See [40].

g
(e) For sum of eigenvalues:
If the diagonal elements of A ordered as EMY E lass| >
== > |a | then:
k "k ' '
2 Ia]1l i z lk1| ’ k ="]a2a’°"’n s (7) ’
i=1 " 49 :
n-1 n-1
P S R E N ()

Equality holds.in (7) and (8) if and only if A is a diagonal

matrix.

Proof: Since A is normal we have o, = Ixil , 1== 1,2,++4,n".
Now, (7) and (8) follow from 2:0 (3) and 2:0 (4), respectively.

The condition for equality is clear from Theorem (5).
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Given tr AA* for horma] A , we have ‘the following result:

(e) For sum of eigenvalues:
) *
Given tr AA

DiIne =™ . )
1

’

Proof: Since for A normal, o; = IAT{ , 1°= I,?,---,n

(1) follows.
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* .
Given tr-A2 , tr AA and that A is normal, we have the

following results for the sum ofbeigenva1ues of A :

(e) For sum of eigenvalues:

Given normal A , ‘ - oy
R I A L LA (1)
i . '
] (Re(3;))° = tr B2 = 5 (tr M +Re(tr A2)) 5 (2)
1 |
D (m0g)? = tr ¢@ = ) (Re(tr A2) - tr aa") . 3)
Proof: Since A s normal, we have o; = [xil and that

Re(Ai) and Im(x.) are the eigenvalues of B and C ,

i=1,2, -=3n . Now the proof is clear.
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2

*
Given normal A, tr A, tr A and tr AA , we have

tr B =Re(tr A)/n , tr C = Im(tr A) /n and tr B2 and . tr 2 as given
by 4.3 (2) and 4.3 (3). Using this information several inequalities, for
real and imaginary parts of the eigenvalues of A have been derived in

[63]. A1l of the results to follow are proved in [63].

First, we define: -~

-

my = Re(tr A) /n=trB/n , me = Im(tr A) /n=trC , (1)

SBZ = tr B2 /n - mB2 and SCZ = tr CZ/ n - mCZ s, - (2)

and Tet the real and imaginary parts of the eigenvalues of A , arranged

in decreasing order be denoted by .31(5) and AJ(F) , respectively.

That is, Ai =_AJ<B) + 1 Ak(g) for some j and k , not necessari]y.
equal.
(c) For A ?
With m. and S; as above, T =B,C,
1/2 (T)
| mp + s/ (n-1) <N , (3)
and
(T) ' 1/2
Aol <mp = s/ (n-1) . (4)
Equality holds in (3) if and only i~ ‘“e (n-1) largest Aj(l)'s

are equal. Further, equality holds <: (4) if and only if the

(n-1) . smallest Aj(T)' s are equal.
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Proof: See [63].

g
(e) For sum of eigenvalues:
(i) With m. and ST (T = B,C) as before, we have:
ST

N .

-] . mT m if Qin/Z
_2 )\_(T) > _
A

ST(n-l) .

mr + Ez;t;3772- if 2>n/2

Equality holds if and only if

WV Mo T hen 2 <2,

1 2 n-1
(T) (M) _ - (T)
Al = A N = a1
or 2,0 =gt = oy (D) when & =n/2 ,
kZ(T) - A3(T) = hee = An( ) when 2> /2
Also,
s _(k-1)
T . n
T ey ey R
n : n-k+1){n- )
] v (T < ' (6)
n-k+ “ J
i=k ST . n
" ) 172 AN

Equality holds if and only if

)\ (T)=A(T)="'=A (T) when k;<'g'+‘l ’

A (M _ A (T) = eee = ) (T) or
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(iii)

']34
AZ(T) - A3(T) - e = An(T) when k= 3+ 1,
xzm = x3(T), = eee = )\n(T) when k > 5 + 1
Proof: Sée [63].
g
With sp» T =B,C as in (2), |
2s < a7 - xnm . S
In case n 1is even, sav n = 2q ,'equa]{ty'ho1ds if and only
if
01y D e ea (D g (Do e (0
Furthermore, if n is odd, say n = 2q + 1, then:
2ST'n/(nz_”m/zzix](r) _An(T') K | " (9)
Equality holds if and only if (8) holds. | ‘ \\\;;'“

Proof: See [63].
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6

In this section we shall give results which involve only the

row sums. We recall that,

Ro =73 la..l , €. =7 la.s| (1)
5 o5 1
R = max R, and C = max'Ci (2)
i i

(a) For IA]I = ﬁgx.lkil :
i

(b)

/

For

Given A ,.
(o max —L 15§ a < ] < x (3)
max s Mmax a. - < (ALl < .
n - s,t (st) 3=1 =1 'Iﬁ - -

Proof: Since lx]j = GT , the inequality on the Teft tollows
_ . L)
from 6:0 (16) and Theorem II:4:4 (1),  The inequality on the
righ  is 6:0 (7). -
0
lknl = mén ;] e

Given A,

Al < min R . (4)
; ‘ )

Proof: Since A is normal, o = lknl . Now (4) follows

from I1:4:4 (10).

135
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(d) For the spread:
If
Sy = Z TR 1,2,°,n , \¥5)
J
is real then:
3]/2'v.§ sp(A) (6)
where,
VelisZoal L m=lys, (7)
i i
Further, if Si , 1 =1,2,+-,n are ordered so that
S; >S5, > eee > S R
then: B
n+1
; [=-] o 172 .
o ) (s; -5, ) < sp(A) +(8)
Jj=1 J n-j+1 ’
Proof. See [23].
U
(e) For sum of eigenvalues:
With Ry , i =1,2,--,n asin (1),
L L )
i i
2 2 o2 ‘
1ZR1‘ /nig |>\1l. 512 R; ‘(“10)

136
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Proof: As A is normal the above results follow from 6:0

(19) and 6:0 (20).



I:11:7 : 138

§11:7

Given normal A , clearly results of Chapter 7 hold. Further,
the equality conditions given in Chapter 7 become applicable. In addition

we have the following result for the condition number:

(h)' For the condition number:

I+ det A # 0 then: \ '

2 s [Aq] .
A ] - "‘ké
1+ N 1/2_§.lknl c(A) , (1)
(tr A A/n)
where,
- 2 _ * 2
m=trA/n and Sg =trAA /n - [m|

Furthermore, if

)
e

u‘ 2 . * - .
[tr A]""> (n-1) tr AA

then

.Proof: See [63].
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Given that a normal matrix A Has real eigenvalues then A is

necessarily Hermitian (see Theorem 0 (2)).
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_ Given R; =) a5 i=1,2,->+,n and tr A , we have the
j 1

following bound for thc spread:

(d) For the spread:

Given A,

L TR - tr Al < sp(A)
. 1 B

Proof: See [23].
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CHAPTER 12

HERMITIAN MATRIX

§12:0 Preliminaries.

! %
The matrix A s called Hermitian if A =A . 1In case a

Hermitian matrix.is real, it is known as a symmetric matrix. Al]l the

eigen values of a Hermitian matrix A are real. For, if Ax=2Ax then,

»

>\(X5X) = (AX:X) = ('Xan) = X‘(X,X) .

Throughout this chapter, we shall éﬁsume that the eigenvalues of A are

ordered as:

A, >

12 A 200 2 A (M)

\
Given A Hermitian, it is clearly normal. Thus,\for A Herm{-
tian, all the results of Chapters 8 and 11 hold. 1In Darticu\jr, we have

the following:

. Theorem 1: If A dis Hermitian, then it has a set of orthonorma eigen-

. |
vectors, i.e. A =UDU , where U is unitary and D = diag(k1,A2, --,An).

Theorem 2: Given A Hermitian, we have

if and only if A s a real scalar matrix.’ a

] 4] } -'w:.f;
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In‘addition, a Hermitian matrix has other very useful proper-

ties. First, we shall define the Rayleigh quotient:

Defintion 3. Given A Hermitian and a vector x# 0 then

o(x) = LAy (3)

is called the Rayleigh quotient. O

: *
Since for any xe ¢n s GAX) = (Ax,x) = (x,A x) = (x,Ax) , we

conclude that p(x) 1is always real.

Now, we shall prove the well-known Rayleigh's principle relating.

the eigenvalues of A and the Rayleigh quotient.

Theorem 4. If the Hermitian matrix A has eigenvalues,

A 2 Ay 200 2

b

n

then, for any x e ¢n .

Ap 2olx) <2y s (4)
and
Ay = max p(x) = max L%LA%} > A, = min p(x) = min ﬁ%iéfg . (5)
X#0 xg0 ‘%o ’ X#0 x#0 VR

Proof: Let X s 1=1,2,+++,n be a set of orthonormal eigenvectors of

A , such that Axi = A;xs . Then, for any x, x =) a;x;  for some
, E

.scalars ai , 1=1,2,**+,n , and moreover, we have,

142
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Ax = ; o, Ax, =.§ SIS

. o 1z|0t1.|2x1.

) — AXL,AX) _

o0 - it (6)

1

Clearly, p(x) E.Al and  p(x) 3-An . Finally, (5) follows noticing that.

p(x]) = 31 and p(xn) = An . \ 0

More generally, we have the following:

Theorem 5. Let A be a Hermitian matrix with eigenvalues, A 2 Ay 2

see E-An and corresponding orthonormal eigenVeCtors x1,x2,---,xn‘." Then:

A, = max o(x) . | (75
(X,x,i)=0 .
N .
i=1,2,+2 k=1

Next, we state the we]1-known Courant-Fisher Theorem (e.g. see

[429 Dg. 414]):

Theorem 6: (Coupant-Fisher Theorem). Given Hermitian A ,

A]:% max p(x) - ,
x#0

A, = max min o(x) , k=2,3,222,n . (8)
'[!yill=] (X’yi)=0 : .
i=1,2400 k-1~ .

An = min p(x) ,‘
x7£0-



max min p(x) » k=2,3,2+2,n . (9)
Hysiist Oy )=0 ,
"1:],2,---,P<'1'

n-k+1 -
0

Finally, we give the iNterjacing theorem for a Hermitian matrix:

Theorem 7: Given Hermitian A » let A; be its prﬁncipal submatrix

LI

~ obtained by deleting the ith 'o¥ and cSym and’ MIAD) 2 Ap(A) 2 wee >

A (A.) , be the eigenvalues of Aj. Then:

n-1'"14

A (Pﬁ) I A

At S K

Proof: The principal submatrix ‘Ai is Hermitian of order (n-1) . Thus,

from (7) we have,

\\

‘(yj) is such that
i, then from (7),

where x is a (n-1) vector, NOw, jf y

’ = .‘.. - J.§ '>
yj Xj s 3 <y, 0 and +] Xj s J 2

‘ X 2 = 3
202 Ty )
which establishes the inequality O" the right in (10).

To obtain the inequali t¥ on the left in (10); we shall employ

“the Courant-Fisher Theorem: Fyom (9), we have

(A.) m Nr(x A0 (12)
AAAL) = maxe "Hn ]
kv’ Ty 11 = (%5¥;)=0 (% |

i=1,2, ---,n 1~k ‘

144
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where, x and y; are (n-1) vectors.- Also,

_ | T (u,hu)
Ak+1 = . max min WA (13)

i=1,2,+%+,n-1-k

Now, considering vectors u , with zero ith component, in (13),

we essentially maximize over vectors vj whose 1ith components are zero.

