# University of Alberta Department of Civil & Environmental Engineering

Structural Engineering Report Number 250



# **Behaviour of Steel Columns Reinforced with Welded Steel Plates**

by
Ziqi Wu
and
Gilbert Y. Grondin

December, 2002

# BEHAVIOUR OF STEEL COLUMNS REINFORCED WITH WELDED STEEL PLATES

by

Ziqi Wu

Gilbert Y. Grondin

(C)

**Structural Engineering Report 250** 

Department of Civil and Environmental Engineering
University of Alberta
Edmonton, Alberta, Canada

#### Abstract

Current design criteria for steel columns reinforced with welded steel plates, usually based on the SSRC column curve 2, have not been verified. Considering the complexity of different influencing factors of the reinforced columns, the use of current design criteria may not be appropriate. A better understanding of the parameters associated with reinforced columns is therefore required.

A parametric study, using 317 finite element models of reinforced steel columns with varying parameters, was conducted. The study showed that column slenderness and initial out-of-straightness remain the important factors for reinforced columns. The interactions of the orientation of the reinforcing plates and the buckling direction were observed to affect the strength of reinforced columns. These observations require further experimental confirmation. A detailed statistical analysis was then conducted to determine the factored resistance of reinforced columns and to evaluate their performances. The results showed that the current design approach of using the SSRC column curve 2 is appropriate for use with a resistance factor of 0.9.

# **ACKNOWLEDGEMENTS**

This research project formed the basis for the MSc thesis of the senior author. The project was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Faculty of Graduate Studies and Research of the University of Alberta through teaching assistantships to the senior author.

# **Table of Contents**

| I. | Intro                                               | oduction                                               | 1  |
|----|-----------------------------------------------------|--------------------------------------------------------|----|
|    | 1.1                                                 | General Background                                     | 1  |
|    | 1.2                                                 | Statement of the Problem                               | 2  |
|    | 1.3                                                 | Objectives and Scope                                   | 2  |
|    | 1.4                                                 | Organization of the Thesis                             | 4  |
| 2. | Lite                                                | rature Review                                          | 5  |
|    | 2.1                                                 | Factors Influencing Column Strength                    | 5  |
|    |                                                     | 2.1.1 Introduction                                     | 5  |
|    |                                                     | 2.1.2 Initial Out-of-straightness                      | 8  |
|    |                                                     | 2.1.3 Residual Stresses                                | 10 |
|    | 2.2                                                 | Research on Reinforced Columns                         | 11 |
|    |                                                     | 2.2.1 Work of Tall and Co-workers                      | 12 |
|    |                                                     | 2.2.2 Work of Brown (1988)                             | 15 |
|    | 2.3                                                 | Summary                                                | 15 |
| 3. | Finite Element Modelling of Reinforced Steel Column |                                                        |    |
|    | 3.1                                                 | General                                                | 18 |
|    | 3.2                                                 | Description of the Model                               | 18 |
|    |                                                     | 3.2.1 Finite Element Mesh                              | 19 |
|    |                                                     | 3.2.2 Material Properties                              | 20 |
|    |                                                     | 3.2.3 Boundary Conditions                              | 21 |
|    |                                                     | 3.2.4 Initial Conditions                               | 22 |
|    |                                                     | 3.2.5 Loading Process                                  | 23 |
|    | 3.3                                                 | Validation of the Finite Element Model                 | 24 |
|    |                                                     | 3.3.1 General                                          | 24 |
|    |                                                     | 3.3.2 Description of the Tests                         | 24 |
|    |                                                     | 3.3.3 Initial Conditions of the Numerical Analyses     | 25 |
|    |                                                     | 3.3.4 Behaviour of the Column Reinforced under Load    | 26 |
|    |                                                     | 3.3.5 Behaviour of the Column Reinforced under no Load | 27 |

|    | 3.3.6 Validation of the Finite Element Models in               |    |
|----|----------------------------------------------------------------|----|
|    | the Intermediate Length Range                                  | 28 |
| 4. | Parametric Study                                               | 41 |
|    | 4.1 General                                                    | 41 |
|    | 4.2 Buckling Behaviour                                         | 42 |
|    | 4.3 Selection of Parameters                                    | 42 |
|    | 4.4 Analysis Results                                           | 44 |
|    | 4.5 Effect of Column Slenderness                               | 45 |
|    | 4.6 Effect of Residual Stresses                                | 45 |
|    | 4.6.1 Residual Stresses before Welding                         | 46 |
|    | 4.6.2 Effect of the Magnitude of the Welding Residual Stresses | 48 |
|    | 4.7 Effect of the Initial Out-of-straightness                  | 49 |
|    | 4.8 Effect of the Pre-load                                     | 50 |
|    | 4.9 Effect of Steel Grade                                      | 51 |
|    | 4.10 Effect of Reinforcing Plate Orientation                   | 52 |
|    | 4.11 Effect of Buckling Axis                                   | 52 |
|    | 4.12 Effect of W-Shape to Plate Area Ratio                     | 53 |
|    | 4.13 Summary                                                   | 54 |
| 5. | Limit States Design                                            | 80 |
|    | 5.1 Background                                                 | 80 |
|    | 5.1.1 Column Resistance Based on CAN/CSA-S16.1-94              | 80 |
|    | 5.1.2 Principles of the Limit States Design                    | 81 |
|    | 5.1.3 Determination of the Resistance of a Steel Column        | 85 |
|    | 5.1.4 The Material Factor                                      | 86 |
|    | 5.1.5 Summary                                                  | 89 |
|    | 5.2 Statistical Parameters                                     | 92 |
|    | 5.2.1 Geometrical Variations                                   | 93 |
|    | 5.2.2 Material Variations                                      | 96 |
|    | 5.2.3 Professional Factors                                     | 98 |
|    | 5.2.3.1 The Effect of Out-of-straightness                      | 99 |

|    |              | 5.2.3.2 Miscellaneous Factors                          | 100 |
|----|--------------|--------------------------------------------------------|-----|
|    |              | 5.2.3.3 Experimental Factors                           | 101 |
|    |              | 5.2.3.4 Summary                                        | 102 |
|    | 5.3 Evalu    | ation of the Performance Factors                       | 103 |
| 6. | Summary,     | Conclusions, and Recommendations                       | 141 |
|    | 6.1 Sumn     | nary                                                   | 141 |
|    | 6.2 Concl    | usions                                                 | 143 |
|    | 6.3 Recor    | nmendations for Future Research                        | 144 |
| Li | st of Refere | nces                                                   | 146 |
| ΑĮ | pendix A.    | Analysed Reinforced Column Description                 | 150 |
| Αį | pendix B.    | Analysis Result Description                            | 172 |
| ΑĮ | pendix C.    | Statistical Analysis Data for the Professional Factors |     |
|    |              | for the Columns from Group 2                           | 195 |

# **List of Tables**

| Table 3.1 Models Used for the Validation of the Finite Element                  |    |
|---------------------------------------------------------------------------------|----|
| Method for Reinforced Columns                                                   | 30 |
| Table 3.2 Finite Element Models for the Unreinforced Columns                    | 31 |
| Table 4.1 Fractional Factorial Design and Designation of                        |    |
| the Numerical Models                                                            | 56 |
| Table 4.2 Models Used to Study the Effect of Initial Residual Stresses          |    |
| In the I-section before Welding                                                 | 58 |
| Table 4.3 Models Used to Study the Effect of the Initial Residual Stresses      |    |
| In the Cover Plates before Welding                                              | 59 |
| Table 4.4 Models Used to Study the Effect of Varying Welding                    |    |
| Residual Stress Magnitude                                                       | 59 |
| Table 4.5 Models Used to Study the Effect of the Initial Out-of-straightness    | 60 |
| Table 4.6 Models Used to Study the Effect of the Preload                        | 61 |
| Table 4.7 Models Used to Study the Effect of Steel Grades                       | 62 |
| Table 4.8 Models Used to Study the Effect of Reinforced Plate Orientations      | 63 |
| Table 4.9 Models Used to Study the Effect of the Buckling Axis                  | 64 |
| Table 4.10 Models Used to Study the Effect of Cover Plate Size                  | 65 |
| Table 4.11 Models Used to Study the Effect of the Size of the I-section         | 65 |
| Table 5.1.a Statistical Parameters for Rolled W Sections                        |    |
| (from Kennedy and Gad Aly, 1979)                                                | 04 |
| Table 5.1.b Statistical Parameters for Cover Plates                             |    |
| (from Chernenko and Kennedy, 1988)                                              | 04 |
| Table 5.2.a Statistical Parameters for the Geometric Properties                 |    |
| of the Reinforced Columns                                                       | 05 |
| Table 5.2.b Statistical Parameters for the Geometric Properties                 |    |
| of the Reinforced Columns                                                       | 11 |
| Table 5.3 Statistical Quantities, $\rho_G$ and $V_G$ , for Geometric Variations | 17 |
| Table 5.4 Statistical Parameters for the Material Properties                    | 18 |

| Table 5.5   | Simulated Professional Factors for Columns                 |     |
|-------------|------------------------------------------------------------|-----|
|             | from Group 1 ( $\lambda = 0.4$ )                           | 119 |
| Table 5.6   | Simulated Professional Factors for Columns                 |     |
|             | from Group 1 ( $\lambda = 1.1$ )                           | 120 |
| Table 5.7   | Simulated Professional Factors for Columns                 |     |
|             | from Group 1 ( $\lambda = 1.5$ )                           | 123 |
| Table 5.8.a | Best Fit Lines for the Professional Factors                |     |
|             | for Columns from Group 1                                   | 125 |
| Table 5.8.t | Best Fit Lines for the Professional Factors                |     |
|             | for Columns from Group 2                                   | 125 |
| Table 5.9   | Normalized Professional Factors for Columns                |     |
|             | from Group 1 ( $\lambda = 0.4$ )                           | 126 |
| Table 5.10  | Normalized Professional Factors for Columns                |     |
|             | from Group 1 ( $\lambda = 1.1$ )                           | 127 |
| Table 5.11  | Normalized Professional Factors for Columns                |     |
|             | from Group 1 ( $\lambda = 1.5$ )                           | 130 |
| Table 5.12  | .a Statistical Parameters for the Professional Factors     |     |
|             | for Columns from Group 1                                   | 132 |
| Table 5.12  | b Statistical Parameters for the Professional Factors      |     |
|             | for Columns from Group 2                                   | 132 |
| Table 5.13  | Professional Factors for Unreinforced Columns              | 133 |
| Table 5.14  | a Resistance Factors for Reinforced Columns from Group 1   | 134 |
| Table 5.14  | b.b Resistance Factors for Reinforced Columns from Group 2 | 135 |
| Table A.1   | Analysed Reinforced Column Description                     | 153 |
| Table B.1   | Analysis Result Description                                | 175 |
| Table C.1   | Simulated Professional Factors for Columns                 |     |
|             | from Group 2 ( $\lambda = 0.4$ )                           | 197 |
| Table C.2   | Simulated Professional Factors for Columns                 |     |
|             | from Group 2 ( $\lambda = 1.1$ )                           | 198 |

| Table C.3                                             | Simulated Professional Factors for Columns  |     |  |
|-------------------------------------------------------|---------------------------------------------|-----|--|
|                                                       | from Group 2 ( $\lambda = 1.5$ )            | 201 |  |
| Table C.4                                             | Normalized Professional Factors for Columns |     |  |
|                                                       | from Group 2 ( $\lambda = 0.4$ )            | 203 |  |
| Table C.5                                             | Normalized Professional Factors for Columns |     |  |
|                                                       | from Group 2 ( $\lambda = 1.1$ )            | 204 |  |
| Table C.6 Normalized Professional Factors for Columns |                                             |     |  |
| 1                                                     | from Group 2 ( $\lambda = 1.5$ )            | 207 |  |

# **List of Figures**

| Figure 2.1 | Formation of the Analysis Models                               | 17 |
|------------|----------------------------------------------------------------|----|
| Figure 2.2 | Welding Sequences Investigated by Nagaraja Rao and Tall (1963) | 17 |
| Figure 3.1 | Position of the Tie Connection between Column and Cover plates | 32 |
| Figure 3.2 | Finite Element Mesh of Column Reinforced with                  |    |
|            | the Plates Parallel to the Flanges                             | 33 |
| Figure 3.3 | Finite Element Mesh of Column Reinforced with                  |    |
|            | the Plates Parallel to the Web                                 | 34 |
| Figure 3.4 | Initial Residual Stress Pattern Used in the Numerical Models   | 35 |
| Figure 3.5 | Initial Residual Stress Distribution in I-Section and          |    |
|            | Cover Plates of Finite Element Models                          | 36 |
| Figure 3.6 | Welding Residual Stresses in the Column Reinforced under Load  | 37 |
| Figure 3.7 | Axial Load versus Lateral Deflection Curves for the            |    |
|            | Column Reinforced under Load                                   | 38 |
| Figure 3.8 | Welding Residual Stresses in the Column                        |    |
|            | Reinforced under no Load                                       | 39 |
| Figure 3.9 | Axial Load versus Lateral Deflection Curves for the            |    |
|            | Column Reinforced under no Load                                | 40 |
| Figure 4.1 | Deformed Shape of Columns Reinforced with Plates               |    |
|            | Parallel to the Flanges                                        | 66 |
| Figure 4.2 | Deformed Shape of Columns Reinforced with Plates               |    |
|            | Parallel to the Web                                            | 67 |
| Figure 4.3 | Local Buckled Shape of the Column Reinforced with              |    |
|            | Plates Parallel to the Web                                     | 68 |
| Figure 4.4 | Load versus Lateral Deflection Curves for the Columns          |    |
|            | with Overall Buckling and Local Buckling                       | 69 |
| Figure 4.5 | Strength of All Reinforced Column Samples                      | 69 |
| Figure 4.6 | Initial Residual Stress Patterns before Welding                | 70 |
| Figure 4.7 | Residual Stress Distributions after Welding for                |    |
|            | Maximum Initial Residual Stress of 0.3F <sub>v</sub>           | 73 |

| Figure 4.8  | Residual Stress Distributions after Welding for                 |     |
|-------------|-----------------------------------------------------------------|-----|
|             | Maximum Initial Residual Stress of 0.1F <sub>y</sub>            | 74  |
| Figure 4.9  | Effect of Initial Residual Stress Patterns for                  |     |
|             | Maximum Magnitude of 0.3F <sub>y</sub>                          | 75  |
| Figure 4.10 | Effect of Initial Residual Stress Patterns for                  |     |
|             | Maximum Magnitude of 0.1F <sub>y</sub>                          | 75  |
| Figure 4.11 | Residual Stress Patterns after Welding                          | 76  |
| Figure 4.12 | Effect of Varying Initial Residual Stress Patterns              |     |
|             | before Welding in the Cover Plates                              | 77  |
| Figure 4.13 | Effect of Varying Welding Residual Stresses                     |     |
|             | with Different Slenderness Ratios                               | 77  |
| Figure 4.14 | Effect of the Initial Out-of-straightness ( $\lambda = 1.1$ )   | 78  |
| Figure 4.15 | Effect of the Preload Magnitudes ( $\lambda = 1.1$ )            | 78  |
| Figure 4.16 | Effect of the Reinforcing Plate Orientation ( $\lambda = 1.1$ ) | 79  |
| Figure 5.1  | Frequency Distributions for Load Effect, S, and Resistance, R   | 136 |
| Figure 5.2  | Risk Frequency Distribution for ln(R/S)                         | 136 |
| Figure 5.3  | Geometric Dimensions for Reinforced Columns                     | 137 |
| Figure 5.4  | Simulated Professional Ratio vs. Value of Out-of-straightness   |     |
|             | for Columns from Group 1 ( $\lambda = 0.4$ )                    | 138 |
| Figure 5.5  | Simulated Professional Ratio vs. Value of Out-of-straightness   |     |
|             | for Columns from Group 1 ( $\lambda = 1.1$ )                    | 138 |
| Figure 5.6  | Simulated Professional Ratio vs. Value of Out-of-straightness   |     |
|             | for Columns from Group 1 ( $\lambda = 1.5$ )                    | 139 |
| Figure 5.7  | Normalized Professional Ratio vs. Value of Out-of-straightness  |     |
|             | for Columns from Group 1 ( $\lambda = 0.4$ )                    | 139 |
| Figure 5.8  | Normalized Professional Ratio vs. Value of Out-of-straightness  |     |
|             | for Columns from Group 1 ( $\lambda = 1.1$ )                    | 140 |
| Figure 5.9  | Normalized Professional Ratio vs. Value of Out-of-straightness  |     |
|             | for Columns from Group 1 ( $\lambda = 1.5$ )                    | 140 |

| Figure C.1 | Simulated Professional Ratio vs. Value of Out-of-straightness  |     |
|------------|----------------------------------------------------------------|-----|
|            | for Columns from Group 2 ( $\lambda = 0.4$ )                   | 209 |
| Figure C.2 | Simulated Professional Ratio vs. Value of Out-of-straightness  |     |
|            | for Columns from Group 2 ( $\lambda = 1.1$ )                   | 209 |
| Figure C.3 | Simulated Professional Ratio vs. Value of Out-of-straightness  |     |
|            | for Columns from Group 2 ( $\lambda = 1.5$ )                   | 210 |
| Figure C.4 | Normalized Professional Ratio vs. Value of Out-of-straightness |     |
|            | for Columns from Group 2 ( $\lambda = 0.4$ )                   | 210 |
| Figure C.5 | Normalized Professional Ratio vs. Value of Out-of-straightness |     |
|            | for Columns from Group 2 ( $\lambda = 1.1$ )                   | 211 |
| Figure C.6 | Normalized Professional Ratio vs. Value of Out-of-straightness |     |
|            | for Columns from Group 2 ( $\lambda = 1.5$ )                   | 211 |

# **List of Symbols**

Note: Symbols appearing in the text with and without a bar, e.g., A and A, denote the mean and nominal values, respectively.

- A Gross area of the cross section
- A<sub>C</sub> Area of the rolled section
- A<sub>P</sub> Area of the cover plates
- B Buckling axis of the reinforced column
- b<sub>f</sub> Flange width of the rolled section
- b<sub>p</sub> Plate width
- CF<sub>v</sub> Yield strength of the rolled section columns
- C<sub>r</sub> Factored compressive resistance of steel columns
- D Direction of reinforcing plates
- d Depth of the rolled section
- E Modulus of elasticity of steel
- E<sub>t</sub> Tangent modulus of steel
- F The stress defined by an expression of  $F_v$  and  $\lambda$
- F<sub>e</sub> Elastic buckling stress
- F<sub>v</sub> Yield strength of steel
- $f(\lambda)$  A function of the non-dimension slenderness ratio,  $\lambda$
- G Geometric properties
- g Side of the fillet welds connecting the plates to the rolled section
- IRS Initial residual stresses in the rolled section and the cover plates before reinforcing
- $I_x$ ,  $I_y$  Moment of inertia of cross section about principal x and y axes
- K Effective length factor
- k Side of the fillet connecting the flanges to the web in the rolled section
- L The column length
- MF Maximum magnitude of the residual stress at the flange tips
- MP Maximum magnitude of the residual stress at the reinforced plate edges
- n Coefficient in the equation for C<sub>r</sub> in the Clause 13.3.1 of CSA/CAN-S16.1-94
- P External axial load of the column

- P<sub>0</sub> Preload before reinforcing
- P<sub>i</sub> Functions of the non-dimension slenderness ratio,  $\lambda$  (i = 1, 2, 3)
- P<sub>cr</sub> Column strength
- P<sub>exp</sub> Load carrying capacity of the reinforced column obtained from experiment
- P<sub>fea</sub> Load carrying capacity of the reinforced column obtained from finite element analysis
- PF<sub>v</sub> Yield strength of the cover plates
- P<sub>r1</sub> Load carrying capacity of the reinforced column predicted using SSRC curve 1
- P<sub>r2</sub> Load carrying capacity of the reinforced column predicted using SSRC curve 2
- P<sub>rc1</sub> Load carrying capacity of the reinforced column predicted using CSA curve 1
- P<sub>rc2</sub> Load carrying capacity of the reinforced column predicted using CSA curve 2
- P<sub>rv</sub> Yield strength of the reinforced column
- PS Designation of the initial residual stress pattern before reinforcing
- P<sub>u2</sub> Load carrying capacity of the unreinforced column predicted using the SSRC column curve 2
- P<sub>uy</sub> Yield strength of the unreinforced rolled section column
- R The resistance
- r Radius of gyration of the cross section
- $r_x$ ,  $r_y$  Radius of gyration of the cross section about principal x and y axes
- S The load effect
- t<sub>f</sub> Thickness of the flanges in the rolled section
- t<sub>p</sub> Thickness of the cover plates
- V<sub>A</sub> Coefficient of variation of the area
- V<sub>CFv</sub> Coefficient of variation of the yield strength of the rolled section columns
- V<sub>Cr</sub> Coefficient of variation of the factored compressive resistance of steel columns
- V<sub>E</sub> Coefficient of variation of the modulus of elasticity
- $V_F$  Coefficient of variation of the stress defined as a function of  $F_y$  and  $\lambda$
- V<sub>Fv</sub> Coefficient of variation of the yield stress
- V<sub>G</sub> Coefficient of variation of the relevant geometric property
- V<sub>I</sub> Coefficient of variation of the moment of inertia
- V<sub>M</sub> Coefficient of variation of the relevant material property

 $V_{P}$ Coefficient of variation of the ratio of the strength of a column obtained from test to the strength predicted using the design equation  $V_{PFv}$ Coefficient of variation of the yield strength of the cover plates  $V_R$ Coefficient of variation of the resistance  $V_r$ Coefficient of variation of the radius of gyration  $V_{\varsigma}$ Coefficient of variation of the load effect Thickness of the web w Separation factor α α' The load factor Separation factor for the resistance  $\alpha_{\mathbf{R}}$ Separation factor for the load effect  $\alpha_{s}$ Coefficient of thermal expansion in the longitudinal direction of the steel column  $\alpha_{x}$ β Safety index Δτ Temperature change in the steel column  $\delta_0$ Initial imperfection of the unreinforced column  $\delta_{i}$ Initial out-of-straightness of the reinforced column λ Non-dimensional slenderness parameter Measured-to-nominal ratio of the area  $\rho_{A}$ Measured-to-nominal ratio of the yield strength of rolled section columns  $\rho_{CFv}$  $\rho_{Cr}$ Measured-to-nominal ratio of the factored compressive resistance of steel columns Measured-to-nominal ratio of the modulus of elasticity  $\rho_{E}$ Measured-to-nominal experimental ratio  $\rho_{ex}$ Measured-to-nominal ratio of the stress defined as a function of  $F_v$  and  $\lambda$  $\rho_{\mathsf{F}}$ Measured-to-nominal ratio of the yield strength  $\rho_{Fv}$ Measured-to-nominal ratio of  $f(\lambda)$  $\rho_{f(\lambda)}$ Measure-to-nominal ratio of the relevant geometric property  $\rho_{G}$ Measured-to-nominal ratio of the moment of inertia  $\rho_{\rm I}$ Measure-to-nominal ratio of the relevant material property ρм Normalized professional ratio  $\rho_n$ 

- $\rho_p$  Ratio of the strength of a column obtained from test to the strength predicted by the design equation
- $\rho_{PFy}$  Measured-to-nominal ratio of the yield strength of cover plates
- $\rho_R$  Measured-to-nominal ratio of the resistance
- $\rho_r$  Measured-to-nominal ratio of the radius of gyration
- ρ<sub>S</sub> Measured-to-nominal ratio of the load effect
- ρ<sub>s</sub> Simulated professional ratio
- $\rho_{seq}$  Simulated professional ratio predicted by the best-fit equation
- $\rho_{\lambda}$  Measured-to-nominal ratio of the non-dimensional slenderness ratio
- $\sigma_{b_r}$  Standard deviation of the width of the flange of the rolled section
- $\sigma_{b_n}$  Standard deviation of the width of the cover plate
- $\sigma_d$  Standard deviation of the depth of the rolled section
- $\sigma_E$  Standard deviation of the modulus of elasticity
- $\sigma_F$  Standard deviation of the stress defined by an expression of  $F_v$  and  $\lambda$
- $\sigma_{Fv}$  Standard deviation of the yield strength
- $\sigma_g$  Standard deviation of side of fillet welds connecting the plates to the rolled section
- $\sigma_k$  Standard deviation of the side of the fillet connecting the flanges to the web of the rolled section
- $\sigma_R$  Standard deviation of the resistance
- $\sigma_{\rm r}$  Standard deviation of the radius of gyration
- $\sigma_{\rm S}$  Standard deviation of the load effect
- $\sigma_{t_f}$  Standard deviation of the thickness of the flange of the rolled section
- $\sigma_{t_p}$  Standard deviation of the thickness of the cover plate
- $\sigma_{\rm w}$  Standard deviation of the thickness of the web of the rolled section
- $\sigma_{wr}$  Residual stress resulting from welding
- $\sigma_x$  Longitudinal thermal stress in the steel column
- Resistance factor

# Chapter 1

#### Introduction

## 1.1 General Background

It might be necessary to strengthen steel columns many years after construction. Most columns in existing structures carry some load at the time of reinforcing. Common reinforcement of a steel column is welding or bolting cover plates on the column. In bridges, for example, the cover plates would preferably be bolted since welding would introduce potential fatigue problems, while columns in other structures have been reinforced by welding cover plates.

There are no specific design criteria for reinforced columns in Canada up to now. In practice, many engineers would use the same design criteria for reinforced columns as those for rolled W section columns.

Since the limit states design method was employed in Canada in 1974 (Canadian Standards Association, 1974), the design criteria for steel columns have been used based on the SSRC multiple curves. CSA standard CAN3-S16.1-M84 – "Steel Structures for Building – Limit States Design" (Canadian Standards Association, 1984) adopted the SSRC curve 1 and the SSRC curve 2 for the design of steel columns. Each curve presents the behaviour and strength of different kinds of steel columns. The lower curve of clause 13.3.1 (based on the SSRC curve 2) is used for hot-rolled W section columns. Kennedy and Gad Aly (1980) suggested that the higher curve of clause 13.3.2 (based on the SSRC curve 1) was appropriate for class H hollow structural sections. Based on the study of Chernenko and Kennedy (1989), clause 13.3.2 is also used for Canadian WWF columns.

In the current Canadian standard the five-part equation developed by the SSRC was replaced by a double exponential representation with a single parameter, which was proposed by Loov (1996). The column curve described by the expression corresponding to the SSRC curve 1 is CSA curve 1, and the column curve described by the expression corresponding to the SSRC curve 2 is CSA curve 2. The CSA curves were demonstrated to accurately approximate the corresponding SSRC curves.

#### 1.2 Statement of the Problem

In the columns reinforced with welding cover plates, welding can introduce tensile residual stresses at the flange tips of the rolled section and the edges of the reinforcing plates. Since yielding begins at the tips and progresses inwardly, these tensile residual stresses may be beneficial to the column strength by delaying the deterioration in minor axis stiffness.

Out-of-straightness, more specifically called camber or sweep depending about which axis the out-of-straightness occurs, is generally understood to be an important influencing factor for any column. The current S16.1 column curve (CSA curve 2) for rolled W sections is based on a maximum allowable out-of-straightness of L/1000 for both axes (Bjorhovde, 1972). It is more acceptable for S16.1 column curve to be based on statistical quantities, that is, on the mean values and associated coefficients of variations.

Furthermore, more influencing factors exist in reinforced columns, such as orientation of reinforcing plates, welding residual stress, geometric and material properties of the rolled section and plates, comparing to rolled W sections. The addition of reinforcing plates may affect the behaviour and strength of reinforced columns a lot. These parameters may have individual and combined effects on the prediction of reinforced column strength.

The differences between reinforced columns with welded cover plates and rolled W sections affect column strengths over the full range of column lengths, and suggest that reinforced columns with welded cover plates may be unnecessarily penalized with the CSA curve 2 (or SSRC curve 2) along with rolled W sections. Different column curves should be used for the two types of sections.

## 1.3 Objectives and Scope

In order to understand the uncertainty problems in reinforced columns with welded cover plates, the research was designed with the following objectives:

- 1. To review the existing literature on reinforced columns.
- 2. To develop a finite element model for reinforced columns under load.
- 3. To select the parameters influencing the behaviour and the strength of reinforced columns and to study the effects of parameters on reinforced columns.
- 4. To investigate statistically the resistance of reinforced columns produced in Canada by evaluating resistance factors appropriate for use with existing column curves for reinforced columns with welded cover plates under load.
- 5. To assess existing design criterion for reinforced columns with welded cover plates under load.

In the research, the analyzed rolled W section columns were only reinforced with welding cover plates because there is a potential for the welding residual stresses to improve the strength of welded reinforced columns. The beneficial effect of the welding residual stresses is not present when the reinforcing plates are bolted on the column.

A finite element program, ABAQUS (Hibbitt et al, 1997), was used to assess the effects of variations in parameters on the behaviour and the strength of reinforced columns. Out-of-straightness was restricted to a superposition of four buckling modes of the column. The study was limited to centrally loaded, pin-ended columns, buckling about the major or minor centroidal axis, and laterally supported about the other axis when required. Local buckling, buckling about both axes simultaneously, and lateral torsional buckling were not considered. Resistance factors were evaluated for values of the slenderness parameter, λ, of 0.4, 1.1 and 1.5 in two categories, in respect of the design criteria of CAN3-S16.1-M84 and CAN/CSA-S16.1-94, respectively. The first category includes columns reinforced with plates parallel to the flanges with buckling about the strong axis of the W shape and columns reinforced with plates parallel to the web with buckling about the weak axis of the W shape. The second category includes columns reinforced with plates parallel to the flanges with buckling about the weak axis of the W shape, and columns reinforced with plates parallel to the web with buckling about the strong axis of the W shape.

#### 1.4 Organization of the Thesis

A literature review is presented in Chapter 2. This outlines the research done for parameters influencing the behaviour and strength of reinforced columns. A design method for reinforced columns is also discussed. Chapter 3 presents a description of a finite element model setup and analytical procedure for reinforced columns with welding cover plates. Parametric studies to assess the effect of the parameters on the reinforced columns are presented in Chapter 4. Based on a review of the principle of limit states philosophy associated with the column design process, the statistical analysis to give the resistance factor for the design of a reinforced column and to verify which design curve given in the code is appropriate to the reinforced column design is treated in Chapter 5. Finally, a summary, conclusion and recommendations for further research are presented in Chapter 6.

Initial geometrical, material and load conditions of all the finite element analytical models are tabulated in Appendix A. Appendix B presents the results of the analytical models. The statistical analysis data for the columns in category 2 (columns reinforced with plates parallel to the flanges and buckling about the weak axis of the rolled section and columns reinforced with plates parallel to the web and buckling about the strong axis of the rolled section) are presented in Appendix C.

## Chapter 2

#### Literature Review

# 2.1 Factors Influencing Column Strength

#### 2.1.1 Introduction

A seemingly simple structural column in fact functions as a complex individual structural member because of the effects of various parameters such as the interaction between the responses and characteristics of the material, the cross-section, the method of fabrication, the imperfections and other geometric factors, and the end conditions. Geschwindner *et al.* (1994) suggested that the following parameters affect column strength:

- 1. Material properties
  - (a) Stress-strain relationship
  - (b) Yield strength
- 2. Shape of cross-section
  - (a) Area of steel
  - (b) Shape of the cross-section (W, C, WT, etc.)
  - (c) Buckling axis
- 3. Length
- 4. End support conditions
  - (a) Without sway, pinned or otherwise
  - (b) With sway, pinned or otherwise
- 5. Residual stress magnitude and distribution
- 6. Initial imperfections
  - (a) Magnitude
  - (b) Distribution along column length

It is generally accepted that the yield strength and the modulus of elasticity are the most important material properties. For very short columns, the load carrying capacity may reflect a strength increase due to strain-hardening, but for hot-rolled structural

shapes, other factors such as local buckling may limit this strength increase. Therefore, the yield strength represents the practical limit of capacity of a very short column. For long columns, the capacity is influenced more by stiffness, which is a function of the magnitude of the tangent modulus and the cross-section moment of inertia (Galambos, 1998; Geschwindner *et al.*, 1994).

The shape of a cross-section is obviously important. For a given stress level, the load-carrying capacity will be larger for a column of larger area. The distribution of the area in the cross-section is expressed as the moment of inertia, which affects the capacity of columns that fail by buckling. The buckling axis is another factor influencing the behaviour of columns. The buckling capacity of columns about different axes is governed by different moments of inertia and corresponding slenderness ratios, which are defined as ratio of the effective column length to the radius of gyration. The geometry of the cross-section also influences the residual stress distribution.

The effective length concept has been introduced to account for the effect of column length and boundary conditions on the capacity of columns (Galambos, 1968). Euler first developed an analytical model based on the assumption that both ends of the column were completely free to rotate as the column reached its buckling strength. This situation will sometimes arise. For other end restraint conditions, the actual length of the column, L, is replaced by its effective length, KL, that is, the length of a pin-ended column of the same capacity as the column with other end restraint conditions. This effective length corresponds to the distance between points of inflection (points of zero bending moment) on the buckled shape. As a parameter of the effective length, the end support condition also has been generally understood as a column strength parameter.

The influence of column effective length is explicit in design calculations, whereas the influence of other factors such as initial imperfections and residual stresses may be hidden in the design approach, although they may also be important. In design practice, a non-dimensional slenderness parameter,  $\lambda$ , has been found to be the most important factor (Chen and Lui, 1987). This parameter is taken as the square root of the ratio of the yield stress to the elastic buckling stress, which is expressed as:

$$\lambda = \sqrt{\frac{F_y}{F_e}} = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E}}$$
 [2.1]

where  $F_e$  is the elastic buckling stress, E is the modulus of elasticity, r is the radius of gyration of the cross-section, and  $F_y$  is the yield strength of the column. With respect to their slenderness, columns are generally referred to as short columns, intermediate columns or slender columns. Slender columns buckle when the cross-section is still elastic. Intermediate columns buckle when part of the cross-section has yielded under the combined action of the applied axial load and the residual stresses. Short columns usually fail by local buckling after yielding of the full cross-section.

Residual stresses, formed during the cooling process after hot rolling, are influenced by the distribution of material in the cross-section. It is commonly accepted that the flange tips of a rolled I-shape section are subjected to residual compressive stresses because these areas, which possess less material and more exposed surface area, cool down faster than the flange to web junctions, which possess a larger volume of material to surface area ratio. This differential cooling gives rise to compressive residual stresses at the flange tips and tensile residual stresses at the flange to web junctions. Residual stresses have a major impact on the load-carrying capacity of a steel column. The investigation conducted by Huber (1956) demonstrated that the strength of a column could be reduced by the presence of residual stresses. Residual stresses also cause nonlinearity of the stress versus strain relationship as soon as any part of the cross-section starts to yield due to the combination of the applied stresses and the residual stresses. The tangent and reduced modulus theories developed by Engesser (Galambos, 1968) are commonly applied for these inelastic columns. The critical loads computed by these theories correspond closely to experimental results.

Initial out-of-straightness has long been recognized as a significant column strength parameter. It has been found that the effect of initial out-of-straightness is different for columns of different lengths (Galambos, 1998). Short and slender columns are not affected much by initial out-of-straightness, but intermediate columns are significantly affected (Galambos, 1998). The magnitude of initial out-of-straightness in any member is limited by manufacturing tolerance limits set by CSA standard G40.20-92 (Canadian

Standards Association, 1992), which reflects standard mill practice. Thus, the maximum value of out-of-straightness for rolled wide-flange shapes is set at L/1000, where L is the member length, with some minor modifications for longer sections and certain geometries (Canadian Standards Association, 1992).

The studies show that the influence of above parameters is more severe for intermediate length columns than for short or slender columns (Kulak and Gilmor, 1998; Galambos, 1998; Kennedy et al., 1976). The effect on the reinforced column also has to be studied to verify their importance.

Tall (1989) suggested that other factors influence the strength of reinforced steel columns as follows:

- 1. The orientation of the cover plates welded to the column;
- 2. Different grades of steel for cover plates and rolled section.

Reinforcement is usually understood to be the welding or bolting of cover plates to the flanges or the web of the cross section (Tall, 1989). The orientation of cover plates welded to the flanges can be either parallel to the flanges or to the web, as shown in Figure 2.1. Different reinforcing plate orientations for the same size of cross-section will introduce different moments of inertia and slenderness ratios for the reinforced column, both of which can affect the strength of the reinforced column significantly.

# 2.1.2 Initial Out-of-straightness

Although not perfectly straight, structural shapes are expected to satisfy the straightness requirements of the applicable materials delivery standard, CSA standard G40.20-92. Before the limit states design philosophy was developed, the effects of any initial imperfections were covered through the factor of safety (Geschwindner *et al.*, 1994). The strength of the straight member was used as the actual criterion. With the limit states design philosophy, all of the major parameters have to be accounted for. Therefore, the influence of initial out-of-straightness must be reflected in the strength equations.

Initial imperfections are the result of the cooling process for the shape once the column has been rolled to its final dimensions. When the column is left on the cooling bed to cool in air for a period of time, other members are also placed on the bed, and the heat dissipation from the member is not uniform neither throughout the cross section nor along the length or around its sides. As a result, heat is usually retained longer in the midlength portion of the column and in the parts of the cross section exposed most directly to the heat of the adjacent members on the cooling bed.

The resulting non-uniform cooling leads not only to residual stresses but also a steel member in a curved configuration along its length. The amount of curvature or initial out-of-straightness is difficult to predict because of a number of uncontrollable factors. The maximum out-of-straightness is limited typically based on the length of the member by CAN/CSA-G40.20-92. The maximum values are set as  $\delta_i = L/1000$  for column length less than 14 m and  $\delta_i = 10 + (L-14000)/1000$  for column lengths larger than 14 m. The value is different for different cross sections. A column that does not meet this straightness requirement is rotorized or gag-straightened to bring it into compliance with the code. Bjorhovde (1972) found that the mean value of initial out-of-straightness of rolled W sections, is L/1500, which is less than the code limit.

It was found that the shape of the initial imperfections, i.e., their variation along the length of the column, differs from the commonly assumed half sine wave (Bjorhovde, 1972). However, if it is assumed that the initial shape of the axis of the pinned-ended column is sinusoidal, the resulting average stress at which the maximum stress in the column equals the yield stress can be obtained by the Perry-Robertson equation (Johnston, 1976). This average stress gives a conservative estimate of the strength of an initially curved column.

Geschwindner et al. (1994) suggested that the combined effect of residual stresses and initial out-of-straightness could not be obtained merely by combining the two terms. In some cases, and for certain slenderness ratio ranges, the strength of a column with residual stresses and initial out-of-straightness is less than what would be found if the

effects of both were added. In other cases, it is not as critical as the sum would seem to indicate.

#### 2.1.3 Residual Stresses

The manufacturing method is one of the primary factors influencing the distribution and magnitude of initial residual stresses in the cross-section. The research in this paper is limited to hot-rolled sections with welded reinforcement. Therefore, the review of the literature was limited to factors related to these specific manufacturing processes.

Under the combined action of residual stresses and applied axial loads, yielding of a column will start when the sum of the applied stress and the maximum compressive residual stress reaches the yield strength of the material. Beyond this point, the column becomes inelastic. Considering the inelastic behaviour of columns, Engesser presented the tangent modulus theory (Galambos, 1998). According to this theory, once the column has become inelastic, its behaviour is dictated by the tangent modulus. The tangent modulus column strength equation can be expressed as:

$$P_{cr} = \frac{\pi^2 E_t}{(KL/r)^2} A$$
 [2.2]

where  $P_{cr}$  is the column strength,  $E_t$  is the tangent modulus, and A is the gross area of the cross section.

Huber (1956) measured residual stresses in a series of hot-rolled W-shapes ranging from a light section: 4WF13 (W100x19) to a heavy section: 36WF150 (W920x223). The results showed that there are significantly different patterns for different sections. In rolled sections the residual stresses at the flange tips and the middle of the web are compressive stresses, while the residual stresses in the flange to web junctions are tensile. It was also observed that in most hot-rolled W sections the maximum compressive residual stress is approximately 30% of the yield strength (Chen and Atsuta, 1976).

Residual stress patterns and magnitude also vary widely in steel plates. According to CSA standard G40.20-92, plates are classified as universal mill (UM) plates, sheared plates, or flame cut plates. The initial residual stresses are significantly different in the

three types of plates. The edges of a UM plate or a sheared plate are in compression and the edges of a flame cut plate are in tension (Geschwindner et al., 1994). Tall (1961) and Nagaraja Rao and Tall (1963) investigated residual stress patterns for UM plates ranging from 150 x 6 mm to 300 x 18 mm. All the plates investigated had almost the same initial residual stress pattern with different maximum magnitudes at the edges of the plates. The measured maximum compressive residual stresses were about 30% of the yield strength.

The welding of built-up shapes is an even greater contributor to residual stresses than the differential cooling of hot-rolled shapes (Nagaraja Rao et al., 1964). Nonuniform cooling and restrained shrinkage of welds cause high residual stresses. Masubuchi (1980) observed that the maximum magnitude of tensile residual stress at the weld center is as high as the yield strength of the weld metal. Tall (1961) presented residual stress patterns measured in plates after welding of the plates to wide flange sections. Plate sizes ranged from 150x6 mm to 300x18 mm. The zone of tensile residual stresses resulting from welding along the plate edges was observed to extend from 18 mm to 37.5 mm. The thicker plates have wider zones of tensile residual stresses. The welding residual stresses were observed to reach the yield point value only at and in the vicinity of the weld.

#### 2.2 Research on Reinforced Columns

Very little research has been conducted on reinforced steel columns, although many structures have been strengthened. The processes used to reinforce columns were simply presumed to be safe. Nagaraja Rao and Tall (1962) reported on the work of Wilson and Brown who conducted tests on the strengthening of columns of a viaduct in 1935. Cover plates were welded to the existing sections. It was observed that in some cases the residual stresses in reinforced columns after welding might reach the yield point.

Sparagen and Grapnel (1946) presented an early review of all the literature on structures reinforced under load. They concluded that residual stresses, although high, did not seriously affect the ultimate strength of a column.

#### 2.2.1 Work of Tall and Co-workers

Nagaraja Rao and Tall (1963) conducted an experimental investigation of the effect of welding cover plates to a wide flange column under load. The program consisted of residual stress distribution determination, tension coupon testing, stub column tests, and column tests.

Three pin-ended columns were tested: an unreinforced column, a column reinforced under load, and a column reinforced under no load. Ancillary tests were conducted to investigate the residual stress distribution and the yield strength of the columns.

In the investigation, a 8WF31 (W200x46) shape was selected as the core column and 180x9.5 mm plates were used for the cover plates. The rolled shape and the cover plates were of ASTM A7 steel. Because the selected rolled shape has one of the lowest shape factors (the area, the moment of inertia and so on) and b/t ratio in available rolled sections, the results of tests would be conservative for other sections. The preload at the time of welding was fixed to 405 kN (the stress on the section was 69 MPa).

For convenience in testing and in comparing results, all the three pin-ended columns were tested with boundary conditions that allowed buckling about the weak axis. The column specimens were 2440 mm long, resulting in a slenderness ratio of about 48. The reinforced columns had an out-of-straightness of 0.51 mm (L/4880) for the column reinforced under load and 0.77 mm (L/3190) for the column reinforced under no load, whereas the unreinforced column had an out-of-straightness of 4.335 mm (L/560).

Residual stresses were measured both in the unreinforced and in the reinforced column using the method of sectioning. It was observed that the compressive residual stresses at the flange tips of the unreinforced section were changed to high tensile residual stresses as a result of welding of the reinforcing plates.

The effect of welding sequence on residual stresses in a reinforced column was also investigated. In the experiments, two welding sequences were selected. The welding methods conformed to ASCE-AWS standards then. The two welding sequences were:

- 1) Welding each flange one after another, stage by stage, as shown in Figure 2.2 (a).
- 2) Welding two diagonally opposite flanges simultaneously, as shown in Figure 2.2 (b).

The residual stress distributions with different welding sequences were also measured by the method of sectioning. Welding residual stresses in the flanges and plates were almost the same under different welding sequences, whereas welding residual stresses in the web were found to be different. The maximum magnitudes of the residual stresses in the flanges and plates were close to each other under different welding sequences. Masubuchi (1980) suggested that as far as residual stresses along the weld are concerned, the effect of welding sequence is minor.

The test results on the reinforced columns indicated that the stress level in the reinforced columns at buckling is greater than the buckling stress for the unreinforced section. A theoretical tangent modulus column curve for the reinforced section was developed from the stub-column test results (Nagaraja Rao and Tall, 1963). The resulting column curve for a reinforced W200x46 fell above the Column Research Council (CRC) curve, indicating a higher strength from the reinforced section. The CRC curve represents an average curve for bending about either the strong or the weak axis (Huber, 1958).

The following observations were made from the test results:

- The pin-ended column showed that the reinforced sections had a higher capacity.
   One of the pin-ended columns tested reached 98% of its yield strength. The stub
   column tests and the pin-ended column tests showed that welding for shorter
   reinforced columns did not reduce the buckling stresses.
- 2. The influence of welding is confined to a very small area in the vicinity of the weld. The properties of the material in the major portion of the section are not affected enough to change the strength of the reinforced section.

A later paper presented by Tall (1989) extended the discussion of the welded reinforcement based on the previous investigation. Further discussion of the residual stress magnitude and distribution was presented.

The initial compressive residual stresses in W-shapes would contribute to a reduction of compressive strength. To minimize the loss of compressive strength, it is desirable to change the compressive residual stresses to tensile stresses at the critical portion of the rolled section, i.e. the tips of the flanges, to delay yielding of this portion under a compressive load. Welding of cover plates to the flanges or simply laying a weld bead on the flange tips are two ways to achieve this. The change of residual stress distribution resulting from welding alone was demonstrated to result in a marked improvement in column strength (Fujita, 1960). Tall (1989) proposed that the increase in strength resulting from welded cover plates on a rolled section is substantially greater than for welding alone because of the combined effect of the additional material and welding residual stresses.

The test results presented by Nagaraja Rao and Tall (1963) showed a 10% increase in strength after reinforcement. Because the non-dimensionalized strength is defined with respect to the yield strength of the total cross section, which differs before and after reinforcement, the actual absolute increase in strength would be considerably higher. Therefore, the reinforcement of a column may result in the column being assigned a higher column curve if the concept of multiple column curves is considered.

It has been shown (Alpsten and Tall, 1970; Brozzetti et al., 1970; Bjorhovde et al., 1972; Kishima et al., 1969) that welding has a greater influence on the overall distribution of residual stresses in small and medium-size shapes, than in the case of heavy shapes. Tall (1989) therefore proposed that welding alone on the flange tips would improve the strength of rolled sections of light and medium size more than for heavy rolled shapes.

Tall (1989) suggested that the width of the cover plate should not be smaller than the width of the flange less the size of two fillet welds — this ensures that the weld is as close as possible to the flange tips so as to be effective in changing the residual stresses at the flange tips from compression to tension. The maximum effect of reinforcement is obtained when the reinforcing weld is as close as possible to the edge of the flange of the rolled section.

Comparing test results for columns reinforced under load and reinforced under no load, Tall (1989) suggested that preload would not affect the strength of short reinforced columns.

#### **2.2.2** Work of Brown (1988)

Brown (1988) proposed a simplified model of a reinforced steel column to evaluate its strength when reinforced under load. The model consists of two flexible columns, one representing the unreinforced column (or column core) and the other representing the reinforcing plates, tied together with rigid links to enforce compatibility of displacements between the column core and the reinforcing plates. Depending on the slenderness of the column, three ranges of column response were identified: 1) the core column forms a plastic hinge and the reinforcement provides the additional capacity until it reaches the maximum load capacity (i.e. the capacity of the column reinforced under load is the same as a column reinforced under no load); 2) after the core column fails, the reinforcing plates provide additional capacity, but the reinforced column does not reach the full capacity of a column reinforced under no load; 3) failure of the reinforced column takes place when the stress in both the column core and the reinforcing plates is below the buckling stress of the same column reinforced under no load. The model proposed by Brown does not account for any of the residual stresses and depends on SSRC column design curves to account for the presence of the residual stresses.

#### 2.3 Summary

Residual stresses, initial geometric imperfections, and material and geometric properties were identified as the most influential factors for the capacity of unreinforced columns. A review of the literature has indicated that additional factors affect the strength and behaviour of welded reinforced columns. These factors, however, have received little attention. The direction of cover plates, the grade of steel used for the columns and the cover plates, the magnitude of the load carried by the unreinforced column when the reinforcing plates are welded to the column, and the buckling axes were identified as

potentially important parameters for reinforced columns. The effect of these parameters on the strength and behaviour of reinforced steel columns needs to be investigated.

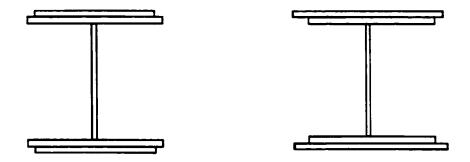
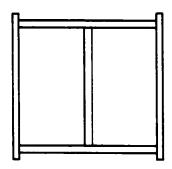




Plate narrower than flange

Plate wider than flange

(a) Reinforcing Plates Parallel to Flange



(b) Reinforcing Plates Parallel to Web

Figure 2.1 Formation of the Analysis Models

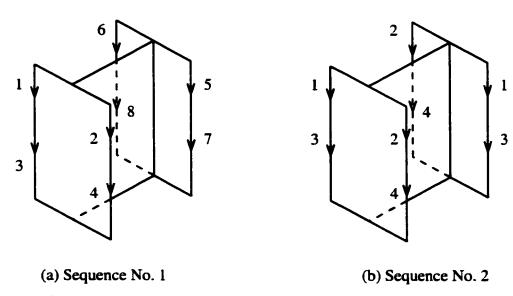



Figure 2.2 Welding Sequences Investigated by Nagaraja Rao and Tall (1963)

#### Chapter 3

# **Finite Element Modelling of Reinforced Steel Column**

#### 3.1 General

A review of the literature indicated that the number of tests conducted on steel columns reinforced under load with welded steel plates is very limited. To fully understand the behaviour of reinforced steel columns, a large number of tests are required in order to incorporate a wide range of parameters that affect the behaviour of reinforced steel columns. However, it is uneconomical to conduct a large experimentally based investigation. In order to extend the database of test results, a numerical model was used to investigate the full range of parameters not covered by the test. The performance of this model was first verified by comparing the predicted strength and behaviour with test results.

The objective of this chapter is to develop and validate a finite element model of a reinforced steel column. The finite element model was developed using the commercial software ABAQUS, version 5.7 (Hibbitt et al., 1997). ABAQUS was used because of its ability to perform non-linear large displacement and finite strain post-buckling analysis.

This chapter consists of two parts. In the first part, the geometry and the boundary conditions of the finite element model are described. The initial conditions and load process of the numerical analysis are also discussed. In the second part, the results of the numerical analysis are compared with the results of physical tests to validate the numerical models.

#### 3.2 Description of the Model

To investigate the full range of possible cross sections for reinforced columns, two groups of finite element models were studied in the following investigation:

1) Columns reinforced with plates parallel to the flanges as shown in Figure 2.1(a) and,

2) Columns reinforced with cover plates parallel to the web as shown in Figure 2.1(b).

The finite element model of a reinforced column is composed of three parts: the rolled section, the reinforcing plates, and the welds connecting the reinforcing plates to the rolled section. The rolled section and reinforcing plates were discretized using element S4R from the ABAQUS finite element library. Element S4R is a four-node, doubly curved, general purpose shell element with finite strain capability and six degrees of freedom per node (Hibbitt *et al.*, 1997). The welded joint between the reinforcing plates and the rolled section was modelled using the two-node linear beam element B31. Element B31 has six degrees of freedom per node and transverse shear deformation capability.

When the beam elements were introduced into the model to simulate the welds, the minimum stiffness required to prevent relative displacement between two corresponding nodes on the rolled section and the reinforcing plate was determined by gradually increasing the beam stiffness until the relative displacements were considered negligible. This process was necessary to avoid potential convergence problems with excessively stiff beam elements.

The beam elements were added when the finite element model was built. In order to prevent interaction between the rolled shape and the reinforcing plates when residual stresses and column preload were added, the beam elements had to be deactivated in the first load step. To prevent rigid body motions of the reinforcing plates before their reattachment to the rolled section, the plates were connected to the rolled section using a tie connection at the column mid-height (see Figure 3.1). The single tie connection prevented rigid body motion of the reinforcing plates while allowing independent straining of the plates and rolled section during the application of the residual stresses.

#### 3.2.1 Finite Element Mesh

The mesh size used for modelling the reinforced columns was based on two principal considerations: 1) a sufficient number of elements had to be used to form the cross-

section so that the residual stress pattern could be modelled accurately, and 2) the aspect ratio of the elements was below 3.0 to avoid potential numerical problems (Gaylord *et al.*, 1997).

Figures 3.2 and 3.3 show the finite element mesh of the column reinforced with plates parallel to the flanges and that of the column reinforced with plates parallel to the web, respectively. To allow for welding of the cover plates, the cover plates were narrower and shorter than the W-shape column by about 20 mm.

The width of the elements adjacent to the tips of the flanges and webs were determined to accurately simulate the welding residual stresses in the cross-section. Welding residual stress distributions in steel plates were investigated both experimentally and analytically by Tall (1961). The thickness of the plates ranged from 1/4 inch (6 mm) to 3/4 inch (19 mm). The distance from the welded edge of the plate to the point where a residual stress reversal occurs was found to vary from 18 mm to 38 mm. Nagaraja Rao and Tall (1963) also investigated the welding residual stress distribution in a 8WF31 (W200x46) section with 180x9.5 mm plates welded parallel to the flanges. The residual stresses changed from positive to negative about 25 mm from the welded edge in the flanges and the cover plates. Therefore, the width of the elements adjacent to the edges in the flanges and the cover plates was chosen as 25 mm. This was found to provide welding residual stress patterns similar to the residual stress patterns obtained experimentally. This will be discussed further in the following.

#### 3.2.2 Material Properties

An isotropic, elastic-perfectly plastic material model was used for all the elements of the reinforced columns. The elastic range for all the elements was defined with an elastic modulus of 200 000 MPa and Poisson's ratio of 0.3. The yield stress level was varied for the rolled section and the reinforcing plates as described in the following chapter. The material properties for the beam elements, used to model the welds, were the same as for the cover plates.

The residual stresses in the plates and rolled section were introduced by imposing a temperature gradient in the cross-section. In order to introduce longitudinal residual stresses only, orthotropic thermal expansion properties were used. The value of the coefficient of thermal expansion was taken as  $1.17 \times 10^{-6}$ /°C in the longitudinal direction and zero in the transverse and through-thickness directions. The stress caused by constrained thermal expansion is expressed as

$$\sigma_{x} = -E \alpha_{x} \Delta \tau \tag{3.1}$$

where  $\sigma_x$  is the longitudinal stress, E is the modulus of elasticity,  $\alpha_x$  is the coefficient of thermal expansion in the longitudinal direction and  $\Delta \tau$  is the temperature change.

# 3.2.3 Boundary Conditions

The parametric study presented in the following chapter was limited to centrally loaded, pin-ended columns. The pinned ends were modelled using constraint equations between the centroid of the end cross-sections and each node on the cross-sections to force the ends of the column to remain plane and create a hinge about the centroid at each end of the column.

A restraint about the weak axis or the strong axis was added at the column end crosssection to make the corresponding slenderness ratio less than the slenderness ratio about the other axis. These end restraints were added either to promote buckling about the strong axis in some of the specimens included in the parametric study, or to prevent simultaneous buckling about two axes in very few of the specimens investigated with nearly equal stiffness about the strong and the weak axes.

In some of the reinforced column models with reinforcing plates parallel to the web and  $\lambda = 0.4$ , unexpected local buckling occurred at the ends of the column. This failure mode will be discussed further in section 4.2. However, because an investigation of local buckling of reinforced steel columns is beyond the scope of this research project, the thickness of the first three rows of elements near the ends was increased by a factor of three to prevent local buckling.

#### 3.2.4 Initial Conditions

The response of the column in the post-buckling range is of interest to assess the stability, or lack thereof, of the column after the peak load has been reached. To analyse the post-buckling behaviour, the bifurcation problem that exists when no initial imperfections are present in the model must be transformed into a problem with continuous response. This can be accomplished by introducing a geometric imperfection. Since the exact shape of the initial imperfections was not known a priori, initial imperfections, consisting of a superposition of multiple buckling modes, were introduced in the unreinforced column model. In ABAQUS this is accomplished in two analysis runs: 1) in the first run an eigenvalue buckling analysis is performed on the "perfect" geometry to determine the possible buckling modes; 2) in the second analysis run the initial imperfections are introduced by adding the buckling modes to the "perfect" geometry. The first four buckling modes were selected in the second analysis run. Research demonstrated that the first eigen mode provides the most critical imperfections (Galambos, 1968; Chen and Atsuta, 1976). In this research project the first four modes were used with different scaling factors to form the initial imperfections. The largest scaling factor was used for the first mode and the scaling factors of the 2nd mode, 3rd mode, and 4th mode were taken as 1/5, 1/10 and 1/20 of the first mode's scaling factor, respectively. Since the position of the maximum perturbation differs for all four modes, a trial and error method was adopted in the analysis to make the maximum magnitude of the superimposed eigenmodes equal to the desired magnitude of initial imperfection.

The second, third, and fourth buckling modes are not necessarily in the same plane as the first, and predominant, mode. Therefore, the superposition of the first four buckling modes introduces initial imperfections in the weak and in the strong axis directions. The magnitude of the initial imperfections in the strong direction was approximately 20%, or less, of the magnitude in the weak direction.

Initial temperatures at all the nodes in the model were defined as zero when the initial condition was defined. Based on this initial condition, temperature changes could be

introduced to simulate the initial residual strains, and stresses, and welding residual stresses in the load step described in the following section.

# 3.2.5 Loading Process

Because reinforcement of steel columns is usually performed while the column is carrying some load, loading of the reinforced steel column models had to be performed in several steps. The following steps were adopted in the analysis:

- 1) The finite element model initially consisted of the rolled section and the reinforcing plates attached to the rolled section with beam elements. It was therefore necessary in the first load step to de-activate the beam elements and perform an equilibrium iteration on the structure.
- Initial residual stresses were introduced in the rolled section and in the reinforcing plates in accordance to the temperature versus stress relationship presented in Equation [3.1].
- 3) An axial load representing the dead load and partial live load on the unreinforced column was introduced. The preload was varied from 40% to 60% of the unreinforced column strength.
- 4) The beam elements used to simulate the weld attachment between the reinforcing plates and the rolled section were re-activated. This was performed within a load step to ensure that equilibrium is maintained in the process of attaching the reinforcing plates to the wide flange section.
- 5) The welding residual stresses were introduced by increasing the temperature at the flange tips to create a strain at the flange tips of 70% or 100% of the yield strength of the wide flange section. It is generally accepted that the residual stress due to welding (at the tips of the flange and plates) can reach the yield stress (Tall, 1961).
- 6) The next step consisted of removing the initial preload applied in load step 3. Both the residual stresses and initial imperfections in the reinforced column were determined at the end of this step.
- 7) Riks' method was used to load the reinforced steel column into the pre- and post-buckling ranges.

Nonlinear static stress analysis was used for stable problem analyses such as removing and adding elements, imposing initial residual stress, pre-loading, welding effects, and removing pre-loading. As a consequence, large-displacement effects were included in all the steps of the loading process. The first five steps were performed using a load control Newton-Raphson procedure. In order to trace the post-buckling response of the reinforced columns the modified Riks method (Riks,1979) was used in the last load step.

#### 3.3 Validation of the Finite Element Model

#### 3.3.1 General

Because of the limited number of test results on reinforced steel columns, it is difficult to collect enough test data to fully validate the numerical model. Nagaraja Rao and Tall (1963) provided a set of test results for columns reinforced under load and under no load. To validate the numerical model as much as possible, both cases were compared with the analysis results.

# 3.3.2 Description of the Tests

The experimental investigation presented by Nagaraja Rao and Tall (1962) used W200x47 (8WF31) columns with 178x9.5 mm reinforcing plates, both of ASTM A7 structural steel. The reinforcing plates were placed parallel to the flanges. The weighted mean yield stress, determined from a stub-column test, was 256.5 MPa. The length of the column was 2440 mm, giving a non-dimensional slenderness ratio,  $\lambda$ , of about 0.5.

The column reinforced under load had an out-of-straightness of 0.5 mm (L/4900) after reinforcing. The out-of-straightness of the column reinforced under no load was 0.762 mm (L/3200). It should be noted that the reported initial out-of-straightness for both unreinforced columns was L/565, which is significantly greater than the maximum allowable initial out-of-straightness for wide flange sections.

An axial load was applied through end fixtures that allowed the columns to buckle freely about their weak axes. For the column reinforced under load, the pre-load applied before reinforcing was 30 percent of the capacity of the rolled section, namely 405 kN (Nagaraja Rao and Tall, 1963).

## 3.3.3 Initial Conditions of the Numerical Analyses

Based on the investigation by Nagaraja Rao and Tall (1963), two numerical models were developed to model column reinforcement under load and reinforcement under no load. The geometrical details and the numerical analysis results of the two models are summarized in Table 3.1. The first model consists of the column reinforced under load and the second model represents the column reinforced under no load.

The same initial residual stresses were used for the two numerical models as illustrated in Figure 3.4. Columns (8) and (9) of Table 3.1 present the initial residual stress distributions in the sections. Column (8) shows the maximum magnitude at the tips of the flanges and Column (9) shows the maximum magnitude at the reinforcing plate edges.

Figure 3.5 shows a comparison between the initial residual stress distributions in the cross-section of the numerical models and the test specimen. The figure presents both the input values of residual stresses in the finite element model and the output value, obtained at the end of an equilibrium step in the loading process described above. The numerical model replicates successfully the measured residual stresses.

The magnitude of the initial imperfections reported by Nagaraja Rao and Tall (1962) was also replicated in the finite element models. Since the residual stresses introduce deformations in the model, the initial geometry had to be adjusted so that the magnitude of initial imperfections at the end of the residual stress load step was equal to the measured value. A trial and error procedure was used for this purpose. Columns (11) and (12) of Table 3.1 present the magnitude of the initial out-of-straightness before reinforcing and the ratio of this initial out-of-straightness to the column length, respectively. Columns (13) and (14) present the value of the out-of-straightness after

reinforcing and the ratio of this out-of-straightness to the column length, respectively. Column (17) presents the magnitude of the preload applied on the rolled section before welding of the reinforcing plates. A comparison of the initial out-of-straightness of the unreinforced columns in the numerical models with the measured initial out-of-straightness (L/565) indicates that the model cannot predict accurately the effect of the reinforcing plates addition on the initial imperfections. The assumed initial imperfections in the two models before reinforcement of the columns were significantly smaller than the measured values, although the final initial imperfection magnitude in the numerical model is almost identical to the measured value.

Nagaraja Rao and Tall (1963) suggested that average stress at the flange tips after reinforcing was 70% of the measured yield strength. This magnitude was used also for the finite element models.

#### 3.3.4 Behaviour of the Column Reinforced under Load

The welding residual stress patterns in the test specimens were investigated for different welding sequences (Nagaraja Rao and Tall, 1963). Figure 3.6 shows the residual stresses at mid-thickness of the plates after welding. The figure shows residual stresses obtained from the finite element analysis and the residual stresses measured on test specimens fabricated using two different welding sequences as described in Section 2.3.1. Since the experimental data represent surface residual stresses, interpolation between the two surfaces was used to obtain the mid-thickness residual stresses for the flanges and the reinforcing plates. Measured pattern I was obtained for the first welding sequence and measured pattern II was obtained for the second welding sequence. Figure 3.6 shows that the predicted residual stress patterns in the flange and cover plates are similar to the measured patterns. Although the measured residual stresses showed a significant gradient through the thickness near the flange tips, no attempt was made to incorporate this phenomenon in the numerical model. The model therefore used an average stress through the thickness.

The next step in the validation process is to compare the predicted load response of the reinforced column with the reported test results. Figure 3.7 compares the axial load ratio, P/P<sub>ry</sub>, versus the mid-height lateral deflection response for the numerical model with the test result. The out-of-straightness value after welding for both cases was 0.5 mm. From the figure, we can make the following observations:

- 1) The shapes of the curves are similar.
- 2) The post-buckling range is accurately predicted by the finite element method.
- 3) The predicted and measured peak strengths are almost the same. Column (19) from Table 3.1 presents the ratio of the predicted to measured peak load. The difference between the predicted capacity and measured capacity is only 0.1%.
- 4) The slopes of the elastic portion of the response curves are identical.

It can therefore be concluded that the strength and behaviour of steel columns reinforced under load can be predicted very well with the proposed finite element model for the slenderness tested. It should be noted that the capacity of the column was very close to its yield strength, indicating that the reinforced column fell into the short column range. The model still remains to be validated in the intermediate length range.

#### 3.3.5 Behaviour of the Column Reinforced under no Load

To further validate the numerical model, the column reinforced under no load was also modelled and analysed. The geometrical and material properties of the experimental model were the same as those of the first numerical model except for the magnitude of the pre-load, as presented in Table 3.1. The initial conditions used in the numerical model were discussed in section 3.3.3.

A comparison between measured and predicted residual stresses in the cross-section for the column reinforced under no load is presented in Figure 3.8. Again, a good agreement between the measured and predicted residual stresses is observed. Although the discrepancy between measured predicted values is more significant in the web the residual stresses in the web are not as influential on the column behaviour and capacity as those encountered at the flange tips.

The measured and predicted axial load versus mid-height lateral deflection response for the column reinforced under no load are shown in Figure 3.9. It can be observed that the curves are similar. The predicted peak strength from the numerical model is 97.7% of the yield strength. This is only slightly higher than the measured strength of 96% of the yield strength. It can therefore be concluded once more that the finite element model predicts the test results accurately.

# 3.3.6 Validation of the Finite Element Models in the Intermediate Length Range

Because of insufficient experimental data to validate the finite element models over the full range of material response, experimental data for unreinforced columns of intermediate length were used to validate the finite element models in the elastic-toplastic range.

Huber and Beedle (1954) presented the results of a series of tests on 8WF31 (W200x46) steel columns of different lengths. The steel was ASTM A7 structural steel, with a weighted average yield strength of 260 MPa. A residual stress pattern similar to the pattern illustrated in Figure 3.4 was used in the finite element models. The value of the peak residual stress was measured using the sectioning method (Huber and Beedle, 1954) and was reported to be 84 MPa. The details for two of the test specimens from Huber and Beedle (1954) are presented in Table 3.2. Other test specimens used to validate the finite element models were obtained from Beedle and Tall (1960) who reported tests on W-shape columns performed by other investigators. The material was also reported to be ASTM A7 structural steel. Since material properties were not specifically reported for these specimens, the same value as reported by Huber and Beedle (1954), namely, 260 MPa, was used for these test specimens. Table 3.2 also presents a summary of the properties used for these columns. It should be noted that since the magnitude of initial imperfections was not reported for these columns, values were assumed. In order to attempt to bracket the actual magnitude of initial imperfections two values were assumed, namely, L/1500 and L/10 000. The larger of the two values is significantly larger than those reported for the columns tested by Huber and Beedle

(1954) whereas the smaller of the two values is significantly smaller than those reported by Huber and Beedle.

Finite element analyses for the test specimens presented in Table 3.2 were conducted and the results are reported in column (8). The test results are reported in column (9) and the predicted-to-test ratios are reported in column (10). As can be seen, the test to predicted ratio for the first two test specimens is very close to 1.0, indicating an excellent correlation between the finite element models and the test results. The other predicted column capacities are not in such good agreement with the test results, however. The lack of agreement is attributed to the uncertainty in some of the important parameters of the finite element model that had to be assumed. It can be seen from Table 3.2 that a reduction of initial imperfection improves considerably the prediction of the test results. It is also expected that the assumption made about the actual yield strength of the test specimens would have an effect on the test-to-predicted ratio. Considering these later uncertainties, it is considered that the finite element models are able to predict accurately the strength of columns in the intermediate length range.

Table 3.1 Models Used for the Validation of the Finite Element Method for Reinforced Columns

| FEA             |                                               |                         |          |      |      |      | RS | RSBR <sup>e</sup> W | Welding            |            |                           |                                |        | Yield Strength  | rength |          | Preload                                      |                                                                                  |
|-----------------|-----------------------------------------------|-------------------------|----------|------|------|------|----|---------------------|--------------------|------------|---------------------------|--------------------------------|--------|-----------------|--------|----------|----------------------------------------------|----------------------------------------------------------------------------------|
| model           | model I-section Plate $D^a B^b L^c \lambda^d$ | Plate                   | <u>"</u> | æ    | Ľ    | ہر   | MF | MP <sup>g</sup>     | Residual           | ශ්         | _                         | κο                             | _      | I-section plate | plate  | -0<br>-0 | P <sub>0</sub> /P <sub>u2</sub> <sup>m</sup> | P <sub>0</sub> P <sub>0</sub> /P <sub>u2</sub> P <sub>fea</sub> /P <sub>ry</sub> |
| Z <sub>o</sub>  | No.                                           |                         |          |      | (mm) |      |    |                     | Stress             | M¹(mm)     | ratio                     | M'(mm)                         | ratio  | (MPa)           | (MPa)  | (K<br>N  |                                              | •                                                                                |
| $\widehat{\Xi}$ | (2)                                           | (2) (3) (4) (5) (6) (7) | €        | 3    | 9    | ()   |    | (8) (9)             |                    | (11)       | (12)                      | (11) (12) (13) (14)            | (14)   | (15) (16) (17)  | (91)   | (17)     | (17) (18)                                    | (61)                                                                             |
| _               | W200x46 180x9.52 F W 2440 0.5                 | 180x9.52                | Ľ,       | ≩    | 2440 | 0.5  |    | 0.15F,              | 0.3F, 0.15F, 0.7F, | 0.47       | L/5200                    | 0.47 L/5200 0.50 L/4900        | L/4900 | 260             | 260    | 405      | 0.3                                          | 0.97                                                                             |
| 7               | W200x46 180x9,52 F W 2440 0,5                 | 180x9.52                | F        | ≩    | 2440 | 0.5  |    | 0.15F               | 0.3F, 0.15F, 0.7F, | 0.49       | 0.49 L/5000               | 0.50                           | L/4900 | 260             | 260    | 0        | 0.0                                          | 0.98                                                                             |
| a) D -          | a) D - Direction of reinforcing plates        | f reinfor               | cing     | pla  | tes  |      |    |                     |                    | F - Parall | - Parallel to the flanges | flanges                        |        |                 |        |          |                                              |                                                                                  |
| b) B -          | b) B - Buckling axis of the reinforced column | xis of the              | reir     | Jorc | o pa | mnfa | =  |                     |                    | W - Weal   | s axis of                 | W - Weak axis of the I-section | ion    |                 |        |          |                                              |                                                                                  |
| c) [            | c) L Column length                            | oth                     |          |      |      |      |    |                     |                    |            |                           |                                |        |                 |        |          |                                              |                                                                                  |

 $\frac{1}{2}$  d)  $\lambda$  - Non-dimensional slenderness parameter of the reinforced column

e) RSBR - Residual stress before reinforcing

f) MF -Maximum magnitude of the residual stress at the flange tips

Fy - Yield stress of the unreinforced column

g) MP -Maximum magnitude of the residual stress at the reinforcing plate edges h)  $\delta_0$  - Initial imperfection before reinforcing.

i) δ<sub>1</sub> - Out-of-straightness after reinforcing, no load.

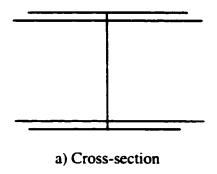
j) M - Out-of-straightness in the weak direction.

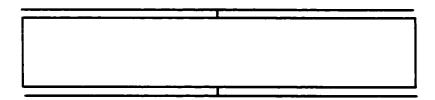
k) ratio - The ratio of the out-of-straightness to the column length, L.

1) P<sub>0</sub> - Preload before reinforcing

m)  $P_{u2}$  - Load carrying capacity of the unreinforced column predicted using SSRC curve 2

n) P<sub>fea</sub> - Load carrying capacity obtained from the finite element analysis


P<sub>1y</sub> - Yield strength of the reinforced column


**Table 3.2 Finite Element Models for the Unreinforced Columns** 

|           | Column |               | RSBR <sup>b</sup>  | Initial Im         | perfection |       |                                                |                      |                                    |
|-----------|--------|---------------|--------------------|--------------------|------------|-------|------------------------------------------------|----------------------|------------------------------------|
| I-section | Length | $\lambda^{a}$ | MFc                | before re          | inforcing  | $F_y$ | P <sub>fea</sub> /P <sub>uy</sub> <sup>f</sup> | $P_{exp}/P_{uy}^{g}$ | P <sub>fea</sub> /P <sub>exp</sub> |
|           | L (mm) |               |                    | ratio <sup>d</sup> | Me(mm)     | (MPa) |                                                |                      |                                    |
| (1)       | (2)    | (3)           | (4)                | (5)                | (6)        | (7)   | (8)                                            | (9)                  | (10)                               |
| W200x46*  | 4166   | 0.9           | 0.3F <sub>y</sub>  | L/6300             | 0.66       | 260   | 0.73                                           | 0.75                 | 0.97                               |
| W200x46*  | 2946   | 1.2           | $0.3F_{v}$         | L/2400             | 1.22       | 260   | 0.83                                           | 0.82                 | 1.01                               |
| W310x74** | 4034   | 0.9           | 0.4F <sub>v</sub>  | L/1500             | 2.69       | 260   | 0.67                                           | 0.76                 | 0.88                               |
| W310x74** | 4034   | 0.9           | $0.4F_{v}$         | L/10000            | 0.40       | 260   | 0.75                                           | 0.76                 | 0.98                               |
| W200x36** | 3436   | 1.0           | 0.25F <sub>v</sub> | L/1500             | 2.29       | 260   | 0.65                                           | 0.73                 | 0.89                               |
| W200x36** | 3436   | 1.0           | 0.25F <sub>v</sub> | L/10000            | 0.34       | 260   | 0.72                                           | 0.73                 | 0.98                               |
| W150x22** | 3210   | 1.0           | 0.25F <sub>v</sub> | L/1500             | 2.14       | 260   | 0.70                                           | 0.73                 | 0.96                               |
| W150x22** | 3210   |               |                    | L/10000            | 0.32       | 260   | 0.73                                           | 0.73                 | 1.00                               |

Note:

- \* Test results reported by Huber and Beedle (1954)
- \*\* Test results reported by Beedle and Tall (1960)
- a)  $\lambda$  Slenderness parameter of the reinforced column
- b) RSBR Residual stress before reinforcing
- c) MF -Maximum magnitude of the residual stress in the flange.
  - $F_y$  Yield stress of the unreinforced column
- d) ratio The ratio of the out-of-straightness to the column length, L.
- e) M Out-of-straightness in the weak direction.
- f)  $P_{\text{fea}}$  Load carrying capacity obtained from the finite element analysis
  - P<sub>uv</sub> Yield strength of the rolled section column
- g) P<sub>exp</sub> Experimetal strength of the rolled section column





b) The View from the Direction Parallel to the Web

Figure 3.1 Position of the Tie Connection between Column and Cover Plates

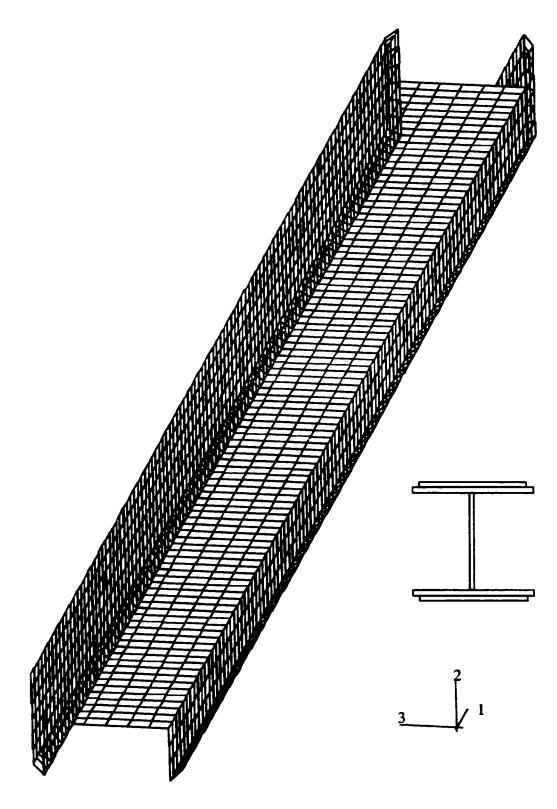
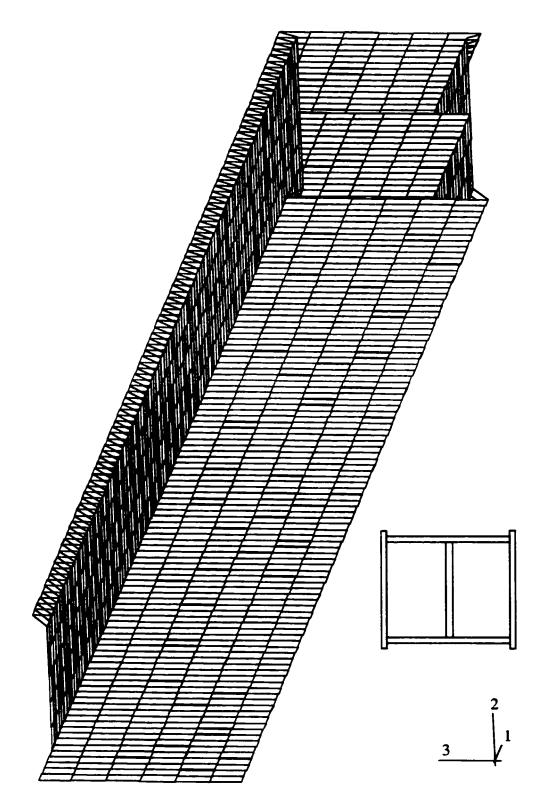
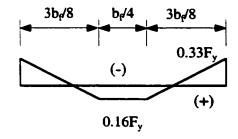
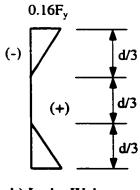
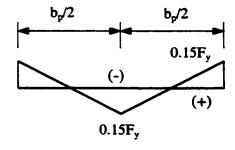



Figure 3.2 Finite Element Mesh of Column Reinforced with the Plates Parallel to the Flanges



Figure 3.3 Finite Element Mesh of Column Reinforced with the Plates Parallel to the Web



a) In the Flanges



b) In the Web



a) In the Plates

 $b_f$  - the width of the flanges w - the width of the web

 $b_p$  - the width of the plates

Figure 3.4 Initial Residual Stress Pattern Used in the Numerical Models

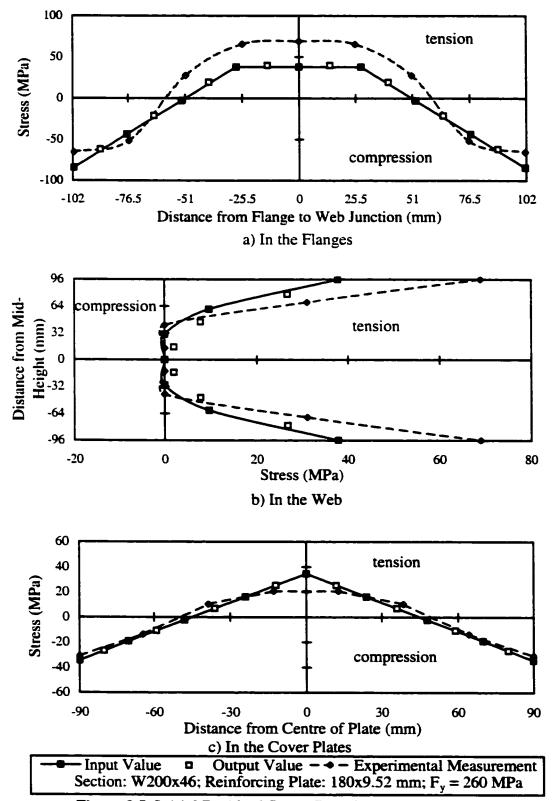



Figure 3.5 Initial Residual Stress Distribution in I-Section and Cover Plates of Finite Element Models

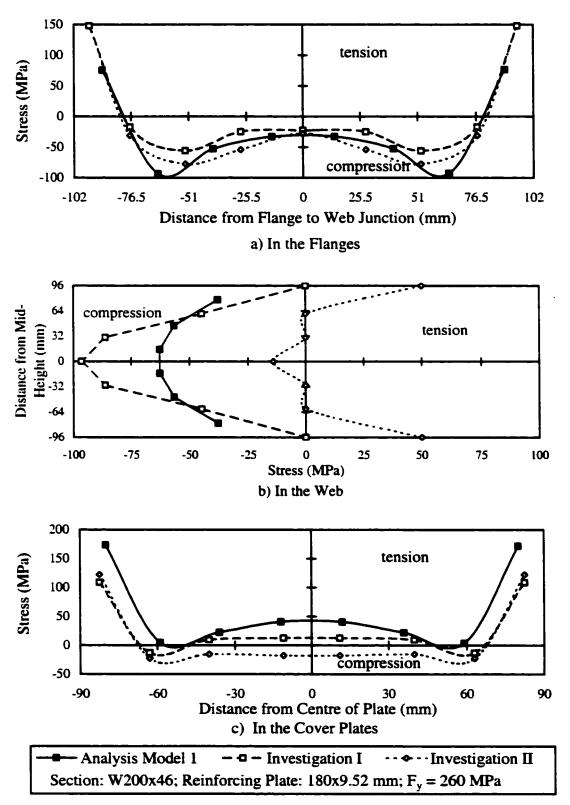



Figure 3.6 Welding Residual Stresses in the Column Reinforced under Load

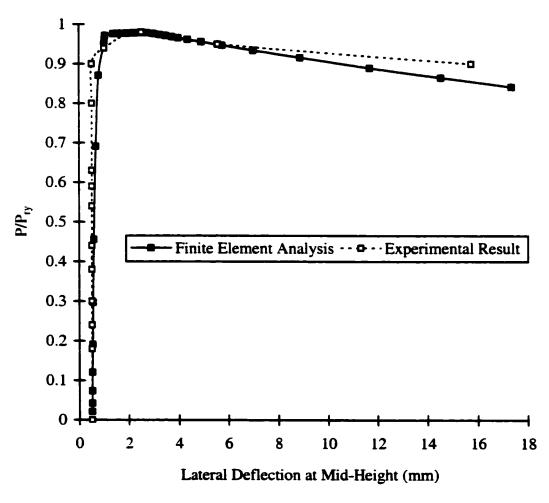



Figure 3.7 Axial Load versus Lateral Deflection Curves for the Column Reinforced under Load

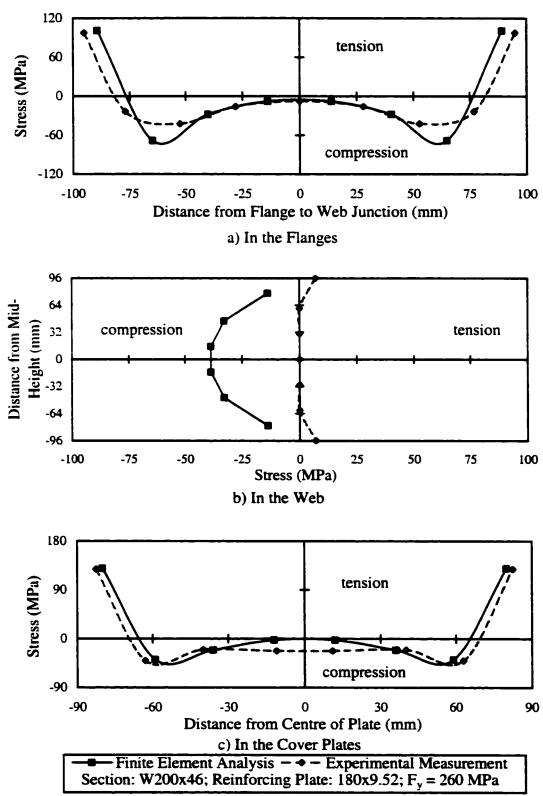



Figure 3.8 Welding Residual Stresses in the Column Reinforced under no Load

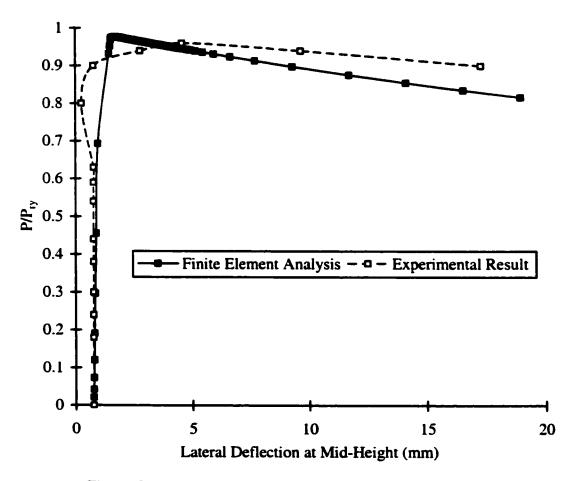



Figure 3.9 Axial Load versus Lateral Deflection Curves for the Column Reinforceed under no Load

# Chapter 4

## **Parametric Study**

#### 4.1 General

Testing of full-scale columns is the most direct and reliable approach to examine the strength and behaviour of reinforced steel columns. However, because of the lack of previous test results and the impossibility of testing a large number of specimens to examine all the parameters that may affect the strength and behaviour of reinforced steel columns an alternative approach is desirable. A practical and expedient approach is to use the finite element analysis model presented and validated in Chapter 3 to expand the limited database of test results.