Thus, (10) follows. - | | 0

Remark 8. Since a Hermitian matrix A 1is normal, we have,

7

o, = [l s i=1,2,000n “
o

Therefore, we shall not mention results for the singular values explicitly.

Also” we note that for Hermitian A ,

[r=70f=twat . o
LS
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In this section we shall give results which involve only the
diagonal elements of a Hermitian matrix. We note that the diagonal

elements of a Hermitian matrix are always real.

The inequalities (1) and (2) below, are immediate from Theorem

(4).
(a) For Ay = max A
' i
Let A be a Hermitian matrix. Then
) m?x a. f_A] . (1)
O
(b) For A_ = min A, :
n ; i
Given Hermitian A ,
. Ay < m}n PP | (2) :
]

(d) For the spread:

Given A Hermitian,

2 max |a..| < 2 max la..| < sp(A) . (3)
; LR R

Proof: See [41]. | ' | ‘ , g
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Recall, that if x = (Xi) and y = (yi) are any two real

vectors then y 1is said to majorize x if

k k
s Y- k:], 3%, ’ )
12]‘)((1) < 1'-2-] .V(1) | 2 n (4)
4
// .
and -equality. k=n', where x(i) s y(i) are components of the

vectors' x
e

-

¢

1zeS~"X .

-
-

x <y . (5)

(e) For sum of eigenvalues:

The following result is given in [3é, pg. 218]:

- Given Hermitian A, let a and X be two vectors such that

a = (aii) and A =§Tki) . Then: .

a <ix . (6)

Proéf: Without Toss of generality, we'let 337 2 855 > e >

ay and for 1 <k <n define A = (aij) s 1,35 1,2, 000,k .

Let the eigenvalues of Ak be A](Ak) > AZ(Ak) 31--- z-xk(Ak)f

T Then from Theorem 0(7), fo. 1 <k <n-1, .
MPr) 2 28D 205080 2 e 2 A () 2 2y ()

-

Thus, by definition of trace,

147
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148
R, !
o= ) A (A) < A (A L)
j=p 01 je1 k j=p ] k+1°
\ k
i]Z g

Finally, since tr A = 7§ a. = ) A s (6) follows. ' - 0
1' 1' |

!
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Given tr A and tr_A2 the results-of 58:3.1 hold. In addition,

we have the following:

(c) For Ak‘:

If for Hermitian A » tr A>0 and

IS

trZA_i (>)(n-1) tr A2 , (1)
then "A is positive semidefinite (positive definite). That is,

SN2 ()0, k=1,2,00,n .

L’Prooff It is shown in [63] that 9

1

n— n n 2

4 2 2,\1/2 : ‘
y s trA <tr A= _ tr A> / (n_])l/Z ,
n

which is nonnegative (positive) if (1) holds. Thus the result

follows. ' ' - . : O

(h) For the conditibn number:

(tr A)2

tr A

If for Hermitian A , tr A >0 and p = 5 - (n-1) >0 ,

then A is positive definite and

where, m = tr A/n and’ sz = tr A2/‘n-m2 . When n>2,

equality holds on the Fight if and only if, | -
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A 2+)\ 2
Am = A. = eeeiz ) = ] n_
2 3 =] _7q—¢7§:_ >
and then
2 2
tr A2 = )\] +>\n : \
. trA AT'+An o w/gh

For n > 2 , equality holds on the 1eft.1f and only-if n s
even and A is a scalar matrix. |

»

Proof: See [63]. : | S 0
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Given the row sums of a Hermitian matrix we have the f011owing

results: .
(a) For Ay = max A, g /

i
.
W

~ Given Hermitian A-,

g

as
>

Z R;/n
:

Proof: Inequa11ty (1) e 'Tate from 0(5). when

x = (1,1,e0e 1) . It s showa in  [36] that (1) is a partiéu-

~Jdarly good estimate for = ”“nnegat1ve 1rreamc1b1e svmmetr1c ﬂ

“matrix.) o  ¢'D

45:1}.'_ OA .J' {ﬁ
(d) For the spread:
_Giyen A._Hermitian,'let
. Si = Z a5 1 =]’2"i§’”
: o J e ‘ ‘,:I";.
‘ >if‘”: If Si »ul =1,2,000,n are real then: f'ﬁifé
:'- " ‘,‘I R o B ' 2v _<_ Sp(‘A“)“ 3 - (2)

A oL vhere, . > %Bﬁ*}

e

’ e w 1 < 2
: TS __é'r-”d Es

Further, if Si 1 -1 2,***,n are ordefed

B
&

151
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then:
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. 812:6.2
The result nelow °= given in [26, pg. 226]. It proyjﬁéﬁiﬁ
: BRNE Y,
criteria for checking dermitian matrix is positive defiite.”
S gt 18 E
(c) For Ak : :
, - , e
If the diagonal elements of a Hermitian matrix are all positive  # - _{A
.and A is-diagonally dominant, i.e. ‘ 7 B
a.. > z 'a..l =P_‘ . ]:]’2’-. ,n : \x])
ii FETRRARR i e .
v;;‘yr i \\ ™ 1

thefh, A is positive definite, that is ’Ak >0, k= 1,2,«1;,n1© - \
. cp / \

Proof: The diagonal elements of a positive definite matrix :must

be positive, for 0 < A <mina.,; . Further, from the Gersch-

T.r /
gorin's Theorem (see §6:2) anw®igenvalue X\ of A satisfies

A :
i T A f_Pj = _Z. laijl , for somejw] f_iﬁg;nﬁ. Thus, from (1)
J#i ' - g '
- o
each. X»> 0. Hence the proof. _ . 0
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Given a nonnegative symmetric matrix, then we have the following

result for the sum of eigenvalues:

(e) For sum of eigenvalues: @ .

If the diagonal elements CR and the eigenva]ués Ai .
= 1;2,-3',n of a nonnegative symmetric A are'ordergd as,

s PRI
W :

a])a > e Za ,

-2 - n
and ' ' o 2
)\] ->_ }\2 —>- see i )\n 5
then: " 3
s szl - - \j,- ‘
1Z]_A1-fkk z_iZ] a;*ta _yta, .12 R < n . ' (1)
Proof: See [6, pg. 97]. , - _ ' O
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CHAPTER 13

POSITIVE DEFINITE (SEMIDEFINITE) MATRIX/

§13:0 Preliminaries.

Given an nxn 'maﬁﬁgfi"ﬁwb it is called positiVe definite, if

A is Hermitian and

-

(x,Ax) >0 , for all 0 # x ¢ ¢" . (1)
In case,

(x,Ax) 20 , for all x ¢ ¢"

1

we sgy that A ds positive semidefinite. Be]ow we give some necessary

and sufficient conditions for a matrix to be positive def1n1te (sem1def1-

nite).

Theorem 1: Given an nxn matrix A | the_fol]owingvare equivalent:

(i) A is positive definite (semidefinite)s

s B . . . (‘;‘)

’ '“ (ii) A is'Hermitian and all its eigenvalues are positive (nonnega-

ST tie)s
L TR

(iji) A s ngm1tjan and. a]] its - 1ead1ng principal minors are posi-

tive (all PYYnC1Da1 minors are nonmegative).
_ , e _
Eiggfg Let A be positive definite (semidefinite). If X s an”éiger
value of A with éorresponding eigenvecto} x then we have (x,Ax) =
A(x,x) > (é) 0, which is so only if A'> (>) 0 . Thus (i) implies (ii).

- X155
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Conversely let all the-eigenvalues of A be positive. Then from 12:0 (5)

we have A= min L%JAE%-, where X is the smallest eigenvalue of A .
~ ) noog0 (Xex) 7 n

Therefore, (},Ax) > (>) 0. Further, if D is any Hermitian matrix then
so is any principal submatrix of D . Also, from the interlacing theofem
(see Theorem 12:0 (7)) if all the eigenvalues of D are positive (nonnega-
tive) then so are the eigenvalues of any principal submafrfx of D . From
this we get, (i) implies (iii). Conversely, if all the leading principal
minors of ;A are positive then by fﬁduction one can show that A is posi-
tive definite (e.g. see [39, pg. 401]). For the,pésitive éemidefinite case,
see [39, pg. 405]. - , é ‘ ‘ 0

L

Next, we give some we11—known properties of a positive definite

(semidefinite) matrix. -

e

Theorem 2. Given a positive definite(semidefinite)matﬁﬁx A~,‘then:

L3 . Py

g (1)” 311 > (_Z) 0, 1= 1:23“'-.,(#'?- o . ‘ ('.2)

(i) Further, if A is positive semidefinite and 3, 1s zero-for
'some 1 <k <n , then each element in the kth row and kth

column of A is zero;

(111) a,. a.. > (>) |a..|?

( 49 335 7 2 a5l s 143 1<d s g (3)

(iv) there exists k , 1 <k < n such that,
lagl 2 lag5l s T<i, gen _ (4)

(v) det A> (>) 0 ; . | (5)

B
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D
and,

(vi) if tr A =0 then A=0 .

Proof For pos1t1ve semidefinite A , inequalities (2) and (3) are c1ear_
from the prev1ous theorem. If Qe =0 for some T < k <n, it follows-
from (3) that each e]ement in thé kth row and .kth.cd1umn of A is Zero.
Further, if A 1s poéitive‘définite; then each principal minor of A js
positive (seele.g. [31 , pg. 7OJ5. Thus (2) and (3) follow. ThF inequality
(4) is clear from (3); and (5) fo11on from Theorem (1): Finally, if

tr A= Z a;; = 0 , then using inequality (4), we get A=o0 . o

Since the eigenvalues of a positive gef1n1te (semidefinite)

¥

matrix are positive (nonnegative) and therefore real, we shall always assume

n

that they are ordered as:

>‘ I.Z_A Z..'.?_)\n . (6)

" Remark. 3. Given a positive semidefinitematrix. A , the singu]ér values
equal the eigenvalues, i.e., 5 o /

v L

05 = A5 5 121,200,070 . (7)"
Mlso, if A 1is.positive definite,

o) = Ay /A - (8)

Finally, we present fhe Kantorovich inequality:

Theorem 4. (Kantorovich Tnequality). If A is posftive definite then:

157
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1 2

1 1/2 1/2,¢ -
N <g /)T 00T, ()

T < (x,Ax)(x,A”

for all x such that |[x|] =1 .
3 ” ‘
Proof: See [3];4ph§ 1171.  An alternate proof involving Lagrange multi-

pliers is given in [62]. - -
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the following result:

(c)

159

Lk
R T o
5?&-

Given the trace of a positive semidefinite matrix A , we have

k :

For A

Given' A positive semidefinite,

NSt AK , k=T1,2,00e0n (1)
Equality holds if and only if -
A] = AZ = eee = Ak .and Ak ] = ese = i = O .