The first stage of this investigation will consist of identifying the parameters that affect the strength and behaviour of reinforced columns. A parametric study using a range of values for each parameter was then conducted. The database obtained from this parametric study provided sufficient information to perform a statistical analysis, which will be discussed in the next chapter. This chapter presents a description of buckling behaviour, the selection of the parameters affecting the strength and behaviour of reinforced columns, and the results of the parametric study.

#### 4.2 Buckling Behaviour

A study of buckling modes was conducted using the finite element models presented in Chapter 3. Figure 4.1 shows the buckled shape of columns reinforced with plates parallel to the flanges. The figure illustrates buckling about the weak axis (Figure 4.1 (a)) and buckling about the strong axis (Figure 4.1 (b)). Figure 4.2 shows the buckled shape of columns reinforced with plates parallel to the web. Buckling about the weak axis is illustrated in Figure 4.2 (a) and buckling about the strong axis is illustrated in Figure 4.2 (b). For the specimens under investigation, the expected buckled shape always occurs as overall buckling about the weak axis of the reinforced column. For columns reinforced with plates parallel to the flanges the weak axis of the reinforced section always coincides with the weak axis of the rolled shape. When a column is reinforced

with plates parallel to the web, however, the weak axis of the reinforced section may coincide with the strong axis of the rolled shape. In order to trigger buckling about the strong axis of the reinforced section, some column models were restrained at both ends to provide rotational fixity in the weak direction of the reinforced section.

Unexpected local buckling of the reinforcing plates near the supports was found to govern the capacity of some columns reinforced with plates parallel to the web. Figure 4.3 shows the buckled shape of a W310x179 column reinforced with 350x25 mm plates parallel to the web and  $\lambda = 0.4$ . In order to prevent local buckling of the reinforcing plates, the thickness was increased three times near the ends. Figure 4.4 shows the resulting load versus mid-height lateral deflection curves for the above local buckling model and the corresponding overall buckling model. It can be observed that, for the example shown in Figure 4.4, the overall buckling capacity is about 10 percent higher than the local buckling capacity. Although local buckling failure is beyond the scope of this investigation, it is a possible failure mode that should be investigated experimentally.

#### 4.3 Selection of Parameters

Many parameters were found to influence the strength and behaviour of steel columns, with or without reinforcement (Geschwindner *et al.*, 1994; Feder and Lee, 1959; Tall, 1961; Nagaraja Rao and Tall, 1963). The following parameters were selected for this investigation:

- 1. Reinforced column slenderness.
- 2. Residual stress pattern and magnitude before welding.
- 3. Magnitude of residual stresses after welding of reinforcing plates.
- 4. Initial out-of-straightness of the reinforced columns.
- 5. Magnitude of the load applied on the column during the reinforcing process.
- 6. Steel grades of the I-section and cover plates.
- 7. Orientation of the reinforcing plates.
- 8. Direction of the buckling of the reinforced columns.
- 9. I-section to cover plates area ratio.

In order to investigate the effect of these parameters on reinforced columns, short columns, intermediate, and long columns were analysed. The slenderness parameter,  $\lambda$ , of the reinforced columns was taken as 0.4, 1.0, 1.1, and 1.5 for the parametric study.

The effect of the magnitude and pattern of residual stresses in the rolled section and the reinforcing plates before welding was investigated for 12 cases: six residual stress patterns with two different magnitudes for each pattern. The magnitude of the peak residual stresses was taken as 0.3 and 0.1 times the yield strength of the material for the rolled section, and 0.3 and 0.15 times the yield strength of the material for the reinforcing plates. All 12 cases were expected to cover the full range of initial residual stresses before welding (Huber, 1956; Tall, 1961; Nagaraja Rao and Tall, 1963). In addition, two cases were used to investigate the effect of welding residual stresses. The peak residual stresses at the flange tip were taken as 70% of the yield strength as suggested by Nagaraja Rao and Tall [1963], or 100% of the yield strength as suggested by the work of Tall [1961] and Huber [1956].

After the cover plates are added on to the rolled section under preload, it is difficult to control the out-of-straightness of the reinforced columns. In the following work three values for the initial imperfections before reinforcing were mainly used to investigate the effect of the initial out-of-straightness of reinforced columns, namely, L/8000, L/2000, and L/1000. L/8000 was used to simulate very small initial imperfections. L/2000 is close to the mean value reported for columns of hot rolled wide flange shapes (Bjorhovde, 1988), and L/1000 is the maximum initial imperfection allowed by CSA/CAN-G40.20-92. For columns longer than 10 m, CSA standard G40.20-92 suggests a different allowable initial imperfection as follows:

- 1. The allowable initial imperfection is 10 mm when 10 m < L  $\le$  14 m;
- 2. The allowable initial imperfection is [10+(L-14000)/1000] mm, when L > 14 m.

The pre-load on columns before reinforcing consists of dead loads and a portion of the design live loads. The magnitudes of the dead and live loads vary depending on the type of structure. In the parametric study, two pre-load magnitudes were selected, namely, 40% of the load-carrying capacity of the unreinforced column predicted using the SSRC column curve 2 and 60% of load carrying capacity of the unreinforced column.

Three combinations of steel grades of I-sections and cover plates were investigated: both the rolled section and the reinforcing plates have a yield strength of 260 MPa or 300 MPa, and the rolled shape has a yield strength of 230 MPa and the reinforcing plates have a yield strength of 350 MPa. The third combination is believed to represent a condition where the difference in grades is maximised.

The effect of reinforcing plate orientation was investigated for two cases: reinforcing plates parallel to the flanges and reinforcing plates parallel to the web. The effect of the buckling direction for reinforced columns was also investigated for two cases: column buckling about the weak axis of the rolled section and column buckling about the strong axis of the rolled section.

Nine different combinations of rolled section sizes and reinforcing plate sizes were selected in the analysis: W200x46 with 180x9.52 mm cover plates, similar to the test specimens used by Nagaraja and Tall (1962); W310x179 with four different cover plate sizes, namely 290x25 mm, 290x16 mm, 350x25 mm and 350x16 mm; and W150x30 with four different cover plate sizes, namely 130x5 mm, 130x8 mm, 175x5 mm and 175x8 mm. All the different cases investigated cover a range of W-shape to reinforcing plate area ratio from 2.71 to 5.83.

## 4.4 Analysis Results

With a total of 39 variables selected for nine parameters, the corresponding number of combinations for a full factorial design would equal 4x12x2x3x2x3x2x2x9 = 62208, which is too many. In order to reduce the total number of samples considerably, a fractional factorial design (Hines and Montgomery, 1972) was adopted for the parametric study. Table 4.1 summarizes the various combinations of parameters investigated in the parametric study. A total of 317 numerical models with different variables were analysed. Table A.1 of Appendix A presents the details concerning the geometric and material properties for each model investigated. Table B.1 of Appendix B summarises the

magnitude of the pre-loads used in each case and the analysis results compared with the load carrying capacity predicted using different SSRC column curves and CSA column curves for each case. The load carrying capacity is presented as a ratio of the peak load determined from the finite element analysis to the yield strength.

The following sections present a detailed discussion of the parametric study. The effects of the various parameters investigated on the strength and behaviour of reinforced steel columns are discussed.

#### 4.5 Effect of Column Slenderness

It is commonly understood that the slenderness parameter is the most important factor affecting the strength of columns. Based on the definition of the slenderness parameter given in Section 2.1, different geometric and material properties result in different non-dimensional slenderness ratios for columns. The effect of slenderness parameters on the strength of 315 reinforced columns is illustrated in Figure 4.5 where the load carrying capacity is plotted against the slenderness parameter. Although the results show a fairly large scatter, the relationship between the slenderness parameter and the strength of the columns is obvious. The large scatter results from the large range of parameters investigated in the parametric study.

#### 4.6 Effect of Residual Stresses

The residual stresses in reinforced steel columns were modelled in two different stages, namely, the residual stresses in the rolled section and reinforcing plates before welding and the residual stresses after welding the reinforcing plates to the rolled section. Both stages must be considered to obtain a representative residual stress distribution in the reinforced column.

# 4.6.1 Residual Stresses before Welding

The residual stresses in the rolled section and in the reinforcing plates before welding were investigated separately. Their effect on the strength and behaviour of the reinforced column are presented in the following.

#### Residual Stresses in the Rolled Section

The patterns and magnitudes of the initial residual stresses in the rolled section depend on factors related to the manufacturing process, as discussed in Chapter 2. The initial residual stress distributions vary from section to section. Based on an investigation presented by Huber [1956], four different initial residual stress patterns were selected in this research for the wide flange section. The peak compressive residual stresses selected for this investigation were taken as 30% and 10% of the yield strength of the rolled section. The 30% level is representative of rolled sections (Chen and Atsuta, 1976) and the 10% level represents a lower bound value.

Six different patterns of residual stresses in the rolled section and in the reinforcing plates were considered and illustrated in Figure 4.6. For each residual stress pattern, two magnitudes of the peak residual stresses in the wide flange sections were investigated. The first four and the sixth residual stress patterns presented in Figure 4.6 are studied in this section. The fifth pattern is discussed in the next section.

Two columns configurations were used to investigate the effect of initial residual stresses. The first configuration consisted of a W200x46 section reinforced with 180x9.5 mm plates parallel to the flanges and buckling about the weak axis of the rolled section. The second configuration consisted of a W310x179 section reinforced with 350x25 mm plates parallel to the web and buckling about the strong axis of the rolled section. Table 4.2 summarises the finite element analysis models used in this part of the investigation. A description of the initial residual stress pattern and magnitudes is presented in columns (2) to (4). The other parameters are kept constant and are summarised in Table A.1.

Figures 4.7 and 4.8 depict the residual stress distributions after welding in the cross-section of a W200x46 column reinforced with 180x9.5 mm plates. The maximum magnitude of residual stresses resulting from welding was taken as  $1.0 \, \text{F}_y$  at the flange tips for each model. Figures 4.7 and 4.8 show that the residual stresses after welding in the reinforced section are very similar despite the significant difference in initial residual stress patterns and magnitudes.

Figures 4.9 and 4.10 show the axial load response for the eight reinforced columns described in Table 4.2. Except for residual stress pattern 4-1, all other initial residual stress patterns investigated resulted in the same behaviour and strength of the reinforced columns. Residual stress pattern 4-1 resulted in about a 7% reduction in strength compared to the other specimens investigated. A summary of the peak to yield strength ratio for each case investigated is presented in column (5) of Table 4.2. An examination of the analysis results for two W310x179 columns reinforced with 350x25 mm plates parallel to the web and buckling about the strong axis of the rolled section, as shown in Table 4.2, also indicates that initial residual stresses have little effect on the strength of reinforced steel columns.

#### Residual Stresses in the Cover Plates

In order to investigate the effect of initial residual stresses in the reinforcing plates, two peak magnitudes  $(0.3F_y)$  and  $(0.15F_y)$  were chosen for the initial residual stresses in the reinforcing plates based on investigations by Tall [1961] and Nagaraja Rao and Tall [1963]. Four W200x46 columns reinforced with 180x9.5 mm plates parallel to the flanges and buckling about the weak axis of the rolled section were used to investigate the effect of this parameter on the strength and behaviour of reinforced steel columns. The models used for this study are described in detail in Table 4.3.

Despite differences in initial residual stresses, the residual stress patterns and magnitudes after welding the reinforcing plates were essentially all the same. All the welding residual stress patterns for these four models are similar to the pattern shown in

Figure 4.11 (a). The axial load response of columns with different residual stress magnitude is presented in Figure 4.12. As expected from an examination of the residual stresses after welding, all the specimens display the same strength and behaviour. The ratios of peak load to yield load for these cases are summarized in Column (5) of Table 4.3. Since this parameter was found to have little effect, a typical initial stress pattern can therefore be used for the remaining part of this study. Pattern 1-3, illustrated in Figure 4.6, was selected for all the following numerical models.

### 4.6.2 Effect of the Magnitude of the Welding Residual Stresses

Nagaraja Rao and Tall (1963) have shown that high tensile residual stresses are developed at the flange tips as a result of welding reinforcing plates to a rolled W-shape. The distributions of the welding residual stresses were found to be very similar in the research, as shown in Figure 4.11. The magnitudes of these welding residual stresses were reported to be in the order of 70 percent of the yield strength of the material. Welding residual stresses equal to the yield strength of the material have also been reported elsewhere (Masubuchi, 1980). In order to cover the full range of possible welding residual stresses, a residual stress pattern was investigated with two residual stress magnitudes, namely 70 percent and 100 percent of the yield strength at the flange tips, as illustrated in Figure 4.11. The control parameter in the analysis is the magnitude of the residual stresses at the flange tips. The residual stresses in the remaining portions of the cross-section are governed by the size of the reinforced cross-section and the initial residual stresses in the reinforcing plates and the wide flange section.

This section presents the procedure used for four W310x179 columns reinforced with 290x16 mm plates parallel to the flanges and buckling about the weak axis of the rolled section (all samples used the same procedure). Two different values of the slenderness parameter,  $\lambda$ , were investigated, namely 1.1 and 1.5. The residual stress distribution in the reinforcing plates and the wide flange section before welding is pattern 1-3 of Figure 4-6. A description of the models used for this part of the investigation is given in Table 4.4 where column (4) lists the magnitude of the peak welding residual stress. A comparison of the load carrying capacity listed in column (5) shows that, for a given

slenderness parameter, the difference in the strength of columns with different welding residual stresses is negligibly small.

The effect of welding residual stress magnitude on the strength and the behaviour of reinforced columns is illustrated in Figure 4.13. As for the peak strength, the effect of welding residual stress magnitude on the strength and the behaviour of the reinforced steel columns is negligible. The following investigation therefore uses a representative peak welding residual stress of  $1.0 \, F_y$  at the flange tips.

## 4.7 Effect of the Initial Out-of-straightness

The shape and magnitude of initial out-of-straightness in a reinforced column result from a combination of deformations. These deformations are the initial imperfection of the unreinforced rolled section resulting from the rolling process, the deformation resulting from the preload on the unreinforced column, and the deformation resulting from the welding process during reinforcement of the columns. Although the magnitude of initial out-of-straightness must be controlled in rolled shapes and other fabricated columns, current Canadian standards do not provide any specific requirement for the initial out-of-straightness in a reinforced column. However, CAN/CSA G40.20-92 specifies some limitations for the initial imperfection in unreinforced rolled sections, as described in Section 4.3. The effect of initial out-of-straightness in reinforced columns was therefore investigated in light of the limitations set for unreinforced columns.

The effect of initial out-of-straightness on the strength and behaviour of reinforced steel columns is illustrated using nine W310x179 columns reinforced with 290x25 mm plates parallel to the flanges. All the reinforced columns have their weak axes in the same direction as the weak axes of the rolled sections. Table 4.5 presents a description of the models used for this investigation. Three different values of slenderness were used in the columns, as shown in Column (3) of Table 4.5. In order to obtain different magnitudes of initial out-of-straightness in the reinforced columns, the magnitudes of the initial imperfections in the unreinforced columns were varied as shown in Column (4). Column (5) of Table 4.5 presents the initial out-of-straightness of the reinforced column for each

model. This out-of-straightness value was obtained following the removal of the axial load on the column after welding the plates to the column. It can be observed that the magnitude of the out-of-straightness increases after strengthening the column and this effect is more significant with slender columns than with short ones.

The predicted load carrying capacity of the reinforced columns is presented in column (6) of Table 4.5. It can be seen that the initial out-of-straightness for intermediate and long columns significantly affects column strength. The column strength decreases with increasing initial out-of-straightness magnitude. For example, for  $\lambda = 1.1$ , a change in the initial out-of-straightness from L/1790 to L/820 results in a decrease in load carrying capacity of 8.5%, as shown in the table. An increase in the initial out-of-straightness from L/7190 to L/820 results in a reduction in strength of 15%. A similar trend is observed in columns with  $\lambda = 1.5$ , but the strength of short columns ( $\lambda = 0.4$ ) is not significantly affected by the magnitude of the initial out-of-straightness.

Figure 4.14 shows the axial load versus lateral deflection at mid-height for columns with different initial out-of-straightness after reinforcing for  $\lambda = 1.1$ . It can be observed that with increasing initial out-of-straightness of the reinforced columns, the lateral deflections at the peak load increase, and the load carrying capacity decreases.

#### 4.8 Effect of the Pre-load

Six W310x179 columns reinforced with 290x25 mm plates parallel to the flanges were used to present the effect of pre-load on the strength and behaviour of reinforced columns. Their buckling axis was the weak axis of the rolled section. A description of the reinforced columns is presented in Table 4.6. Columns with two different preloads, namely 0.4 and 0.6 times the load carrying capacity of the unreinforced column predicted using the SSRC column curve 2, and three slenderness values ( $\lambda = 0.4$ , 1.1, and 1.5) were investigated. Columns (3) and (4) present the pre-load magnitude and the ratio of the pre-load to the load carrying capacity of the unreinforced column predicted using SSRC column curve 2, respectively. An examination of the predicted capacity presented in

column (5) of Table 4.6 indicates that the magnitude of the preload does not significantly affect the strength of reinforced columns.

Plots of the axial load versus axial deformation for different pre-load magnitudes are presented in Figure 4.15 for columns with  $\lambda$  of 1.1. It can be observed that the shapes of the curves are identical. The same observation can also be made for columns with  $\lambda$  of 0.4 and 1.5. The pre-load magnitude does not significantly affect the pre- and post-buckling behaviour of reinforced columns within the range of preload investigated. The following investigation was therefore carried out with a preload of 0.6 times the load carrying capacity of the unreinforced column predicted using the SSRC column curve 2.

#### 4.9 Effect of Steel Grade

Columns in many older structures are either of grade A9 or A36 steel, a relatively low nominal yield strength compared to more modern structural steels that would typically be used for reinforcing plates. Reinforced steel columns may therefore be composite columns with different steel grades. In order to cover a broad range of these composite columns, columns with two different combinations of steel grades were investigated: 1) columns with the same steel grade for the plate and rolled section ( $F_y = 300 \text{ MPa}$ ), which will serve as a reference, and; 2) reinforced columns with  $F_y = 230 \text{ MPa}$  for the rolled section and  $F_y = 350 \text{ MPa}$  for the plates.

Table 4.7 gives a description of the numerical models used to illustrate this investigation. The effect of material yield strength was studied for two different reinforcing plate orientations, buckling about the weak axis and buckling about the strong axis of the rolled section, and three different values for the slenderness parameter,  $\lambda$ . A comparison of the predicted load carrying capacities presented in column (5) of Table 4.7 indicates that varying the steel grades of the reinforced column does not significantly affect the strength of reinforced columns when the capacity is expressed as a ratio of the yield capacity of the cross-section.

# 4.10 Effect of Reinforcing Plate Orientation

Steel columns can be reinforced with steel plates either welded parallel to the flanges or parallel to the web in Figure 2.1. In order to investigate the effect of plate orientation on the strength and behaviour of reinforced steel columns, columns of different slenderness and different slenderness were modelled for buckling about either the strong or the weak axis. A summary of these models is presented in Table 4.8.

An examination of Table 4.8 reveals that short columns ( $\lambda = 0.4$ ) are not affected by the orientation of the reinforcing plates. This is expected since short columns fail by yielding, rather than by buckling. For buckling about the weak axis of the W-shape section and  $\lambda = 1.1$  and 1.5, it seems that columns are weaker when the reinforcing plates are parallel to the flanges. A reduction of strength of 7.5% to 10% is observed in the sample columns presented in Table 4.8. When the buckling axis is the strong axis of the strong W-shape section, columns with reinforcing plates parallel to the web are weaker than the columns with plates parallel to the flanges. A reduction in strength-to-yield ratio of about 7% is observed for the selected sample columns.

## 4.11 Effect of Buckling Axis

The investigation has so far focused on columns buckling about the weak axis of the reinforced column. When wide flange sections are reinforced with plates parallel to the flanges, the weak axis of the reinforced section coincides with the weak axis of the wide flange section. However, when the reinforcing plates are parallel to the web of the wide flange section, the weak axis of the reinforced section may be at right angle to the weak axis of the unreinforced section. On the other hand, buckling of a column may take place about the strong axis of the cross-section if the braced length in the weak axis direction is shorter than the braced length in the strong direction. In some cases presented in this section, additional bracing in the weak axis direction was provided to force the column to buckle about its strong axis.

Table 4.9 presents a summary of the columns used to illustrate the effect of the buckling axis. Columns reinforced with plates parallel to the flanges and with plates

parallel to the web were investigated. The direction of the buckling axis orientation relative to the unreinforced and reinforced sections are presented in columns (2) and (3), respectively. It is seen that the effect of plate orientation on the buckling capacity of columns varies according to column slenderness and the buckling direction relative to the unreinforced section major axis. For intermediate and long columns ( $\lambda = 1.1$ , 1.5) with reinforcing plates parallel to the flanges, buckling about the strong axis of the rolled section was observed to result in a larger strength-to-yield ratio than in the case of buckling about the weak axis. For intermediate and long columns with reinforcing plates parallel to the web, buckling about the strong axis of the rolled section was observed to result in a lower strength-to-yield ratio than buckling about the weak axis of the rolled section. This observation holds whether or not the strong axis of the reinforced section is in the same direction as the strong axis of the unreinforced section.

# 4.12 Effect of W-Shape to Plate Area Ratio

The effect of the ratio of the wide flange section area to the reinforcing plate area on the strength and behaviour of the reinforced columns was investigated for three non-dimensional slenderness ratios. For each slenderness ratio, the area ratio was varied either by: 1) changing the plate area while keeping the wide flange section constant; and, 2) by changing both the I-section and the reinforcing plate dimensions. The results of this investigation are presented in Table 4.10 and Table 4.11.

The results presented in Table 4.10 show that, despite a variation in the area ratio from 1.57 to 2.46, the predicted strength-to-yield ratio remained essentially the same for all three non-dimensional slenderness ratios. Table 4.11 shows a variation in area ratio from 1.57 to 2.92 obtained by changing both the size of the rolled section and the size of the reinforcing plates. Except for the columns with a slenderness ratio,  $\lambda$ , of 1.1, the change in capacity is insignificant. Although a significant change in capacity is observed for the column with  $\lambda = 1.1$ , considering the large change in area ratio used for these analyses, the strength of the columns is considered to be insensitive to the ratio of the rolled section area to the cover plate area.

# 4.13 Summary

This chapter presents some of the results of a parametric study that includes a total of 315 reinforced steel columns. The parameters investigated were column slenderness, residual stresses, initial out-of-straightness, preload magnitude, yield strength of the I-section and reinforcing plates material, plate orientation, buckling axis, and the I-section area to the cover plate area ratio. The following conclusions were drawn from this parametric study.

- The non-dimensional column slenderness, expressed as the slenderness parameter,
   λ, is the most important parameter affecting column strength.
- 2. While the initial residual stress is an important factor for the load carrying capacity of an unreinforced column, the investigation demonstrated that variations in the initial residual stresses, before welding the reinforcing plates, do not affect significantly the load carrying capacity of a reinforced column. The investigation also demonstrated that varying the maximum welding residual stress from 70% to 100% of the yield strength of the materials does not affect significantly the predicted strength of reinforced columns.
- Initial out-of-straightness affects the behaviour and strength of intermediate and long reinforced columns significantly. The strength of reinforced columns decreases as the initial out-of-straightness increases.
- 4. A change in the preload from 40% to 60% of the load carrying capacity of the unreinforced column does not affect the behaviour and the predicted strength-to-yield strength ratio of reinforced columns significantly.
- 5. The use of different grades in reinforced columns was found to have a negligible effect on the strength-to-yield ratio of reinforced columns.
- 6. In the numerical model results, it was observed that the interaction of the plate orientation and the buckling axis affects the behaviour and the strength of

intermediate and long columns significantly. For columns of same slenderness and reinforced with plates parallel to the web the capacity of the column is larger when buckling occurs about the weak axis of the unreinforced section. The converse was observed when columns are reinforced with plates parallel to the flanges. Intermediate and long columns buckling about the strong axis of the rolled section, have a higher strength-to-yield ratio when the reinforcing plates are parallel to the flanges compared to columns reinforced with plates parallel to the web. The converse was observed for intermediate and long columns with reinforcing plates parallel to the web.

7. The effect of I-section to reinforcing plate area ratio on the predicted strength-to-yield ratio was found to be insignificant.

Table 4.1 Fractional Factorial Design and Designations of the Numerical Models."

|        |                     |       |                                |                                 | Legation IW200x 46 | W200   | 777                                              |         |          |            | W 210         | 5,7            |               |          |        |          |           | 73111      | 00                                                        |         | ľ          |
|--------|---------------------|-------|--------------------------------|---------------------------------|--------------------|--------|--------------------------------------------------|---------|----------|------------|---------------|----------------|---------------|----------|--------|----------|-----------|------------|-----------------------------------------------------------|---------|------------|
| :      |                     | •     |                                |                                 | 30000              | X 2 (X | 7740                                             |         |          |            | W S I UX I /9 | 2              |               |          |        |          |           | UC XUC I W | _ 1                                                       |         | ı          |
| į      | Orie                | entio | n of Rei                       | Oriention of Reinforcing Plates | , Plates           | ~      | / Flange                                         |         | // F     | // Flange  |               |                | //            | // Web   |        | "        | // Flange |            | //                                                        | // Web  | 1          |
| į      | Sis                 | Siza  | e of Rei                       | Size of Reinforcing Plates      | , Plates           | -      |                                                  | 290x25  |          | 290x16     | 350x16        | <u> </u>       | 350x25        | •        | 350x16 | 130x5    |           | 130x8      | 175x5                                                     | 175x8   | ∞          |
|        |                     |       |                                | Buckling Axis                   | g Axis'            | M      | S                                                | S M     | ≯        | S          | ≱             | S              | S W           | ≱        | S      | 3        | S<br>S    | S          | S<br>M                                                    | ≥       | S          |
| [۲     | ,3 <sub>0</sub>     | IRS   | " WRS                          | r<br>Pog                        | Fyh                | (E)    |                                                  | (3) (4) | (5)      | (9)        | (7)           | (8)            | )<br>()<br>() | =<br>(a) | (12)   | (13)(1   | 14) (15)  | (16)       | (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20 | (19)(2  | <b> </b> @ |
|        |                     | Ξ     | T                              |                                 |                    | ~      | 13                                               |         |          |            |               |                |               |          |        |          |           |            |                                                           |         | •          |
|        |                     | 1-2   |                                |                                 |                    | \$     | 4                                                |         |          |            |               |                |               |          |        |          |           |            |                                                           |         |            |
|        |                     | -     |                                | 0.4P.,                          |                    | 4      |                                                  |         |          |            |               |                |               |          | -      |          |           | -          |                                                           |         |            |
|        |                     | 4     | <del></del>                    | ·<br>-                          |                    | 9 1    |                                                  |         |          |            |               |                |               |          |        |          |           |            |                                                           |         |            |
| -      | D/1000              | 2-2   | S.                             |                                 | ∢                  | ~ &    |                                                  |         |          |            |               | · <del>-</del> |               |          |        |          |           |            |                                                           |         |            |
|        |                     | 3-1   | <b>,</b>                       |                                 |                    | 6      | 1.5                                              |         |          |            |               |                |               |          |        |          |           |            |                                                           |         |            |
| 5      |                     | 3-2   |                                | 0.5P.,                          |                    | 2      | 91                                               |         |          |            |               |                |               |          |        |          |           |            |                                                           |         |            |
|        |                     | 4-7   |                                |                                 |                    | = 2    |                                                  |         |          |            |               | ····           |               |          |        |          |           |            |                                                           |         |            |
|        | T/8000              |       |                                |                                 |                    |        | <del>                                     </del> | 17      |          |            |               | -              |               |          |        |          | 06        | T          | 209 228                                                   |         | ı          |
|        | L/2000              |       |                                | 0.6P                            | æ                  |        |                                                  | 81      |          |            |               |                |               |          |        | <u>=</u> | 161       |            | 210 229                                                   |         |            |
| 0.4    |                     | -3    | CF                             | 711                             |                    |        |                                                  | 98 61   | <b>%</b> | 8          | 115           | 30 5           | 99 1          | 145      | 99     | 175 19   | 192 247   | 262        | 211 230                                                   | 277 292 | 2          |
| ·<br>i | 1/1000              |       |                                |                                 | ၁                  |        |                                                  | 21 38   | 98       | 102        | 117           | 32 5           | 53 68         | 147      | 162    | 177 19   | 194 249   | 264        | 213 232                                                   | 279 294 | 4          |
|        |                     |       |                                | 0.4P.,                          | m                  |        | - •                                              | 20 37   | 85       | <u>-</u> 0 | 911           | 31 5           | 52 67         | 146      | 191    | 176 19   | 193 248   | 263        | 212 231                                                   | 278 293 | 33         |
|        |                     |       |                                | 711                             | ၁                  |        |                                                  | 22 39   | 87       | 103        | 118           | 33 5           | 54 69         | 148      | 163    | 178 19   | 195 250   | 265        | 214 233                                                   | 280 295 | 5          |
|        | L/8000              | _     | CF,                            | 0.6P <sub>u2</sub>              |                    |        | , ,                                              | 23 40   | 88       | <u>8</u>   | 1 611         | 34 5           | 55 70         | 149      | 164    | 51 6/1   | 196 251   | 266        | 215 234                                                   | 281 296 | و ا        |
|        | L/2000              | 1-3   | CF,                            | $0.6P_{u2}$                     | æ                  |        |                                                  | 24 41   | 83       | 105        | 120           | 35 5           | 56 71         | 150      | 165    | 180 15   | 197 252   | 267        | 216 235                                                   | 282 297 | 7          |
|        |                     |       |                                | 0.6P.,                          |                    |        |                                                  | 25 42   | 96       | 901        | 121           |                | 57 72         | 151      | 991    | 181      | 198 253   | 268        | 217 236                                                   | 283 298 | <b>∞</b>   |
| =      |                     |       | S.                             | 711                             | ပ                  |        |                                                  | 28 45   | 93       | 601        | 124           | 39 6           | 60 75         | 154      | 169    | 184 201  | )1 256    | 271        | 220 239                                                   | 286 301 | =          |
|        | L/1000 <sup>d</sup> | 1-3   | ì                              | 0.4P.3                          | В                  |        | . 1                                              | 27 44   | 92       | 80         | 123 L         | 38 5           | 59 74         | 153      | 89     | 183 200  | 00 255    | 270        | 219 238                                                   | 285 300 | 2          |
|        |                     |       |                                |                                 | ပ                  |        |                                                  | 29 46   | 46       | 011        | 125 1         | 40 61          | 9/ 1          | 155      | 170    | 185 202  | 12 257    | 272        | 221 240                                                   | 287 302 | 2          |
|        |                     |       | $0.7 \mathrm{CF}_{\mathrm{y}}$ | 0.6P <sub>u2</sub>              | В                  |        |                                                  | 26 43   | 16       | 107        | 122 13        | 37 5           | 58 73         | 152      | 167    | 182 19   | 199 254   | 269        | 218 237                                                   | 284 299 | <b>5</b>   |
| į      |                     |       |                                |                                 |                    |        |                                                  |         |          |            |               |                |               | l        | 1      |          |           |            |                                                           |         | i          |

Table 4.1 (cont'd)

|      |                         |        |          | S-1                                                                                                                             | I-section W200x46 | W200      | )x46 |       |              |                         | ĭ<br>Š   | W310x179 | 6.  |        |          | ┢    |                                                            | M         | W150x30 |         |          |     |
|------|-------------------------|--------|----------|---------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|------|-------|--------------|-------------------------|----------|----------|-----|--------|----------|------|------------------------------------------------------------|-----------|---------|---------|----------|-----|
|      | Orie                    | intion | of Rei   | Oriention of Reinforcing Plates                                                                                                 | Plates            | // Flange | nge  |       | //           | // Flange               | ခင်      |          |     | // Web | qə/      |      | // FI                                                      | // Flange | _       | // Web  | cp<br>Cp |     |
|      |                         | Size   | of Rei   | Size of Reinforcing Plates                                                                                                      | Plates            | ı         | 9.52 | 290x  | 25 2         | 90x I 6                 | 5 35     | 30x16    | 350 | x25    | 350x     | 91   | 80x9.52 290x25 290x16 350x16 350x25 350x16 130x5           | 130x8     |         | 175x5   | 175x8    | 8×  |
|      |                         |        | į        | Buckling Axis'                                                                                                                  | Axis              | *         | S    | *     | S            | S M                     | <b>≥</b> | S /      | M   | S      | ≱        | S    | S M                                                        | S W       | ≱       | ြ       | ≥        | S   |
| ځا   | <b>∞</b> °°             | IRS    | IRS WRS  | $^{f}$ $^{g}$                                                                                                                   | 단                 | (I)       | (2)  | (3) ( | <del>(</del> | (1) (2) (3) (4) (5) (6) |          | (7) (8)  |     | 9      | )<br>(E) | 12)( | (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) | (15)(16   | 0 (17)  | (81)    | (61)     | 50  |
|      |                         | 1-4    |          |                                                                                                                                 |                   | •         |      |       |              |                         |          |          |     |        |          | 1    | r:<br>::                                                   |           |         |         |          | !   |
| =    | L/1000 <sup>d</sup>     | 3-3    | £,       | 1.1 L/1000 <sup>d</sup> 3-3 CF <sub>y</sub> 0.6P <sub>u2</sub>                                                                  | В                 |           |      |       |              |                         |          |          |     | 82     |          |      |                                                            |           |         |         |          |     |
|      |                         | 3-4    |          |                                                                                                                                 |                   |           |      |       |              |                         |          |          |     | 83     |          |      |                                                            |           |         |         |          |     |
|      | L/8000                  | 1-3    | CF,      | 0.6P <sub>u2</sub>                                                                                                              | В                 |           |      | چ     |              |                         |          |          |     |        |          | ļ    | 203                                                        |           | 222     | 222 241 |          |     |
|      | L/2000 1-3              | 1-3    | CF       | 0.6P <sub>u2</sub>                                                                                                              | В                 |           |      | 31    |              |                         |          |          |     |        |          |      | 204                                                        |           | 223     | 242     |          |     |
|      |                         |        |          | 0.60                                                                                                                            | В                 |           |      | 32 4  | 7 95         | 5 111                   | 126      | 6 141    | 62  | 11     | 156 171  |      | 186 205                                                    | 258 273   | 3 224   | 243     | 288      | 303 |
| 1.5  |                         |        | ני       | 0.01 u2                                                                                                                         | သ                 |           |      | 34 4  | 49 98        | 8 = 13                  | 3 128    | 8 143    | B   | 6/     | 158      | 173  | 188 207                                                    | 260 275   | 5 226   | 245     | 290      | 305 |
|      | L/1000 <sup>4</sup> 1-3 | 1-3    | <u>`</u> | 0.4P                                                                                                                            | В                 |           | -    | 33 4  | 48 97        | 7 112                   | 2 127    | 7 142    | 63  | 8/     | 157      | 172  | 187 206                                                    | 259 274   | 4 225   | 244     | 289      | 304 |
|      |                         |        |          | V. v. u2                                                                                                                        | ၁                 |           |      | 35 5  | 50 99        | 9 114                   | 1 129    | 9 144    | 65  | 80     | 159      | 174  | 189 208                                                    | 261 276   | 6 227   | 246     | 291      | 306 |
|      |                         |        | 0.7CF    | $0.7 \text{CF}_{y}  0.6 \text{P}_{u2}$                                                                                          | В                 |           |      |       | 96           | 9                       |          |          |     |        |          |      |                                                            |           |         |         |          |     |
| T (E | he numb                 | er in  | the tah  | a) The number in the table refers to the finite element analysis model number described in described in Amendia A med Amendia D | to the f          | inito     | John | ar tu | alveie       | 2000                    | 100      | 1848     |     | 1      | 1000     |      | A Danger                                                   | Ii. A     |         | J. J.   |          | ١   |

a) The number in the table refers to the finite element analysis model number described in detail in Appendix A and Appendix B.

b)  $\lambda$  - Slenderness parameter of the reinforced column

57

c)  $\delta_0$  - Initial imperfection of the unreinforced column presented by a ratio of the imperfection to the column length, L.

d) The allowable maximum initial imperfection varies for the column longer than 10 m.  $\dot{}$  c) IRS - Initial residual stress before welding

f) WRS - Residual stress after welding g)  $P_0$  - Preload.

 $P_{u2}\,$  - Load carrying capacity of the unreinforced column predicted using the SSRC column curve 2

h)  $F_y\,$  - Yield strength of the reinforced column

A - Yield strength of the rolled section and the cover plates = 260 MPa.

B - Yield strength of the rolled section and the cover plates = 300 MPa.

C - Yield strength of I-section = 230 MPa and yield strength of the cover plates = 350 MPa.

i) W - The weak axis of the rolled section

S - The strong axis of the rolled section

Table 4.2 Models Used to Study the Effect of Initial Residual Stresses in the I-Section before Welding

| FEA model           | Initial Res       | idual Stresses befo | ore Welding        | 5 m c                                 |
|---------------------|-------------------|---------------------|--------------------|---------------------------------------|
| Number <sup>a</sup> | PS <sup>b</sup>   | MF <sup>c</sup>     | $MP^d$             | P <sub>fea</sub> /P <sub>ry</sub> e   |
| (1)                 | (2)               | (3)                 | (4)                | (5)                                   |
| W200x46 column      | with 180x9.52     | mm plates parallel  | to the flanges     |                                       |
| Buckling about th   | e weak axis of t  | he rolled section   |                    |                                       |
| 3                   | 1-1               | $0.3F_{y}$          | $0.15F_y$          | 0.65                                  |
| 5                   | 1-2               | $0.1F_{y}$          | $0.15F_{v}$        | 0.65                                  |
| 7                   | 2-1               | $0.3F_{y}$          | $0.15F_{v}$        | 0.63                                  |
| 8                   | 2-2               | 0.1F <sub>v</sub>   | $0.15F_{v}$        | 0.66                                  |
| 9                   | 3-1               | $0.3F_{v}$          | 0.15F <sub>v</sub> | 0.65                                  |
| 10                  | 3-2               | $0.1F_{v}$          | $0.15F_{v}$        | 0.66                                  |
| 11                  | 4-1               | $0.3F_{v}$          | $0.15F_{v}$        | 0.60                                  |
| 12                  | 4-2               | $0.1F_{y}$          | $0.15F_{y}$        | 0.65                                  |
| W310x179 colum      | nn with 350x25 r  | nm plates parallel  | to the web         | · · · · · · · · · · · · · · · · · · · |
| Buckling about th   | ne strong axis of | the rolled section  |                    |                                       |
| 82                  | 3-3               | 0.3F <sub>y</sub>   | 0.3F <sub>y</sub>  | 0.54                                  |
| 83                  | 3-4               | 0.1F <sub>y</sub>   | 0.3F <sub>v</sub>  | 0.54                                  |

a) The FEA model number refers to the finite element analysis model number described in detail in Appendix A and Appendix B.

b) PS - Designation of the residual stress pattern

c) MF - Magnitude of the initial residual stresses before welding at the flange tips

d) MP - Magnitude of the initial residual stresses before welding at the plate edges  $F_{\nu}$  - Yield stress of the rolled section column

e) P<sub>fea</sub> - load carrying capacity of the reinforced column obtained from the finite element analysis

P<sub>ry</sub> - Yield strength of the reinforced column

Table 4.3 Models Used to Study the Effect of Initial Residual Stresses in the Cover Plates before Welding

| FEA model           | Initial Resi       | dual Stresses before | ore Welding        | - D /D C           |
|---------------------|--------------------|----------------------|--------------------|--------------------|
| Number <sup>a</sup> | PS <sup>b</sup>    | MF <sup>c</sup>      | $MP^d$             | $P_{fea}/P_{ry}^e$ |
| (1)                 | (2)                | _ (3)                | (4)                | (5)                |
| W200x46 column      | with 180x9.52      | mm plates parallel   | to the flanges     |                    |
| Buckling about the  | e weak axis of the | he rolled section    | _                  |                    |
| 3                   | 1-1                | $0.3F_{y}$           | 0.15F <sub>y</sub> | 0.65               |
| 4                   | 1-3                | $0.3F_{v}$           | $0.3F_{v}$         | 0.65               |
| 5                   | 1-2                | $0.1F_{v}$           | $0.15F_{y}$        | 0.65               |
| 6                   | 1-4                | $0.1F_{v}$           | $0.3F_{v}$         | 0.65               |

- a) The FEA model number refers to the finite element analysis model number described in detail in Appendix A and Appendix B.
- b) PS Designation of the initial residual stress pattern
- c) MF Magnitude of the initial residual stresses before welding at the flange tips
- d) MP Magnitude of the initial residual stresses before welding at the plate edges  $F_{\nu}$  Yield stress of the unreinforced column
- e) P<sub>fea</sub> load carrying capacity of the reinforced column obtained from the finite element analysis
  - P<sub>ry</sub> Yield strength of the reinforced column

Table 4.4 Models Used to Study the Effect of Varying Welding Residual Stress Magnitude

| FEA                 | Column             | Slenderness           | Welding                             |                      |
|---------------------|--------------------|-----------------------|-------------------------------------|----------------------|
| model               | Length             | Parameter             | Residual                            | $P_{fea}/P_{ry}^{c}$ |
| Number <sup>a</sup> | L (mm)             | λ                     | Stress <sup>b</sup>                 |                      |
| (1)                 | (2)                | (3)                   | (4)                                 | (5)                  |
| W310x179 colum      | n with reinforcing | plates 290x16 paralle | el to the flanges                   |                      |
| Buckling about th   | e weak axis of the | rolled section        | _                                   |                      |
|                     |                    |                       |                                     |                      |
| 90                  | 7197               | 1.1                   | F <sub>y</sub>                      | 0.56                 |
|                     |                    | 1.1<br>1.1            | F <sub>y</sub><br>0.7F <sub>y</sub> | 0.56<br>0.57         |
| 90                  | 7197               | 1.1<br>1.1<br>1.5     | ,                                   |                      |

- a) The FEA model number refers to the finite element analysis model number described in detail in Appendix A and Appendix B.
- b) F<sub>y</sub> Yield stress of the steel of the rolled section
- c)  $P_{fea}$  load carrying capacity of the reinforced column obtained from the finite element analysis
  - P<sub>ry</sub> Yield strength of the reinforced column

Table 4.5 Models Used to Study the Effect of the Initial Out-of-straightness

|                       |                 | <b>_</b>              |                   |                                        |                      |
|-----------------------|-----------------|-----------------------|-------------------|----------------------------------------|----------------------|
| FEA                   | Column          | Slenderness           |                   | - •                                    |                      |
| model                 | Length          | Parameter             | $\delta_0^{\ b}$  | $\delta_{\mathfrak{i}}^{\ \mathbf{c}}$ | $P_{fex}/P_{ry}^{d}$ |
| Number <sup>a</sup>   | L (mm)          | λ                     |                   |                                        |                      |
| (1)                   | (2)             | (3)                   | (4)               | (5)                                    | (6)                  |
| W310x179 colu         | mn with 290x2   | 5 mm plates paral     | lel to the flangs |                                        | <del>-</del>         |
| <b>Buckling about</b> | the weak axis o | of the rolled section | n                 |                                        |                      |
| 17                    | 2631            | 0.4                   | L/8000            | L/7850                                 | 1.00                 |
| 18                    | 2631            | 0.4                   | L/2000            | L/1930                                 | 0.99                 |
| 19                    | 2631            | 0.4                   | L/1000            | L/970                                  | 0.97                 |
| 23                    | 7235            | 1.1                   | L/8000            | L/7190                                 | 0.64                 |
| 24                    | 7235            | 1.1                   | L/2000            | L/1790                                 | 0.60                 |
| 25                    | 7235            | 1.1                   | L/1000            | L/820                                  | 0.56                 |
| 30                    | 9866            | 1.5                   | L/8000            | L/6270                                 | 0.42                 |
| 31                    | 9866            | 1.5                   | L/2000            | L/1570                                 | 0.38                 |
| 32                    | 9866            | 1.5                   | L/1000            | L/790                                  | 0.35                 |

a) The FEA model number refers to the finite element analysis model number described in detail in Appendix A and Appendix B.

b)  $\delta_0$  - Initial imperfection of the unreinforced rolled section column

L - The column length

c)  $\delta_i$  - Initial out-of-straightness of the reinforced column

d) P<sub>fea</sub> - load carrying capacity of the reinforced column obtained from the finite element analysis

P<sub>rv</sub> - Yield strength of the reinforced column

Table 4.6 Models Used to Study the Effect of the Preload

| FEA                 | Slenderness            | Preid                | oad, Po                                      |                      |
|---------------------|------------------------|----------------------|----------------------------------------------|----------------------|
| model               | Parameter              | P <sub>0</sub>       | P <sub>0</sub> /P <sub>u2</sub> <sup>b</sup> | $P_{fea}/P_{ry}^{c}$ |
| Number <sup>a</sup> | λ                      | ( <b>kN</b> )        | 10/1 u2                                      |                      |
| (1)                 | (2)                    | (3)                  | (4)                                          | (5)                  |
| W310x179 colum      | in with 290x25 mm pl   | lates parallel to th | e flanges                                    |                      |
| Buckling about th   | e weak axis of the rol | led section          |                                              |                      |
| 19                  | 0.4                    | 3760                 | 0.6                                          | 0.97                 |
| 20                  | 0.4                    | 2507                 | 0.4                                          | 0.98                 |
| 25                  | 1.1                    | 2152                 | 0.6                                          | 0.56                 |
| 27                  | 1.1                    | 1435                 | 0.4                                          | 0.57                 |
| 32                  | 1.5                    | 1401                 | 0.6                                          | 0.35                 |
| 33                  | 1.5                    | 934                  | 0.4                                          | 0.36                 |

a) The FEA model number refers to the finite element analysis model number described in detail in Appendix A and Appendix B. b)  $P_{u2}$  - Load carrying capacity of the rolled section (predicted using SSRC curve 2)

c) P<sub>fea</sub> - load carrying capacity of the reinforced column obtained from the finite element analysis

P<sub>rv</sub> - Yield strength of the reinforced column

**Table 4.7 Models Used to Study the Effect of the Steel Grades** 

| FEA                 | Slenderness            | Yield Strength           | , F <sub>y</sub> (MPa) |                      |
|---------------------|------------------------|--------------------------|------------------------|----------------------|
| model               | Parameter              | Rolled Section           | Distan                 | $P_{fea}/P_{rv}^{b}$ |
| Number <sup>a</sup> | λ                      | Rolled Section           | Plates                 | •                    |
| (1)                 | (2)                    | (3)                      | (4)                    | (5)                  |
| W310x179 colur      | nn with 290x25 mm      | plates parallel to the   | flanges                |                      |
| Buckling about the  | he weak axis of the    | rolled section           |                        |                      |
| 19                  | 0.4                    | 300                      | 300                    | 0.97                 |
| 21                  | 0.4                    | 230                      | 350                    | 0.96                 |
| 25                  | 1.1                    | 300                      | 300                    | 0.56                 |
| 28                  | 1.1                    | 230                      | 350                    | 0.51                 |
| 32                  | 1.5                    | 300                      | 300                    | 0.35                 |
| 34                  | 1.5                    | 230                      | 350                    | 0.34                 |
| W310x179 colur      | nn with 290x25 mm      | plates parallel to the   | flanges                |                      |
| Buckling about t    | he strong axis of the  | rolled section           |                        |                      |
| 36                  | 0.4                    | 300                      | 300                    | 0.93                 |
| 38                  | 0.4                    | 230                      | 350                    | 0.94                 |
| 42                  | 1.1                    | 300                      | 300                    | 0.61                 |
| 45                  | 1.1                    | 230                      | 350                    | 0.57                 |
| 47                  | 1.5                    | 300                      | 300                    | 0.40                 |
| 49                  | 1.5                    | 230                      | 350                    | 0.37                 |
| W310x179 colur      | nn with 350x16 mm      | n plates parallel to the | web                    |                      |
| Buckling about t    | he weak axis of the    | rolled section           |                        |                      |
| 145                 | 0.4                    | 300                      | 300                    | 0.95                 |
| 147                 | 0.4                    | 230                      | 350                    | 0.97                 |
| 151                 | 1.1                    | 300                      | 300                    | 0.60                 |
| 154                 | 1.1                    | 230                      | 350                    | 0.62                 |
| 156                 | 1.5                    | 300                      | 300                    | 0.40                 |
| 158                 | 1.5                    | 230                      | 350                    | 0.40                 |
| W310x179 colu       | mn with 350x16 mn      | n plates parallel to the | web                    |                      |
| Buckling about t    | the strong axis of the | e rolled section         |                        |                      |
| 160                 | 0.4                    | 300                      | 300                    | 0.93                 |
| 162                 | 0.4                    | 230                      | 350                    | 0.89                 |
| 166                 | 1.1                    | 300                      | 300                    | 0.56                 |
| 169                 | 1.1                    | 230                      | 350                    | 0.51                 |
| 171                 | 1.5                    | 300                      | 300                    | 0.38                 |
| 173                 | 1.5                    | 230                      | 350                    | 0.36                 |

<sup>a) The FEA model number refers to the finite element analysis model number described in detail in Appendix A and Appendix B.
b) P<sub>fea</sub> - load carrying capacity of the reinforced column obtained</sup> 

b) P<sub>fea</sub> - load carrying capacity of the reinforced column obtained from the finite element analysis

P<sub>ry</sub> - Yield strength of the reinforced column

**Table 4.8 Models Used to Study the Effect of Reinforced Plate Orientations** 

| FEA                 | Cover                    | Column        | Slenderness         | <del></del>      |                      |
|---------------------|--------------------------|---------------|---------------------|------------------|----------------------|
| model               | Plates                   | Length        | Parameter           | $\delta_i^{\ c}$ | $P_{fea}/P_{ry}^{d}$ |
| Number <sup>a</sup> | Orientation <sup>b</sup> | L (mm)        | λ                   | •                | -                    |
| (1)                 | (2)                      | (3)           | (4)                 | (5)              | (6)                  |
| W310x179 col        | umn with 350x16          | mm plates and | l buckling about th | ne weak axis of  | the I-section        |
| 115                 | F                        | 2827          | 0.4                 | L/974            | 0.98                 |
| 307                 | W                        | 3720          | 0.4                 | L/979            | 0.97                 |
| 121                 | F                        | 7772          | 1.1                 | L/786            | 0.56                 |
| 308                 | W                        | 10229         | 1.1                 | L/789            | 0.62                 |
| 126                 | F                        | 10598         | 1.5                 | L/788            | 0.37                 |
| 156                 | W                        | 13948         | 1.5                 | L/791            | 0.40                 |
| W310x179 col        | umn with 350x16          | mm plates and | l buckling about th | he strong axis o | f the I-section      |
| 130                 | F                        | 4928          | 0.4                 | L/974            | 0.94                 |
| 160                 | W                        | 4155          | 0.4                 | L/995            | 0.93                 |
| 135                 | F                        | 13551         | 1.1                 | L/1582           | 0.63                 |
| 309                 | W                        | 11425         | 1.1                 | L/1574           | 0.59                 |
| 310                 | F                        | 18479         | 1.5                 | L/1249           | 0.41                 |
| 171                 | W                        | 15579         | 1.5                 | L/1245           | 0.38                 |

a) The FEA model number refers to the finite element analysis model number described in detail in Appendix A and Appendix B.

b) F - Cover plates parallel to the flanges

W - Cover plates parallel to the web

c)  $\delta_i$  - Initial out-of-Straightness of the reinforced column

L - The column length

d) P<sub>fea</sub> - load carrying capacity of the reinforced column obtained from the finite element analysis

P<sub>ry</sub> - Yield strength of the reinforced column

Table 4.9 Models Used to Study the Effect of the Buckling Axis

| FEA        | Bucklin        | g Axis        | Column          | Slenderness | · <del>···</del> <u>-</u> - |                      |
|------------|----------------|---------------|-----------------|-------------|-----------------------------|----------------------|
| model      | Unreinforced   | Reinforced    | Length          | Parameter   | $\delta_i^{b}$              | $P_{fea}/P_{ry}^{c}$ |
| Number     | Section        | Section       | (mm)            | λ           |                             |                      |
| (1)        | (2)            | (3)           | (4)             | (5)         | (6)                         | (7)                  |
| W150x30 co | lumn with 130: | x5 mm plates  | parallel to the | e flanges   |                             |                      |
| 175        | Weak axis      | Weak axis     | 1236            | 0.4         | L/973                       | 0.97                 |
| 192        | Strong axis    | Strong axis   | 2300            | 0.4         | L/964                       | 0.95                 |
| 181        | Weak axis      | Weak axis     | 3399            | 1.1         | L/885                       | 0.60                 |
| 311        | Strong axis    | Strong axis   | 6326            | 1.1         | L/858                       | 0.63                 |
| 186        | Weak axis      | Weak axis     | 4635            | 1.5         | L/848                       | 0.37                 |
| 312        | Strong axis    | Strong axis   | 8626            | 1.5         | L/808                       | 0.44                 |
| W310x179 c | column with 35 | 0x25 mm plate | es parallel to  | the web     |                             |                      |
| 313        | Weak axis      | Weak axis     | 4103            | 0.4         | L/983                       | 0.96                 |
| 66         | Strong axis    | Strong axis   | 4030            | 0.4         | L/984                       | 0.93                 |
| 314        | Weak axis      | Weak axis     | 11281           | 1.1         | L/985                       | 0.63                 |
| 72         | Strong axis    | Strong axis   | 11083           | 1.1         | L/1000                      | 0.54                 |
| 315        | Weak axis      | Weak axis     | 15383           | 1.5         | L/1194                      | 0.41                 |
| 77         | Strong axis    | Strong axis   | 15113           | 1.5         | L/1200                      | 0.37                 |
| W310x179   | column with 35 | 0x16 mm plate | es parallel to  | the web     |                             |                      |
| 307        | Weak axis      | Weak axis     | 3720            | 0.4         | L/974                       | 0.97                 |
| 160        | Strong axis    | Strong axis   | 4155            | 0.4         | L/995                       | 0.93                 |
| 316        | Weak axis      | Weak axis     | 10229           | 1.1         | L/1862                      | 0.68                 |
| 165        | Strong axis    | Strong axis   | 11425           | 1.1         | L/1870                      | 0.60                 |
| 317        | Weak axis      | Weak axis     | 13948           | 1.5         | L/1227                      | 0.42                 |
| 171        | Strong axis    | Strong axis   | 15579           | 1.5         | L/1235                      | 0.38                 |

a) The FEA model number refers to the finite element analysis model number described in detail in Appendix A and Appendix B.

b)  $\delta_i$  - Initial out-of-Straightness of the reinforced column

L - The column length

c) P<sub>fea</sub> - load carrying capacity of the reinforced column obtained from the finite element analysis

P<sub>rv</sub> - Yield strength of the reinforced column

**Table 4.10 Models Used to Study the Effect of Cover Plate Size** 

| FEA     |           | <del>-</del> · · · · |                | Column | Slenderness |                                     |
|---------|-----------|----------------------|----------------|--------|-------------|-------------------------------------|
| model   | I-Section | Plate                | I-section Area | Length | parameter   | P <sub>fea</sub> /P <sub>ry</sub> b |
| numbera |           |                      | Plate Area     | (mm)   | λ           |                                     |
| (1)     | (2)       | (3)                  | (4)            | (5)    | (6)         | (7)                                 |
| 19      | W310x179  | 290x25               | 1.57           | 2631   | 0.4         | 0.97                                |
| 84      | W310x179  | 290x16               | 2.46           | 2617   | 0.4         | 0.98                                |
| 115     | W310x179  | 350x16               | 2.04           | 2827   | 0.4         | 0.98                                |
| 25      | W310x179  | 290x25               | 1.57           | 7235   | 1.1         | 0.56                                |
| 90      | W310x179  | 290x16               | 2.46           | 7197   | 1.1         | 0.56                                |
| 121     | W310x179  | 350x16               | 2.04           | 7772   | 1.1         | 0.56                                |
| 32      | W310x179  | 290x25               | 1.57           | 9866   | 1.5         | 0.35                                |
| 95      | W310x179  | 290x16               | 2.46           | 9813   | 1.5         | 0.36                                |
| 126     | W310x179  | 350x16               | 2.04           | 10598  | 1.5         | 0.36                                |

a) The FEA model number refers to the finite element analysis model number described in detail in Appendix A and Appendix B.

Table 4.11 Models Used to Study the Effect of the Size of the I-section

| FEA<br>model        | I-Section | Plate  | I-section Area | Column<br>Length | Slenderness parameter | P <sub>fea</sub> /P <sub>rv</sub> <sup>b</sup> |
|---------------------|-----------|--------|----------------|------------------|-----------------------|------------------------------------------------|
| Number <sup>a</sup> |           |        | Plate Area     | L (mm)           | λ                     | ica ty                                         |
| (1)                 | (2)       | (3)    | (4)            | (5)              | (6)                   | (7)                                            |
| 19                  | W310x179  | 290x25 | 1.57           | 2631             | 0.4                   | 0.97                                           |
| 175                 | W150x30   | 130x5  | 2.92           | 1236             | 0.4                   | 0.97                                           |
| 25                  | W310x179  | 290x25 | 1.57           | 7235             | 1.1                   | 0.56                                           |
| 181                 | W150x30   | 130x5  | 2.92           | 3399             | 1.1                   | 0.60                                           |
| 32                  | W310x179  | 290x25 | 1.57           | 9866             | 1.5                   | 0.35                                           |
| 186                 | W150x30   | 130x5  | 2.92           | 4635             | 1.5                   | 0.37                                           |

a) The FEA model number refers to the finite element analysis model number described in detail in Appendix A and Appendix B.

P<sub>ry</sub> - Yield strength of the reinforced column

b) P<sub>fea</sub> - load carrying capacity of the reinforced column obtained from the finite element analysis

P<sub>ry</sub> - Yield strength of the reinforced column

b) P<sub>fea</sub> - load carrying capacity of the reinforced column obtained from the finite element analysis

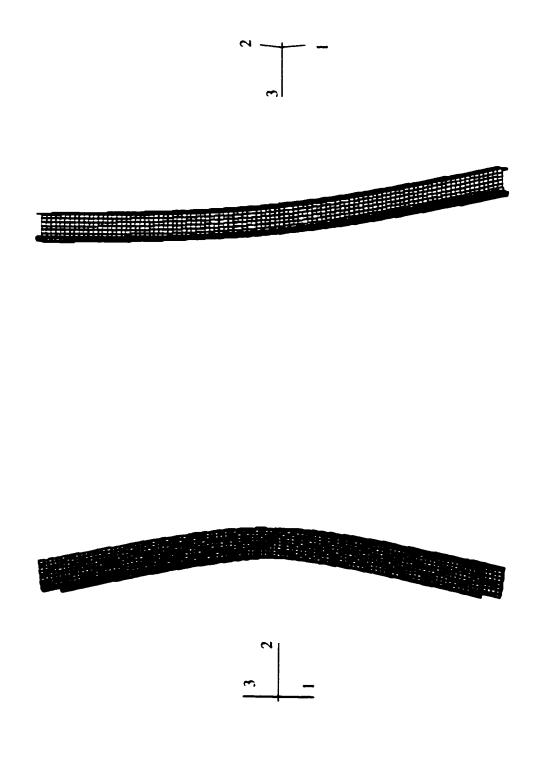



Figure 4.1 Deformed Shape of Columns Reinforced with Plates Parallel to the Flanges

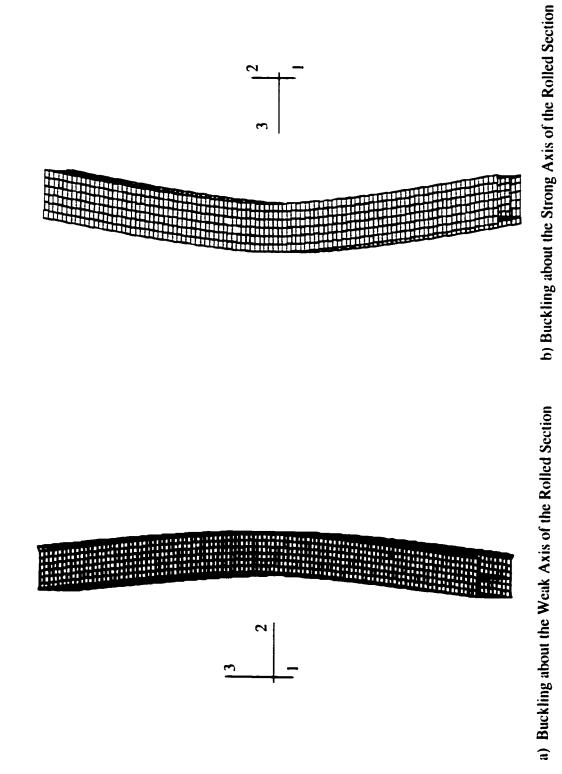
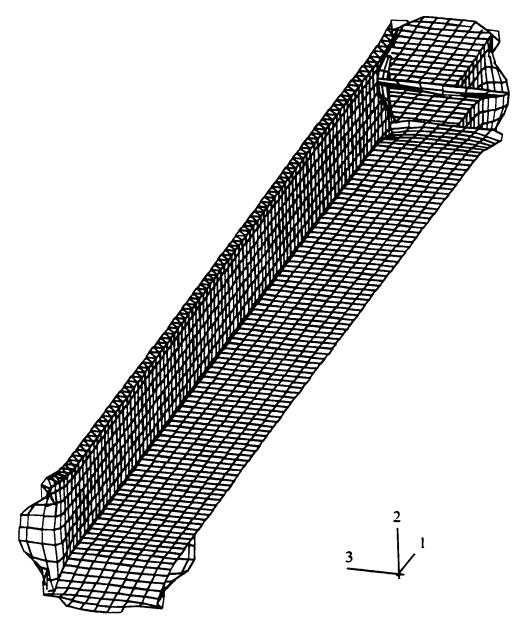




Figure 4.2 Deformed Shape of Columns Reinforced with Plates Parallel to the Web



Section: W310x179; Reinforced Plate: 350x25 mm;

 $F_y = 300 \text{ MPa}; \qquad \lambda = 0.4$ 

Figure 4.3 Local Buckled Shape of the Column Reinforced with Plates Parall to the Web

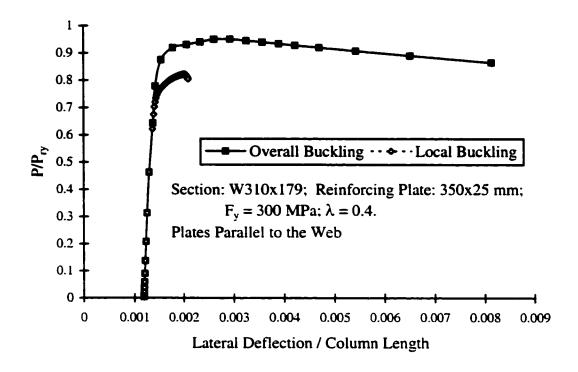



Figure 4.4 Load versus Lateral Deflection Curves for the Columns with Overall Buckling and Local Buckling

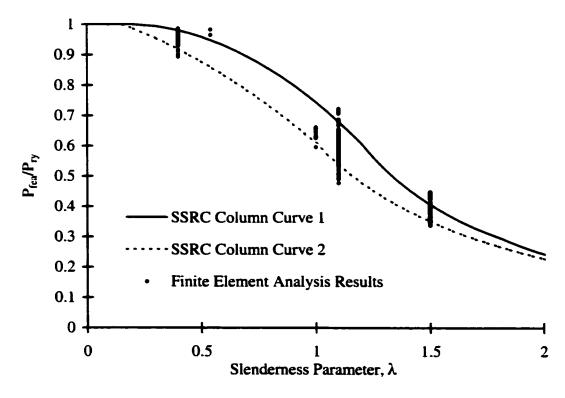



Figure 4.5 Strength of All Reinforced Column Samples

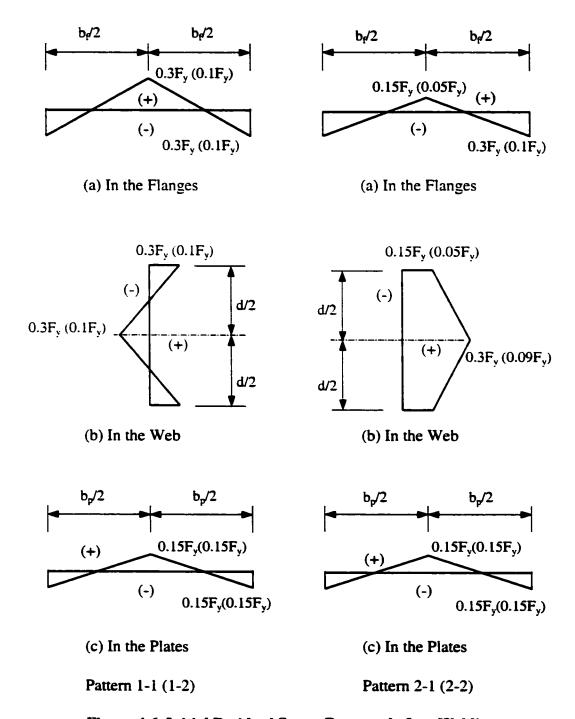



Figure 4.6 Initial Residual Stress Patterns before Welding

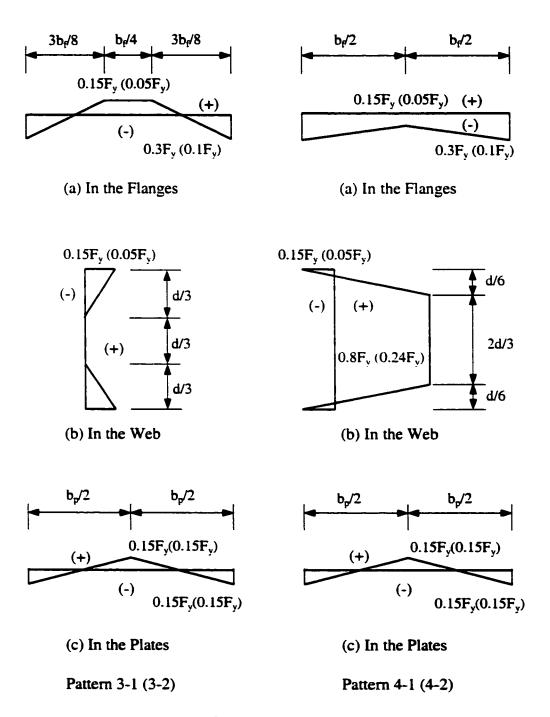



Figure 4.6 (Cont'd)

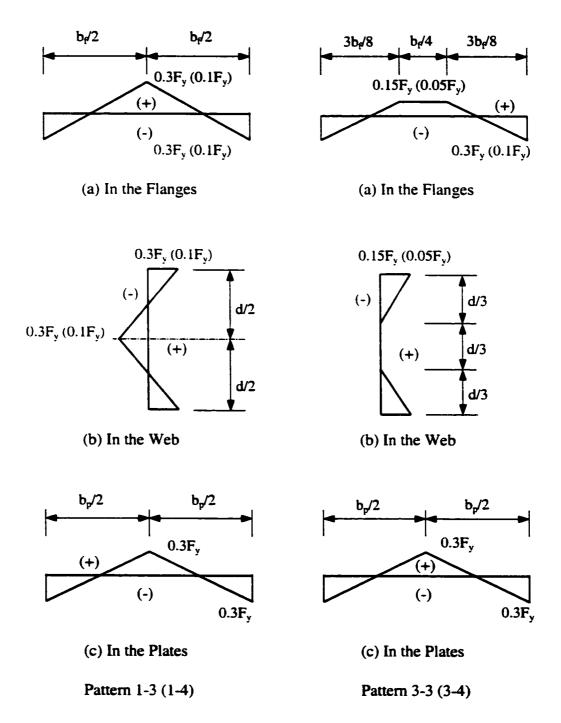



Figure 4.6 (Cont'd)

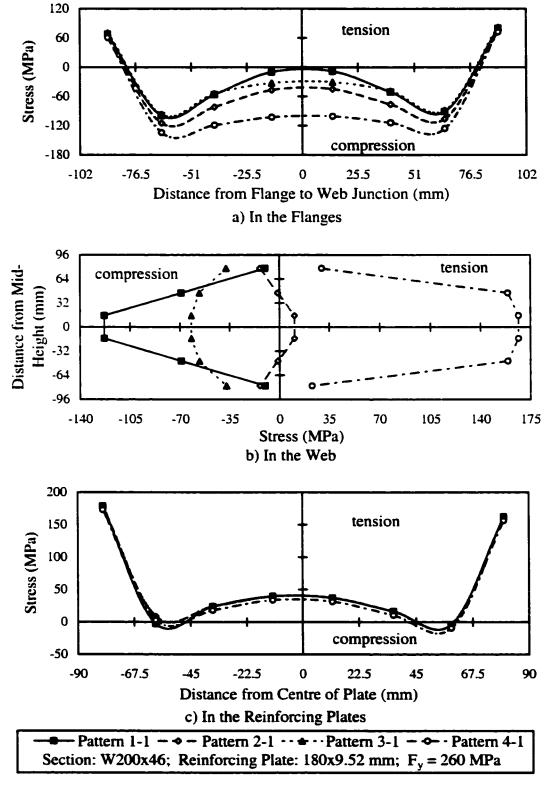



Figure 4.7 Residual Stress Distributions after Welding for Maximum Initial Residual Stress of 0.3  $F_y$ 

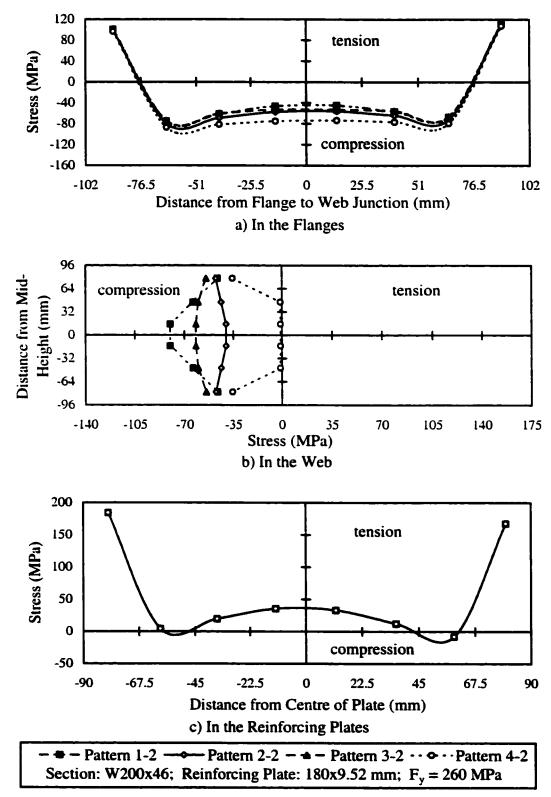



Figure 4.8 Residual Stress Distributions after Welding for Maximum Initial Residual Stress of  $0.1F_y$ 

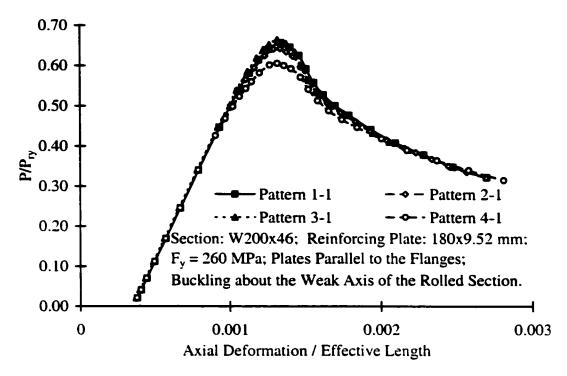



Figure 4.9 Effect of Initial Residual Stress Patterns for Maximum Magnitude of 0.3F<sub>v</sub>

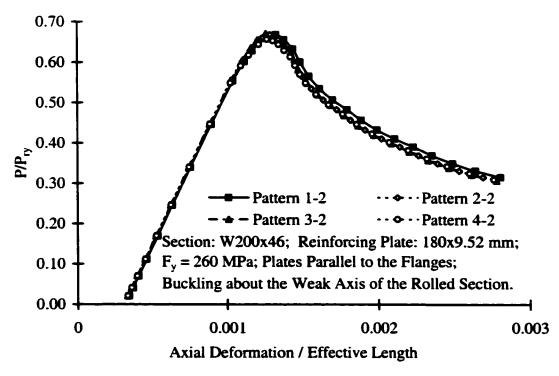



Figure 4.10 Effect of Initial Residual Stress Patterns for Maximum Magnitude of  $0.1F_y$ 

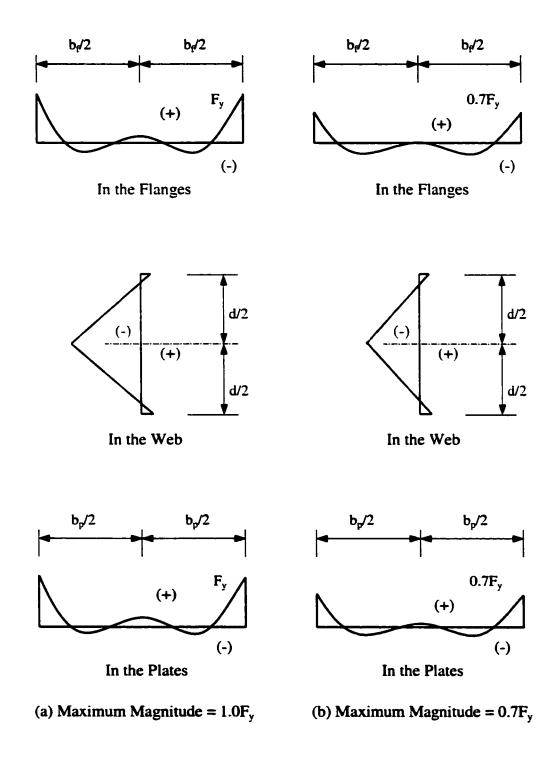



Figure 4.11 Residual Stress Patterns after Welding

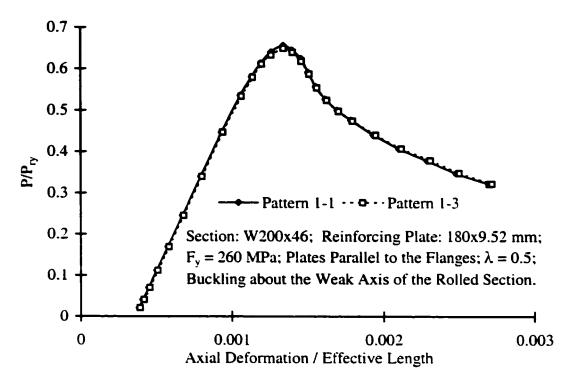



Figure 4.12 Effect of Varying Initial Residual Stress Patterns before Welding in the Cover Plates

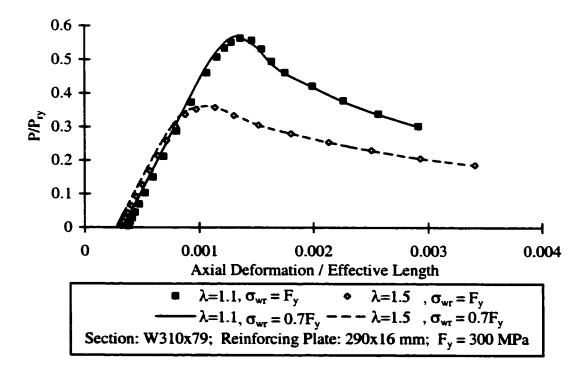



Figure 4.13 Effect of Varying Welding Residual Stresses with Different Slenderness Ratios

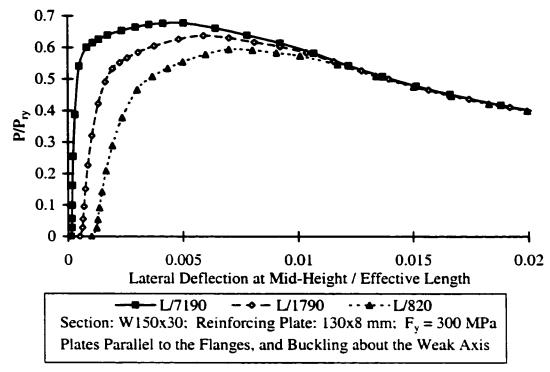



Figure 4.14 Effect of the Initial Out-of-straightness ( $\lambda = 1.1$ )

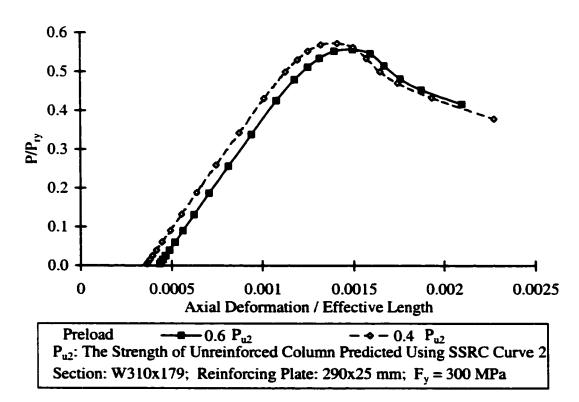
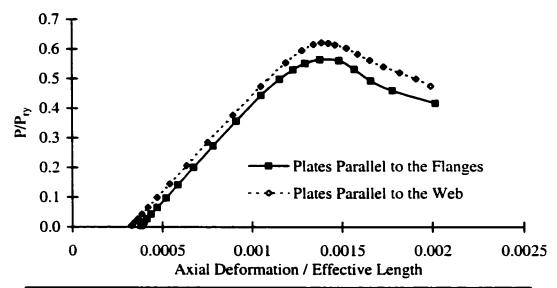




Figure 4.15 Effect of the Preload Magnitudes ( $\lambda$ =1.1)



Section: W310x179; Reinforcing Plate: 350x16 mm;  $F_y = 300$  MPa Columns Buckle about the Weak Axis of the Rolled Section.