Proof: Since A 1is positive semideffnite, we have Ai >0,

i=1,2,++,n. Thus, tr A = Y A >k kk’, from which (1)

follows. -The conditions for equality are clear. O

“y

\
¢
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§13:2

Given the diagonal elements of a positive semidefinite matrix, we
have the following:
“(a) For A] = max Ai :
i

Given A,

e max a.. < A. < max a, ]/2 z a, /2 . (1)
i =71 = ; w3 33 _

Proof: From 13:0 (3) we have Z [a | < a a, /2 ) a2 . Now
J' .

the inequality on the right fol]ows from 6:0 (7). The inequal- -

ity on the left is 12:2 (1).-% . o ' .

(f) For product of eigenvalues:

Let the diagona] elements of a positive semidefinite matrix be,.’

a1 2 3 if 23%mnm -

Then:

A ad.. , k=1,2,e0e.n . = (1)

a1,

~93 >
il

<
A

In partiéu]ar, we have Hadamard's'inequa1ity,

det A=T A <Ta., . o (2)
: R B ) ‘
‘,d// Equality holds in (2) if and onﬁy 1§ A s a diagoné] matrix

3
or A has a zero row and co]umn °ﬂ%

Y

Proof: See’ ['32, pg. 223]. | ‘ 0
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(h) For the condition number: .

For a poéitive definite matrix A ,

m?X i A |
min
e T :

Proof: Inequality (3) is immediate from 12:2 (1) and 12:2 (2), -
since A, >0 . | )

.-lL\

~




I;13:3.1

§13:3.1

|

Given $ositive definite A, tr A and tr A2 , we have the

foY¥Powing bounds for the condition number.

(h)

]

. For the condition number:

Given positivé definite A, let m=tr A/n “and

52 ='tr'A2/ n - m2 . If n fs'eVen, then:
2s 1 : .
1+ —75 < 7 = C, . (1)
m-s(n-1) 12 =2 -

When n > 2 equality ho]ds if and only if A s a scalar

matrix. Further, if n- is odd then (1) ho]ds, but morgbver,
2sn/( 2

A] ,
s/(n-1)

/2
% <

] : '
— = (A) e 7 (2)
2 An - ‘ .

P

When n =3 equality holds if and only if the two smallest

- eigenvalues are equal. For n > 3 equality holds if and only

if A 1is a scalar matrix.

Proof: See [63]. ) o - -0

162
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Given tr A2 and -the diagona]‘e]ements . positive definite

matrix, we have the following bounds for. det A :

-

(f). For bfoduct of eigenvalues:

LA

(i) Givén positive semidefinite A ,

i \ ) : ‘
ST tf‘.tAz—Xa'..Z
T a CT L i < det A
i ii n-2 ' 2 = ’
S Proof: See [32, pg. 224].
(i1). ‘Given positive definite A ,
@ _ n-1 2 2
det A 5_? s =A T (tr AT - % aiiv)
. n-1,, .2 « . 2
i? a; s -(FrA/n) (tr A" - 1_aﬁ)
Proof; The inequality on the left is giVén in [30], and
the ihequa]ity on the right follows using An Sptr A/n.O
Am‘i/‘:é,, . . o
“For the next result we need the following notation:
Let ‘the diagohal elements of A be ordered as, w

163
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. _ 2 - 2
m, = Ak/k > Sp = Lk/k m (3)
E . n‘-z-k 5 '
A, = a; v, L, = a , : (4)
L B A N
- - '5;‘!«5
m,=A,/k and s Z=1L /k-m,° (5)
-k -k 7=k -k " Tk '
| ' N
(1’1')" ~Given po;i,twe definite. A, let = = a, > ay > ezap T
contain the ordered diagonal of ‘A . Further, let
- 1y 1/2 .y | ‘
T m - s/ eV o ),
. 1y1/2
uy = m + sk(k-1) - ‘(7)
. “wo
‘ » S ) ]/2 .
; . .= , + : - g
e ,-q_-J M. ; S_J/(J 1) s (8) ‘
and ' ' ‘ |
! = .— .;. ]/2 - + ‘ . ' ' ' )
» . ) b_j m_J' S_J'/(J ]) “- . ‘ a8 (9)
. | . . LR

Then there exist integers” t and r such_}:ha‘t pk ,>§ak‘ s k=n,nal,ee e tH],
:al o < < a | < a | ; 5 = n_,]‘, . ..l-' - +1- Qa—:' >q
“t+1 = pt_ t q-J ,n—j+1 » J=n, 4 a': ) 'n;r Z q

-r —>— S B
and, we get . el
€~u (p t a, ;4 =ce Ay C -
= TEHITEH) SR o O ‘

- n-1
<u(p)

,‘ I v (10) ii§§
1 'h . ] _: . l‘ . » :} ’ B ?
N . : . ", “ v R ) . ‘
Equality ho‘]d_s' throughout the first j linequa_]ities if A

p = e A s

T At"J-T. ad Apysui T Bgageq > 17010 -t in“this case %

Y2 = Pgygy and Ay = ugs . Further L -
. | q , *



Do | ] i\'b (q-")n_-] ._‘ ',1 e )

“Equality holds throqghodththe,firstﬂ J -Eneqya1i£1es if,and only if

:aa¢=>\ =~;'o.—l_.

A : X
n-r o

n-1 Apopoger ARy =3y T =T, erenreg i
t?ms case - kn—1-= q (r¥j) and{ An = q'(r+j\

£

e , ‘ ) e

w . . L . W
. - 4

" Proof: See [171. . |

5 ’ A ' AR

P e - = el e nLat
W * A procedure for calculating the above boupd.for det A sl ~ '
- ) ~ ‘. L . . v g, '.“ e T . \1) . ' . ‘; e .;",\‘N N .
also given in [17]. = - © SRR v I
g Nt g - S
. b "'\4...‘%& N - L v I,:‘ o : o o . .
Ly - RN
L A ‘ - . 1’
. @ | ; (.v)‘ : ¢ // .
N T s, ) P
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8 . / . . .o
I;13:6 Ny | E e
=
‘ &

s
§

nE inr=y (c) For A s ,<‘_'-, ) - . D )f .
G1ven A posntwe sem'ldeﬁmte 1et R Z Jas ;] be arranged as
R e > R .->‘ ses > R o Y - o o . a‘n: \ R . )

R T ey <0, - o)
<R.’ min <R —12... LM
SR e WJ O T

- . Lo : . . I et . ;v: . 1::} ."’,»"L:m A vué‘
v ’ . v, . ° \ c\b j‘l L:‘, .
M: For k =1 the resu]t is knov{n)(see 6 O (7)) Let

-'A a . denote the‘prmmpa] submatmx obtamed by. de]etmg,
k - LY e

..o']

] 2

: | » ' | ) - -' ‘ ‘“\ 6 ,’:aj_ ' , R (\/j/ ‘
"x A ) ke 11'/;\ W1 e o
" ‘_‘ _<_ '.“ .... s = ...,n .
. ,,'k+01 1 Tiide: 1k\$
) . .~ S~
Now from 6:0 (7) g“f L
- A (AL b < " ., B ;
17, Tpigeeedy 1]12 Y
"ﬂ’. - --;%,.

. where Ri ; 1 L 1 2,5 -n,n -k % are the’ row sums of
- ] 2 k : .T‘ Q-Tr .
A. - arranged in decreasmg orﬂer .Howe_ver',
T2t B} -

R

> R. . . < R. - min . |a, . -
% gt = My T b l i,

“ wh1ch cbmp]etes t?e,pm? . .4

BT o &

Lo~
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GiJén the'roWQEUmS and. the aiabonal elements, of a pos1t1ve

&
. definite matr1x we have the fo]]ow1ng result for the cond1£1on number'

i‘;.". . -.p . . w .
R
(h)s‘Eqn‘the‘cOndltlon thﬁer:

i & i e o L ’
, A] - A1eo, fhomlJZ.Z (2}1 .O_< A-;f_ml%aaii . Now (k%?fo]]?WS

»

Prod? ‘Since “o]'= XT , from q:é’?ﬁﬁf we have max R, /1 [g <

- . ‘- . N ) » .. o
gt . - . . N . AT



N

™
N I
¢

. from which the inequalities on the right of (1) and 1ef£'of

) ; (2) follow. They.are also proved in [7, pg. 69]. The fnequal—
‘ ! - » ) R ~ E

. ities oanhé left of (1) and right of (2), now follow, since

) frA[niA] _i,tY‘A .
Thé following result for AAn ‘can be proved Sim11ér1y:" - o

(b)' FOf %n : : ; -
Given a.positfve definite matrjk A,
: ’ . : -'\.~ “‘P

1:13:7.1 . o - | - 168
§13:7.7 i .
. gﬁv\r e ’
.fgive results which involve the deter-
mi- it ard . the trace of a poé]tivé d;finixe (semidefinite) matrix;' . : .
. (@) For Xy = max As o i : ;
- v i
. Given positive semidefinite matrix A # 0,
(n/tr "7 det A < (0L )" get A < A s (1 .
. and ) - ;'1~,"‘ V‘A 'l@, » ' . ‘ b ]L';, [
: : e g - L R A
; A <t A =P det Ay /M o
© o w < trAA - (n=1){det A/tr AYYM] o ()
D @y o . Lo
7 - _Proof: Applying the  arithmetic-geometric mean inequality to ** . /'~
’ ‘ . v . . T i T :
nonnegative eigenva]ues AZ,E?;-ff;kn<,fwe,have,
‘ ' . trA- X n-1 ' ‘g-' 
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det A < >‘n" P . (4)

and

A

S weon o1y det AVT/n-1 e 1y _det A\1/n-1
L C Ay 2tr A= (ngd)( - ). Ry w

o e , . :
The results below, follow from (1), (2), (3) and (4).

(d)  For the spread:. | ' ' B

G1ven a pos1t1ve deﬁmte matrix A

P Y A

b . . . - - , -1 ¥
o () < tr A-(n-1)<?"AA>”” [

. ~'d

b

-and

s

n \n-1
l '(,tr A)>

det A-+(h-1)<”tdeg Al]/” ]

- tr A <isp(A) oo

e . o
(h) . For the condition n‘u?ﬂber: < ot

P
ar
X

" For pBsitive definite AL, s .

n"n#;]) ' ' "\ .
n det A. 1/n-’1 RS o
trﬁ V=) . . : S

tr A .
:# ‘ > tr A- (n 1)(—-—th A)]/n-_-1

tr A
. ‘. , < .
Tl .-'yz;éi,'.}ffj, T "'3‘.,,.. S '(&)n'] ‘det A ’ RS .
h& ..‘\,l L N L . - :."‘ ‘3 A & o ! tr A o .



Yoz . .70

Z

.y

513:7.2 | &

’ ‘ ] - - . » ) " .. .,J\’ . : : & ‘ ‘d* .
: CL 3, . . . ' Ay
In this seﬁ§1qn'we shall give results which 1nvo1ve\§he determi= Y ¥

e

4

nant and the diagonal elements of A . Since 0 < max ass iIX}"and

, _ ' : |

) ‘ e WAL
0 <A, <mina.. , inequalities (1) and (2) below, *follow From 7.1 (1)

: i : L PARE ] |

and 7.1 (5). \ : ”,1( ; gﬁ o | s ',f

.