Figure 4.16 Effect of the Reinforcing Plate Orientation ( $\lambda = 1.1$ )

# Chapter 5

## **Limit States Design**

# 5.1 Background

A statistical-based design philosophy, which provides a uniform level of safety for various structural components, is used for the design of steel structures in Canada. Considering the variation in the resistance and load effects, corresponding resistance and load factors are determined using statistical analysis. The resistance factor for steel columns reinforced with welded steel plates is the prime concern in this research.

### 5.1.1 Column Resistance Based on CAN/CSA-S16.1-94

Based on the investigation conducted by Bjorhovde (1972), three strength curves have been developed to predict the strength of steel columns of different shapes and types (Johnston, 1976). The Structural Stability Research Council proposed the equations used to describe these column curves, and these three curves are therefore called SSRC column curves. CSA standard CAN3-S16.1-M84 - "Steel Structures for Building – Limit States Design" (Canadian Standards Association, 1984) adopted the first two SSRC curves for the design of steel columns. The equations for the first two SSRC curves are in five parts and are expressed as follows:

SSRC column curve 1

(1) For 
$$0 \le \lambda \le 0.15$$
  $C_r = \phi A F_y$  (stub column)

(2) For 
$$0.15 \le \lambda \le 1.2$$
  $C_r = \phi A F_y (0.990 + 0.122\lambda - 0.367\lambda^2)$ 

(3) For 
$$1.2 \le \lambda \le 1.8$$
  $C_r = \phi A F_v (0.051 + 0.801 \lambda^{-2})$  [5.1]

(4) For 
$$1.8 \le \lambda \le 2.8$$
  $C_r = \phi A F_y (0.008 + 0.942 \lambda^{-2})$ 

(5) For 
$$2.8 \le \lambda$$
  $C_r = \phi A F_v \lambda^{-2}$ 

SSRC column curve 2

(1) For 
$$0 \le \lambda \le 0.15$$
  $C_r = \phi A F_v$  (stub column)

(2) For 
$$0.15 \le \lambda \le 1.0$$
  $C_r = \phi A F_v (1.035 - 0.202\lambda - 0.222\lambda^2)$ 

(3) For 
$$1.0 \le \lambda \le 2.0$$
  $C_r = \phi A F_y (-0.111 + 0.636 \lambda^{-1} + 0.087 \lambda^{-2})$  [5.2]

(4) For 
$$2.0 \le \lambda \le 3.6$$
  $C_r = \phi A F_y (0.009 + 0.877 \lambda^{-2})$ 

(5) For 
$$3.6 \le \lambda$$
  $C_r = \phi A F_v \lambda^{-2}$ 

where Part (5) of equations [5.1] and [5.2] corresponds to the Euler's elastic buckling resistance. SSRC column curve 1 represents a higher strength than SSRC column curve 2. In the Canadian standard, SSRC columns curve 1 is adopted for the hollow structural shape of Class H, which are sections that are hot formed or cold formed followed by stress relieving, and for welded wide flange sections with flanges made of flame cut plates. These particular sections possess higher strength in compression because of the more favourable residual stress pattern present in these sections. All other sections are designed based on SSRC column curve 2. It should be noted that Equations [5.1] and [5.2] provide a factored resistance, with the resistance factor,  $\phi$ , taken as 0.9 for columns.

In 1995, Loov proposed a double exponential equation using a single parameter, n, to replace the five-part equations proposed by SSRC. This expression, which was adopted by the CSA standard CAN/CSA-S16.1-94 (Canadian Standards Association, 1994), takes the following form:

$$C_r = \phi A F_v (1 + \lambda^{2n})^{-1/n}$$
 [5.3]

where n = 2.24 for CSA column curve 1, corresponding to SSRC curve 1, and n = 1.34 for CSA column curve 2, corresponding to SSRC curve 2. It was demonstrated that this expression never deviates by more than approximately 3% from the corresponding values given by Equations [5.1] and [5.2] (Loov, 1996).

### 5.1.2 Principles of Limit States Design

Limit states design is a design method that requires the structure not to exceed the limit states that govern its strength and behaviour for any realistic load or load combinations. There are basically two categories of limit states that are pertinent to the structural design process: ultimate limit states (ULS) and serviceability limit states (SLS). Ultimate limit states deal with strength conditions for the structure. Exceeding an ULS

implies a local or overall structural failure. On the other hand, exceeding a serviceability limit state means that a structure is not behaving or serving in the way it was intended to. The SLS therefore considers the performance under normal operating conditions. In the design of columns, serviceability limit states are seldom a concern. The following, therefore, focuses on ultimate limit states.

The general criterion for an ultimate limit state can be expressed in the following form:

$$\phi R \ge \alpha S$$
 [5.4]

where R is the nominal resistance,  $\phi$  is the resistance factor, S is the nominal value of the load effect, and  $\alpha$ ' is the load factor.

It is clearly understood that there is always a possibility that failure will occur. In order to ensure that the probability of failure is acceptably small, the factors  $\alpha$ ' and  $\phi$  have to be set at a suitable value by applying the principles of probability theory to the statistical analysis of the load effects and the resistance.

Figure 5.1 shows possible distribution curves for the load effect, S, and the resistance, R. The variables are assumed to be statistically independent. Galambos and Ravindra (1973a) combined the two curves to produce a risk frequency distribution curve, as illustrated in Figure 5.2. The probability of failure is equivalent to the probability of the ratio R/S being less than 1.0 (the load effect exceeding the resistance), or the natural log of (R/S) being less than 0. This probability of failure is therefore a function of the distance  $\beta\sigma_{ln(R/S)}$  shown in Figure 5.2, which provides the margin of safety. The factor  $\beta$  is called the safety index and  $\sigma_{ln(R/S)}$  is the standard deviation of the natural log of (R/S). The probability of failure can be set at any desired level by selecting an appropriate value of  $\beta$ . The safety index is, therefore, a measure of the safety or reliability of the structure. Galambos and Ravindra (1973a) proposed a first order simplification method to express the safety index,  $\beta$ , in algebraic form. In Figure 5.2,

$$\sigma_{\ln(R/S)}^2 = \left(\frac{\partial \overline{\ln(R/S)}}{\partial \overline{R}}\right)^2 \cdot \sigma_R^2 + \left(\frac{\partial \overline{\ln(R/S)}}{\partial \overline{S}}\right)^2 \cdot \sigma_S^2 = \frac{\sigma_R^2}{\overline{R}^2} + \frac{\sigma_S^2}{\overline{S}^2} = V_R^2 + V_S^2$$
 [5.5]

Thus,

$$\beta (V_R^2 + V_S^2)^{1/2} = \ln \overline{R/S}$$
 [5.6]

from which,

$$\overline{R/S} = e^{\beta(V_R^2 + V_S^2)^{\frac{1}{2}}}$$
 [5.7]

Then,

$$\beta = \frac{\ln \frac{\overline{R}}{\overline{S}}}{(V_R^2 + V_S^2)^{1/2}}$$
 [5.8]

Allen (1975) proposed a more accurate expression for the safety index as follows:

$$\beta = \frac{\ln \left[ \frac{\overline{R}}{\overline{S}} \left( \frac{1 + V_S^2}{1 + V_R^2} \right)^{\frac{1}{2}} \right]}{\ln \left[ \left( 1 + V_S^2 \right) \left( 1 + V_R^2 \right) \right]^{\frac{1}{2}}}$$
 [5.9]

Based on the investigation of Allen (1975) and the work done by Galambos and Ravindra (1973b), a value of 3.0 was adopted for  $\beta$  for most members of building structures in Canada.

Lind (1971) proposed an approximate equation as follows:

$$(V_R^2 + V_S^2)^{1/2} = \alpha (V_R + V_S)$$
 [5.10]

where  $\alpha$  is called a separation variable. Galambos and Ravindra (1973b) extended this concept further by introducing two separation variables,  $\alpha_R$  and  $\alpha_S$ , such that:

$$(V_R^2 + V_S^2)^{1/2} = \alpha_R V_R + \alpha_S V_S$$
 [5.11]

Galambos and Ravindra (1973b, 1977) also used an error minimization process to demonstrate that a single value of  $\alpha = 0.55$  could be used for the conservative approximate equation [5,10], leading to an acceptably small error. Substituting Equation [5.10] into Equation [5.8] results in the following expression for the safety index:

$$\beta = \frac{\ln \frac{\overline{R}}{\overline{S}}}{\alpha(V_R + V_S)}$$
 [5.12]

Solving for the mean value of resistance,  $\overline{R}$ , we obtain

$$\overline{R} = \overline{S} e^{\beta \alpha (V_R + V_S)}$$
 [5.13]

which can be rewritten as follows

$$\overline{R} e^{-\beta \alpha V_R} = \overline{S} e^{\beta \alpha V_S}$$
 [5.14]

Equation [5.14] relates to the mean values of the resistance and load effect. If the ratio of the mean to nominal value of the resistance (also called the bias coefficient for the resistance) is expressed as

$$\rho_{R} = \frac{\overline{R}}{R}$$
 [5.15]

and the ratio of the mean to nominal value of the load effect (the bias coefficient of the load effect) is expressed as

$$\rho_{\rm S} = \frac{\bar{\rm S}}{\rm S} \tag{5.16}$$

Equation [5.14] can be rewritten as follows

$$\rho_{R} \cdot e^{(-\beta \alpha V_{R})} \cdot R = \rho_{S} \cdot e^{(\beta \alpha V_{S})} \cdot S$$
 [5.17]

from which, compared with [5.4], the resistance factor,  $\phi$ , can be defined as

$$\phi = \rho_R \cdot e^{(-\beta \alpha V_R)}$$
 [5.18]

and the load effect factor,  $\alpha'$ , can be defined as

$$\alpha' = \rho_S \cdot e^{(\beta \alpha V_S)}$$
 [5.19]

The ratio of the mean to the nominal resistance,  $\rho_R$ , of a member consists of three parts: the ratio of the mean to the nominal cross-sectional properties,  $\rho_G$ ; the ratio of the mean to the nominal material properties,  $\rho_M$ ; and the professional ratio,  $\rho_P$  (i.e., the ratio of the actual load carrying capacity of a column to that predicted by the design equation). The professional ratio indicates how well the design equation fits the test results. Then,

$$\rho_{R} = \rho_{G} \cdot \rho_{M} \cdot \rho_{P} \tag{5.20}$$

The above ratios are assumed to be independent random variables. Therefore, the coefficient of variation for the resistance,  $V_R$ , of a member is given by:

$$V_R^2 = V_G^2 + V_M^2 + V_P^2$$
 [5.21]

where  $V_G$ ,  $V_M$ , and  $V_P$  are the coefficient of variation associated with  $\rho_G$ ,  $\rho_M$ , and  $\rho_P$  respectively.

#### 5.1.3 Determination of the Resistance of a Steel Column

For steel columns, CSA standards CAN3-S16.1-M84 and CAN/CSA-S16.1-94 use different equations based on different approximations, i.e., the SSRC column curves and the CSA curves as shown in Equation [5.1] through [5.2] and [5.3] respectively. In general, the factored resistance of a steel column can be expressed as:

$$C_r = \phi \cdot A \cdot F_v \cdot f(\lambda)$$
 [5.22]

where  $f(\lambda)$  is a function of the non-dimensional slenderness ratio,  $\lambda$ , defined in Equation [4.1]. Therefore, the mean-to-nominal ratio of the resistance,  $\rho_{R}$ , for intermediate columns becomes

$$\rho_{R} = \rho_{A} \cdot \rho_{F_{V}} \cdot \rho_{f(\lambda)} \cdot \rho_{p}$$
 [5.23]

Because the slenderness parameter,  $\lambda$ , is a function of the yield strength,  $F_y$ , the two terms  $F_y$  and  $f(\lambda)$  can be grouped as

$$F = F_{y} \cdot f(\lambda) \tag{5.24}$$

where F is a function of the terms  $F_y$  and  $f(\lambda)$ , and

$$\overline{F} = \overline{F}_{y} \cdot f(\overline{\lambda})$$
 [5.25]

Thus,

$$\rho_{F} = \rho_{F_{v}} \cdot \rho_{f(\lambda)} \tag{5.26}$$

As discussed above, the properties governing the strength of intermediate columns are the yield strength,  $F_y$ , the slenderness parameter,  $\lambda$ . As a result, Equation [5.23] becomes

$$\rho_{R} = \rho_{A} \cdot \rho_{F} \cdot \rho_{P} \tag{5.27}$$

and the coefficient of variation, V<sub>R</sub>, for intermediate columns follows

$$V_{R} = (V_{A}^{2} + V_{F}^{2} + V_{P}^{2})^{1/2}$$
 [5.28]

However, the resistance of stub columns depends on the area of the column, A, and yield strength,  $F_y$ , as shown in the first part of equations [5.1] and [5.2]. Therefore, the mean-to-nominal ratio of the resistance,  $\rho_R$  for short columns becomes

$$\rho_{R} = \rho_{A} \cdot \rho_{F_{V}} \cdot \rho_{P} \tag{5.29}$$

and the coefficient of variation, V<sub>R</sub>, for short columns follows

$$V_{R} = \left(V_{A}^{2} + V_{F_{y}}^{2} + V_{P}^{2}\right)^{1/2}$$
 [5.30]

Furthermore, the resistance of slender columns depends on the moment of inertia of the cross-section, I, and elastic modulus of the column, E, as seen by comparing Equation [4.1] with the fifth part of equations [5.1] and [5.2]. Therefore, the mean-to-nominal ratio of the resistance,  $\rho_R$ , for slender columns becomes

$$\rho_{R} = \rho_{1} \cdot \rho_{F} \cdot \rho_{P} \tag{5.31}$$

and the coefficient of variation, V<sub>R</sub>, for slender columns follows

$$V_{R} = (V_{I}^{2} + V_{E}^{2} + V_{P}^{2})^{1/2}$$
 [5.32]

The values for the mean-to-nominal ratios and the coefficients of variation for the cross-sectional properties are investigated by using simple statistical analyses. The method of probability study for the professional factor is presented in section 5.2.3. The following derivation of  $\rho_F$  and  $V_F$  follow the work of Kennedy and Gad Aly (1980).

#### 5.1.4 The Material Factor

The bias coefficient and the coefficients of variation for the material factor vary with the different design criteria for the resistance of a steel column. The column equations of clause 13.3.1 from CAN3-S16.1-M84 (identical to SSRC column curve 2) are taken in this sub-section to illustrate the procedure for determining the bias coefficients and the coefficients of variation for the material factor in the research. From a comparison of Equation [5.22] with Equation [5.2], the expressions for  $f(\lambda)$  are obtained as follows:

(1) 
$$f(\lambda) = 1.0$$
 , for  $0 \le \lambda \le 0.15$ 

(2) 
$$f(\lambda) = 1.035 - 0.202\lambda - 0.222\lambda^2$$
, for  $0.15 \le \lambda \le 1.0$ 

(3) 
$$f(\lambda) = -0.111 + 0.636\lambda^{-1} + 0.087\lambda^{-2}$$
, for  $1.0 \le \lambda \le 2.0$  [5.33]

(4) 
$$f(\lambda) = 0.009 + 0.877\lambda^{-2}$$
, for  $2.0 < \lambda < 3.6$ 

(5) 
$$f(\lambda) = \lambda^{-2}$$
, for  $3.6 < \lambda$ 

Thus, the mean of  $f(\lambda)$  is:

(1) 
$$f(\overline{\lambda}) = 1.0$$
 , for  $0 \le \overline{\lambda} \le 0.15$ 

(2) 
$$f(\bar{\lambda}) = 1.035 - 0.202\bar{\lambda} - 0.222\bar{\lambda}^2$$
, for  $0.15 < \bar{\lambda} < 1.0$ 

(3) 
$$f(\overline{\lambda}) = -0.111 + 0.636\overline{\lambda}^{-1} + 0.087\overline{\lambda}^{-2}$$
, for  $1.0 \le \overline{\lambda} \le 2.0$  [5.34]

(4) 
$$f(\bar{\lambda}) = 0.009 + 0.877\bar{\lambda}^{-2}$$
, for  $2.0 \le \bar{\lambda} \le 3.6$ 

(5) 
$$f(\overline{\lambda}) = \overline{\lambda}^{-2}$$
 , for  $3.6 \le \overline{\lambda}$ 

The mean-to-nominal ratio of  $\lambda$  is defined as

$$\rho_{\lambda} = \frac{\overline{\lambda}}{\lambda}$$
 [5.35]

Based on the definition of the slenderness parameter,  $\lambda$ , given by Equation [4.1], the mean-to-nominal ratio of the slenderness parameter can be obtained as

$$\rho_{\lambda} = \left(\frac{\rho_{F_{y}}}{\rho_{r}^{2} \cdot \rho_{E}}\right)^{1/2}$$
 [5.36]

Combining [5.25], [5.34], and [5.35] gives

(1) 
$$\bar{F} = \bar{F}_y$$
 , for  $0 \le \lambda \le 0.15$ 

(2) 
$$\bar{F} = \bar{F}_y (1.035 - 0.202 \lambda \rho_{\lambda} - 0.222 \lambda^2 \rho_{\lambda}^2)$$
 , for  $0.15 \le \lambda \le 1.0$ 

(3) 
$$\overline{F} = \overline{F}_y(-0.111 + 0.636\lambda^{-1}\rho_{\lambda}^{-1} + 0.087\lambda^{-2}\rho_{\lambda}^{-2})$$
, for  $1.0 \le \lambda \le 2.0$  [5.37]

(4) 
$$\overline{F} = \overline{F}_y (0.009 + 0.877 \lambda^{-2} \rho_{\lambda}^{-2})$$
 , for  $2.0 \le \lambda \le 3.6$ 

(5) 
$$\vec{F} = \vec{F}_v(\lambda^{-2}\rho_\lambda^{-2})$$
, for  $3.6 \le \lambda$ 

Thus, the mean-to-nominal ratio for the material factor with SSRC column curve 2 can be deduced as follows:

(1) 
$$\rho_F = \rho_{F_v}$$
, for  $0 \le \lambda \le 0.15$ 

(2) 
$$\rho_{F} = \rho_{F_{y}} \frac{(1.035 - 0.202\lambda\rho_{\lambda} - 0.222\lambda^{2}\rho_{\lambda}^{2})}{(1.035 - 0.202\lambda - 0.222\lambda^{2})}, \text{ for } 0.15 \le \lambda \le 1.0$$

(3) 
$$\rho_{F} = \rho_{F_{y}} \frac{(-0.111 + 0.636\lambda^{-1}\rho_{\lambda}^{-1} + 0.087\lambda^{-2}\rho_{\lambda}^{-2})}{(-0.111 + 0.636\lambda^{-1} + 0.087\lambda^{-2})} , \text{ for } 1.0 \le \lambda \le 2.0 \quad [5.38]$$

(4) 
$$\rho_F = \rho_{F_y} \frac{(0.009 + 0.877\lambda^{-2}\rho_{\lambda}^{-2})}{(0.009 + 0.877\lambda^{-2})}$$
, for  $2.0 \le \lambda \le 3.6$ 

$$(5) \quad \rho_{\rm F} = \rho_{\rm F} \rho_{\rm r}^2 \qquad , \text{ for } 3.6 \le \lambda$$

The mean-to-nominal ratios for the material factors derived from the other criteria can be obtained using the same procedure.

Applying the definition of the associated coefficient of variation, V<sub>F</sub>, gives

$$V_{F} = \frac{\sigma_{F}}{\overline{F}}$$
 [5.39]

Having assumed that the variables affecting F, that is,  $F_y$ , r, and E, are independent, fundamental statistical equations for the standard deviation (Kennedy and Neville, 1976) are adopted to calculate the value of  $V_F$  as follows:

$$\sigma_{F} = \left[ \left( \frac{\partial \overline{F}}{\partial \overline{F}_{y}} \right)^{2} \cdot \sigma_{F_{y}}^{2} + \left( \frac{\partial \overline{F}}{\partial \overline{r}} \right)^{2} \cdot \sigma_{r}^{2} + \left( \frac{\partial \overline{F}}{\partial \overline{E}} \right)^{2} \cdot \sigma_{E}^{2} \right]^{1/2}$$
 [5.40]

The components in Equation [5.40] can be obtained respectively. Using the second part of SSRC curve 2 as an example, the terms in [5.40] can be obtained as follows:

$$(1) \quad \left(\frac{\partial \overline{F}}{\partial \overline{F}_{y}}\right)^{2} \cdot \sigma_{F_{y}}^{2} = (1.035 - 0.303\lambda - 0.444\lambda^{2})^{2} \cdot \frac{\overline{F}_{y}^{2}}{\overline{F}_{y}^{2}} \cdot \sigma_{F_{y}}^{2}$$

$$= (1.035 - 0.303\lambda - 0.444\lambda^{2})^{2} \cdot \overline{F}_{y}^{2} \cdot V_{F_{y}}^{2}$$

$$= P_{1}^{2} \cdot \overline{F}_{y}^{2} \cdot V_{F_{y}}^{2}$$

$$(2) \quad \left(\frac{\partial \overline{F}}{\partial \overline{r}}\right)^{2} \cdot \sigma_{r}^{2} = (0.202\overline{\lambda} + 0.444\overline{\lambda}^{2})^{2} \cdot \frac{\overline{F}_{y}^{2}}{\overline{r}^{2}} \cdot \sigma_{r}^{2}$$

$$= (0.202\lambda + 0.444\lambda^{2})^{2} \cdot \overline{F}_{y}^{2} \cdot V_{r}^{2}$$

$$= P_{2}^{2} \cdot \overline{F}_{y}^{2} \cdot V_{r}^{2}$$

$$(3) \quad \left(\frac{\partial \overline{F}}{\partial \overline{E}}\right)^{2} \cdot \sigma_{E}^{2} = (0.101\lambda + 0.222\lambda^{2})^{2} \cdot \frac{\overline{F}_{y}^{2}}{\overline{E}^{2}} \cdot \sigma_{E}^{2}$$

$$= (0.101\lambda + 0.222\lambda^{2})^{2} \cdot \overline{F}_{y}^{2} \cdot V_{E}^{2}$$

where  $P_1$ ,  $P_2$ , and  $P_3$  present the portions of Eq. [5.41] that are functions of  $\lambda$ . Therefore, Eq. [5.40] can be expressed as

 $= P_2^2 \cdot \overline{F}_v^2 \cdot V_E^2$ 

$$\sigma_{F} = \overline{F}_{y} \cdot (P_{1}^{2} \cdot V_{F_{y}}^{2} + P_{2}^{2} \cdot V_{r}^{2} + P_{3}^{2} \cdot V_{E}^{2})^{1/2}$$
 [5.42]

and thus [5.39], in general form, becomes

$$V_{F} = \frac{\sigma_{F}}{\overline{F}} = \frac{\overline{F}_{y} \cdot (P_{1}^{2} \cdot V_{F_{y}}^{2} + P_{2}^{2} \cdot V_{r}^{2} + P_{3}^{2} \cdot V_{E}^{2})^{1/2}}{\overline{F}_{y} \cdot f(\overline{\lambda})}$$

$$= \frac{(P_{1}^{2} \cdot V_{F_{y}}^{2} + P_{2}^{2} \cdot V_{r}^{2} + P_{3}^{2} \cdot V_{E}^{2})^{1/2}}{f(\overline{\lambda})}$$
[5.43]

### 5.1.5 Summary

In general, the statistical quantities  $\rho_R$  and  $V_R$  for the SSRC curves are:

In accordance to SSRC column curve2:

[5.44]

I. For short columns:  $0 \le \lambda \le 0.15$ 

$$\rho_R = \rho_A \cdot \rho_{F_y} \cdot \rho_P$$

$$V_R = (V_A^2 + V_{F_y}^2 + V_P^2)^{1/2}$$

II. For intermediate columns:  $0.15 \le \lambda \le 3.6$ 

$$\rho_{\rm p} = \rho_{\rm A} \cdot \rho_{\rm E} \cdot \rho_{\rm p}$$

where 
$$\rho_F = \rho_{F_y} \, \frac{(1.035 - 0.202 \, \lambda \, \rho_{\lambda} - 0.222 \, \lambda^2 \, \rho_{\lambda}^2)}{(1.035 - 0.202 \, \lambda - 0.222 \, \lambda^2)} \qquad \text{, for } 0.15 \leq \lambda \leq 1.0$$

$$\rho_F = \rho_{F_y} \, \frac{(-0.111 + 0.636 \, \lambda^{-1} \, \rho_{\lambda}^{-1} + 0.087 \, \lambda^{-2} \, \rho_{\lambda}^{-2})}{(-0.111 + 0.636 \, \lambda^{-1} + 0.087 \, \lambda^{-2})} \, , \, \text{for } 1.0 \leq \lambda \leq 2.0$$

$$\rho_{\rm F} = \rho_{\rm F_y} \frac{(0.009 + 0.877 \,\lambda^{-2} \,\rho_{\lambda}^{-2})}{(0.009 + 0.877 \,\lambda^{-2})} \qquad , \, {\rm for} \, \, 2.0 \le \lambda \le 3.6$$

$$V_R = (V_A^2 + V_F^2 + V_P^2)^{1/2}$$

where 
$$V_F = \frac{(P_1^2 \cdot V_{F_y}^2 + P_2^2 \cdot V_r^2 + P_3^2 \cdot V_E^2)^{1/2}}{f(\overline{\lambda})}$$

where 
$$f(\bar{\lambda}) = 1.035 - 0.202 \bar{\lambda} - 0.222 \bar{\lambda}^2$$

, for  $0.15 \le \lambda \le 1.0$ 

and 
$$P_1 = 1.035 - 0.303 \,\overline{\lambda} - 0.444 \,\overline{\lambda}^2$$

$$P_2 = 0.202 \,\overline{\lambda} + 0.444 \,\overline{\lambda}^2$$

$$P_3 = 0.101\,\overline{\lambda} + 0.222\,\overline{\lambda}^2$$

where 
$$f(\bar{\lambda}) = -0.111 + 0.636 \bar{\lambda}^{-1} + 0.087 \bar{\lambda}^{-2}$$

 $for 1.0 \le \lambda \le 2.0$ 

and 
$$P_1 = -0.111 + 0.318 \,\overline{\lambda}^{-1}$$

$$P_2 = 0.636 \overline{\lambda}^{-1} + 0.174 \overline{\lambda}^{-2}$$

$$P_3 = 0.318 \,\overline{\lambda}^{-1} + 0.087 \,\overline{\lambda}^{-2}$$

where 
$$f(\bar{\lambda}) = 0.009 + 0.877 \,\bar{\lambda}^{-2}$$

, for  $2.0 \le \lambda \le 3.6$ 

and 
$$P_1 = 0.009$$

$$P_2 = 1.754 \,\overline{\lambda}^{-2}$$

$$P_3 = 0.877 \overline{\lambda}^2$$

III. For long columns:  $\lambda \le 3.6$ 

$$\rho_R = \rho_I \cdot \rho_E \cdot \rho_P$$

$$V_R = (V_I^2 + V_E^2 + V_P^2)^{1/2}$$

In accordance to SSRC column curve 1:

[5.45]

I. For short columns:  $0 \le \lambda \le 0.15$ 

$$\rho_R = \rho_A \cdot \rho_{F_y} \cdot \rho_P$$

$$V_R = (V_A^2 + V_{F_v}^2 + V_P^2)^{1/2}$$

II. For intermediate columns:  $0.15 \le \lambda \le 3.6$ 

$$\rho_R = \rho_A \cdot \rho_F \cdot \rho_P$$

where 
$$\rho_F = \rho_{F_y} \frac{(0.99 + 0.122\lambda\rho_{\lambda} - 0.367\lambda^2\rho_{\lambda}^2)}{(0.99 + 0.122\lambda - 0.367\lambda^2)}$$

, for 
$$0.15 \le \lambda \le 1.2$$

$$\rho_{\rm F} = \rho_{\rm Fy} \frac{(0.051 + 0.801\lambda^{-2}\rho_{\lambda}^{-2})}{(0.051 + 0.801\lambda^{-2})}$$

, for 
$$1.2 \le \lambda \le 1.8$$

$$\rho_{F} = \rho_{F_{y}} \frac{(0.008 + 0.942\lambda^{-2}\rho_{\lambda}^{-2})}{(0.008 + 0.942\lambda^{-2})}$$

, for 
$$1.8 \le \lambda \le 2.8$$

$$V_R = (V_A^2 + V_F^2 + V_P^2)^{1/2}$$

where 
$$V_F = \frac{(P_1^2 \cdot V_{F_y}^2 + P_2^2 \cdot V_r^2 + P_3^2 \cdot V_E^2)^{1/2}}{f(\overline{\lambda})}$$

where 
$$f(\bar{\lambda}) = 0.990 + 0.122\bar{\lambda} - 0.367\bar{\lambda}^2$$

, for 
$$0.15 \le \lambda \le 1.2$$

and 
$$P_1 = 0.990 + 0.183\overline{\lambda} - 0.734 \overline{\lambda}^2$$

$$P_2 = -0.122\overline{\lambda} + 0.734 \overline{\lambda}^2$$

$$P_3 = -0.061\overline{\lambda} + 0.367\overline{\lambda}^2$$

where 
$$f(\bar{\lambda}) = 0.051 + 0.801 \bar{\lambda}^{-2}$$

, for 
$$1.2 \le \lambda \le 1.8$$

and 
$$P_1 = 0.051$$

$$P_2 = 1.602 \overline{\lambda}^{-2}$$

$$P_3 = 0.801\overline{\lambda}^{-2}$$

where 
$$f(\bar{\lambda}) = 0.008 + 0.942 \bar{\lambda}^{-2}$$

, for 
$$1.8 \le \lambda \le 2.8$$

and 
$$P_1 = 0.008$$

$$P_2 = 1.884\overline{\lambda}^{-2}$$
  
 $P_3 = 0.942\overline{\lambda}^{-2}$ 

III. For long columns:  $\lambda \ge 3.6$ 

$$\rho_R = \rho_1 \cdot \rho_E \cdot \rho_P$$

$$V_R = (V_I^2 + V_E^2 + V_P^2)^{1/2}$$

For the column curve from Clause 13.3.1 of CAN/CSA-S16.1-94, the statistical quantities  $\rho_R$  and  $V_R$  are:

$$\begin{split} & \rho_R = \rho_A \cdot \rho_F \cdot \rho_P \\ & \text{where } \rho_F = \rho_{F_y} \, \frac{(1 + \lambda^{2n} \rho_\lambda^{2n})^{-1/n}}{(1 + \lambda^{2n})^{-1/n}} \\ & V_R = (V_A^2 + V_F^2 + V_P^2)^{1/2} \\ & \text{where } V_F = \frac{(P_1^2 \cdot V_{F_y}^2 + P_2^2 \cdot V_r^2 + V_E^2)^{1/2}}{f(\overline{\lambda})} \\ & \text{where } f(\overline{\lambda}) = (1 + \overline{\lambda}^{2n})^{-1/n} \\ & \text{and } P_1 = (1 + \overline{\lambda}^{2n})^{\frac{(n+1)}{n}} \\ & P_2 = 2\overline{\lambda}^{2n} \, (1 + \overline{\lambda}^{2n})^{\frac{(n+1)}{n}} \\ & P_3 = \overline{\lambda}^{2n} \, (1 + \overline{\lambda}^{2n})^{\frac{(n+1)}{n}} \end{split}$$

### 5.2 Statistical Parameters

The parametric study presented in Chapter 4 indicated that the orientation of the plates and buckling direction may affect the behaviour and strength of reinforced steel columns. Therefore, different performance factors may be applicable to columns with different reinforcing plate orientations and different buckling directions. It was therefore decided to conduct a statistical analysis on four separate groups, namely, two different reinforcing plate orientations and two different buckling directions. However, a statistical

analysis of these four groups of columns indicated that the above four groups could be merged into two groups since their performance factors were very similar. The first group includes columns reinforced with plates parallel to the flanges and buckling about the strong axis of the rolled section and columns reinforced with plates parallel to the web and buckling about the weak axis of the rolled section. The second group includes columns reinforced with plates parallel to the flanges and buckling about the weak axis of the rolled section, and columns reinforced with plates parallel to the web and buckling about the strong axis of the rolled section. The following sections present the statistical analysis results for these two groups.

The basic data related to cross-sectional and material properties required for the following analysis were obtained from Kennedy and Gad Aly (1980) and Chernenko and Kennedy (1988). The ratios of the mean value to the nominal value and the coefficients of variation for the geometrical and material properties are tabulated in Table 5.1. Since no statistical data were available for the sizes of the welds and fillets between the flanges and web of the rolled section, these values were taken as nominal values.

#### 5.2.1 Geometrical Variations

The cross-sectional properties used to determine the capacity of a column are the area, A, the moment of inertia about principal centroidal axes,  $I_x$  and  $I_y$ , and the corresponding radii of gyration,  $r_x$  and  $r_y$ . Variations in these geometrical properties can be derived from statistical data concerning the flange and web thickness,  $t_f$  and w, the flange width,  $b_f$ , and the depth, d, of the rolled section, the reinforcing plate width and thickness,  $b_p$  and  $t_p$  the size of the fillet at the junction of the web and the flanges, k, and the size of the fillet weld joining the reinforcing plates to the flanges, g. These cross-sectional dimensions are summarized in Figure 5.3.

For any geometrical property, the ratio of the mean to the nominal value is defined as

$$\rho_{\rm G} = \frac{\overline{\rm G}}{\rm G} \tag{5.47}$$

The mean value for the area of a given reinforced column section is given as

$$\overline{A} = 2\overline{b}_f \overline{t}_f + (\overline{d} - 2\overline{t}_f) \overline{w} + 2\overline{b}_p \overline{t}_p + 0.858 \overline{k}^2 + 2\overline{g}^2$$
 [5.48]

Since the actual shape of the fillet between the web and the flanges of the rolled shape is not perfectly circular, the actual horizontal and vertical sides of the fillet are not the same. In order to simplify the calculations without sacrificing accuracy significantly, the fillet shape in the numerical model was assumed to be the complement of a quarter circle with identical side lengths, k. The size of the fillet, k, was taken as the average of the two sides given in the section properties tables (CISC Handbook, 1995). In addition, the weld face was assumed to be a straight line with equal leg size, g.

The mean values of the moments of inertia about the major and minor centroidal axes,  $\bar{I}_x$  and  $\bar{I}_y$ , for a column reinforced with plates parallel to the flanges are

$$\bar{I}_{x} = \frac{1}{6} \bar{b}_{f} \bar{t}_{f}^{3} + \frac{1}{2} \bar{b}_{f} \bar{t}_{f} (\bar{d} - \bar{t}_{f})^{2} + \frac{1}{12} \bar{w} (\bar{d} - 2\bar{t}_{f})^{3} + \frac{1}{6} \bar{b}_{p} \bar{t}_{p}^{3} + \frac{1}{2} \bar{b}_{p} \bar{t}_{p} (\bar{d} + \bar{t}_{p})^{2} 
+ 0.03 \bar{k}^{4} + 0.858 \bar{k}^{2} (\frac{1}{2} \bar{d} - \bar{t}_{f} - 0.223 \bar{k})^{2} + \frac{1}{9} \bar{g}^{4} + 2 \bar{g}^{2} (\frac{1}{2} \bar{d} + \frac{1}{3} \bar{g})^{2}$$
[5.49]

and

$$\bar{I}_{y} = \frac{1}{6}\bar{t}_{f}\bar{b}_{f}^{3} + \frac{1}{12}(\bar{d} - 2\bar{t}_{f})\bar{w}^{3} + \frac{1}{6}\bar{t}_{p}\bar{b}_{p}^{3} + \frac{1}{9}\bar{g}^{4} + 2\bar{g}^{2}(\frac{1}{2}\bar{b}_{p} + \frac{1}{3}\bar{g})^{2} + 0.03\bar{k}^{4} + 0.858\bar{k}^{2}(\frac{1}{2}\bar{w} + 0.223\bar{k})^{2}$$
[5.50]

The mean values for the moment of inertia about the major and minor centroidal axes,  $\bar{I}_x$  and  $\bar{I}_y$ , for a column reinforced with plates parallel to the web are

$$\bar{I}_{x} = \frac{1}{6}\bar{b}_{f}\bar{t}_{f}^{3} + \frac{1}{2}\bar{b}_{f}\bar{t}_{f}(\bar{d} - \bar{t}_{f})^{2} + \frac{1}{12}\bar{w}(\bar{d} - 2\bar{t}_{f})^{3} + \frac{1}{6}\bar{b}_{p}^{3}\bar{t}_{p} + 0.03\bar{k}^{4} 
+ 0.858\bar{k}^{2}(\frac{1}{2}\bar{d} - \bar{t}_{f} - 0.223\bar{k})^{2} + \frac{1}{9}\bar{g}^{4} + 2\bar{g}^{2}(\frac{1}{2}\bar{d} + \frac{1}{3}\bar{g})^{2}$$
[5.51]

and

$$\bar{I}_{y} = \frac{1}{6} \bar{t}_{f} \bar{b}_{f}^{3} + \frac{1}{12} (\bar{d} - 2\bar{t}_{f}) \bar{w}^{3} + \frac{1}{6} \bar{b}_{p} \bar{t}_{p}^{3} + \frac{1}{2} \bar{b}_{p} \bar{t}_{p} (\bar{b}_{f} + \bar{t}_{p})^{2} + 0.03 \bar{k}^{4} 
+ 0.858 \bar{k}^{2} (\frac{1}{2} \bar{w} + 0.223 \bar{k})^{2} + \frac{1}{9} \bar{g}^{4} + 2 \bar{g}^{2} (\frac{1}{2} \bar{b}_{f} - \frac{1}{3} \bar{g})^{2}$$
[5.52]

The associated radii of gyration for reinforced columns are

$$\bar{r}_x = \sqrt{\frac{\bar{I}_x}{\bar{A}}}$$
 [5.53]

and

$$\bar{r}_y = \sqrt{\frac{\bar{I}_y}{\bar{A}}}$$
 [5.54]

The coefficient of variation for the cross-sectional properties can be obtained from the assumption that the dimensions are independent variables. It is given as

$$V_{G} = \frac{1}{\overline{G}} \left[ \left( \frac{\partial \overline{G}}{\partial \overline{b}_{f}} \right)^{2} \sigma_{b_{f}}^{2} + \left( \frac{\partial \overline{G}}{\partial \overline{t}_{f}} \right)^{2} \sigma_{t_{f}}^{2} + \left( \frac{\partial \overline{G}}{\partial \overline{w}} \right)^{2} \sigma_{w}^{2} + \left( \frac{\partial \overline{G}}{\partial \overline{b}_{p}} \right)^{2} \sigma_{b_{p}}^{2} + \left( \frac{\partial \overline{G}}{\partial \overline{t}_{p}} \right)^{2} \sigma_{t_{p}}^{2} + \left( \frac{\partial \overline{G}}{\partial \overline{d}} \right)^{2} \sigma_{d}^{2} + \left( \frac{\partial \overline{G}}{\partial \overline{b}} \right)^{2} \sigma_{w}^{2} + \left( \frac{\partial \overline{G}}{\partial \overline{b}} \right)^{2} \sigma_{g}^{2} \right]^{\frac{1}{2}}$$

$$(5.55)$$

where the partial derivatives are evaluated at the mean. The variation in weld and fillet sizes was not considered in this work because actual measurements were not available. This assumption is justified given their small area compared to the total area of the reinforced cross-section.

Table 5.2 presents a summary of the mean, the measured-to-nominal ratio, and the associated coefficient of variation for the relevant geometric properties of reinforced columns consisting of the most widely used wide flange shapes reinforced with various plate thicknesses. The nominal values for the cross-sectional dimensions were obtained from the handbook of steel construction (CISC Handbook, 1995). With known statistical quantities,  $\rho_G$  and  $V_G$ , the mean values of the geometric properties  $t_f$ , w, v, v, and v are shown in Table 5.2. The statistical quantities, v and v and v are shown in Table 5.2. The statistical quantities, v and v are shown in Table 5.2. The statistical quantities, v and v are shown in the table, using equations [5.47] to [5.55].

In order to consider all the sections as a whole, the mean value of the mean-tonominal ratios is calculated as follows

$$\bar{\rho}_{G} = \frac{1}{n} \sum_{i=1}^{i=n} \rho_{G_{i}} = \frac{1}{n} \left( \rho_{G_{1}} + \rho_{G_{2}} + \dots + \rho_{G_{n}} \right)$$
 [5.56]

and the associated coefficient of variation can be obtained using the moment algebra for the distribution of different parameter variables as given by Benjamin and Cornell (1970) as follows:

$$V_{G} = \frac{1}{\overline{\rho}_{G}} \cdot \frac{1}{(n-1)^{1/2}} \left[ \sum_{i=1}^{n} (V_{G_{i}} \cdot \rho_{G_{i}})^{2} + \sum_{i=1}^{n} (\rho_{G} - \rho_{G_{i}})^{2} \right]^{1/2}$$
 [5.57]

The mean-to-nominal ratios and the coefficient of variation for the geometrical properties are summarized in Table 5.3. The statistical quantities,  $\rho_G$  and  $V_G$ , for the geometric variations A,  $I_x$ ,  $I_y$ ,  $r_x$  and  $r_y$ , are obtained using equations [5.56] and [5.57] based on the statistical data shown in Table 5.2. The statistical quantities,  $\rho_G$  and  $V_G$ , for the radius of gyration, r, and the moment of inertia, I, were obtained by pooling the data for the x-axis and y-axis properties together in equations [5.56] and [5.57]. These quantities are presented in Table 5.3.

### 5.2.2 Material Variations

The important material properties for the calculation of column capacity are the yield strength, F<sub>y</sub>, and the modulus of elasticity, E. The statistical parameters for the material properties for the rolled section were obtained from Kennedy and Gad Aly (1980). The statistical parameters for the reinforcing plates were obtained from Chernenko and Kennedy (1988). These statistical parameters are summarized in Tables 5.1 (a) and 5.1 (b), respectively.

Possible rolled sections for columns reinforced with corresponding reinforcing plates were chosen from the CISC handbook (1995) to take the ratios of the components' area to the total area into account. The descriptions of the cross-sections are given in Table A.1. With known geometric properties for a section, the mean value of the rolled section area,  $A_C$ , and the plate area,  $A_P$ , can be obtained for each sample. Therefore, the ratio of the rolled section area to the total area,  $\frac{A_C}{A_C + A_P}$ , can be obtained for each sample. An analysis of the numerical models presented in Table A.1 gives a mean ratio of the rolled

section area to the total area,  $\frac{A_C}{A_C + A_P}$ , of 0.645. Because the sum of the ratio of the reinforcing plate area (A<sub>P</sub>) to total area and the ratio of the W shape area (A<sub>C</sub>) to total area should be 1.0, the mean ratio of the plates area to the total area,  $\frac{A_P}{A_C + A_P}$ , for the numerical models is 0.355.

With a known mean ratio of the component area to the total area, the weighted yield strength of the cross-section can be obtained as:

$$F_{y} = CF_{y} \cdot \frac{A_{C}}{A_{C} + A_{P}} + PF_{y} \cdot \frac{A_{p}}{A_{C} + A_{p}}$$
 [5.58]

where CF<sub>y</sub> is the mean yield strength of the rolled section and PF<sub>y</sub> is the mean yield strength of the reinforcing plates. Furthermore, the mean value of the weighted mean-to-nominal ratios for the yield strength was approximated as follows:

$$\rho_{F_y} = \rho_{CF_y} \cdot \frac{A_C}{A_C + A_P} + \rho_{PF_y} \cdot \frac{A_P}{A_C + A_P}$$
 [5.59]

The yield strengths of the rolled columns and reinforcing plates are considered as independent random variables. The coefficient of variation for the yield strength thus becomes (Kennedy and Neville 1976),

$$V_{F_{v}} = \left[V_{CF_{v}}^{2} + V_{PF_{v}}^{2}\right]^{1/2}$$
 [5.60]

Following the procedure presented in Section 5.1.4, the statistical parameters for the material properties can be obtained. Table 5.4 presents the statistical parameters for the material properties with different SSRC and CSA curves. The mean-to-nominal ratio of the radius of gyration,  $\rho_r$ , and its associated coefficient of variation,  $V_r$ , are obtained from Table 5.1 for the samples. The mean-to-nominal ratio of the modulus of elasticity,  $\rho_E$ , and its associated coefficient of variation,  $V_E$ , were obtained from the investigation presented by Chernenko and Kennedy (1988) as 1.013 and 0.015, respectively.

#### **5.2.3 Professional Factors**

As a factor indicating how well the design equation fits the experimental results, the professional factor accounts for variations in column capacity other than those considered as cross-sectional and material properties. The professional factor shows the relationship between the measured strength (or strength predicted using the finite element model) of a reinforced column and that predicted by the design equation. The column design equations evaluated in this work are those in CAN3-S16.1-M84 (equations [5.1] and [5.2]) and CAN/CSA-S16.1-94 (equation [5.3]). These equations were derived based on test results and analysis results that included the effect of initial out-of-straightness and residual stresses. The equations show that the slenderness parameter,  $\lambda$ , is the prime factor determining the load carrying capacity of a column. Furthermore, effects of cross-sectional property, orientation of reinforcing plates, axes of buckling, preload magnitude, and non-linear interaction of the above parameters on the strength of the reinforced column have to be considered.

Chernenko and Kennedy (1988) proposed that the effect of the statistical variation of out-of-straightness and residual stresses on column strength could be assessed independently. The parametric study presented in Chapter 4 indicated that the effect of initial residual stresses on reinforced column strength is negligibly small. Since the residual stresses in the reinforced section do not vary much, only the effect of the statistical variations in out-of-straightness will be assessed independently in the following. The effects of variation in residual stresses, steel grade, buckling axis, preload magnitude, and the geometrical properties of the rolled section and reinforcing plates will be considered as a whole. The professional ratio can be therefore expressed as

$$\rho_{\rm P} = \rho_{\rm s} \cdot \rho_{\rm n} \cdot \rho_{\rm ex} \tag{5.61}$$

where  $\rho_s$  is the simulated professional ratio, that is, the ratio of the strength determined by the computer simulation to that predicted by the design equations for the mean value of out-of-straightness for a given value of  $\lambda$ .  $\rho_n$  is the normalized simulated professional ratio, which accounts for the other parameters. The third term,  $\rho_{ex}$ , is the mean value of

the ratio of the experimental strength to the strength predicted by computer simulations. Consequently, the professional ratio,  $\rho_p$ , is the experimental to the predicted ratio.

# 5.2.3.1 The Effect of Out-of-straightness

As discussed in Chapter 3, the effect of initial out-of-straightness of the rolled section before reinforcement and the effect of the initial out-of-straightness of the reinforced column can contribute to the scatter in the test results. The following therefore looks at the effect of initial out-of-straightness in the unreinforced wide flange section and the initial out-of-straightness in the reinforced column.

Figures 5.4, 5.5 and 5.6 present analysis data for the columns from Group 1 (columns reinforced with plates parallel to the flanges and buckling about the strong axis of the rolled section and columns reinforced with plates parallel to the web and buckling about the weak axis of the rolled section). Plots of the simulated professional ratio,  $\rho_s$ , versus out-of-straightness for non-dimensional slenderness ratio are presented for values of the slenderness ratio,  $\lambda$ , of 0.4, 1.1, and 1.5. The magnitude of the initial out-of-straightness was varied from 0 to L/1000 (the maximum initial imperfection permissible by CSA standard G40.20). The simulated professional ratio,  $\rho_s$ , is taken as the ratio of the strength obtained from the finite element analysis to the strength predicted using SSRC curve 2. All the data used to plot figures 5.4, 5.5 and 5.6 are presented in Column (7) of Tables 5.5, 5.6 and 5.7, respectively. Columns (6), (8) and (9) from these tables present the simulated professional ratios based on SSRC curve 1, CSA curve 1 and CSA curve 2, respectively. For the second group of columns (columns reinforced with plates parallel to the web and buckling about the weak axis of the rolled section and columns reinforced with plates parallel to the web and buckling about the strong axis of the rolled section) the same procedure was used to obtain the professional ratios. This data is presented in Appendix C.

Figures 5.4, 5.5, and 5.6 show an average line obtained using the method of least squares (Kennedy and Neville, 1976). The equation of the regression line for each value of the slenderness parameter is presented in Table 5.8. Figures 5.4 to 5.6 show that the

ratio of the professional factor decreases with increasing initial imperfection for a given value of  $\lambda$ . The slopes of the average lines (i.e., the rate of decrease of strength with out-of-straightness) for  $\lambda = 1.1$  and 1.5 are much greater than those for  $\lambda = 0.4$ . As expected, initial imperfections have a greater effect on reducing the column strength for  $\lambda = 1.1$  and 1.5 than for  $\lambda = 0.4$ . In fact, the slope of the regression line is close to zero for  $\lambda = 0.4$ .

To investigate the effect of the variation in initial imperfection on reinforced column strength, the mean value and coefficient of variation are used as a basis of comparison. In this research, a mean initial imperfection of L/1500, a standard deviation of L/15000, and a coefficient of variation of 0.1 were used based on the work of Bjorhovde (1988) on rolled, unreinforced columns. The limited work on reinforced columns presented by Nagaraja Rao and Tall (1963) indicates that initial out-of-straightness in reinforced columns can be smaller than for unreinforced columns.

A vertical line, representing a mean value of out-of-straightness of  $\delta_0/L = 1/1500 = 0.000667$  is shown in Figures 5.4, 5.5, and 5.6. Two additional vertical lines are drawn at one standard deviation from the mean value in each figure. The intersection point of the mean line with the regression line gives the simulated professional ratio for the mean out-of-straightness,  $\rho_s$ . The vertical distance between the intercepts of the right and left standard deviation lines gives the values of two standard deviations of  $\rho_s$  associated with out-of-straightness. Therefore, the standard deviation for the simulated professional ratio is calculated by multiplying the slope of the equation by one standard deviation for out-of-straightness, that is, slope x 0.0000667. From this, the coefficient of variation is calculated directly. The mean values of the professional ratios and the corresponding coefficients of variation for the mean out-of-straightness are also given in Table 5.8.

## 5.2.3.2 Miscellaneous Factors

Figures 5.4, 5.5 and 5.6 show significant scatter of the simulated professional ratios about the regression lines. This scatter is attributed to influencing factors such as initial residual stresses, welding residual stresses, buckling axis, preload magnitude, cross-sectional geometry, and the fundamental non-linearity of the relation between the

strength of the columns and the governing parameters. The effect of these miscellaneous factors can be assessed by normalizing the plotted professional ratio for any slenderness parameter by dividing by the value obtained from the linear expression given in Table 5.8 for that specific slenderness parameter. The normalized professional ratios,  $\rho_n$ , are presented in Tables 5.9, 5.10, and 5.11 for the  $\lambda$  values of 0.4, 1.1, and 1.5, respectively.

The average value of the normalized professional ratio,  $\rho_n$ , should equal 1.00 for any slenderness parameter for which a best-fit straight line has been used. The normalized professional ratio for  $\lambda = 0.4$ , 1.1, and 1.5 are plotted in Figures 5.7, 5.8, and 5.9 respectively. The mean values in each case are nearly equal to 1.00. The scatter of the distribution is large and, as a result, the coefficient of variation is large. The mean values and coefficients of variations for all different slenderness parameters are given in Table 5.12 as  $\rho_n$  and  $V_n$ , respectively.

# 5.2.3.3 Experimental Factor

The experimental ratio,  $\rho_{ex}$ , is defined as

$$\rho_{\rm ex} = \frac{P_{\rm ex}}{P_{\rm fea}} \tag{5.62}$$

where,  $P_{ex}$  is the strength obtained from the experiment and  $P_{fea}$  is the strength obtained from finite element analysis. Because of the very small number of test results, the statistical value of the experimental ratio cannot be evaluated with any degree of confidence. In order to provide more support for the statistical analysis for the experimental factor for reinforced columns, the experimental ratios for unreinforced columns were used in the research. The unreinforced columns used for the partial validation of the finite element models were used for this purpose. A description of these columns is presented in Table 3.1. The geometric properties and the initial imperfections of the rolled section, as well as the initial residual stresses are the same for both unreinforced and reinforced columns. The loading procedures for both reinforced and unreinforced columns are similar, except for the introduction of the reinforcing plates and the welds in the reinforced columns. Therefore, the experimental ratios for unreinforced columns are expected to be similar to those for reinforced columns.

Table 5.13 presents the results of the analysis of the unreinforced columns described in Table 3.2. Columns (4) and (5) present the predicted and measured capacities, respectively. The results are normalized in terms of the yield strength. Column (6) presents the experimental ratio calculated using Equation [5.62]. The first two test specimens were obtained from the work of Huber and Beedle (1954). The experimental ratio for these two specimens is close to 1.0 The lack of information about initial imperfections for the other three test specimens makes it difficult to obtain an accurate prediction of the test results. In order to verify the effect of initial imperfections on the finite element analysis results, two values of initial imperfection were assumed for each test specimen, as shown in Column (3) of Table 5.13. The results show that the initial imperfection has a significant effect on strength. Within the range of initial imperfections presented in Table 5.13, the experimental results can be accurately simulated.

In general, it can be expected that  $\rho_{ex}$  would be closer to 1.0 with a smaller coefficient of variation as long as the geometric and material properties of the reinforced columns are accurately determined. Therefore, the mean value of  $\rho_{ex}$  was taken as 1.0 and the coefficient of variance was taken as 0.0 to reflect the high accuracy of the finite element analysis when the physical parameters of the column are accurately defined. Further testing of reinforced steel column should be conducted to verify these values.

### 5.2.3.4 **Summary**

The professional factors are given in Table 4.12 for the two groups of columns defined in section 5.2, for the three values of slenderness parameter used in this study, and for the reference strength calculated using four different column curves from two standards. These four column curves are SSRC column curve 1, SSRC column curve 2, and the equivalent curves adopted by CAN/CSA-S16.1-94. The strength predicted using SSRC column curve 2 is lower than that predicted using SSRC column curve 1, which leads to higher values of  $\rho_s$  for SSRC column curve 2 than for SSRC column curve 1.

Since the column curves used in CAN/CSA-S16.1-94 are close approximations of the original SSRC column curves (Loov, 1996), the column strength predicted using

SSRC curves are in very good agreement with that predicted using the CSA curves. The corresponding values of  $\rho_s$  are also similar.

#### 5.3 Evaluation of the Performance Factors

Resistance factors for reinforced columns were calculated using Equation [5.18]. A coefficient of separation,  $\alpha$ , of 0.55, and a reliability index,  $\beta$ , of 3.0, consistent with the limit state design for building in Canada, were used. Table 5.14 presents the assembled data and calculated resistance factors for three values of the slenderness parameter, the two groups of columns, and four columns curves. Examination of the resistance factors for reinforced columns within one group indicates that the CSA curves can approximate the SSRC curves very well. The maximum difference in the values of the performance factors between SSRC column curve 2 and the corresponding CSA column curve is about 2.8% for  $\lambda = 1.1$ .

As expected, SSRC column curve 1 yields lower resistance factors than SSRC column curve 2. Within the range studied, the strength of reinforced steel columns in Group 1 (columns reinforced with plates parallel to the flanges and buckling about the strong axis of the rolled section, and columns with reinforcing plates parallel to the web and buckling about the weak axis of the rolled section) can be predicted conservatively with SSRC curve 1 or CSA column curve with n=2.24.

On the other hand, resistance factors calculated for the columns from Group 2 for SSRC curve 1 vary from 0.82 to 0.99. It is therefore unconservative to use SSRC column curve 1 to predict the capacity of the columns from Group 2. The resistance factors obtained for SSRC curve 2 vary from 1.02 to 1.06. They are from 1.13 to 1.18 times the current value of  $\phi$ . SSRC column curve 2 and the CSA column curve with n=1.34 can therefore be used conservatively to predict the capacity of reinforced steel columns from Group 2 (columns reinforced with plates parallel to the web and buckling about the strong axis of the rolled section, and columns with reinforcing plates parallel to the flanges and buckling about the weak axis of the rolled section).

Table 5.1.a Statistical Parameters for Rolled W Sections (from Kennedy and Gad Aly, 1979)

| December         | Desirentian                  | Statist         | tical Parameters            |
|------------------|------------------------------|-----------------|-----------------------------|
| Property         | Designation                  | Mean/Nominal, ρ | Coefficient of Variation, V |
| b <sub>f</sub>   | The width of the flanges     | 1.005           | 0.014                       |
| $t_f$            | The thickness of the flanges | 0.976           | 0.042                       |
| w                | The thickness of the web     | 1.017           | 0.038                       |
| d                | The depth of the section     | 1.000           | 0.00195*                    |
| k                | The side of the fillet       | 1.000           | 0.000                       |
| $\mathbf{F}_{y}$ | The yield strength           | 1.070           | 0.065                       |
| E                | The modulus of elasticity    | 1.000           | 0.019                       |

Note: The average side of the fillet was assummed without measurement available.

Table 5.1.b Statistical Parameters for Cover Plates (from Chernenko and Kennedy, 1988)

| December                  | Designation                 | Statist         | tical Parameters            |
|---------------------------|-----------------------------|-----------------|-----------------------------|
| Property                  | Designation                 | Mean/Nominal, ρ | Coefficient of Variation, V |
| b <sub>p</sub>            | The width of the plates     | 0.999           | 0.003                       |
| t <sub>p</sub>            | The thickness of the plates | 1.010           | 0.008                       |
| g                         | The side of the weld        | 1.000           | 0.000                       |
| $\mathbf{F}_{\mathbf{y}}$ | The yield strength          | 1.133           | 0.059                       |
| E                         | The modulus of elasticity   | 1.038           | 0.026                       |

Note: The average side of the weld was assummed without measurement available.

<sup>\*</sup> Mean value of the distribution, which depends on range in depths of rolled sections.

Table 5.2.a Statistical Parameters for the Geometric Properties of the Reinforced Columns

|            |           | <u> </u> | Flora |      | 10h         |          |        |      |            | 11           |                    |                    |       |        |                       |
|------------|-----------|----------|-------|------|-------------|----------|--------|------|------------|--------------|--------------------|--------------------|-------|--------|-----------------------|
| :          |           |          | ٩     |      |             |          |        |      |            | MCII         |                    | i                  |       |        |                       |
| Š.         | W-Section | ρ        | ت     | ד    | <b>&gt;</b> | <b>~</b> | Plate  | مْ   | <b>-</b> - | <b>50</b>    | ∢                  | 4                  | Α     | ×<br>> | <u> </u>              |
|            |           | (mm)     | (mm)  | (mm) | (mm)        | (mm)     |        | (mm) | (mm)       | (mm)         | (mm <sup>2</sup> ) | (mm <sup>2</sup> ) |       |        | (10°mm <sup>4</sup> ) |
| -          | W310x179  | 313      | 28.1  | 333  | 18.0        | 16.3     | 290x25 | 290  | 25         | 22           | 38268              | 38174              | 0.998 | 0.0003 | 940.5                 |
| 7          | W310x179  | 313      | 28.1  | 333  | 18.0        | 16.3     | 290x20 | 290  | 20         | <u>8</u>     | 35048              | 34927              | 0.997 | 0.0004 | 827.0                 |
| က          | W310x179  | 313      | 28.1  | 333  | 18.0        | 16.3     | 290x16 | 290  | 91         | 4            | 32472              | 32330              | 0.996 | 0.0004 | 740.2                 |
| 4          | W310x158  | 310      | 25.1  | 327  | 15.5        | 17.0     | 290x25 | 290  | 25         | 22           | 35568              | 35496              | 0.998 | 0.0004 | 865.5                 |
| S          | W310x158  | 310      | 25.1  | 327  | 15.5        | 17.0     | 290x20 | 290  | 20         | <u>8</u>     | 32348              | 32249              | 0.997 | 0.0004 | 755.5                 |
| 9          | W310x158  | 310      | 25.1  | 327  | 15.5        | 17.0     | 290x16 | 290  | 91         | 14           | 29772              | 29651              | 966.0 | 0.0004 | 671.5                 |
| 7          | W310x158  | 310      | 25.1  | 327  | 15.5        | 17.0     | 290x12 | 290  | 12         | 9            | 27260              | 27118              | 0.995 | 0.0005 | 592.9                 |
| œ          | W310x143  | 309      | 22.9  | 323  | 14.0        | 13.9     | 290x20 | 290  | 20         | 81           | 30448              | 30366              | 0.997 | 0.0004 | 6'90'                 |
| 6          | W310x143  | 309      | 22.9  | 323  | 14.0        | 13.9     | 290x16 | 290  | 91         | 4            | 27872              | 27768              | 0.996 | 0.0005 | 624.8                 |
| <b>9</b>   | W310x143  | 309      | 22.9  | 323  | 14.0        | 13.9     | 290x12 | 290  | 12         | 0            | 25360              | 25235              | 0.995 | 0.0005 | 548.0                 |
| =          | W310x143  | 309      | 22.9  | 323  | 14.0        | 13.9     | 290x10 | 290  | 01         | œ            | 24128              | 23992              | 0.994 | 0.0005 | 511.5                 |
| 2          | W310x129  | 308      | 20.6  | 318  | 13.1        | 14.7     | 290x20 | 290  | 20         | <u>&amp;</u> | 28748              | 28687              | 0.998 | 0.0004 | 6969                  |
| 13         | W310x129  | 308      | 20.6  | 318  | 13.1        | 14.7     | 290x16 | 290  | 91         | 4            | 26172              | 26089              | 0.997 | 0.0005 | 577.1                 |
| 7          | W310x129  | 308      | 20.6  | 318  | 13.1        | 14.7     | 290x12 | 290  | 12         | 9            | 23660              | 23556              | 966.0 | 0.0005 | 502.4                 |
| 15         | W310x129  | 308      | 20.6  | 318  | 13.1        | 14.7     | 290x10 | 290  | 01         | œ            | 22428              | 22313              | 0.995 | 9000'0 | 466.9                 |
| 9          | W310x118  | 307      | 18.7  | 314  | 6.11        | 16.2     | 290x16 | 290  | 91         | 14           | 24672              | 24605              | 0.997 | 0.0005 | 538.8                 |
| 17         | W310x118  | 307      | 18.7  | 314  | 6.11        | 16.2     | 290x12 | 290  | 12         | <u> </u>     | 22160              | 22071              | 966.0 | 9000.0 | 465.9                 |
| <u>∞</u>   | W310x118  | 307      | 18.7  | 314  | 6.11        | 16.2     | 290x10 | 290  | 01         | œ            | 20928              | 20828              | 0.995 | 9000.0 | 431.3                 |
| 61         | W310x118  | 307      | 18.7  | 314  | 6.11        | 16.2     | 290x8  | 290  | <b>∞</b>   | 9            | 19712              | 10961              | 0.994 | 0.0007 | 397.9                 |
| 70         | W310x107  | 306      | 17.0  | 311  | 6.01        | 14.3     | 290x16 | 290  | 91         | 7            | 23272              | 23219              | 0.998 | 9000'0 | 505.9                 |
| 21         | W310x107  | 306      | 17.0  | 311  | 6.01        | 14.3     | 290x12 | 290  | 12         | 0            | 20760              | 20685              | 966'0 | 9000.0 | 434.3                 |
| 22         | W310x107  | 306      | 17.0  | 311  | 6.01        | 14.3     | 290x10 | 290  | 01         | œ            | 19528              | 19442              | 966.0 | 0.0007 | 400.3                 |
| 23         | W310x107  | 306      | 17.0  | 311  | 6.01        | 14.3     | 290x8  | 290  | œ          | 9            | 18312              | 18216              | 0.995 | 0.0007 | 367.5                 |
| <b>5</b> 4 | W310x86   | 254      | 16.3  | 310  | 9.1         | 15.1     | 230x16 | 230  | 91         | 4            | 18752              | 18711              | 0.998 | 9000.0 | 404.2                 |
| 25         | W310x86   | 254      | 16.3  | 310  | 9.1         | 15.1     | 230x12 | 230  | 12         | 9            | 16720              | 16662              | 0.997 | 0.0007 | 346.7                 |

Table 5.2.a (Cont'd)

|            |           | Fla  | Flange     |      | do/         | Fillet     |         | Plate | ıte          | Weld     |                    |                    |       |        |                       |
|------------|-----------|------|------------|------|-------------|------------|---------|-------|--------------|----------|--------------------|--------------------|-------|--------|-----------------------|
| Š.         | W-Section | کٍ   | <u>.</u> . | p    | >           | <b>.</b> ¥ | Plate   | ث     | ے۔           | s        | 4                  | 4                  | ρ     | >      | Ľ                     |
|            |           | (mm) | (mm)       | (mm) | (mm)        | (mm)       |         | (mm)  | (mm)         | (mm)     | (mm <sup>2</sup> ) | (mm <sup>2</sup> ) |       |        | (10°mm <sup>4</sup> ) |
| <b>5</b> 0 | W310x86   | 254  | 16.3       | 310  | 9.1         | 15.1       | 230×10  | 230   | 9            | œ        | 15728              | 15662              | 966.0 | 0.0008 | 319.5                 |
| 27         | W310x86   | 254  | 16.3       | 310  | 9.1         | 15.1       | 230x8   | 230   | ∞            | 9        | 14752              | 14677              | 0.995 | 0.0008 | 293.3                 |
| <b>58</b>  | W310x79   | 254  | 14.6       | 306  | <b>8</b> .8 | 17.0       | 230x12  | 230   | 13           | 9        | 15820              | 15776              | 0.997 | 0.0008 | 322.1                 |
| 29         | W310x79   | 254  | 14.6       | 306  | <b>8</b> .8 | 17.0       | 230x10  | 230   | 9            | œ        | 14828              | 14776              | 966.0 | 0.0008 | 295.6                 |
| 30         | W310x79   | 254  | 14.6       | 306  | æ.<br>æ.    | 17.0       | 230x8   | 230   | œ            | 9        | 13852              | 13791              | 966.0 | 0.0009 | 270.1                 |
| 31         | W310x67   | 204  | 14.6       | 306  | 8.5         | 15.3       | 180×12  | 180   | 12           | 01       | 13030              | 13002              | 0.998 | 0.0009 | 259.4                 |
| 32         | W310x67   | 204  | 14.6       | 306  | 8.5         | 15.3       | 180×10  | 180   | 9            | œ        | 12238              | 12203              | 0.997 | 0.0009 | 238.2                 |
| 33         | W310x67   | 204  | 14.6       | 306  | 8.5         | 15.3       | 180x8   | 180   | <b>∞</b>     | 9        | 11462              | 11420              | 0.996 | 0.0010 | 218.0                 |
| 34         | W310x60   | 203  | 13.1       | 303  | 7.5         | 15.1       | 180x12  | 180   | 12           | 01       | 12110              | 12088              | 0.998 | 0.0010 | 240.7                 |
| 35         | W310x60   | 203  | 13.1       | 303  | 7.5         | 15.1       | 180x10  | 180   | 01           | œ        | 11318              | 11289              | 0.997 | 0.0010 | 219.9                 |
| 36         | W310x60   | 203  | 13.1       | 303  | 7.5         | 15.1       | 180x8   | 180   | œ            | 9        | 10542              | 10507              | 0.997 | 0.0011 | 200.0                 |
| 37         | W250x73   | 254  | 14.2       | 253  | 9.8         | 12.5       | 230x12  | 230   | 12           | 9        | 15000              | 14952              | 0.997 | 0.0007 | 213.0                 |
| 38         | W250x73   | 254  | 14.2       | 253  | 9.8         | 12.5       | 230x10  | 230   | 0            | <b>∞</b> | 14008              | 13951              | 966.0 | 0.0007 | 194.4                 |
| 39         | W250x73   | 254  | 14.2       | 253  | 9.8         | 12.5       | 230x8   | 230   | œ            | 9        | 13032              | 12966              | 0.995 | 0.0008 | 176.6                 |
| 40         | W250x73   | 254  | 14.2       | 253  | 9.8         | 12.5       | 230x6   | 230   | 9            | 9        | 12112              | 12038              | 0.994 | 0.0009 | 160.2                 |
| 4          | W250x58   | 203  | 13.5       | 252  | 8.0         | 12.7       | 180x 12 | 180   | 12           | 01       | 11940              | 11611              | 0.998 | 0.0008 | 166.0                 |
| 42         | W250x58   | 203  | 13.5       | 252  | 8.0         | 12.7       | 180×10  | 180   | 01           | <b>∞</b> | 11148              | 11112              | 0.997 | 0.0000 | 151.2                 |
| 43         | W250x58   | 203  | 13.5       | 252  | 8.0         | 12.7       | 180x8   | 180   | <b>∞</b>     | 9        | 10372              | 10329              | 966.0 | 0.000  | 137.2                 |
| 4          | W250x58   | 203  | 13.5       | 252  | 8.0         | 12.7       | 180x6   | 180   | 9            | 9        | 9652               | 9603               | 0.995 | 0.0010 | 124.4                 |
| 45         | W250x49   | 202  | 0.11       | 247  | 7.4         | 12.8       | 180×10  | 180   | <u>e</u>     | <b>∞</b> | 8/66               | 8566               | 0.998 | 0.0010 | 132.2                 |
| 46         | W250x49   | 202  | 0.11       | 247  | 7.4         | 12.8       | 180x8   | 180   | œ            | 9        | 9202               | 9116               | 0.997 | 0.0011 | 9.811                 |
| 47         | W250x49   | 202  | 11.0       | 247  | 7.4         | 12.8       | 180x6   | 180   | 9            | 9        | 8482               | 8449               | 0.996 | 0.0012 | 106.3                 |
| <b>48</b>  | W200x59   | 205  | 14.2       | 210  | 9.1         | 8.0        | 180x12  | 180   | 12           | 01       | 12050              | 12013              | 0.997 | 0.0007 | 116.5                 |
| 49         | W200x59   | 205  | 14.2       | 210  | 9.1         | 8.0        | 180×10  | 180   | 01           | <b>∞</b> | 11258              | 11214              | 966'0 | 0.0007 | 0.901                 |
| 80         | W200x59   | 205  | 14.2       | 210  | 9.1         | 8.0        | 180x8   | 180   | <b>&amp;</b> | 9        | 10482              | 10431              | 0.995 | 0.0008 | 95.9                  |
|            |           |      |            |      |             |            |         |       |              |          |                    |                    |       |        |                       |