_— Lo g ' s
(&) “For A; = max A, @ Ty oL Com T -
‘ w . ] > ‘j,." 7 o ‘:’ . . - R ‘ , - B . ~

A = ® ,,‘Pf-’p:t s 4 | . | . o
Given, positive semidefinite A # 0, * cL \ N

. v, . " . ‘ ' ‘n"']’ o o ‘A ’ c - ' . .
~ Y . . n"] s : } Lo . 2y
D e, & “tr A - max a. ) | det Al‘i-"xl = - ) - )
' “"“?ﬁvnw 3 ¥ . . ']. ' . Lo . .
’ R ax“i-} 3

(b) For ikﬁ‘=vm:n Ai : : » ffn' o
Given positive defjnite A, .
R . A \1/n-1 B S Fa

A Iy An < tr A-(n-7) <%§%£3é7> ' . (2)

| R

%

¥

Jhe'folfowing result is.giyen%in.[ZQ]:
: T : , ) - e L o3

. %> (h) - For the condition number:

sa e ’
X

;‘Qﬂ;%ﬂ-jl  GiQeU{fg positi?é,dggﬁﬂﬁte, Tet -
£ . “ N i S ) . N . 2
q =4 c(A)/ (c(A)H)" .

Yhen: .
‘ ?

qn-] Ta,.. < detA ,:' o ¢3)-

ra1 .

with equalif} if and only if A is a scélar matrixQ

-



S T:13:7.300 ,
',13’:‘7}.3.1 .
¥ oo G1ven tr A s tr[Az and det A , for a positive definite matrix
A, we have the fo110w1ng upper bound for the cond1t1on number:
X -;L' P . \}w . -,"\ .1,_ ..:7' ., -
'Jgk - (h)~ For the_dbndi%ion numBEFf} “,?’;;
A - Let A “be pos1t1ve def1n1te, qu m=sgrA/n and ‘
,v f_“" 2 tr A /n - m2 then oo, 5’.1 . : . 11 . : | \, | .
L : ER A s R A ' ’ Lo

. - 3
. . W S w *
. b Ly, Tng. M2t . "
s DU : _

g
JARGIIP (Zn)”zstm+s/(n 1)”2 "~

e L AE . : et
e P S 8 S R N ¥
- a \.t; Ny \': :"v o, 0 SRR r \ : B
. o e Ce A et iy » S
. - > s
.Proof: See. [63]. - = - 2 IEERRS S -
—_— ., P T . : : ¢
o L -
W - el +
: e, N N
. -
5 '~'{I_
.,‘_' )
N < oy < VA e A W

Ll
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 SPECTALIZED TOPICS




CHAPTER 1 .

N
RN

SPECTRAL RADIUS

\ -

§1:0 Preliminaries.’ o | ,fggg

‘Given an nxn matrix A, let A, , 1< <.n®be its eigen-

[N

values. " Then|,

5 o(A) = max Dt S

5

»

is ca]Ted the spectral radius of A . The bounds for p(A) are given

under the. head1no (a) in the chapters of Parayl In th1s chapter we |

» shall study the re1at1on _between the spectra1 rad1us and the norm of A

and give some resu1ts which are not included in Part I.

’\’,h

4
rd
.

R

~

&
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- {:“.!%l.q-
~81:1° Matrix Norms.
\ . IR .
L ' Given a square matrix A of order n , its matrix norm is a

nonnegative number denoted by |[|A[| , associated with® A , .such that:

(1) [IAll > 0, with equality if and only if A= 0 ;
» - ' ’ - o €5

(ii) IchII lcl ILAII for any scalar c ;

(11) || A+l < [1AIL+ HIol] 5 nd

-

© o (iv) t|Ap]] < | A} |ID]] ;.where D s any matrix of gfder n .

; ‘igif ‘
LK
i 42
-However, maf?1ces usua1i¥”q§c riin ¢ unct1on w1th vectors and it is
“‘_*‘ SN ‘?7"\
convenient to def1ne a m€%§§4ﬁhorm 50 that it 1$ compat1b1e With"a vector

A
hat

norm, in the fo]]ow1nq sense

Definition 1: A matr1x norm is said to be omgat1b1 w1th a vector norm
x| if IIAXII < lIAI! llxll o ‘ :,zg

. “t f 10 \ . e
| O ou
- IR The foHowmg result 1sé well- known

. . .
» _ : . . ‘ . ‘

Theorem 2: Given a matrix A of order n-, then- -

S LIAlEs max | [Ax]] ., B (M
CoTER £ [1x][=1 - I ‘ oo
& .
oM » ) _ 23
def1nes a matr1x norm, - . ' : S . - -0
% : X . ‘ ""."I . » . . I/. . ‘
Note that the norms on the right of (1) are vector norms.
. . - ./ . - -

Definition 3} A matrix norm defined by means of (1).is called, a matrix

norm induced by or subordinate to the vector norm. e o



\,A/".‘,« 4 ;<<'t Es
£ TRy e
H»”“A}A:’] :] Y
:,\’ e
e

Clearly any matrix norm which %s induced by-a vector norm is compatible.
The most commonly used subordinate matrix norms are the oneS associated

with the 1,2 and « vector norms. Below, we obtain their explicit

representations:

!

Theorem 4. The matrix norms subordinate to the 1,2 and - vector norms

7 are . - \

i

PYRd
K7

"

a

Aoy

Proof:let [|x|]y =1, that is ] |x,| = 1. Thighp -

RIS L

i .
) \ ] . o~
_ . ] - I3 . . .
e T Tan ] I =TT lass] e Ix.] |
o g
. <maxz,la;.|.’. . . * (5)
B -5 5 iJ ‘ ,
. . M :,V} T . ":’

‘Now,'suppose that the maximum jhf(S) 1s,attaihed4for Jj=k. ‘tet‘g'?be' h
such that x, =0 , 1 # k. and X =1 > Then,
. b . i . )

[y = T lag ] -

Hence from Theorem (2), -

175

.

coem i . .
N o
[Al1, = o "“-";;*;82 (3)
| E ‘ KOS 01
A IR Lo e TRy |
Ul m el )
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. .
1ALl = max IIAXII x } las.]
IR S
which establishes (2). To prove (3), we let Hxll2 ="(x x) =1, ‘Théa__
' ) ) * A ' .
[1AX[," = (Ax,Ax) = (x,ATAx) ay
and from the.Ray1eigh's principle (see'Theorem'I?12:Q(4); we gonclude §~
. ' o ) : ) ’
" that ||Ax[|22 is the largest eiQenVa]ue of  the positive semidefinite v !
" matrix A*A'. Fina]ly,since A*A - and AA*v_hawe:the same eigenvalues
T (see Theorem 4:0(1)), ‘we conc]udé thaggji T
N Lo ) - j
max- IIAX1'2“'= ?wf. ok -
: IIXII 1 . ‘
Now (3) fcllows from Theorem (2).‘ Fina]]y; %&.pfcve&(4)_1?t T 3{35
][§[|m = max |xi| =1 . Then{“ q o ) '
i T :
. ‘ . . := s ‘ ‘V’.‘ ‘ ‘\(‘ ) : 3:‘;
. | [AX] ], = m?x |Z a5 Xj < m?x M a1 ]x |‘ BRUR 3 |
: J « .
‘ , L v i’m‘{iX-Z- lawl “ e
. , ’ T3 T T S
Thus, 4 . o o~ ' %%
L ., o :
[[All, = max [4Ax]], < max Z la1Jl . S (6) "
: - . ‘le_ll‘=1~; ' i~ T
Ad ’ : s : ,. ! . .‘._;«A“
Now, 1et the max1mum on the r1ght in (6) %e attained.for\ i = k aﬁd
e . ) cons1der X such thét\ :j =1 if .akj 2_9‘ and, xj =-~1 -]f ‘akj'< 0.
Then N Voo e
QY- ¢ . : T
' Il gl - ,
o _ oo o oo
and (4) follows from Theorem (2). . R
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IT:1:1
o k _ R
Remark 5. The 'JIAIIZ is alSo called the spectral norm. ‘ g

‘

Definition 6. A matrix norm [+l , is called unitarily invariant if,
from any unitary‘matrix u, SRR |
<y " . .
- ,.';u aull = (1Al . S o
ER . “ ;l '
Ba s %
:u:g‘},)‘ Sy , ' e . o e "‘L A B I
Iy w Remark’7”' The Euq}idegn nbrm, IIA[IZ‘ ) La;}%z”/a:;cussed in Chapter
Ew :\ ‘ : Y "'”" "',},1 o : 1 \;}’ M
hﬁiu I 4 1s not subord1nate to any. vector norm. For, tp case‘of a subord1nate
) matr1x norm, by def1n1t1on, the norm of the 1dent1%y matrﬂx 1s one, wh11e
, Euc11dean norm 1s c]ear]y nq-/2 R where n is the order of the 1dent16§
' o NG However, 1t is compat1b1e with the Euc11dean veqtor norm Flnally, :
et the Eugagdean and the spec@ﬁat—norms are un1tar11y 1nvar1ant wh11e ‘the
| matr1x norms induced by g and L vector norms are not L \7"” o
. . F3 ,_' ' - o Q’\ - . . . Lo ’ .
y s ' The fo]]qwing result. is giver in [42]:7 - ) : -t
A Theorem 8. For-any subordinate matrix norm ||| , . '
3, ) "A: ' - ,' ) ) ’{):
o(A) g’l.'ll.‘l,\'{_l“t T )8
' Proof Let A be any e1qenva1ue of A and x- be the corresponding . R
norma11zed e1genvector Then,v ' Vy'
. AN R ”_ .
- 7 o - .
' . 1 EALy g : o
S e ~,HM-!:.IIAXH IIAXH IAI IIXH IAI ,
\\- ' | o - Pun . .
which completes -the proofs: - d. : .. 0
\ . : - . . \ DA : /
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¢

" Then p(A)

| THeGFem~1O1

>

D Proot: . see (4. : o SR PR o, 'x.‘g . 0.

IT:7:1

By;using the above theorem one can ﬂerivejbounds;fOr the spectral:

-3

— Y
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radius. For example from Theorem (4), we obtain p(A) € max R ; a result -

of 1:6:0.

Given 2 norma] matr1x A > O, IA ] < i

4:1 (2)): Thus, for a normal matrix A , equa11ty in (

spectra] norm.
D"

cond1t4oqfﬁﬁ§r equa11ty in (7){ in casé of the;spectra] norm.

"o

',“Prggf: See [49]. - ,:/;‘ﬁ} I e

y

Then o(A).
of the form

o(M)21 :.B*B

|A|>!x 2

I : s

Let. A .be an nxn. matrix'and

= |IA[l if and only if, ||A"]| = 1|A][”

'Let: A be an nxn mJtrixJand |

i

0

n (see Theorem ~

.

~N A

) ho]ds for the

.. The f011ow1ng theorems prov1de the necessary end 5uff1c1ent

. . ‘ R
5 ) N B . © - N
. o .
u N

|| be the. spectra] norm.