Table 5.2.a (Cont'd)

| No. W-Section   b <sub>1</sub>   t <sub>1</sub>   d   w   k   Plate   b <sub>1</sub>   t <sub>1</sub>   g   A   A   D <sub>1</sub>   D |     | i         | Fla            | Flange | ≯    | qə,  | Fillet     |        | Pla  | ıle      | Weld         |                    |                    |       |             |                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|----------------|--------|------|------|------------|--------|------|----------|--------------|--------------------|--------------------|-------|-------------|-----------------------|
| (mm)         (mm) <th< th=""><th></th><th>W-Section</th><th>ρ<sup>ζ</sup></th><th>7</th><th>Р</th><th>*</th><th>*</th><th>Plate</th><th>þ</th><th>f.</th><th>8</th><th>⋖</th><th>4</th><th>ΡΑ</th><th><b>&gt;</b></th><th><b>-</b>*</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | W-Section | ρ <sup>ζ</sup> | 7      | Р    | *    | *          | Plate  | þ    | f.       | 8            | ⋖                  | 4                  | ΡΑ    | <b>&gt;</b> | <b>-</b> *            |
| W200x59         205         14.2         210         9.1         8.0         180x6         180         6         9762         9705         0.994         0.0009           W200x52         204         12.6         206         7.9         7.7         180x10         180         1         111         0.997         0.0009           W200x52         204         12.6         206         7.9         7.7         180x10         180         8         6         9572         9529         0.997         0.0009           W200x52         204         12.6         206         7.9         7.7         180x10         180         8         6         9572         9597         0.0009           W200x46         203         11.0         203         7.2         7.7         180x10         180         8         6         8722         880         0.996         0.0009           W200x46         203         11.0         203         7.2         7.7         180x10         180         8         6         8728         880         0.996         0.0009           W200x47         166         11.8         180         8         6         8722         8929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 1 |           | (mm)           | (mm)   | (mm) | (mm) | (mm)       |        | (mm) | (mm)     | (mm)         | (mm <sup>2</sup> ) | (mm <sup>2</sup> ) |       |             | (10°mm <sup>4</sup> ) |
| W200x52         204         12.6         206         7.9         7.7         180x10         180         10         11140         11111         0.997         0.0008           W200x52         204         12.6         206         7.9         7.7         180x10         180         10         8         10348         10312         0.997         0.0008           W200x52         204         12.6         206         7.9         7.7         180x6         180         8         6         8572         9590         0.0009           W200x46         203         11.0         203         7.2         7.7         180x6         180         8         6         8772         9590         0.0009           W200x46         203         11.0         203         7.2         7.7         180x6         180         8         6         8772         9590         0.0009           W200x42         166         11.8         205         7.2         8.1         140x10         140         10         8         8         8         9590         0.0010           W200x42         166         11.8         20         7.2         140x10         140         8         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | W200x59   | 205            | 14.2   | 210  | 9.1  | 8.0        | 9x081  | 180  | 9        | 9            | 9762               | 9705               | 0.994 | 0.0009      | 86.9                  |
| W200x52         204         12.6         206         7.9         7.7         180x10         180         8         6         9572         9529         0.996         0.0009           W200x52         204         12.6         206         7.9         7.7         180x8         180         6         9572         9529         0.996         0.0009           W200x52         204         12.6         206         7.9         7.7         180x8         180         6         8852         8802         0.994         0.0009           W200x46         203         11.0         203         7.2         7.7         180x8         180         6         8826         9929         0.0009           W200x42         166         11.8         203         7.2         7.7         180x8         180         6         6         8095         0.099         0.0010           W200x42         166         11.8         205         7.2         7.7         180x8         140         6         6         8095         0.099         0.0010           W200x42         166         11.8         10.2         7.2         140x10         140         6         6         8095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | W200x52   | 204            | 12.6   | 206  | 6.7  | 7.7        | 180x12 | 180  | 12       | 9            | 11140              | ==                 | 0.997 | 0.0007      | 106.1                 |
| 204         12.6         206         7.9         7.7         180x8         180         8         6         9572         9529         0.996         0.0009           204         12.6         206         7.9         7.7         180x6         180         6         8852         8802         0.994         0.0009           203         11.0         203         7.2         7.7         180x10         180         6         8528         8802         0.995         0.0009           203         11.0         203         7.2         7.7         180x10         180         6         8052         8012         0.995         0.0010           203         11.0         203         7.2         7.7         180x6         180         6         8052         8092         0.995         0.0010           166         11.8         203         7.2         1.7         180x6         140         6         6         8052         8099         0.0010           166         11.8         205         7.2         8.1         140x6         140         6         6         8052         8099         0.0010           165         11.2         8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | W200x52   | 204            | 12.6   | 206  | 7.9  | 7.7        | 180×10 | 180  | 2        | œ            | 10348              | 10312              | 0.997 | 0.0008      | 95.9                  |
| W200x52         204         12.6         206         7.9         7.7         180x6         180         6         6         8852         8802         0.994         0.0009           W200x46         203         11.0         203         7.2         7.7         180x10         180         6         8548         9522         0.997         0.0009           W200x46         203         11.0         203         7.2         7.7         180x8         180         6         8 9548         9522         0.997         0.0009           W200x46         203         11.0         203         7.2         7.7         180x8         180         6         8 9548         9522         0.997         0.0010           W200x42         166         11.8         205         7.2         8.1         140x10         140         6         6         7592         754         0.995         0.0010           W200x42         166         11.8         205         7.2         8.1         140x10         140         6         6         7592         754         0.995         0.0010           W200x42         165         10.2         201         6.2         8.0         140x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _   | W200x52   | 204            | 12.6   | 206  | 7.9  | 7.7        | 180x8  | 180  | œ        | 9            | 9572               | 9529               | 966'0 | 0.0009      | 86.2                  |
| W200x46         203         11.0         203         7.2         7.7         180x10         180         8         9548         9522         0.997         0.0009           W200x46         203         11.0         203         7.2         7.7         180x8         180         8         6         8772         8739         0.996         0.0010           W200x46         203         11.0         203         7.2         7.7         180x6         180         6         8052         8012         0.995         0.0010           W200x42         166         11.8         205         7.2         8.1         140x10         140         10         8         8208         8185         0.995         0.0010           W200x42         166         11.8         205         7.2         8.1         140x10         140         6         6         7592         754         0.995         0.0010           W200x42         166         11.8         205         7.2         8.1         140x6         140         6         6         7592         754         0.995         0.0011           W200x31         134         10.2         201         6.2         8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | W200x52   | 204            | 12.6   | 206  | 7.9  | 7.7        | 180x6  | 180  | 9        | 9            | 8852               | 8802               | 0.994 | 0.0009      | 77.5                  |
| W200x46         203         11.0         203         7.2         7.7         180x8         180         8         6         8772         8739         0.996         0.0010           W200x46         203         11.0         203         7.2         7.7         180x6         180         6         6         8052         8012         0.995         0.0010           W200x42         166         11.8         205         7.2         8.1         140x10         140         8         6         7592         7564         0.995         0.0010           W200x42         166         11.8         205         7.2         8.1         140x6         140         6         6         792         759         0.0010           W200x42         166         11.8         205         7.2         8.1         140x6         140         6         6         792         750         0.0010           W200x36         165         10.2         201         6.2         8.0         140x6         140         6         6         6592         6990         0.999         0.0011           W200x37         13         10.2         201         6.2         8.0         140x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | W200x46   | 203            | 0.11   | 203  | 7.2  | 7.7        | 180x10 | 180  | 9        | ∞            | 9548               | 9522               | 0.997 | 0.0009      | 87.4                  |
| W200x46         203         11.0         203         7.2         17.1         180x6         180         6         6         8052         8012         0.995         0.0010           W200x42         166         11.8         205         7.2         8.1         140x10         140         8         8208         8185         0.997         0.0010           W200x42         166         11.8         205         7.2         8.1         140x6         140         6         6         7592         7564         0.995         0.0010           W200x42         166         11.8         205         7.2         8.1         140x6         140         6         6         7592         7564         0.995         0.0010           W200x36         165         10.2         201         6.2         8.0         140x10         140         6         6         7592         7594         0.0011           W200x36         165         10.2         201         6.2         8.0         140x10         140         6         6         7592         7594         0.0011           W200x37         134         10.2         210         6.4         7.9         110x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _   | W200x46   | 203            | 0.11   | 203  | 7.2  | 7.7        | 180x8  | 180  | œ        | 9            | 8772               | 8739               | 0.996 | 0.0010      | 78.0                  |
| W200x42         166         11.8         205         7.2         8.1         140x10         140         8         8208         8185         0.997         0.0010           W200x42         166         11.8         205         7.2         8.1         140x8         140         6         6         7592         7564         0.996         0.0010           W200x42         166         11.8         205         7.2         8.1         140x6         140         6         6         7592         7564         0.996         0.0010           W200x36         165         10.2         201         6.2         8.0         140x6         140         6         6         7582         758         0.0011           W200x36         165         10.2         201         6.2         8.0         140x6         140         6         6         6292         6265         0.996         0.0011           W200x37         134         10.2         210         6.4         7.9         110x8         110         8         6         5822         6850         0.996         0.0013           W200x37         133         8.4         207         5.8         7.8         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~   | W200x46   | 203            | 0.11   | 203  | 7.2  | 7.7        | 180x6  | 180  | 9        | 9            | 8052               | 8012               | 0.995 | 0.0010      | 69.5                  |
| W200X42         166         II.8         205         7.2         8.1         140x8         140         8         6         7592         7564         0.996         0.0010           W200X42         166         II.8         205         7.2         8.1         140x6         140         6         6         7032         6999         0.995         0.0011           W200X36         165         10.2         201         6.2         8.0         140x8         140         6         6         7032         6999         0.995         0.0011           W200X36         165         10.2         201         6.2         8.0         140x8         140         6         6         6292         6285         0.996         0.0011           W200X36         165         10.2         201         6.2         8.0         140x8         110         8         6         6292         6285         0.996         0.0011           W200X31         134         10.2         210         6.4         7.9         110x8         110         8         6         5822         5820         0.999         0.0013           W200X31         133         8.4         207         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | W200x42   | 991            | 8.1.   | 205  | 7.2  | 8.1        | 140x10 | 140  | 0        | œ            | 8208               | 8185               | 0.997 | 0.0010      | 74.4                  |
| W200X42         166         11.8         205         7.2         8.1         140x6         140         6         6         7032         6999         0.995         0.0011           W200X36         165         10.2         201         6.2         8.0         140x10         140         10         8         7468         7451         0.998         0.0011           W200X36         165         10.2         201         6.2         8.0         140x6         140         6         6         6292         6830         0.997         0.0011           W200X31         134         10.2         210         6.4         7.9         110x10         110         8         6.328         6320         0.999         0.0013           W200X31         134         10.2         210         6.4         7.9         110x8         110         8         6         5822         6265         0.996         0.0013           W200X31         134         10.2         210         6.4         7.9         110x8         110         8         6         5822         5820         0.999         0.0013           W200X31         133         8.4         207         5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | W200x42   | 991            | 8.<br> | 205  | 7.2  | <b>8</b> . | 140x8  | 140  | <b>∞</b> | 9            | 7592               | 7564               | 0.996 | 0.0010      | 8.99                  |
| W200x36         165         10.2         201         6.2         8.0         140x10         140         10         8         7468         7451         0.998         0.0011           W200x36         165         10.2         201         6.2         8.0         140x6         140         6         6         6292         6285         0.996         0.0013           W200x36         165         10.2         201         6.2         8.0         140x6         140         6         6         6292         6265         0.996         0.0013           W200x31         134         10.2         210         6.4         7.9         110x10         110         8         6         5332         5820         0.998         0.0013           W200x31         134         10.2         210         6.4         7.9         110x8         110         8         6         5322         5820         0.998         0.0013           W200x27         133         8.4         207         5.8         7.8         110x6         110         6         5022         5924         6994         0.998         0.0016           W200x27         133         8.4         207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | W200x42   | 991            | 8.1    | 205  | 7.2  | 8.1        | 140x6  | 140  | 9        | 9            | 7032               | 6669               | 0.995 | 0.0011      | 09.1                  |
| 165         10.2         201         6.2         8.0         140x8         140         8         6         6852         6830         0.997         0.0011           165         10.2         201         6.2         8.0         140x6         140         6         6 6292         6265         0.996         0.0013           134         10.2         210         6.4         7.9         110x10         110         8         6         5832         5820         0.996         0.0013           134         10.2         210         6.4         7.9         110x8         110         8         6         5832         5820         0.996         0.0013           133         8.4         207         5.8         7.8         110x8         110         7         6         5002         4994         0.999         0.0015           133         8.4         207         5.8         7.8         110x7         110         7         6         5002         4994         0.999         0.0015           153         8.4         207         5.8         7.8         110x6         110         6         6         5022         5042         5095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | W200x36   | 165            | 10.2   | 201  | 6.2  | 8.0        | 140×10 | 140  | 0        | <b>∞</b>     | 7468               | 7451               | 0.998 | 0.0011      | 2.99                  |
| 165         10.2         201         6.2         8.0         140x6         140         6         6 6292         6265         0.996         0.0013           134         10.2         210         6.4         7.9         110x10         110         8         6 328         6320         0.999         0.0013           134         10.2         210         6.4         7.9         110x6         110         6         5 332         5820         0.999         0.0013           134         10.2         210         6.4         7.9         110x6         110         6         6         5392         5375         0.999         0.0015           133         8.4         207         5.8         7.8         110x7         110         7         6         5002         4994         0.999         0.0015           133         8.4         207         5.8         7.8         110x6         110         6         6         4772         9.99         0.0016           153         9.3         157         6.6         6.0         130x8         130         8         6         5925         5925         0.997         0.0011           153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | W200x36   | 165            | 10.2   | 201  | 6.2  | 8.0        | 140x8  | 140  | œ        | 9            | 6852               | 6830               | 0.997 | 0.0011      | 59.4                  |
| 134         10.2         210         6.4         7.9         110x10         110         8         6328         6320         0.999         0.0012           134         10.2         210         6.4         7.9         110x8         110         8         6         5832         5820         0.998         0.0013           134         10.2         210         6.4         7.9         110x6         110         6         6         5392         5375         0.998         0.0015           133         8.4         207         5.8         7.8         110x7         110         7         6         5002         4994         0.998         0.0016           133         8.4         207         5.8         7.8         110x6         110         6         6         4782         4772         0.998         0.0016           153         9.3         157         6.6         6.0         130x8         130         8         6         5642         5625         0.997         0.0011           153         9.3         157         6.6         6.0         130x6         130         6         6         5422         5400         0.996         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | W200x36   | 165            | 10.2   | 201  | 6.2  | 8.0        | 140x6  | 140  | 9        | 9            | 6292               | 6265               | 966'0 | 0.0013      | 52.9                  |
| 134         10.2         210         6.4         7.9         110x8         110         8         6         5832         5820         0.998         0.0013           134         10.2         210         6.4         7.9         110x6         110         6         6         5392         5375         0.997         0.0015           133         8.4         207         5.8         7.8         110x7         110         7         6         5002         4994         0.999         0.0015           133         8.4         207         5.8         7.8         110x7         110         7         6         5002         4994         0.999         0.0016           153         8.4         207         5.8         7.8         110x7         110         6         6         4782         4772         0.998         0.0016           153         9.3         157         6.6         6.0         130x8         130         8         6         5642         5643         0.997         0.0011           153         9.3         157         6.6         6.0         130x6         130         6         6         5422         5400         0.996 <th></th> <th>W200x31</th> <th>134</th> <th>10.2</th> <th>210</th> <th>6.4</th> <th>7.9</th> <th>110x10</th> <th>01</th> <th>0</th> <th>œ</th> <th>6328</th> <th>6320</th> <th>0.999</th> <th>0.0012</th> <th>59.5</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | W200x31   | 134            | 10.2   | 210  | 6.4  | 7.9        | 110x10 | 01   | 0        | œ            | 6328               | 6320               | 0.999 | 0.0012      | 59.5                  |
| 134       10.2       210       6.4       7.9       110x6       110       6       6       5392       5375       0.997       0.0015         133       8.4       207       5.8       7.8       110x8       110       7       6       5002       4994       0.999       0.0016         133       8.4       207       5.8       7.8       110x7       110       6       6       4782       4772       0.998       0.0016         153       9.3       157       6.6       6.0       130x8       130       8       6       5942       5925       0.997       0.0011         153       9.3       157       6.6       6.0       130x7       130       7       6       5682       5663       0.997       0.0011         153       9.3       157       6.6       6.0       130x6       130       6       6       5422       5400       0.996       0.0012         153       9.3       157       6.6       6.0       130x6       130       6       6       5422       5400       0.996       0.0012         313       28.1       333       18.0       16.3       350x25       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | W200x31   | 134            | 10.2   | 210  | 6.4  | 7.9        | 110x8  | 011  | œ        | 9            | 5832               | 5820               | 0.998 | 0.0013      | 53.1                  |
| 133     8.4     207     5.8     7.8     110x8     110     8     6     5222     5216     0.999     0.0015       133     8.4     207     5.8     7.8     110x7     110     7     6     5002     4994     0.998     0.0016       153     8.4     207     5.8     7.8     110x6     110     6     6     4782     4772     0.998     0.0016       153     9.3     157     6.6     6.0     130x8     130     8     6     5682     5663     0.997     0.0011       153     9.3     157     6.6     6.0     130x6     130     6     6     5422     5400     0.997     0.0012       153     9.3     180     16.3     350x25     350     25     22     41268     41202     0.998     0.0003       313     28.1     333     18.0     16.3     350x20     350     20     18     37448     37350     0.997     0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | W200x31   | 134            | 10.2   | 210  | 6.4  | 7.9        | 110x6  | 011  | 9        | 9            | 5392               | 5375               | 0.997 | 0.0015      | 47.6                  |
| 133     8.4     207     5.8     7.8     110x7     110     7     6     5002     4994     0.998     0.0016       133     8.4     207     5.8     7.8     110x6     110     6     6     4782     4772     0.998     0.0016       153     9.3     157     6.6     6.0     130x8     130     7     6     5682     5663     0.997     0.0011       153     9.3     157     6.6     6.0     130x6     130     6     6     5422     5400     0.997     0.0012       153     9.3     157     6.6     6.0     130x6     130     6     6     5422     5400     0.996     0.0012       313     28.1     333     18.0     16.3     350x25     350     25     22     41268     41202     0.998     0.0003       313     28.1     333     18.0     16.3     350x20     350     20     18     37448     37350     0.997     0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | W200x27   | 133            | 8.4    | 207  | 5.8  | 7.8        | 110x8  | 0    | œ        | 9            | 5222               | 5216               | 0.999 | 0.0015      | 47.0                  |
| 133     8.4     207     5.8     7.8     110x6     110     6     6     4782     4772     0.998     0.0016       153     9.3     157     6.6     6.0     130x8     130     8     6     5942     5925     0.997     0.0011       153     9.3     157     6.6     6.0     130x7     130     7     6     5682     5663     0.997     0.0011       153     9.3     157     6.6     6.0     130x6     130     6     6     5422     5400     0.996     0.0012       313     28.1     333     18.0     16.3     350x25     350     25     22     41268     41202     0.998     0.0003       313     28.1     333     18.0     16.3     350x20     350     20     18     37448     37350     0.997     0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | W200x27   | 133            | 8.4    | 207  | 5.8  | 7.8        | 110x7  | 011  | 7        | 9            | 5005               | 4994               | 0.998 | 0.0016      | 44.3                  |
| 153     9.3     157     6.6     6.0     130x8     130     8     6     5942     5925     0.997     0.0011       153     9.3     157     6.6     6.0     130x7     130     7     6     5682     5663     0.997     0.0011       153     9.3     157     6.6     6.0     130x6     130     6     6     5422     5400     0.996     0.0012       313     28.1     333     18.0     16.3     350x25     350     25     22     41268     41202     0.998     0.0003       313     28.1     333     18.0     16.3     350x20     350     20     18     37448     37350     0.997     0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | W200x27   | 133            | 8.4    | 207  | 5.8  | 7.8        | 110x6  | 011  | 9        | 9            | 4782               | 4772               | 0.998 | 0.0016      | 41.6                  |
| 153 9.3 157 6.6 6.0 130x7 130 7 6 5682 5663 0.997 0.0011<br>153 9.3 157 6.6 6.0 130x6 130 6 6 5422 5400 0.996 0.0012<br>313 28.1 333 18.0 16.3 350x25 350 25 22 41268 41202 0.998 0.0003<br>313 28.1 333 18.0 16.3 350x20 350 20 18 37448 37350 0.997 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | W150x30   | 153            | 9.3    | 157  | 9.9  | 0.9        | 130x8  | 130  | <b>∞</b> | 9            | 5942               | 5925               | 0.997 | 0.0011      | 31.8                  |
| 153 9.3 157 6.6 6.0 130x6 130 6 6 5422 5400 0.996 0.0012<br>313 28.1 333 18.0 16.3 350x25 350 25 22 41268 41202 0.998 0.0003<br>313 28.1 333 18.0 16.3 350x20 350 20 18 37448 37350 0.997 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | W150x30   | 153            | 9.3    | 157  | 9.9  | 0.9        | 130x7  | 130  | 7        | 9            | 5682               | <b>2</b> 663       | 0.997 | 0.0011      | 29.9                  |
| 313 28.1 333 18.0 16.3 350x25 350 25 22 41268 41202 0.998 0.0003 313 28.1 333 18.0 16.3 350x20 350 20 18 37448 37350 0.997 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | W150x30   | 153            | 9.3    | 157  | 9.9  | 0.9        | 130x6  | 130  | 9        | 9            | 5422               | 5400               | 966.0 | 0.0012      | 28.0                  |
| 313 28.1 333 18.0 16.3 350x20 350 20 18 37448 37350 0.997 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | W310x179  | 313            | 28.1   | 333  | 18.0 | 16.3       | 350x25 | 350  | 25       | 22           | 41268              | 41202              | 0.998 | 0.0003      | 653.8                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | W310x179  | 313            | 28.1   | 333  | 0.81 | 16.3       | 350x20 | 350  | 20       | <u>&amp;</u> | 37448              | 37350              | 0.997 | 0.0003      | 608.1                 |

Table 5.2.a (Cont'd)

|          |             | Fla  | Flange     |      | qp/  | Fillet |        | PĮį  | Plate          | Weld         |                    |                    |       |        |                       |
|----------|-------------|------|------------|------|------|--------|--------|------|----------------|--------------|--------------------|--------------------|-------|--------|-----------------------|
| No.      | . W-Section | þ    | <u>.</u> - | p    | 3    | *      | Plate  | ď    | P <sub>G</sub> | 50           | 4                  | <b>«</b>           | ρ     | >      | L                     |
|          |             | (mm) | (mm)       | (mm) | (mm) | (mm)   |        | (mm) | (mm)           | (mm)         | (mm <sup>2</sup> ) | (mm <sup>2</sup> ) |       |        | (10°mm <sup>4</sup> ) |
| 92       | W310x179    | 313  | 28.1       | 333  | 0.81 | 16.3   | 350x16 | 350  | 91             | 14           | 34392              | 34268              | 966.0 | 0.0004 | 571.7                 |
| 11       | W310x158    | 310  | 25.1       | 327  | 15.5 | 17.0   | 350x25 | 350  | 25             | 23           | 38658              | 38614              | 0.999 | 0.0003 | 597.0                 |
| 78       | W310x158    | 310  | 25.1       | 327  | 15.5 | 17.0   | 350x20 | 350  | 20             | <u>8</u>     | 34748              | 34671              | 0.998 | 0.0004 | 548.8                 |
| 79       | W310x158    | 310  | 25.1       | 327  | 15.5 | 17.0   | 350x16 | 350  | 91             | 4            | 31692              | 31589              | 0.997 | 0.0004 | 512.7                 |
| 80       | W310x158    | 310  | 25.1       | 327  | 15.5 | 17.0   | 350x12 | 350  | 12             | 0            | 28700              | 28571              | 0.996 | 0.0005 | 478.6                 |
| <b>∞</b> | W310x143    | 309  | 22.9       | 323  | 14.0 | 13.9   | 350x20 | 350  | 20             | <u>«</u>     | 32848              | 32788              | 0.998 | 0.0004 | 508.3                 |
| 82       | W310x143    | 306  | 22.9       | 323  | 14.0 | 13.9   | 350x16 | 350  | 91             | 7            | 29792              | 29706              | 0.997 | 0.0004 | 472.3                 |
| 83       | W310x143    | 309  | 22.9       | 323  | 14.0 | 13.9   | 350x12 | 350  | 12             | 2            | 26800              | 26688              | 0.996 | 0.0005 | 438.4                 |
| <b>%</b> | W310x143    | 309  | 22.9       | 323  | 14.0 | 13.9   | 350x10 | 350  | 01             | <b>∞</b>     | 25328              | 25203              | 0.995 | 0.0005 | 422.1                 |
| 82       | W310x129    | 308  | 20.6       | 318  | 13.1 | 14.7   | 350x20 | 350  | 20             | <u>&amp;</u> | 31148              | 31109              | 0.999 | 0.0004 | 468.1                 |
|          | W310x129    | 308  | 20.6       | 318  | 13.1 | 14.7   | 350x16 | 350  | 91             | <del>1</del> | 28092              | 28027              | 0.998 | 0.0005 | 432.4                 |
|          | W310x129    | 308  | 20.6       | 318  | 13.1 | 14.7   | 350x12 | 350  | 12             | 01           | 25100              | 25009              | 966.0 | 0.0005 | 398.6                 |
|          | W310x129    | 308  | 20.6       | 318  | 13.1 | 14.7   | 350x10 | 350  | 01             | <b>∞</b>     | 23628              | 23524              | 966.0 | 9000'0 | 382.4                 |
|          | W310x118    | 307  | 18.7       | 314  | 6.11 | 16.2   | 350x16 | 350  | 91             | 4            | 26592              | 26542              | 0.998 | 0.0005 | 400.3                 |
|          | W310x118    | 307  | 18.7       | 314  | 6.11 | 16.2   | 350x12 | 350  | 12             | 0            | 23600              | 23524              | 0.997 | 9000.0 | 366.6                 |
|          | W310x118    | 307  | 18.7       | 314  | 6.11 | 16.2   | 350x10 | 350  | 0              | œ            | 22128              | 22039              | 966.0 | 9000'0 | 350.5                 |
|          | W310x118    | 307  | 18.7       | 314  | 6.11 | 16.2   | 350x8  | 350  | <b>∞</b>       | 9            | 20672              | 20570              | 0.995 | 9000.0 | 334.7                 |
|          | W310x107    | 306  | 17.0       | 311  | 6.01 | 14.3   | 350x16 | 350  | 91             | 4            | 25192              | 25157              | 0.999 | 0.0005 | 372.0                 |
|          | W310x107    | 306  | 17.0       | 311  | 6.01 | 14.3   | 350x12 | 350  | 12             | 0            | 22200              | 22139              | 0.997 | 9000.0 | 338.4                 |
| 95       | W310x107    | 306  | 17.0       | 311  | 6.01 | 14.3   | 350x10 | 350  | 01             | <b>∞</b>     | 20728              | 20654              | 966.0 | 9000.0 | 322.3                 |
|          | W310x107    | 306  | 17.0       | 311  | 6.01 | 14.3   | 350x8  | 350  | <b>∞</b>       | 9            | 19272              | 19185              | 0.995 | 0.0007 | 306.6                 |
| 6        | W310x86     | 254  | 16.3       | 310  | 9.1  | 15.1   | 330x16 | 330  | 91             | 4            | 21952              | 21941              | 000.1 | 9000.0 | 304.3                 |
| 86       | W310x86     | 254  | 16.3       | 310  | 9.1  | 15.1   | 330x12 | 330  | 12             | 01           | 19120              | 19085              | 0.998 | 0.0007 | 275.4                 |
| 8        | W310x86     | 254  | 16.3       | 310  | 9.1  | 15.1   | 330x10 | 330  | 0              | ∞            | 17728              | 17680              | 0.997 | 0.0007 | 261.6                 |
| 2        | W310x86     | 254  | 16.3       | 310  | 9.1  | 15.1   | 330x8  | 330  | 8              | 9            | 16352              | 16292              | 966.0 | 0.0008 | 248.2                 |
|          |             |      |            |      |      |        |        |      |                |              |                    |                    |       |        |                       |

Table 5.2.a (Cont'd)

|                                                                                                                                   |           | 먑    | Flange | M    | <del>့</del> | Fillet |        | Pl   | Plate    | Weld     |                    |                    |        |        |                       |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------|------|--------|------|--------------|--------|--------|------|----------|----------|--------------------|--------------------|--------|--------|-----------------------|
| No.                                                                                                                               | W-Section | þ    | ت      | D    | 3            | -*     | Plate  | þ    | ء۔ ا     | 8        | V                  | <b>«</b>           | β      | >      | -×                    |
|                                                                                                                                   |           | (mm) | (mm)   | (mm) | (mm)         | (mm)   |        | (mm) | (mm)     | (mm)     | (mm <sup>2</sup> ) | (mm <sup>2</sup> ) |        |        | (10°mm <sup>4</sup> ) |
| <u></u>                                                                                                                           | W310x79   | 254  | 14.6   | 306  | 8.8          | 17.0   | 330x12 | 330  | 12       | 10       | 18220              | 18199              | 0.999  | 0.0007 | 254.4                 |
| 102                                                                                                                               | W310x79   | 254  | 14.6   | 306  | 8.8          | 17.0   | 330x10 | 330  | 01       | ×        | 16828              | 16794              | 0.998  | 0.0008 | 240.6                 |
| 103                                                                                                                               | W310x79   | 254  | 14.6   | 306  | 8.8          | 17.0   | 330x8  | 330  | ∞        | 9        | 15452              | 15406              | 0.997  | 0.0008 | 227.3                 |
| <u>8</u>                                                                                                                          | W310x67   | 204  | 14.6   | 306  | 8.5          | 15.3   | 330x12 | 330  | 12       | 9        | 16630              | 16635              | 000.1  | 0.0007 | 222.0                 |
| 105                                                                                                                               | W310x67   | 204  | 14.6   | 306  | 8.5          | 15.3   | 330x10 | 330  | 01       | <b>∞</b> | 15238              | 15231              | 000.   | 0.0008 | 208.2                 |
| 901                                                                                                                               | W310x67   | 204  | 14.6   | 306  | 8.5          | 15.3   | 330x8  | 330  | ∞        | 9        | 13862              | 13843              | 0.999  | 0.0009 | 194.9                 |
| 107                                                                                                                               | W310x60   | 203  | 13.1   | 303  | 7.5          | 15.1   | 330x12 | 330  | 12       | 0        | 15710              | 15721              | 1.00.1 | 0.0008 | 205.3                 |
| 108                                                                                                                               | W310x60   | 203  | 13.1   | 303  | 7.5          | 15.1   | 330×10 | 330  | 01       | œ        | 14318              | 14317              | 000.   | 0.0009 | 9.161                 |
| 8                                                                                                                                 | W310x60   | 203  | 13.1   | 303  | 7.5          | 15.1   | 330x8  | 330  | œ        | 9        | 12942              | 12929              | 0.999  | 0.0000 | 178.3                 |
| 0<br>-<br>-                                                                                                                       | W250x73   | 254  | 14.2   | 253  | 9.8          | 12.5   | 280x12 | 280  | 12       | 01       | 16200              | 16163              | 0.998  | 0.0007 | 0.091                 |
| Ξ                                                                                                                                 | W250x73   | 254  | 14.2   | 253  | 9.8          | 12.5   | 280x10 | 280  | 0        | <b>∞</b> | 15008              | 14960              | 0.997  | 0.0007 | 151.4                 |
| 112                                                                                                                               | W250x73   | 254  | 14.2   | 253  | 9.8          | 12.5   | 280x8  | 280  | œ        | 9        | 13832              | 13774              | 966.0  | 0.0008 | 143.2                 |
| 113                                                                                                                               | W250x73   | 254  | 14.2   | 253  | 9.8          | 12.5   | 280x6  | 280  | 9        | 9        | 12712              | 12644              | 0.995  | 0.0008 | 135.8                 |
| <del>-</del> | W250x58   | 203  | 13.5   | 252  | 8.0          | 12.7   | 280x12 | 280  | 12       | 0        | 14340              | 14333              | 000.   | 0.0007 | 134.5                 |
| 115                                                                                                                               | W250x58   | 203  | 13.5   | 252  | 8.0          | 12.7   | 280×10 | 280  | 01       | <b>∞</b> | 13148              | 13131              | 0.999  | 0.0008 | 126.0                 |
| 911                                                                                                                               | W250x58   | 203  | 13.5   | 252  | 8.0          | 12.7   | 280x8  | 280  | <b>∞</b> | 9        | 11972              | 11944              | 0.998  | 0.000  | 117.7                 |
| 117                                                                                                                               | W250x58   | 203  | 13.5   | 252  | 8.0          | 12.7   | 280x6  | 280  | 9        | 9        | 10852              | 10814              | 966.0  | 0.0010 | 110.4                 |
| 8                                                                                                                                 | W250x49   | 202  | 0.11   | 247  | 7.4          | 12.8   | 280×10 | 280  | 01       | <b>∞</b> | 11978              | 11977              | 000.   | 0.0009 | 109.3                 |
| 611                                                                                                                               | W250x49   | 202  | 0.11   | 247  | 7.4          | 12.8   | 280x8  | 280  | <b>∞</b> | 9        | 10802              | 10790              | 0.999  | 0.0010 | 0.101                 |
| 120                                                                                                                               | W250x49   | 202  | 0.11   | 247  | 7.4          | 12.8   | 280x6  | 280  | 9        | 9        | 9682               | 0996               | 0.998  | 0.0011 | 93.7                  |
| 121                                                                                                                               | W200x59   | 202  | 14.2   | 210  | 1.6          | 8.0    | 230x12 | 230  | 12       | 0        | 13250              | 13224              | 0.998  | 0.0007 | 9.78                  |
| 122                                                                                                                               | W200x59   | 205  | 14.2   | 210  | 1.6          | 8.0    | 230x10 | 230  | 0        | <b>∞</b> | 12258              | 12223              | 0.997  | 0.0007 | 82.6                  |
| 123                                                                                                                               | W200x59   | 205  | 14.2   | 210  | 1.6          | 8.0    | 230x8  | 230  | œ        | 9        | 11282              | 11239              | 966.0  | 0.0008 | 6.77                  |
| 124                                                                                                                               | W200x59   | 205  | 14.2   | 210  | 1.6          | 8.0    | 230x6  | 230  | 9        | 9        | 10362              | 10310              | 0.995  | 0.0008 | 73.9                  |
| 125                                                                                                                               | W200x52   | 204  | 12.6   | 206  | 7.9          | 7.7    | 230x12 | 230  | 12       | 2        | 12340              | 12322              | 0.999  | 0.0007 | 0.67                  |

Table 5.2.a (Cont'd)

| No. W-Section   b <sub>1</sub>   t <sub>1</sub>   d   w   k   Plate   b <sub>1</sub>   t <sub>1</sub>   d   mm)   (mm)   (mm)   (mm <sup>1</sup> )   (mm <sup>1</sup> |                    |         | Fla        | Flange  | ≱    | qə         | Fillet   |        | Pla      | jį.            | Weld     |                    |                    |             |        |                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|------------|---------|------|------------|----------|--------|----------|----------------|----------|--------------------|--------------------|-------------|--------|-----------------------|
| 126   W200x52   204   126   206   7.9   7.7   230x10   230   10   8   11348   11321   0.998   0.0008   128   W200x52   204   126   206   7.9   7.7   230x8   230   8   6   10372   1037   0.997   0.0008   128   W200x52   204   126   206   7.9   7.7   230x8   230   8   6   10372   1037   0.997   0.0008   128   W200x46   203   11.0   203   7.2   7.7   230x8   230   8   6   9452   9408   0.995   0.0009   130   W200x46   203   11.0   203   7.2   7.7   230x8   230   8   6   9452   9408   0.995   0.0009   131   W200x46   203   11.0   203   7.2   7.7   230x8   230   8   6   9452   9408   0.995   0.0009   131   W200x42   166   11.8   205   7.2   8.1   230x8   230   8   6   9052   9546   0.995   0.0009   132   W200x42   166   11.8   205   7.2   8.1   230x8   230   8   6   9052   9209   0.0009   133   W200x42   166   11.8   205   7.2   8.1   230x8   230   8   6   9328   9208   0.0010   135   W200x42   166   11.8   205   7.2   8.1   230x8   230   8   6   8252   8618   0.995   0.0010   135   W200x42   166   11.8   205   7.2   8.1   230x8   230   8   6   8252   8244   0.999   0.0010   135   W200x36   165   10.2   201   6.2   8.0   230x10   230   6   6   8325   8244   0.999   0.0010   135   W200x36   154   10.2   201   6.4   7.9   230x10   230   6   6   8325   8324   0.999   0.0010   135   W200x31   134   10.2   210   6.4   7.9   230x10   230   6   6   8325   6829   1.001   0.0011   140   W200x27   133   8.4   207   5.8   7.8   230x8   230   6   6   6262   6500   0.0010   140   W200x30   153   8.4   207   5.8   7.8   230x8   230   6   6   6262   6500   0.0010   0.0011   140   W150x30   153   9.3   157   6.6   6.0   180x7   180   7   6   6382   6399   0.0010   0.0011   140   W150x30   153   9.3   157   6.6   6.0   180x7   180   7   6   6382   6390   0.0010   0.0011   140   W150x30   153   9.3   157   6.6   6.0   180x7   180   7   6   6025   6020   0.999   0.0010   140   W150x30   153   9.3   157   6.6   6.0   180x7   180   7   6   6028   6020   6020   0.991   0.0011   140   W150x30   153   9.3   157   6.6   6.0   180x7   180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Š.                 |         | þ          | ح       | P    | 3          | <b>~</b> | Plate  | <b>p</b> | t <sub>p</sub> | ಎ        | <                  | ∢                  | ρ           | >      | Ľ                     |
| 126         W200x52         204         12.6         206         7.9         7.7         230x10         230         10         8         11348         11321         0.998         0.0008           127         W200x52         204         12.6         206         7.9         7.7         230x8         230         8         6         10372         10377         0.997         0.0008           128         W200x52         204         12.6         206         7.9         7.7         230x6         230         6         6         9452         9408         0.997         0.0009           129         W200x46         203         11.0         203         7.2         7.7         230x6         230         6         6         9452         9408         0.0997         0.0009           130         W200x42         166         11.8         205         7.2         8.1         230x10         230         6         6         8452         8418         0.995         0.0009           131         W200x42         166         11.8         205         7.2         8.1         230x10         230         6         6         8452         8618         0.995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ļ                  |         | (mm)       | (mm)    | (mm) | (mm)       | (mm)     |        | (mm)     | (mm)           | (mm)     | (mm <sup>2</sup> ) | (mm <sup>2</sup> ) |             |        | (10°mm <sup>4</sup> ) |
| 127         W200x52         204         12.6         206         7.9         7.7         230x8         230         8         6         10372         10337         0.997         0.0008           128         W200x52         204         12.6         206         7.9         7.7         230x6         230         6         6         9452         9408         0.995         0.0009           129         W200x54         203         11.0         203         7.2         7.7         230x10         230         6         6         9452         9408         0.995         0.0009           130         W200x46         203         11.0         203         7.2         7.7         230x10         8         6         9572         9546         0.997         0.0009           131         W200x46         203         11.0         203         7.2         7.7         230x6         230         6         6         9452         9408         0.999         0.0009           131         W200x42         166         11.8         205         7.2         8.1         230x6         230         6         6         9452         8618         0.996         0.0010 <th>126</th> <th>W200x52</th> <th>204</th> <th>12.6</th> <th>206</th> <th>7.9</th> <th>7.7</th> <th>230x10</th> <th>230</th> <th>9</th> <th>∞</th> <th>11348</th> <th>11321</th> <th>0.998</th> <th>0.0008</th> <th>74.1</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 126                | W200x52 | 204        | 12.6    | 206  | 7.9        | 7.7      | 230x10 | 230      | 9              | ∞        | 11348              | 11321              | 0.998       | 0.0008 | 74.1                  |
| 128         W200X52         204         12.6         206         7.9         7.7         230x6         230         6         9452         9408         0.995         0.0009           129         W200X46         203         11.0         203         7.2         7.7         230x10         230         6         6         9452         9408         0.995         0.0009           130         W200X46         203         11.0         203         7.2         7.7         230x10         230         6         6         8652         8618         0.995         0.0009           131         W200X46         203         11.0         203         7.2         7.7         230x10         230         6         6         8652         8618         0.995         0.0009           131         W200X46         206         11.8         205         7.2         8.1         230x10         230         6         6         8652         8618         0.995         0.0009           134         W200X42         166         11.8         205         7.2         8.1         230x10         230         6         6         8112         8095         0.997         0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 127                | W200x52 | <b>5</b> 8 | 12.6    | 206  | 7.9        | 7.7      | 230x8  | 230      | œ              | 9        | 10372              | 10337              | 0.997       | 0.0008 | 69.4                  |
| 129         W200x46         203         11.0         203         7.2         7.7         230x10         230         10         8         10548         10531         0.998         0.0008           130         W200x46         203         11.0         203         7.2         7.7         230x8         230         6         6         8652         8618         0.997         0.0009           131         W200x46         203         11.0         203         7.2         7.7         230x6         230         6         6         8652         8618         0.999         0.0010           132         W200x42         166         11.8         205         7.2         8.1         230x10         8         6         6         8652         8618         0.999         0.0010           133         W200x42         166         11.8         205         7.2         8.1         230x8         230         6         6         8112         8090         0.0010           134         W200x42         166         11.8         205         7.2         8.1         230x8         230         6         6         8112         8099         0.0010           13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 128                | W200x52 | <b>504</b> | 12.6    | 206  | 7.9        | 7.7      | 230x6  | 230      | 9              | 9        | 9452               | 9408               | 0.995       | 0.000  | 65.4                  |
| 130         W200x46         203         11.0         203         7.2         7.7         230x8         230         8         6         9572         9546         0.997         0.0009           131         W200x46         203         11.0         203         7.2         7.7         230x6         230         6         6         8652         8618         0.999         0.0010           132         W200x42         166         11.8         205         7.2         8.1         230x10         230         6         6         8652         8618         0.999         0.0010           133         W200x42         166         11.8         205         7.2         8.1         230x10         230         6         6         8112         8089         0.997         0.0010           134         W200x42         166         11.8         205         7.2         8.1         230x10         230         6         6         8112         8090         0.0010           135         W200x36         165         10.2         201         6.2         8.0         230x10         230         6         6         8110         8000         9         6         8100 </th <th>129</th> <th>W200x46</th> <th>203</th> <th>0.11</th> <th>203</th> <th>7.2</th> <th>7.7</th> <th>230x10</th> <th>230</th> <th>0</th> <th><b>∞</b></th> <th>10548</th> <th>10531</th> <th>0.998</th> <th>0.0008</th> <th>8.99</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 129                | W200x46 | 203        | 0.11    | 203  | 7.2        | 7.7      | 230x10 | 230      | 0              | <b>∞</b> | 10548              | 10531              | 0.998       | 0.0008 | 8.99                  |
| 131         W200x46         203         11.0         203         7.2         7.7         230x6         230         6         6         8652         8618         0.996         0.0010           132         W200x42         166         11.8         205         7.2         8.1         230x10         230         6         6         8652         8618         0.999         0.0010           133         W200x42         166         11.8         205         7.2         8.1         230x8         230         6         6         8112         8089         0.997         0.0010           134         W200x42         166         11.8         205         7.2         8.1         230x8         230         6         6         8112         8089         0.997         0.0010           135         W200x36         165         10.2         201         6.2         8.0         230x10         230         6         6         8292         8284         0.999         0.0010           136         W200x36         165         10.2         201         6.2         8.0         230x8         230         6         6         8208         1.000         0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130                | W200x46 | 203        | 0.11    | 203  | 7.2        | 7.7      | 230x8  | 230      | œ              | 9        | 9572               | 9546               | 0.997       | 0.000  | 62.2                  |
| 132         W200x42         166         11.8         205         7.2         8.1         230x10         230         10         8         10008         10002         0.999         0.0008           133         W200x42         166         11.8         205         7.2         8.1         230x8         230         6         6         8112         8089         0.997         0.0010           134         W200x42         166         11.8         205         7.2         8.1         230x6         230         6         6         8112         8089         0.997         0.0010           135         W200x36         165         10.2         201         6.2         8.0         230x10         230         6         6         8228         9.268         1.000         0.0009           136         W200x36         165         10.2         201         6.2         8.0         230x10         23         6         6         8228         8.08         0.099         0.0010           137         W200x36         165         10.2         201         6.4         7.9         230x8         230         6         6         8228         1.000         0.0011 </th <th>131</th> <th>W200x46</th> <th>203</th> <th>0.11</th> <th>203</th> <th>7.2</th> <th>7.7</th> <th>230x6</th> <th>230</th> <th>9</th> <th>9</th> <th>8652</th> <th>8198</th> <th>966.0</th> <th>0.0010</th> <th>58.1</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 131                | W200x46 | 203        | 0.11    | 203  | 7.2        | 7.7      | 230x6  | 230      | 9              | 9        | 8652               | 8198               | 966.0       | 0.0010 | 58.1                  |
| 133         W200x42         166         11.8         205         7.2         8.1         230x8         230         8         6         9032         9017         0.998         0.0009           134         W200x42         166         11.8         205         7.2         8.1         230x6         230         6         6         8112         8089         0.997         0.0010           135         W200x36         165         10.2         201         6.2         8.0         230x10         230         6         6         8112         8089         0.997         0.0010           135         W200x36         165         10.2         201         6.2         8.0         230x10         8         6         8292         8284         0.999         0.0010           137         W200x36         165         10.2         201         6.2         8.0         230x10         230         6         6         7752         7757         1.002         0.0010           138         W200x31         134         10.2         210         6.4         7.9         230x8         230         6         6         8725         879         0.001           14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 132                | W200x42 | 991        | 8.<br>= | 205  | 7.2        |          | 230x10 | 230      | 9              | œ        | 10008              | 10002              | 0.999       | 0.0008 | 62.3                  |
| 134         W200x42         166         11.8         205         7.2         8.1         230x6         230         6         6         8112         8089         0.997         0.0010           135         W200x36         165         10.2         201         6.2         8.0         230x10         230         6         6         8128         9268         1.000         0.0009           136         W200x36         165         10.2         201         6.2         8.0         230x10         230         6         6         7372         7355         0.998         0.0010           137         W200x36         165         10.2         201         6.2         8.0         230x10         230         6         6         7372         7355         0.998         0.0010           138         W200x31         134         10.2         210         6.4         7.9         230x8         230         6         6         6832         829         0.0010           139         W200x31         134         10.2         210         6.4         7.9         230x8         230         6         6         6832         6829         1.000         0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 133                | W200x42 | 991        | 8.      | 205  | 7.2        |          | 230x8  | 230      | <b>∞</b>       | 9        | 9032               | 9017               | 0.998       | 0.0000 | 57.6                  |
| 135         W200x36         165         10.2         201         6.2         8.0         230x10         230         10         8         9268         9268         1.000         0.0009           136         W200x36         165         10.2         201         6.2         8.0         230x8         230         8         6         8292         8284         0.999         0.0010           137         W200x36         165         10.2         201         6.2         8.0         230x10         230         6         6         7752         7757         1.001         0.0010           139         W200x31         134         10.2         210         6.4         7.9         230x6         230         6         6         7752         7757         1.001         0.0010           139         W200x31         134         10.2         210         6.4         7.9         230x6         230         6         6         6832         6829         1.000         0.0010           140         W200x31         134         10.2         210         6.4         7.9         230x6         230         6         6         6832         6829         1.000 <td< th=""><th>10<br/><del>2</del></th><td>W200x42</td><td>991</td><td>8.</td><td>205</td><td>7.2</td><td></td><td>230x6</td><td>230</td><td>9</td><td>9</td><td>8112</td><td>808</td><td>0.997</td><td>0.0000</td><td>53.6</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br><del>2</del> | W200x42 | 991        | 8.      | 205  | 7.2        |          | 230x6  | 230      | 9              | 9        | 8112               | 808                | 0.997       | 0.0000 | 53.6                  |
| W200x36         165         10.2         201         6.2         8.0         230x8         230         8         6         8292         8284         0.999         0.0010           W200x36         165         10.2         201         6.2         8.0         230x6         230         6         6         7372         735         0.998         0.0011           W200x31         134         10.2         210         6.4         7.9         230x10         230         8         6         7752         7757         1.002         0.0011           W200x31         134         10.2         210         6.4         7.9         230x6         230         8         6         7752         7757         1.002         0.0012           W200x31         134         10.2         210         6.4         7.9         230x6         230         8         6         7752         7757         1.002         0.0011           W200x31         134         10.2         210         6.4         7.9         230x8         230         8         6         7154         1.050         0.0012           W200x27         133         8.4         207         5.8 <t< th=""><th>135</th><td>W200x36</td><td>165</td><td>10.2</td><td>201</td><td>6.2</td><td></td><td>230x10</td><td>230</td><td>01</td><td>œ</td><td>9268</td><td>9268</td><td>000.</td><td>0.000</td><td>55.8</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 135                | W200x36 | 165        | 10.2    | 201  | 6.2        |          | 230x10 | 230      | 01             | œ        | 9268               | 9268               | 000.        | 0.000  | 55.8                  |
| W200x36         165         10.2         201         6.2         8.0         230x6         230         6         6         7372         7355         0.998         0.0011           W200x31         134         10.2         210         6.4         7.9         230x10         230         6         6         7752         7757         1.001         0.0011           W200x31         134         10.2         210         6.4         7.9         230x6         230         6         6         6832         6829         1.001         0.0011           W200x37         133         8.4         207         5.8         7.8         230x7         230         7         6         6682         6690         1.001         0.0013           W200x27         133         8.4         207         5.8         7.8         230x7         230         6         6         6682         6690         1.001         0.0013           W200x27         133         8.4         207         5.8         7.8         230x6         230         6         6         6682         6690         1.001         0.0013           W150x30         153         9.3         157 <th< th=""><th>136</th><td>W200x36</td><td>165</td><td>10.2</td><td>201</td><td>6.2</td><td></td><td>230x8</td><td>230</td><td><b>∞</b></td><td>9</td><td>8292</td><td>8284</td><td>0.999</td><td>0.000</td><td>51.1</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 136                | W200x36 | 165        | 10.2    | 201  | 6.2        |          | 230x8  | 230      | <b>∞</b>       | 9        | 8292               | 8284               | 0.999       | 0.000  | 51.1                  |
| W200x31         134         10.2         210         6.4         7.9         230x10         230         8         6         7752         7757         1.002         0.0010           W200x31         134         10.2         210         6.4         7.9         230x6         230         8         6         7752         7757         1.001         0.0011           W200x31         134         10.2         210         6.4         7.9         230x6         230         6         6         6832         6829         1.000         0.0012           W200x27         133         8.4         207         5.8         7.8         230x7         230         7         6         6682         6690         1.001         0.0013           W200x27         133         8.4         207         5.8         7.8         230x7         230         6         6         6622         6690         1.001         0.0013           W200x27         133         8.4         207         5.8         7.8         230x6         230         6         6         6222         6226         1.001         0.001           W150x30         153         9.3         157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 137                | W200x36 | 165        | 10.2    | 201  | 6.2        |          | 230x6  | 230      | 9              | 9        | 7372               | 7355               | 0.998       | 0.0011 | 47.1                  |
| W200x31         134         10.2         210         6.4         7.9         230x8         230         8         6         7752         7757         1.001         0.0011           W200x31         134         10.2         210         6.4         7.9         230x6         230         6         6         6832         6829         1.000         0.0012           W200x27         133         8.4         207         5.8         7.8         230x7         230         7         6         6682         6690         1.001         0.0013           W200x27         133         8.4         207         5.8         7.8         230x6         230         6         6         6682         6690         1.001         0.0013           W200x27         133         8.4         207         5.8         7.8         230x6         230         6         6         6222         6226         1.001         0.0013           W150x30         153         9.3         157         6.6         6.0         180x7         180         7         6         6382         6369         0.999         0.0010           W150x30         153         9.3         157         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 138                | W200x31 | 134        | 10.2    | 210  | 6.4        |          | 230x10 | 230      | 01             | <b>∞</b> | 8728               | 8742               | 1.002       | 0.0010 | 53.2                  |
| W200x31         134         10.2         210         6.4         7.9         230x6         230         6         6         6832         6829         1.000         0.0012           W200x27         133         8.4         207         5.8         7.8         230x7         230         7         6         6682         6690         1.001         0.0013           W200x27         133         8.4         207         5.8         7.8         230x6         230         6         6         6222         6226         1.001         0.0013           W150x30         153         9.3         157         6.6         6.0         180x8         180         8         6         6742         6733         0.999         0.0010           W150x30         153         9.3         157         6.6         6.0         180x6         180         6         6         6022         6066         0.998         0.0010           W150x30         153         9.3         157         6.6         6.0         180x6         180         6         6         6022         6006         0.997         0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 139                | W200x31 | 134        | 10.2    | 210  | 6.4        |          | 230x8  | 230      | œ              | 9        | 7752               | 7757               | <u>.00.</u> | 0.0011 | 48.4                  |
| W200x27         133         8.4         207         5.8         7.8         230x8         230         8         6         7142         7154         1.002         0.0012           W200x27         133         8.4         207         5.8         7.8         230x7         230         7         6         6682         6690         1.001         0.0013           W200x27         133         8.4         207         5.8         7.8         230x6         230         6         6         6222         6226         1.001         0.0014           W150x30         153         9.3         157         6.6         6.0         180x7         180         7         6         6382         6369         0.999         0.0010           W150x30         153         9.3         157         6.6         6.0         180x6         180         6         6         6022         6006         0.997         0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 140                | W200x31 | 134        | 10.2    | 210  | 6.4        |          | 230x6  | 230      | 9              | 9        | 6832               | 6839               | 000.        | 0.0012 | 44.4                  |
| W200x27         133         8.4         207         5.8         7.8         230x7         230         7         6         6682         6690         1.001         0.0013           W200x27         133         8.4         207         5.8         7.8         230x6         230         6         6         6222         6226         1.001         0.0014           W150x30         153         9.3         157         6.6         6.0         180x7         180         7         6         6382         6369         0.999         0.0010           W150x30         153         9.3         157         6.6         6.0         180x6         180         6         6         6022         6369         0.998         0.0010           W150x30         153         9.3         157         6.6         6.0         180x6         180         6         6         6022         6006         0.997         0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14                 | W200x27 | 133        | 8.4     | 207  | 5.8        |          | 230x8  | 230      | œ              | 9        | 7142               | 7154               | 1.002       | 0.0012 | 42.9                  |
| W200x27         133         8.4         207         5.8         7.8         230x6         230         6         6         6222         6226         1.001         0.0014           W150x30         153         9.3         157         6.6         6.0         180x8         180         8         6         6742         6733         0.999         0.0010           W150x30         153         9.3         157         6.6         6.0         180x6         180         6         6         6022         6006         0.997         0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 142                | W200x27 | 133        | 8.4     | 207  | <b>5.8</b> |          | 230x7  | 230      | 7              | 9        | 6682               | 0699               | 1.00.1      | 0.0013 | 40.8                  |
| W150x30 153 9.3 157 6.6 6.0 180x8 180 8 6 6742 6733 0.999 0.0010<br>W150x30 153 9.3 157 6.6 6.0 180x7 180 7 6 6382 6369 0.998 0.0010<br>W150x30 153 9.3 157 6.6 6.0 180x6 180 6 6 6022 6006 0.997 0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 143                | W200x27 | 133        | 8.4     | 207  | 5.8        |          | 230x6  | 230      | 9              | 9        | 6222               | 6226               | 1.00.       | 0.0014 | 38.8                  |
| W150x30 153 9.3 157 6.6 6.0 180x7 180 7 6 6382 6369 0.998 0.0010 W150x30 153 9.3 157 6.6 6.0 180x6 180 6 6 6022 6006 0.997 0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del>4</del>       | W150x30 | 153        | 9.3     | 157  | 9.9        |          | 180x8  | 180      | œ              | 9        | 6742               | 6733               | 0.999       | 0.0010 | 25.4                  |
| W150x30 153 9.3 157 6.6 6.0 180x6 180 6 6 6022 6006 0.997 0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 145                | W150x30 | 153        | 9.3     | 157  | 9.9        |          | 180x7  | 180      | 7              | 9        | 6382               | 6969               | 0.998       | 0.0010 | 24.4                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 146                | W150x30 | 153        | 9.3     | 157  | 9.9        |          | 180x6  | 180      | 9              | 9        | 6022               | 9009               | 0.997       | 0.0011 | 23.4                  |

Table 5.2.b Statistical Parameters of the Geometric Properties of the Reinforced Columns

| Vr                |                       | 0.0004 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 9000.0 | 9000.0 | 0.0005 | 0.0006 | 0.0007   | 0.0007 | 9000.0 | 9000.0 | 0.0007 | 0.0008 | 0.0007 | 0.0008 | 0.0008   | 0.0009 | 0.0007 | 0.0008 | 0.0009 | 0.0000 | 0.0008 | 0.000  |
|-------------------|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|
| ριγ               | ,                     | 000.   | 000.   | 000.1  | 000.1  | 000.1  | 000.1  | 000.   | 00.1   | 000.1  | 000.     | 1.00.1 | 000.1  | 000.1  | 000.1  | 000.   | 000.1  | 000.   | 000.     | 000.1  | 000.   | 000.   | 000.   | 000.   | 000.   | 1.000  |
| ر ا               | (mm)                  | 83.7   | 82.7   | 81.9   | 83.7   | 82.7   | 81.7   | 80.8   | 82.8   | 81.8   | 80.9     | 80.5   | 82.7   | 91.8   | 9.08   | 80.1   | 9.18   | 80.5   | 80.0     | 79.5   | 81.7   | 80.5   | 79.9   | 79.4   | 66.4   | 65.5   |
| ŗ                 | (mm)                  | 83.7   | 82.7   | 81.9   | 83.6   | 82.6   | 81.7   | 80.8   | 82.8   | 8.18   | 80.9     | 80.4   | 82.7   | 91.8   | 9.08   | 80.1   | 81.5   | 80.4   | 79.9     | 79.4   | 9.18   | 80.5   | 79.9   | 79.4   | 66.4   | 65.5   |
| Vr                |                       | 0.0003 | 0.0004 | 0.0004 | 0.0003 | 0.0004 | 0.0004 | 0.0005 | 0.0004 | 0.0005 | 0.0005   | 0.0006 | 0.0004 | 0.0005 | 0.0006 | 0.0006 | 0.0005 | 90000  | 0.0007   | 0.0007 | 0.0006 | 0.0007 | 0.0007 | 0.0008 | 0.0006 | 0.0007 |
| ρα                |                       | 1.00   | 1.00.1 | 1.00.1 | 1.00.1 | 1.00.1 | 1.00.1 | 000.   | 1.00.1 | 1.00.1 | 000.     | 000.   | 1.00.1 | 1.00.  | 000.   | 000.   | 1.00.1 | 000.   | 000.1    | 000.1  | 1.00.1 | 000.   | 000.   | 000.1  | 000.1  | 000.   |
| ے ا               | (mm)                  | 157.0  | 153.8  | 151.1  | 156.2  | 153.0  | 150.3  | 147.5  | 152.5  | 149.8  | 147.1    | 145.6  | 151.3  | 148.6  | 145.8  | 144.3  | 147.9  | 145.0  | 143.6    | 142.1  | 147.5  | 144.7  | 143.2  | 141.6  | 146.9  | 144.0  |
| , ×               | (mm)                  | 156.8  | 153.6  | 151.0  | 156.0  | 152.8  | 150.2  | 147.5  | 152.4  | 149.7  | 147.0    | 145.6  | 151.2  | 148.5  | 145.7  | 144.3  | 147.8  | 145.0  | 143.6    | 142.1  | 147.4  | 144.6  | 143.2  | 141.7  | 146.8  | 144.0  |
| ><br><sub>y</sub> |                       | 0.0008 | 0.0009 | 0.0010 | 0.0000 | 0.0010 | 0.0011 | 0.0012 | 0.0010 | 0.0011 | 0.0013   | 0.0014 | 0.0011 | 0.0012 | 0.0014 | 0.0015 | 0.0013 | 0.0014 | 9100.0   | 0.0017 | 0.0013 | 0.0015 | 0.0016 | 0.0018 | 0.0014 | 0.0016 |
| ρ <sub>ly</sub>   |                       | 0.998  | 0.997  | 0.996  | 0.998  | 0.998  | 0.997  | 966.0  | 0.998  | 0.997  | 966.0    | 0.995  | 0.998  | 0.998  | 966.0  | 0.996  | 0.998  | 0.997  | 0.996    | 0.995  | 0.998  | 0.997  | 0.997  | 966.0  | 0.998  | 0.997  |
| <del>-</del> >    | (10°mm <sup>4</sup> ) | 267.3  | 239.2  | 216.8  | 248.5  | 220.3  | 6761   | 177.2  | 208.3  | 0.981  | 165.2    | 155.4  | 196.2  | 173.8  | 153.0  | 143.2  | 163.7  | 143.0  | 133.2    | 123.7  | 154.8  | 134.0  | 124.2  | 114.8  | 82.4   | 71.5   |
| <b>-</b> ^        | (10°mm <sup>4</sup> ) | 267.9  | 239.9  | 217.6  | 248.9  | 220.8  | 9.861  | 177.9  | 208.8  | 186.5  | 165.9    | 156.1  | 196.5  | 174.2  | 153.6  | 143.8  | 164.1  | 143.4  | 133.7    | 124.3  | 155.0  | 134.4  | 124.7  | 115.3  | 82.6   | 71.7   |
| >                 |                       | 0.0006 | 90000  | 0.0007 | 0.0006 | 0.0007 | 0.0008 | 0.000  | 0.0007 | 0.0008 | 0.0009   | 0.0010 | 0.0008 | 0.000  | 0.0010 | 0.0011 | 0.000  | 0.0011 | 0.0012   | 0.0013 | 0.0010 | 0.0012 | 0.0013 | 0.0014 | 0.0000 | 0.0012 |
| ρ                 |                       | 1.000  | 0.998  | 0.997  | 000.1  | 0.999  | 0.997  | 0.996  | 0.999  | 0.998  | 966'0    | 0.995  | 000.   | 0.998  | 966'0  | 0.995  | 0.998  | 0.997  | 0.995    | 0.994  | 0.999  | 0.997  | 966'0  | 0.994  | 0.999  | 0.997  |
| -*                | 10°mm <sup>4</sup> )  | 940.5  | 825.7  | 738.0  | 865.7  | 754.6  | 2.699  | 590.3  | 706.3  | 623.3  | 545.7    | 8.809  | 9.959  | 575.9  | 500.5  | 464.7  | 538.0  | 464.3  | 429.3    | 395.6  | 505.3  | 432.9  | 398.6  | 365.4  | 403.7  | 345.6  |
| No.               |                       | _      | 7      | က      | 4      | \$     | 9      | 7      | œ      | 6      | <u> </u> | =      | 12     | 13     | 14     | 15     | 91     | 17     | <u>∞</u> | 61     | 70     | 21     | 22     | 23     | 24     | 25     |

Table 5.2.b (Cont'd)

| Vr,                                                                                         | 0.0010 |        |        | _           |        |        |        |        |        |        | _      | _      | _      | _      | _      | _      | _      | _      | _      | _      | _      | _      | _      | _      | _      |
|---------------------------------------------------------------------------------------------|--------|--------|--------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| ρη                                                                                          | 000.   | 000.1  | 000.1  | 000.        | 000.1  | 000.   | 000.   | 000.   | 000.   | 000.   | 000.   | 000.   | 000.   | 000.   | 1.00.1 | 000.   | 000.   | 000.   | 000.1  | 000.1  | 000.1  | 000.1  | 000.   | 000.   | 000.   |
|                                                                                             | 65.1   | 64.7   | 65.1   | 64.6        | 64.2   | 51.1   | 50.7   | 50.3   | 51.1   | 50.7   | 50.3   | 66.3   | 62.9   | 65.6   | 65.5   | 52.0   | 51.6   | 51.2   | 51.2   | 51.0   | 50.5   | 50.4   | 53.0   | 52.7   | 52.4   |
| ry<br>(mm)                                                                                  | 65.1   | 64.7   | 65.1   | 64.6        | 64.2   | 51.2   | 50.7   | 50.4   | 51.2   | 50.7   | 50.3   | 66.3   | 62.9   | 65.6   | 65.5   | 52,0   | . 51.6 | 51.2   | 51.2   | 51.0   | 50.5   | 50.4   | 53.0   | 52.7   | 52.4   |
| V <sub>r</sub>                                                                              | 0.0008 | 0.0008 | 0.0007 | 0.0008      | 0.0009 | 0.0008 | 0.0008 | 0.000  | 0.0008 | 0.0009 | 0.0010 | 0.0007 | 0.0008 | 0.0000 | 0.0010 | 0.0008 | 0.0008 | 0.000  | 0.0010 | 0.0010 | 0.0011 | 0.0012 | 0.0007 | 0.0008 | 0.0000 |
| ρα                                                                                          | 000.   | 000.   | 000.   | 000.        | 000.   | 000.   | 000.1  | 0.999  | 000.1  | 000.   | 0.999  | 1.00.1 | 000.   | 000.   | 000.   | 000.   | 000.   | 000.   | 000.1  | 000.1  | 000.   | 0.999  | 1.00.1 | 1.00.1 | 000.   |
| r <sub>x</sub>                                                                              | 142.5  | 141.0  | 142.7  | 141.2       | 139.6  | 141.1  | 139.5  | 137.8  | 141.0  | 139.3  | 137.7  | 119.2  | 117.8  | 116.4  | 115.0  | 117.9  | 116.5  | 115.0  | 113.5  | 115.1  | 113.5  | 6:111  | 98.4   | 97.1   | 95.7   |
| r <sub>x</sub><br>(mm)                                                                      | 142.5  | 141.0  | 142.7  | 141.2       | 139.6  | 141.1  | 139.5  | 137.9  | 141.0  | 139.4  | 137.7  | 119.2  | 117.8  | 116.4  | 115.0  | 117.9  | 116.5  | 115.0  | 113.5  | 115.1  | 113.5  | 112.0  | 98.3   | 97.0   | 95.7   |
| >,                                                                                          | 0.0018 | 0.0019 | 0.0017 | 0.0019      | 0.0021 | 0.0018 | 0.0019 | 0.0021 | 0.0019 | 0.0021 | 0.0022 | 0.0018 | 0.0019 | 0.0021 | 0.0023 | 6100.0 | 0.0020 | 0.0022 | 0.0024 | 0.0023 | 0.0025 | 0.0027 | 0.0018 | 0.0020 | 0.0021 |
| $\rho_{\rm ly}$                                                                             | 966.0  | 0.995  | 0.997  | 0.997       | 0.996  | 0.997  | 966'0  | 966'0  | 0.997  | 0.997  | 966.0  | 0.997  | 0.997  | 0.996  | 0.995  | 0.997  | 0.997  | 966.0  | 0.995  | 0.998  | 0.997  | 966.0  | 0.997  | 966.0  | 0.996  |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 66.3   | 61.5   | 6.99   | <b>61.7</b> | 56.9   | 34.0   | 31.4   | 28.9   | 31.6   | 29.0   | 56.6   | 65.8   | 60.7   | 55.8   | 51.7   | 32.2   | 29.6   | 27.1   | 25.2   | 25.9   | 23.4   | 21.5   | 33.7   | 31.1   | 28.7   |
| I,<br>(10°mm <sup>±</sup> )                                                                 | 9.99   | 8.19   | 0.79   | 62.0        | 57.1   | 34.1   | 31.5   | 29.1   | 31.7   | 29.1   | 26.7   | 62.9   | 6.09   | 96.0   | 52.0   | 32.2   | 29.7   | 27.2   | 25.3   | 25.9   | 23.5   | 21.6   | 33.8   | 31.2   | 28.8   |
| >                                                                                           | 0.0013 | 0.0014 | 0.0013 | 0.0014      | 0.0015 | 0.0013 | 0.0014 | 0.0015 | 0.0014 | 0.0015 | 0.0017 | 0.0013 | 0.0014 | 0.0016 | 0.0017 | 0.0013 | 0.0014 | 0.0016 | 0.0018 | 0.0016 | 0.0018 | 0.0020 | 0.0012 | 0.0014 | 0.0015 |
|                                                                                             |        | 0.994  | 0.997  | 966'0       | 0.995  | 0.998  | 966'0  | 0.995  | 0.998  | 0.997  | 966'0  | 0.998  | 0.997  | 0.995  | 0.994  | 0.998  | 0.997  | 966'0  | 0.994  | 0.998  | 0.997  | 0.995  | 866'0  | 0.997  | 966.0  |
|                                                                                             | 318.1  | 291.7  | 321.3  | 294.5       | 268.7  | 258.7  | 237.4  | 216.9  | 240.2  | 219.2  | 1.661  | 212.6  | 193.8  | 175.7  | 159.2  | 9'591  | 150.8  | 136.6  | 123.7  | 131.9  | 118.2  | 105.8  | 116,3  | 105.6  | 95.5   |
| S.<br>O.                                                                                    | 26     | 27     | 28     | 29          | 30     | 31     | 32     | 33     | 34     | 35     | 36     | 37     | 38     | 36     | 40     | 4      | 45     | 43     | 44     | 45     | 46     | 47     | 48     | 49     | 20     |

Table 5.2.b (Cont'd)

| $V_{lx}$ $I_y$ $I_y$ $I_y$ |
|----------------------------|
| 26.8                       |
| 0.0014 31.2 31.2           |
| 28.7                       |
| 26.2                       |
| 24.3                       |
| 26.2                       |
| 23.7                       |
| 21.8                       |
| 14.3                       |
| 13.0                       |
| 12.1                       |
| 12.9                       |
| 11.7                       |
|                            |
| 6.7                        |
| 6,1                        |
| 5.7                        |
| 5.3                        |
| 5.1                        |
| 4.9                        |
| <b>8</b> .8                |
| 8.4                        |
| <del>8</del> .             |
|                            |
| 547.1 5                    |

Table 5.2.b (Cont'd)

|   | $\rho_{ry}$ $V_{r_y}$ |                          | 1.007 0.0004 | 1.008 0.0003 | 1.007 0.0003 | 1.007 0.0004 | 1.007 0.0004 | 1.008 0.0003 | 1.007 0.0004 | 1.007 0.0005 | 1.007 0.0005 |         |        |         |        |        |        | 1.007 0.0006 |        | 1.007 0.0004 |        | 1.007 0.0006 | 1.007 0.0007 | _      | 1.007 0.0005 |         |
|---|-----------------------|--------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|--------|---------|--------|--------|--------|--------------|--------|--------------|--------|--------------|--------------|--------|--------------|---------|
|   | حي                    | (mm)                     |              | 6 129.6      | 4 123.3      | 7 117.5      | _            | 2 125.1      | _            | <u>~</u>     | _            | _       |        |         |        |        |        |              |        |              |        |              | 107.8        |        |              |         |
|   | ŗ,                    | (mm)                     | 5 115.2      | _            | 5 122.       | _            | 6 110.0      | 5 124.2      | 5 118.4      | 5 111.0      | _            | 5 125.6 | _      | 7 112.9 | _      | _      | _      | 3 110.3      | _      | _            |        | _            | 107.1        |        |              |         |
|   | V <sub>r</sub>        |                          | 0.0005       | 0.0005       | 0.0005       | 0.0005       | 0.0006       | 0.000        | 0.0006       | 0.0006       | 0.000        | 0.000   | 0.000  | 0.000   | 0.000  | 0.000  | 0.000  | 0.0008       | 0.000  | 0.000        | 0.000  | 0.0008       | 0.000        | 0.0007 | 0.0008       | (       |
|   | ρα                    |                          | 0.998        | 0.998        | 0.998        | 0.998        | _            | _            | _            | _            | _            | 0.998   | _      |         | _      | _      | _      | 0.998        | 0.998  | 0.998        | 0.998  | 0.998        | 0.998        | 0.997  | 0.997        | 1       |
|   | Ž                     | (mm)                     | 128.7        | 124.0        | 125.4        | 126.9        | 128.9        | 124.1        | 125.6        | 127.6        | 128.8        | 122.3   | 123.8  | 125.7   | 126.9  | 122.4  | 124.4  | 125.6        | 127.0  | 121.2        | 123.2  | 124.4        | 125.8        | 117.4  | 119.7        | •       |
|   | ٦,                    | (mm)                     | 128.9        | 124.3        | 125.7        | 127.2        | 129.1        | 124.4        | 125.9        | 127.9        | 129.1        | 122.6   | 124.1  | 126.0   | 127.2  | 122.7  | 124.6  | 125.8        | 127.2  | 121.5        | 123.5  | 124.7        | 126.1        | 117.7  | 120.0        |         |
|   | ><br>,                |                          | 0.0006       | 0.0004       | 0.0005       | 0.0006       | 0.0007       | 0.0005       | 0.0006       | 0.0008       | 0.000        | 0.0005  | 0.0006 | 0.0008  | 0.0009 | 0.0007 | 0.0008 | 0.0009       | 0.0011 | 0.0007       | 0.0008 | 0.0010       | 0.0011       | 0.0006 | 0.0008       |         |
|   | ριγ                   |                          | _            | 1.014        | 1.013        | 1.0.1        | -000         | 1.013        | 1.012        | 1.010        | 1.009        | 1.014   | 1.012  | 1.011   | 1.009  | 1.013  | 1.01   | 1.010        | 1.008  | 1.013        | 1.012  | 1.0.1        | 1.009        | 1.014  | 1.013        | •       |
|   | <b>-</b> ^            | $(10^{6} \text{mm}^{4})$ | 460.9        | 648.7        | 527.4        | 436.3        | 350.4        | 513.0        | 422.4        | 337.0        | 296.3        | 498.4   | 408.3  | 323.4   | 282.9  | 396.4  | 312.0  | 271.7        | 232.8  | 385.5        | 301.7  | 261.7        | 222.9        | 246.6  | 190.2        |         |
|   | <b>-</b> ^            | (10°mm <sup>4</sup> )    | 456.1        | 9,669        | 520.8        | 431.4        | 347.2        | 506.3        | 417.5        | 333.7        | 293.8        | 491.6   | 403.3  | 320.1   | 280.3  | 391.3  | 308.6  | 269.1        | 230.8  | 380.4        | 298.2  | 258.9        | 220.9        | 243.1  | 187.8        | / . / . |
|   | >                     |                          | 0.0000       | 0.0008       | 0.000        | 0.0010       | 0.000        | 0.0010       | 0.0011       | 0.0011       | 0.0012       | 0.0011  | 0.0011 | 0.0012  | 0.0013 | 0.0012 | 0.0013 | 0.0014       | 0.0015 | 0.0013       | 0.0015 | 0.0015       | 0.0016       | 0.0014 | 0.0015       | 71000   |
|   | ρ <sub>ix</sub>       | (                        | 0.993        | 0.995        | 0.994        | 0.993        | 0.992        | 0.994        | 0.993        | 0.992        | 0.991        | 0.994   | 0.993  | 0.992   | 0.991  | 0.994  | 0.992  | 0.992        | 0.991  | 0.994        | 0.993  | 0.992        | 0.991        | 0.994  | 0.993        |         |
| l | <b>-</b> ×            | (10°mm <sup>4</sup>      | 9.795        | 593.8        | 545.4        | 509.0        | 474.7        | 505.2        | 469.0        | 434.8        | 418.4        | 465.4   | 429.5  | 395.4   | 379.1  | 397.8  | 363.8  | 347.6        | 331.7  | 369.7        | 335.9  | 319.6        | 303.8        | 302.6  | 273.4        | 2020    |
|   | No.                   |                          | 9/           | 11           | 78           | 6/           | 80           | 8            | 82           | 83           | <b>%</b>     | 82      | 98     | 87      | 88     | 86     | 8      | 6            | 95     | 93           | 94     | 95           | 96           | 67     | 86           | 5       |

Table 5.2.b (Cont'd)

| P <sub>lx</sub> V <sub>lx</sub>     | <b>-</b> ^            | <b>-</b> -^. | $\rho_{ly}$ | <b>&gt;</b> | ŗ,    | ٦     | ρ     | Vrx    | ŗ     | ح ا   | ρη    | V <sub>y</sub> |
|-------------------------------------|-----------------------|--------------|-------------|-------------|-------|-------|-------|--------|-------|-------|-------|----------------|
| ) ( <sub>_</sub> mm <sub>0</sub> )) | (10°mm <sup>4</sup> ) |              |             |             | (mm)  | (mm)  |       |        | (mm)  | (mm)  |       |                |
| 0.0016 183.2                        | 185.6                 |              | 1.013       | 0.0008      | 118.2 | 117.8 | 0.997 | 0.0009 | 100.3 | 101.0 | 1.007 | 0.0005         |
| 0.0017 156.9                        | 158.9                 |              | 1.012       | 0.0010      | 9.611 | 119.3 | 0.997 | 0.0009 | 9.96  | 97.3  | 1.007 | 0.0006         |
| 0.0018 131.7                        | 133.1                 |              | 1.0.1       | 0.0011      | 121.3 | 121.0 | 0.997 | 0.0010 | 92.3  | 92.9  | 1.007 | 0.0007         |
| 0.0015 115.1                        | 116.8                 |              | 1.015       | 0.0008      | 115.5 | 115.2 | 0.997 | 0.0008 | 83.2  | 83.8  | 1.007 | 0.0005         |
| 9.76 9100.0                         | 6.86                  |              | 1.014       | 0.0009      | 116.9 | 9.911 | 0.997 | 0.0009 | 80.0  | 9.08  | 1.007 | 0.0006         |
| 0.0017 80.8                         | 81.8                  |              | 1.012       | 0.0011      | 118.6 | 118.2 | 0.997 | 0.000  | 76.3  | 76.8  | 1.007 | 0.0007         |
| 0.0016 111.8                        | 113.5                 |              | 1.015       | 0.0008      | 114.3 | 114.0 | 0.997 | 0.0009 | 84.4  | 85.0  | 1.007 | 0.0006         |
| 0.0017 94.5                         | 95.8                  |              | 1.014       | 0.000       | 115.7 | 115.3 | 0.997 | 0.0010 | 81.2  | 81.8  | 1.007 | 0.0006         |
| 0.0018 77.8                         | 78.8                  |              | 1.013       | 0.0011      | 117.4 | 117.0 | 0.997 | 0.0010 | 77.5  | 78.1  | 1.007 | 0.0007         |
| 0.0017 160.8                        | 162.8                 |              | 1.013       | 0.000       | 99.4  | 99.1  | 0.998 | 0.0009 | 9.66  | 100.4 | 1.007 | 0.0006         |
| 0,0018 138.4                        | 140.0                 |              | 1.012       | 0.0010      | 100.4 | 100.2 | 0.998 | 0.0010 | 96.0  | 7.96  | 1.007 | 0.0006         |
| 116.8                               | 118.0                 |              | 1.010       | 0.0012      | 101.7 | 101.5 | 0.998 | 0.0000 | 6.16  | 92.6  | 1.007 | 0.0007         |
| 0.0020 96.7                         | 97.5                  |              | 1.008       | 0.0014      | 103.4 | 103.2 | 0.998 | 0.0011 | 87.2  | 87.8  | 1.007 | 0.0008         |
| 0.0016 98.5                         | 6.66                  |              | 1.014       | 0.0008      | 6.96  | 9.96  | 0.997 | 0.0009 | 82.9  | 83.5  | 1.007 | 0.0005         |
| 0.0017 83.7                         | 84.8                  |              | 1.013       | 0.0010      | 6.76  | 9.76  | 0.997 | 0.0009 | 8.6/  | 80.3  | 1.007 | 0.0006         |
| 0.0018 69.4                         | 70.3                  |              | 1.012       | 0.0011      | 99.2  | 6.86  | 0.998 | 0.0010 | 76.2  | 7.92  | 1.007 | 0.0007         |
| 0.0020 56.3                         | 8.99                  |              | 010.1       | 0.0014      | 6.001 | 9.001 | 0.998 | 0.0011 | 72.0  | 72.5  | 1.007 | 0.0008         |
| 0.0020 79.3                         | 80.5                  |              | 1.014       | 0.0010      | 95.5  | 95.3  | 0.997 | 0.0011 | 81.4  | 82.0  | 1.007 | 0.0007         |
| 0.0021 65.2                         | 99.1                  |              | 1.013       | 0.0012      | 2.96  | 96.5  | 0.997 | 0.0012 | 77.7  | 78.3  | 1.007 | 0.0008         |
| 0.0023 52.2                         | 52.8                  |              | 1.0.1       | 0.0015      | 98.4  | 98.1  | 0.997 | 0.0013 | 73.4  | 73.9  | 1.007 | 0.0009         |
| 0.0016 87.4                         | 88.6                  |              | 1.013       | 0.0009      | 81.3  | 81.1  | 0.998 | 0.0009 | 81.2  | 8.18  | 1.007 | 0.0005         |
| 0.0017 74.9                         | 75.8                  |              | 1.012       | 0.0010      | 82.1  | 6.18  | 0.998 | 0.0009 | 78.2  | 78.7  | 1.007 | 9000.0         |
| 0.0018 62.9                         | 63.5                  |              | 010.1       | 0.0012      | 83.1  | 82.9  | 0.998 | 0.0000 | 74.7  | 75.2  | 1.007 | 0.0007         |
| 0.0019 51.9                         | 52.3                  |              | 1.008       | 0.0014      | 84.4  | 84.3  | 0.998 | 0.0000 | 70.7  | 71.2  | 1.007 | 0.0008         |
| 0.0018 84.2                         | 1                     |              |             |             | 000   | 0 06  | 9000  |        | 7 00  | 0     | 000   |                |