. ‘5@ . o . N ) . /
TN Lot

~, ‘ - 4 : ' B .
. .. } . . / \

14
RN

o

ﬁ be t&e spectra]‘nenm

]|A|[ if?and on]y'if!‘A s un1tar11y s1m11ar to a matr1x

«

¥ o e L | B
is positive semidefinite, and . s {sgch that |A l"lkzl-'--~‘-' i

N o
> eei> |A |, and f is the 1dent1ty matrix’ of order n-s .

T e

P

!
e
|
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In this section we shall giye boundc for the spectral radius,

which are not included in Part I. - -

The following theoremﬂis well-known:

v

Theorem 1. Given an nxn matrix. A ,

j - o(A) 5nTa3< lagsl - (1)

Further, if A s normal, then

max la; | <p(R) . (2)
1,3 .
"Proof: For the spectral norm, Theorem 1 (8) gives, p(A) <oy Thus,

o(A)2 < tr AAY = Y {a..lz and we get p(A)2 < n? max la..|2 , which
> Ny ijl - A R
1,) 1,)
proves (1). Since for normal A , po(A) = S the inequality (2) follows

from 4:1 (2). , ‘ 0

. Theorem 2. Let A be a nxn Hermitian matrix. Then

, A
[T al/n<om) . (3)
1, ' : ' :
When A s positive semidefinite,
/ o(A) < U (4)

where,
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Uy =ay
1 I ‘ 2
L i N T T
Us =z lag5 * Uzt (255705007 +4 by )
bR 2 . -
oy = 2 el s 3= 28 and
1_-! 3 '

A1 is the largest eigenvalue of A .

Proof: From the Rayleigh principle (see Theorem I1:12:0 (3)),

~

o(A) > max (x,Ax) / (x,x)
x#0 o

Thus, choosing x = (1,1,+-+,1)" , inequality (3) follows. It is also

proved in [23]. Inequality (4) is proved in [52]. . ' g .

The followina result is given in [5]:
' \

Theorem 3: Let A' be a positive definite matgix. Then

k+1 k

tr(A0) 7 tr(A) < o(A) < (er(AK)K L k=120, L (5)

(]

Proof: Trivial. ' .

Next, we give some results for/ggnqssftive matrices. Ve note
]

that for any matrix A if |A] = (]aijl)' then™ p(A) < o(|A]) (see

Theorem I1:10:0 (12)). Thus the results for a nonnegative matrix are also

-applicable to an arbitrary complex matrix.
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/

We shall need the following notation:

Ro=lagy 5 Py=Ri-an
J \
(6/
R = max Ri and r = min Ri

1 1
The following theorem is proved in [8] and [9].

Theorem 4. Let ‘A be an nxn nonnegative irreducible matrix. Then for

n>2,
min M(1,3) < p(A) < max M(i,j) ~ , (7) "
£ i#j .
where
-1 .2 5, 1/2
M(i,J) 5 {a,. tagg e [(a”. ajJ) + 4 PiPJ.] }
Also, ) L
Teou 2 172 ’ -
T g ey Ay T lagagg)t H dagpagd T <o) L s

9

The ihequa]itiés (9) and (10) below are proved in [19] and (447,

respective1y.‘

Theorem 5. Let A be an nxn irreducible matrix. For fixed J Tet
1 : © 2 1/2
. - = .-da..+%+a.. .=3..-3.. ..{R.-a..
1577 B3y et URmaggma 50"+ 4 ay s (Rymay 0175,

Ci=1,2,000n , T 2]

i
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min A.. < p(A) < max A,. . - (9)
143 iJ P4 iJ. .
Further,Y{f a = min a;3 » 0 = Z Ri/n and k is the Teast of the positive
3 _

off-diagonal elements of A , then:

-1)(7-¢ € | ~-1)Y(1-¢)R + ne
52-1;g1-e))r++n:0 < olA) < §2-1;§1-eg+n20 ’ (10)
| where ¢ = (k/ (R-a))n_] , so that
r¥e(o-r) < o(A) <R-e(Roo) . o

Yah .

It is shown in [36] that if a nonnegative irreducible matrix -
is also symmetric then the lower bound for ‘p(A) , given by (3) is better

than those given by (7), (9) and (10). . J 0



CHAPTER 2 -

SPREAD

§2:0 Preliminariés. _

"

Given an nxn matpix A , with eigenvalues’ K],Ké,"i,ln , the

ma&imum distance_between the eigenvalues of A is called the spread of A,

oo«

that is,
sp(A) = max [A;-A;] . m
R J
~ Also, we define . ‘ch | \ |
. \
\ | ’ , 1
spp(A) ="max (Re(j) =Re(3;)) ", ~(2)
. 1,7 - ’ '
and ‘ . ,"1’ : » ~
° sp,(A) =Mpx (Im(x.) - Im(2.)). . (3)
! jE?j—’v 1 ’ o

A

s

Bqunds‘for the spread are given under the heading (d) .in Part’I.
' D -
Here, we shall give three theorems regarding "sp(A) , spR(A) and spI(A)

and §ome results which are not included in Part I. Unless otherwise stated, - ‘_

in case of complex eigenvalues we shall assume that!they are ordered as: &7+

Tz Al e 2 ]

F29

and if all the eigenvalues are real then they are ordered as

Thus, if A 1is Hermitian, -

I
1

r~y

183 ' ~
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and | spI(A) =0,

The following two theorems are given“in [40M 3&nd [41]:

Theorem 1. Let A be a normal 'nxn matrix. Then . ;; \
. * » - .
sp(A) = sup |u Au-v Av] -, (5)
u,v ‘ i .
, B
sp(A) > V3 sup |u Av] , (6) -
u,v .

where u and v are orthonormal vectors. Also,

-

: A+ZA* S
sp(A) > sup sp (EZ—ZL) : o
[z]=1 : .
: D
When A s Hermitian, we have the‘fo]1owingﬂ
Theorem 2. Let .A- be a nxn Hermitian matrix. Then: )
- | ‘ i
so(A) = 2 sup |u Av| : (8)
CU,V v o
where u and v are othonormal Vectors. " ' ) AR

~

spI(A) :

L. The following theorem provides an upper bound for spR(A) and

Theorem 3: Let A be an nxn matrix. Thgn:
sp(A) 2sp(B) , | L9

'sprfA) ‘< sp(C). A (10)
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-

3= (M) and =5 (A-A") . Equality holds in (3) and (1)

if A is normal. : RN

where,

Proof: Let the eigenvalues of B and C be Hy 2 My 2 ore 3 un and

V]2V, > e 2y respeétive]y. Then.from Theorems 4:2 (1) and 4:2 (2)

we -have, |
) .
m?x Re(Ai) <y s g_m;n Re(Ai) . | : (1?)
max\Im(Ai) <vy  and Qn < min Im(Ai) . (12)
i i V .

Inéqua1it1es (9) anﬁ.(]O) follow from (]1).and (12). Also from Theorem

11:0 (1), equality holds in (11) and (12) for normal A . ' 0

185
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§2:1

Here we shall givé'Bounds for  sp(A) , spR(A) and spI(A) of

an npxn matrix A .

s

fheorem-l. "Let A be a nxn Hermitian matrix. Then:

i#J
and

2 i#3 17 3

Proof: Inequalities (1) and (2) are prbved in [41]. Setting u

2 max [a.jl.§ sp(A)

ity !

1133

max {(aﬁ~aij)2 + 4 laijlz}]/2 < sp(A)

l-max {a.. +a.. +[(a..-a..)2»+4|aijyz]]/2} - é

JJ

e.

i

1o e 2 2,1/2,
- % min {aii a3 [(aﬁ as:) -+dlaijl 1779} < sp(A) .

(3)

-and ‘v =e;,, 1 #J 1in Theorem 0 (2), (1) follows. Further, if P is

J

any principal submatrix of A , then from the Theorem 1:12:0 (5),

Thus, choosing, -

inequality (2) follows.

sp(P) < sp(A) .

i

Inequality (3)

a..
13
a..
JJ

in proved in [10].

186
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Theorem 2. Let A be a nXn Hermitian matrix. Define,

Up =Ly =2y
1 - 7 ‘
.= = [a..+U, _+ o=l .
Uy = 5 lags U /.(a” b )P+ab,
1. 2
., = R o M - cx=i . : a - ’ “
by =zl /(aJJ Ly-1)7+a byl .
Ry 2 .
by = 121 2517 5 3=2.3,0000m
' .
Then: : : . R
sp(A) < U_ -~ L (4)

Proof: It is proved in [52] that X1 E-Un and ‘Aﬁ z.Ln . Thus (4)

follows. | A 0

The following result is derived in [23]. It provides an algor-
ithm for ca]éu]ating the Tower bound for the spread of a Hermitian or
normal matrix. It is particularly good for a nonnegative symmetric matrix

(see [23]).

Let I and J be non-empty disjoint subsets of {1,2,+++,n}

and,

K= {1,2,+++,n} \ (IUJ)

Let s and 't denote the cardinality of I and J , respectively. Then

we have the following:
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s
L

Theorem 3. If I and J are partitions of {1,23---,n},¢asJabqve, then:

1 ]
pd sl aheselRle —_—
1 ,J€I 1 ,‘}-GJS:.. . o i
if A is normal, In case A is Hermitigjixx‘ - Q&”
S T
R
< |7 aij( < sp(A) . (6)
/g%;' iEI Y ' .
Jjed ‘ |

<

Theorem 4. Let A be a normal matrix of order n > 3 . Let s; be:
the trace of any principal\ﬁTﬁa?~ma{;:x P of order k >3 of A and

sé the sum of principal minors of order 2 of P . Then:

, (%? l(k-l)s12-2k szl}?%2 , k even ,
s 2 - | (7)
{———24—1/7}”2 [(k=1)s;% -2k 5,12, koodd
(k==1)
Proof: See [10]. o g

The following results are given in [40] and [41]:

Theorem 5. Let A be an nxn ‘normal matrix. . Then:

1/2

3 max [ai.[ < sp(A) (8)
ity M -
2 ——2.1/2 _
T;;.{(Re(aii?— Re(ajj)) + ’aij +ajil } . < sp(A) ; | (9)
2 2.1/2 )
T;; {Iaii-ajjl + (,aijl - |aji).} s sp(A) (10)

)



I[1:2:1 ' ,
‘l-f
max (fa..| +]a..|) < sp(A) ; (11)
i#J 1J J1
and
max (] c1.)]/2 < sp{A) R (12)
i ;
where,
_ : 2 2
Cij = Ia'i‘l- l+2la"l4 leajjl

~ Proof: Choosing u="e; and v==e,,i#3j in0 (6), (8) follows.