Table 5.2.b (Cont'd)

| ٧,               |                       | 0.0006 | 0.0007 | 0.000  | 0.0007 | 0.0008 | 0.0000 | 0.0006 | 0.0007 | 0.0000 | 0.0007 | 0.0008 | 0.0009 | 0.0007 | 0.0008 | 0.0009         | 0.0008 | 0.0009 | 0.0010 | 0.0008 | 0.0000 | 0.0010 |
|------------------|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------------|--------|--------|--------|--------|--------|--------|
| ρι               |                       | 1.007  | 1.007  | 1.007  | 1.007  | 1.007  | 1.007  | 1.007  | 1.007  | 1.007  | 1.007  | 1.007  | 1.007  | 1.007  | 1.007  | 1.007          | 1.007  | 1.007  | 1.007  | 1.007  | 1.007  | 1.007  |
| ٦٠               | (mm)                  | 80.1   | 9.9/   | 72.5   | 81.4   | 77.8   | 73.6   | 6.79   | 64.8   | 61.1   | 69.2   | 1.99   | 62.4   | 57.6   | 54.8   | 51.6           | 55.8   | 54.2   | 52.5   | 6.09   | 59.3   | 57.5   |
| <b>-</b> >       | (mm)                  | 79.5   | 76.0   | 72.0   | 80.8   | 77.2   | 73.1   | 67.4   | 64.3   | 60.7   | 68.7   | 65.6   | 62.0   | 57.2   | 54.4   | 51.2           | 55.4   | 53.9   | 52.2   | 60.4   | 58.8   | 57.1   |
| ۷<br>ټ           |                       | 0.0010 | 0.0011 | 0.0012 | 0.0011 | 0.0012 | 0.0013 | 0.000  | 0.0011 | 0.0012 | 0.0011 | 0.0012 | 0.0013 | 0.001  | 0.0012 | 0.0013         | 0.0013 | 0.0014 | 0.0015 | 0.0013 | 0.0014 | 0.0014 |
| ρα               |                       | 0.998  | 0.998  | 0.998  | 0.998  | 0.998  | 0.998  | 0.998  | 0.998  | 0.998  | 0.998  | 0.998  | 0.998  | 0.997  | 0.997  | 0.997          | 0.997  | 0.997  | 0.997  | 0.998  | 0.998  | 0.998  |
| ٦ -              | (mm)                  | 9.08   | 81.6   | 83.0   | 79.4   | 80.4   | 81.8   | 78.7   | 7.67   | 8I.I   | 77.4   | 78.3   | 7.67   | 77.8   | 78.8   | 80.4           | 77.2   | 6.77   | 78.7   | 61.2   | 61.7   | 62.2   |
| r,               | (mm)                  | 80.8   | 81.8   | 83.2   | 9.62   | 90.8   | 81.9   | 78.9   | 6.62   | 81.3   | 77.6   | 78.5   | 79.9   | 78.0   | 79.1   | 9.08           | 77.5   | 78.2   | 79.0   | 61.4   | 8.19   | 62.4   |
| >,               |                       | 0.0010 | 0.0012 | 0.0015 | 0.0011 | 0.0013 | 0.0016 | 0.0010 | 0.0012 | 0.0014 | 0.0010 | 0.0012 | 0.0015 | 0.000  | 0.0012 | 0.0014         | 0.0012 | 0.0013 | 0.0015 | 0.0013 | 0.0014 | 0.0016 |
| ρίγ              |                       |        | 1.011  | 1.009  | 1.013  | 1.012  | 1.010  | 1.014  | 1.013  | 1.0.1  | 1.015  | 1.014  | 1.012  | 910:1  | 1.015  | 1.013          | 1.015  | 1.015  | 1.014  | 1.013  | 1.012  | 1.01   |
| ا <del>-</del> ا | (10°mm <sup>4</sup> ) | 72.7   | 9.09   | 49.4   | 69.7   | 57.7   | 46.7   | 46.1   | 37.8   | 30.2   | 44.4   | 36.1   | 28.6   | 29.0   | 23.3   | 18.2           | 22.2   | 19.7   | 17.2   | 25.0   | 22.4   | 8.61   |
| -^<br>-^`        | (10°mm <sup>+</sup> ) | 71.8   | 59.9   | 49.0   | 8.89   | 57.0   | 46.2   | 45.5   | 37.3   | 29.9   | 43.7   | 35.7   | 28.3   | 28.5   | 23.0   | 17.9           | 21.9   | 19.4   | 6.91   | 24.6   | 22.1   | 9.61   |
| >,               |                       | 0.0019 | 0.0020 | 0.0021 | 0.0021 | 0.0023 | 0.0024 | 0.0018 | 0.0020 | 0.0021 | 0.0020 | 0.0022 | 0.0024 | 0.0019 | 0.0021 | 0.0023         | 0.0024 | 0.0025 | 0.0026 | 0.0024 | 0.0025 | 0.0026 |
| ρ <sub>ix</sub>  |                       | 0.993  | 0.992  | 0.991  | 0.994  | 0.993  | 0.992  | 0.995  | 0.994  | 0.992  | 0.995  | 0.994  | 0.993  | 966'0  | 0.995  | 0.994          | 966'0  | 0.995  | 0.995  | 0.994  | 0.993  | 0.993  |
| <del></del>      | 10"mm")               | 73.6   | 6'89   | 64.8   | 66.4   | 61.7   | 97.6   | 62.0   | 57.3   | 53.2   | 55.5   | 8.09   | 46.7   | 53.0   | 48.2   | 44 <b>.</b> -1 | 42.7   | 40.6   | 38.6   | 25.2   | 24.3   | 23.3   |
| No.              | -                     | 126    | 127    | 128    | 129    | 130    | 131    | 132    |        | 16     | 135    | 136    | 137    | 138    | 136    | 140            | 14     | 142    | 143    | 144    | 145    | 146    |

Table 5.3 Statistical Quantities,  $\rho_{\text{G}}$  and  $V_{\text{G}},$  for Geometric Variations

| Geometric                 |           |         |
|---------------------------|-----------|---------|
| Variation                 | $ ho_{G}$ | $V_{G}$ |
| G                         |           |         |
| A                         | 0.997     | 0.002   |
| $I_{\kappa}$              | 0.995     | 0.003   |
| $\mathbf{I}_{\mathbf{y}}$ | 1.004     | 0.008   |
| $r_x$                     | 0.999     | 0.002   |
| r <sub>y</sub>            | 1.004     | 0.004   |
| I                         | 1.000     | 0.008   |
| r                         | 1.001     | 0.004   |

Note: A - area of the column reinforced with welded steel plates

 $I_x$  - moment of inertia of cross section about principal x axis

I<sub>v</sub> - moment of inertia of cross section about principal y axis

 $r_x$  - radius of gyration of the cross section about principal x axis

 $r_y$  - radius of gyration of the cross section about principal y axis

I - moment of inertia of cross section

r - radius of gyration of the cross section

Table 5.4 Statistical Parameters for the Material Properties

| Reference | Slenderness    |             |       |                 |                   |                |        |          |       |       |
|-----------|----------------|-------------|-------|-----------------|-------------------|----------------|--------|----------|-------|-------|
| Criteria  | parameter      | ρ           | >     | $\rho_{\rm Fy}$ | ><br><sup>3</sup> | $\rho_{\rm E}$ | ∨<br>E | <b>હ</b> | ρF    | >     |
|           | ィ              |             |       |                 |                   |                |        |          |       |       |
| SSRC      | 0.4            | 1.00.1      | 0.004 | 1.092           | 0.088             | 1.038          | 0.026  | 1.025    | 1.090 | 0.085 |
| Curve     | =:             | <u>100:</u> | 0.004 | 1.092           | 0.088             | 1.038          | 0.026  | 1.025    | 1.062 | 0.039 |
| 1         | 1.5            | <u>-00.</u> | 0.004 | 1.092           | 0.088             | 1.038          | 0.026  | 1.025    | 1.047 | 0.026 |
| SSRC      | 9.4            | <u>-00.</u> | 0.004 | 1.092           | 0.088             | 1.038          | 0.026  | 1.025    | 1.088 | 0.080 |
| Curve     | <del>-</del> : | <u>.00.</u> | 0.004 | 1.092           | 0.088             | 1.038          | 0.026  | 1.025    | 1.057 | 0.034 |
| 2         | 1.5            | <u></u>     | 0.004 | 1.092           | 0.088             | 1.038          | 0.026  | 1.025    | 1.055 | 0.031 |
| CSA       | 0.4            | 1.00.1      | 0.004 | 1.092           | 0.088             | 1.038          | 0.026  | 1.025    | 1.001 | 0.086 |
| Curve     | =              | 1.00        | 0.004 | 1.092           | 0.088             | 1.038          | 0.026  | 1.025    | 090:1 | 0.036 |
| -         | 1.5            | 1.00        | 0.00  | 1.092           | 0.088             | 1.038          | 0.026  | 1.025    | 1.047 | 0.026 |
| CSA       | 0.4            | 1.00.1      | 0.004 | 1.092           | 0.088             | 1.038          | 0.026  | 1.025    | 1.088 | 0.080 |
| Curve     | <b>-</b>       | <u>1.00</u> | 0.004 | 1.092           | 0.088             | 1.038          | 0.026  | 1.025    | 1.062 | 0.040 |
| 2         | 1.5            | 1.00        | 0.004 | 1.092           | 0.088             | 1.038          | 0.026  | 1.025    | 1.053 | 0.029 |

Table 5.5 Simulated Professional Factors for Columns from Group 1 ( $\lambda = 0.4$ )

| FEA          |     |     | Out-of-      |                  | SSRC 1             | SSRC 2             | CSA 1               | CSA 2                             |
|--------------|-----|-----|--------------|------------------|--------------------|--------------------|---------------------|-----------------------------------|
| model        | D   | В   | Straightness | $P_{fea}/P_{ry}$ | $ ho_{s}$          | $ ho_{s}$          | $ ho_{s}$           | $ ho_{s}$                         |
| No.          |     |     | $\delta_0$   | <u> </u>         | $(P_{fea}/P_{rl})$ | $(P_{fea}/P_{r2})$ | $(P_{fea}/P_{rc1})$ | $(P_{\text{fea}}/P_{\text{rc}2})$ |
| (1)          | (2) | (3) | (4)          | (5)              | (6)                | (7)                | (8)                 | (9)                               |
| 36           | F   | S   | L/1000       | 0.933            | 0.952              | 1.016              | 0.940               | 0.992                             |
| 37           | F   | S   | L/1000       | 0.934            | 0.953              | 1.017              | 0.941               | 0.994                             |
| 38           | F   | S   | L/1000       | 0.936            | 0.955              | 1.019              | 0.943               | 0.995                             |
| 39           | F   | S   | L/1000       | 0.942            | 0.961              | 1.025              | 0.949               | 1.001                             |
| 51           | G   | W   | L/1000       | 0.951            | 0.970              | 1.035              | 0.958               | 1.011                             |
| 52           | G   | W   | L/1000       | 0.957            | 0.976              | 1.041              | 0.964               | 1.017                             |
| 53           | G   | W   | L/1000       | 0.958            | 0.977              | 1.043              | 0.965               | 1.018                             |
| 54           | G   | W   | L/1000       | 0.962            | 0.982              | 1.048              | 0.970               | 1.023                             |
| 100          | F   | S   | L/1000       | 0.939            | 0.958              | 1.022              | 0.946               | 0.999                             |
| 101          | F   | S   | L/1000       | 0.941            | 0.960              | 1.024              | 0.948               | 1.000                             |
| 102          | F   | S   | L/1000       | 0.933            | 0.952              | 1.015              | 0.940               | 0.992                             |
| 103          | F   | S   | L/1000       | 0.939            | 0.958              | 1.022              | 0.946               | 0.999                             |
| 130          | F   | S   | L/1000       | 0.938            | 0.957              | 1.021              | 0.944               | 0.997                             |
| 131          | F   | S   | L/1000       | 0.940            | 0.959              | 1.023              | 0.946               | 0.999                             |
| 132          | F   | S   | L/1000       | 0.934            | 0.953              | 1.017              | 0.941               | 0.994                             |
| 133          | F   | S   | L/1000       | 0.939            | 0.958              | 1.022              | 0.946               | 0.998                             |
| 145          | G   | W   | L/1000       | 0.952            | 0.971              | 1.036              | 0.959               | 1.012                             |
| 146          | G   | W   | L/1000       | 0.969            | 0.989              | 1.055              | 0.976               | 1.030                             |
| 147          | G   | W   | L/1000       | 0.965            | 0.985              | 1.051              | 0.972               | 1.026                             |
| 148          | G   | W   | L/1000       | 0.968            | 0.987              | 1.053              | 0.975               | 1.029                             |
| 190          | F   | S   | L/8000       | 0.977            | 0.997              | 1.063              | 0.984               | 1.039                             |
| 191          | F   | S   | L/2000       | 0.963            | 0.982              | 1.048              | 0.970               | 1.024                             |
| 192          | F   | S   | L/1000       | 0.947            | 0.966              | 1.031              | 0.954               | 1.007                             |
| 193          | F   | S   | L/1000       | 0.954            | 0.973              | 1.038              | 0.961               | 1.014                             |
| 194          | F   | S   | L/1000       | 0.940            | 0.959              | 1.023              | 0.947               | 1.000                             |
| 195          | F   | S   | L/1000       | 0.947            | 0.966              | 1.031              | 0.954               | 1.007                             |
| 209          | G   | W   | L/8000       | 1.000            | 1.021              | 1.089              | 1.008               | 1.064                             |
| 210          | G   | W   | L/2000       | 0.981            | 1.001              | 1.067              | 0.988               | 1.043                             |
| 211          | G   | W   | L/1000       | 0.963            | 0.982              | 1.048              | 0.970               | 1.024                             |
| 212          | G   | W   | L/1000       | 0.968            | 0.987              | 1.053              | 0.975               | 1.029                             |
| 213          | G   | W   | L/1000       | 0.963            | 0.982              | 1.048              | 0.970               | 1.024                             |
| 214<br>Note: | G   | W   | L/1000       | 0.968            | 0.987              | 1.053              | 0.975               | 1.029                             |

Prv - Yield strength of reinforced column

P<sub>fea</sub> - Finite element analysis after reinforcing

P<sub>r1</sub> - Capacity after reinforcing (SSRC1)

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>rc1</sub> - Capacity after reinforcing (CSA1)

P<sub>rc2</sub> - Capacity after reinforcing (CSA2)

L - Column length

D - Orientation of reinforcing plates

F - Parallel to the flanges

G - Parallel to the web

**B** - Buckling axis

W - Weak axis of the rolled section

Table 5.5 (Cont'd)

| FEA   |     |     | Out-of-      |                  | SSRC 1             | SSRC 2             | CSA 1               | CSA 2               |
|-------|-----|-----|--------------|------------------|--------------------|--------------------|---------------------|---------------------|
| model | D   | В   | Straightness | $P_{fea}/P_{ry}$ | $ ho_{s}$          | $ ho_{s}$          | $ ho_{s}$           | $ ho_{s}$           |
| No.   |     |     | $\delta_0$   |                  | $(P_{fea}/P_{rl})$ | $(P_{fea}/P_{r2})$ | $(P_{fea}/P_{rc1})$ | $(P_{fea}/P_{rc2})$ |
| (1)   | (2) | (3) | (4)          | (5)              | (6)                | (7)                | (8)                 | (9)                 |
| 262   | F   | S   | L/1000       | 0.944            | 0.963              | 1.027              | 0.951               | 1.004               |
| 263   | F   | S   | L/1000       | 0.952            | 0.971              | 1.036              | 0.959               | 1.012               |
| 264   | F   | S   | L/1000       | 0.946            | 0.966              | 1.030              | 0.953               | 1.006               |
| 265   | F   | S   | L/1000       | 0.952            | 0.971              | 1.036              | 0.959               | 1.012               |
| 277   | G   | W   | L/1000       | 0.956            | 0.975              | 1.041              | 0.963               | 1.017               |
| 278   | G   | W   | L/1000       | 0.961            | 0.980              | 1.046              | 0.968               | 1.021               |
| 279   | G   | W   | L/1000       | 0.961            | 0.980              | 1.046              | 0.968               | 1.022               |
| 280   | G   | W   | L/1000       | 0.964            | 0.984              | 1.049              | 0.971               | 1.025               |

Prv - Yield strength of reinforced column

P<sub>fea</sub> - Finite element analysis after reinforcing

P<sub>r1</sub> - Capacity after reinforcing (SSRC1)

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>re1</sub> - Capacity after reinforcing (CSA1)

P<sub>re2</sub> - Capacity after reinforcing (CSA2)

L - Column length

D - Orientation of reinforcing plates

F - Parallel to the flanges

G - Parallel to the web

B - Buckling axis

W - Weak axis of the rolled section

S - Strong axis of the rolled section

Table 5.6 Simulated Professional Factors for Columns from Group 1 ( $\lambda = 1.1$ )

| FEA   |     |     | Out-of-      |                  | SSRC 1             | SSRC 2             | CSA 1               | CSA 2               |
|-------|-----|-----|--------------|------------------|--------------------|--------------------|---------------------|---------------------|
| model | D   | В   | Straightness | $P_{fea}/P_{ry}$ | $ ho_{s}$          | $ ho_{s}$          | $ ho_{s}$           | $ ho_{s}$           |
| No.   |     |     | $\delta_0$   | •                | $(P_{fea}/P_{r1})$ | $(P_{fea}/P_{r2})$ | $(P_{fea}/P_{rc1})$ | $(P_{fea}/P_{rc2})$ |
| (1)   | (2) | (3) | (4)          | (5)              | (6)                | (7)                | (8)                 | (9)                 |
| 40    | F   | S   | L/8000       | 0.682            | 1.003              | 1.265              | 1.033               | 1.266               |
| 41    | F   | S   | L/2000       | 0.630            | 0.926              | 1.168              | 0.954               | 1.169               |
| 42    | F   | S   | L/1400       | 0.609            | 0.895              | 1.129              | 0.922               | 1.130               |
| 43    | F   | S   | L/1400       | 0.618            | 0.908              | 1.146              | 0.935               | 1.147               |
| 44    | F   | S   | L/1400       | 0.626            | 0.920              | 1.161              | 0.948               | 1.162               |
| 45    | F   | S   | L/1400       | 0.566            | 0.832              | 1.049              | 0.856               | 1.050               |
| 46    | F   | S   | L/1400       | 0.585            | 0.860              | 1.086              | 0.886               | 1.086               |
| 55    | G   | W   | L/8000       | 0.707            | 1.040              | 1.312              | 1.071               | 1.313               |

Note:  $\delta_0$  - Initial imperfection

P<sub>rv</sub> - Yield strength of reinforced column

P<sub>fea</sub> - Finite element analysis after reinforcing

 $P_{r1}$  - Capacity after reinforcing (SSRC1)

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>re1</sub> - Capacity after reinforcing (CSA1)

P<sub>rc2</sub> - Capacity after reinforcing (CSA2)

L - Column length

D - Orientation of reinforcing plates

F - Parallel to the flanges

G - Parallel to the web

B - Buckling axis

W - Weak axis of the rolled section

Table 5.6 (Cont'd)

| FEA   |     |              | Out-of-      |                  | SSRC 1             | SSRC 2             | CSA 1               | CSA 2               |
|-------|-----|--------------|--------------|------------------|--------------------|--------------------|---------------------|---------------------|
| model | D   | В            | Straightness | $P_{fea}/P_{ry}$ | $ ho_{s}$          | $ ho_{s}$          | $ ho_{s}$           | $ ho_{s}$           |
| No.   |     |              | $\delta_0$   | ·                | $(P_{fea}/P_{rl})$ | $(P_{fea}/P_{r2})$ | $(P_{fea}/P_{rc1})$ | $(P_{fea}/P_{rc2})$ |
| (1)   | (2) | (3)          | (4)          | (5)              | (6)                | (7)                | (8)                 | (9)                 |
| 56    | G   | W            | L/2000       | 0.636            | 0.935              | 1.180              | 0.963               | 1.181               |
| 57    | G   | $\mathbf{w}$ | L/1100       | 0.588            | 0.865              | 1.091              | 0.890               | 1.092               |
| 58    | G   | W            | L/1100       | 0.599            | 0.880              | 1.111              | 0.907               | 1.112               |
| 59    | G   | W            | L/1100       | 0.611            | 0.898              | 1.133              | 0.925               | 1.134               |
| 60    | G   | W            | L/1150       | 0.609            | 0.896              | 1.130              | 0.922               | 1.131               |
| 61    | G   | W            | L/1150       | 0.631            | 0.927              | 1.170              | 0.955               | 1.171               |
| 104   | F   | S            | L/8000       | 0.687            | 1.011              | 1.275              | 1.041               | 1.276               |
| 105   | F   | S            | L/2000       | 0.639            | 0.939              | 1.185              | 0.967               | 1.185               |
| 106   | F   | S            | L/1350       | 0.614            | 0.902              | 1.138              | 0.929               | 1.139               |
| 107   | F   | S            | L/1350       | 0.624            | 0.917              | 1.157              | 0.944               | 1.158               |
| 108   | F   | S            | L/1350       | 0.630            | 0.926              | 1.169              | 0.954               | 1.170               |
| 109   | F   | S            | L/1400       | 0.566            | 0.833              | 1.051              | 0.857               | 1.051               |
| 110   | F   | S            | L/1400       | 0.589            | 0.865              | 1.092              | 0.891               | 1.093               |
| 134   | F   | S            | L/8000       | 0.683            | 1.004              | 1.266              | 1.034               | 1.267               |
| 135   | F   | S            | L/2000       | 0.633            | 0.931              | 1.174              | 0.958               | 1.175               |
| 136   | F   | S            | L/1350       | 0.609            | 0.896              | 1.130              | 0.922               | 1.131               |
| 137   | F   | S            | L/1350       | 0.619            | 0.910              | 1.148              | 0.937               | 1.149               |
| 138   | F   | S            | L/1350       | 0.627            | 0.922              | 1.163              | 0.950               | 1.164               |
| 139   | F   | S            | L/1400       | 0.559            | 0.822              | 1.037              | 0.847               | 1.038               |
| 140   | F   | S            | L/1400       | 0.582            | 0.856              | 1.080              | 0.882               | 1.081               |
| 149   | G   | W            | L/8000       | 0.723            | 1.062              | 1.340              | 1.094               | 1.341               |
| 150   | G   | W            | L/2000       | 0.656            | 0.965              | 1.217              | 0.993               | 1.218               |
| 151   | G   | W            | L/1000       | 0.601            | 0.884              | 1.115              | 0.910               | 1.116               |
| 152   | G   | W            | L/1000       | 0.612            | 0.899              | 1.135              | 0.926               | 1.136               |
| 153   | G   | W            | L/1000       | 0.621            | 0.913              | 1.152              | 0.940               | 1.152               |
| 154   | G   | W            | L/1100       | 0.620            | 0.912              | 1.151              | 0.939               | 1.151               |
| 155   | G   | W            | L/1100       | 0.641            | 0.942              | 1.188              | 0.970               | 1.189               |
| 196   | F   | S            | L/8000       | 0.713            | 1.049              | 1.323              | 1.080               | 1.324               |
| 197   | F   | S            | L/2000       | 0.670            | 0.985              | 1.243              | 1.014               | 1.244               |
| 198   | F   | S            | L/1000       | 0.629            | 0.924              | 1.166              | 0.952               | 1.167               |
| 199   | F   | S            | L/1000       | 0.646            | 0.950              | 1.199              | 0.979               | 1.200               |
| 200   | F   | S            | L/1000       | 0.643            | 0.946              | 1.193              | 0.974               | 1.194               |

Pry - Yield strength of reinforced column

P<sub>fea</sub> - Finite element analysis after reinforcing

P<sub>r1</sub> - Capacity after reinforcing (SSRC1)

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>rc1</sub> - Capacity after reinforcing (CSA1)

P<sub>rc2</sub> - Capacity after reinforcing (CSA2)

L - Column length

D - Orientation of reinforcing plates

F - Parallel to the flanges

G - Parallel to the web

B - Buckling axis

W - Weak axis of the rolled section

Table 5.6 (Cont'd)

| FEA   |     |     | Out-of-      |                                   | SSRC 1             | SSRC 2             | CSA 1               | CSA 2               |
|-------|-----|-----|--------------|-----------------------------------|--------------------|--------------------|---------------------|---------------------|
| model | D   | В   | Straightness | P <sub>fea</sub> /P <sub>ry</sub> | $ ho_{s}$          | $ ho_{s}$          | $ ho_{s}$           | $ ho_{s}$           |
| No.   |     |     | $\delta_0$   | •                                 | $(P_{fea}/P_{rl})$ | $(P_{fea}/P_{r2})$ | $(P_{fea}/P_{rc1})$ | $(P_{fea}/P_{rc2})$ |
| (1)   | (2) | (3) | (4)          | (5)                               | (6)                | (7)                | (8)                 | (9)                 |
| 201   | F   | S   | L/1000       | 0.590                             | 0.868              | 1.095              | 0.894               | 1.096               |
| 202   | F   | S   | L/1000       | 0.611                             | 0.899              | 1.134              | 0.926               | 1.135               |
| 215   | G   | W   | L/8000       | 0.723                             | 1.063              | 1.341              | 1.094               | 1.342               |
| 216   | G   | W   | L/2000       | 0.656                             | 0.965              | 1.218              | 0.994               | 1.219               |
| 217   | G   | W   | L/1000       | 0.603                             | 0.886              | 1.118              | 0.913               | 1.119               |
| 218   | G   | W   | L/1000       | 0.615                             | 0.904              | 1.141              | 0.931               | 1.142               |
| 219   | G   | W   | L/1000       | 0.616                             | 0.906              | 1.143              | 0.933               | 1.144               |
| 220   | G   | W   | L/1000       | 0.627                             | 0.922              | 1.164              | 0.950               | 1.165               |
| 221   | G   | W   | L/1000       | 0.650                             | 0.956              | 1.206              | 0.985               | 1.207               |
| 266   | F   | S   | L/8000       | 0.718                             | 1.055              | 1.332              | 1.087               | 1.333               |
| 267   | F   | S   | L/2000       | 0.668                             | 0.983              | 1.240              | 1.012               | 1.241               |
| 268   | F   | S   | L/1000       | 0.627                             | 0.922              | 1.163              | 0.949               | 1.164               |
| 269   | F   | S   | L/1000       | 0.647                             | 0.951              | 1.200              | 0.979               | 1.201               |
| 270   | F   | S   | L/1000       | 0.648                             | 0.953              | 1.202              | 0.981               | 1.203               |
| 271   | F   | S   | L/1000       | 0.603                             | 0.886              | 1.118              | 0.912               | 1.119               |
| 272   | F   | S   | L/1000       | 0.618                             | 0.909              | 1.147              | 0.936               | 1.148               |
| 281   | G   | W   | L/8000       | 0.718                             | 1.056              | 1.332              | 1.088               | 1.333               |
| 282   | G   | W   | L/2000       | 0.646                             | 0.951              | 1.199              | 0.979               | 1.200               |
| 283   | G   | W   | L/1000       | 0.588                             | 0.865              | 1.091              | 0.891               | 1.092               |
| 284   | G   | W   | L/1000       | 0.601                             | 0.884              | 1.116              | 0.911               | 1.117               |
| 285   | G   | W   | L/1000       | 0.608                             | 0.894              | 1.128              | 0.921               | 1.129               |
| 286   | G   | W   | L/1000       | 0.619                             | 0.911              | 1.149              | 0.938               | 1.150               |
| 287   | G   | W   | L/1000       | 0.644                             | 0.947              | 1.194              | 0.975               | 1.195               |

P<sub>ry</sub> - Yield strength of reinforced column

P<sub>fea</sub> - Finite element analysis after reinforcing

P<sub>rl</sub> - Capacity after reinforcing (SSRC1)

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>rc1</sub> - Capacity after reinforcing (CSA1)

P<sub>rc2</sub> - Capacity after reinforcing (CSA2)

L - Column length

D - Orientation of reinforcing plates

F - Parallel to the flanges

G - Parallel to the web

B - Buckling axis

W - Weak axis of the rolled section

Table 5.7 Simulated Professional Factors for Columns from Group 1 ( $\lambda = 1.5$ )

| FEA   |     |              | Out-of-      |                  | SSRC 1             | SSRC 2             | CSA I               | CSA 2               |
|-------|-----|--------------|--------------|------------------|--------------------|--------------------|---------------------|---------------------|
| model | D   | В            | Straightness | $P_{fea}/P_{ry}$ | $ ho_{s}$          | $ ho_{s}$          | $ ho_{s}$           | $ ho_{s}$           |
| No.   |     |              | $\delta_0$   | •                | $(P_{fea}/P_{r1})$ | $(P_{fea}/P_{r2})$ | $(P_{fea}/P_{rc1})$ | $(P_{fea}/P_{rc2})$ |
| (1)   | (2) | (3)          | (4)          | (5)              | (6)                | (7)                | (8)                 | (9)                 |
| 47    | F   | S            | L/1900       | 0.403            | 0.989              | 1.145              | 0.969               | 1.125               |
| 48    | F   | S            | L/1900       | 0.411            | 1.011              | 1.170              | 0.990               | 1.150               |
| 49    | F   | S            | L/1250       | 0.375            | 0.921              | 1.066              | 0.902               | 1.048               |
| 50    | F   | S            | L/1250       | 0.385            | 0.946              | 1.095              | 0.927               | 1.076               |
| 62    | G   | W            | L/1350       | 0.384            | 0.944              | 1.092              | 0.924               | 1.074               |
| 63    | G   | W            | L/1350       | 0.396            | 0.973              | 1.126              | 0.953               | 1.107               |
| 64    | G   | W            | L/1350       | 0.390            | 0.958              | 1.109              | 0.939               | 1.090               |
| 65    | G   | W            | L/1350       | 0.404            | 0.992              | 1.149              | 0.972               | 1.129               |
| 111   | F   | S            | L/1300       | 0.394            | 0.967              | 1.119              | 0.947               | 1.100               |
| 112   | F   | S            | L/1300       | 0.400            | 0.983              | 1.138              | 0.963               | 1.118               |
| 113   | F   | S            | L/1250       | 0.378            | 0.928              | 1.074              | 0.909               | 1.056               |
| 114   | F   | S            | L/1250       | 0.388            | 0.955              | 1.105              | 0.935               | 1.086               |
| 141   | F   | S            | L/1300       | 0.391            | 0.961              | 1.113              | 0.942               | 1.094               |
| 142   | F   | S            | L/1300       | 0.398            | 0.977              | 1.131              | 0.957               | 1.112               |
| 143   | F   | S            | L/1250       | 0.375            | 0.922              | 1.067              | 0.903               | 1.049               |
| 144   | F   | S            | L/1250       | 0.386            | 0.949              | 1.098              | 0.930               | 1.080               |
| 156   | G   | W            | L/1400       | 0.398            | 0.978              | 1.131              | 0.958               | 1.112               |
| 157   | G   | W            | L/1400       | 0.412            | 1.012              | 1.172              | 0.991               | 1.152               |
| 158   | G   | W            | L/1350       | 0.403            | 0.990              | 1.146              | 0.970               | 1.126               |
| 159   | G   | W            | L/1350       | 0.411            | 1.011              | 1.170              | 0.990               | 1.150               |
| 203   | F   | S            | L/8000       | 0.490            | 1.203              | 1.392              | 1.178               | 1.369               |
| 204   | F   | S            | L/2000       | 0.459            | 1.127              | 1.304              | 1.104               | 1.282               |
| 205   | F   | S            | L/1000       | 0.436            | 1.072              | 1.240              | 1.050               | 1.219               |
| 206   | F   | S            | L/1000       | 0.441            | 1.083              | 1.253              | 1.061               | 1.232               |
| 207   | F   | S            | L/1000       | 0.424            | 1.043              | 1.207              | 1.021               | 1.186               |
| 208   | F   | S            | L/1000       | 0.432            | 1.061              | 1.228              | 1.039               | 1.207               |
| 222   | G   | W            | L/8000       | 0.456            | 1.120              | 1.296              | 1.097               | 1.274               |
| 223   | G   | W            | L/2000       | 0.414            | 1.017              | 1.177              | 0.996               | 1.157               |
| 224   | G   | $\mathbf{W}$ | L/1000       | 0.380            | 0.933              | 1.080              | 0.914               | 1.061               |
| 225   | G   | W            | L/1000       | 0.393            | 0.965              | 1.117              | 0.946               | 1.098               |
| 226   | G   | W            | L/1000       | 0.396            | 0.973              | 1.127              | 0.953               | 1.107               |
| _227  | G   | W            | L/1000       | 0.409            | 1.005              | 1.163              | 0.984               | 1.143               |

Prv - Yield strength of reinforced column

P<sub>fea</sub> - Finite element analysis after reinforcing

P<sub>rl</sub> - Capacity after reinforcing (SSRC1)

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>rc1</sub> - Capacity after reinforcing (CSA1)

P<sub>rc2</sub> - Capacity after reinforcing (CSA2)

L - Column length

D - Orientation of reinforcing plates

F - Parallel to the flanges

G - Parallel to the web

B - Buckling axis

W - Weak axis of the rolled section

Table 5.7 (Cont'd)

| FEA model | D     | В   | Out-of-<br>Straightness | P <sub>fea</sub> /P <sub>ry</sub> | SSRC 1             | SSRC 2             | CSA 1<br>ρ <sub>s</sub> | CSA 2               |
|-----------|-------|-----|-------------------------|-----------------------------------|--------------------|--------------------|-------------------------|---------------------|
| No.       | ••••• |     | $\delta_0$              |                                   | $(P_{fea}/P_{rl})$ | $(P_{fea}/P_{r2})$ | $(P_{fea}/P_{rc1})$     | $(P_{fea}/P_{rc2})$ |
| (1)       | (2)   | (3) | (4)                     | (5)                               | (6)                | (7)                | (8)                     | (9)                 |
| 273       | F     | S   | L/1000                  | 0.444                             | 1.091              | 1.263              | 1.069                   | 1.241               |
| 274       | F     | S   | L/1000                  | 0.449                             | 1.102              | 1.276              | 1.080                   | 1.254               |
| 275       | F     | S   | L/1000                  | 0.427                             | 1.049              | 1.214              | 1.028                   | 1.193               |
| 276       | F     | S   | L/1000                  | 0.436                             | 1.072              | 1.241              | 1.050                   | 1.220               |
| 288       | G     | W   | L/1000                  | 0.378                             | 0.930              | 1.076              | 0.911                   | 1.058               |
| 289       | G     | W   | L/1000                  | 0.395                             | 0.969              | 1.122              | 0.950                   | 1.103               |
| 290       | G     | W   | L/1000                  | 0.395                             | 0.971              | 1.124              | 0.951                   | 1.105               |
| 291       | G     | W   | L/1000                  | 0.411                             | 1.010              | 1.169              | 0.989                   | 1.149               |

P<sub>ry</sub> - Yield strength of reinforced column

P<sub>fea</sub> - Finite element analysis after reinforcing

 $P_{r1}$  - Capacity after reinforcing (SSRC1)

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>rc1</sub> - Capacity after reinforcing (CSA1)

P<sub>rc2</sub> - Capacity after reinforcing (CSA2)

L - Column length

D - Orientation of reinforcing plates

F - Parallel to the flanges

G - Parallel to the web

B - Buckling axis

W - Weak axis of the rolled section

Table 5.8.a Best Fit Lines for the Professional Factors for Columns from Group 1

| Reference | Equation | λ   | Equation for Best Fit Curve                                     | $\rho_{s}$             | $\overline{V_s}$ |
|-----------|----------|-----|-----------------------------------------------------------------|------------------------|------------------|
| Criteria  | No.      | _   | $\rho_{\rm s}={\rm m}\;\delta_0/{\rm L}+{\rm b}$                | $\delta_0/L = 0.00067$ |                  |
| SSRC      | i        | 0.4 | $\rho_{\rm s} = -44.341  \text{x}  \delta_0 / \text{L} + 1.014$ | 0.984                  | 0.003            |
| curve     | 2        | 1.1 | $\rho_s = -137.03x\delta_0/L + 1.0277$                          | 0.936                  | 0.010            |
| 1         | 3        | 1.5 | $\rho_{\rm s} = -95.487 \text{x} \delta_0 / \text{L} + 1.0807$  | 1.017                  | 0.006            |
| SSRC      | 1        | 0.4 | $\rho_s = -47.304 \times \delta_0 / L + 1.0818$                 | 1.050                  | 0.003            |
| curve     | 2        | 1.1 | $\rho_{\rm s} = -172.88 \text{x} \delta_0 / \text{L} + 1.2966$  | 1.181                  | 0.010            |
| 2         | 3        | 1.5 | $\rho_s = -110.51 \times \delta_0 / L + 1.2507$                 | 1.177                  | 0.006            |
| CSA       | 1        | 0.4 | $\rho_{\rm s} = -43.776 \text{x} \delta_0 / \text{L} + 1.0011$  | 0.972                  | 0.003            |
| curve     | 2        | 1.1 | $\rho_s = -141.12x\delta_0/L + 1.0583$                          | 0.964                  | 0.010            |
| 1         | 3        | 1.5 | $\rho_{\rm s} = -93.526 \text{x} \delta_0 / \text{L} + 1.0585$  | 0.996                  | 0.006            |
| CSA       | 1        | 0.4 | $\rho_{\rm s} = -46.211  {\rm k}  \delta_0 / {\rm L} + 1.0568$  | 1.026                  | 0.003            |
| curve     | 2        | 1.1 | $\rho_s = -173.02x\delta_0/L + 1.2976$                          | 1.182                  | 0.010            |
| 2         | 3        | 1.5 | $\rho_{\rm s} = -108.63 \text{x} \delta_0 / \text{L} + 1.2294$  | 1.157                  | 0.006            |

Table 5.8.b Best Fit Lines for the Professional Factors for Columns from Group 2

| Reference | Equation | λ   | Equation for Best Fit Curve                                      | $ ho_{s}$              | $\overline{V_s}$ |
|-----------|----------|-----|------------------------------------------------------------------|------------------------|------------------|
| Criteria  | Number   |     | $\rho_{\rm s}={\rm m}\;\delta_0/{\rm L}+{\rm b}$                 | $\delta_0/L = 0.00067$ |                  |
| SSRC      | 1        | 0.4 | $\rho_s = -45.968 \times \delta_0 / L + 1.0217$                  | 0.991                  | 0.003            |
| curve     | 2        | 1.1 | $\rho_{\rm s} = -133.23 {\rm x} \delta_0 / {\rm L} + 0.9505$     | 0.861                  | 0.010            |
| 1         | 3        | 1.5 | $\rho_{\rm s} = -164.5 \times \delta_0 / L + 1.0558$             | 0.946                  | 0.012            |
| SSRC      | 1        | 0.4 | $\rho_{\rm s} = -49.041  \text{x}  \delta_0 / \text{L} + 1.09$   | 1.057                  | 0.003            |
| curve     | 2        | 1.1 | $\rho_{\rm s} = -168.09 \text{x} \delta_0 / \text{L} + 1.1992$   | 1.087                  | 0.010            |
| 2         | 3        | 1.5 | $\rho_s = -190.38 \times \delta_0 / L + 1.2219$                  | 1.094                  | 0.012            |
| CSA       | 1        | 0.4 | $\rho_{\rm s} = -45.383 \text{ x} \delta_0 / \text{L} + 1.0087$  | 0.978                  | 0.003            |
| curve     | 2        | 1.1 | $\rho_s = -137.2x\delta_0/L + 0.9788$                            | 0.887                  | 0.010            |
| 1         | 3        | 1.5 | $\rho_s = -161.12x\delta_0/L + 1.0341$                           | 0.926                  | 0.012            |
| CSA       | 1        | 0.4 | $\rho_{\rm s} = -47.907  \text{x}  \delta_0 / \text{L} + 1.0648$ | 1.033                  | 0.003            |
| curve     | 2        | 1.1 | $\rho_{\rm s} = -168.21 \text{x} \delta_0 / \text{L} + 1.2001$   | 1.087                  | 0.010            |
| 2         | 3        | 1.5 | $\rho_s = -187.13 \text{x} \delta_0 / \text{L} + 1.2011$         | 1.076                  | 0.012            |

Table 5.9 Normalized Professional Factors for Columns from Group 1 ( $\lambda$  = 0.4)

| FEA          |     |     | Out-of-      | SSRC 2             |                                                             |             | SSRC 2              |
|--------------|-----|-----|--------------|--------------------|-------------------------------------------------------------|-------------|---------------------|
| model        | D   | В   | Straightness | $ ho_{s}$          | $\rho_s = m \delta_0/L + b$                                 | $ ho_{seq}$ | $\rho_{\mathrm{n}}$ |
| No.          |     |     | $\delta_0$   | $(P_{fea}/P_{r2})$ | SSRC 2                                                      | ·           | $ ho_{s}/ ho_{seq}$ |
| _ (1)        | (2) | (3) | (4)          | (5)                | (6)                                                         | (7)         | (8)                 |
| 36           | F   | S   | L/1000       | 1.016              | $\rho_s = -47.3 \times \delta_0 / L + 1.082$                | 1.034       | 0.982               |
| 37           | F   | S   | L/1000       | 1.017              | $\rho_s = -47.3 \times \delta_0 / L + 1.082$                | 1.034       | 0.983               |
| 38           | F   | S   | L/1000       | 1.019              | $\rho_s = -47.3 \times \delta_0 / L + 1.082$                | 1.034       | 0.985               |
| 39           | F   | S   | L/1000       | 1.025              | $\rho_s = -47.3 \text{x} \delta_0 / \text{L} + 1.082$       | 1.034       | 0.991               |
| 51           | G   | W   | L/1000       | 1.035              | $\rho_{\rm s} = -47.3 \text{x} \delta_0 / \text{L} + 1.082$ | 1.034       | 1.000               |
| 52           | G   | W   | L/1000       | 1.041              | $\rho_s = -47.3x\delta_0/L + 1.082$                         | 1.034       | 1.006               |
| 53           | G   | W   | L/1000       | 1.043              | $\rho_{\rm s} = -47.3 \text{x} \delta_0 / \text{L} + 1.082$ | 1.034       | 1.008               |
| 54           | G   | W   | L/1000       | 1.048              | $\rho_{\rm s} = -47.3 \text{x} \delta_0 / \text{L} + 1.082$ | 1.034       | 1.013               |
| 100          | F   | S   | L/1000       | 1.022              | $\rho_s = -47.3 \times \delta_0 / L + 1.082$                | 1.034       | 0.988               |
| 101          | F   | S   | L/1000       | 1.024              | $\rho_s = -47.3 \text{x} \delta_0 / \text{L} + 1.082$       | 1.034       | 0.990               |
| 102          | F   | S   | L/1000       | 1.015              | $\rho_s = -47.3 \text{ x} \delta_0 / \text{L} + 1.082$      | 1.034       | 0.982               |
| 103          | F   | S   | L/1000       | 1.022              | $\rho_s = -47.3 \text{x} \delta_0 / \text{L} + 1.082$       | 1.034       | 0.988               |
| 130          | F   | S   | L/1000       | 1.021              | $\rho_s = -47.3 \text{x} \delta_0 / \text{L} + 1.082$       | 1.034       | 0.986               |
| 131          | F   | S   | L/1000       | 1.023              | $\rho_s = -47.3 \text{ x} \delta_0 / \text{L} + 1.082$      | 1.034       | 0.989               |
| 132          | F   | S   | L/1000       | 1.017              | $\rho_s = -47.3x\delta_0/L + 1.082$                         | 1.034       | 0.983               |
| 133          | F   | S   | L/1000       | 1.022              | $\rho_s = -47.3 \text{x} \delta_0 / \text{L} + 1.082$       | 1.034       | 0.988               |
| 145          | G   | W   | L/1000       | 1.036              | $\rho_s = -47.3 \times \delta_0 / L + 1.082$                | 1.034       | 1.002               |
| 146          | G   | W   | L/1000       | 1.055              | $\rho_s = -47.3 \times \delta_0 / L + 1.082$                | 1.034       | 1.020               |
| 147          | G   | W   | L/1000       | 1.051              | $\rho_s = -47.3 \times \delta_0 / L + 1.082$                | 1.034       | 1.016               |
| 148          | G   | W   | L/1000       | 1.053              | $\rho_s = -47.3 \times \delta_0 / L + 1.082$                | 1.034       | 1.018               |
| 190          | F   | S   | L/8000       | 1.063              | $\rho_s = -47.3 \times \delta_0 / L + 1.082$                | 1.076       | 0.988               |
| 191          | F   | S   | L/2000       | 1.048              | $\rho_s = -47.3 \text{x} \delta_0 / \text{L} + 1.082$       | 1.058       | 0.990               |
| 192          | F   | S   | L/1000       | 1.031              | $\rho_{\rm s} = -47.3 \text{x} \delta_0 / \text{L} + 1.082$ | 1.034       | 0.996               |
| 193          | F   | S   | L/1000       | 1.038              | $\rho_s = -47.3 \times \delta_0 / L + 1.082$                | 1.034       | 1.003               |
| 194          | F   | S   | L/1000       | 1.023              | $\rho_s = -47.3 \times \delta_0 / L + 1.082$                | 1.034       | 0.989               |
| 195          | F   | S   | L/1000       | 1.031              | $\rho_{\rm s} = -47.3 \text{x} \delta_0 / \text{L} + 1.082$ | 1.034       | 0.996               |
| 209          | G   | W   | L/8000       | 1.089              | $\rho_s = -47.3 \times \delta_0 / L + 1.082$                | 1.076       | 1.012               |
| 210          | G   | W   | L/2000       | 1.067              | $\rho_s = -47.3 \text{x} \delta_0 / \text{L} + 1.082$       | 1.058       | 1.009               |
| 211          | G   | W   | L/1000       | 1.048              | $\rho_{\rm s} = -47.3 \text{x} \delta_0 / \text{L} + 1.082$ | 1.034       | 1.013               |
| 212          | G   | W   | L/1000       | 1.053              | $\rho_{\rm s} = -47.3 {\rm x} \delta_0 / {\rm L} + 1.082$   | 1.034       | 1.018               |
| 213          | G   | W   | L/1000       | 1.048              | $\rho_{\rm s} = -47.3 \text{x} \delta_0 / \text{L} + 1.082$ | 1.034       | 1.013               |
| 214          | G   | W   | L/1000       | 1.053              | $\rho_{\rm s} = -47.3 \text{x} \delta_0 / \text{L} + 1.082$ | 1.034       | 1.018               |
| 277<br>Note: | G   | W   | L/1000       | 1.041              | $\rho_s = -47.3 \text{x} \delta_0 / \text{L} + 1.082$       | 1.034       | 1.006               |

Note: L - Column length

B - Buckling axis

D - Orientation of reinforcing plate

W - Weak axis of the rolled section

F - Parallel to the flanges
G - Parallel to the web

S - Strong axis of the rolled section P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>fea</sub> - Finite element analysis after reinforcing

 $\rho_{\text{seq}}$  - Professional ratio predicted by the best-fit equation

Table 5.9 (Cont'd)

| FEA         |     |     | Out-of-      | SSRC 2             |                                                        |             | SSRC 2              |
|-------------|-----|-----|--------------|--------------------|--------------------------------------------------------|-------------|---------------------|
| model       | D   | В   | Straightness | $ ho_{s}$          | $\rho_{\rm s} = {\rm m}  \delta_0 / {\rm L} + {\rm b}$ | $ ho_{seq}$ | $\rho_{\rm n}$      |
| No.         |     |     | $\delta_0$   | $(P_{fea}/P_{r2})$ | SSRC 2                                                 |             | $\rho_s/\rho_{seq}$ |
| (1)         | (2) | (3) | (4)          | (5)                | (6)                                                    | (7)         | (8)                 |
| 278         | G   | W   | L/1000       | 1.046              | $\rho_s = -47.3 \times \delta_0 / L + 1.082$           | 1.034       | 1.011               |
| 279         | G   | W   | L/1000       | 1.046              | $\rho_s = -47.3 \text{ x} \delta_0 / \text{L} + 1.082$ | 1.034       | 1.011               |
| 280         | G   | W   | L/1000       | 1.049              | $\rho_s = -47.3 \times \delta_0 / L + 1.082$           | 1.034       | 1.014               |
| 262         | F   | S   | L/1000       | 1.027              | $\rho_s = -47.3 \times \delta_0 / L + 1.082$           | 1.035       | 0.993               |
| <b>26</b> 3 | F   | S   | L/1000       | 1.036              | $\rho_s = -47.3 \times \delta_0 / L + 1.082$           | 1.035       | 1.001               |
| 264         | F   | S   | L/1000       | 1.030              | $\rho_s = -47.3 \times \delta_0 / L + 1.082$           | 1.034       | 0.996               |
| 265         | F   | S   | L/1000       | 1.036              | $\rho_s = -47.3 \times \delta_0 / L + 1.082$           | 1.034       | 1.002               |

Note: L - Column length

B - Buckling axis

D - Orientation of reinforcing plate

W - Weak axis of the rolled section

F - Parallel to the flanges

S - Strong axis of the rolled section

G - Parallel to the web

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>fea</sub> - Finite element analysis after reinforcing

 $\rho_{seq}$  - Professional ratio predicted by the best-fit equation

Table 5.10 Normalized Professional Factors for Columns from Group 1 ( $\lambda = 1.1$ )

| FEA   |     |     | Out-of-      | SSRC 2             |                                               |             | SSRC 2                        |
|-------|-----|-----|--------------|--------------------|-----------------------------------------------|-------------|-------------------------------|
| model | D   | В   | Straightness | $ ho_{s}$          | $\rho_s = m \delta_0/L + b$                   | $ ho_{seq}$ | $\rho_{\mathfrak{n}}$         |
| No.   |     |     | $\delta_0$   | $(P_{fea}/P_{r2})$ | SSRC 2                                        |             | $\rho_{\rm s}/\rho_{\rm seq}$ |
| (1)   | (2) | (3) | (4)          | (5)                | (6)                                           | (7)         | (8)                           |
| 40    | F   | S   | L/8000       | 1.265              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$ | 1.275       | 0.992                         |
| 41    | F   | S   | L/2000       | 1.168              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$ | 1.210       | 0.965                         |
| 42    | F   | S   | L/1400       | 1.129              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$ | 1.172       | 0.963                         |
| 43    | F   | S   | L/1400       | 1.146              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$ | 1.172       | 0.977                         |
| 44    | F   | S   | L/1400       | 1.161              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$ | 1.172       | 0.990                         |
| 45    | F   | S   | L/1450       | 1.049              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$ | 1.177       | 0.891                         |
| 46    | F   | S   | L/1400       | 1.086              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$ | 1.172       | 0.927                         |
| 55    | G   | W   | L/8000       | 1.312              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$ | 1.275       | 1.029                         |
| 56    | G   | W   | L/2000       | 1.180              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$ | 1.210       | 0.975                         |
| 57    | G   | W   | L/1100       | 1.091              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$ | 1.143       | 0.954                         |
| 58    | G   | W   | L/1100       | 1.111              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$ | 1.143       | 0.971                         |
| _ 59  | G   | W   | L/1100       | 1.133              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$ | 1.143       | 0.991                         |

Note: L - Column length

B - Buckling axis

D - Orientation of reinforcing plate

W - Weak axis of the rolled section

F - Parallel to the flanges

S - Strong axis of the rolled section

G - Parallel to the web

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>fea</sub> - Finite element analysis after reinforcing

 $\rho_{\text{seq}}$  - Professional ratio predicted by the best-fit equation

Table 5.10 (Cont'd)

| FEA          |     |     | Out-of-      | SSRC 2             |                                                              |             | SSRC 2              |
|--------------|-----|-----|--------------|--------------------|--------------------------------------------------------------|-------------|---------------------|
| model        | D   | В   | Straightness | $ ho_{s}$          | $\rho_{\rm s} = {\rm m}  \delta_0 / {\rm L} + {\rm b}$       | $ ho_{seq}$ | $\rho_{\mathtt{n}}$ |
| No.          |     |     | $\delta_0$   | $(P_{fea}/P_{r2})$ | SSRC 2                                                       | ·           | $\rho_s/\rho_{seq}$ |
| (1)          | (2) | (3) | (4)          | (5)                | (6)                                                          | (7)         | (8)                 |
| 60           | G   | W   | L/1150       | 1.130              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.148       | 0.984               |
| 61           | G   | W   | L/1150       | 1.170              | $\rho_{\rm s} = -172.88 \times \delta_0 / L + 1.30$          | 1.148       | 1.019               |
| 104          | F   | S   | L/8000       | 1.275              | $\rho_{\rm s} = -172.88 \text{x} \delta_0 / \text{L} + 1.30$ | 1.275       | 1.000               |
| 105          | F   | S   | L/2000       | 1.185              | $\rho_{\rm s} = -172.88 \text{x} \delta_0 / \text{L} + 1.30$ | 1.210       | 0.979               |
| 106          | F   | S   | L/1350       | 1.138              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.168       | 0.975               |
| 107          | F   | S   | L/1350       | 1.157              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.168       | 0.990               |
| 108          | F   | S   | L/1350       | 1.169              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.168       | 1.001               |
| 109          | F   | S   | L/1400       | 1.051              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.172       | 0.896               |
| 110          | F   | S   | L/1400       | 1.092              | $\rho_{\rm s} = -172.88 \text{x} \delta_0 / \text{L} + 1.30$ | 1.172       | 0.932               |
| 134          | F   | S   | L/8000       | 1.266              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.275       | 0.993               |
| 135          | F   | S   | L/2000       | 1.174              | $\rho_{\rm s} = -172.88 \times \delta_0 / L + 1.30$          | 1.210       | 0.970               |
| 136          | F   | S   | L/1350       | 1.130              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.167       | 0.968               |
| 137          | F   | S   | L/1350       | 1.148              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.169       | 0.982               |
| 138          | F   | S   | L/1350       | 1.163              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.169       | 0.995               |
| 139          | F   | S   | L/1400       | 1.037              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.172       | 0.885               |
| 140          | F   | S   | L/1400       | 1.080              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.172       | 0.922               |
| 149          | G   | W   | L/8000       | 1.340              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.275       | 1.051               |
| 150          | G   | W   | L/2000       | 1.217              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.210       | 1.006               |
| 151          | G   | W   | L/1000       | 1.115              | $\rho_{\rm s} = -172.88 \times \delta_0 / L + 1.30$          | 1.128       | 0.989               |
| 152          | G   | W   | L/1000       | 1.135              | $\rho_{\rm s} = -172.88 \times \delta_0 / L + 1.30$          | 1.128       | 1.006               |
| 153          | G   | W   | L/1000       | 1.152              | $\rho_{\rm s} = -172.88 \text{x} \delta_0 / \text{L} + 1.30$ | 1.128       | 1.021               |
| 154          | G   | W   | L/1100       | 1.151              | $\rho_{\rm s} = -172.88 \text{x} \delta_0 / \text{L} + 1.30$ | 1.136       | 1.012               |
| 155          | G   | W   | L/1100       | 1.188              | $\rho_{\rm s} = -172.88 \times \delta_0 / L + 1.30$          | 1.136       | 1.046               |
| 196          | F   | S   | L/8000       | 1.323              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.275       | 1.038               |
| 197          | F   | S   | L/2000       | 1.243              | $\rho_{\rm s} = -172.88 \text{x} \delta_0 / \text{L} + 1.30$ | 1.210       | 1.027               |
| 198          | F   | S   | L/1000       | 1.166              | $\rho_{\rm s} = -172.88 \text{x} \delta_0 / \text{L} + 1.30$ | 1.124       | 1.038               |
| 199          | F   | S   | L/1000       | 1.199              | $\rho_{\rm s} = -172.88 \text{x} \delta_0 / \text{L} + 1.30$ | 1.124       | 1.067               |
| 200          | F   | S   | L/1000       | 1.193              | $\rho_{\rm s} = -172.88 \text{x} \delta_0 / \text{L} + 1.30$ | 1.124       | 1.062               |
| 201          | F   | S   | L/1000       | 1.095              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.124       | 0.974               |
| 202          | F   | S   | L/1000       | 1.134              | $\rho_{\rm s} = -172.88 \text{x} \delta_0 / \text{L} + 1.30$ | 1.124       | 1.009               |
| 215          | G   | W   | L/8000       | 1.341              | $\rho_{\rm s} = -172.88 \text{x} \delta_0 / \text{L} + 1.30$ | 1.275       | 1.051               |
| 216          | G   | W   | L/2000       | 1.218              | $\rho_{\rm s} = -172.88 \text{x} \delta_0 / \text{L} + 1.30$ | 1.210       | 1.006               |
| 217<br>Notes | G   | W   | L/1000       | 1.118              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.124       | 0.995               |

B - Buckling axis

- D Orientation of reinforcing plate
  - F Parallel to the flanges
  - G Parallel to the web
- W Weak axis of the rolled section
- S Strong axis of the rolled section
- P<sub>r2</sub> Capacity after reinforcing (SSRC2)
- P<sub>fea</sub> Finite element analysis after reinforcing
- $\rho_{\text{seq}}$  Professional ratio predicted by the best-fit equation

Table 5.10 (Cont'd)

| FEA   |     | -   | Out-of-      | SSRC 2             |                                                              |             | SSRC 2                |
|-------|-----|-----|--------------|--------------------|--------------------------------------------------------------|-------------|-----------------------|
| model | D   | В   | Straightness | $ ho_{s}$          | $\rho_s = m \delta_0/L + b$                                  | $ ho_{seq}$ | $ ho_{ m n}$          |
| No.   |     |     | $\delta_0$   | $(P_{fea}/P_{r2})$ | SSRC 2                                                       |             | $\rho_{s}/\rho_{seq}$ |
| (1)   | (2) | (3) | (4)          | (5)                | (6)                                                          | (7)         | (8)                   |
| 218   | G   | W   | L/1000       | 1.141              | $\rho_{\rm s} = -172.88 \times \delta_0 / L + 1.30$          | 1.124       | 1.015                 |
| 219   | G   | W   | L/1000       | 1.143              | $\rho_{\rm s} = -172.88 \text{x} \delta_0 / \text{L} + 1.30$ | 1.124       | 1.017                 |
| 220   | G   | W   | L/1000       | 1.164              | $\rho_{\rm s} = -172.88 \times \delta_0 / L + 1.30$          | 1.124       | 1.036                 |
| 221   | G   | W   | L/1000       | 1.206              | $\rho_{\rm s} = -172.88 \text{x} \delta_0 / \text{L} + 1.30$ | 1.124       | 1.073                 |
| 281   | G   | W   | L/8000       | 1.332              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.275       | 1.045                 |
| 282   | G   | W   | L/2000       | 1.199              | $\rho_{\rm s} = -172.88 \text{x} \delta_0 / \text{L} + 1.30$ | 1.210       | 0.991                 |
| 283   | G   | W   | L/1000       | 1.091              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.124       | 0.971                 |
| 284   | G   | W   | L/1000       | 1.116              | $\rho_{\rm s} = -172.88 \times \delta_0 / L + 1.30$          | 1.124       | 0.993                 |
| 285   | G   | W   | L/1000       | 1.128              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.124       | 1.004                 |
| 286   | G   | W   | L/1000       | 1.149              | $\rho_{\rm s} = -172.88 \times \delta_0 / L + 1.30$          | 1.124       | 1.023                 |
| 287   | G   | W   | L/1000       | 1.194              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.124       | 1.063                 |
| 266   | F   | S   | L/8000       | 1.332              | $\rho_{\rm s} = -172.88 \times \delta_0 / L + 1.30$          | 1.276       | 1.044                 |
| 267   | F   | S   | L/2000       | 1.240              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.214       | 1.022                 |
| 268   | F   | S   | L/1000       | 1.163              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.124       | 1.035                 |
| 269   | F   | S   | L/1000       | 1.200              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.124       | 1.068                 |
| 270   | F   | S   | L/1000       | 1.202              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.124       | 1.070                 |
| 271   | F   | S   | L/1000       | 1.118              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.124       | 0.995                 |
| 272   | F   | S   | L/1000       | 1.147              | $\rho_s = -172.88 \times \delta_0 / L + 1.30$                | 1.124       | 1.021                 |

B - Buckling axis

D - Orientation of reinforcing plate

W - Weak axis of the rolled section

F - Parallel to the flanges

S - Strong axis of the rolled section

G - Parallel to the web

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>fea</sub> - Finite element analysis after reinforcing

 $\rho_{\text{seq}}$  - Professional ratio predicted by the best-fit equation

Table 5.11 Normalized Professional Factors for Columns from Group 1 ( $\lambda = 1.5$ )

| FEA   |     |     | Out-of-      | SSRC 2             |                                                                |             | SSRC 2                        |
|-------|-----|-----|--------------|--------------------|----------------------------------------------------------------|-------------|-------------------------------|
| model | D   | В   | Straightness | $ ho_{s}$          | $\rho_{\rm s} = {\rm m}  \delta_0 / {\rm L} + {\rm b}$         | $ ho_{seq}$ | $\rho_{\mathtt{n}}$           |
| No.   |     |     | $\delta_0$   | $(P_{fea}/P_{r2})$ | SSRC 2                                                         | •           | $\rho_{\rm s}/\rho_{\rm seq}$ |
| (1)   | (2) | (3) | (4)          | (5)                | (6)                                                            | (7)         | (8)                           |
| 47    | F   | S   | L/1900       | 1.145              | $\rho_{\rm s} = -110.51  {\rm k}  \delta_0 / {\rm L} + 1.25$   | 1.193       | 0.960                         |
| 48    | F   | S   | L/1900       | 1.170              | $\rho_s = -110.51x\delta_0/L + 1.25$                           | 1.193       | 0.981                         |
| 49    | F   | S   | L/1250       | 1.066              | $\rho_s = -110.51 \times \delta_0 / L + 1.25$                  | 1.163       | 0.917                         |
| 50    | F   | S   | L/1250       | 1.095              | $\rho_s = -110.51 \times \delta_0 / L + 1.25$                  | 1.163       | 0.942                         |
| 62    | G   | W   | L/1350       | 1.092              | $\rho_s = -110.51x\delta_0/L + 1.25$                           | 1.169       | 0.934                         |
| 63    | G   | W   | L/1350       | 1.126              | $\rho_{\rm s} = -110.51  {\rm k}  \delta_0 / {\rm L} + 1.25$   | 1.169       | 0.964                         |
| 64    | G   | W   | L/1350       | 1.109              | $\rho_{\rm s} = -110.51  \text{x}  \delta_0 / \text{L} + 1.25$ | 1.168       | 0.950                         |
| 65    | G   | W   | L/1350       | 1.149              | $\rho_s = -110.51x\delta_0/L + 1.25$                           | 1.168       | 0.983                         |
| 111   | F   | S   | L/1300       | 1.119              | $\rho_{\rm s} = -110.51  \text{x}  \delta_0 / \text{L} + 1.25$ | 1.164       | 0.961                         |
| 112   | F   | S   | L/1300       | 1.138              | $\rho_{\rm s} = -110.51  \text{x}  \delta_0 / \text{L} + 1.25$ | 1.164       | 0.977                         |
| 113   | F   | S   | L/1300       | 1.074              | $\rho_{\rm s} = -110.51 \times \delta_0 / L + 1.25$            | 1.163       | 0.923                         |
| 114   | F   | S   | L/1300       | 1.105              | $\rho_{\rm s} = -110.51  {\rm k}  \delta_0 / {\rm L} + 1.25$   | 1.163       | 0.950                         |
| 141   | F   | S   | L/1300       | 1.113              | $\rho_{\rm s} = -110.51  \text{x}  \delta_0 / \text{L} + 1.25$ | 1.164       | 0.956                         |
| 142   | F   | S   | L/1300       | 1.131              | $\rho_s = -110.51x\delta_0/L + 1.25$                           | 1.164       | 0.972                         |
| 143   | F   | S   | L/1300       | 1.067              | $\rho_{\rm s} = -110.51  {\rm k}  \delta_0 / {\rm L} + 1.25$   | 1.163       | 0.918                         |
| 144   | F   | S   | L/1300       | 1.098              | $\rho_{\rm s} = -110.51  \text{x}  \delta_0 / \text{L} + 1.25$ | 1.163       | 0.945                         |
| 156   | G   | W   | L/1400       | 1.131              | $\rho_{\rm s} = -110.51  \text{x}  \delta_0 / \text{L} + 1.25$ | 1.171       | 0.966                         |
| 157   | G   | W   | L/1400       | 1.172              | $\rho_{\rm s} = -110.51  \text{x}  \delta_0 / \text{L} + 1.25$ | 1.171       | 1.000                         |
| 158   | G   | W   | L/1350       | 1.146              | $\rho_s = -110.51 \times \delta_0 / L + 1.25$                  | 1.170       | 0.979                         |
| 159   | G   | W   | L/1350       | 1.170              | $\rho_{\rm s} = -110.51  \text{x}  \delta_0 / \text{L} + 1.25$ | 1.170       | 1.000                         |
| 203   | F   | S   | L/8000       | 1.392              | $\rho_{\rm s} = -110.51  \text{x}  \delta_0 / \text{L} + 1.25$ | 1.237       | 1.126                         |
| 204   | F   | S   | L/2000       | 1.304              | $\rho_{\rm s} = -110.51  \text{x}  \delta_0 / \text{L} + 1.25$ | 1.195       | 1.091                         |
| 205   | F   | S   | L/1000       | 1.240              | $\rho_{\rm s} = -110.51  {\rm k}  \delta_0 / {\rm L} + 1.25$   | 1.140       | 1.088                         |
| 206   | F   | S   | L/1000       | 1.253              | $\rho_{\rm s} = -110.51  {\rm k}  \delta_0 / {\rm L} + 1.25$   | 1.140       | 1.099                         |
| 207   | F   | S   | L/1000       | 1.207              | $\rho_{\rm s} = -110.51  {\rm k}  \delta_0 / {\rm L} + 1.25$   | 1.140       | 1.058                         |
| 208   | F   | S   | L/1000       | 1.228              | $\rho_{\rm s} = -110.51  \text{x}  \delta_0 / \text{L} + 1.25$ | 1.140       | 1.077                         |
| 222   | G   | W   | L/8000       | 1.296              | $\rho_{\rm s} = -110.51 \times \delta_0 / L + 1.25$            | 1.237       | 1.048                         |
| 223   | G   | W   | L/2000       | 1.177              | $\rho_{\rm s} = -110.51 \times \delta_0 / L + 1.25$            | 1.195       | 0.985                         |
| 224   | G   | W   | L/1000       | 1.080              | $\rho_{\rm s} = -110.51 \times \delta_0 / L + 1.25$            | 1.140       | 0.947                         |
| 225   | G   | W   | L/1000       | 1.117              | $\rho_{\rm s} = -110.51  {\rm k}  \delta_0 / {\rm L} + 1.25$   | 1.140       | 0.980                         |
| 226   | G   | W   | L/1000       | 1.127              | $\rho_{\rm s} = -110.51 \times \delta_0 / L + 1.25$            | 1.140       | 0.988                         |
| 227   | G   | W   | L/1000       | 1.163              | $\rho_{\rm s} = -110.51  \text{x}  \delta_0 / \text{L} + 1.25$ | 1.140       | 1.020                         |
| 288   | G   | W   | L/1000       | 1.076              | $\rho_s = -110.51 \times \delta_0 / L + 1.25$                  | 1.140       | 0.944                         |

B - Buckling axis

D - Orientation of reinforcing plate

W - Weak axis of the rolled section

F - Parallel to the flanges
G - Parallel to the web

S - Strong axis of the rolled section  $P_{r2}$  - Capacity after reinforcing (SSRC2)

 $\rho_{\text{seq}}$  - Professional ratio predicted by the best-fit equation

Pfea - Finite elemetn analysis after reinforcing

Table 5.11 (Cont'd)

| FEA<br>model<br>No. | D   | В   | $\begin{array}{c} \text{Out-of-}\\ \text{Straightness}\\ \delta_0 \end{array}$ | $\begin{array}{c} \text{SSRC 2} \\ \rho_{\text{s}} \\ (P_{\text{fea}}/P_{\text{r2}}) \end{array}$ | $\rho_s = m  \delta_0 / L + b$ SSRC 2         | $ ho_{\text{seq}}$ | SSRC 2 $\rho_n$ $\rho_s/\rho_{seq}$ |
|---------------------|-----|-----|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------|-------------------------------------|
| _(1)                | (2) | (3) | (4)                                                                            | (5)                                                                                               | (6)                                           | (7)                | (8)                                 |
| 289                 | G   | W   | L/1000                                                                         | 1.122                                                                                             | $\rho_s = -110.51 \times \delta_0 / L + 1.25$ | 1.140              | 0.984                               |
| 290                 | G   | W   | L/1000                                                                         | 1.124                                                                                             | $\rho_s = -110.51 \times \delta_0 / L + 1.25$ | 1.140              | 0.986                               |
| 291                 | G   | W   | L/1000                                                                         | 1.169                                                                                             | $\rho_s = -110.51 \times \delta_0 / L + 1.25$ | 1.140              | 1.025                               |
| 273                 | F   | S   | L/1000                                                                         | 1.263                                                                                             | $\rho_s = -110.51 \times \delta_0 / L + 1.25$ | 1.140              | 1.108                               |
| 274                 | F   | S   | L/1000                                                                         | 1.276                                                                                             | $\rho_s = -110.51 \times \delta_0 / L + 1.25$ | 1.140              | 1.119                               |
| 275                 | F   | S   | L/1000                                                                         | 1.214                                                                                             | $\rho_s = -110.51 \times \delta_0 / L + 1.25$ | 1.140              | 1.065                               |
| 276                 | F   | S   | L/1000                                                                         | 1.241                                                                                             | $\rho_s = -110.51 \times \delta_0 / L + 1.25$ | 1.140              | 1.088                               |

B - Buckling axis

D - Orientation of reinforcing plate

W - Weak axis of the rolled section

F - Parallel to the flanges

S - Strong axis of the rolled section  $P_{r2}$  - Capacity after reinforcing (SSRC2)

G - Parallel to the web  $P_{r2}$  - Capa  $P_{fea}$  - Finite elemetr analysis after reinforcing

 $\rho_{\text{seq}}$  - Professional ratio predicted by the best-fit equation

Table 5.12.a Statistical Parameters for the Professional Factors for Columns from Group 1

| Reference | <del></del> |           |       | <del></del>           |       |            |          |            |       |
|-----------|-------------|-----------|-------|-----------------------|-------|------------|----------|------------|-------|
| стітегіа  | λ           | $ ho_{s}$ | $V_s$ | $\rho_{\mathfrak{a}}$ | $V_n$ | $ ho_{ex}$ | $V_{ex}$ | $\rho_{p}$ | $V_p$ |
| SSRC      | 0.4         | 0.984     | 0.003 | 1.000                 | 0.012 | 1.000      | 0.000    | 0.984      | 0.013 |
| curve     | 1.1         | 0.936     | 0.010 | 1.000                 | 0.043 | 1.000      | 0.000    | 0.936      | 0.044 |
| 1         | 1.5         | 1.017     | 0.006 | 1.000                 | 0.061 | 1.000      | 0.000    | 1.017      | 0.061 |
| SSRC      | 0.4         | 1.050     | 0.003 | 1.000                 | 0.012 | 1.000      | 0.000    | 1.050      | 0.013 |
| curve     | 1.1         | 1.181     | 0.010 | 1.000                 | 0.043 | 1.000      | 0.000    | 1.181      | 0.044 |
| 2         | 1.5         | 1.177     | 0.006 | 1.000                 | 0.061 | 1.000      | 0.000    | 1.177      | 0.061 |
| CSA       | 0.4         | 0.972     | 0.003 | 1.000                 | 0.012 | 1.000      | 0.000    | 0.972      | 0.013 |
| curve     | 1.1         | 0.964     | 0.010 | 1.000                 | 0.043 | 1.000      | 0.000    | 0.964      | 0.044 |
| 1         | 1.5         | 0.996     | 0.006 | 1.000                 | 0.061 | 1.000      | 0.000    | 0.996      | 0.061 |
| CSA       | 0.4         | 1.026     | 0.003 | 1.000                 | 0.012 | 1.000      | 0.000    | 1.026      | 0.013 |
| curve     | 1.1         | 1.182     | 0.010 | 1.000                 | 0.043 | 1.000      | 0.000    | 1.182      | 0.044 |
| 2         | 1.5         | 1.157     | 0.006 | 1.000                 | 0.061 | 1.000      | 0.000    | 1.157      | 0.061 |

Table 5.12.b Statistical Parameters for the Professional Factors for Columns from Group 2

| Reference |     |                |       |                     |                |            |          |              |       |
|-----------|-----|----------------|-------|---------------------|----------------|------------|----------|--------------|-------|
| criteria  | λ   | $\rho_{\rm s}$ | $V_s$ | $\rho_{\mathtt{n}}$ | V <sub>n</sub> | $ ho_{ex}$ | $V_{ex}$ | $ ho_{ m p}$ | $V_p$ |
| SSRC      | 0.4 | 0.991          | 0.003 | 1.000               | 0.023          | 1.000      | 0.000    | 0.991        | 0.023 |
| curve     | 1.1 | 0.861          | 0.010 | 1.000               | 0.057          | 1.000      | 0.000    | 0.861        | 0.057 |
| 1         | 1.5 | 0.946          | 0.012 | 0.997               | 0.043          | 1.000      | 0.000    | 0.942        | 0.045 |
| SSRC      | 0.4 | 1.057          | 0.003 | 1.000               | 0.023          | 1.000      | 0.000    | 1.057        | 0.023 |
| curve     | 1.1 | 1.087          | 0.010 | 1.000               | 0.057          | 1.000      | 0.000    | 1.087        | 0.057 |
| 2         | 1.5 | 1.094          | 0.012 | 1.000               | 0.043          | 1.000      | 0.000    | 1.094        | 0.045 |
| CSA       | 0.4 | 0.978          | 0.003 | 1.000               | 0.023          | 1.000      | 0.000    | 0.978        | 0.023 |
| curve     | 1.1 | 0.887          | 0.010 | 1.000               | 0.057          | 1.000      | 0.000    | 0.887        | 0.057 |
| 1         | 1.5 | 0.926          | 0.012 | 1.000               | 0.043          | 1.000      | 0.000    | 0.926        | 0.045 |
| CSA       | 0.4 | 1.033          | 0.003 | 1.000               | 0.023          | 1.000      | 0.000    | 1.033        | 0.023 |
| curve     | 1.1 | 1.087          | 0.010 | 1.000               | 0.057          | 1.000      | 0.000    | 1.087        | 0.057 |
| 2         | 1.5 | 1.076          | 0.012 | 1.000               | 0.043          | 1.000      | 0.000    | 1.076        | 0.045 |

**Table 5.13 Professional Factors for Unreinforced Columns** 

| Section   | Slenderness parameter $\lambda$ | Initial Imperfection $\delta_0$ | P <sub>fea</sub> /P <sub>uy</sub> | P <sub>ex</sub> /P <sub>uy</sub> | $\rho_{\rm ex} = P_{\rm fea}/P_{\rm ex}$ |
|-----------|---------------------------------|---------------------------------|-----------------------------------|----------------------------------|------------------------------------------|
| (1)       | (2)                             | (3)                             | (4)                               | (5)                              | (6)                                      |
| W200x46*  | 0.92                            | L/6308                          | 0.73                              | 0.75                             | 0.973                                    |
| W200x46*  | 1.22                            | L/2417                          | 0.83                              | 0.82                             | 1.011                                    |
| W310x74** | 0.925                           | L/1500                          | 0.67                              | 0.76                             | 0.879                                    |
| W310x74** | 0.925                           | L/8000                          | 0.75                              | 0.76                             | 0.980                                    |
| W200x36** | 0.955                           | L/1500                          | 0.65                              | 0.73                             | 0.892                                    |
| W200x36** | 0.955                           | L/6000                          | 0.72                              | 0.73                             | 0.979                                    |
| W150x22** | 0.992                           | L/1500                          | 0.70                              | 0.73                             | 0.956                                    |
| W150x22** | 0.992                           | L/5000                          | 0.73                              | 0.73                             | 1.000                                    |

Note:

<sup>\*</sup> Test results reported by Huber and Beedle (1954)

<sup>\*\*</sup> Test results reported by Beedle and Tall (1960)

 $<sup>\</sup>delta_0$  - Initial imperfection of the rolled section columns

L - Column length

P<sub>fea</sub> - Finite element analyzed critical load capacity of the rolled section column

P<sub>uv</sub> - Yielding strength of the rolled section column

Pex - Experimetal strength of the rolled section column

 $<sup>\</sup>rho_{ex}$  - Experimetal ratio

pcre-apver 0.90 0.93 0.95 90: <u>+</u> 0.92 0.93 0.93  $\rho_G \rho_F \rho_P = \{V_G^2 + V_F^2 + V_P^2\}^{1/2}$ 0.085 990'0 0.058 0.055 0.069 0.066 0.057 0.059 0.081 0.087 Table 5.14.a Resistance Factors for Reinforced Columns from Group 1 0.081 1.070 1.245 1.238 1.019 1.139 .040 .252 0.991 1.113 0.061 0.044 0.044 0.013 0.044 0.044 Coefficient of Variation 0.013 0.013 0.061 0.061 0.061 0.026 0.085 0.039 0.034 0.086 0.036 0.026 0.040 0.080 0.029 0.031 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002  $\mathbf{V}_{\mathbf{G}}$ 0.984 0.936 1.017 1.050 0.964 1.026 1.177 0.972 0.996 1.182 1.181 .157 Mean/Nominal Ratio 1.062 1.047 060. .088 1.057 .055 1.060 .047 880. .062 .053 160 PG=PA 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.4 Reference criteria SSRC SSRC curve curve curve curve CSA CSA

ρ<sub>εν</sub>ε-αβνετ 0.81 0.90 0.92 0.84 0.89  $[V_G^2 + V_F^2 + V_P^2]^{1/2}$ 0.088 0.069 Table 5.14.b Resistance Factors for Reinforced Columns from Group 2 0.052 0.084 0.067 0.055 0.0890.068 0.052 0.070 0.084 ραρισρ 0.912 1.146 0.984 1.147 1.065 0.937 0.967 1.120 1.152 .130 1.077 1.151 0.045 0.023 0.057 0.023 0.057 0.045 0.045 Coefficient of Variation 0.023 0.057 0.023 0.057 0.045 > 0.039 0.085 0.026 0.080 0.034 0.086 0.036 0.026 0.040 0.031 0.0800.029 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.942 0.978 1.057 1.087 1.094 0.887 0.926 1.033 1.087 1.076 0.991 0.861 Mean/Nominal Ratio 060 .062 .047 .088 1.057 .055 .086 1.088 1.062 780. .053 160:  $\rho_G \!\!=\!\! \rho_A$ 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.4 0.4 Reference criteria SSRC SSRC curve curve curve curve CSA CSA

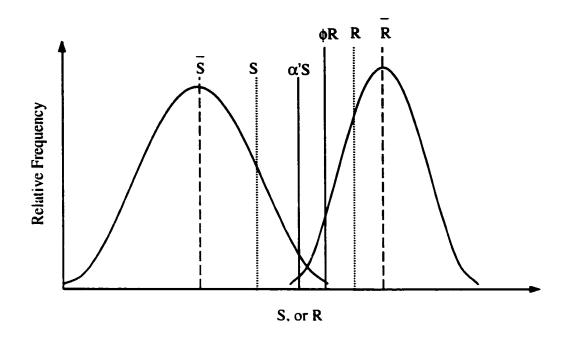



Figure 5.1 Frequency Distributions for Load Effect, S, and Resistance, R

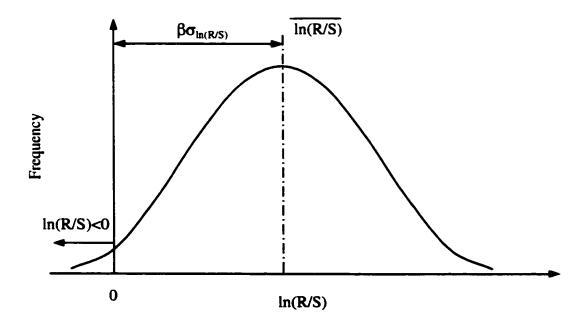
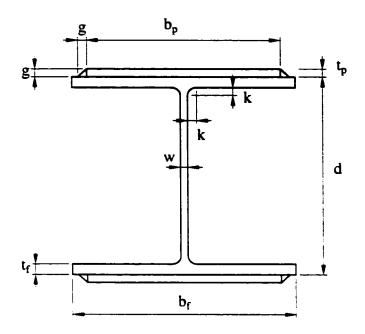
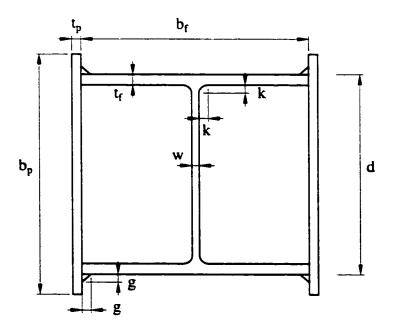





Figure 5.2 Frequency Distribution for ln(R/S)



a) Column Reinforced with Plates Parallel to the Flanges



b) Column Reinforced with Plates Parallel to the Web

Figure 5.3 Geometric Dimensions for Reinforced Columns

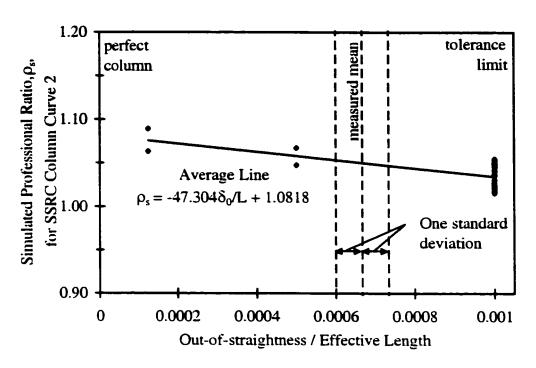



Figure 5.4 Simulated Professional Ratio vs. Value of Out-ofstraightness for Columns from Group 1 ( $\lambda = 0.4$ )

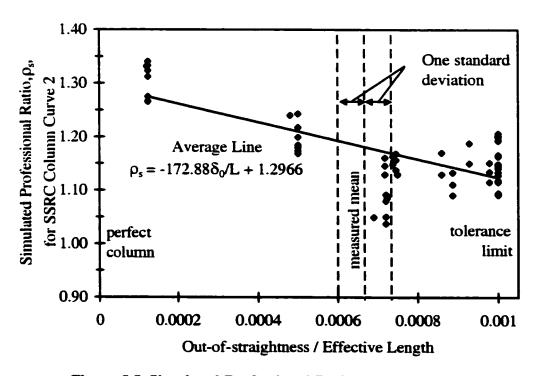



Figure 5.5 Simulated Professional Ratio vs. Value of Out-ofstraightness for Columns from Group 1  $(\lambda = 1.1)$ 

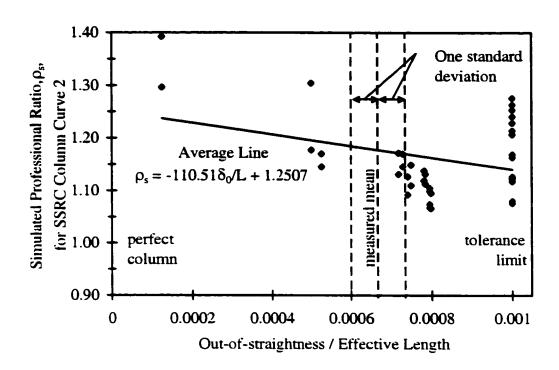



Figure 5.6 Simulated Professional Ratio vs. Value of Out-ofstraightness for Columns from Group 1 ( $\lambda = 1.5$ )

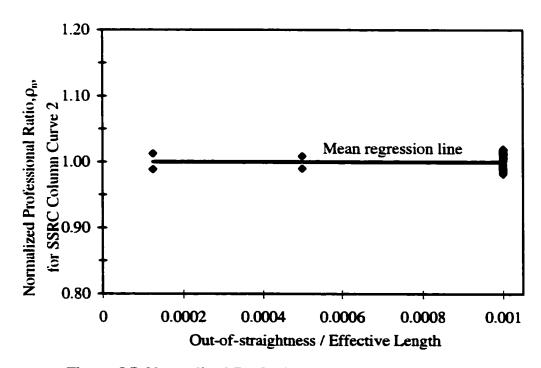



Figure 5.7 Normalized Professional Ratio vs. Value of Out-ofstraightness for Columns from Group 1 ( $\lambda$  =0.4)

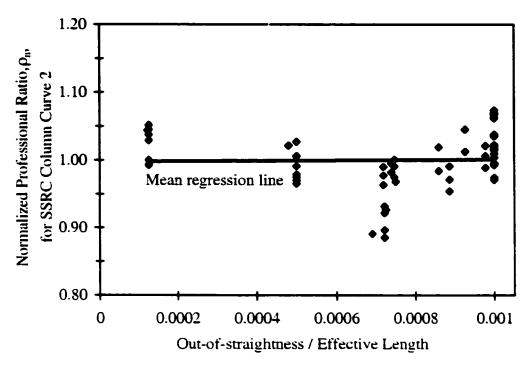



Figure 5.8 Normalized Professional Ratio vs. Value of Out-ofstraightness for Columns from Group 1 ( $\lambda$  = 1.1)

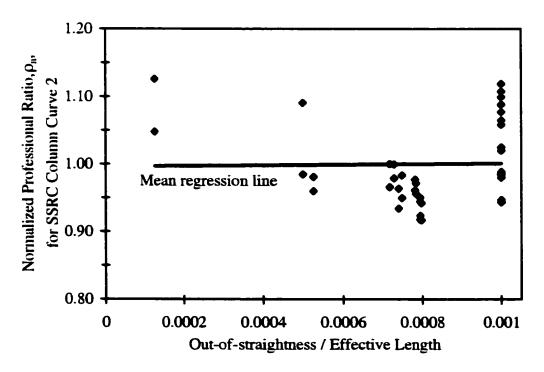



Figure 5.9 Normalized Professional Ratio vs. Value of Out-ofstraightness for Columns from Group 1 ( $\lambda = 1.5$ )

## Chapter 6

## **Summary, Conclusions and Recommendations**

### 6.1 Summary

A study of loaded steel wide flange columns reinforced with welded steel plates has been presented in this thesis. A review of the literature has indicated that there is no specific guideline to assess the strength of steel columns reinforced with welded cover plates, although many steel columns have been reinforced in this way. With little knowledge about the effect of parameters that may affect the strength and behaviour of reinforced steel columns, reinforced columns are commonly designed using the lower column curve in \$16.1. Although this column curve gives the lowest predicted column capacity, the level of safety obtained from such a design procedure is not known. It is also possible that the residual stresses introduced by the welding process may improve the capacity of reinforced column beyond that predict by the commonly used column curve. Research on the effect of parameters and a design guideline for steel columns reinforced with welded cover plates is therefore necessary to obtain an appropriate column curve for steel columns reinforced under load with welded cover plates.