1 J
From 0 (7) and (2), with |z| =1, we have for i#j, T

JJ LRVRERIN

~

(SD(A))Z‘i {Re(a,,z) -Re(a..z)2}2-+|a..z-+ETTZ[2, . (13)

Choosing z =1, we obtafn'(9). Also (13) implies =  _

2 . 2
C(sp(A)T > Ref(ay5-a55)2317 + (a1 1ay, ) (14),
Also,. since . : v
2
oup, [Rellagymagy)zh® = gy -ag51° ;
) . ) D .
inequality (14) yields (10). Again, from (13),
sp(A) > sup laijz-+ajizl = laijl + lajil -

T zl=1

which proves (11). For the proof of (12) see [41]. o

189
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Given A , upper bounds for spp(A) and spI(A) can pe .
obtained using Theorem 0 (3) and any upper bound for the spread of a Hermi-

tain matrix. In parficu]ar, Theorem (2) provides .upper bounds for spR(A.)~

when a.. is replaced by b,. = 1 (a,.+a..) -and for sp.(A) when a. .
iJ . 1 2 ij gl [ N
is replaced by’ cij = —211— (a].j-aJ—.i) . Similarly, for normal A | Theorem

0 (3) can ,lso provide Tower bounds for 'spR (A) and spI(A) .

1Y

—_



CHAPTER 3

\

-

GERSCHGORIN DISKS

§3:0 Preliminaries.

-

Given.an nxn matrix A = (a,

where X5 > 0, let .

Then the Gerschgorin disk Gi(x) in the complex plane is defined by,

gl <0 L s L (2)

.Con§1dering the matrix X 1AX , 1t fo]]ows from the: Gerschgor1n S Theorem

(see I:6:2).that each e1ggnva1ue of A 11es in at’ 1east one of the

disks Gi(x) » 1 <1 <n. Thus, the Gerschgor1n set,

hontains;a]1 the eigenvalues of A . Further, if A is irreducible, \
.’ah ekgenva]ue of A is boundary point of the union of the Gerschg0r1§; "
disk§ only if it is the boundary point of all the disks. For, if A is
. an eigenvalue of A such that |X-a. 1i Z_Ai(x) y f'=1 22y ,n , thén it
follows from I:6: 2(499 that equa11ty must hold in all of the above

1nequa11t1es, as det(AI-A) =0 .

G. has no
‘l 1
Gi contains

o x

Also, from Gerschgorin's Theorem (see 1:6:2) if
. - ) 1'

point in common with the remaining (n-k) disks, then .
;

o x
—

191
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o
i

exact1y k efgenva]ues of A. If fact, using continuity arguments one can

prove._.the following (see e.g. [24]):

Theorem 1. Let 'JS be any subset containing s elements of J = {1,2,¢+,n}

G.(x) and T(x) = u G.(x). If

and define S(x) = v ; ;
JS J/J

S

S{x) n T(x) < 3G(x) , (4)

where 3G(x) s the boundary of G(x) , then S(x) contains exactly s

eigenvalues of A . o C

Now Tlet

des = lag,

Then we have the following:

Definition 2. Let “e the set of all posi(;ve vectors % . such that

s

dkj = |akkfa:;{ > Zj(x)-FAk(x) for all  j # k . (5)

If Pk is non-empty then we say that the matrix A admits, under diag-

onal simi]arityftransformaticns, an isolated kth Gerschgorin disk. In

case there exists a set Je > JS c {1,2,°--,n} such that Js has s
elements and there exists x > 0- such that (5) holds for all k e S
and j e {1,2,+*+,n} / Jg , we say that the s disks, JS. are isolated.

0
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[

Now we show that if any s given disks are isolated as defined

above then they contain exactly s eigenvalues of A . Without loss of

“k
U Gi(x) be isolated. Then from the definition, for
i=1 :

any & <k and k <m<n, there exists a vector x > 0 such that

generality we let

x) + A (x) . (6)

d 2 Ay m

gm la%ﬁ-amml

ncx=x

n
Gi(x) and T(x) = vy Gi(x).. If S(x) n G(x)
. i=1- k]
is empty then, from Theorem (1) the result follows. Let ze S(x)nT(x).

\

.

We need to show that z 1is a boundary point. -

Further, let S(x) =

Now, z e S(x) n T(x) , implies there exists & , ] <2<k

and m , k <m < n such that

lz-azzl_i A, and  |z-a_ | < A . (7)

mm'— m

If possible, let equality not hold in one of the inequalities in (7). Then

d, = Ja -a__| j_lzfazzl + Iz—amml

m £2 “mm
< AQ + Am
S
T
. - \_'\\ . - _- l -
which is a contradiction. Therefore Iz-azzl s A, aEd {z—amml = A
Hence z 1is a boundary point and from Theorem (1) u Gi contains
i=1

exactly k eigenvalues.

A

{
Naturally, in order to obtain bounds‘g§in§{Gerschgorin disks,
‘ D, N

if possible one would 1ike to have isolated diékﬁ. This is one of the

o
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reasons that the matrix X-]AX is considered instead of A to obtain

the disks - it might happdn that no disk of the matrix A (X= ). s

isolated but some disks of X—]AX are, for some choice of X . Secondly

*in case Pk is non-empty, that is, the‘kth disk is isolated, one would

Tike to find the disk, with smallest possible radius u ,

<

u = inf Ak(x)
XePk

In the next section we briefly agddress thé above mentioned,

two questions and in section 2 we consider the case when A is real.
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§3:1

In this section first we shall give results which provide suffi-
cient conditions under which Gk(x) can or cannot be isolated by some '

matrix X = diag(x;,xys.eenx ) 5 x; >0, 1 <i.<n . These conditions are N
also necessary for certain clasg of ‘matrices. As we shall see, in case
the conditions for isolation are satisfied then X(x) s readily deter-,

mined. A1l these results are proved in [48]. We shall omit tHeir proofs.
We shall consider the problem of isolating the kth disk only.

Theorem 1. Given an nxn matrix A , Tet

M. = max |a,.| , t, =mind, . = min la, -a..] >0 , (1)
1. i#i 1 k 2k k 37k kk “3j |
and
( Mk ; M. .
P Cf () = g+ r - .. (2)
| Tk Mtk T g .

Then, Gk(x) can be isolated by some X(x) , and strict inequality holds

in 0 (5) , if fk(s) < 1 for some s , 0< s< t,

\
\ -

’
7/

~Proof: See [48]. o -/

Theorem 2. Let the hypotheses of the above theorem be satisfied. If

<n then X(x) =1 isolates -Gk , with

Mj =0, forall j, 1 <]

strict inequality in 0(5). If M, # 0 for some j's Tlet o
o :
q=1,2,-++,2 be non-zero (2<n), and define )

:b'] ,

X . ‘ .
J'I -
63'](5)
G T E (s ATET
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__a -
<X T h o q=2+l,eeen
o 2
where, a =6, (s) - § x, , and
)1 =1 g
M + s
' k

5, (s) = ,
k Mk
M.+dkj -5

v (SJ'(S) = M s J # k

Then X(x) = diag(x],xz,;--,xn) isolates Gk » Wwith strict inequality

in 0 (5).

Proof: See {48]. N

Theorem 3. Let m, = min Iaiji >0 and ty be given by (1). Define
' J#i , o

mk ‘ m. R

k JEk ] kg

If gk(t) >1 forall t, O Sttty thenno X idsolates Gk(x) ,

with strict inequa1i%y in 0 (5).

ki
\

Proof: See [48]. ‘H » ) ‘ a

" Theorem 4. Let A be such that la | = o a1l § £k, k= 1,2,000,n.
Further, let t, and fk be'giveg\by-(1) and (2), respectively. Then
Gk(x) be isolated with strict inequality in 0 (5) by some X(x) if
and on;gfn

o

Proof: See [48]. 0 . J

if fk(S) <1 for some s, 0c<s <t .
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Next, we give a convergent algorithm which, given an isolated
~kth disk, finds the smallest disk Gk(x) , with radius u ,
W o= inf Gk(x) ,

XGPk

where 'Pk is as given by definition 0 (2). This result is proved in [60]..
Its proof involves the theory'of M-matrices. We shall state it without

proof.

Without Toss of generality we can assume that A is irreducible.
Further if the kth Geﬁschgorin disk is isolated, that is, Pk is non-empty,
we can assume that 'k = 1 (this can always be done by the use éf.a suitable

permutation matrix) so that G] is isolated. Fina]]y, as Aj(hx) = h_Aj(x)

for h>0 and 1<j<n,welet xp =1, forall xeP,

If Q= (qij) is a real matrix, such that

Ui = dyy Tlagymaggl , i=T,2,0een

q]j = ?a]jl > 223 % n s S

qu=-a1JlL’1f~]’1#]
Then clearly A irreducible implies that Q is irreducible. Further, we

partition Q as,

J
jo¥]
O
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i
§

where .0 is the principal submatrix of Q of order (n-]) ,

at = (agplslaggls =o ulay )
§ -be" the vector:with (n-1) components obta1ned $¥om the column vector

and a' = la2]| | 3]| cee ’lanll) . Let

! i
y 1=1,2,000,n-1 .

y = (yi)’; by deleting Yy - Conversely given y 1é§ y = (y.) denote

A

the unique column vector. such that . Yy = 1, yi+T°= Y;

Theorem 5.. Let A be an irreducible matrix of order n , which admits a

Then we have the -following:

first isolated disk, G](x) . Then the smallest radius u ,
' A

u = inf _A1(X) ’
XEP]

Tor this isolated disk is an e1genva1ue of the matrix Q and its corres-

pond1ng eigenvector y is un1que1y determined in P] . If Xo e'P]

and Qx> Aq(x o)xO » With strict inequality in at 1éast one component,

then the sequence of vectors {xi} defined by

[ee)

are all elements of P with Tim X; =Y, »and the sequence {A; (x.)1.

oo u ’ AR
is strictly decreass v Tim A1(x.) =y . .
oo oo |
Proof: See [60]. - ‘ : | 0
It is shown "n 7o - the above algorithm can be used to
directly estimate the isol¢ "=~ 2igenvaiue of , rather than just obtain-

ing the Gerschgorin disk ¢© sma'ie. - possisle radii. Also in [35] the

above algorithm is extended to the cese whe. more than one isolated disks

T
I

T
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are given. Finally, in [24] an algorithm is given which does not depend

on a prior knowledge that a given set of disks is isolated.
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§3:2 .

In this section we shall give some results for a real matrix.

The following result is well-known (see e.g. [57, pg. 2871):

Theorem 1. Let A be a real métrik. If the Gerschgorin disk Gk(x) .
1<k<n, has no point in common with the remaining (n—])"disks (or
strict inequality holds in 0 (5)) then A has a real eigenvalue of multi-

plicity one.

Proof: From Gerschgorin's Theorem (see 1:6:2),G,_ has exactly one eigen-
value, say A . In case A 1is cohp]ex, since ‘A is real, we conclude
that X is also an eigenvalue of A . Now X and A lie symmetrically
about the real axis (since 2k is real) and we have that both‘ X and X

belong to Gk(x) » which is a contradiction. Thus A must be real.

The following result is immediate from the above theorem:

Theorem 2. Let ‘A be a real matrix. If A has k Gerschgorin disks
" which have no point in common with any other disk, then A has k

real distinct eigenvalues. : 0

The following theorem is proved 1h'[48]:

Theorem 3. Let A be a real matrix and: Jk a subset of {1,2,-+-,n}

with n elements. If the ith Gerschgorin disk of Xi-]

AXi is isolated
with strict inequality in 0 (5), for all i « Jk , then A has at least

k real distinct eigenvalues. ° } : O

L)



CHAPTER 4

i

SINGULAR VALUES

§4:0 Preliminaries.

In this chapter we shall discuss the relationships among the
eigenvalues of An (square of singular va]ue;), %-(A+A*) (real singular
values), é%—(A-A*) (imaginary singular values) and A , wherg‘ A is an
nxn complex matrix. We shall also include bounds for the singﬁ]ér bounds
for the singular values, which are not iné]uded in Part I. Unless other-

wise stated we sha]]rassume that the eigenvalues of A are ordered as .-

gl > gl > oo > ]

if complex and as

| v
>
Y
L]
L]
[ ]
v
>
-

if real.

As (AA*)* = AA* We conclude that. AA* is Hérmitian. In fact,
an” is positive semidefinite, since for any véctor X (AA*x,x) =
(A*x,A*x) >0 . Thus, the “genvalues of AA*;Zare\honnegative.- Further-
more, it fo]Tows,'from Theorem (1) below, that AR is positive definite if
and only if A s nonsingular. Similarly, A*A is poé{tive semidefinite

*
Actually, AA and A*A have the same ejgenvalues:

* *
Theorem 1. Matrices. AA and A A have the same eigenvalues.

Proof: Since A is nxn the proof follows immediately from the fact that
: ‘ .
201
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if H and K are matrices of order mxn and nxm respectively (m<n)
then the eigenvalues of KH are the m. eigenvalues ‘of HK ~ and zero,

repeated n-m times (see [39, pg. 2001). 0

«

Definition 2. If 012 2.022 > eee 3-0n2 are the nonnegative ordered

eigenvalues of - A" then 0y 205 2 *** >0 are called the singular

values of A . , ' : ' 0
_ o

Remark 3. If A is rectangular of order_ mxn  (m<n) then A vhas m

202

singular values. However, we shall generally consider only square matrices.

‘ Analogous results will hold for rectangular matrices. C

. 4
Now we state the Singular value decomposition theorem. The

proof can be found in [42, pg. 330].

Theorem 4. If A is an. mxn (m<n) 'matﬁT&, then there exist unitary

matrices U ,mxm and V , nxn such that

» .
’

A =lU pv : (1)

where D = d1ag(o1,02,---,cm) is mxn and oy >0, > «++'> 0 are the
singular values of A . Further, if the rank of A is k then exactly

k singular values are positive. : : - 0

Next define, )

B =+ (AA")  and c='-217<A-A*) . (2)

1
2

C1ear1y' B and C are Hermitian. Given A , it can be decomposed as
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~ A=B+iC . It can be shown that this Hermitian decomposition s unique.

Definition 5. The eigenvalues of B = (b..) and C = (Cij) are called

iJ
the real and ihagainary singu1aﬁ_va1Ues of A, respectively. a

Remark 6. B and.,C will always be assumed to be defined by (2). Also,

it will be assumed that

Hy 2 Hp > =0 > and Yy 2V, > eee >y - (3)

are the ordered eigenvalues of B ahd c. . i

T

Remark 7. [f- A is Hermitian, then B =A and C =0, while if A is

skew-Hermitian then B =0 and C=A ., : ' B
Remark 8. It follows from the definition of B and C that, - y

2

1 * Wl 2 x 2
tr B® = 5-(tr AA +Re(tr A )) and tr C° = = (tr AA -Re(tr A ) . (4)

a

N —

-
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§4:1 Singular Vaiues‘abd'ETQEEVET;gs.

We shall/now study the yelationship between the singular values

and the eigenvalues of a matrix A .

- Theorem 1. For any square nxn  atrix A :
== A ) ;

1 |

k .k ~ -
LINE <Y o® w50, ke n2een (3)

Equality holds in (1) for k=1,2,*+,n if.anq only if equality holds in

(3) for k=1,2,+++,n |if and only if A is normal.

Proof: To establish (2), we have, using the Rayleigh quofieﬁt, that
' *
(AA*x;x) z_qnz » for any x such that x x = 1. Thus, if x ds a nor-

malized eigenvector of An ,» we obtain \

’

hence (2) follows. .For the proof of (1) and (3) see [31, pg. 115].

Equality conditions follow from the theorem below. - : 0

The following result is well-known (e.q. se9,[16]);

k tok " .
I [A;l <Moo, , k=1,2,00e,n , (1)
1 1

204
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Theorem 2. Given A~, it is normal if and only if,

O.i = l)‘.‘l ’ i':.'aza"’;n . (4)

Proof: Let A be normal. Then there exists ‘a unitaryfmatrix U such
* ' * _

that A =UDU" , D = diag(dyshy,ee+,1 ) . Therefore A" = UDDU™ and,

using the fact that similar metrices have the 'same eigenvalues, (4)

follows. Conversely, let (4) hold. Then from Schur's triangularization

N—_——

theorem, there exists a unitary matrix U and an upper triangular matrix

T such that AR = UTT'U" and t. = A, , 1=1,2,-++,n . Thus, e

. * . *
cor de that AA  and TT have the same eigenvalues and,

2 | 2
To.2 =7 D%+ 7t
i i 3 it = ik

From which we conb]ude thatv T s diagonal. Hence A is normal.  [J

The following result is immediate from the above  theorem:

Corollary 3. If A is positive semidefinite then:

i ' 0. = A, s 1=1,2,0¢e,n . ) (5)
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§4:2 The Matrices A, B and C. N

\

In this séction Qé shall establish re]étionships‘between“thé
eigenvé}ues (Ai 'sx/4;gﬁja\‘gﬁd‘the eig#nva]ues (“i 's and v, 's) of B
and C respectjﬁgT&. In particqlér,'ﬁe shé]l see that the real (imagi-
néry) singuTar'ya]ues of A, major{ze thé real (imaginary) parts, Re(Ai)
(Im(Ai)) of A.

Theorem 1. Let the eigenva]ués and real singu]a} values of A  be. Ai and

Hios i=1,2,°=+,n , respectively. Let Re(x]) z_Re(AZ) > eee 3_Re(kn)' and

My 2y 2 oces > Then: o )
: Wy S Re(A) 5 ©(2)
k k N
Z RE(X) < z H. ’ k=1,2,--°,n ’ (3)
N oy

H
=

with equality in "(3) for k

" Proof: Assertions (1) and (2) follows from the Rayleigh quotient. For
if x dis an eigenvector corresponding tq the eigenvalue X of A,
then M < Re(A) = (Bx,x) SHp . For the proof of (3) see [32, pg. 237]. -
D .
As one would expect, similar relations hold between the imaginary

'parts of the éigenva]ues'of A -and the imaginary singular values of A :
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Theorem 2. Let the eigenvalues and imaginary singular values of A be

arranged so that Im(k]) > Im(AZ) > oo 3_Im(kn) and vy > v, > e >

Then we have the following:

) S
In(x) < v s @
Vp S Im(A ) ")
.k : k :
D Im(AL) <Y v, k=1,2,ce+,n (6)
T L B ™ .
- with equality for k=n . ' 0

The following result relating the eigenvalues of A ,» B and C

is given in [16]:

. Theorem 3. Given a matrix A , then Re(ki) > 1=1,2,-»+,n are the eigen-
,Qa1ues of B if and only if Im(Ai) » 1=1,2,-++,n are the eigenvalues

of . . if and only if A 1is normal. ‘ ' 0

o
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54:3 The Matrices AA", B and C.

A}

The fol}owﬁng three theorems exhibit the re1ationships among the

three types of singular values (see e.g., [1]).

Theorem 1. If Oi , “i > Vi i=1,2,*=+,n are the singular, real singu-

lar, and imaginary singular values of A , respectively, then:

A

- *
tr B2 + tr (2 = Y . ¥ v.2 = ) 0.2 = tr AA . (1)
(L AL —
Proof: The result follows from expanding
tr B2 + tr C? = %—tr (A+A*‘)2 - %-tr (A-A*)2 ,

. * * ) : .
and using the fact that tr AA = tr A A and that B and C- are Hermitian.

0

Thebrem 2. For any nxn matrix A :
Uiigi s 1=1,2,***,n s A (2)
v, <o, sy  1=1,2,¢++,n . . (3)

Proof: The inequality (2) is proved in [13]. If we replace A by -iA,-
then the di s 1=1,2,°2¢,n , are unchanged‘but the real sindu]ar,vé]ues

of -iA are v, , 1=1,2,---,n . Thus (3) follows from (2). O
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Theorem 3. If A s normal, then:

'012 < max uiz + max viz ; (4)
i i _ /
s 2> min u-z + min v,2 . o - —(5)
n =0 H e
.‘/~\‘

Prbof: From Theorems 1 (2) and 2 (3) we have

2 _ 2 _ 2 2 2 2 2
0" = |k1[ = Uy vy and 0. .° = Mg *+ 0V ,

for some. 1 < j,k,%,m < m . Thus, taking the maximum and minimum of

and viz » 1=1,2,***,n, (4) and (5) follow.

E]

209
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§4:4 Bounds for Singular Values. ' *\\\\ ///

Bounds for the singular values, 0y 20y 2 *** >0, , are given
.under the heading (g) in the chapters of Part I. Also, since oiz .
i=1,2,++,n are ‘the eigenvalues of the pos1t1ve sem1def1n1te matrix AA*,
we can apply the corresponding results from Chapter 13 in Part I. Below,

we give results which are not ipcluded in Part I (we attempt to maintain

the same ordering of the information as used in Part I).

(a) For oy

Theorem 1. Given A ,

max |a. JIZ < max ) [aijl‘2 f_max IZ a;, @ kl <oy (1)
,J L i, k
_ Tt S
max — | ] ] | <o9; 5 1<s, t<n-] (2)

Proof: ~The first two inequalities in (1) are clear. To prove the inequal-

o .
ity on the right-hand side of (1) we consider AA* . Since AA* iS posi-

tive semidefinite, its eigenvalues oiz s 1=1,2,**+,n are also its

Al

- singular values (see Corollary 1 (3)). Thus, choosing ty = T, t2 = t3 =
ces = t~ =0 1n Theorem (7) below, we obtain 012 > u*AA*v , where
[Hul] = [lv]] =1 . Therefore with u = e; and v = es (1) follows.
This result is a]so proved*in [47]. To prove (2), once again Theorem (7)

. *
implies oy 2u Av with [ful] = ||v]] =1 . Chéosing u (u;) and
v = (vi) such that ui‘# 1/Vs j= 1,2,°0°,5 , us =0 for 4>s,

‘ u, = 1//t , i=1,2,+++,t and v, = 0 for i>t, (2) follows. We note
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that u and v could be choosen differently, to obtain bounds different

from (1) and (2). . _ ..

The following result is given in [7, Pg. 67]:
Theorem 2. For real A ,

o, < max J |b,.| + max T
1 i3 1J i3 17!