Numerous parameters may affect the strength of steel columns reinforced with welded cover plates that would not affect the strength of rolled W section columns. Welding of reinforcing plates to a wide flange section changes the compressive residual stresses normally present at the tip of the flanges to high tensile residual stresses, which may be beneficial to the strength of the reinforced column. Interaction of influencing factors, such as residual stresses, preload magnitude, orientation of reinforcing plates, buckling direction, steel grades and geometric properties, may also significantly affect the behaviour and strength of reinforced columns. To understand the behaviour and strength of the columns reinforced with welded cover plates, the effect of these influencing parameters was studied numerically.

A finite element model was developed to study the effect of varying parameters on reinforced columns. The model and analysis procedure were validated by comparing the strength and behaviour of reinforced and unreinforced columns with the results of tests on ten columns failing in various ranges of material response. A total of 317 finite element models of wide flange steel columns reinforced under load were developed to study specifically the effect of: 1) residual stress pattern and magnitude in the wide flange; 2) residual stress magnitude in the reinforcing plates; 3) the magnitude of the load on the unreinforced section at the time of the reinforcing procedure; 4) steel grade both in the wide flange section and the reinforcing plates; 5) the orientation of the reinforcing plates; 6) the buckling axis; and 7) the relative area of reinforcing plates and wide flange section. The finite element software ABAQUS was used to perform the analysis.

The load versus deflection response for the reinforced columns investigated was obtained for values of the non-dimensional slenderness parameters,  $\lambda$ , of 0.4, 1.1 and 1.5, which cover the range from short to close to the limit between intermediate and slender columns. Residual stresses before welding varied from 10 to 30 percent of the yield strength of the wide flange section and from 15 to 30 percent of the yield strength of the reinforcing plates. The peak welding residual stress was varied from 70 to 100 percent of the yield strength of the rolled section. The initial imperfections of the unreinforced column investigated ranged from near zero to the maximum limit of L/1000 permitted by industry standards. The preload magnitudes investigated were taken as 40 percent and 60 percent of the load carrying capacity of the reinforced columns predicted using SSRC curve 2. The orientation of reinforcing plates was parallel to the flanges or parallel to the web. Buckling about the weak axis of the wide flange section or its strong axis were both investigated. All most commonly used wide flange sections varying from W310x179 to W150x30 were investigated.

A statistical analysis of the analysis results was performed to evaluate the performance of reinforced steel columns based on the limit states philosophy. Statistical data on geometric properties, material properties, and initial imperfections for both rolled sections and plates were collected from the literature. A statistical analysis of the data was performed to obtain the appropriate magnitude of resistance factor to use with each of the two column curves used in the Canadian standard. The design criteria for steel

columns reinforced with welded cover plates were recommended based on this statistical analysis.

#### **6.2 Conclusions**

The following conclusions can be drawn based on the results of the work described above.

- 1. The slenderness parameter and out-of-straightness have the most significant effect on the strength and behaviour of reinforced steel columns.
- 2. Varying the initial residual stress pattern does not significantly affect the behaviour and strength of reinforced columns. The investigation also demonstrated that varying the maximum welding residual stress pattern from 70% to 100% of the yield strength of the materials does not significantly affect the predicted strength of reinforced columns either.
- 3. There is an interactive effect between the orientation of the reinforcing plates and the buckling direction on intermediate and slender reinforced columns. For intermediate and slender reinforced columns buckling about the weak axis of the rolled section, columns reinforced with plates parallel to the web show a higher strength than columns reinforced with plates parallel to the flanges. For intermediate reinforced columns buckling about the strong axis of the rolled section, columns reinforced with plates parallel to the flanges show a higher strength than columns reinforced with plates parallel to the web. On the other hand, for intermediate and long columns with reinforcing plates parallel to the flanges, buckling about the strong axis of the rolled section may introduce a higher strength-to-yield ratio of the reinforced column. For intermediate columns with reinforcing plates parallel to the web, buckling about the weak axis of the rolled section may introduce a higher strength-to-yield ratio of the reinforced column.

- 4. Difference in steel grades between the wide flange section and the reinforcing plates was found to have a negligible effect on the behaviour and strength of reinforced columns.
- The effect of the rolled section area to the reinforcing plate area ratio on the predicted strength-to-yield ratio of reinforced columns was found to be insignificant.
- 6. The effect of the preload magnitude varying from 40% to 60% of the load carrying capacity of the unreinforced column was found to be negligible.
- 7. SSRC curve 2 and corresponding CSA curve 2 used with a resistance factor of 0.9 are appropriate for reinforced steel columns.

# 6.3 Recommendations for Future Research

The work presented herein is only based on the numerical analyses. Since the lack of experimental data in the intermediate to slender range, the finite element model used for this study had only been partly validated by comparison with existing test results in the short range. Consequently, there is a need for more tests in the intermediate to slender range. The following issues should be investigated based on the test results.

- 1. Fully validating the finite element model used for this study by comparison with the test results in the intermediate to slender range.
- 2. The ratio of test strength to the computer simulation developed in this thesis.
- 3. The effect of reinforcing process on the out-of-straightness of the column, i.e., if the welding process increases the out-of-straightness of the intermediate or long column, as shown in the numerical analysis.
- 4. The local buckling shapes observed in the short columns described in Section 4.2.

5. The interactive effect between the buckling axis and the direction of the reinforced plates on the strength and behaviour of the columns reinforced with welded cover plates.

#### List of References

- Allen, D.E. (1975). Limit States Design A Probabilistic Study. Canadian Journal of Civil Engineers, Vol. 2, No. 1, pp. 36-49.
- Alpsten, G.A., and Tall, L. (1970). **Residual Stresses in Heavy Welded Shapes**. Supplement to the Welding Journal, Welding Research Council of the Engineering Foundation, Vol. 49, March, pp. 93s 105s.
- American Institute of Steel Construction, Inc. (1980). Manual of Steel Construction. 8th Ed, Chicago, III.
- Beedle, L.S., and Tall, L. (1960). **Basic Column Strength**. Journal of the Structural Division, American Society of Civil Engineers, Vol. 86, No. ST7, pp. 139 –173.
- Benjamin, J.R., and Cornell, C.A. (1970). **Probability, Statistics and Decision for Civil Engineers.** McGraw-Hill book Company, New York, NY.
- Bjorhovde, R. (1972). **Deterministic and Probabilistic Approaches to the Strength of Steel Columns.** PhD. Thesis, Lehigh University, Bethlehem, PA, May.
- Bjorhovde, R. (1988). Columns: From Theory to Practice. Engineering Journal, American Institute of Steel Construction, Inc., Vol. 25, 1st Quarter, pp. 21 34.
- Bjorhovde, R., Brozzetti, J., Alpsten, G.A., and Tall, L. (1972). Residual Stress in Thick Welded Plates. Supplement to the Welding Journal, Welding Research Council of the Engineering Foundation, Vol. 51, August, pp. 392s 405s.
- Brozzetti, J., Alpsten, G.A., and Tall, L. (1970). Welding Parameters, Thick Plates, and Column Strength. Fritz Engineering Laboratory Report No. 337.21, Lehigh University, Bethlehem, PA, February.
- Brown, J.H. (1988). Reinforcing Loaded Steel Compression Members. Engineering Journal, American Institution of Steel Construction, Inc., Vol. 25, 4th Quarter, pp. 161-168.
- Canadian Standards Association (1992). General Requirements for Rolled and Welded Structural Quality Steel. CSA Standard G40.20-92, Canadian Standards Association, Rexdale, Ontario.
- Canadian Institute of Steel Construction (1995). Handbook of Steel Construction. 6th Edition, Canadian Institute of Steel Construction, Willowdale, Ontario.
- Canadian Standards Association (1974). Steel Structures for Building (Limit States Design). CSA Standard S16.1-1974, Canadian Standards Association, Rexdale, Ontario.

- Canadian Standards Association (1984). Steel Structures for Building Limit States Design. CSA Standard CAN3-S16.1-M84, Canadian Standards Association, Rexdale, Ontario.
- Canadian Standards Association (1992). **Structural Quality Steel.** CSA Standard G40.21-92, Canadian Standards Association, Rexdale, Ontario.
- Canadian Standards Association (1994). Limit State Design of Steel Structures. CSA Standard CAN/CSA-S16.1-94, Canadian Standards Association, Rexdale, Ontario.
- Chen, W.F. and Atsuta, T. (1976). Theory of Beam-Columns (Volume 1): In-Plane Behavior and Design. McGraw-Hill, New York, NY.
- Chen, W.F. and Lui, E.M. (1987). Structural Stability: Theory & Implementation. Elsevier, New York, NY.
- Chernenko, D.E., and Kennedy, D.J.L. (1988). An Analysis of the Performance of Welded Wide Flange Columns. Structural Engineering Report 163, Dept. of Civil Engineering, University of Alberta, Edmonton, Alberta, December.
- Feder, D.K. and Lee, G.C. (1959). Residual Stresses in High Strength Steel. Fritz Engineering Laboratory Report No. 269.2, Lehigh University, Bethlehem, PA, April.
- Fujita, Y. (1960). Ultimate Strength of Columns with Residual Stresses. Journal of the Society of Naval Architects, Japan, January.
- Galambos, T.V. (1968). **Structural Members and Frames**. Prentice-Hall International Inc., Englewood Cliffs, New Jersey.
- Galambos, T.V. (1998). Guide to Stability Design Criteria for Metal Structures. 5th Ed., Structural Stability Research Council, John Wiley & Sons, Inc., New York.
- Galambos, T.V., and Ravindra, M.K. (1973a). Load Factor Design for Combinations of load. National Structural Engineer Meeting, American Society of Civil Engineers, San Francisco, California.
- Galambos, T.V., and Ravindra, M.K. (1973b). **Tentative Load and Resistance Factor Design Criteria for Steel Buildings.** Research Report 18, Civil Engineering Department, Washington University, Saint Louis, Missouri.
- Galambos, T.V., and Ravindra, M.K. (1977). The Basis for Load and Resistance Factor Design Criteria of Steel Building Structures. Canadian Journal of Civil Engineers, Vol. 4, No. 1, pp. 178-189.

- Gaylord, Jr., E. H., Gaylord, C. N., and Stallmeyer, J. E. (1997). Structural Engineering Handbook. 4th Ed., McGraw-Hill Inc., New York, NY.
- Geschwindner, L.F., Disque, R.O., and Bjorhovde, R. (1994). Load and Resistance Factor Design of Steel Structures. Prentice-Hall, Inc, Englewood Cliffs, New Jersey.
- Hibbitt, H.D., Karlsson, and Sorensen. et al. (1997). ABAQUS/Standard User's Manual. Hibbitt, Karlsson & Sorensen, Inc.
- Hines, W.W., and Montgomery, D.C. (1972). **Probability and Statistics in Engineering and Management Science.** The Ronald Press Company, New York, NY.
- Huber, A.W. (1956). The Influence of Residual Stresses on the Instability of Columns. Ph.D. Dissertation, Lehigh University, Bethlehem, PA, May.
- Huber, A.W. (1958). Fixture for Testing Pin-End Columns. ASTM Bulletin No. 234, December.
- Huber, A.W. (1959). Residual Stresses in Wide-Flange Beams and Columns. Fritz Engineering Laboratory Report No. 220A.25, Lehigh University, Bethlehem, Pennsylvania, July.
- Huber, A.W., and Beedle, L.S. (1954). **Residual Stress and the Compressive Strength of Steel.** Supplement to the Welding Journal, Welding Research Council of the Engineering Foundation, Vol. 33, December, pp. 589s 614s.
- Johnston, B.G. (1976). Guide to Stability Design Criteria for Metal Structures. 3rd Ed., Structural Stability Research Council, John Wiley & Sons, Inc., New York.
- Kennedy, D.J.L., Allen, D.E., Adams, P.F., Kulak, G.L., Tarlton, D.L., and Turner, D.K. (1976). Limit States Design. Proceeding of the Canadian Structural Engineering Conference, Canadian Institute of Steel Construction, February.
- Kennedy, D.J.L., and Gad Aly, M. (1980). Limit States Design of Steel Structures Performance Factors. Canadian Journal of Civil Engineering, Vol. 7, No. 1, pp. 45 77.
- Kennedy, J.B., and Neville, A.M. (1976). Basic Statistical Methods for Engineers and Scientists. 3rd Ed., Harper and Row Publishers Inc., New York, NY.
- Kishima, Y., Alpsten, G.A., and Tall, L. (1969). Residual Stresses in Welded Shapes of Flame-Cut Plates in ASTM A572(50) Steel. Fritz Engineering Laboratory Report No. 321.2, Lehigh University, Bethlehem, PA, June.

- Kulak, G.L. and Gilmor, M.I. (1998). Limit States Design in Structural Steel. 6th Ed., Canadian Institute of Steel Construction, Willowdale, Ontario.
- Lind, N.C. (1971). Consistent Partial Safety Factors. Journal of the Structural Division, American Society of Civil Engineers, Vol. 97, No. ST5, pp. 1651 1670.
- Loov, R. (1996). A Simple Equation for Axially Loaded Steel Column Design Curves. Canadian Journal of Civil Engineers, Vol. 23, No. 1, pp. 272-276.
- Masubuchi, K. (1980). Analysis of Welded Structures. 1st Ed., Pergamon Press, Oxford, NY.
- Nagaraja Rao, N.R., Estuar, F.R., and Tall, L. (1964). Residual Stresses in Welded Plates. Supplement to the Welding Journal, Welding Research Council of the Engineering Foundation, Vol. 43, July, pp. 295s 306s.
- Nagaraja Rao, N.R. and Tall, L. (1962). Columns Reinforced under Load. Fritz Laboratory Report No. 286.1, Lehigh University, Bethlehem, PA, April.
- Nagaraja Rao, N.R. and Tall, L. (1963). Columns Reinforced under Load. Supplement to the Welding Journal, Welding Research Council of the Engineering Foundation, Vol. 39, April, pp. 177s 185s
- Riks, E. (1979). An Incremenal Approach to the Solution of Snapping and Buckling Problems. International Journal of Solids Structures, Vol. 15, pp. 529-551.
- Sparagen, W., and Grapnel, L. (1944). **Reinforcing Structures under Load.** Supplement to the Welding Journal, Welding Research Council of the Engineering Foundation, Vol. 23, February, pp. 65s 92s.
- Tall, L. (1961). Residual Stresses in Welded Plates A Theoretical Study. Fritz Laboratory Report No. 249.11, Lehigh University, Bethlehem, PA, July.
- Tall, L. (1989). The Reinforcement of Steel Columns. Engineering Journal, American Institute of Steel Construction, Vol. 26, 1st Quarter, pp. 33 37.

# Appendix A

**Analysed Reinforced Columns Description** 

# **Analysed Reinforced Columns Description**

All 317 model analyses were performed to verify the behaviour of the reinforced steel columns with welded cover plates in the analysis. The initial geometrical conditions and the material conditions of the analysed specimen are presented in Table A.1.

Column (1) of Table A.1 presents the number of the finite element analysed models. Columns (2) and (3) present the designations of rolled sections and reinforcing plates respectively.

Column (4) "D" is the direction of reinforcing plates. In this column, F represents that the cover plates are reinforced on the column along the flanges, as shown in Figure 2.1 (a). G represents that the cover plates are attached to the column at the flange tips of the column and parallel to the web, as shown in Figure 2.1 (b).

Column (5) "B" is the buckling axis of the reinforced column. W represents the same axis as the weak axis of the I-section before reinforcing, and S represents the same axis as the strong axis of the I-section before reinforcing. Column (6) presents the length of the reinforced column. This length is the same as that of the I-section. The length of the cover plates is 20 mm shorter than this length. Column (7) " $\lambda$ " is the slenderness parameter of the reinforced column on the buckling direction.

Columns (8), (9) and (10) present the initial residual stress before welding in the cross section. Column (8) "PS" is the pattern of the initial residual stress before welding. The patterns are shown in the Figures 4.6. Column (9) "MF" is the maximum magnitude of the initial residual stress before welding at the flange tips in the rolled section. The values are presented by the ratio of the maximum residual stress to the yield strength of the rolled section. Column (10) "MP" is the maximum magnitude of the initial residual stress before welding at the edges of the cover plates. The values are presented by the ratio of the maximum residual stress to the yield strength of the rolled section. Column (11) presents the maximum magnitude residual stress after welding at the flange tips of the

rolled section. The values are presented by the ratio of the maximum residual stress to the yield strength of the rolled section.

Columns (12), (13) and (14) present the initial imperfection of the rolled section columns before reinforcing. The column (12) presents the ratio of the out-of-straightness to the column length, L. The out-of-straightness is on the expected buckling direction of the reinforced column. The maximum allowable initial out-of-straightness varies for columns longer than 10 m in accordance of CAN/CSA-S16.1-94. The column (13) "W" is the magnitude of the initial imperfection on the weak axis of the unreinforced column. The column (14) "S" is the initial imperfection on the strong axis of the unreinforced column.

Columns (15), (16) and (17) present the out-of-straightness of the reinforced columns after reinforcing the cover plates to the rolled section without any pre-load. The column (15) presents the ratio of the out-of-straightness to the column length, L. The out-of-straightness is on the expected buckling direction of the reinforced column. The column (16) "W" is the magnitude of the out-of-straightness on the weak axis of the unreinforced column. The column (14) "S" is the out-of-straightness on the strong axis of the unreinforced column.

Columns (18) and (19) present the yield strength of the I-section and the cover plates respectively.

Table A.1 Analysed Reinforced Column Description

| FEA      | -                                             |             |          |            | Column         |          |     | IRS               |                    | Welding                        |             | Initial Imperfection | ection                       | Ont-                    | Out-of-straightness              | itness  | Yield Strength | rength |
|----------|-----------------------------------------------|-------------|----------|------------|----------------|----------|-----|-------------------|--------------------|--------------------------------|-------------|----------------------|------------------------------|-------------------------|----------------------------------|---------|----------------|--------|
| mod      | model I-section                               | Plate       |          | æ          | D* B Length λ' | <b>~</b> | PSe | MF                | MP                 | Residual                       |             | before reinforcing   | rcing                        | after re                | after reinforcing, no load       |         | =              | plate  |
| No.      |                                               |             |          |            | L (mm)         | _        |     |                   |                    | Stress                         | ratio       | IW <sup>i</sup> (mm  | IW'(mm) IS <sup>J</sup> (mm) | ratio                   | IW'(mm)                          | IS'(mm) | (MPa)          | (MPa)  |
| $\equiv$ | (2)                                           | 3           | €        | 3          | (4) (5) (6)    | 8        | €   | 9                 | <u>@</u>           | (E)                            | (12)        | (13)                 | (14)                         | (15)                    | (16)                             | (17)    | - 1            | (61)   |
| -        | W200x46 180x9.52 F                            | 180x9.52    | 2 F      | ≥          | 2440           | 0.5      | 2-1 | 0.3F <sub>v</sub> | 0.15F <sub>v</sub> | 0.7F <sub>v</sub>              | 175200      | 0.47                 | 0.00                         | L/4900                  | 0.50                             |         | 260            | 260    |
| 2        | W200x46 180x9.52 F                            | 180x9.52    | 고        | ≩          | 2440           | 0.5      | 2-1 | $0.3F_{v}$        | 0.15F              | $0.7F_{v}$                     | L/5000      | 0.49                 | 0.00                         | L/4900                  | 0.50                             |         | 260            | 260    |
| €.       | W200x46 180x9.52 F                            | 180x9.52    | 7<br>F   | ≥          | 4504           | 1.0      | Ξ   | $0.3F_{v}$        | 0.15F,             |                                | 71000       | 4.51                 | 0.00                         | 17890                   | 5.04                             |         | 260            | 260    |
| 4        | W200x46 180x9.52                              | 180x9.52    | <u>ح</u> | ≥          | 4504           | 0:       | 1-3 | $0.3F_{v}$        | $0.3F_{v}$         | ت                              | 71000       | 4.51                 | 0.00                         | L/890                   | 5.04                             |         | 260            | 260    |
| ~        | W200x46 180x9.52                              | 180x9.52    | <u>ح</u> | ≥          | 4504           | 0:1      | 1-2 | 0.1F,             | 0.15F <sub>v</sub> | بر                             | 2000        | 4.50                 | 0.00                         | 17890                   | 5.04                             |         | 260            | 260    |
| 9        | W200x46 180x9.52                              | 180x9.52    | <u> </u> | ≩          | 4504           | 1.0      | 4   | 0.1F,             | $0.3F_{v}$         | ت                              | <b>2000</b> | 4.50                 | 0.00                         | L/890                   | 5.04                             |         | 260            | 260    |
| 7        | W200x46 180x9.52                              | 180x9.52    | <u>ج</u> | ≥          | 4504           | 0:1      | 2-1 | 0.3F <sub>v</sub> | 0.15F,             | بر                             | 7000        | 4.50                 | 0.00                         | L/890                   | 5.04                             |         | 260            | 260    |
| ∞        | W200x46 180x9.52                              | 180x9.52    | <u>ر</u> | ≥          | 4504           | 0:1      | 2-2 | 0.1F,             | 0.15F              | تا                             | 71000       | 4.50                 | 0.00                         | L/890                   | 5.04                             |         | 260            | 260    |
| 6        | W200x46 180x9.52                              | 180x9.52    | E.       | ≩          | 4504           | 1.0      | 3-1 | 0.3F <sub>v</sub> | 0.15F,             | بر<br>س                        | 71000       | 4.50                 | 0.00                         | L/890                   | 5.04                             |         | 260            | 260    |
| 으<br>153 | W200x46 180x9.52                              | 180x9.52    | <u>.</u> | ≥          | 4504           | 0:1      | 3-2 | 0.1F <sub>v</sub> | 0.15F,             | , tr <sub>3</sub>              | 71000       | 4.50                 | 0.00                         | L/890                   | 5.04                             |         | 260            | 260    |
| ; =<br>3 | W200x46 180x9.52                              | 180x9.52    | E.       | ≩          | 4504           | 0:1      | 4-1 | 0.3F <sub>v</sub> | 0.15F              | , tr <sub>2</sub>              | 71000       | 4.50                 | 0.00                         | <b>17890</b>            | 5.04                             |         | 260            | 260    |
| 12       | W200x46 180x9.52                              | 180x9.52    | <b>元</b> | ≩          | 4504           | 0:1      | 4-2 | 0.1F,             | 0.15F,             | , tr <sub>3</sub>              | 71000       | 4.50                 | 0.00                         | L/890                   | 5.04                             |         | 260            | 260    |
| 13       | W200x46 180x9.52                              | 180x9.52    | <u>ب</u> | S          | 8316           | 1.0      | 1-1 | $0.3F_{v}$        | 0.15F,             | س                              | 71000       | 99:1                 | 8.32                         | L/850                   |                                  | 9.83    | 260            | 260    |
| 14       | W200x46 180x9.52                              | 180x9.52    | <u></u>  | S          | 8316           | 1.0      | 1-2 | 0.1F <sub>v</sub> | 0.15F              | , п,                           | <b>1000</b> | 99:1                 | 8.32                         | L/850                   |                                  | 9.83    | 260            | 260    |
| 15       | W200x46 180x9.52                              | 180x9.52    | 다        | S          | 8316           | 1.0      | 3-1 | $0.3F_{v}$        | 0.15F,             | . п <sub>у</sub>               | 71000       | 99.1                 | 8.32                         | L/850                   |                                  | 9.83    | 260            | 260    |
| 91       | W200x46 180x9.52 F                            | 180x9.52    | T.       | S          | 8316           | 0.1      | 3-2 | 0.1F,             | 0.15F,             | . ፔ,                           | 71000       | 99:1                 | 8.32                         | L/850                   |                                  | 9.83    | 260            | 260    |
| 17       | W310x179 290x25                               | 290x25      | Ľ        | ≩          | 2631           | 0.4      | 1-3 | $0.3F_{y}$        | $0.3F_{\chi}$      | F,                             | L/8000      | 0.33                 | 0.00                         | L/850                   | 0.34                             |         | 300            | 300    |
| a D      | a) D - Direction of reinforcing plates        | of reinfore | cing     | [ 클        | ıtes           |          |     | F - Par           | allel to           | F - Parallel to the flanges    | es          |                      | G - Para                     | G - Parallel to the web | e web                            |         |                |        |
| b) B     | b) B - Buckling axis of the reinforced column | xis of the  | rein     | . <u>J</u> | ced colu       | E        |     | W - W             | eak axi            | W - Weak axis of the I-section | -section    |                      | S - Stroi                    | ng axis o               | S - Strong axis of the I-section | tion    |                |        |
| 1        | D                                             |             | ;        | 1          | :              |          |     |                   |                    |                                | 1           | •                    |                              | •                       |                                  | •       |                |        |

f) MF -Maximum magnitude of the residual stress in the flange. d) IRS - Initial residual stress before reinforcing

> g) MP -Maximum magnitude of the residual stress in the reinforcing plate. e) PS - Residual stress pattern, as illustrated in Figure 4-1.

c)  $\lambda$  - Slenderness parameter of the reinforced column

Fy - Yield stress of the unreinforced column

h) ratio - The ratio of the out-of-straightness to the column length, L.

i) W - Out-of-straightness in the weak direction.

| FEA       | A                                      |                   |          |          | Column |     |            | IRS               |                       | Welding                        | Initia  | Initial Imperfection                   | ction     | Out                     | Out-of-straightness              | '    | Yield Strength  | ength |
|-----------|----------------------------------------|-------------------|----------|----------|--------|-----|------------|-------------------|-----------------------|--------------------------------|---------|----------------------------------------|-----------|-------------------------|----------------------------------|------|-----------------|-------|
| mod       | model 1-section                        | Plate Da B Length | <u>_</u> | 1<br>8   | ength  | ۳   | PSe        | MF                | MPg                   | Residual                       | befo    | before reinforcing                     | cing      | after rei               | after reinforcing, no load       |      | I-section plate | plate |
| Ž         | ć                                      |                   |          | _1       | L (mm) |     |            |                   |                       | Stress                         | ratio   | W <sup>h</sup> (mm) S <sup>i</sup> (mm | S'(mm)    | ratio                   | Wh(mm) Si(mm)                    | (III | (MPa)           | (MPa) |
| =         | ) (2)                                  | (3)               | (4) (5)  | (5)      | 9      | 6   | <b>€</b>   | 6                 | (OE)                  | (E)                            | (12)    | (13)                                   | (14)      |                         | (16) (17)                        | 2    | (18)            | (61)  |
| <b>=</b>  | W3                                     | 290x25            | ഥ        | ≥        | 2631   | 0.4 | 1-3        | 0.3F,             | 0.3Fy                 | π,                             | 172000  | 1.32                                   | 0.00      | 1/1930                  | 1.36                             |      | 300             | 300   |
| 51        | 9 W310x179 290x25                      | 290x25            | Œ        | ≱        | 2631   | 0.4 | <u>1-3</u> | 0.3F,             | $0.3F_{v}$            | . ፑ,                           | 71000   | 2.64                                   | 0.00      | L/970                   | 2.72                             |      | 300             | 300   |
| 30        | W310x179 290x25                        | 290x25            | [工       | ≩        | 2631   | 0.4 | 1-3        | $0.3F_{v}$        | $0.3F_{v}$            | . ፔ,                           | 71000   | 2.63                                   | 0.00      | L/980                   | 2.69                             |      | 300             | 300   |
| 21        |                                        | 290x25            | Ľ,       | ≥        | 2740   | 0.4 | 1-3        | $0.3F_{v}$        | $0.3F_{v}$            | Г.                             | 71000   | 2.75                                   | 0.00      | 02677                   | 2.83                             |      | 230             | 350   |
| 22        |                                        | 290x25            | Œ        | ≥        | 2740   | 0.4 | 1-3        | $0.3F_{v}$        | $0.3F_{v}$            | . ፑ,                           | 71000   | 2.75                                   | 0.00      | 17980                   | 2.80                             |      | 230             | 350   |
| 23        |                                        | 290x25            | 12.      | ≩        | 7235   | 1.1 | 1-3        | $0.3F_{v}$        | $0.3F_{v}$            | . ፫                            | 178000  | 0.83                                   | 0.00      | 17190                   | 10:1                             |      | 300             | 300   |
| 24        |                                        | 290x25            | 12       | ≱        | 7235   | -   | 1-3        | $0.3F_{v}$        | $0.3F_{v}$            | . ፑ,                           | L/2000  | 3.34                                   | 0.00      | 1790                    | 4.06                             |      | 300             | 300   |
| 25        |                                        | 290x25            | Ľ.       | ≥        | 7235   | =   | 1-3        |                   | $0.3F_{y}$            | . ፑ,                           | 71000   | 7.23                                   | 0.00      | L/820                   | 8.82                             |      | 300             | 300   |
|           |                                        | 290x25            | 1        | ≥        | 7235   | =   | 1-3        |                   | $0.3F_{v}$            | 0.7F,                          | 71000   | 7.25                                   | 0.00      | L/820                   | 8.86                             |      | 300             | 300   |
| 52<br>154 |                                        | 290x25            | Ľ,       | ≱        | 7235   | Ξ:  | 1-3        | _                 | $0.3\overline{F_{y}}$ | Т,                             | 71000   | 7.25                                   | 0.00      | <b>1</b> 200            | 8.09                             |      | 300             | 300   |
|           |                                        | 290x25            | Œ        | ≥        | 7535   | Ξ   | 1-3        | _                 | $0.3F_{y}$            | . π <u>,</u>                   | 71000   | 7.54                                   | 0.00      | L/830                   | 9.03                             |      | 230             | 320   |
| 50        |                                        | 290x25            | Œ,       | ≥        | 7535   | ==  | 1-3        |                   | $0.3F_{y}$            | Пу                             | 71000   | 7.54                                   | 0.00      | <b>1</b>                | 8.34                             |      | 230             | 350   |
| 8         |                                        | 290x25            | Œ,       | ≱        | 9986   | 1.5 | 1-3        | 0.3F,             | $0.3F_{y}$            | E,                             | 178000  | 1.24                                   | 0.00      | L/6270                  | 1.57                             |      | 300             | 300   |
| 31        | W310x179 290x25                        | 290x25            | Ľ.       | ≩        | 9986   | 1.5 | I-3        | 0.3F              | $0.3F_{y}$            | Œ,                             | L/2000  | 4.94                                   | 0.00      | 1/1570                  | 6.28                             |      | 300             | 300   |
| 32        | 2 W310x179 290x25                      | 290x25            | Œ        | ≥        | 9986   | 1.5 | <u>1-3</u> | 0.3F <sub>y</sub> | $0.3F_{y}$            | ፎ                              | 21000   | 9.88                                   | 0.00      | 738                     | 12.56                            |      | 300             | 300   |
| 33        | 3 W310x179 290x25                      | 290x25            | <u> </u> | ≩        | 9986   | 1.5 | <u>-3</u>  | 0.3F <sub>y</sub> | $0.3F_{y}$            | ቪ                              | 71000   | 9.88                                   | 0.00      | 7890                    | 11.13                            |      | 300             | 300   |
| 8         | 4 W310x179 290x25                      | 290x25            | <u> </u> | <b>≯</b> | 10275  | 1.5 | 1-3        | $0.3F_{y}$        | $0.3F_{\chi}$         | F,                             | 171000  | 10.00                                  | 0.00      | L/830                   | 12.46                            |      | 230             | 350   |
| ) (a      | a) D - Direction of reinforcing plates | f reinforc        | ing      | plate    | Se     |     | _          | F - Para          | illel to              | F - Parallel to the flanges    | S       |                                        | G - Para  | G - Parallel to the web | web                              |      |                 |       |
| P) H      | b) B - Buckling axis                   | cis               | 1        |          |        |     |            | W - We            | sak axi               | W - Weak axis of the I-section | section |                                        | S - Stroi | ig axis of              | S - Strong axis of the I-section |      |                 |       |
|           | ,                                      |                   | •        |          |        | •   |            |                   |                       |                                | 201.1   |                                        | - then    | Lafer.                  | S. mine Carrier                  |      |                 |       |

d) IRS - Initial residual stress before reinforcing

c)  $\lambda$  - Slenderness parameter of the reinforced column

g) MP -Maximum magnitude of the residual stress in the reinforcing plate. e) PS - Residual stress pattern, as illustrated in Figure 4-1.

f) MF -Maximum magnitude of the residual stress in the flange.  $F_y - Yield \ stress \ of \ the \ unreinforced \ column$ 

h) ratio - The ratio of the out-of-straightness to the column length, L. i) W - Out-of-straightness in the weak direction.

j) S - Out-of-straightness in the strong direction.

| FEA      |                                        | Column      |           | ပ      | Column       |     |            | IRS               |            | Welding                        |               | Initial Imperfection | ection    | )<br>O                  | Out-of-straightness              | itness              | <b>Yield Strength</b> | rength |
|----------|----------------------------------------|-------------|-----------|--------|--------------|-----|------------|-------------------|------------|--------------------------------|---------------|----------------------|-----------|-------------------------|----------------------------------|---------------------|-----------------------|--------|
| 300      | model I-section                        | Plate       | <u>"</u>  | 3 P    | D* B' Length | ر م | PS¢        | MF                | ΜPg        | Residual                       | befo          | before reinforcing   | rcing     | after rei               | after reinforcing, no load       | no load             | I-section plate       | plate  |
| Š        | o.                                     |             |           |        | L (mm)       |     | ,          |                   |            | Stress                         | ratio         | W <sup>h</sup> (mm)  |           | ratio                   | W <sup>h</sup> (mm)              | S <sup>i</sup> (mm) | (MPa)                 | (MPa)  |
| =        | (2)                                    | 3           | (4) (5)   | (5)    | 9            | 6   | €          | <u>6</u>          | ( <u>0</u> | Ξ                              | :             | (13)                 | (14)      | ;                       | (16)                             | (11)                | (18)                  | (19)   |
| le.      | 5 W310x179 290x25                      | 290x25      | Ľ         | _<br>≥ | 10275        | 1.5 | 1-3        | 0.3F <sub>v</sub> | 0.3F,      | F,                             | 71000         | 10.00                | 0.00      | 17920                   | 11.18                            |                     | 230                   | 350    |
| 36       | 6 W310x179 290x25                      | 290x25      | Œ         | S      | 5064         | 0.4 | 1-3        | _                 | $0.3F_{y}$ | Г,                             | 71000         | 1.02                 | 90.9      | 17950                   |                                  | 5.33                | 300                   | 300    |
| 3,       | 7 W310x179 290x25                      | 290x25      | Έ,        | S      | 5064         | 0.4 | <b>1-3</b> | _                 | 0.3F,      | π <u>,</u>                     | 71000         | 1.02                 | 90.9      | 7960                    |                                  | 5.25                | 300                   | 300    |
| **       | 8 W310x179 290x25                      | 290x25      | Ľ.        | S      | 5273         | 0.4 | <b>1-3</b> | 0.3F,             | $0.3F_{v}$ | , п <u>т</u> ,                 | 71000         | 1.08                 | 5.27      | 096/1                   |                                  | 5.52                | 230                   | 350    |
| 39       | 9 W310x179 290x25                      | 290x25      | Œ         | S      | 5273         | 0.4 | 1-3        |                   | $0.3F_{v}$ | . <del>г,</del>                | 71000         | 1.08                 | 5.27      | 0/6/7                   |                                  | 5.43                | 230                   | 350    |
| 4        | 0 W310x179 290x25                      | 290x25      | <u> </u>  | S      | 3923         |     | 1-3        | _                 | $0.3F_{v}$ | . <del>т</del> ,               | 78000         | 0.35                 | 1.74      | L/6050                  |                                  | 2.30                | 300                   | 300    |
| 4        | 1 W310x179 290x25                      | 290x25      | 12.       | S      | 3923         | =   | 1-3        | $0.3F_{v}$        | $0.3F_{v}$ | . <del>г,</del>                | 172000        | 1.39                 | 96.9      | L1510                   |                                  | 9.22                | 300                   | 300    |
| 42       | 2 W310x179 290x25                      | 290x25      | ഥ         | S      | 3923         | -:  | 1-3        | _                 | $0.3F_{v}$ | . ኬ                            | 71400         | 1.99                 | 10.00     | L/1050                  |                                  | 13.25               | 300                   | 300    |
| 4        | 3 W310x179 290x25                      | 290x25      | ĹŢ.       | S      | 3923         | =   | 1-3        |                   | 0.3F,      | $0.7F_{y}$                     | <b>171400</b> | 1.99                 | 10.00     | 171051                  |                                  | 13.27               | 300                   | 300    |
| ₹<br>155 | 4 W310x179 290x25                      | 290x25      | ĬŽ.       | S      | 13923        | -:  | 1-3        | _                 | 0.3F,      | Γ,                             | L/1400        | 1.99                 | 10.00     | 71130                   |                                  | 11.71               | 300                   | 300    |
| 4.       | 5 W310x179 290x25                      | 290x25      | Ľ.        | S      | 14500        | =   | 1-3        |                   | 0.3F,      | . π <sub>.</sub>               | L/1450        | 1.96                 | 10.00     | 171070                  |                                  | 13.57               | 230                   | 350    |
| 4        | 6 W310x179 290x25                      | 290x25      | <u>[]</u> | S      | 14500        | =   | 1-3        | 0.3F,             | $0.3F_{y}$ | ቪ                              | 71400         | 2.06                 | 10.49     | L/1200                  |                                  | 12.15               | 230                   | 350    |
| 74       | 7 W310x179 290x25                      | 290x25      | Ľ,        | S      | 98681        | 1.5 | 1-3        | _                 | 0.3F,      | . π <sub>y</sub>               | 71900         | 1.99                 | 9.99      | 1/1320                  |                                  | 14.42               | 300                   | 300    |
| 48       | 8 W310x179 290x25                      | 290x25      | IT.       | S      | 98681        | 1.5 | 1-3        | $0.3F_{y}$        | $0.3F_{y}$ | π'n                            | 71900         | 1.99                 | 6.66      | L/1560                  |                                  | 12.14               | 300                   | 300    |
| 49       | 9 W310x179 290x25                      | 290x25      | Œ         | S      | 19772        | 1.5 | 1-3        | 0.3F,             | 0.3F       | Ē,                             | 1/1250        | 3.06                 | 15.77     | <b>1</b>                |                                  | 22.09               | 230                   | 350    |
| 2        | 0 W310x179 290x25                      | 290x25      | Ľ,        | S      | 19772        | 1.5 | 1-3        | $0.3F_{y}$        | 0.3F       | ᄄ                              | L/1250        | 3.06                 | 15.77     | <b>L/1050</b>           |                                  | 18.92               | 230                   | 350    |
| 51       | 1 W310x179 350x25                      | 350x25      | Ŋ         | W      | 4103         | 0.4 | 1-3 (      |                   | $0.3F_{y}$ | F,                             | 0001/1        | 4.11                 | 0.00      | L/940                   | 4.89                             |                     | 300                   | 300    |
| a) D     | a) D - Direction of reinforcing plates | of reinforc | ing       | plate  | S            |     |            | - Para            | le to      | F - Parallel to the flanges    | SS            |                      | G - Para  | G - Parallel to the web | e web                            |                     |                       |        |
| b) B     | b) B - Buckling axis                   | xis         |           | ı      |              |     |            | ¥ - We            | ak axi     | W - Weak axis of the I-section | section       |                      | S - Stron | ng axis of              | S - Strong axis of the I-section | tion                |                       |        |
| •        |                                        |             | ,         |        | ,            |     |            |                   |            |                                |               |                      |           |                         |                                  |                     |                       |        |

d) IRS - Initial residual stress before reinforcing

f) MF -Maximum magnitude of the residual stress in the flange. Fy - Yield stress of the unreinforced column

> g) MP -Maximum magnitude of the residual stress in the reinforcing plate. h) ratio - The ratio of the out-of-straightness to the column length, L.

e) PS - Residual stress pattern, as illustrated in Figure 4-1. c)  $\lambda$  - Slenderness parameter of the reinforced column

i) W - Out-of-straightness in the weak direction.

| FEA       | V                                      |            |          |          | Column       |          |          | IRS               |            | Welding                        | Initia        | Initial Imperfection                   | ection    | Ont                     | Out-of-straightness              | ıtness  | <b>Yield Strength</b> | rength |
|-----------|----------------------------------------|------------|----------|----------|--------------|----------|----------|-------------------|------------|--------------------------------|---------------|----------------------------------------|-----------|-------------------------|----------------------------------|---------|-----------------------|--------|
| mod       | model 1-section                        | Plate      | <u>"</u> | <b>8</b> | D" B" Length | یر       | PSc      | ΜF                | MPg        | Residual                       | befo          | before reinforcing                     | rcing     | after rei               | after reinforcing, no load       | no load | I-section plate       | plate  |
| Ž         | ند                                     |            |          | _        | L (mm)       |          |          |                   |            | Stress                         | ratio         | W <sup>h</sup> (mm) S <sup>i</sup> (mm | S'(mm)    |                         | W <sup>h</sup> (mm)              | S'(mm)  | (MPa)                 | (MPa)  |
| $\Xi$     | (2)                                    | 3          | (4) (5)  | 3        | 9            | 8        | <b>®</b> | <u>6</u>          | (000)      | (E)                            | (12)          | (13)                                   | (14)      | (15)                    | (16)                             | (11)    | (18)                  | (61)   |
| 22        | W310x179 350x25                        | 350x25     |          | ≥        | 4103         | 0.4      | 1-3      | 0.3F <sub>y</sub> | 0.3F,      | F,                             | 71000         | 4.11                                   | 0.00      | 7900                    | 4.58                             |         | 300                   | 300    |
| 53        | 3 W310x179 350x25                      | 350x25     | O        | ≥        | 4231         | 0.4      | 1-3      | 0.3F,             | 0.3F       | Т <sub>у</sub>                 | 71000         | 4.23                                   | 0.00      | L/870                   | 4.89                             |         | 230                   | 320    |
| 54        | W310x179 350x25                        | 350x25     | 9        | ≱        | 4231         | 0.4      | 1-3      | 0.3F,             | $0.3F_{y}$ | . Œ <sub>2</sub>               | 71000         | 4.23                                   | 0.00      | 016/1                   | 4.64                             |         | 230                   | 320    |
| 55        | W310x179                               | 350x25     | ŋ        | ≩        | 11281        | Ξ        | 1-3      | 0.3F,             | $0.3F_{y}$ | . Ε <sub>χ</sub>               | 178000        | 1.41                                   | 0.00      | L4530                   | 2.49                             |         | 300                   | 300    |
| <b>26</b> | 5 W310x179                             | 350x25     | Ö        | ≩        | 11281        | <u> </u> | 1-3      | $0.3F_{v}$        | $0.3F_{v}$ | ι <b>τ</b> ,                   | 1/2000        | 5.64                                   | 0.00      | <b>L114</b>             | 9.91                             |         | 300                   | 300    |
| 57        | W310x179 350x25                        | 350x25     | ŋ        | ≥        | 11281        | 1.1      | 1-3      | $0.3F_{v}$        | $0.3F_{v}$ | . ሞ,                           | 11150         | 10.00                                  | 0.00      | 1640                    | 17.57                            |         | 300                   | 300    |
| 58        | 3 W310x179 350x25                      | 350x25     | Ö        | ≥        | 11281        | 1.1      | I-3      | $0.3F_{v}$        | $0.3F_{v}$ | 0.7F <sub>v</sub>              | 11150         | 10.00                                  | 0.00      | 1640                    | 17.61                            |         | 300                   | 300    |
| 59        |                                        | 350x25     | Ö        | ≥        | 11281        | Ξ:       | 1-3      | $0.3F_{v}$        | $0.3F_{v}$ |                                | <b>VIIS</b> 0 | 10.00                                  | 0.00      | 17820                   | 13.65                            |         | 300                   | 300    |
|           |                                        | 350x25     | ŋ        | ≥        | 11634        | -        | 1-3      | $0.3F_{v}$        | $0.3F_{v}$ | , FT <sub>2</sub>              | 11150         | 10.00                                  | 0.00      | <b>2700</b>             | 16.79                            |         | 230                   | 320    |
| ತ<br>156  |                                        | 350x25     | ŋ        | ≥        | 11634        | 1.1      | 1-3      | $0.3F_{v}$        | $0.3F_{v}$ | . ፔ                            | 171150        | 10.00                                  | 0.00      | 1/880                   | 13.36                            |         | 230                   | 320    |
|           | W310x179                               | 350x25     | ŋ        | ≥        | 15383        | 1.5      | 1-3      | $0.3F_{v}$        | $0.3F_{v}$ | . Œ                            | 1/1350        | 11.38                                  | 0.20      | L720                    | 21.36                            |         | 300                   | 300    |
| 63        | 3 W310x179                             | 350x25     | Ö        | ≥        | 15383        | 1.5      | 1-3      | $0.3F_{y}$        | $0.3F_{y}$ | . π <sub>y</sub>               | 1/1350        | 11.38                                  | 0.20      | 17970                   | 15.92                            |         | 300                   | 300    |
| Z         | W310x179                               | 350x25     | Ö        | ₹        | 15864        | 1.5      | 1-3      | $0.3F_{y}$        | $0.3F_{y}$ | . π <sub>y</sub>               | 1/1350        | 11.86                                  | 0.21      | L/720                   | 22.03                            |         | 230                   | 320    |
| 65        | W310x179                               | 350x25     | Ö        | ≥        | 15864        | 1.5      | 1-3      | $0.3F_{y}$        | $0.3F_{y}$ | ᄄ                              | 171350        | 11.86                                  | 0.21      | 1/970                   | 16.53                            |         | 230                   | 320    |
| 3         | 5 W310x179 350x25                      | 350x25     | O        | S        | 4030         | 0.4      | 1-3      | $0.3F_{y}$        | $0.3F_{y}$ | Ē,                             | 71000         | 0.00                                   | 4.03      | L/980                   |                                  | 4.09    | 300                   | 300    |
| 29        | W310x179 350x25                        | 350x25     | Ö        | S        | 4030         | 0.4      | 1-3      | $0.3F_{y}$        | $0.3F_{y}$ | Г.                             | 71000         | 0.00                                   | 4.03      | L/990                   |                                  | 4.08    | 300                   | 300    |
| 89        | 350x25 W310x179                        | 350x25     | g        | S        | 4156         | 0.4      | 1-3      | $0.3F_{y}$        | $0.3F_{y}$ | F,                             | 71000         | 0.80                                   | 4.15      | 1/991                   |                                  | 4.22    | 230                   | 350    |
| a<br>D    | a) D - Direction of reinforcing plates | f reinford | sing     | plat     | es           |          |          | F - Par           | allel to   | F - Parallel to the flanges    | S             |                                        | G - Para  | G - Parallel to the web | e web                            |         |                       |        |
| b) B      | b) B - Buckling axis                   | cis        |          | ,        |              |          |          | W - W             | eak axi    | W - Weak axis of the I-section | section       |                                        | S - Stroi | ng axis o               | S - Strong axis of the I-section | tion    |                       |        |
|           | ,<br>;                                 |            | •        | ٠        |              | -        |          |                   |            |                                |               | Indiana.                               | and land  | The Party               | To min Con                       |         |                       |        |

d) IRS - Initial residual stress before reinforcing e) PS - Residual stress pattern, as illustrated in Figure 4-1. c)  $\lambda$  - Slenderness parameter of the reinforced column

f) MF -Maximum magnitude of the residual stress in the flange.  $F_{\rm y}$  - Yield stress of the unreinforced column

g) MP -Maximum magnitude of the residual stress in the reinforcing plate.

h) ratio - The ratio of the out-of-straightness to the column length, L. i) W - Out-of-straightness in the weak direction.

| FEA      |                                                              |         |          |          | Column       |     |      | IRS               |                   | Welding                        | Initia   | Initial Imperfection      | ection    | Ont                     | Out-of-straightness                                 | itness  | Yield Strength  | ength |
|----------|--------------------------------------------------------------|---------|----------|----------|--------------|-----|------|-------------------|-------------------|--------------------------------|----------|---------------------------|-----------|-------------------------|-----------------------------------------------------|---------|-----------------|-------|
| mode     | model 1-section                                              | Plate   | <u>"</u> | 2<br>2   | Da Bb Length | ~   | PSc  | MF                | $MP^g$            | Residual                       | pelo     | before reinforcing        | rcing     | after re                | after reinforcing, no load                          | no load | I-section plate | plate |
| So.      |                                                              |         |          | _        | L(mm)        |     |      |                   |                   | Stress                         | ratio    | W <sup>h</sup> (mm) S'(mm | S'(mm)    | ratio                   | W <sup>h</sup> (mm)                                 | S'(mm)  |                 | (MPa) |
| Ξ        | (2)                                                          | 3       | €        | (4) (5)  | 9            | 0   | €    | 6                 | 9                 | (11)                           | (12)     | (13)                      | (14)      |                         | (16) (17)                                           | (17)    | (18)            | (61)  |
| 9        | W310x179 350x25                                              | 350x25  | O        | S        | 4156         | 0.4 | 1-3  | 0.3F,             | 0.3F <sub>y</sub> | ᄄ                              | 71000    | 08.0                      | 4.15      | L/992                   |                                                     | 4.19    | 230             | 320   |
| 20       | W310x179 350x25                                              | 350x25  | g        | S        | 11083        | Ξ   | 1-3  | 0.3F,             | $0.3F_{y}$        | π,                             | 178000   | 0.30                      | 1.39      | L/7240                  |                                                     | 1.53    | 300             | 300   |
| 71       | W310x179 350x25                                              | 350x25  | Ö        | S        | 11083        | Ξ   | 1-3  | $0.3F_{v}$        | $0.3F_{y}$        | . Γ.                           | L/2000   | 1.08                      | 5.54      | 71810                   |                                                     | 6.12    | 300             | 300   |
| 72       | W310x179 350x25                                              | 350x25  | Ö        | S        | 11083        | ==  | 1-3  | $0.3F_{y}$        | 0.3F,             | .π <sub>&gt;</sub>             | 71100    | 1.94                      | 9.99      | 71000                   |                                                     | 1.04    | 300             | 300   |
| 73       | W310x179                                                     | 350x25  | Ö        | S        | 11083        | Ξ   | 1-3  | $0.3F_{v}$        | $0.3F_{v}$        | 0.7F <sub>v</sub>              | 71100    | 1.94                      | 66.6      | 10017                   |                                                     | 11.06   | 300             | 300   |
| 74       | W310x179                                                     | 350x25  | Ö        | S        | 11083        | =   | 1-3  | $0.3F_{v}$        | $0.3F_{v}$        | E                              | 71100    | 1.94                      | 9.99      | L/1050                  |                                                     | 10.55   | 300             | 300   |
| 75       | W310x179                                                     | 350x25  | Ö        | S        | 11429        | Ξ   | 1-3  | $0.3F_{v}$        | $0.3F_{v}$        | ت                              | 171150   | 1.85                      | 10.00     | <b>L1050</b>            |                                                     | 10.87   | 230             | 350   |
| 26       | W310x179                                                     | 350x25  | Ö        | S        | 11429        | =   | 1-3  | $0.3F_{v}$        | $0.3F_{v}$        | ب                              | 171150   | 1.85                      | 10.00     | 171050                  |                                                     | 10.47   | 230             | 350   |
| 11       | W310x179                                                     | 350x25  | Ö        | S        | 15113        | 1.5 | 1-3  | $0.3F_{v}$        | $0.3F_{v}$        | . ፫                            | 1/1350   | 2.20                      | <u> </u>  | L/1200                  |                                                     | 12.64   | 300             | 300   |
| æ<br>157 |                                                              |         | Ö        | S        | 15113        | 1.5 | 1-3  | $0.3F_{v}$        | $0.3F_{v}$        | بت.<br>ب                       | 1/1350   | 2.20                      | 11.11     | L/1280                  |                                                     | 11.85   | 300             | 300   |
| 79       | W310x179                                                     | 350x25  | Ö        | S        | 15585        | 1.5 | 1-3  | 0.3F <sub>v</sub> | $0.3F_{v}$        | تح                             | 1/1350   | 2.30                      | 11.58     | L/1200                  |                                                     | 12.99   | 230             | 350   |
| 80       | W310x179                                                     | 350x25  | Ö        | S        | 15585        | 1.5 | 1-3  | $0.3F_{v}$        | $0.3F_{v}$        | ت                              | 1/1350   | 2.30                      | 11.58     | L/1270                  |                                                     | 12.27   | 230             | 350   |
| 8        | W310x179                                                     | 350x25  | O        | S        | 11083        | Ξ   | 4    | 0.1F,             | $0.3F_{v}$        | гг <sub>у</sub>                | 71100    | 1.94                      | 9.98      | 71000                   |                                                     | 11.01   | 300             | 300   |
| 82       | W310x179                                                     | 350x25  | g        | S        | 11083        | Ξ   | 3-3  | $0.3F_{v}$        | $0.3F_{v}$        | . π <sub>.</sub>               | 21100    | 1.94                      | 66.6      | 71000                   |                                                     | 1.04    | 300             | 300   |
| 83       | W310x179 350x25                                              | 350x25  | Ö        | S        | 11083        | Ξ   | 3-4  | 0.1F,             | $0.3F_{y}$        | . π <sub>y</sub>               | 21100    | 1.94                      | 66.6      | 71000                   |                                                     | 1.04    | 300             | 300   |
| 84       | W310x179 290x16                                              | 290x16  | <u> </u> | ≥        | 2617         | 0.4 | 1-3  | $0.3F_{v}$        | 0.3F <sub>v</sub> | Г.                             | 71000    | 2.62                      | 0.00      | <b>17980</b>            | 5.66                                                |         | 300             | 300   |
| 85       | W310x179 290x16                                              | 290x16  | Ŧ        | <b>≽</b> | 2617         | 0.4 | 1-3  | 0.3F              | 0.3F              | F,                             | 21000    | 2.62                      | 0.00      | 17981                   | 2.68                                                |         | 300             | 300   |
| a) D     | a) D - Direction of reinforcing plates                       | reinfor | ing      | plat     | es           |     |      | F - Par           | allel to          | F - Parallel to the flanges    | s        |                           | G - Para  | G - Parallel to the web | e web                                               |         |                 |       |
| b) B     | b) B - Buckling axis                                         | is      | ŀ        | ,        |              |     |      | <b>W</b> - W      | eak axi           | W - Weak axis of the I-section | section  |                           | S - Stror | ng axis o               | S - Strong axis of the I-section                    | tion    |                 |       |
| c) y -   | c) $\lambda$ - Slendemess parameter of the reinforced column | paramet | er o     | fthe     | reinfor      | ced | olun | E                 |                   |                                | d) IRS - | Initial re                | sidual st | ress befo               | d) IRS - Initial residual stress before reinforcing | cing    |                 |       |

j) S - Out-of-straightness in the strong direction.

f) MF -Maximum magnitude of the residual stress in the flange.  $F_{\rm y}$  - Yield stress of the unreinforced column

g) MP -Maximum magnitude of the residual stress in the reinforcing plate.

c)  $\lambda$  - Slendemess parameter of the reinforced column e) PS - Residual stress pattern, as illustrated in Figure 4-1.

h) ratio - The ratio of the out-of-straightness to the column length, L.

i) W - Out-of-straightness in the weak direction.

| FEA          | A                                      |          |          |             | Column       |                  |                 | IRS                 |                                         | Welding                        | Imitig  | Initial Imperfection | ection                  | Ont          | Out-of-straightness              | itness              | Yield Strength  | rength |
|--------------|----------------------------------------|----------|----------|-------------|--------------|------------------|-----------------|---------------------|-----------------------------------------|--------------------------------|---------|----------------------|-------------------------|--------------|----------------------------------|---------------------|-----------------|--------|
| mod          | model 1-section                        | Plate    | <u>_</u> | B, L        | D" Bb Length | λ <sup>c</sup> P | PS <sub>c</sub> | MF                  | MP <sup>g</sup>                         | Residual                       | befo    | before reinforcing   | rcing                   | after re     | after reinforcing, no load       | no load             | I-section plate | plate  |
| Š            | <u>ن</u>                               |          |          |             | L (mm)       |                  |                 |                     |                                         | Stress                         |         | W <sup>h</sup> (mm)  | S'(mm)                  | ratio        | W <sup>h</sup> (mm)              | S <sup>i</sup> (mm) | (MPa)           | (MPa)  |
| $\equiv$     | (2)                                    | 3        | (4) (5)  | (S)         | 9            | 6                | <b>®</b>        | <u>6</u>            | 9                                       | (E)                            | (12)    | (13)                 | (14)                    | (15)         |                                  | (11)                | (18)            | (19)   |
| 8            | W310x179 290x16                        | 290x16   | ı        | ≥           | 2786         | 0.4              | -3 0            | 0.3F <sub>v</sub> ( | 0.3F,                                   | F,                             | 71000   | 2.79                 | 0.00                    | 17982        | 2.86                             |                     | 230             | 350    |
| 87           | 7 W310x179 290x16                      | 290x16   | Ľ,       | <b>≩</b>    | 2786         | 0.4              | -3 0            |                     | $0.3\overline{\mathrm{F}_{\mathrm{y}}}$ | . ፍ,                           | 71000   | 2.79                 | 0.00                    | L/983        | 2.83                             |                     | 230             | 350    |
| <b>&amp;</b> | 3 W310x179 290x16                      | 290x16   | ĬŢ,      | <b>&gt;</b> | 7197         | 1.1              | -3 0            |                     | 0.3F,                                   | . π <sub>&gt;</sub>            | 178000  | 0.00                 | 0.00                    | 0069/1       | <u>3</u>                         |                     | 300             | 300    |
| 8            | W310x179 290x16                        | 290x16   | Œ        | ≥           | 7197         |                  | -3 0            |                     | J.3F,                                   | . Œ <sub>2</sub>               | 172000  | 3.60                 | 0.00                    | <b>L1130</b> | 4.17                             |                     | 300             | 300    |
| S            |                                        | 290x16   | ĹŢ.      | 3           | 7197         | 1.1              | -3 0            | _                   | J.3F,                                   | . <del>г.</del>                | 71000   | 7.20                 | 0.00                    | L/860        | 8.34                             |                     | 300             | 300    |
| 6            | -                                      | 290x16   | Ľ.       | ≩           | 7197         | 1.1              | -3 0            | _                   | ).3F,                                   | 0.7F <sub>v</sub>              | 71000   | 7.20                 | 0.00                    | 17861        | 8.36                             |                     | 300             | 300    |
| 92           | -                                      | 290x16   | ĹŢ.      | ≥           | 7197         | 1.1              | -3 0            |                     | ).3F,                                   | ت                              | 21000   | 7.20                 | 0.00                    | L/920        | 7.80                             |                     | 300             | 300    |
| 93           | -                                      | 290x16   | 1        | ≥           | 7662         |                  | -3 0            | _                   | ).3F,                                   | ب                              | 71000   | 7.66                 | 0.00                    | 17870        | 8.78                             |                     | 230             | 350    |
|              |                                        | 290x16   | 1        | ≩           | 7662         |                  | -3 0            |                     | ).3F,                                   | ت                              | 71000   | 99.2                 | 0.00                    | L/930        | 8.25                             |                     | 230             | 350    |
| ි<br>158     |                                        | 290x16   | Ľ,       | }           | 9813         | 1.5.1            | -3 0            | _                   | ).3F,                                   | ت                              | 71000   | 9.81                 | 0.00                    | L/840        | 11.71                            |                     | 300             | 300    |
|              |                                        | 290x16   | Ľ,       | ≥           | 9813         | 1.5              | -3 0            | _                   | ).3F,                                   | 0.7F <sub>v</sub>              | 71000   | 9.81                 | 0.00                    | L/840        | 11.76                            |                     | 300             | 300    |
| 97           |                                        | 290x16   | 12.      | <b>≥</b>    | 9813         | 1.5.1            | -3 0            | _                   | ).3F,                                   | Г                              | 71000   | 9.81                 | 0.00                    | L/920        | 10.69                            |                     | 300             | 300    |
| 86           |                                        | 290x16   | Ľ,       | _<br>≽      | 0447         | 1.5.1            | -3 0            | _                   | ).3F,                                   | , <del>г,</del>                | 1/1050  | 10.00                | 0.00                    | L/890        | 11.77                            |                     | 230             | 320    |
| 8            |                                        | 290x16   | Ľ.       | _<br>≽      | 10447        | 1.5.1            | -3 0            | _                   | 0.3F,                                   | . п.                           | L/1050  | 10.00                | 0.00                    | 0/6/7        | 10.82                            |                     | 230             | 320    |
| 200          | 0 W310x179 290x16                      | 290x16   | Œ        | S           | 4880         | 0.4              | -3 0            | _                   | ).3F,                                   | . ኬ,                           | 71000   | 0.97                 | 4.88                    | 1/970        |                                  | 5.04                | 300             | 300    |
| 10           | I W310x179 290x16                      | 290x16   | Ľ.       | S           | 4880         | 0.4              | -3 0            | _                   | 0.3F,                                   | Π,                             | 71000   | 0.97                 | 4.88                    | <b>1</b> 980 |                                  | 2.00                | 300             | 300    |
| 102          | 2 W310x179 290x16                      | 290x16   | H        | S           | 9615         | 0.4              | 1-3 0           | 0.3F <sub>y</sub> ( | 0.3F,                                   | F,                             | 71000   | 1.06                 | 5.20                    | 1/970        |                                  | 5.37                | 230             | 320    |
| a) D         | a) D - Direction of reinforcing plates | reinforc | ing      | plate       | SS           |                  | ĭ               | - Para              | lel to                                  | F - Parallel to the flanges    | s       |                      | G - Parallel to the web | llet to th   | e web                            |                     |                 |        |
| b) B         | b) B - Buckling axis                   | is       |          |             |              |                  | 3               | / - We              | ak axis                                 | W - Weak axis of the I-section | section |                      | S - Stron               | g axis o     | S - Strong axis of the I-section | tion                |                 |        |
| ٠.           | ,                                      |          | •        | ٠           |              | •                |                 |                     |                                         |                                |         |                      |                         | Lac.         | - Trible                         |                     |                 |        |

d) IRS - Initial residual stress before reinforcing W - Weak axis of the 1-section

f) MF -Maximum magnitude of the residual stress in the flange.  $F_{\rm y}$  - Yield stress of the unreinforced column

g) MP -Maximum magnitude of the residual stress in the reinforcing plate. h) ratio - The ratio of the out-of-straightness to the column length, L. e) PS - Residual stress pattern, as illustrated in Figure 4-1.

c)  $\lambda$  - Slenderness parameter of the reinforced column

i) W - Out-of-straightness in the weak direction.

Table A.1 (cont'd)

| FEA            | _                                      |         |          |         | Column         |          |            | IRS               |                   | Welding                        | Initia  | Initial Imperfection | ection                                  | Ont-c                            | Out-of-straightness        | itness  | <b>Yield Strength</b> | rength |
|----------------|----------------------------------------|---------|----------|---------|----------------|----------|------------|-------------------|-------------------|--------------------------------|---------|----------------------|-----------------------------------------|----------------------------------|----------------------------|---------|-----------------------|--------|
| mode           | model 1-section                        | Plate   | <u>"</u> | æ       | D' B' Length λ | ່.       | PSc        | MF                | MPg               | Residual                       | peto    | before reinforcing   | rcing                                   | after rein                       | after reinforcing, no load | no load | I-section plate       | plate  |
| N <sub>o</sub> |                                        |         |          | _       | L (mm)         |          |            |                   |                   | Stress                         | ratio   | W <sup>h</sup> (mm)  | W <sup>h</sup> (mm) S <sup>i</sup> (mm) | ratio                            | W <sup>h</sup> (mm)        | S'(mm)  | (MPa)                 | (MPa)  |
| Ξ              | (2)                                    | 3       | <b>£</b> | (4) (5) | 9              | 6        | €          | <u>6</u>          | 9                 | (=)                            | •       | (13)                 | (14)                                    | (15)                             | (16)                       | (11)    | (18)                  | (61)   |
| 103            | W310x179 290x16                        | 290x16  | 뜨        | S       | 9619           | 0.4      | 1-3        | 0.3F <sub>y</sub> | 0.3F,             | ፍ                              | 71000   | 1.06                 | 5.20                                    | 17980                            |                            | 5.31    | 230                   | 350    |
| <u>इ</u>       | W310x179 290x16                        | 290x16  | <u> </u> | S       | 13420          | -:       | 1-3        | $0.3F_{y}$        | 0.3F,             | . π <sub>y</sub>               | 178000  | 0.33                 | 1.68                                    | L/6500                           |                            | 2.07    | 300                   | 300    |
| 105            | W310x179 290x16                        | 290x16  | Ι,       | S       | 13420          | Ξ        | 1-3        | $0.3F_{v}$        | $0.3F_{y}$        | . π <sub>y</sub>               | 1/2000  | 1.32                 | 6.71                                    | L/1620                           |                            | 8.27    | 300                   | 300    |
| 106            |                                        | 290x16  | Ι.       | S       | 13420          | <b>-</b> | 1-3        | $0.3F_{v}$        | $0.3F_{y}$        | . ፑ,                           | 171350  | 1.96                 | 10.00                                   | V1090                            |                            | 12.32   | 300                   | 300    |
| 107            | W310x179 290x16                        | 290x16  | Ľ.       | S       | 13420          | Ξ:       | <u>-3</u>  | 0.3F,             | 0.3F              | 0.7F <sub>y</sub>              | 11350   | 1.96                 | 10.00                                   | <u>   </u>                       |                            | 12.34   | 300                   | 300    |
| 108            | -                                      | 290x16  | ſŢ,      | S       | 13420          | Ξ        | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | π,                             | 1/1350  | 1.96                 | 10.00                                   | L/1200                           |                            | 11.23   | 300                   | 300    |
| 80             | W310x179 290x16                        | 290x16  | Ľ.       | S       | 14287          | 1.1      | <u>I-3</u> | $0.3F_{v}$        | 0.3F,             | . ፑ,                           | L1400   | 2.02                 | 10.29                                   | L1150                            |                            | 12.49   | 230                   | 350    |
| 011            | W310x179 290x16                        | 290x16  | Ľ.       | S       | 14287          | =        | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | . 吓,                           | L/1400  | 2.02                 | 10.29                                   | 1/1250                           |                            | 11.47   | 230                   | 350    |
|                |                                        | 290x16  | Œ        | S       | 18300          | 1.5      | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | . ፑ,                           | L1300   | 2.78                 | 14.29                                   | 17970                            |                            | 18.81   | 300                   | 300    |
| 2<br>159       |                                        | 290x16  | Ľ.       | S       | 18300          | 1.5      | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        |                                | L/1300  | 2.78                 | 14.29                                   | 71110                            |                            | 16.50   | 300                   | 300    |
| 113            | W310x179 290x16                        | 290x16  | Έ.       | S       | 19483          | 1.5      | 1-3        | $0.3F_{v}$        | 0.3F <sub>v</sub> | ت                              | L/1250  | 3.01                 | 15.48                                   | 17970                            |                            | 19.99   | 230                   | 350    |
| 114            | W310x179 290x16                        | 290x16  | ĬŢ,      | S       | 19483          | 1.5      | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | . ፑ,                           | 11250   | 3.01                 | 15.48                                   | 71100                            |                            | 17.72   | 230                   | 350    |
| 115            | W310x179 350x16                        | 350x16  | Ľ        | ≩       | 2827           | 0.4      | <b>I-3</b> | $0.3F_{v}$        | $0.3F_{y}$        | . ፑ,                           | 71000   | 2.83                 | 0.00                                    | 1/970                            | 2.90                       |         | 300                   | 300    |
| 911            | W310x179 350x16                        | 350x16  | Ľ,       | ≯       | 2827           | 0.4      | <u>-3</u>  | 0.3F              | $0.3F_{v}$        | . ፑ,                           | 71000   | 2.83                 | 0.00                                    | 0/6/7                            | 2.92                       |         | 300                   | 300    |
| 117            | W310x179 350x16                        | 350x16  | Ľ        | ≱       | 2982           | 0.4      | <b>I-3</b> | $0.3F_{v}$        | 0.3F,             | П,                             | 1/1000  | 2.99                 | 0.00                                    | 0/6/7                            | 3.10                       |         | 230                   | 350    |
| 118            | W310x179 350x16                        | 350x16  | Ľ,       | ≱       | 2982           | 0.4      | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | , ιτ <sub>,</sub>              | 71000   | 2.99                 | 0.00                                    | 076/7                            | 3.06                       |         | 230                   | 350    |
| 119            |                                        | 350x16  | Ħ        | *       | 2777           | 1.1      | 1-3        | $0.3F_{y}$        | $0.3F_{y}$        | F,                             | 1/8000  | 0.97                 | 0.00                                    | 176300                           | 1.23                       |         | 300                   | 300    |
| a) D           | a) D - Direction of reinforcing plates | reinfor | cing     | pla     | es             |          |            | F - Para          | lel to            | F - Parallel to the flanges    | S       |                      | G - Para                                | G - Parallel to the web          | web                        |         |                       |        |
| b) B           | b) B - Buckling axis                   | iis     |          | ,       |                |          |            | W - W             | ak ax             | W - Weak axis of the I-section | section |                      | S - Stro                                | S - Strong axis of the I-section | the I-sec                  | tion    |                       |        |

b) B - Buckling axis of the I-section c)  $\lambda$  - Meak axis of the I-section c)  $\lambda$  - Slenderness parameter of the reinforced column d) IRS

f) MF -Maximum magnitude of the residual stress in the flange.  $F_{\rm y}$  - Yield stress of the unreinforced column

d) IRS - Initial residual stress before reinforcing

e) PS - Residual stress pattern, as illustrated in Figure 4-1. f) MF -Maxig) MP -Maximum magnitude of the residual stress in the reinforcing plate.  $F_y$  -

h) ratio - The ratio of the out-of-straightness to the column length, L. i) W - Out-of-straightness in the weak direction.