) =

y (A+A")  and C = (e - é%—(A-A')

1J

no|—

where B = (b

(b) For o,

An interesting lower bound for 9 is giveh int [22]:
(

)

Theorem 3. Let A be an ixn (n<m} matrix and s = {52,53,:--,sn} be

a set of positive column scaling weights such that

n
2
Ios.o=1
i=1 !
Then:
o
min ) w1..2 <c?
joi=sr W
where
wee = max(0, fa..] s. - T Ja. ls,)
1J 13" 7J KZj ik'Tk

We can modify the above theorem in the case of a normal matrix

211
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Theorem 4. If A s normal and S13525°""5S, “are posifi&e numbers such
that

|
2 !
Z s.” =1 . :
o ! s
Then: ° 2
. \‘
. 2 |
min ) Pis° * min N 95" <9, , | (6)
b J i |
where = , o : ' \
p.. = max{0 J--Ia.'. a..| s . Vola, ta .l s,) (7)
iJ *2 'Tii o i j 2 K# 3 ik ki k7 2
and,

= l _~ _l . ) __ 1 .: oo.’ ‘
945 = max(0 , 5 laij ajil 5577 k;j las a1 s,) s 1 1,222+, (8)

Proof: From inequality 3 (5) we have on2 > min |u1.|2 + min]v].l2 and we
. -i . -i .
observe that min |u.| and min lvi[ are the singular values of " B and
' i i
C respectively. Let pij and qij » 1=1,2,+++,n be as given by (7)

and (8) respectively. Then, applying Theorem (3) to B and C , we have,

. 2
and  min v.° > min § q..
i ;i PR B b
" Thus, we get
cnz > min.) p;." + min Y qi.2 ,
FERaN 55

which cbmp]etes the proof.
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N
.

/
'The following lower bound for , is given in [7, pg. 67]:

Theorem 5. For real A ,

min(laiil - E lbik') - max E lcikl <o “ (9)

where, B = % (A+A') and C = 2]—1 (A-A') . O

|

The fo]]owihg upper bound for o is well-known.

Theorem 6. Given A ,

o :_mjn () laijlz)]/2 < min Z laijl . (10)

i i

e * K '
Proof: From the Rayleigh quotient an <x A x, [x]| =1 . Hence
choosing «x = e (10) follows. - 0

>(e) For sum of singular values:

The following theorem provides an algorithm for obtaining lower

bounds of nonnegative linear combinations of singular values of A . The
s

proof is similar to the one used in Theéorem 6 of [41], for obtaining the
bounds for fhe spread of a matrix. |

Theorem 7. If 't

12t 2 e >t >0 ,\Fhen:
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where Uy and Vi o i=1,2,-**,n are two sets of orthonormal vectors.

In particular:

K k

Dlaggl <Too 5 k=120 (12)
T T

k k -

12] la.‘ n_1'+-ll f_%g] » k=1,2,00n (13)

Proof: Let themoduli of the diagonal elements of A be denoted by

dj > d,

: > eee _>_dn . Then from I:2:0 (7),

and we have

Adding the above set of inequalities yields

Ptdi <l tyo -4
1 o -

Now, let U = [u1,u2,.--,un] and V = [Vl?VZ’""Vn] be unitary matrices

with columns us and Vi respectively. Then the matrix UAV has the

same singular values as A . Thus, if we order Us 5> Vi 5 1=1,2,000,n

: : * * : * : N
su‘ch that  fu; Avy] > |u2Av2] > oeee > [unAvn[ » from (14), we obtain

.
1Zt1. O}'i;ti lus Av
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Hengg, //,,/
~
N~
? A

i’ U. V. 1
1 . i’
‘i:]’z’...’n . .

Further, equa]ity'in (15) is attained for U and V such that

Zt]. o, > sup Zti [u:Av].] 2 (15)

B

. :
diag(o],-'-,c ) = UAV . Thus (11) follows. With t,=t,=ese=t =1,
¢ n 1 2 k

tk+1 = eee =tn = 0 , inequality (12) follows by choosing Uj = vy = e,
':]’ y v, . 1 . ( ] .= . . = .
i 2 k, while (13) fol]qws by choosing u; = e and v, i+,
i=1,2, ««v, k. . 0

Below we present another Tower bound for the partial sums of

singular values.

Theorem 8. Let Ak -denote any kxk submatrix ef A obtained by deleting
(n-k) rows and (n-k) columns of A, and let t, be the sum of the

absolute values of the e1ements of Ak . Then:

m

-k
.l = s o -
Xpt, < ]Zoi , k=1,2,000,n-1 . (16)

a
k
Proof: By the Singular value decomposition theorem, there exist kxk
unitary matricess U and V such that Ak =UDV , where

D= diag(o]')----,dk') and Oi' » 1=1,2,-++,k are the singular values

of Ak . ‘Thus,

k k k k
2 = mZ1 Upm o nq ¢ et < mZ1 c ! pZ] lupml q£1 lvmql ,
K ok 2., K 0
which implies, r t, 5.%'om' , since (pz] Iupml) < kpz1'|upm[ = k and
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Lastly, as o%' » 1=1,2,+++,k are the singular values of: Ak R

g.' <

; Oi“ (see [55]). This completes the proof of (16)

o1 x

we have -
.i

-
~

—r X

1

.
A ¢

‘ Finally, we give'§ 1owertb6und for the partial sums of the

squares of the singular, values:

Theorem 9. Let Si » i=1,2,*++,n be the squared sums Z laijl2 » arranged
: S J

in decreasing order. Then

Equality holds for k=n .
. (,A‘; ! -
. Proof: The inequality (17) follows at once by applying the fact that

eigenvalues of a Hermitian matrix majorize the diagonal elements, to the

’ *
matrix AA . U
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_..54:5 Bounds for Real and Imaginary Singu]ar Values.

Since B and C are Hermitian, the bounds given in Chapter

I:12 are applicable to B and C (with a..
1 . : : 1 . :

.= = +a.. : .. T o c.=a.. .
b1.J > (aij 331) for B and.by CTJ 53 (a1J aJ1> for C) One
may also use Theorem 2 (3) if A 1is normal and Remark O (7) if A s

replaced by

Hermitian.

217



CHAPTER 5

. CONDITION NUMBER

§5:0 Preliminaries.

i

Consider the 1inear-system>

Ax

b -, N

where, A is an nxn nonsingular matrix and x and b are nxI

‘vectors. Then (1) has a unique solution,
Ty @
We shall now see how the solution (2) is affected by pertubationsain the
right-hand side of (1) and in the elments of the matrik A . Suppose

that in (1) the vector b is perturbed to b+sb , and that the exact

solution of the perturbed systeﬁ is " x+8x , that is,

A(x+8x) = b + &b .
Therefore,

X+ 6x = A_I(b-be)
Using (2), we obtain,

v ) 1

§x = £ 6b

Thus, for any compatible matrix norm,

3

[ex| | < 1A [lsb]] . (3)

218
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Also from (1),

i

[l < LIALE TIxIT . (4)

Combining (3) and (4), we have,

LUSELL ¢ jjaf) a7ty gLl (5)

FIx ] NEN

’ - Ed
Similarly, if A 1is perturbed by S8A and 6x is the corresponding” change

in the solution vector x , then

(A+S8A) (x+6x) = b

which gives,

/ Cax = AT sA(xkox) and
HoxI] < 1A [1sAl] [Ix+ex]] »
or o v
| ST
ThesTr < AT Lleal]

Considering the chahge | 16A] | re]ativeﬂto [|A]] , we get

- ox] ] - 10y [16A]]
 TreesxT S HAT AT Sy - (6)
. \ .
\

Thu§, both ih (5)// d (6), the relative change in the exact
solution is"bounded by the nulpber ||A[] IIA-1II multipliedsby the, rela-

tive perturbation in the data. \The number 1Al AT s called the .

condition number of A . We shaﬁ] denote it by c(A) .
- : ,

3

y
_
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The condition numbzi of A 1ndicatés the maximum effect of
perturbations in b or A on the exact solution of (1). From (5) and
|
(6) we see that if c(A) 1is large, then the change in the exact solution

of (1) may be large, even for small perturbations in b or A . Given a

snonsingular matrix A , it is called i1l-conditjoned if §(A) is large

and well-conditioned if c(A) is small.

Note that if for any matrix norm | [, 11111 > 1, then

1< ] < [Al AT = e

In particular, for any subordinate matrix norm and the Frobenius norm,

c(A)y > 1 . " (7)

Further, for the spectral norm,

91
| c(A) = — >1 . | (8)
‘ﬁﬁ% follows from the Singular value decomposition theorem (see Theorem
4:0 (41) that equality holds in (8) if and only if A = cU -, for some-

unitary U and scalar c . Finally, wéidfve the following result:
_ . .

1

Theorem 1. Let A be a nonsingular matrix. Then for any subordinate

| S

matrix norm, |
: e T r
< c(A) = [|A[] JIAT]]

min [Ag] B T =
: 1
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Proof: From.Theorem 1:1 (8), we have that, max lAil < ||All . Further
i

since the eigenvalues of A-] are Ai'] » 1=1,2,°*+*,n , we again have

max [T = =t T
1

which completes the proof.
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§ 5:1

Bounds for the condition number are given in Part I under the
heading (h), for the spectral norm. However, in view of Theorem 0 (1) a
Tower bound for the condition number which is obtained by using the ine-

quality
[Aq], o
~% ] iC(A) =_]__ ,

1A, o

is actually a lower bound for any condition number defined by using a
subordinate norm. Below we give a lower boun. for the condition number

and a technique for estimating it.
* The following result is given in [27, pg. 29].

Theorem 1. Llet A be a nonsingular; triangular matrix. Then for thé»

spectral norm,

~

max |a..]|
i 2 e G
min ja..| ¢ :
. i .
5 '
Proof: It follows from Theorem IT:4:4 (1) that max ’aijl 5_01 . Also,

1,3
as A is triangular, the diagonal elements of A-] are aﬁ-1

i=1,2,+++,n and its largest singular value is On-] . Thus,

-1 -1
!aiil —n

| is 1,2 or >

Given a nonsingular matrix, |[A]| (where |
norm) can be easily calculated. The following technique for estimating

AT is given in £117:

<0 and now (1) follows. b

222
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°

Theorem 2. Let A be nonsingular. Let x and y be two vectors such

that

1
o

A'x

n
x

Ay

where each component of b is choosen to be  +1 or -1 so that the

solution x 1is as large as possible. Then,
NI AT (3)

~ provides an estimate for ]]A_TTIA. . - | X

‘An algorithm is given in [11], which'employes the QOR or the
LU decomposition of A to calculate ||A"]|[].u. It Snvolves 0(n?)
operations, once the decomposition is known. Also, it is shown experi-
mentally, that this technique provides a reliable indication of the order
of thewmagnitude of conditjon number. This technique is imp]emented in
LINPACK, a collection of FORTRAN .subroutines for solving various forms of
linear equations; In [43] it is shown that the estimate r given by (3)

is norm dependent. Further in case the LU decomposition of A is known,
ry = max(U Iyl /21X s I

where x and y are given by (2), is shown to give-a better estimate of
IIA'] |, for matrices of small order. Another technique'ié given in [18]
1

for estimating [[A'1[|] .
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