Table A.1 (cont'd)

| 匠                                       | FEA                                    |             | 1        | ľ    | Column       |                                         |           | IRS               |                   | Welding                        | Initia       | Initial Imperfection | ection    | O <sub>ut</sub> -                | Out-of-straightness        | Iness   | Yield Strength | rength      |
|-----------------------------------------|----------------------------------------|-------------|----------|------|--------------|-----------------------------------------|-----------|-------------------|-------------------|--------------------------------|--------------|----------------------|-----------|----------------------------------|----------------------------|---------|----------------|-------------|
| OIII                                    | model 1-section                        | Plate       | <u>"</u> | В    | Da Bb Length | <del>-</del> ا                          | PSc       | MF                | $MP^g$            | Residual                       | peto         | before reinforcing   | rcing     | after rei                        | after reinforcing, no load | no load | I-section      | plate       |
| Z                                       | ĵo.                                    |             |          | _    | L(mm)        |                                         |           |                   |                   | Stress                         | ratio        | W <sup>h</sup> (mm)  | S'(mm)    | ratio                            |                            | S'(mm)  | (MPa)          | (MPa)       |
| ==                                      | 1) (2)                                 | 3           | (4) (5)  | (5)  | 9            | 6                                       | <b>®</b>  | <u>6</u>          | ( <u>0</u>        | (11)                           | (12)         | (13)                 | (14)      |                                  | (16)                       | (11)    | (18)           | <u>(61)</u> |
| ==                                      | 120 W310x179 350x16                    | 9 350x16    | 江        | ≩    | 7772         | =                                       | 1-3       | 0.3F,             | 0.3F,             | Œ,                             | 1/2000       | 3.88                 | _         | 1/1570                           | 4.94                       |         | 300            | 300         |
| 7                                       | 121 W310x179 350x16                    | 9 350x16    | ĹŢ.      | ≩    | <i>2777</i>  | ======================================= | 1-3       | 0.3F,             | $0.3F_{y}$        | . Œ                            | 71000        | 77.7                 | 0.00      | L790                             | 9.88                       |         | 300            | 300         |
| 7                                       | 122 W310x179 350x16                    | 9 350×16    | ĹŢ,      | ≥    | 2777         | ======================================= | -3        | 0.3F,             | $0.3F_{y}$        | $0.7F_{y}$                     | 71000        | 1.17                 | 0.00      | L790                             | 06.6                       |         | 300            | 300         |
| 7                                       | 123 W310x179 350x16                    | 9 350×16    | ĹT.      | ≥    | 7772         | ==                                      | <u>-3</u> | $0.3F_{v}$        | $0.3F_{v}$        | Γ,                             | 71000        | 77.7                 | 0.00      | L/880                            | 8.88                       |         | 300            | 300         |
| ~                                       |                                        | 9 350x16    | Ľ.       | ≩    | 8200         |                                         | -3        | 0.3F <sub>v</sub> | $0.3F_{v}$        | , দ <sub>ু</sub>               | 71000        | 8.20                 | 0.00      | D/800                            | 10.23                      |         | 230            | 350         |
| 1                                       |                                        | 9 350x16    | Ľ,       | ≩    | 8200         | ======================================= | -3        | ).3F,             | $0.3F_{v}$        | بت.<br>د                       | 2000         | 8.20                 | 0.00      | L/890                            | 9.28                       |         | 230            | 350         |
| ======================================= | -                                      | 9 350x16    | Ľ.       | ≥    | 10598        | 1.5                                     | -3        | 0.3F <sub>v</sub> | $0.3F_{v}$        | , <del>بر</del>                | L1400        | 7.57                 | 0.00      | 1730                             | 13.44                      |         | 300            | 300         |
| 1                                       |                                        | 9 350x16    | Ľ        | ≥    | 10598        | 1.5                                     | <u>-3</u> | 0.3F <sub>v</sub> | 0.3F <sub>v</sub> | , <del>بر</del>                | L/1050       | 10.00                | 0.00      | L/910                            | 11.63                      |         | 300            | 300         |
| 7                                       |                                        | 9 350x16    | ĹŢ,      | ≥    | 11182        | 1.5                                     | -3        | $0.3F_{\odot}$    | 0.3F <sub>v</sub> | . ⊏                            | 2138         | 00.01                | 0.00      | L/850                            | 13.13                      |         | 230            | 350         |
| 2<br>160                                |                                        | 9 350x16    | ĹŢ.      | ≥    | 11182        | 1.5                                     | -3        | $0.3F_{ m c}$     | $0.3F_{v}$        | تا                             | 218          | 10.00                | 0.00      | 0/6/7                            | 11.51                      |         | 230            | 350         |
| _                                       |                                        | 9 350x16    | Ľ,       | S    | 4928         | 0.4                                     | -3        | $0.3F_{c}$        | 0.3F <sub>v</sub> | بر                             | <b>21000</b> | 0.97                 | 4.93      | 096/1                            |                            | 5.11    | 300            | 300         |
| =                                       |                                        | 9 350x16    | Ľ.       | S    | 4928         | 0.4                                     | -3        | ),3F,             | $0.3F_{v}$        | , 따                            | 71000        | 0.97                 | 4.93      | 0/6/7                            |                            | 5.07    | 300            | 300         |
| =                                       |                                        | 9 350x16    | Œ,       | S    | 5199         | 0.4                                     | -3        | $0.3F_{v}$        | 0.3F,             | , п <sub>у</sub>               | <b>1000</b>  | <u>5</u>             | 5.20      | 096/1                            |                            | 5.40    | 230            | 320         |
| =                                       | 133 W310x179 350x16                    | 9 350x16    | Œ,       | S    | 5199         | 0.4                                     | <u>-3</u> | ).3F,             | $0.3F_{v}$        | . 따                            | 71000        | <b>5</b> .           | 5.20      | 17980                            |                            | 5.33    | 230            | 320         |
| 13                                      | 134 W310x179 350x16                    | 9 350x16    | Œ,       | S    | 13551        | ======================================= | -3        | ).3F,             | $0.3F_{y}$        | . ፑ,                           | L/8000       | 0.33                 | 1.69      | 176330                           |                            | 2.14    | 300            | 300         |
| 13                                      | 135 W310x179 350x16                    | 9 350x16    | Ľ,       | S    | 13551        |                                         | -3        | 0.3F,             | $0.3F_{y}$        | π <u>,</u>                     | L/2000       | 1.33                 | 6.77      | 171590                           |                            | 8.56    | 300            | 300         |
| ======================================= | 136 W310x179 350x16                    | 9 350x16    | Œ        | S    | 13551        | 1.1                                     | 1-3 (     | 0.3F,             | $0.3F_{y}$        | F,                             | 1/1350       | 1.96                 | 10.00     | 1/1070                           |                            | 12.64   | 300            | 30          |
| 🚡                                       | a) D - Direction of reinforcing plates | of reinfore | ing      | plat | es           |                                         | 1         | : - Para          | llel to           | F - Parallel to the flanges    | S            |                      | G - Para  | G - Parallel to the web          | web                        |         |                |             |
| (q                                      | b) B - Buckling axis                   | axis        |          |      |              |                                         |           | V - We            | ak axi            | W - Weak axis of the I-section | section      |                      | S - Stron | S - Strong axis of the I-section | the I-sect                 | tion    |                |             |
| •                                       | <b>,</b>                               |             | •        |      |              | •                                       |           |                   |                   |                                |              | • • • •              | •         |                                  | ,                          |         |                |             |

d) IRS - Initial residual stress before reinforcing

f) MF -Maximum magnitude of the residual stress in the flange.  $F_{y}$  - Yield stress of the unreinforced column

g) MP -Maximum magnitude of the residual stress in the reinforcing plate. h) ratio - The ratio of the out-of-straightness to the column length, L.

e) PS - Residual stress pattern, as illustrated in Figure 4-1. c)  $\lambda$  - Slenderness parameter of the reinforced column

i) W - Out-of-straightness in the weak direction.

| FEA            | Column                                         |         |          |         | Column          |          |            | IRS               |                   | Welding                        |                  | Initial Imperfection       | ection                             | Ont                     | Out-of-straightness            | htness                     | Yield Strength  | rength |
|----------------|------------------------------------------------|---------|----------|---------|-----------------|----------|------------|-------------------|-------------------|--------------------------------|------------------|----------------------------|------------------------------------|-------------------------|--------------------------------|----------------------------|-----------------|--------|
| mode           | model I-section                                | Plate   | <u>"</u> | æ       | D" Bb Length λ' | ~        | PSc        | MF                | MP                | Residual                       | bef              | before reinforcing         | rcing                              | after re                | inforcing                      | after reinforcing, no load | I-section plate | plate  |
| No.            |                                                |         |          | _       | L(mm)           | _        |            |                   |                   | Stress                         | ratio            | W <sup>h</sup> (mm) S'(mm) | S'(mm)                             |                         | W <sup>h</sup> (mm)            | S'(mm)                     | (MPa)           | (MPa)  |
| Ξ              | (2)                                            | 3       | ₹        | (4) (5) | 9               | 6        | €          | 6                 | ( <u>0</u>        | $\widehat{\Xi}$                | (12)             | (13)                       | (14)                               | (15)                    | (91)                           | (17)                       | (18)            | (61)   |
| 137            | W310x179 350x16                                | 350x16  | 뜨        | S       | 13551           | =        | 1-3        | 0.3F,             | 0.3F,             | 0.7F <sub>y</sub>              | L/1350           | 1.96                       | 10.00                              | 1/1070                  |                                | 12.66                      | 300             | 300    |
| 138            | W310x179 350x16                                | 350x16  | Ι.       | S       | 13551           | <u>:</u> | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | تت                             | 11350            | 1.96                       | 10.00                              | 7118                    |                                | 11.40                      | 300             | 300    |
| 139            | W310x179 350x16                                | 350x16  | Ľ,       | S       | 14297           | <b>:</b> | <u>1-3</u> | $0.3F_{v}$        | $0.3F_{v}$        | بت.<br>د                       | 171400           | 2.02                       | 10.30                              | 1/1120                  |                                | 12.79                      | 230             | 350    |
| 140            |                                                | 350x16  | Ľ.       | S       | 14297           | Ξ        | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | در                             | L/1400           |                            | 10.30                              | 1/1230                  |                                | <u>2</u> .                 | 230             | 350    |
| 141            |                                                | 350x16  | Ľ,       | S       | 18479           | 1.5      | 1-3        | 0.3F <sub>v</sub> | 0.3F <sub>v</sub> | , Œ                            | 71300            | 2.81                       | 14.48                              | L/940                   |                                | 19.68                      | 300             | 300    |
| 142            | W310x179 350x16                                | 350x16  | []       | S       | 18479           | 1.5      | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | س                              | L1300            | 2.81                       | 14.48                              | <b>L1090</b>            |                                | 17.03                      | 300             | 300    |
| 143            | W310x179 350x16                                | 350x16  | <u> </u> | S       | 19496           | 1.5      | 1-3        | 0.3F <sub>v</sub> | $0.3F_{\bullet}$  | ت                              | 11250            | 3.01                       | 15.49                              | L/940                   |                                | 20.59                      | 230             | 350    |
| 44             | W310x179 350x16                                | 350x16  | ſĽ.      | S       | 19496           | 1.5      | 1-3        | $0.3F_{\nu}$      | 0.3F <sub>v</sub> | , IT,                          | 1/1250           |                            | 15.49                              | 71090                   |                                | 18.03                      | 230             | 350    |
| 145            | W310x179 350x16                                | 350x16  | Ö        | ≩       | 3720 0.4        | 0.4      | 1-3        | $0.3F_{c}$        | 0.3F <sub>v</sub> | <u>ب</u>                       | 71000            |                            | 0.00                               | <b>17890</b>            | 4.20                           |                            | 300             | 300    |
| 161<br>5       | W310x179 350x16                                | 350x16  | Ö        | ≥       | 3720            | 0.4      | 1-3        | $0.3F_{v}$        | 0.3F <sub>v</sub> | , <del>L</del>                 | 71000            |                            | 0.00                               | L/920                   | 4.04<br>40.4                   |                            | 300             | 300    |
|                | W310x179 350x16                                | 350x16  | ŋ        | ≥       | 3925            | 0.4      | 1-3        | $0.3F_{c}$        | 0.3F <sub>v</sub> | , <del>IT</del> ,              | 71000            |                            | 0.00                               | 2900                    | 4.39                           |                            | 230             | 350    |
| 148            | W310x179 350x16                                | 350x16  | Ö        | ≩       | 3925            | 0.4      | 1-3        | $0.3F_{c}$        | $0.3F_{v}$        | ` ਸ਼੍ਰ                         | 71000            | 3.93                       | 0.00                               | 17930                   | 4.22                           |                            | 230             | 350    |
| 149            | W310x179 350x16                                | 350x16  | ŋ        | ≱       | 10229           | Ξ        | 1-3        | $0.3F_{c}$        | 0.3F <sub>v</sub> | `ਧ                             | 78000            |                            | 0.00                               | L/4990                  | 2.05                           |                            | 300             | 300    |
| 150            | W310x179 350x16                                | 350x16  | g        | ≱       | 10229           | =        | 1-3        | $0.3F_{c}$        | 0.3F <sub>v</sub> | `ਧ                             | L/2000           | 5.11                       | 0.00                               | L/1250                  | 8.21                           |                            | 300             | 300    |
| 151            | W310x179 350x16                                | 350x16  | Ö        | ≱       | 10229           | =        | 1-3        | 0.3F <sub>v</sub> | 0.3F <sub>v</sub> | `ਧ                             | 71000            | 10.00                      | 0.00                               | 1/640                   | 16.05                          |                            | 300             | 300    |
| 152            |                                                | 350x16  | Ö        | ≥       | 10229           |          | 1-3        | $0.3F_{c}$        | 0.3F <sub>v</sub> | $0.7\dot{F}_{v}$               | 71000            | 10.00                      | 0.00                               | L/640                   | 16.08                          |                            | 300             | 300    |
| 153            |                                                | 350x16  | Ö        | ≩       | 10229           | Ξ        | 1-3        | $0.3F_{y}$        | $0.3F_{y}$        | $\mathbf{F}_{\mathbf{y}}$      | 71000            | 10.00                      | 0.00                               | 1790                    | 12.99                          |                            | 300             | 300    |
| a) D           | a) D - Direction of reinforcing plates         | reinfor | cing     | Pg      | les             |          |            | F - Par           | allel to          | F - Parallel to the flanges    | es               |                            | G - Para                           | G - Parallel to the web | e web                          |                            |                 |        |
| b) B           | b) B - Buckling axis                           | is      | ŀ        |         |                 |          |            | W - W             | eak axi           | W - Weak axis of the I-section | section          |                            | S - Stror                          | ng axis o               | - Strong axis of the I-section | ction                      |                 |        |
| c) \( \cdot \) | c) λ - Slenderness parameter of the reinforced | parame  | er o     | fthe    | reinfor         |          | column     | =                 |                   |                                | d) IRS - Initial | - Initial re               | residual stress before reinforcing | ess befo                | re reinfo                      | rcing                      |                 |        |
|                |                                                | •       |          |         |                 |          |            |                   |                   |                                | 1                |                            | •                                  | •                       | :                              |                            |                 |        |

c) λ - Slenderness parameter of the reinforced column
 e) PS - Residual stress pattern, as illustrated in Figure 4-1.
 p) MP -Maximum magnitude of the residual stress in the reit

f) MF -Maximum magnitude of the residual stress in the flange.  $F_{y}$  - Yield stress of the unreinforced column

g) MP -Maximum magnitude of the residual stress in the reinforcing plate.

i) W - Out-of-straightness in the weak direction.

h) ratio - The ratio of the out-of-straightness to the column length, L.

| п—   | FEA      |                                        |         |         |     | Column      |            |            | IRS               |                 | Welding                        | Initia        | Initial Imperfection | ection    | Out                     | Out-of-straightness              | tness               | <b>Yield Strength</b> | rength |
|------|----------|----------------------------------------|---------|---------|-----|-------------|------------|------------|-------------------|-----------------|--------------------------------|---------------|----------------------|-----------|-------------------------|----------------------------------|---------------------|-----------------------|--------|
| =    | node     | model I-section Plate Da B Length      | Plate   | <u></u> | æ   | Length      | ~          | PS         | MF                | MP <sup>8</sup> | Residual                       | pefo          | before reinforcing   | rcing     | after rei               | after reinforcing, no load       | no load             | I-section plate       | plate  |
|      | Ö.       |                                        |         |         | _   | L (mm)      |            |            |                   |                 | Stress                         | ratio         | W <sup>h</sup> (mm)  | S'(mm)    |                         | W <sup>h</sup> (mm)              | S <sup>i</sup> (mm) | (MPa)                 | (MPa)  |
| •    | Ξ        | (2)                                    | (3)     | 4       | 3   | (4) (5) (6) | 6          | 8          | ව                 | 9               | (E)                            | (12)          | (13)                 | (14)      | (15)                    |                                  | (11)                | (18)                  | (61)   |
| !    | 154      | W310x179 350x16                        | 350x16  | O       | ≥   | 10792       | =          | 1-3        | 0.3F <sub>y</sub> | 0.3F,           | π,                             | 71100         | 10.00                | 0.00      | 17700                   | 15.54                            |                     | 230                   | 320    |
|      | 155      | W310x179 350x16                        | 350x16  | ŋ       | ≩   | 10792       | <b>.</b> : | 1-3        | 0.3F,             | $0.3F_{y}$      | . π <sub>y</sub>               | Z138          | 10.00                | 0.00      | L/850                   | 12.80                            |                     | 230                   | 320    |
|      | 156      | W310x179 350x16                        | 350x16  | Ö       | €   | 13948       | 1.5        | 1-3        | 0.3F,             | $0.3F_{y}$      | ቪ                              | <b>L1400</b>  | 10.00                | 0.18      | L/800                   | 17.63                            |                     | 300                   | 300    |
|      | 157      | W310x179 350x16                        | 350x16  | Ö       | ≩   | 13948       | 1.5        | <u>-3</u>  | 0.3F,             | 0.3F,           | . π <sub>y</sub>               | L1400         | 10.00                | 0.18      | <b>L</b> 1030           | 13.50                            |                     | 300                   | 300    |
|      | 158      | W310x179 350x16                        | 350x16  | Ö       | ≩   | 14716       | 1.5        | 1-3        | 0.3F,             | 0.3F            | π,                             | L/1350        | 10.71                | 0.19      | 738                     | 18.77                            |                     | 230                   | 320    |
|      | 159      | W310x179                               | 350x16  | Ö       | ≩   | 14716       | 1.5        | 1-3        | 0.3F,             | $0.3F_{y}$      | . π <sub>y</sub>               | 171350        | 10.71                | 0.19      | 171020                  | 14.42                            |                     | 230                   | 350    |
|      | 3        | W310x179 350x16                        | 350x16  | Ö       | S   | 4155        | 0.4        | 1-3        | $0.3F_{v}$        | $0.3F_{v}$      | . <del>г.</del>                | 71000         | 0.85                 | 4.15      | 171000                  |                                  | 4.17                | 300                   | 300    |
|      | 191      | W310x179 350x16                        | 350x16  | ŋ       | S   | 4155        | 0.4        | 1-3        | 0.3F <sub>v</sub> | $0.3F_{v}$      | . <del>г.</del>                | 71000         | 0.85                 | 4.15      | 71000                   |                                  | 4.19                | 300                   | 300    |
|      | 162      |                                        | 350x16  | ŋ       | S   | 4383        | 0.4        | 1-3        | $0.3F_{v}$        | $0.3F_{v}$      | , tr <sub>y</sub>              | 71000         | 0.99                 | 4.38      | 71000                   |                                  | 4.43                | 230                   | 350    |
| 162  | 163      |                                        | 350x16  | Ŋ       | S   | 4383        | 0.4        | <u>1-3</u> | 0.3F,             | $0.3F_{y}$      | . ጥ                            | 71000         | 0.99                 | 4.38      | 71000                   |                                  | 4.41                | 230                   | 350    |
|      | <u> </u> |                                        | 350x16  | g       | S   | 11425       | Ξ          | 1-3        | 0.3F              | 0.3F,           | . ጥ                            | 178000        | 0.28                 | 1.43      | 177480                  |                                  | 1.53                | 300                   | 300    |
|      | 165      | W310x179 350x16                        | 350×16  | Ö       | S   | 11425       | =          | 1-3        | 0.3F,             | $0.3F_{y}$      | Т <sub>у</sub>                 | L/2000        | 1.11                 | 5.71      | 171870                  |                                  | 6.12                | 300                   | 300    |
|      | 99       | W310x179 350x16                        | 350x16  | Ö       | S   | 11425       | -:         | 1-3        | 0.3F,             | 0.3F,           | Г,                             | 1/1150        | 1.94                 | 10.00     | 1/1070                  |                                  | 10.71               | 300                   | 300    |
|      | 167      | W310x179 350x16                        | 350x16  | Ö       | S   | 11425       | =:         | 1-3        | 0.3F              | 0.3F            | $0.7F_{y}$                     | L1150         | 1.94                 | 10.00     | 171070                  |                                  | 10.73               | 300                   | 300    |
|      | 891      | W310x179 350x16                        | 350x16  | O       | S   | 11425       | Ξ          | <u>-3</u>  | $0.3F_{y}$        | $0.3F_{y}$      | π <sub>y</sub>                 | <b>L/1150</b> | 1.94                 | 10.00     | 1/1120                  |                                  | 10.37               | 300                   | 300    |
|      | 691      | W310x179 350x16                        | 350x16  | Ö       | S   | 12054       | <b>-</b> : | 1-3        | 0.3F,             | 0.3F,           | ጢ                              | L/2750        | 0.99                 | 4.38      | L/2420                  |                                  | 2.00                | 230                   | 320    |
|      | 170      | W310x179 350x16                        | 350x16  | ŋ       | S   | 12054       | <b>I</b> : | 1-3        | 0.3F              | 0.3F,           | 뜨                              | 1/1200        | 1.96                 | 10.00     | 171170                  |                                  | 10.32               | 230                   | 350    |
| i ez | 0        | a) D - Direction of reinforcing plates | reinfor | cing    | pla | Ses         |            |            | F - Par           | allel to        | F - Parallel to the flanges    | S             |                      | G - Para  | G - Parallel to the web | ; web                            |                     |                       |        |
| 4    | ) B -    | b) B - Buckling axis                   | .is     |         |     |             |            |            | W - W             | eak axi         | W - Weak axis of the I-section | section       |                      | S - Stror | g axis of               | S - Strong axis of the I-section | tion                |                       |        |
|      |          |                                        |         |         |     |             |            |            |                   |                 |                                |               |                      |           |                         |                                  |                     |                       |        |

j) S - Out-of-straightness in the strong direction.

f) MF -Maximum magnitude of the residual stress in the flange.  $F_{\rm y}$  - Yield stress of the unreinforced column

g) MP -Maximum magnitude of the residual stress in the reinforcing plate.

c)  $\lambda$  - Slenderness parameter of the reinforced column e) PS - Residual stress pattern, as illustrated in Figure 4-1.

h) ratio - The ratio of the out-of-straightness to the column length, L.

i) W - Out-of-straightness in the weak direction.

d) IRS - Initial residual stress before reinforcing

| FEA               |                                                       |             |          |         | Column                |            | i          | IRS               |                   | Welding                      | Initia           | Initial Imperfection | ection              | -jnO                    | Out-of-straightness                | tness   | <b>Yield Strength</b> | ength |
|-------------------|-------------------------------------------------------|-------------|----------|---------|-----------------------|------------|------------|-------------------|-------------------|------------------------------|------------------|----------------------|---------------------|-------------------------|------------------------------------|---------|-----------------------|-------|
| mod               | model I-section                                       | Plate       | <b>"</b> | æ       | B <sup>b</sup> Length | ټر         | PS         | ΜF                | MP                | Residual                     | pefor            | before reinforcing   | rcing               | after re                | after reinforcing, no load         | no load | I-section plate       | plate |
| No.               | -                                                     |             |          |         | L (mm)                | _          |            |                   |                   | Stress                       | ratio            | Wh(mm) Si(mm)        | S <sup>i</sup> (mm) |                         | W <sup>h</sup> (mm)                | S'(mm)  |                       | (MPa) |
| Ξ                 | (2)                                                   | (3)         | €        | (4) (5) | 9                     | $\epsilon$ | €          | <u>6</u>          | 9                 | (11)                         | •                | (13)                 | (14)                | (15)                    | (16) (17)                          | (17)    |                       | 61)   |
| 171               | W310x179 350x16                                       | 350x16      | O        | S       | 15579                 | 1.5        | 1-3        | 0.3F <sub>v</sub> | 0.3F <sub>y</sub> | <b>ተ</b>                     | 1/1350           | 2.27                 | 11.58               | L/1240                  |                                    | 12.61   | 300                   | 300   |
| 172               | W310x179 350x16                                       | 350x16      | O        | S       | 15579                 | 1.5        | I-3        |                   | $0.3F_{v}$        | . 따,                         | 1/1350           | 2.27                 | 11.58               | L1290                   |                                    | 12.06   | 300                   | 300   |
| 173               |                                                       | 350x16      | Ö        | S       | 16437                 | 1.5        | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | ت                            | 171300           | 2.44                 | 12.44               | 1/1220                  |                                    | 13.44   | 230                   | 350   |
| 174               |                                                       | 350x16      | Ö        | S       | 16437                 | 1.5        | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | · 吒                          | <b>U1300</b>     | 2.44                 | 12.44               | L/1270                  |                                    | 12.90   | 230                   | 350   |
| 175               | W150x30                                               | 130x5       | Ľ,       | ≩       | 1236                  | 0.4        | 1-3        | $0.3F_{v}$        |                   | , гг <sub>,</sub>            | 71000            | 1.24                 | 0.00                | 7980                    | _                                  |         | 300                   | 300   |
| 176               | W150x30                                               | 130x5       | Œ        | €       | 1236                  | 0.4        | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | , ਯੂ                         | 71000            | 1.24                 | 0.00                | D867                    | 1.27                               |         | 300                   | 300   |
| 171               | W150x30                                               | 130x5       | ĬŢ.      | ≥       | 1327                  | 0.4        | 1-3        | $0.3F_{v}$        | 0.3F              | تر                           | 71000            | 1.32                 | 0.00                | <b>17980</b>            | 1.35                               |         | 230                   | 350   |
| 178               | 3 W150x30                                             | 130x5       | ĬŢ.      | ≱       | 1327                  | 0.4        | 1-3        | 0.3F <sub>v</sub> | 0.3F              | بت                           | Z1000            | 1.32                 | 0.00                | 7980                    | 1.34                               |         | 230                   | 350   |
| 179               | W150x30                                               | 130x5       | Ľ,       | ≩       | 3399                  | $\exists$  | 1-3        | $0.3F_{v}$        | 0.3F              | بتا<br>ب                     | 78000            | 0.43                 | 0.00                | L7100                   | 0.48                               |         | 300                   | 300   |
| . <u>8</u><br>163 |                                                       | 130x5       | <u> </u> | ≩       | 3399                  | Ξ          | <u>1-3</u> | $0.3F_{v}$        | $0.3F_{v}$        | , <del>بر</del>              | 172000           | 1.70                 | 0.00                | L1940                   |                                    |         | 300                   | 300   |
|                   |                                                       | 130x5       | Ľ        | ≥       | 3399                  | =          | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | , IT,                        | 71000            | 3.40                 | 0.00                | 17890                   |                                    |         | 300                   | 300   |
| 182               |                                                       | 130x5       | Ľ.       | ≥       | 3399                  | -          | 1-3        | 0.3F              | $0.3F_{v}$        | 0.7F <sub>v</sub>            | 71000            | 3.40                 | 0.00                | 7890                    |                                    |         | 300                   | 300   |
| 183               |                                                       | 130x5       | Ľ.       | ≩       | 3399                  | <b>-</b> : | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | Г,                           | 71000            | 3.40                 | 0.00                | L/930                   | 3.64                               |         | 300                   | 300   |
| 184               | W150x30                                               | 130x5       | Ľ.       | ≩       | 3647                  | Ι.         | 1-3        | $0.3F_{v}$        | 0.3F <sub>v</sub> | . <del>г.</del>              | 71000            | 3.65                 | 0.00                | 7900                    | •                                  |         | 230                   | 320   |
| 185               | W150x30                                               | 130x5       | Ľ,       | ₹       | 3647                  | =          | 1-3        | $0.3F_{v}$        | 0.3F <sub>v</sub> | . ፑ,                         | 71000            | 3.65                 | 0.00                | <b>L940</b>             | 3.88                               |         | 230                   | 350   |
| 186               | W150x30                                               | 130x5       | Ľ.       | ≥       | 4635                  | 1.5        | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | . π <sub>&gt;</sub>          | 71000            | 4.64                 | 0.00                | L/850                   | 5.47                               |         | 300                   | 300   |
| 187               |                                                       | 130x5       | 1        | ≩       | 4635                  | 1.5        | 1-3        | $0.3F_{y}$        | $0.3F_{y}$        | F,                           | 1/1000           | 4.64                 | 0.00                | 17920                   | 5.05                               |         | 300                   | 8     |
| a) D              | a) D - Direction of reinforcing plates                | of reinfore | ing      | pla     | tes                   |            |            | F - Par           | allel to          | F - Parallel to the flanges  | Š                |                      | G - Para            | G - Parallel to the web | e web                              |         |                       |       |
| b) B              | b) B - Buckling axis                                  | xis         |          | ı       |                       |            |            | W - W             | eak axi           | - Weak axis of the I-section | section          |                      | S - Stroi           | ng axis o               | S - Strong axis of the I-section   | tion    |                       |       |
| לנס               | c) A - Slenderness parameter of the reinforced column | s paramet   | er o     | fthe    | reinfor               | ced        | Inloc      | uu                |                   |                              | d) IRS - Initial | Initial re           | sidual st           | ress befo               | residual stress before reinforcing | cing    |                       |       |
| : ;               |                                                       |             | )<br>•   |         |                       |            |            |                   |                   |                              |                  |                      |                     |                         |                                    |         | 1. 0                  |       |

f) MF -Maximum magnitude of the residual stress in the flange.  $F_{\rm y}$  - Yield stress of the unreinforced column

g) MP -Maximum magnitude of the residual stress in the reinforcing plate. e) PS - Residual stress pattern, as illustrated in Figure 4-1.

h) ratio - The ratio of the out-of-straightness to the column length, L. i) W - Out-of-straightness in the weak direction.

j) S - Out-of-straightness in the strong direction.

| Æ         |                                        |         |             |                  | Column       |           |            | IRS <sup>d</sup>  |                       | Welding                        | Initia  | Initial Imperfection | ection    | Out                     | Out-of-straightness              | tness   | Yield Strength  | ength |
|-----------|----------------------------------------|---------|-------------|------------------|--------------|-----------|------------|-------------------|-----------------------|--------------------------------|---------|----------------------|-----------|-------------------------|----------------------------------|---------|-----------------|-------|
| mod       | model 1-section                        | Plate   | <u>م</u>    | B <sub>b</sub> I | D" B" Length | ۳         | $PS^c$     | MF                | MP <sup>8</sup>       | Residual                       | petor   | before reinforcing   | rcing     | after rei               | after reinforcing, no load       | no load | I-section plate | plate |
| No        |                                        |         |             | _                | L (mm)       |           |            |                   |                       | Stress                         | ratio   | W <sup>h</sup> (mm)  | S'(mm)    |                         | W <sup>h</sup> (mm)              | S'(mm)  | (MPa)           | (MPa) |
| Ξ         | (2)                                    | 3       | 4           | (4) (5)          | 9            | 6         | €          | <u></u>           | ( <u>0</u>            | (E)                            | •       | (13)                 | (14)      | (15)                    |                                  | (11)    | (18)            | (61)  |
| 188       | ×                                      | 130x5   | ഥ           | ≥                | 4973         | 1.5       | -3         | 0.3F <sub>v</sub> | 0.3F,                 | я,<br>,                        | 71000   | 4.97                 | 0.00      | 17860                   | 5.78                             |         | 230             | 350   |
| 189       | W150x30                                | 130x5   | Έ,          | ≱                | 4973         | 1.5       | <u>-3</u>  | 0.3F <sub>y</sub> | $0.3F_{y}$            | ιτ <sub>ν</sub>                | 71000   | 4.97                 | 0.00      | 17920                   | 5.38                             |         | 230             | 320   |
| 8         | W150x30                                | 130x5   | 1           | S                | 2300         | 0.4       | 1-3        | 0.3F,             | 0.3F,                 | Б                              | 178000  | 90.0                 | 0.29      | L7730                   |                                  | 0.30    | 300             | 300   |
| 161       | W150x30                                | 130x5   | <u>L</u>    | S                | 2300         | 0.4       | <u>-3</u>  | $0.3F_{v}$        | $0.3F_{v}$            | 따,                             | L/2000  | 0.23                 | 1.15      | <b>L194</b> 0           |                                  | 1.19    | 300             | 300   |
| 192       | W150x30                                | 130x5   | Œ.          | S                | 2300         | 0.4       | 1-3        | $0.3F_{v}$        | $0.3F_{v}$            | . п.                           | Z1000   | 0.45                 | 2.30      | 7960                    |                                  | 2.38    | 300             | 300   |
| 193       | W150x30                                | 130x5   | Ĩ.          | S                | 2300         | 0.4       | <b>I-3</b> | $0.3F_{v}$        | $0.3F_{v}$            | بت.<br>د                       | 71000   | 0.45                 | 2.30      | 7980                    |                                  | 2.36    | 300             | 300   |
| 194       | W150x30                                | 130x5   | [_          | S                | 2468         | 0.4       | 1-3        | 0.3F <sub>v</sub> | $0.3F_{v}$            | تع                             | 71000   | 0.49                 | 2.47      | 1/960                   |                                  | 2.56    | 230             | 320   |
| 195       |                                        | 130x5   | Ľ,          | S                | 2468         | 0.4       | 1-3        | $0.3F_{v}$        | $0.3F_{v}$            | ۲.,                            | 71000   | 0.49                 | 2.47      | 17980                   |                                  | 2.52    | 230             | 320   |
|           | _                                      | 130x5   | <u> </u>    | S                | 6326         | Ξ         | <b>I-3</b> | $0.3F_{v}$        | $0.3F_{v}$            | بتر<br>د                       | L/8000  | 0.16                 | 0.79      | 7/0000                  |                                  | 96.0    | 300             | 300   |
| 62<br>164 |                                        | 130x5   | <u> </u>    | S                | 6326         | 1:1       | <u>-3</u>  | $0.3F_{v}$        | $0.3\overline{F_{v}}$ | ιτ <sub>&gt;</sub>             | L/2000  | 0.62                 | 3.16      | L/1650                  |                                  | 3.85    | 300             | 300   |
|           |                                        | 130x5   | Ľ.          | S                | 6326         | <u>-:</u> | 1-3        | 0.3F,             | $0.3F_{v}$            | , п,                           | Z1000   | 1.24                 | 6.33      | L/820                   |                                  | 7.71    | 300             | 300   |
| 661       | W150x30                                | 130x5   | Ľ.          | S                | 6326         | -:        | 1-3        | 0.3F,             | 0.3F,                 | 0.7F <sub>y</sub>              | 71000   | 1.24                 | 6.33      | <b>L/8</b> 20           |                                  | 7.72    | 300             | 300   |
| 200       | W150x30                                | 130x5   | Ľ           | S                | 6326         | =         | 1-3        | 0.3F <sub>v</sub> | $0.3F_{v}$            | Т                              | 171000  | 1.24                 | 6.33      | 17880                   |                                  | 7.17    | 300             | 300   |
| 201       | W150x30                                | 130x5   | <u>(*</u> , | S                | <b>6787</b>  | 1:1       | <u>1-3</u> | 0.3F,             | 0.3F,                 | . π <sub>y</sub>               | 71000   | 1.33                 | 6.79      | 1/810                   |                                  | 8.40    | 230             | 350   |
| 202       | W150x30                                | 130x5   | 11,         | S                | 6787         | 1:1       | 1-3        | 0.3F <sub>v</sub> | $0.3F_{y}$            | ιτ <sub>2</sub>                | 71000   | 1.33                 | 6.79      | L/890                   |                                  | 7.66    | 230             | 350   |
| 203       | W150x30                                | 130x5   | Ľ           | S                | 8626         | 1.5       | <u>-3</u>  | $0.3F_{v}$        | $0.3F_{v}$            | Гг                             | L/8000  | 0.00                 | 1.08      | L/6050                  |                                  | 1.43    | 300             | 300   |
| 202       |                                        | 130x5   | Ľ           | S                | 8626         | 1.5       | 1-3        | $0.3F_{y}$        | $0.3F_{y}$            | F,                             | L/2000  | 0.00                 | 4.31      | 171500                  |                                  | 5.74    | 300             | 300   |
| a) D      | a) D - Direction of reinforcing plates | reinfor | cing        | plate            | es           |           |            | F - Par           | allel to              | F - Parallel to the flanges    | Š       |                      | G - Para  | G - Parallel to the web | e web                            |         |                 |       |
| b) B      | b) B - Buckling axis                   | iis     | 1           | 1                |              |           |            | W - W             | eak axi               | W - Weak axis of the I-section | section |                      | S - Stroi | ng axis of              | S - Strong axis of the I-section | tion    |                 |       |

j) S - Out-of-straightness in the strong direction.

f) MF -Maximum magnitude of the residual stress in the flange.  $F_y$  - Yield stress of the unreinforced column

g) MP -Maximum magnitude of the residual stress in the reinforcing plate.

c)  $\lambda$  - Slenderness parameter of the reinforced column e) PS - Residual stress pattern, as illustrated in Figure 4-1.

h) ratio - The ratio of the out-of-straightness to the column length, L.

i) W - Out-of-straightness in the weak direction.

d) IRS - Initial residual stress before reinforcing

| FEA             |                                        |           |          | ర            | Column | !<br>: |            | IRS     |            | Welding                        | Initia  | Initial Imperfection                   | ction                   | Ŏ             | Out-of-straightness              | ntness              | Yield Strength  | rength |
|-----------------|----------------------------------------|-----------|----------|--------------|--------|--------|------------|---------|------------|--------------------------------|---------|----------------------------------------|-------------------------|---------------|----------------------------------|---------------------|-----------------|--------|
| mode            | model I-section                        | Plate     | <b>7</b> | D" B" Length | ength  | ヹ      | PS         | MF      | MPg        | Residual                       | pefor   | before reinforcing                     | rcing                   | after re      | after reinforcing, no load       | , no load           | I-section plate | plate  |
| No.             |                                        |           |          | ļ            | L (mm) |        |            |         |            | Stress                         | ratio   | W <sup>h</sup> (mm) S <sup>i</sup> (mm | S'(mm)                  |               | W <sup>h</sup> (mm)              | S <sup>i</sup> (mm) | (MPa)           | (MPa)  |
| Ξ               | (2)                                    | (3)       | (4) (5)  | (5)          | 9      | 8      | <b>(8)</b> | <u></u> | ( <u>0</u> | (E)                            | •       | (13)                                   | (14)                    | (15)          | (91)                             | (11)                | (18)            | (61)   |
| 205             | W150x30                                | 130x5     | Ľ.       | S            | 8626   | 1.5    | 1-3        | 0.3F, ( | J.3F,      | ጙ                              | 71000   | 0.00                                   | 8.63                    | 17750         |                                  | 11.57               | 300             | 300    |
| 206             | W150x30                                | 130x5     | Ľ        | S            | 8626   | 1.5    | 1-3 0      | ).3F, ( | 0.3F,      | πŻ                             | 71000   | 0.00                                   | 8.63                    | 17860         |                                  | 10.06               | 300             | 300    |
| 207             | W150x30                                | 130x5     | Ľ        | S            | 9254   | 1.5    | 1-3 0      | _       | 0.3F,      | П,                             | 71000   | 1.82                                   | 9.25                    | 17750         |                                  | 12.28               | 230             | 320    |
| 208             | W150x30                                | 130x5     | Ľ,       | S            | 9254   | 1.5    | 1-3 0      |         | 0.3F,      | . ጥ                            | 71000   | 1.82                                   | 9.25                    | <b>L/860</b>  |                                  | 10.76               | 230             | 320    |
| 209             | W150x30                                | 175x5     | ŋ        | -<br>*       | 1770   | 0.4    | 1-3 0      | _       | 0.3F,      | . ሞ,                           | 78000   | 0.22                                   | 0.00                    | L/7050        |                                  |                     | 300             | 300    |
| 210             | W150x30                                | 175x5     | Ö        | -<br>*       | 1770   | 0.4    | 1-3 (      |         | $0.3F_{v}$ | . 吓                            | L/2000  | 0.88                                   | 0.00                    | U1770         |                                  |                     | 300             | 300    |
| 211             | W150x30                                | 175x5     | Ö        | -<br>≯       | 1770   | 0.4    | 1-3 (      |         | $0.3F_{v}$ | , гг <sub>,</sub>              | 71000   | 1.77                                   | 0.00                    | 17880         |                                  |                     | 300             | 300    |
| 212             |                                        | 175x5     | Ö        | _<br>≽       | 1770   | 0.4    | 1-3 0      |         | 0.3F,      | , tr <sub>,</sub>              | 71000   | 1.77                                   | 0.00                    | 17920         |                                  |                     | 300             | 300    |
|                 |                                        | 175x5     | Ö        | -<br>≽       | 1873   | 0.4    | 1-3 (      | ).3F, ( | $0.3F_{v}$ | , п <sub>у</sub>               | 71000   | 1.87                                   | 0.00                    | 7900          |                                  |                     | 230             | 320    |
| 165<br>27<br>27 | W150x30                                | 175x5     | Ö        | -<br>≯       | 1873   | 0.4    | 1-3 0      |         | $0.3F_{v}$ | ت                              | 71000   | 1.87                                   | 0.00                    | L/930         |                                  |                     | 230             | 320    |
|                 | W150x30                                | 175x5     | Ö        | <b>≯</b>     | 4867   | -      | 1-3 (      | ).3F, ( | $0.3F_{v}$ | Г.                             | L/8000  | 0.61                                   | 0.00                    | L/4900        |                                  |                     | 300             | 300    |
| 216             |                                        | 175x5     | Ö        | <b>≯</b>     | 4867   | -      | 1-3 (      |         | $0.3F_{v}$ | تر                             | L/2000  | 2.43                                   | 0.00                    | <b>L/1220</b> | 3.99                             |                     | 300             | 300    |
| 217             |                                        | 175x5     | g        | <b>≫</b>     | 4867   | =      | 1-3 (      |         | $3F_{v}$   | . ፑ,                           | 71000   | 4.86                                   | 0.00                    | 1/610         |                                  |                     | 300             | 300    |
| 218             |                                        | 175x5     | Ö        | <b>≫</b>     | 4867   | =      | 1-3 0      |         | $0.3F_{v}$ | 0.7F <sub>v</sub>              | 71000   | 4.86                                   | 0.00                    | 17610         |                                  |                     | 300             | 300    |
| 219             |                                        | 175x5     | Ö        | <b>₩</b>     | 4867   | -:     | 1-3 (      |         | $0.3F_{v}$ | E,                             | 71000   | 4.86                                   | 0.00                    | 7760          |                                  |                     | 300             | 300    |
| 220             |                                        | 175x5     | Ö        | <b>₩</b>     | 5150   | -:     | 1-3 (      |         | $0.3F_{v}$ | · 따                            | 71000   | 5.15                                   | 0.00                    | 17630         |                                  |                     | 230             | 320    |
| 221             |                                        | 175x5     | Ŋ        | W S          | 5150   | 1.1    | 1-3        | _       | 0.3F,      | F,                             | 71000   | 5.15                                   | 0.00                    | 1780          | 89.9                             |                     | 230             | 350    |
| E D             | a) D - Direction of reinforcing plates | f reinfor | cing     | plate        | sa.    |        | H          | - Para  | llel to    | F - Parallel to the flanges    | . yı    |                                        | G - Parallel to the web | llel to th    | e web                            |                     |                 |        |
| b) B.           | b) B - Buckling axis                   | is        | )        |              |        |        | >          | V - We  | ak axi     | W - Weak axis of the I-section | section |                                        | S - Stroi               | ng axis o     | S - Strong axis of the I-section | ction               |                 |        |
| 1               |                                        |           |          |              |        |        |            |         |            |                                |         |                                        |                         | )             |                                  |                     |                 |        |

d) IRS - Initial residual stress before reinforcing

f) MF -Maximum magnitude of the residual stress in the flange.  $F_{\rm y}$  - Yield stress of the unreinforced column

g) MP -Maximum magnitude of the residual stress in the reinforcing plate. h) ratio - The ratio of the out-of-straightness to the column length, L.

e) PS - Residual stress pattern, as illustrated in Figure 4-1. c)  $\lambda$  - Slenderness parameter of the reinforced column

i) W - Out-of-straightness in the weak direction.

j) S - Out-of-straightness in the strong direction.

| FEA      |                                        |           |         | Column                | E E     |        | IRSª                | 8_             | Welding                      | 1             | Initial Imperfection | ection    | Ont-                    | Out-of-straightness              | ıtness  | Yield Strength  | rength |
|----------|----------------------------------------|-----------|---------|-----------------------|---------|--------|---------------------|----------------|------------------------------|---------------|----------------------|-----------|-------------------------|----------------------------------|---------|-----------------|--------|
| mode     | model I-section                        | Plate     | D, H    | B <sup>b</sup> Length | gth ?   | re PSe | ° MF                | $MP^{g}$       | Residual                     | befo          | before reinforcing   | rcing     | after rei               | after reinforcing, no load       | no load | I-section plate | plate  |
| S.<br>O. |                                        |           |         | L (mm                 | (MI     |        |                     |                | Stress                       | ratio         | W <sup>h</sup> (mm)  | S'(mm)    | ratio                   | W <sup>h</sup> (mm) S'(mm)       | S'(mm)  |                 | (MPa)  |
| Ξ        | (2)                                    | 3         | (4) (5) | • _                   | )<br>(3 | (8)    | <u>6</u>            | 9              | (11)                         |               | (13)                 |           |                         | (16)                             | (11)    | (18)            | (61)   |
| 222      | W150x30                                | 175x5     | C       | W 663                 | 37 1    | 5 1-   | 3 0.3F              | 0.3F,          |                              | 7,8000        | 0.83                 | 0.00      | 174410                  | 1.50                             |         | 300             | 300    |
| 223      | W150x30                                | 175x5     | O<br>O  | W 6637                | 37 1    | .S 1-3 | 3 0.3F <sub>v</sub> | $0.3F_{\rm v}$ | , FT <sub>2</sub>            | L/2000        | 3.32                 | 0.00      | 71100                   | 6.05                             |         | 300             | 300    |
| 224      | -                                      | 175x5     | C       | W 6637                | 37 1    | .S I-3 | 3 0.3F,             | $0.3F_{v}$     |                              | 71000         | 6.64                 | 0.00      | L/550                   | 12.10                            |         | 300             | 300    |
| 225      |                                        | 175x5     | Ö       | × 66                  | 37 1    | .5 I-3 | 3 0.3F <sub>v</sub> | $0.3F_{\rm v}$ |                              | 71000         | 6.64                 | 0.00      | L/30                    | 9.16                             |         | 300             | 300    |
| 226      | W150x30                                | 175x5     | Ö       | X 70;                 | 23      | .5 1-3 | 3 0.3F              | $0.3F_{v}$     |                              | 71000         | 7.02                 | 0.00      | 17570                   | 12.32                            |         | 230             | 350    |
| 227      |                                        | 175x5     | 9       | .07 ∨                 | 23      | .5 1-3 | ) 0.3F,             | $0.3F_{v}$     |                              | 71000         | 7.02                 | 0.00      | 1740                    | 9.46                             |         | 230             | 350    |
| 228      |                                        | 175x5     | 0       | S 20.                 | 22 0    | 6-1 4: | 0.3F,               | $0.3F_{v}$     |                              | <b>178000</b> | 0.05                 | 0.25      | 17860                   |                                  | 0.26    | 300             | 300    |
| 229      |                                        | 175x5     | Ö       | S 20.                 | 22 0    | .4 1-3 | 0.3F                | $0.3F_{v}$     |                              | L/2000        | 0.20                 | 10.1      | D1960                   |                                  | 1.03    | 300             | 300    |
|          |                                        | 175x5     | ٥       | S 20.                 | 22 0    | 5-1 4: | 3 0.3F <sub>v</sub> | $0.3F_{v}$     |                              | 71000         | 0.40                 | 2.02      | L/980                   |                                  | 2.06    | 300             | 300    |
| 2<br>166 | W150x30                                | 175x5     | Ü       | S 20.                 | 22 0    | £-1 ♣: | 3 0.3F,             | $0.3F_{v}$     |                              | 71000         | 0.40                 | 2.02      | 7990                    |                                  | 2.05    | 300             | 300    |
|          |                                        | 175x5     | Ö       | \$ 21.                | 40 0    | .4 I-3 | 3 0.3F <sub>v</sub> | $0.3F_{v}$     |                              | 71000         | 0.42                 | 2.14      | 7990                    |                                  | 2.17    | 230             | 350    |
| 233      |                                        | 175x5     | Ö       | S 2140                | 40 0    | £-1 4: | ) 0.3F              | $0.3F_{v}$     | , IT,                        | Z1000         | 0.42                 | 2.14      | 17990                   |                                  | 2.16    | 230             | 350    |
| 234      |                                        | 175x5     | Ö       | S 55                  | 1 1959  | .1 -3  | ) 0.3F <sub>v</sub> | $0.3F_{v}$     |                              | L/8000        | 0.14                 | 69.0      | L7200                   |                                  | 0.77    | 300             | 300    |
| 235      | -                                      | 175x5     | Ü       | S 5561                | 1 19    | .1 1-3 | 0.3F,               | $0.3F_{v}$     |                              | L/2000        | 0.54                 | 2.78      | 71800                   |                                  | 3.10    | 300             | 300    |
| 236      | -                                      | 175x5     | Ü       | S 5561                | 1 19    | .1 1-3 | 3 0.3F,             | 0.3F           | Œ,                           | 71000         | 1.09                 | 5.56      | <b>1</b> /900           |                                  | 6.22    | 300             | 300    |
| 237      |                                        | 175x5     | Ö       | S 5561                | 1 19    | .1 1-3 | 3 0.3Fy             | $0.3F_{y}$     | $0.7F_{y}$                   | 71000         | 1.09                 | 5.56      | Z/200                   |                                  | 6.21    | 300             | 300    |
| 238      | W150x30                                | 175x5     | Ü       | S 556                 | 1 19    | .1 1-3 | _                   |                | F,                           | L/1000        | 1.09                 | 5.56      | L/940                   |                                  | 5.95    | 300             | 38     |
| a) D     | a) D - Direction of reinforcing plates | f reinfor | cing p  | Mates                 |         |        | F - Pa              | rallel to      | F - Parallel to the flanges  | es            |                      | G - Para  | G - Parallel to the web | s web                            |         |                 |        |
| b) B.    | b) B - Buckling axis                   | Kis       | )       |                       |         |        | W - W               | Veak ax        | - Weak axis of the I-section | section       |                      | S - Stron | ng axis of              | S - Strong axis of the I-section | tion    |                 |        |
|          | )                                      |           | •       |                       | ,       |        |                     |                |                              | :             | •                    |           | 1.6                     | J                                |         |                 |        |

W - Weak axis of the I-section c)  $\lambda$  - Slenderness parameter of the reinforced column

f) MF -Maximum magnitude of the residual stress in the flange.  $F_{y}$  - Yield stress of the unreinforced column d) IRS - Initial residual stress before reinforcing

e) PS - Residual stress pattern, as illustrated in Figure 4-1.

g) MP-Maximum magnitude of the residual stress in the reinforcing plate. h) ratio - The ratio of the out-of-straightness to the column length, L.

i) W - Out-of-straightness in the weak direction.

j) S - Out-of-straightness in the strong direction.

| FEA   | A                                      |           |          | ರ        | Column       |         |          | IRS               |                   | Welding                        | Initia  | Initial Imperfection | ection    | )<br>j                  | Out-of-straightness              | itness  | Yield Strength  | rength |
|-------|----------------------------------------|-----------|----------|----------|--------------|---------|----------|-------------------|-------------------|--------------------------------|---------|----------------------|-----------|-------------------------|----------------------------------|---------|-----------------|--------|
| mod   | model I-section                        | Plate     | <u>"</u> | B<br>B   | D* B' Length | بر<br>۳ | PS¢      | MF                | ΜÞβ               | Residual                       | befo    | before reinforcing   | rcing     | after rei               | after reinforcing, no load       | no load | 1-section plate | plate  |
| S.    | ند.                                    |           |          | _        | L(mm)        |         |          |                   |                   | Stress                         | ratio   | Wh(mm) Si(mm         | S'(mm)    | ratio                   | W <sup>h</sup> (mm)              | S'(mm)  | (MPa)           | (MPa)  |
| $\Xi$ | (2)                                    | 3         | (4) (5)  |          | 9            | (C)     | <b>æ</b> | <u>(S</u>         | ( <u>0</u>        | (E)                            | (12)    | (13)                 | (14)      |                         | (16)                             | (11)    | (18)            | (61)   |
| 239   | 9 W150x30                              | 175x5     | O        | S        | 5885         | =       | 1-3      | 0.3F,             | 0.3F,             | ቪ                              | 71000   | 1.15                 | 5.88      | L/900                   |                                  | 6.51    | 230             | 320    |
| 240   | 0 W150x30                              | 175x5     | ŋ        | S        | 5885         | -       | 1-3 (    |                   | $0.3F_{y}$        | . π <sub>y</sub>               | 71000   | 1.15                 | 5.88      | L/940                   |                                  | 6.26    | 230             | 350    |
| 24    | 1 W150x30                              | 175x5     | Ö        | S        | 7583         | 1.5     | 1-3      | 0.3F <sub>v</sub> | 0.3F,             | . ፔ,                           | 0008/7  | 0.19                 | 0.95      | 0689/7                  |                                  | 1.10    | 300             | 300    |
| 24,   | 2 W150x30                              | 175x5     | Ö        | S        | 7583         | 1.5     | 1-3      | 0.3F <sub>v</sub> | $0.3F_{y}$        | . ፑ,                           | L/2000  | 0.74                 | 3.79      | L1700                   |                                  | 4.44    | 300             | 300    |
| 243   |                                        | 175x5     | ŋ        | S        | 7583         | 1.5     | 1-3      | $0.3F_{v}$        | 0.3F <sub>v</sub> | . ፑ,                           | 71000   | 1.49                 | 7.58      | L/850                   |                                  | 8.94    | 300             | 300    |
| 244   |                                        | 175x5     | ŋ        | S        | 7583         | 1.5     | 1-3      | 0.3F <sub>v</sub> | $0.3F_{v}$        | ت                              | 71000   | 1.49                 | 7.58      | 016/1                   |                                  | 8.35    | 300             | 300    |
| 24.   | -                                      | 175x5     | Ö        | S        | 8024         | 1.5     | 1-3 (    | $0.3F_{v}$        | $0.3F_{v}$        | , <b>гг</b> ,                  | 71000   | 1.58                 | 8.02      | D98/7                   |                                  | 9.34    | 230             | 320    |
| 24    |                                        | 175x5     | Ö        | S S      | 8024         | 1.5     | 1-3      | 0.3F <sub>v</sub> | 0.3F <sub>v</sub> | بر<br>س                        | 71000   | 1.58                 | 8.02      | L910                    |                                  | 8.78    | 230             | 350    |
|       |                                        | 130x8     | Ľ,       | -<br>≯   | 1234         | 0.4     | 1-3 (    | 0.3F <sub>v</sub> | $0.3F_{v}$        | ت                              | 71000   | 1.23                 | 0.00      | 17970                   | 1.28                             |         | 300             | 300    |
| 167   |                                        | 130x8     | ï        | <br>≯    | 1234         | 0.4     | 1-3      | 0.3F <sub>v</sub> | $0.3F_{v}$        | بت.<br>د                       | 71000   | 1.23                 | 0.00      | 7980                    | 1.26                             |         | 300             | 300    |
| 249   |                                        | 130x8     | Ľ        | -<br>≽   | 1295         | 0.4     | 1-3 (    | $0.3F_{v}$        | 0.3F <sub>v</sub> | . بت <sub>ع</sub>              | 71000   | 1.30                 | 0.00      | L970                    | 1.33                             |         | 230             | 350    |
| 250   |                                        | 130x8     | H        | -<br>≽   | 1295         | 0.4     | 1-3 (    | $0.3F_{v}$        | $0.3F_{v}$        | Г,                             | 71000   | 1.30                 | 0.00      | <b>17980</b>            | 1.32                             |         | 230             | 320    |
| 25    |                                        | 130x8     | H        | ₩<br>3   | 3392         |         | 1-3      | 0.3F <sub>v</sub> | 0.3F,             | . π <u>,</u>                   | L/8000  | 0.42                 | 0.00      | 176770                  | 0.50                             |         | 300             | 300    |
| 252   |                                        | 130x8     | ī        | ¥ 3      | 3392         | 1.1     | 1-3 (    | 0.3F,             | 0.3F,             | . ፔ,                           | L/2000  | 1.70                 | 0.00      | 1700                    | 2.01                             |         | 300             | 300    |
| 25.   | 3 W150x30                              | 130x8     | ī        | <b>₩</b> | 3392         |         | 1-3 (    | $0.3F_{y}$        | 0.3F,             | ۍ<br>د کې                      | 71000   | 3.39                 | 0.00      | L/850                   | 4.01                             |         | 300             | 38     |
| 254   | 4 W150x30                              | 130x8     | ï        | <b>₩</b> | 3392         | 1.1     | 1-3      | 0.3F,             | 0.3F,             | $0.7F_{y}$                     | 71000   | 3.39                 | 0.00      | L/850                   | 4.02                             |         | 300             | 300    |
| 255   | 5 W150x30                              | 130x8     | F        | W 3      | 3392         | 1.1     | 1-3 (    | 0.3Fy             | $0.3F_{y}$        | ъ                              | L/1000  | 3.39                 | 0.00      | 17910                   | 3.72                             |         | 300             | 300    |
| E) D  | a) D - Direction of reinforcing plates | f reinfor | cing     | plate    | S            |         | <u> </u> | 7 - Para          | llel to           | F - Parallel to the flanges    | Š.      |                      | G - Para  | G - Parallel to the web | ; web                            |         |                 |        |
| b) B  | b) B - Buckling axis                   | x is      | 1        | ,        |              |         |          | ₩ - We            | sak axi           | W - Weak axis of the 1-section | section |                      | S - Stron | g axis of               | S - Strong axis of the I-section | tion    |                 |        |
|       |                                        | ,         | ٠        | •        |              | -       | •        |                   |                   |                                | out w   | Taite in 1           | and land  | and backer              | - roinfor                        |         |                 |        |

c)  $\lambda$  - Slenderness parameter of the reinforced column

d) IRS - Initial residual stress before reinforcing

f) MF -Maximum magnitude of the residual stress in the flange.  $F_y - Yield \ stress \ of \ the \ unreinforced \ column$ e) PS - Residual stress pattern, as illustrated in Figure 4-1.

g) MP-Maximum magnitude of the residual stress in the reinforcing plate. h) ratio - The ratio of the out-of-straightness to the column length, L.

i) W - Out-of-straightness in the weak direction.

j) S - Out-of-straightness in the strong direction.

Table A.1 (cont'd)

| ÆA                | 1                                                             |           |          |         | Column                | _         |      | IRS               |                   | Welding                        | Initia          | Initial Imperfection        | ction                              | Out-                    | Out-of-straightness              | tness   | <b>Yield Strength</b> | ength |
|-------------------|---------------------------------------------------------------|-----------|----------|---------|-----------------------|-----------|------|-------------------|-------------------|--------------------------------|-----------------|-----------------------------|------------------------------------|-------------------------|----------------------------------|---------|-----------------------|-------|
| mode              | model 1-section                                               | Plate     | <u>"</u> | B,      | B <sup>b</sup> Length | ٠,۲       | PSc  | MF                | MPg               | Residual                       | pefo            | before reinforcing          | rcing                              | after rei               | after reinforcing, no load       | no load | I-section             | plate |
| No.               |                                                               |           |          | _       | L (mm)                |           |      |                   |                   | Stress                         | ratio           | W <sup>h</sup> (min) S'(min | S'(mm)                             | ratio                   | W <sup>h</sup> (mm) S'(mm)       | S'(mm)  |                       | (MPa) |
| Ξ                 | (2)                                                           | 3         | €        | (4) (5) | 9                     | 8         | €    | 6                 | 9                 | (E)                            |                 | (13)                        | (14)                               | :                       | (16)                             | (17)    | (18)                  | (19)  |
| 256               | ×                                                             | 130x8     | ഥ        | ≥       | 3560                  | =         | 1-3  | 0.3F <sub>v</sub> | 0.3F <sub>v</sub> | F,                             | 71000           | 3.56                        | 0.00                               | 7,860                   | 4.13                             |         | 230                   | 350   |
| 257               |                                                               | 130x8     | Ľ,       | ≥       | 3560                  | =         | 1-3  | 0.3F,             | 0.3F,             | т,                             | 71000           | 3.56                        | 0.00                               | L/920                   | 3.86                             |         | 230                   | 350   |
| 258               |                                                               | 130x8     | Ľ,       | ≥       | 4626                  | 1.5       | 1-3  | $0.3F_{v}$        | 0.3F <sub>v</sub> | ب                              | <b>2000</b>     | 4.63                        | 0.00                               | <b>17800</b>            | 5.76                             |         | 300                   | 300   |
| 259               |                                                               | 130x8     | Δ.       | ≥       | 4626                  | 1.5       | 1-3  | $0.3F_{v}$        | $0.3F_{v}$        | بت.<br>د                       | 71000           | 4.63                        | 0.00                               | 7890                    | 5.18                             |         | 300                   | 300   |
| 260               |                                                               | 130x8     | Ľ.       | ≩       | 4854                  | 1.5       | 1-3  | $0.3F_{v}$        | $0.3F_{v}$        | . بت <sub>ع</sub>              | 71000           | 4.85                        | 0.00                               | L/820                   | 5.91                             |         | 230                   | 350   |
| 261               |                                                               | 130x8     | Ľ.       | ≩       | 4854                  | 1.5       | 1-3  | 0.3F <sub>c</sub> | $0.3F_{v}$        | ب                              | 71000           | 4.85                        | 0.00                               | <b>200</b>              | 5.37                             |         | 230                   | 350   |
| 262               |                                                               | 130x8     | Ľ,       | S       | 2366                  | 0.4       | 1-3  | 0.3F <sub>v</sub> | 0.3F <sub>v</sub> | ` لتــُ                        | 71000           | 0.46                        | 2.36                               | L/950                   |                                  | 2.50    | 300                   | 300   |
| 263               | -                                                             | 130x8     | Ľ.       | S       | 2366                  | 0.4       | 1-3  | 0.3F <sub>v</sub> | $0.3F_{v}$        | `Ľ                             | 71000           | 0.46                        | 2.36                               | 1/970                   |                                  | 2.45    | 300                   | 300   |
|                   |                                                               | 130x8     | Ľ,       | S       | 2483                  | 0.4       | 1-3  | 0.3F <sub>v</sub> | $0.3F_{v}$        | بت                             | 71000           | 0.23                        | 2.48                               | L/950                   |                                  | 2.61    | 230                   | 320   |
| 765<br>361<br>361 |                                                               | 130x8     | Ľ.       | S       | 2483                  | 0.4       | 1-3  | 0.3F <sub>v</sub> | $0.3F_{v}$        | `Œ                             | 71000           | 0.23                        | 2.48                               | 17970                   |                                  | 2.56    | 230                   | 350   |
|                   |                                                               | 130x8     | Ι.,      | S       | 6507                  | -:        | 1-3  | $0.3F_{v}$        | $0.3F_{v}$        | ت                              | L/8200          | 0.00                        | 0.79                               | L/6140                  |                                  | 90.1    | 300                   | 300   |
| 267               |                                                               | 130x8     | Ľ,       | S       | 6507                  | Ι:        | 1-3  | $0.3F_{v}$        | $0.3F_{v}$        | . <del>بر</del>                | 1/2100          | 0.00                        | 3.12                               | 171560                  |                                  | 4.19    | 300                   | 300   |
| 268               |                                                               | 130x8     | Ľ.       | S       | 6507                  | 1.1       | 1-3  | $0.3F_{v}$        | $0.3F_{v}$        | , π <sub>,</sub>               | 71000           | 0.00                        | 6.51                               | L/740                   |                                  | 8.75    | 300                   | 300   |
| 269               |                                                               | 130x8     | ĬŢ,      | S       | 6507                  | =         | 1-3  | $0.3F_{v}$        | $0.3F_{v}$        | 0.7F,                          | 71000           | 0.00                        | 6.51                               | L740                    |                                  | 8.76    | 300                   | 300   |
| 270               |                                                               | 130x8     | Ľ.       | S       | 6507                  | Ξ         | 1-3  | $0.3F_{v}$        | $0.3F_{v}$        |                                | 71000           | 0.00                        | 6.51                               | L/850                   |                                  | 1.7.1   | 300                   | 300   |
| 271               |                                                               | 130x8     | Έ.       | S       | 6828                  | =         | 1-3  | $0.3F_{v}$        | $0.3F_{v}$        |                                | 71000           | 0.00                        | 6.83                               | 1760                    |                                  | 9.00    | 230                   | 350   |
| 272               |                                                               | 130x8     | F        | S       | 6828                  | <b>-:</b> | 1-3  | $0.3F_{y}$        | $0.3F_{\chi}$     |                                | 71000           | 0.00                        | 6.83                               | 17850                   |                                  | 8.02    | 230                   | 350   |
| Q (a              | a) D - Direction of reinforcing plates                        | f reinfor | ring     | plat    | es                    |           |      | F - Par           | allel to          | F - Parallel to the flanges    | Š               |                             | G - Para                           | G - Parallel to the web | ; web                            |         |                       |       |
| b) B              | b) B - Buckling axis                                          | cis       | 1        | ı       |                       |           |      | W - W.            | eak axi           | W - Weak axis of the I-section | section         |                             | S - Stron                          | g axis of               | S - Strong axis of the I-section | tion    |                       |       |
| c) \( \zeta \)    | c) \( \cdot \). Slendemess parameter of the reinforced column | parame    | er o     | fthe    | reinfor               | o poo.    | olum | Ħ                 |                   |                                | d) IRS - Initia |                             | residual stress before reinforcing | ess befor               | re reinfor                       | cing    |                       |       |
|                   |                                                               | <b>L</b>  |          |         |                       |           | i    |                   |                   |                                |                 |                             | ٠                                  |                         | :                                | ,       | 5                     |       |

j) S - Out-of-straightness in the strong direction. h) ratio - The ratio of the out-of-straightness to the column length, L.

f) MF -Maximum magnitude of the residual stress in the flange.  $F_y - Yield \ stress \ of \ the \ unreinforced \ column$ 

g) MP -Maximum magnitude of the residual stress in the reinforcing plate.

i) W - Out-of-straightness in the weak direction.

e) PS - Residual stress pattern, as illustrated in Figure 4-1.

Table A.1 (cont'd)

| FEA       |                                        |            |         | Column       |       |        | IRS                 | P. 6       | Welding                        | Initia       | Initial Imperfection | ection    | Out                     | Out-of-straightness              | ıtness  | Yield Strength | rength  |
|-----------|----------------------------------------|------------|---------|--------------|-------|--------|---------------------|------------|--------------------------------|--------------|----------------------|-----------|-------------------------|----------------------------------|---------|----------------|---------|
| mode      | model 1-section                        | Plate      | D* B    | Da Bb Length | gth A | C. PSe | MF                  | MP         | Residual                       | befo         | before reinforcing   | rcing     | after rei               | after reinforcing, no load       | no load | I-section      | ı plate |
| Z<br>O    |                                        |            |         | L (mm)       | (m    |        |                     |            | Stress                         | ratio        | W <sup>h</sup> (mm)  | S'(mm)    |                         | W <sup>h</sup> (mm)              |         | (MPa)          | (MPa)   |
| Ξ         | (2)                                    | (3)        | (4) (5) | 9            |       | (8)    | <u>S</u>            | (OT)       | (11)                           | (12)         | (13)                 | (14)      |                         | (91)                             |         | (18)           | (19)    |
| 273       | W150x30                                | 130x8      | F       | \$ 8873      | 73 1  | .5 1-3 | 3 0.3F              | ١.         | R,                             | 71000        | -0.04                | 8.87      | <b>17680</b>            |                                  | 13.00   | 300            | 300     |
| 274       | W150x30                                | 130x8      | E.      | \$ 8873      | 73    | .5 1-3 | 3 0.3F,             | _          | ፎ                              | 71000        | -0.04                | 8.87      | 17810                   |                                  | 10.93   | 300            | 300     |
| 275       | W150x30                                | 130x8      | Ľ.      | \$ 9310      | 1 01  | .5 1-3 | 3 0.3F              | _          | π <sub>y</sub>                 | 71000        | -0.04                | 9.31      | D/00                    |                                  | 13.34   | 230            | 350     |
| 276       | W150x30                                | 130x8      | Z.      | \$ 9310      | 1 01  | .5 1-3 | 3 0.3F              | _          | ᅜ                              | 71000        | -0.04                | 9.31      | 17820                   |                                  | 11.38   | 230            | 350     |
| 277       | W150x30                                | 175x8      | S<br>S  | V 1947       | 47 0  | -1 4:  | 3 0.3F              |            | <u>π</u> ,                     | 71000        | 1.95                 | 0.00      | L/850                   | 2.31                             |         | 300            | 300     |
| 278       | W150x30                                | 175x8      | S       | V 1947       | 47 0  | .4 L-3 | 3 0.3F              | _          | . π <sub>y</sub>               | 71000        | 1.95                 | 0.00      | 7900                    | 2.17                             |         | 300            | 300     |
| 279       | W150x30                                | 175x8      | Ö       | V 2012       | 12 0  | .4 I-3 | 1 0.3F              |            | . ௩                            | <b>21000</b> | 2.01                 | 0.00      | 17870                   | 2.31                             |         | 230            | 350     |
| 280       | W150x30                                | 175x8      | 5       | V 2012       | 12 0  | .4 I-3 | 1 0.3F              |            | . ፑ,                           | 71000        | 2.01                 | 0.00      | L/920                   | 2.20                             |         | 230            | 350     |
|           | W150x30                                | 175x8      | S<br>O  | V 5353       | 53 1  | .1 1-3 | 9 0.3F <sub>v</sub> |            | . ፑ,                           | L/8000       | 0.67                 | 0.00      | L/4420                  | 1.21                             |         | 300            | 300     |
| 28<br>169 | W150x30                                | 175x8      | S       | V 5353       | 53 1. | .1 1-3 | 9 0.3F <sub>v</sub> | , 0.3F,    | , IT,                          | L/2000       | 2.68                 | 0.00      | 71100                   | 4.85                             |         | 300            | 300     |
| 283       | W150x30                                | 175x8      | S       | V 5353       | 53 1  | .1 1-3 | 0.3F,               |            | . ፑ,                           | 71000        | 5.35                 | 0.00      | L/550                   | 9.71                             |         | 300            | 300     |
| 284       | W150x30                                | 175x8      | S       | V 5353       | 53    | .1 1-3 | 9 0.3F,             | _          | $0.7F_{v}$                     | 71000        | 5.35                 | 0.00      | 17550                   | 9.72                             |         | 300            | 300     |
| 285       | W150x30                                | 175x8      | C       | V 5353       | 53    | .1 1-3 | 3 0.3F,             | _          | T,                             | 71000        | 5.35                 | 0.00      | 17720                   | 7.46                             |         | 300            | 300     |
| 286       | W150x30                                | 175x8      | ₹<br>U  | V 5531       | 31    | .1 1-3 | 3 0.3F,             |            | . ፑ,                           | 71000        | 5.53                 | 0.00      | 17580                   | 9.56                             |         | 230            | 350     |
| 287       | W150x30                                | 175x8      | S<br>S  | V 553        | 31    | .1 1-3 | 3 0.3F              |            | ቪ                              | 71000        | 5.53                 | 0.00      | L/130                   | 7.53                             |         | 230            | 320     |
| 288       | W150x30                                | 175x8      | S<br>D  | v 7300       | 98    | .5 I-3 | 3 0.3F              | _          | ቪ                              | Z1000        | 7.30                 | 0.00      | L/530                   | 13.92                            |         | 300            | 300     |
| 289       | W150x30                                | 175x8      | N D     | V 73(        | 7300  | .5 I-3 | 3 0.3F              |            | F,                             | L1000        | 7.30                 | 0.00      | 1710                    | 10.33                            |         | 300            | 8       |
| a) D.     | a) D - Direction of reinforcing plates | of reinfor | cing p  | lates        |       |        | F - P.              | arallel to | F - Parallel to the flanges    | Se           |                      | G - Para  | G - Parallel to the web | e web                            |         |                |         |
| b) B -    | b) B - Buckling axis                   | xis        |         |              |       |        | <b>→</b>            | Veak ax    | W - Weak axis of the I-section | section      |                      | S - Stror | ng axis of              | S - Strong axis of the I-section | tion    |                |         |
|           | <b>.</b>                               |            |         | •            | ,     | •      |                     |            |                                |              |                      |           | L.6                     | J                                |         |                |         |

e) PS - Residual stress pattern, as illustrated in Figure 4-1. c)  $\lambda$  - Slenderness parameter of the reinforced column

f) MF -Maximum magnitude of the residual stress in the flange.  $F_y - Yield \ stress \ of \ the \ unreinforced \ column$ g) MP -Maximum magnitude of the residual stress in the reinforcing plate.

h) ratio - The ratio of the out-of-straightness to the column length, L. i) W - Out-of-straightness in the weak direction.

j) S - Out-of-straightness in the strong direction.

d) IRS - Initial residual stress before reinforcing

Table A.1 (cont'd)

| FEA         |                                                       |            |          |         | Column       |        |            | IRS               |                   | Welding                      | Initia   | Initial Imperfection | ection                                              | Out-                    | Out-of-straightness              | tness  | Yield Strength  | rength |
|-------------|-------------------------------------------------------|------------|----------|---------|--------------|--------|------------|-------------------|-------------------|------------------------------|----------|----------------------|-----------------------------------------------------|-------------------------|----------------------------------|--------|-----------------|--------|
| mode        | model 1-section                                       | Plate      | <u>"</u> | B, I    | D" B" Length | ئر     | PSe        | MF                | ΜPg               | Residual                     | peto     | before reinforcing   | rcing                                               | after rei               | after reinforcing, no load       |        | 1-section plate | plate  |
| N.          | _                                                     |            |          |         | L (mm)       | _      |            |                   |                   | Stress                       | ratio    | W <sup>h</sup> (mm)  | S'(mm)                                              | ratio                   | W <sup>h</sup> (mm)              | S'(mm) | (MPa)           | (MPa)  |
| $\Xi$       | (2)                                                   | 3          | ₹        | (4) (5) | 9            | 6      | €          | 9                 | 9                 | Ξ                            | •        | (13)                 |                                                     |                         | (91)                             | (17)   | (18)            | (19)   |
| 290         | ≩                                                     | 175x8      | O        | ≥       | 7543         | 1.5    | 1-3        | 0.3F              | 0.3F <sub>v</sub> | F,                           | 71000    | 7.54                 | 0.00                                                | L/530                   | 14.19                            |        | 230             | 350    |
| 291         |                                                       | 175x8      | Ö        | ≱       | 7543         | 1.5    | 1-3        | 0.3F,             | $0.3F_{v}$        | . п <u>,</u>                 | 71000    | 7.54                 | 0.00                                                | L/10                    | 10.60                            |        | 230             | 320    |
| 292         |                                                       | 175x8      | Ö        | S       | 9961         | 0.4    | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | 다                            | 71000    | 0.38                 | 1.96                                                | 17970                   |                                  | 2.02   | 300             | 300    |
| 293         |                                                       | 175x8      | g        | S       | 9961         | 0.4    | 1-3        | 0.3F <sub>v</sub> | $0.3F_{v}$        | ` Œ                          | 71000    | 0.38                 | 1.96                                                | 7980                    |                                  | 2.00   | 300             | 300    |
| 294         |                                                       | 175x8      | Ö        | S       | 2032         | 0.4    | 1-3        | 0.3F <sub>v</sub> | $0.3F_{v}$        | <u>ب</u> ت                   | 21000    | 0.40                 | 2.03                                                | L/980                   |                                  | 2.08   | 230             | 350    |
| 295         |                                                       | 175x8      | Ö        | S       | 2032         | 0.4    | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | س                            | 71000    | 0.40                 | 2.03                                                | L/980                   |                                  | 2.07   | 230             | 350    |
| 296         |                                                       | 175x8      | Ö        | S       | 5407         | ==     | 1-3        | 0.3F <sub>v</sub> | $0.3F_{v}$        | ` Œ                          | L/8000   | 0.13                 | 99.0                                                | 0169/7                  |                                  | 0.78   | 300             | 300    |
| 297         |                                                       | 175x8      | g        | S       | 5407         | -:     | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | · 따                          | L/2000   | 0.53                 | 2.70                                                | 1/1/30                  |                                  | 3.13   | 300             | 300    |
| 298         |                                                       | 175x8      | Ö        | S       | 5407         | Ξ:     | <u>1-3</u> | $0.3F_{v}$        | $0.3F_{v}$        | ت                            | 21000    | 90.1                 | 5.41                                                | 098/7                   |                                  | 6.28   | 300             | 300    |
| ි<br>170    |                                                       | 175x8      | Ö        | S       | 5407         | =      | 1-3        | $0.3F_{v}$        | $0.3F_{c}$        | $0.7F_{v}$                   | 71000    | 90.1                 | 5.41                                                | 098/7                   |                                  | 6.27   | 300             | 300    |
|             |                                                       | 175x8      | Ö        | S       | 5407         | -:     | 1-3        | $0.3F_{v}$        | 0.3F <sub>v</sub> | ,<br>L                       | 71000    | 90.1                 | 5.41                                                | L/910                   |                                  | 5.92   | 300             | 300    |
| 301         |                                                       | 175x8      | Ö        | S       | 5587         | -:     | 1-3        | 0.3F <sub>v</sub> | $0.3F_{v}$        | <u>.</u> ت                   | 71000    | 69.                  | 5.59                                                | L/880                   |                                  | 6.35   | 230             | 350    |
| 305         |                                                       | 175x8      | Ö        | S       | 5587         | -:     | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | ت                            | 71000    | 1.09                 | 5.59                                                | L/930                   |                                  | 6.04   | 230             | 350    |
| 303         |                                                       | 175x8      | Ö        | S       | 7373         | 1.5    | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | , Œ,                         | 71000    | 1.45                 | 7.37                                                | L/810                   |                                  | 9.14   | 300             | 300    |
| 304         |                                                       | 175x8      | Ö        | S       | 7373         | 1.5    | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | . ቪ                          | 171000   | 1.45                 | 7.37                                                | L/880                   |                                  | 8.37   | 300             | 300    |
| 305         |                                                       | 175x8      | Ö        | S       | 819/         | 1.5    | 1-3        | $0.3F_{v}$        | 0.3F,             | . ቪ,                         | 71000    | 1.50                 | 7.62                                                | L/820                   |                                  | 9.26   | 230             | 350    |
| 306         |                                                       | 175x8      | Ö        | S       | 8192         | 1.5    | 1-3        | $0.3F_{\chi}$     | $0.3F_{y}$        | F,                           | 1/1000   | 1.50                 | 7.62                                                | 17890                   |                                  | 8.55   | 230             | 350    |
| a<br>D<br>D | a) D - Direction of reinforcing plates                | f reinford | sing     | plate   | SS           |        |            | F - Par           | allel to          | F - Parallel to the flanges  | S        |                      | G - Para                                            | G - Parallel to the web | web                              |        |                 |        |
| b) B        | b) B - Buckling axis                                  | xis        | )        | 1       |              |        | -          | <b>₩</b> - ₩      | eak axi           | - Weak axis of the I-section | section  |                      | S - Stron                                           | ig axis of              | S - Strong axis of the I-section | tion   |                 |        |
| c) \        | c) A - Slenderness parameter of the reinforced column | ; paramel  | ero      | fthe    | reinfor      | o pao. | olum       | s                 |                   |                              | d) IRS - | Initial re           | d) IRS - Initial residual stress before reinforcing | ess befor               | e reinfor                        | cing   |                 |        |
|             |                                                       | •          |          | :       |              |        | į          | •                 |                   |                              | 1 411 0  |                      |                                                     | As See the              | Inchistor,                       |        | the flance      | 4      |

f) MF -Maximum magnitude of the residual stress in the flange.

Fy - Yield stress of the unreinforced column

g) MP -Maximum magnitude of the residual stress in the reinforcing plate. h) ratio - The ratio of the out-of-straightness to the column length, L.

e) PS - Residual stress pattern, as illustrated in Figure 4-1.

i) W - Out-of-straightness in the weak direction.

j) S - Out-of-straightness in the strong direction.

Table A.1 (cont'd)

| FEA       |                                                       |           |      |      | Column                  |      |            | IRS               |                   | Welding                        |               | Initial Imperfection | ection                                              | Out                     | Out-of-straightness              | tness  | Yield Strength  | ength |
|-----------|-------------------------------------------------------|-----------|------|------|-------------------------|------|------------|-------------------|-------------------|--------------------------------|---------------|----------------------|-----------------------------------------------------|-------------------------|----------------------------------|--------|-----------------|-------|
| mode      | model I-section Plate Da Bb Length                    | Plate     | Ď    | æ    | Length                  | ېر   | PS         | MF                | ΜPg               | Residual                       | pelo          | before reinforcing   | rcing                                               | after rei               | after reinforcing, no load       |        | I-section plate | plate |
| S.        |                                                       |           |      |      | L(mm)                   | _    |            |                   |                   | Stress                         | ratio         | Wh(mm) Shm           | S'(mm)                                              | ratio                   | ratio Wh(mm) Si(mm)              | S'(mm) | (MPa)           | (MPa) |
| Ξ         | (2)                                                   | 3         | ₹    | 3    | (3) (4) (5) (6) (7) (8) | 6    | €          | 6                 | <u>(e</u>         | (E)                            | (12)          | (13)                 | (14)                                                | (15)                    | (16)                             | (11)   | (18)            | (19)  |
| 307       | W310x179 350x16 G W 3720 0.4                          | 350x16    | O    | ≥    | 3720                    | 0.4  | 1-3        | 0.3F <sub>v</sub> | 0.3F <sub>v</sub> | F,                             | <b>L/1105</b> | 3.37                 |                                                     | 62677                   | 3.80                             |        | 300             | 300   |
| 308       | W310x179 350x16 G                                     | 350x16    | Ö    | ≩    | 10229                   | =    | <u>1-3</u> | $0.3F_{v}$        | $0.3F_{v}$        | Т,                             | 1/1267        | 8.07                 |                                                     | L/789                   | 12.96                            |        | 300             | 300   |
| 309       |                                                       | 350x16    | g    | S    | 11425                   | =    | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | . L.                           | L/1697        |                      | 6.73                                                | L/1574                  |                                  | 7.26   | 300             | 300   |
| 310       |                                                       | 350x16    | Ľ.   | S    | 18479                   | 1.5  | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | د                              | L/2029        |                      | 9.11                                                | L/858                   |                                  | 7.37   | 300             | 300   |
| 311       | W150x30 130x5                                         | 130x5     | Ľ    | S    | 6326                    | =    | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | , 따 <u>,</u>                   | Z1081         |                      | 5.85                                                | <b>F7808</b>            |                                  | 10.67  | 300             | 300   |
| 312       |                                                       | 130x5     | ĹŢ.  | S    | 8626                    | 1.5  | <u>.3</u>  | $0.3F_{v}$        | $0.3F_{v}$        | . ፔ.                           | <b>LI133</b>  |                      | 7.61                                                | 7860                    |                                  | 10.03  | 300             | 300   |
| 313       |                                                       | 350x25    | O    | €    | 4103 0                  | 0.4  | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | , п <sub>,</sub>               | 171171        | 3.50                 |                                                     | 17983                   | 4.17                             |        | 300             | 300   |
| 314       | W310x179 350x25                                       | 350x25    | Ö    | ≥    | 11281                   | =    | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | , 吓,                           | 1741          | 6.48                 |                                                     | L/985                   | 11.45                            |        | 300             | 300   |
| 315       | W310x179 350x25                                       | 350x25    | Ö    | ≥    | 15383                   | 1.5  | <u>1-3</u> | $0.3F_{v}$        | $0.3F_{v}$        | . ፫                            | L/2263        | 08.9                 |                                                     | V1194                   | 12.89                            |        | 300             | 300   |
| 9E<br>171 | 316 W310x179 350x16 G W                               | 350x16    | Ö    | ≩    | 10229                   | Ξ    | 1-3        | $0.3F_{v}$        | $0.3F_{v}$        | , π <b>,</b>                   | 1/3010        | 3.40                 |                                                     | 171862                  | 5.49                             |        | 300             | 300   |
| 317       | W310x179 350x16 G W 13948                             | 350x16    | Ö    | ≱    | 13948                   | 1.5  | 1-3        | $0.3F_{y}$        | $0.3F_{\chi}$     | F                              | L/2189        | 6.37                 |                                                     | 1/1227                  | 11.36                            |        | 300             | 38    |
| a) D      | a) D - Direction of reinforcing plates                | Freinford | cing | Pla  | tes                     |      |            | F - Par           | allel to          | F - Parallel to the flanges    | sa            |                      | G - Para                                            | G - Parallel to the web | web :                            |        |                 |       |
| b) B.     | b) B - Buckling axis                                  | iis       |      |      |                         |      |            | W - W             | eak axi           | W - Weak axis of the I-section | section       |                      | S - Stron                                           | ig axis of              | S - Strong axis of the I-section | tion   |                 |       |
| c) y -    | c) $\lambda$ - Slenderness parameter of the reinforce | parame    | er o | fthe | reinfor                 | rced | ed column  | <b>E</b>          |                   |                                | d) IRS -      | . Initial re         | d) IRS - Initial residual stress before reinforcing | ess befor               | e reinfor                        | sing   |                 |       |

c) λ - Slenderness parameter of the reinforced column
 e) PS - Residual stress pattern, as illustrated in Figure 4-1.

f) MF -Maximum magnitude of the residual stress in the flange.  $F_{\rm y}$  - Yield stress of the unreinforced column

g) MP -Maximum magnitude of the residual stress in the reinforcing plate.

h) ratio - The ratio of the out-of-straightness to the column length, L.

i) W - Out-of-straightness in the weak direction.

j) S - Out-of-straightness in the strong direction.

## Appendix B

**Analysis Results Description** 

## **Analysis Results Description**

All 317 model analyses were performed to verify the behavior of the reinforced steel columns with welded cover plates in the analysis. The preload condition and analysis results of the analysed models are presented in Table B.1.

Column (1) of Table B.1 presents the number of the finite element analysed models. Columns (2) and (3) present the designations of I-sections and cover plates respectively.

Column (4) "D" is the direction of reinforcing plates. In this column, F represents that the cover plates are reinforced on the column along the flanges, as shown in Figure 2.1 (a). G represents that the cover plates are attached to the column at the flange tips of the column and parallel to the web, as shown in Figure 2.1 (b).

Column (5) "B" is the buckling axis of the reinforced column. W represents the same axis as the weak axis of the I-section before reinforcing, and S represents the same axis as the strong axis of the I-section before reinforcing. Column (6) " $\lambda$ " is the slenderness parameter of the reinforced column on the buckling direction. Column (7) "A" is the area of the reinforced cross-section consisting of the rolled section and cover plates.

Columns (8) and (9) present the yield strength of the I-section and the cover plates respectively. Columns (10) and (11) present the pre-loads on the column before reinforcing. Column (10) " $P_0$ " is the magnitude of the pre-load on the column before reinforcing. Column (11) " $P_0/P_{u2}$ " presents the ratio of the pre-load to the expected load carrying capacity of the unreinforced column predicted using SSRC curve 2.

Column (12) "P<sub>fex</sub>/P<sub>ry</sub>" presents the ratio of the load carrying capacity of reinforced column by mathematical model analyses to the yield strength of the reinforced column. Column (13) "P<sub>r1</sub>/P<sub>ry</sub>" presents the ratio of the load carrying capacity of the reinforced column predicted using SSRC curve 1 to the yield strength of the reinforced column. Column (14) "P<sub>r2</sub>/P<sub>ry</sub>" presents the ratio of the load carrying capacity of the reinforced column predicted using SSRC curve 2 to the yield strength of the reinforced column. Column (15) "P<sub>rc1</sub>/P<sub>ry</sub>" presents the ratio of the load carrying capacity of the reinforced

column predicted using CSA curve 1 to the yield strength of the reinforced column. Column (16) " $P_{rc2}/P_{ry}$ " presents the ratio of the load carrying capacity of the reinforced column predicted using CSA curve 2 to the yield strength of the reinforced column.

Table B.1 Analysis Result Description

| FEA      |                                               |               |          |       |     |                    | Yield Strength            | trength | Prel    | Preload        |                      |                                       |                     |                      |                      |
|----------|-----------------------------------------------|---------------|----------|-------|-----|--------------------|---------------------------|---------|---------|----------------|----------------------|---------------------------------------|---------------------|----------------------|----------------------|
| model    | 1 1-section                                   | Plate         | <u>"</u> | æ     | ېر  | Area               | I-section                 | plate   | $P_0^d$ | $P_0/P_{u2}^c$ | $P_{fca}/P_{ry}^{f}$ | $P_{rl}/P_{ry}^{\ \ \beta}$           | $P_{r2}/P_{ry}^{h}$ | $P_{rcl}/P_{ry}^{l}$ | $P_{rc2}/P_{ry}^{j}$ |
| Z<br>O   |                                               |               |          |       |     | (mm <sup>2</sup> ) | (MPa)                     | (MPa)   | (KN)    |                |                      |                                       |                     |                      |                      |
| Ξ        | (2)                                           | (3)           | <u>4</u> | (5)   | 9   | (1)                | (8)                       | (6)     | (10)    | (II)           | (12)                 | (13)                                  | (14)                | (15)                 | (91)                 |
| -        | W200x46                                       | 180x9.52      | ഥ        | ≥     | 0.5 | 9287               | 260                       | 260     | 405     | 0.3            | 0.97                 | 0.95                                  | 0.86                | 0.97                 | 0.88                 |
| 2        | W200x46                                       | 180x9.52      | ഥ        | ≩     | 0.5 | 9287               | 700                       | 260     | 0       | 0.0            | 0.98                 | 0.95                                  | 0.86                | 0.97                 | 0.88                 |
| £        | W200x46                                       | 180x9.52      | Œ        | ≱     | 0:1 | 9287               | 260                       | 260     | 405     | 0.4            | 0.65                 | 0.75                                  | 0.61                | 0.73                 | 09'0                 |
| 4        | W200x47                                       | 180x9.53      | Ľ.       | ≥     | 0:1 | 9287               | 260                       | 260     | 405     | 0.4            | 0.65                 | 0.75                                  | 0.61                | 0.73                 | 0.60                 |
| 5        | W200x46                                       | 180x9.52      | Ľ        | ≥     | 0:1 | 9287               | 260                       | 260     | 405     | 0.4            | 0.65                 | 0.75                                  | 0.61                | 0.73                 | 0.60                 |
| 9        | W200x47                                       | 180x9.53      | Ľ        | ≩     | 0:1 | 9287               | 260                       | 260     | 405     | 0.4            | 0.65                 | 0.75                                  | 0.61                | 0.73                 | 0.60                 |
| 7        | W200x46                                       | 180x9.52      | Ľ        | ≩     | 0.1 | 9287               | 260                       | 260     | 405     | 0.4            | 0.63                 | 0.75                                  | 0.61                | 0.73                 | 09.0                 |
| - 00     | W200x46                                       | 180x9.52      | Œ        | ≥     | 0:1 | 9287               | 260                       | 260     | 405     | 0.4            | 99.0                 | 0.75                                  | 0.61                | 0.73                 | 0.60                 |
| 6        | W200x46                                       | 180x9.52      | Œ        | ≥     | 0.1 | 9287               | 260                       | 260     | 405     | 0.4            | 0.65                 | 0.75                                  | 0.61                | 0.73                 | 0.60                 |
| 2<br>175 | W200x46                                       | 180x9.52      | Œ        | ≩     | 0.1 | 9287               | 260                       | 260     | 405     | 0.4            | 99.0                 | 0.75                                  | 0.61                | 0.73                 | 0.60                 |
| =        | W200x46                                       | 180x9.52      | Ľ,       | ≱     | 0.1 | 9287               | 260                       | 260     | 405     | 0.4            | 0.60                 | 0.75                                  | 0.61                | 0.73                 | 0.60                 |
| 12       | W200x46                                       | 180x9.52      | II.      | ≩     | 0:1 | 9287               | 260                       | 260     | 405     | 0.4            | 0.65                 | 0.75                                  | 0.61                | 0.73                 | 0.60                 |
| 13       | W200x46                                       | 180x9.52      | 12       | S     | 0.1 | 9287               | 260                       | 260     | 405     | 0.5            | 0.63                 | 0.75                                  | 0.61                | 0.73                 | 0.60                 |
| 7        | W200x46                                       | 180x9.52      | ĹŢ.      | S     | 0:1 | 9287               | 260                       | 260     | 405     | 0.5            | 0.63                 | 0.75                                  | 0.61                | 0.73                 | 0.60                 |
| 15       | W200x46                                       | 180x9.52      | Ľ        | S     | 0:1 | 9287               | 260                       | 260     | 405     | 0.5            | 0.63                 | 0.75                                  | 0.61                | 0.73                 | 0.60                 |
| 91       | W200x46                                       | 180x9.52      | ഥ        | S     | 1.0 | 9287               | 260                       | 260     | 405     | 0.5            | 0.63                 | 0.75                                  | 0.61                | 0.73                 | 0.60                 |
| a) D     | a) D - Orientation of reinforcing plates      | f reinforcing | plate    | S     |     | F - Parall         | - Parallel to the flanges | anges   |         |                | G - Paral            | G - Parallel to the web               | web                 |                      |                      |
| b) B -   | b) B - Buckling axis of the reinforced column | of the reinf  | orced    | colum | _   | W - Weal           | - Weak axis of the rolled |         | section |                | S - Strong           | S - Strong axis of the rolled section | he rolled           | section              |                      |
|          | )                                             |               |          |       |     |                    |                           |         |         |                |                      |                                       |                     |                      |                      |

e)  $P_{u2}$  - Load carrying capacity of the I-section (predicted using the SSRC curve 2) W - Weak axis of the rolled section d) P<sub>0</sub> - Pre-load

 $P_{\rm ry}$  - Yield strength of the reinforced column f) P<sub>fea</sub> - Load carrying capacity obtained from the finite element analysis c)  $\lambda$  - Slenderness parameter.

g) Pri - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1) h)  $P_{r2}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2)

i)  $P_{\rm rel}$  - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)

Table B.1 (cont'd)

| FEA      |                                               |             |         |       |     |                    | Yield Strength                      | trength     | Pre              | Preload        |                                     |                                 |                         |                                           |                        |
|----------|-----------------------------------------------|-------------|---------|-------|-----|--------------------|-------------------------------------|-------------|------------------|----------------|-------------------------------------|---------------------------------|-------------------------|-------------------------------------------|------------------------|
| model    | el I-section                                  | Plate       | D.      | Bp    | ~   | Area               | I-section                           | plate       | P <sub>0</sub> d | $P_0/P_{u2}^c$ | P <sub>fee</sub> /P <sub>ry</sub> f | $P_{rl}/\!\!/P_{ry}^{\  \   8}$ | $P_{r2}/P_{ry}^{\ \ h}$ | Prel/Pry                                  | $P_{rc2}/P_{ry}^{\ j}$ |
| Š        |                                               |             |         |       |     | (mm <sup>2</sup> ) | (MPa)                               | (MPa)       | (kN)             |                |                                     |                                 |                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                        |
| Ξ        | (2)                                           | (3)         | €       | (5)   | 9   | (7)                | (8)                                 | (6)         | (10)             | (11)           | (12)                                | (13)                            | (14)                    | (15)                                      | (10)                   |
| 12       | W310x179                                      | 290x25      | Œ.      | ≥     | 0.4 | 37300              | 300                                 | 300         | 3760             | 9.0            | 1.00                                | 0.98                            | 0.92                    | 0.99                                      | 0.94                   |
| 8        | W310x179                                      | 290x25      | Ľ.      | ≱     | 0.4 | 37300              | 300                                 | 300         | 3760             | 9.0            | 0.99                                | 0.98                            | 0.92                    | 0.99                                      | 0.94                   |
| 61       | W310x179                                      | 290x25      | Ľ.      | ≱     | 0.4 | 37300              | 300                                 | 300         | 3760             | 9.0            | 0.97                                | 0.98                            | 0.92                    | 0.99                                      | 0.94                   |
| 70       | W310x179                                      | 290x25      | Œ,      | ≱     | 0.4 | 37300              | 300                                 | 300         | 2507             | 0.4            | 0.98                                | 0.98                            | 0.92                    | 0.99                                      | 0.94                   |
| 21       | W310x179                                      | 290x25      | Ľ       | ≩     | 0.4 | 37300              | 230                                 | 350         | 2926             | 9.0            | 96.0                                | 0.98                            | 0.92                    | 0.99                                      | 0.94                   |
| 22       | W310x179                                      |             | Ľ,      | ≩     | 0.4 | 37300              | 230                                 | 350         | 1950             | 0.4            | 96.0                                | 0.98                            | 0.92                    | 0.99                                      | 0.94                   |
| 23       | W310x179                                      |             | Ľ.      | ≩     | =   | 37300              | 300                                 | 300         | 2152             | 9.0            | 0.6                                 | 99.0                            | 0.54                    | 99.0                                      | 0.54                   |
| 75       | W310x179                                      | 290x25      | Ľ       | ≩     | -:  | 37300              | 300                                 | 300         | 2152             | 9.0            | 0.60                                | 99.0                            | 0.54                    | 99.0                                      | 0.54                   |
| 25       | W310x179                                      | 290x25      | Œ       | ≩     | Ξ   | 37300              | 300                                 | 300         | 2152             | 9.0            | 0.56                                | 89.0                            | 0.54                    | 99.0                                      | 0.54                   |
| २<br>१७६ | W310x179                                      | 290x25      | Œ,      | ≱     | Ξ:  | 37300              | 300                                 | 300         | 2152             | 9.0            | 0.56                                | 99.0                            | 0.54                    | 99.0                                      | 0.54                   |
| 27       | W310x179                                      | 290x25      | Œ,      | ≱     | =   | 37300              | 300                                 | 300         | 1435             | 0.4            | 0.57                                | 99.0                            | 0.54                    | 99.0                                      | 0.54                   |
| 28       | W310x179                                      | 290x25      | Ľ       | ≩     | Ξ   | 37300              | 230                                 | 350         | 9981             | 9.0            | 0.51                                | 99.0                            | 0.54                    | 99.0                                      | 0.54                   |
| 29       | W310x179                                      | 290x25      | Œ,      | ≩     | -   | 37300              | 230                                 | 350         | 1244             | 0.4            | 0.54                                | 89.0                            | 0.54                    | 99.0                                      | 0.54                   |
| 30       | W310x179                                      | 290x25      | Œ       | ≯     | 1.5 | 37300              | 300                                 | 300         | 1401             | 9.0            | 0.42                                | 0.41                            | 0.35                    | 0.42                                      | 0.36                   |
| 31       | W310x179                                      | 290x25      | Œ       | ≯     | 1.5 | 37300              | 300                                 | 300         | 1401             | 9.0            | 0.38                                | 0.41                            | 0.35                    | 0.42                                      | 0.36                   |
| 32       | W310x179                                      | 290x25      | Ľ       | ≱     | 1.5 | 37300              | 300                                 | 300         | 1401             | 9.0            | 0.35                                | 0.41                            | 0.35                    | 0.42                                      | 0.36                   |
| a) D     | a) D - Orientation of reinforcing plates      | reinforcing | g plate | Š     |     | F - Parall         | - Parallel to the flanges           | anges       |                  |                | G - Paral                           | G - Parallel to the web         | web                     |                                           |                        |
| 2        | b) B - Buckling axis of the reinforced column | of the rein | forced  | rolin | Ę   | W - Wea            | W - Weak axis of the rolled section | e rolled se | ection           |                | S - Stron                           | S - Strong axis of the rolled   | the rolled              | 1 section                                 |                        |
| מ (כ     | - Durning and                                 |             | 1       |       | =   | ;<br>;             | : .> !: :                           |             |                  |                | 1                                   |                                 |                         |                                           | į                      |

W - Weak axis of the rolled section d) P<sub>0</sub> - Pre-load b) B - Buckling axis of the reinforced column

e) P<sub>u2</sub> - Load carrying capacity of the I-section (predicted using the SSRC curve 2)

 $P_{\rm ry}$  - Yield strength of the reinforced column c)  $\lambda$  - Slenderness parameter. d)  $P_0$  - Pre-load e)  $P_{u2}$  - Load f)  $P_{rea}$  - Load carrying capacity obtained from the finite element analysis

g) Pri - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1)

h)  $P_{\rm r2}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2)

i)  $P_{\rm rel}$  - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)

Table B.1 (cont'd)

|          |                                              |             |          |       |     |                    |                                   |             | ,                           |                |            |                                       |                         |                      |                        |
|----------|----------------------------------------------|-------------|----------|-------|-----|--------------------|-----------------------------------|-------------|-----------------------------|----------------|------------|---------------------------------------|-------------------------|----------------------|------------------------|
| FEA      |                                              |             |          |       |     |                    | Yield Strength                    | rength      | Pre                         | Preload        |            |                                       |                         |                      |                        |
| model    | I-section                                    | Plate       | <u>"</u> | æ     | ž   | Arca               | I-section                         | plate       | $\mathbf{P}_0^{\mathbf{q}}$ | $P_0/P_{u2}^c$ | Pfca/Pry   | $P_{rl}/P_{ry}^{\ \ B}$               | $P_{r2}/P_{ry}^{\ \ h}$ | $P_{rel}/P_{ry}^{l}$ | $P_{rc2}/P_{ry}^{\ j}$ |
| So.      |                                              |             |          |       |     | (mm <sub>2</sub> ) | (MPa)                             | (MPa)       | (kN)                        |                |            |                                       |                         |                      |                        |
| Ξ        | (2)                                          | (3)         | <b>€</b> | (5)   | 9   | 6                  | <b>(8</b> )                       | (6)         | (10)                        | (11)           | (12)       | (13)                                  | (14)                    | (15)                 | (16)                   |
| 33       | W310x179                                     | 290x25      | ഥ        | ≱     | 1.5 | 37300              |                                   | 300         | 934                         | 0.4            | 0.36       | 0.41                                  | 0.35                    | 0.42                 | 0.36                   |
| 34       | W310x179                                     | 290x25      | <u></u>  | ≱     | 1.5 | 37300              | 230                               | 350         | 1224                        | 9.0            | 0.34       | 0.41                                  | 0.35                    | 0.42                 | 0.36                   |
| 35       | W310x179                                     | 290x25      | Œ,       | ≥     | 1.5 | 37300              | 230                               | 350         | 816                         | 0.4            | 0.35       | 0.41                                  | 0.35                    | 0.42                 | 0.36                   |
| 36       | W310x179                                     | 290x25      | Œ        | S     | 0.4 | 37300              | 300                               | 300         | 3697                        | 9.0            | 0.93       | 0.98                                  | 0.92                    | 0.09                 | 0.94                   |
| 37       | W310x179                                     | 290x25      | Ľ,       | S     | 0.4 | 37300              | 300                               | 300         | 2465                        | 0.4            | 0.93       | 0.98                                  | 0.92                    | 0.09                 | 0.94                   |
| 38       | W310x179                                     | 290x25      | ഥ        | S     | 0.4 | 37300              | 230                               | 350         | 2883                        | 9.0            | 0.94       | 0.98                                  | 0.92                    | 0.09                 | 0.94                   |
| 30       | W310x179                                     | 290x25      | Ľ,       | S     | 0.4 | 37300              | 230                               | 350         | 1922                        | 0.4            | 0.94       | 0.98                                  | 0.92                    | 0.09                 | 0.94                   |
| 9        | W310x179                                     | 290x25      | <u> </u> | S     | Ξ   | 37300              | 300                               | 300         | 1901                        | 9.0            | 89.0       | 99.0                                  | 0.54                    | 99.0                 | 0.54                   |
|          | W310x179                                     | 290x25      | Ľ,       | S     | Ξ   | 37300              | 300                               | 300         | 1901                        | 9.0            | 0.63       | 99.0                                  | 0.54                    | 99.0                 | 0.54                   |
| 5<br>771 | W310x179                                     | 290x25      | Ľ        | S     | =   | 37300              | 300                               | 300         | 1901                        | 9.0            | 0.61       | 99.0                                  | 0.54                    | 99.0                 | 0.54                   |
| 43       | W310x179                                     | 290x25      | Œ        | S     | =   | 37300              | 300                               | 300         | 1901                        | 9.0            | 0.62       | 99.0                                  | 0.54                    | 99.0                 | 0.54                   |
| 4        | W310x179                                     | 290x25      | Ľ        | S     | Ξ:  | 37300              | 300                               | 300         | 1268                        | 0.4            | 0.63       | 99.0                                  | 0.54                    | 99.0                 | 0.54                   |
| 45       | W310x179                                     | 290x25      | <b>I</b> | S     | =   | 37300              | 230                               | 350         | 1651                        | 9.0            | 0.57       | 99.0                                  | 0.54                    | 99.0                 | 0.54                   |
| 46       | W310x179                                     | 290x25      | ᄄ        | S     | Ξ   | 37300              | 230                               | 350         | 1011                        | 0.4            | 0.59       | 99.0                                  | 0.54                    | 99.0                 | 0.54                   |
| 47       | W310x179                                     | 290x25      | <u> </u> | S     | 1.5 | 37300              | 300                               | 300         | 1227                        | 9.0            | 0.40       | 0.41                                  | 0.35                    | 0.42                 | 0.36                   |
| 48       | W310x179                                     | 290x25      | F        | S     | 1.5 | 37300              | 300                               | 300         | 818                         | 0.4            | 0.41       | 0.41                                  | 0.35                    | 0.42                 | 0.36                   |
| a) D -   | a) D - Orientation of reinforcing plates     | reinforcing | g plate: | يم    |     | F - Parall         | F - Parallel to the flanges       | ınges       |                             |                | G - Paral  | G - Parallel to the web               | web                     |                      |                        |
| b) B -   | b) B - Buckling axis of the reinforced colun | of the rein | forced   | colum | 9   | W - Weal           | - Weak axis of the rolled section | e rolled se | ction                       |                | S - Strony | S - Strong axis of the rolled section | he rolled               | section              |                        |

b) B - Buckling axis of the reinforced column W - Weak axis of the Ic)  $\lambda$  - Slenderness parameter. d)  $P_0$  - Pre-load e)  $P_{u2}$  - Load

e) P<sub>u2</sub> - Load carrying capacity of the I-section (predicted using the SSRC curve 2)

 $P_{\rm ry}$  - Yield strength of the reinforced column g) Pri - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1) f) P<sub>fea</sub> - Load carrying capacity obtained from the finite element analysis

h)  $P_{12}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2)

i) Prel - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)

j)  $P_{rc2}$  - Load carrying capacity of the reinforced column (predicted using the CSA curve 2)

Table B.1 (cont'd)

| FEA       |                                               |             |         |       |          |                    | Yield Strength                      | rength     | Pre    | Preload        |           |                                       |                     |                                |                          |
|-----------|-----------------------------------------------|-------------|---------|-------|----------|--------------------|-------------------------------------|------------|--------|----------------|-----------|---------------------------------------|---------------------|--------------------------------|--------------------------|
| model     | I-section                                     | Plate       | Ω       | B     | ۲ς       | Area               | I-section                           | plate      | Pod    | $P_0/P_{u2}^c$ | Pfca/Pry  | $P_{ri}/P_{ry}^{8}$                   | $P_{r2}/P_{ry}^{h}$ | $P_{\rm rcl}/P_{\rm ry}^{\ i}$ | $P_{rc2}/P_{ry}^{\ \ j}$ |
| Š.        |                                               |             |         |       |          | (mm <sup>2</sup> ) | (MPa)                               | (MPa)      | (kN)   |                |           |                                       |                     |                                |                          |
| Ξ         | (2)                                           | (3)         | ₹       | 3     | 9        | 6                  | (8)                                 | 6          | (10)   | (11)           | (12)      | (13)                                  | (14)                | (15)                           | (91)                     |
| 69        | W310x179                                      | 290x25      | 뜨       | S     | 1.5      | 37300              | 230                                 | 350        | 1075   | 9.0            | 0.37      | 0.41                                  | 0.35                | 0.42                           | 0.36                     |
| 20        | W310x179                                      | 290x25      | Ţ,      | S     | 1.5      | 37300              | 230                                 | 350        | 717    | 0.4            | 0.39      | 0.41                                  | 0.35                | 0.42                           | 0.36                     |
| 51        | W310x179                                      | 350x25      | Ö       | ≱     | 0.4      | 40300              | 300                                 | 300        | 3353   | 9.0            | 0.95      | 0.98                                  | 0.92                | 0.99                           | 0.94                     |
| 52        | W310x179                                      | 350x25      | Ö       | ≱     | 0.4      | 40300              | 300                                 | 300        | 2235   | 0.4            | 96.0      | 0.98                                  | 0.92                | 0.99                           | 0.94                     |
| 53        | W310x179                                      | 350x25      | ŋ       | ≱     | 0.4      | 40300              | 230                                 | 350        | 2662   | 9.0            | 96'0      | 0.98                                  | 0.92                | 0.99                           | 0.94                     |
| 54        | W310x179                                      | 350x25      | Ö       | ≱     | 0.4      | 40300              | 230                                 | 350        | 1775   | 0.4            | 96.0      | 0.98                                  | 0.92                | 0.09                           | 0.94                     |
| 55        | W310x179                                      | 350x25      | Ö       | ≩     | 1.1      | 40300              | 300                                 | 300        | 11511  | 9.0            | 0.71      | 99.0                                  | 0.54                | 99.0                           | 0.54                     |
| 26        | W310x179                                      | 350x25      | Ö       | ≱     | 1:1      | 40300              | 300                                 | 300        | 1151   | 9.0            | 0.64      | 99.0                                  | 0.54                | 99.0                           | 0.54                     |
|           | W310x179                                      | 350x25      | ŋ       | ≩     | Ξ:       | 40300              | 300                                 | 300        | 1151   | 9.0            | 0.59      | 0.68                                  | 0.54                | 99.0                           | 0.54                     |
| چ<br>178  | W310x179                                      | 350x25      | Ö       | ≱     | Ξ        | 40300              | 300                                 | 300        | 1151   | 9.0            | 0.60      | 0.68                                  | 0.54                | 99.0                           | 0.54                     |
|           | W310x179                                      | 350x25      | ŋ       | ≱     | Ξ        | 40300              | 300                                 | 300        | 992    | 0.4            | 0.61      | 0.68                                  | 0.54                | 99.0                           | 0.54                     |
| 3         | W310x179                                      | 350x25      | ŋ       | ≩     | Ξ        | 40300              | 230                                 | 350        | 1026   | 9.0            | 0.61      | 99.0                                  | 0.54                | 99.0                           | 0.54                     |
| 19        | W310x179                                      | 350x25      | ŋ       | ≱     | <u> </u> | 40300              | 230                                 | 350        | 684    | 0.4            | 0.63      | 0.68                                  | 0.54                | 99.0                           | 0.54                     |
| 62        | W310x179                                      | 350x25      | ŋ       | ≩     | 1.5      | 40300              | 300                                 | 300        | 899    | 9.0            | 0.38      | 0.41                                  | 0.35                | 0.42                           | 0.36                     |
| 63        | W310x179                                      | 350x25      | ŋ       | ≩     | 1.5      | 40300              | 300                                 | 300        | 445    | 0.4            | 0.40      | 0.41                                  | 0.35                | 0.42                           | 0.36                     |
| 3         | W310x179                                      | 350x25      | Ö       | ≩     | 1.5      | 40300              | 230                                 | 350        | 622    | 9.0            | 0.39      | 0.41                                  | 0.35                | 0.42                           | 0.36                     |
| a) D - (a | a) D - Orientation of reinforcing plates      | reinforcing | g plate | Š     |          | F - Paral          | F - Parallel to the flanges         | ınges      |        |                | G - Paral | G - Parallel to the web               | web                 |                                |                          |
| F. B. E.  | b) B - Buckling axis of the reinforced column | of the rein | forced  | Colum | 5        | W - Wea            | W - Weak axis of the rolled section | e rolled s | ection |                | S - Stron | S - Strong axis of the rolled section | he rolled           | section                        |                          |

c)  $\lambda$  - Slenderness parameter. d)  $P_0$  - Pre-load e)  $P_{u2}$  - Load for the finite element analysis d) P<sub>0</sub> - Pre-load D) B - Buckling axis of the reinforced column

e)  $P_{u2}$  - Load carrying capacity of the I-section (predicted using the SSRC curve 2)  $\mathbf{P}_{\mathbf{ry}}$  - Yield strength of the reinforced column

g) P<sub>r1</sub> - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1)

h)  $P_{\it t2}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2)

i)  $P_{rcl}$  - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)  $P_{rc2}$  - Load carrying capacity of the reinforced column (predicted using the CSA curve 2)

Table B.1 (cont'd)

| FEA        |                                               |             |          |       |     |                    | Yield Strength              | rength       | Pre     | Preload        |            |                                                         |                         |                      |                                 |
|------------|-----------------------------------------------|-------------|----------|-------|-----|--------------------|-----------------------------|--------------|---------|----------------|------------|---------------------------------------------------------|-------------------------|----------------------|---------------------------------|
| model      | 1-section                                     | Plate       | <b>7</b> | Bp    | ئر  | Area               | I-section                   | plate        | $P_0^d$ | $P_0/P_{u2}^c$ | Pfca/Pry   | $P_{rl}/P_{ry}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | $P_{r2}/P_{ry}^{\ \ h}$ | $P_{rel}/P_{ry}^{i}$ | $P_{1c2}/P_{1y}^{\ \ j}$        |
| Š.         |                                               |             |          |       |     | (mm <sup>2</sup> ) | (MPa)                       | (MPa)        | (kN)    |                |            |                                                         |                         |                      | 0<br>0<br>0<br>0<br>0<br>0<br>0 |
| Ξ          | (2)                                           | (3)         | €        | (5)   | 9   | (2)                | <b>æ</b>                    | 6            | (10)    | (11)           | (12)       | (13)                                                    | (14)                    | (15)                 | (16)                            |
| \$9        | W310x179                                      | 350x25      | g        | ≥     | 1.5 | 40300              | 230                         | 350          | 414     | 0.4            | 0.40       | 0.41                                                    | 0.35                    | 0.45                 | 0.36                            |
| 9          | W310x179                                      | 350x25      | Ö        | S     | 0.4 | 40300              | 300                         | 300          | 3840    | 9.0            | 0.93       | 0.98                                                    | 0.92                    | 0.99                 | 0.94                            |
| <i>L</i> 9 | W310x179                                      | 350x25      | Ö        | S     | 0.4 | 40300              | 300                         | 300          | 2560    | 0.4            | 0.94       | 0.98                                                    | 0.92                    | 0.09                 | 0.94                            |
| 89         | W310x179                                      | 350x25      | Ö        | S     | 0.4 | 40300              | 230                         | 350          | 2982    | 9.0            | 0.91       | 0.98                                                    | 0.92                    | 0.00                 | 0.94                            |
| 69         | W310x179                                      | 350x25      | Ö        | S     | 0.4 | 40300              | 230                         | 350          | 1988    | 0.4            | 0.92       | 0.98                                                    | 0.92                    | 0.99                 | 0.94                            |
| 70         | W310x179                                      | 350x25      | Ö        | S     | Ξ   | 40300              | 300                         | 300          | 2562    | 9.0            | 09.0       | 89.0                                                    | 0.54                    | 99.0                 | 0.54                            |
| 71         | W310x179                                      | 350x25      | Ö        | S     | =   | 40300              | 300                         | 300          | 2562    | 9.0            | 0.57       | 89.0                                                    | 0.54                    | 99.0                 | 0.54                            |
| 72         | W310x179                                      | 350x25      | Ö        | S     | =   | 40300              | 300                         | 300          | 2562    | 9.0            | 0.54       | 89.0                                                    | 0.54                    | 99.0                 | 0.54                            |
| 73         | W310x179                                      | 350x25      | Ö        | S     | =   | 40300              | 300                         | 300          | 2562    | 9.0            | 0.54       | 89.0                                                    | 0.54                    | 99:0                 | 0.54                            |
| 동<br>179   | W310x179                                      | 350x25      | Ö        | S     | =   | 40300              | 300                         | 300          | 1708    | 0.4            | 0.57       | 89.0                                                    | 0.54                    | 99.0                 | 0.54                            |
| 75         | W310x179                                      | 350x25      | Ö        | သ     | -:  | 40300              | 230                         | 350          | 2149    | 9.0            | 0.48       | 89.0                                                    | 0.54                    | 99.0                 | 0.54                            |
| 9/         | W310x179                                      | 350x25      | Ö        | S     | Ξ   | 40300              | 230                         | 350          | 1433    | 0.4            | 0.51       | 89.0                                                    | 0.54                    | 99.0                 | 0.54                            |
| 11         | W310x179                                      | 350x25      | Ö        | S     | 1.5 | 40300              | 300                         | 300          | 1699    | 9.0            | 0.37       | 0.41                                                    | 0.35                    | 0.42                 | 0.36                            |
| 78         | W310x179                                      | 350x25      | Ö        | S     | 1.5 | 40300              | 300                         | 300          | 1132    | 0.4            | 0.38       | 0.41                                                    | 0.35                    | 0.45                 | 0.36                            |
| 79         | W310x179                                      | 350x25      | Ö        | S     | 1.5 | 40300              | 230                         | 350          | 1498    | 9.0            | 0.35       | 0.41                                                    | 0.35                    | 0.42                 | 0.36                            |
| 80         | W310x179                                      | 350x25      | Ð        | S     | 1.5 | 40300              | 230                         | 350          | 666     | 0.4            | 0.36       | 0.41                                                    | 0.35                    | 0.42                 | 0.36                            |
| a) D - (   | a) D - Orientation of reinforcing plates      | reinforcing | g plate  | S     |     | F - Parall         | F - Parallel to the flanges | anges        |         |                | G - Parall | G - Parallel to the web                                 | web                     |                      |                                 |
| h) R - F   | b) B - Buckling axis of the reinforced column | of the rein | forced   | colum | 9   | W - Wea            | - Weak axis of th           | the rolled s | section |                | S - Strong | - Strong axis of the rolled                             | he rolled               | section              |                                 |
|            |                                               |             |          |       |     | :                  |                             |              | •       | -              |            | :                                                       | 44 - 11 - 1             |                      | 6                               |

c)  $\lambda$  - Slenderness parameter. d)  $P_0$  - Pre-load e)  $P_{u2}$  - Load for the finite element analysis

e)  $P_{u2}$  - Load carrying capacity of the I-section (predicted using the SSRC curve 2)  $P_{\rm ry}$  - Yield strength of the reinforced column d) P<sub>0</sub> - Pre-load

g) Pri - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1)

h)  $P_{\rm r2}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2)

i)  $P_{\rm rel}$  - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)

Table B.1 (cont'd)

|              |                                              |               |          |       |         |                    |                                   |             | ,       |                |           |                                       |                     |                      |                        |
|--------------|----------------------------------------------|---------------|----------|-------|---------|--------------------|-----------------------------------|-------------|---------|----------------|-----------|---------------------------------------|---------------------|----------------------|------------------------|
| FEA          | Ą                                            |               |          |       |         |                    | Yield Strength                    | rength      | Preload | oad            |           |                                       |                     |                      |                        |
| mo           | model I-section                              | Plate         | <u>م</u> | B     | ېر      | Area               | I-section                         | plate       | $P_0^d$ | $P_0/P_{u2}^c$ | Pfca/Pry  | $P_{rl}/P_{ry}^{\ \ B}$               | $P_{r2}/P_{ry}^{b}$ | $P_{rcl}/P_{ry}^{l}$ | $P_{rc2}/P_{ry}^{\ j}$ |
| Š            | Ġ                                            |               |          |       |         | (mm <sup>2</sup> ) | (MPa)                             | (MPa)       | (KN)    |                |           | • • • • • • • • • • • • • • • • • • • |                     |                      | •                      |
| ٦            | (2)                                          | (3)           | €        | (5)   | 9       | (7)                | (8)                               | (6)         | (10)    | (11)           | (12)      | (13)                                  | (14)                | (15)                 | (91)                   |
| <b>∞</b>     | 1 W310x179                                   | 350x25        | 9        | S     | =       | 40300              | 300                               | 300         | 2562    | 9.0            | 0.54      | 89.0                                  | 0.54                | 99.0                 | 0.54                   |
| òò           | 2 W310x179                                   | 350x25        | Ö        | S     | Ξ:      | 40300              | 300                               | 300         | 2562    | 9.0            | 0.54      | 99.0                                  | 0.54                | 99.0                 | 0.54                   |
| œ            | 3 W310x179                                   | 350x25        | ŋ        | S     | Ξ:      | 40300              | 300                               | 300         | 2562    | 9.0            | 0.54      | 99.0                                  | 0.54                | 99.0                 | 0.54                   |
| ò            | 4 W310x179                                   | 290x16        | <u> </u> | ≱     | 0.4     | 32080              | 300                               | 300         | 3764    | 9.0            | 0.98      | 0.98                                  | 0.92                | 0.99                 | 0.94                   |
| œ            | S W310x179                                   | 290x16        | Ľ        | ≱     | 0.4     | 32080              | 300                               | 300         | 2509    | 0.4            | 0.98      | 0.98                                  | 0.92                | 0.99                 | 0.94                   |
| 98           | 6 W310x179                                   | 290x16        | Œ,       | ≩     | 0.4     | 32080              | 230                               | 350         | 2918    | 9.0            | 0.95      | 0.98                                  | 0.92                | 0.99                 | 0.94                   |
| òò           | 7 W310x179                                   | 290x16        | Ľ        | ≱     | 0.4     | 32080              | 230                               | 350         | 1945    | 9.4            | 96.0      | 0.98                                  | 0.92                | 0.99                 | 0.94                   |
| - 80<br>- 80 |                                              |               | Œ,       | ≱     | Ξ       | 32080              | 300                               | 300         | 2168    | 9.0            | 0.64      | 89.0                                  | 0.54                | 99.0                 | 0.54                   |
|              | _                                            |               | Ľ,       | ≱     | Ξ       | 32080              | 300                               | 300         | 2168    | 9.0            | 09.0      | 99.0                                  | 0.54                | 99.0                 | 0.54                   |
| 180<br>S     | _                                            |               | Œ,       | ≱     | 1:1     | 32080              | 300                               | 300         | 2168    | 9.0            | 0.56      | 99.0                                  | 0.54                | 99.0                 | 0.54                   |
| )<br>ತ       | I W310x179                                   |               | Œ        | ≯     | <b></b> | 32080              | 300                               | 300         | 2168    | 9.0            | 0.57      | 89.0                                  | 0.54                | 99.0                 | 0.54                   |
| 6            | 2 W310x179                                   | -             | ĹĽ,      | ≯     | Ξ       | 32080              | 300                               | 300         | 1445    | 0.4            | 0.58      | 89.0                                  | 0.54                | 99.0                 | 0.54                   |
| 6            | 3 W310x179                                   | 290x16        | Œ        | ≯     | Ξ       | 32080              | 230                               | 350         | 1825    | 9.0            | 0.53      | 0.68                                  | 0.54                | 99.0                 | 0.54                   |
| 8            | 4 W310x179                                   | 290x16        | Ľ        | ≱     | 1.1     | 32080              | 230                               | 350         | 1217    | 0.4            | 0.54      | 89.0                                  | 0.54                | 99.0                 | 0.54                   |
| 5,           | 5 W310x179                                   | 290x16        | Œ        | ≱     | 1.5     | 32080              | 300                               | 300         | 1412    | 9.0            | 0.36      | 0.41                                  | 0.35                | 0.42                 | 0.36                   |
| 96           | 6 W310x179                                   | 290x16        | Ľ.       | *     | 1.5     | 32080              | 300                               | 300         | 1412    | 9.0            | 0.36      | 0.41                                  | 0.35                | 0.42                 | 0.36                   |
| a) D         | a) D - Orientation of reinforcing plates     | f reinforcing | g plate  | ş     |         | F - Paral          | F - Parallel to the flanges       | ınges       |         |                | G - Paral | G - Parallel to the web               | web                 |                      |                        |
| 4            | b) B - Buckling axis of the reinforced colum | of the rein   | forced   | Colum | 5       | W - Wea            | - Weak axis of the rolled section | e rolled se | ction   |                | S - Stron | - Strong axis of the rolled           |                     | section              |                        |
|              | TOWNING AVIS                                 |               |          |       |         | ;<br>:             |                                   |             |         |                |           | ,                                     |                     | Jass                 | (6,000                 |

e)  $P_{u2}$  - Load carrying capacity of the I-section (predicted using the SSRC curve 2)  $P_{\rm ry}$  - Yield strength of the reinforced column f) P<sub>fea</sub> - Load carrying capacity obtained from the finite element analysis d) P<sub>0</sub> - Pre-load c) λ - Slenderness parameter.

g) P<sub>11</sub> - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1) h)  $P_{\it t2}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2)

i)  $P_{\rm rel}$  - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)

Table B.1 (cont'd)

| model   section   Plate   D'   B'   $\lambda$   Area   section   plate   Podel   Pyden   Pyden | V CIE    |                |             |          |       |     |                    | Viold C      | trongth  | Drs            | Peop           |           |             |           |         |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-------------|----------|-------|-----|--------------------|--------------|----------|----------------|----------------|-----------|-------------|-----------|---------|------|
| model         1-section         Plate         D°         B°         A°         Po_Pa_2         Po_Pa_2         Po_Pa_2         Pi_Pa_3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z Z      |                |             | :        |       | ,   |                    |              | u Cuigui | <u>: </u>      |                |           |             |           |         |      |
| No. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (15) (19) (11) (12) (13) (14) (15) (15) (19) (11) (12) (13) (14) (15) (15) (19) (11) (12) (13) (14) (15) (15) (19) (19) (11) (12) (13) (14) (15) (15) (19) (19) (19) (19) (11) (12) (13) (14) (15) (15) (14) (15) (15) (15) (15) (15) (15) (15) (15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | model    |                | Plate       | <u>"</u> | æ     | ×   | Area               | I-section    | plate    | $\mathbf{P}_0$ | $P_0/P_{u2}^c$ |           |             |           |         |      |
| (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (15) (19) (19) (19) (19) (19) (19) (19) (19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N<br>O   |                |             |          |       |     | (mm <sup>2</sup> ) | (MPa)        | (MPa)    | (k<br>R        |                |           |             |           |         |      |
| 97         W310k179         290k16         F         W         1.5         32080         300         941         0.4         0.37         0.41         0.35         0.42           98         W310k179         290k16         F         W         1.5         32080         230         350         1196         0.6         0.34         0.41         0.35         0.42           99         W310k179         290k16         F         W         1.5         32080         230         350         797         0.4         0.35         0.41         0.35         0.42           100         W310k179         290k16         F         S         0.4         32080         300         3724         0.6         0.94         0.98         0.92         0.99           101         W310k179         290k16         F         S         0.4         32080         300         300         2482         0.4         0.98         0.92         0.99           102         W310k179         290k16         F         S         0.4         32080         300         300         2482         0.4         0.98         0.92         0.99         0.99         0.99         0.99         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ξ        | (2)            | (3)         | <u>4</u> | 3     | 9   | 6                  | 8            | 6        | (10)           | (11)           | (12)      | (13)        | (14)      | (15)    | (16) |
| 98         W310x179         290x16         F         W         1.5         32080         230         350         1196         0.6         0.34         0.41         0.35         0.42           99         W310x179         290x16         F         W         1.5         32080         230         350         797         0.4         0.35         0.41         0.35         0.42           100         W310x179         290x16         F         S         0.4         32080         300         3724         0.6         0.94         0.98         0.92         0.99           101         W310x179         290x16         F         S         0.4         32080         300         2482         0.4         0.98         0.92         0.99           102         W310x179         290x16         F         S         0.4         32080         300         1999         0.6         0.94         0.98         0.92         0.99           103         W310x179         290x16         F         S         1.1         32080         300         1999         0.6         0.94         0.98         0.92         0.99           104         W310x179         290x16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 97       | W310x179       | 290x16      | ഥ        | ≥     | 1.5 | 32080              | 300          | 300      | 941            | 0.4            | 0.37      | 0.41        | 0.35      | 0.42    | 0.36 |
| 99         W310x179         290x16         F         W         1.5         32080         230         350         797         0.4         0.35         0.41         0.35         0.42           100         W310x179         290x16         F         S         0.4         32080         300         300         2482         0.4         0.94         0.98         0.92         0.99           101         W310x179         290x16         F         S         0.4         32080         300         300         2482         0.4         0.94         0.99         0.09         0.99         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         0.99         0.09         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 86       | W310x179       | 290x16      | ĬŢ,      | ≩     | 1.5 | 32080              | 230          | 350      | 1196           | 9.0            | 0.34      | 0.41        | 0.35      | 0.42    | 0.36 |
| 100         W310x179         290x16         F         S         0.4         32080         300         3724         0.6         0.94         0.98         0.92         0.99           101         W310x179         290x16         F         S         0.4         32080         300         300         2482         0.4         0.94         0.98         0.92         0.99           102         W310x179         290x16         F         S         0.4         32080         230         350         1927         0.4         0.94         0.98         0.92         0.99           103         W310x179         290x16         F         S         1.1         32080         300         300         1999         0.6         0.69         0.88         0.92         0.99           104         W310x179         290x16         F         S         1.1         32080         300         300         1999         0.6         0.69         0.68         0.54         0.66           105         W310x179         290x16         F         S         1.1         32080         300         300         1999         0.6         0.69         0.68         0.54         0.66     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8        | W310x179       | 290x16      | Œ        | ≱     | 1.5 | 32080              | 230          | 350      | 797            | 0.4            | 0.35      | 0.41        | 0.35      | 0.42    | 0.36 |
| 101 W310x179 290x16 F S 0.4 32080 300 360 2482 0.4 0.94 0.98 0.92 0.99 102 W310x179 290x16 F S 0.4 32080 230 350 2890 0.6 0.93 0.98 0.92 0.99 103 W310x179 290x16 F S 0.4 32080 230 360 1999 0.6 0.69 0.68 0.54 0.66 109 104 W310x179 290x16 F S 1.1 32080 300 300 1999 0.6 0.64 0.68 0.54 0.66 105 W310x179 290x16 F S 1.1 32080 300 300 1999 0.6 0.61 0.68 0.54 0.66 107 W310x179 290x16 F S 1.1 32080 300 300 1999 0.6 0.61 0.68 0.54 0.66 107 W310x179 290x16 F S 1.1 32080 300 300 1999 0.6 0.61 0.68 0.54 0.66 109 W310x179 290x16 F S 1.1 32080 300 300 1333 0.4 0.63 0.68 0.54 0.66 110 W310x179 290x16 F S 1.1 32080 300 300 1295 0.6 0.57 0.68 0.54 0.66 110 W310x179 290x16 F S 1.1 32080 300 300 1295 0.6 0.57 0.68 0.54 0.66 111 W310x179 290x16 F S 1.5 32080 300 300 1295 0.6 0.39 0.41 0.35 0.42 0.42 111 W310x179 290x16 F S 1.5 32080 300 300 1295 0.6 0.39 0.41 0.35 0.42 0.42 0.44 0.44 0.44 0.44 0.44 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8        | W310x179       | 290x16      | Ľ        | S     | 0.4 | 32080              | 300          | 300      | 3724           | 9.0            | 0.94      | 0.98        | 0.92      | 0.99    | 0.94 |
| 102         W310x179         290x16         F         S         0.4         32080         230         350         2890         0.6         0.93         0.98         0.92         0.99           103         W310x179         290x16         F         S         0.4         32080         300         390         169         0.6         0.69         0.68         0.54         0.69           104         W310x179         290x16         F         S         1.1         32080         300         1999         0.6         0.69         0.68         0.54         0.66           105         W310x179         290x16         F         S         1.1         32080         300         1999         0.6         0.61         0.68         0.54         0.66           107         W310x179         290x16         F         S         1.1         32080         300         1999         0.6         0.63         0.68         0.54         0.66           108         W310x179         290x16         F         S         1.1         32080         300         300         123         0.65         0.63         0.68         0.54         0.66           110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101      | W310x179       | 290x16      | Ľ        | S     | 0.4 | 32080              | 300          | 300      | 2482           | 0.4            | 0.94      | 0.98        | 0.92      | 0.99    | 0.94 |
| 103         W310x179         290x16         F         S         0.4         32080         350         1927         0.4         0.94         0.98         0.92         0.99           104         W310x179         290x16         F         S         1.1         32080         300         300         1999         0.6         0.69         0.68         0.54         0.66           105         W310x179         290x16         F         S         1.1         32080         300         300         1999         0.6         0.64         0.68         0.54         0.66           107         W310x179         290x16         F         S         1.1         32080         300         300         1999         0.6         0.61         0.68         0.54         0.66           108         W310x179         290x16         F         S         1.1         32080         300         300         1333         0.4         0.63         0.68         0.54         0.66           109         W310x179         290x16         F         S         1.1         32080         300         300         1295         0.6         0.57         0.68         0.54         0.66     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102      | W310x179       | 290x16      | ï        | S     | 0.4 | 32080              | 230          | 350      | 2890           | 9.0            | 0.93      | 0.98        | 0.92      | 0.99    | 0.94 |
| 104         W310x179         290x16         F         S         1.1         32080         300         300         1999         0.6         0.69         0.68         0.54         0.66           105         W310x179         290x16         F         S         1.1         32080         300         300         1999         0.6         0.64         0.68         0.54         0.66           106         W310x179         290x16         F         S         1.1         32080         300         1999         0.6         0.61         0.68         0.54         0.66           107         W310x179         290x16         F         S         1.1         32080         300         1685         0.6         0.57         0.68         0.54         0.66           110         W310x179         290x16         F         S         1.1         32080         300         1685         0.6         0.57         0.68         0.54         0.66           110         W310x179         290x16         F         S         1.1         32080         300         300         1295         0.6         0.57         0.68         0.54         0.66           111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103      | W310x179       | 290x16      | Ľ        | S     | 0.4 | 32080              | 230          | 350      | 1927           | 0.4            | 0.94      | 0.98        | 0.92      | 0.99    | 0.94 |
| 105         W310x179         290x16         F         S         1.1         32080         300         300         1999         0.6         0.64         0.68         0.54         0.66           106         W310x179         290x16         F         S         1.1         32080         300         300         1999         0.6         0.61         0.68         0.54         0.66           107         W310x179         290x16         F         S         1.1         32080         300         300         1939         0.6         0.62         0.68         0.54         0.66           109         W310x179         290x16         F         S         1.1         32080         330         350         1685         0.6         0.57         0.68         0.54         0.66           110         W310x179         290x16         F         S         1.1         32080         330         300         1295         0.6         0.57         0.68         0.54         0.66           111         W310x179         290x16         F         S         1.5         32080         300         300         1295         0.6         0.51         0.68         0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3        | W310x179       | 290x16      | Œ        | S     | ==  | 32080              | 300          | 300      | 1999           | 9.0            | 0.69      | 89.0        | 0.54      | 99.0    | 0.54 |
| 106         W310x179         290x16         F         S         1.1         32080         300         300         1999         0.6         0.61         0.68         0.54         0.66           107         W310x179         290x16         F         S         1.1         32080         300         300         1333         0.4         0.63         0.68         0.54         0.66           108         W310x179         290x16         F         S         1.1         32080         230         350         1685         0.6         0.57         0.68         0.54         0.66           110         W310x179         290x16         F         S         1.1         32080         330         350         1123         0.4         0.59         0.68         0.54         0.66           111         W310x179         290x16         F         S         1.5         32080         300         300         1295         0.6         0.39         0.41         0.35         0.42           112         W310x179         290x16         F         S         1.5         32080         300         300         863         0.4         0.40         0.41         0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | W310x179       | 290x16      | Ľ        | S     |     | 32080              | 300          | 300      | 6661           | 9.0            | 0.64      | 99.0        | 0.54      | 99.0    | 0.54 |
| 107         W310x179         290x16         F         S         1.1         32080         300         300         1333         0.6         0.62         0.68         0.54         0.66           108         W310x179         290x16         F         S         1.1         32080         230         350         1685         0.6         0.57         0.68         0.54         0.66           110         W310x179         290x16         F         S         1.1         32080         230         350         1123         0.4         0.59         0.68         0.54         0.66           111         W310x179         290x16         F         S         1.5         32080         300         300         1295         0.6         0.39         0.41         0.35         0.42           112         W310x179         290x16         F         S         1.5         32080         300         300         863         0.4         0.40         0.41         0.35         0.42           a) D - Orientation of reinforcing plates         F - Parallel to the flanges         F - Parallel section         W- Weak axis of the rolled section         S - Strong axis of the rolled section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | W310x179       | 290x16      | Ľ        | S     | =   | 32080              | 300          | 300      | 6661           | 9.0            | 0.61      | 0.68        | 0.54      | 99.0    | 0.54 |
| 1.1       32080       300       300       1333       0.4       0.63       0.68       0.54       0.66         1.1       32080       230       350       1685       0.6       0.57       0.68       0.54       0.66         1.1       32080       230       350       1123       0.4       0.59       0.68       0.54       0.66         1.5       32080       300       300       1295       0.6       0.39       0.41       0.35       0.42         1.5       32080       300       300       863       0.4       0.40       0.41       0.35       0.42         A - Parallel to the flanges       G - Parallel to the web                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | W310x179       | 290x16      | Ľ        | S     | 1:1 | 32080              | 300          | 300      | 6661           | 9.0            | 0.62      | 99.0        | 0.54      | 99.0    | 0.54 |
| 1.1       32080       230       350       1685       0.6       0.57       0.68       0.54       0.66         1.1       32080       230       350       1123       0.4       0.59       0.68       0.54       0.66         1.5       32080       300       300       1295       0.6       0.39       0.41       0.35       0.42         1.5       32080       300       300       863       0.4       0.40       0.41       0.35       0.42         F - Parallel to the flanges         G - Parallel to the web         S - Strong axis of the rolled section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 801      | W310x179       | 290x16      | ſZ,      | S     | Ξ   | 32080              | 300          | 300      | 1333           | 0.4            | 0.63      | 89.0        | 0.54      | 99.0    | 0.54 |
| 1.1       32080       230       350       1123       0.4       0.59       0.68       0.54       0.66         1.5       32080       300       300       1295       0.6       0.39       0.41       0.35       0.42         1.5       32080       300       863       0.4       0.40       0.41       0.35       0.42         F - Parallel to the flanges       G - Parallel to the web         W - Weak axis of the rolled section       S - Strong axis of the rolled section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89       | W310x179       | 290x16      | Œ        | S     | Ξ   | 32080              | 230          | 350      | 1685           | 9.0            | 0.57      | 89.0        | 0.54      | 99.0    | 0.54 |
| 1.5       32080       300       300       1295       0.6       0.39       0.41       0.35       0.42         1.5       32080       300       863       0.4       0.40       0.41       0.35       0.42         F - Parallel to the flanges         G - Parallel to the web         S - Strong axis of the rolled section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110      | W310x179       | 290x16      | Œ        | S     | Ξ   | 32080              | 230          | 350      | 1123           | 0.4            | 0.59      | 99.0        | 0.54      | 99.0    | 0.54 |
| F - Parallel to the flanges  W - Weak axis of the rolled section  S - Strong axis of the rolled section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111      | W310x179       | 290x16      | Ľ,       | S     | 1.5 | 32080              | 300          | 300      | 1295           | 9.0            | 0.39      | 0.41        | 0.35      | 0.42    | 0.36 |
| F - Parallel to the flanges  W - Weak axis of the rolled section  S - Strong axis of the rolled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112      | W310x179       | 290x16      | Ľ        | S     | 1.5 | 32080              | 300          | 300      | 863            | 0.4            | 0.40      | 0.41        | 0.35      | 0.42    | 0.36 |
| W. Wenk axis of the rolled section S - Strong axis of the rolled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a) D - C | Orientation of | reinforcing | g plate  | s     |     | F - Parall         | el to the fl | anges    | İ              |                | G - Paral | lel to the  | web       |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F) D (F  | Queting oxie   | of the rain | forced   | miles | Ę   |                    | kaxis of th  |          | ection         |                | S - Stron | g axis of t | he rolled | section |      |

e) P<sub>u2</sub> - Load carrying capacity of the I-section (predicted using the SSRC curve 2) W - Weak axis of the rolled section d) P<sub>0</sub> - Pre-load

 $P_{\rm ry}$  - Yield strength of the reinforced column c)  $\lambda$  - Slenderness parameter. d)  $P_0$  - Pre-load e)  $P_{u2}$  - Load f)  $P_{fea}$  - Load carrying capacity obtained from the finite element analysis

g) P<sub>r1</sub> - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1)

h)  $P_{\rm r2}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2) i)  $P_{\rm rel}$  - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)

Table B.1 (cont'd)

|                | $P_{rc2}/P_{ry}^{j}$              | •                  | (16)     | 0.36     | 0.36     | 0.94     | 0.94     | 0.94     | 0.94     | 0.54     | 0.54     | 0.54     | 0.54      | 0.54     | 0.54     | 0.54     | 0.36     | 0.36     | 0.36     |                                          |                                              |
|----------------|-----------------------------------|--------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|------------------------------------------|----------------------------------------------|
|                | Prel/Pry                          | 1                  | (15)     | 0.42     | 0.42     | 0.99     | 0.99     | 0.99     | 0.99     | 99.0     | 99'0     | 99.0     | 99.0      | 99.0     | 99.0     | 99.0     | 0.42     | 0.42     | 0.42     |                                          | section                                      |
|                | Pr2/Pry I                         |                    | (14)     | 0.35     | 0.35     | 0.92     | 0.92     | 0.92     | 0.92     | 0.54     | 0.54     | 0.54     | 0.54      | 0.54     | 0.54     | 0.54     | 0.35     | 0.35     | 0.35     | ep                                       | rolled                                       |
|                | Pr1/Pry                           |                    | (13)     | 0.41     | 0.41     | 0.98     | 0.98     | 0.98     | 0.98     | 89.0     | 99.0     | 89.0     | 99.0      | 0.68     | 89.0     | 89.0     | 0.41     | 0.41     | 0.41     | el to the w                              | Strong axis of the                           |
|                | P <sub>fea</sub> /P <sub>ry</sub> |                    | (12)     | 0.38     | 0.39     | 0.98     | 0.98     | 96.0     | 0.97     | 9.65     | 0.61     | 0.56     | 0.57      | 0.58     | 0.54     | 0.55     | 0.37     | 0.37     | 0.35     | G - Parallel to the web                  | S - Strong                                   |
| oad            | $P_0/P_{u2}^{c}$                  |                    | (11)     | 9.0      | 0.4      | 9.0      | 0.4      | 9.0      | 0.4      | 9.0      | 9.0      | 9.0      | 9.0       | 9.4      | 9:0      | 9.4      | 9.0      | 9.4      | 9.0      |                                          | •2                                           |
| Preload        | $\mathbf{P_0}^{\mathbf{q}}$       | (kN)               | (10)     | 8601     | 732      | 3712     | 2474     | 2887     | 1924     | 1954     | 1954     | 1954     | 1954      | 1302     | 1667     | ===      | 1263     | 842      | 1086     |                                          | section                                      |
| rength         | plate                             | (MPa)              | (6)      | 350      | 350      | 300      | 300      | 350      | 350      | 300      | 300      | 300      | 300       | 300      | 350      | 350      | 300      | 300      | 350      | ınges                                    | 73                                           |
| Yield Strength | I-section                         | (MPa)              | (8)      | 230      | 230      | 300      | 300      | 230      | 230      | 300      | 300      | 300      | 300       | 300      | 230      | 230      | 300      | 300      | 230      | - Parallel to the flanges                | - Weak axis of the rolled                    |
| •              | Area                              | (mm <sup>2</sup> ) | 6        | 32080    | 32080    | 34000    | 34000    | 34000    | 34000    | 34000    | 34000    | 34000    | 34000     | 34000    | 34000    | 34000    | 34000    | 34000    | 34000    | F - Paralle                              | W - Weak                                     |
|                | ž                                 |                    | 9        | 1.5      | 1.5      | 0.4      | 4.0      | 0.4      | 0.4      | Ξ        | Ξ:       | =        | =         | =        | =        | Ε:       | 1.5      | 1.5      | 1.5      |                                          |                                              |
|                | æ                                 |                    | 3        | S        | S        | ≩        | ≥        | ≱        | ≥        | ≥        | ≩        | ≱        | ≩         | ≱        | ≱        | ≩        | ≩        | ≱        | *        | S                                        | colum                                        |
|                | מי                                |                    | €        | ഥ        | Ľ        | Ľ.       | Ľ,       | Ľ,       | Ľ.       | Œ,       | Ľ        | ഥ        | Ľ,        | Ľ        | Ľ        | ഥ        | Ľ        | Ľ        | F        | g plate                                  | forced                                       |
|                | Plate                             | ,                  | (3)      | 290x16   | 290x16   | 350x16    | 350x16   | 350x16   | 350x16   | 350x16   | 350x16   | 350x16   | reinforcin                               | of the rein                                  |
|                | I-section                         |                    | (2)      | W310x179  | W310x179 | W310x179 | W310x179 | W310x179 | W310x179 | W310x179 | a) D - Orientation of reinforcing plates | b) B - Buckling axis of the reinforced colur |
| FEA            | model                             | No.                | <b>(</b> | 113      | 114      | 115      | 911      | 117      | 118      | 611      | 120      | 121      | 27<br>182 | 123      | 124      | 125      | 126      | 127      | 128      | a) D - Or                                | b) B - Bu                                    |

W - Weak axis of the rolled section d) P<sub>0</sub> - Pre-load b) B - Buckling axis of the reinforced column c) λ - Slenderness parameter.

e) P<sub>u2</sub> - Load carrying capacity of the I-section (predicted using the SSRC curve 2)

 $P_{\rm ry}$  - Yield strength of the reinforced column f) P<sub>fea</sub> - Load carrying capacity obtained from the finite element analysis

g) Pri - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1) h)  $P_{r2}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2)

i)  $P_{\rm rel}$  - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)

Table B.1 (cont'd)

| RR A       |                                               |             |         |       |                |                    |                                     |             |                             |                |           |                                       |                     |                      |                  |
|------------|-----------------------------------------------|-------------|---------|-------|----------------|--------------------|-------------------------------------|-------------|-----------------------------|----------------|-----------|---------------------------------------|---------------------|----------------------|------------------|
| ָבְ<br>בְּ |                                               |             |         |       |                |                    | Yield Strength                      | trength     | Pre                         | Preload        |           |                                       |                     |                      |                  |
| model      | I-section                                     | Plate       | r<br>O  | B     | γ <sub>c</sub> | Area               | 1-section                           | plate       | $\mathbf{P_0}^{\mathbf{q}}$ | $P_0/P_{u2}^c$ | Pfc./Pry  | $P_{rl}/P_{ry}^{\ \ B}$               | $P_{r2}/P_{ry}^{h}$ | $P_{rcl}/P_{ry}^{i}$ | $P_{rc2}/P_{ry}$ |
| N<br>O     |                                               |             |         |       |                | (mm <sup>2</sup> ) | (MPa)                               | (MPa)       | (kN)                        |                | į         |                                       |                     |                      |                  |
| Ξ          | (2)                                           | (3)         | ₹       | (5)   | 9              | 6                  | (8)                                 | 6           | (10)                        | (11)           | (12)      | (13)                                  | (14)                | (15)                 | (91)             |
| 129        | W310x179                                      | 350x16      | 뜨       | ≥     | 1.5            | 34000              | 230                                 | 350         | 724                         | 0.4            | 0.36      | 0.41                                  | 0.35                | 0.42                 | 0.36             |
| 130        | W310x179                                      | 350x16      | Ľ,      | S     | 0.4            | 34000              | 300                                 | 300         | 3717                        | 9.0            | 0.94      | 0.98                                  | 0.92                | 0.00                 | 0.94             |
| 131        | W310x179                                      | 350x16      | Ľ       | S     | 0.4            | 34000              | 300                                 | 300         | 2478                        | 0.4            | 0.94      | 0.98                                  | 0.92                | 0.99                 | 0.94             |
| 132        | W310x179                                      | 350x16      | <u></u> | S     | 0.4            | 34000              | 230                                 | 350         | 2890                        | 9.0            | 0.93      | 0.98                                  | 0.92                | 0.99                 | 0.94             |
| 133        | W310x179                                      | 350x16      | Ľ       | S     | 0.4            | 34000              | 230                                 | 350         | 1927                        | 0.4            | 0.94      | 0.98                                  | 0.92                | 0.99                 | 0.94             |
| 134        | W310x179                                      | 350x16      | Ľ       | S     | Ξ              | 34000              | 300                                 | 300         | 1973                        | 9.0            | 89.0      | 89.0                                  | 0.54                | 99.0                 | 0.54             |
| 135        | W310x179                                      | 350x16      | Ľ.      | S     | 1.1            | 34000              | 300                                 | 300         | 1973                        | 9.0            | 0.63      | 89.0                                  | 0.54                | 99.0                 | 0.54             |
| 136        | W310x179                                      | 350x16      | Ľ,      | S     | Ξ:             | 34000              | 300                                 | 300         | 1973                        | 9.0            | 19.0      | 89.0                                  | 0.54                | 99.0                 | 0.54             |
| _          | W310x179                                      | 350x16      | Œ,      | S     | <b>:</b>       | 34000              | 300                                 | 300         | 1973                        | 9.0            | 0.62      | 99.0                                  | 0.54                | 99.0                 | 0.54             |
| 82<br>183  | W310x179                                      | 350x16      | Ľ,      | S     | <b>:</b>       | 34000              | 300                                 | 300         | 1315                        | 0.4            | 0.63      | 89.0                                  | 0.54                | 99.0                 | 0.54             |
| 139        | W310x179                                      | 350x16      | Ľ,      | S     | <b>-</b> :     | 34000              | 230                                 | 350         | 1683                        | 9.0            | 0.56      | 89.0                                  | 0.54                | 99.0                 | 0.54             |
| 140        | W310x179                                      | 350x16      | Ľ,      | S     | Ξ:             | 34000              | 230                                 | 350         | 1122                        | 0.4            | 0.58      | 89.0                                  | 0.54                | 99.0                 | 0.54             |
| 141        | W310x179                                      | 350x16      | Ľ.      | S     | 1.5            | 34000              | 300                                 | 300         | 1276                        | 9.0            | 0.39      | 0.41                                  | 0.35                | 0.42                 | 0.36             |
| 142        | W310x179                                      | 350x16      | Œ       | S     | 1.5            | 34000              | 300                                 | 300         | 851                         | 0.4            | 0.40      | 0.41                                  | 0.35                | 0.42                 | 0.36             |
| 143        | W310x179                                      | 350x16      | ഥ       | S     | 1.5            | 34000              | 230                                 | 350         | 1097                        | 9.0            | 0.38      | 0.41                                  | 0.35                | 0.42                 | 0.36             |
| 44         | W310x179                                      | 350×16      | Œ       | S     | 1.5            | 34000              | 230                                 | 350         | 732                         | 0.4            | 0.39      | 0.41                                  | 0.35                | 0.42                 | 0.36             |
| a) D - C   | a) D - Orientation of reinforcing plates      | reinforcing | plate   | s     |                | F - Paral          | F - Parallel to the flanges         | anges       |                             |                | G - Paral | G - Parallel to the web               | web                 |                      |                  |
| b) B - E   | b) B - Buckling axis of the reinforced column | of the rein | forced  | colum |                | W - Wea            | W - Weak axis of the rolled section | ne rolled s | ection                      |                | S - Stron | S - Strong axis of the rolled section | he rolled           | section              |                  |

c)  $\lambda$  - Slenderness parameter. DUCKIIIB AAIS OF 4

e)  $P_{u2}$  - Load carrying capacity of the I-section (predicted using the SSRC curve 2) d) P<sub>0</sub> - Pre-load

 $P_{\rm ry}$  - Yield strength of the reinforced column f) P<sub>fea</sub> - Load carrying capacity obtained from the finite element analysis

g) Pr1 - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1)

h)  $P_{\rm r2}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2)

i)  $P_{rel}$  - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)

Table B.1 (cont'd)

| FEA        | A                                        |            |         |   |     |                    | Yield Strength            | Irength | Pre  | Preload                           |           |                         |                         |                                |                          |
|------------|------------------------------------------|------------|---------|---|-----|--------------------|---------------------------|---------|------|-----------------------------------|-----------|-------------------------|-------------------------|--------------------------------|--------------------------|
| model      | lel I-section                            | Plate      | D       | B | ۲,  | Area               | I-section                 | plate   | Pod  | P <sub>0</sub> /P <sub>u2</sub> ° | Pfea/Pry  | $P_{rl}/P_{ry}^{\ \ B}$ | $P_{r2}/P_{ry}^{\ \ h}$ | $P_{\rm rel}/P_{\rm ry}^{\ i}$ | $P_{rc2}/P_{ry}^{\ \ j}$ |
| Ž          | ند                                       |            |         |   |     | (mm <sup>2</sup> ) | (MPa)                     | (MPa)   | (KN) |                                   |           |                         |                         |                                | 8<br>0<br>0<br>0<br>0    |
| Ξ          | (2)                                      | (3)        | ₹       | 3 | 9   | 6                  | (8)                       | 6       | (10) | (11)                              | (12)      | (13)                    | (14)                    | (15)                           | (16)                     |
| 145        | 5 W310x179                               | 350x16     | O       | ≥ | 0.4 | 34000              | 300                       | 300     | 3468 | 9.0                               | 0.95      | 0.98                    | 0.92                    | 0.00                           | 0.94                     |
| 146        |                                          |            | Ö       | ≩ | 0.4 | 34000              | 300                       | 300     | 2312 | 0.4                               | 0.97      | 0.98                    | 0.92                    | 0.99                           | 0.94                     |
| 147        |                                          |            | Ö       | ≥ | 0.4 | 34000              | 230                       | 350     | 2721 | 9.0                               | 0.97      | 0.98                    | 0.92                    | 0.99                           | 0.94                     |
| 148        | -                                        |            | Ö       | ≩ | 0.4 | 34000              | 230                       | 350     | 1814 | 0.4                               | 0.97      | 0.98                    | 0.92                    | 0.99                           | 0.94                     |
| 149        |                                          | 350x16     | Ö       | ≩ | =   | 34000              | 300                       | 300     | 1330 | 9.0                               | 0.72      | 99.0                    | 0.54                    | 99.0                           | 0.54                     |
| 150        | _                                        | 350x16     | Ö       | ≥ | =   | 34000              | 300                       | 300     | 1330 | 9.0                               | 99.0      | 99.0                    | 0.54                    | 99.0                           | 0.54                     |
| 151        |                                          | 350x16     | Ö       | ≱ | =   | 34000              | 300                       | 300     | 1330 | 9.0                               | 09.0      | 99.0                    | 0.54                    | 99.0                           | 0.54                     |
| 152        |                                          | 350x16     | ŋ       | ≱ | Ξ   | 34000              | 300                       | 300     | 1330 | 9.0                               | 0.61      | 99.0                    | 0.54                    | 99.0                           | 0.54                     |
|            | _                                        | 350x16     | Ö       | ≥ | Ξ   | 34000              | 300                       | 300     | 887  | 0.4                               | 0.62      | 99.0                    | 0.54                    | 99.0                           | 0.54                     |
| : Š<br>184 | -                                        | 350×16     | Ö       | ≥ | Ξ:  | 34000              | 230                       | 350     | 1142 | 9.0                               | 0.62      | 89.0                    | 0.54                    | 99.0                           | 0.54                     |
| 155        |                                          |            | Ö       | ≱ | 1.1 | 34000              | 230                       | 350     | 762  | 0.4                               | 0.64      | 99.0                    | 0.54                    | 99.0                           | 0.54                     |
| 156        |                                          |            | Ö       | ≥ | 1.5 | 34000              | 300                       | 300     | 805  | 9.0                               | 0.40      | 0.41                    | 0.35                    | 0.42                           | 0.36                     |
| 157        |                                          | 350x16     | Ö       | ≥ | 1.5 | 34000              | 300                       | 300     | 536  | 0.4                               | 0.41      | 0.41                    | 0.35                    | 0.42                           | 0.36                     |
| 158        | 8 W310x179                               | 350x16     | Ö       | ≥ | 1.5 | 34000              | 230                       | 350     | 718  | 9.0                               | 0.40      | 0.41                    | 0.35                    | 0.42                           | 0.36                     |
| 159        | 9 W310x179                               | 350x16     | Ö       | ≥ | 1.5 | 34000              | 230                       | 350     | 479  | 0.4                               | 0.41      | 0.41                    | 0.35                    | 0.42                           | 0.36                     |
| 3          | 0 W310x179                               | 350x16     | Ö       | S | 0.4 | 34000              | 300                       | 300     | 3824 | 9.0                               | 0.93      | 0.98                    | 0.92                    | 0.99                           | 0.94                     |
|            | a) D - Orientation of reinforcing plates | reinforcin | o nlate | · |     | F - Parall         | - Parallel to the flanges | anges   |      |                                   | G - Paral | G - Parallel to the web | web                     |                                |                          |
| 2          |                                          |            |         |   |     | . :                | • • •                     |         | -    |                                   | 0         |                         | Pollo.                  | 40:000                         |                          |

S - Strong axis of the rolled section W - Weak axis of the rolled section b) B - Buckling axis of the reinforced column

e) P<sub>u2</sub> - Load carrying capacity of the I-section (predicted using the SSRC curve 2)  $P_{\rm ry}$  - Yield strength of the reinforced column c)  $\lambda$  - Slenderness parameter. d)  $P_0$  - Pre-load e)  $P_{u2}$  - Load f)  $P_{fea}$  - Load carrying capacity obtained from the finite element analysis d) P<sub>0</sub> - Pre-load

g) Pr1 - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1)

h)  $P_{r2}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2)

i)  $P_{\rm rel}$  - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)

Table B.1 (cont'd)

| FEA            | Y.            |                                              |           |        |          |                    | Yield Strength              | trength     | Pre     | Preload                 | -                     |                           |                       |                                         |                        |
|----------------|---------------|----------------------------------------------|-----------|--------|----------|--------------------|-----------------------------|-------------|---------|-------------------------|-----------------------|---------------------------|-----------------------|-----------------------------------------|------------------------|
| model          | del I-section | on Plate                                     | î<br>O    | æ      | *ر       | Area               | I-section                   | plate       | Pod     | $P_0/P_{u2}^{\epsilon}$ | P <sub>fcs</sub> /Pry | $P_{rl}/P_{ry}^{8}$       | $P_{r2}/P_{ry}^{\ h}$ | $P_{rcl}/P_{ry}^{i}$                    | $P_{rc2}/P_{ry}^{\ j}$ |
| S <sub>O</sub> | o.            |                                              |           |        |          | (mm <sup>2</sup> ) | (MPa)                       | (MPa)       | (kN)    |                         |                       |                           |                       | 000000000000000000000000000000000000000 |                        |
| =              | (2)           | (3)                                          | €         | 3      | 9        | 6                  | (8)                         | (6)         | (10)    | (11)                    | (12)                  | (13)                      | (14)                  | (15)                                    | (16)                   |
| 191            | 51 W310x179   | 179 350x16                                   | D 9       | S      | 0.4      | 34000              | 300                         | 300         | 2549    | 0.4                     | 0.94                  | 0.98                      | 0.92                  | 0.99                                    | 0.94                   |
| 162            | 52 W310x179   | 179 350x16                                   | <b>9</b>  | S      | 0.4      | 34000              | 230                         | 350         | 2963    | 9.0                     | 0.89                  | 0.98                      | 0.92                  | 0.99                                    | 0.94                   |
| 91             | 3 W310x179    | 179 350x16                                   | D 9       | S      | 0.4      | 34000              | 230                         | 350         | 1975    | 0.4                     | 0.00                  | 0.98                      | 0.92                  | 0.99                                    | 0.94                   |
| <u>s</u>       |               | 179 350x16                                   | <b>9</b>  | S      | Ξ        | 34000              | 300                         | 300         | 2480    | 9.0                     | 0.64                  | 0.68                      | 0.54                  | 99.0                                    | 0.54                   |
| 165            | 55 W310x179   | 179 350x16                                   | D 9       | S      | =        | 34000              | 300                         | 300         | 2480    | 9.0                     | 0.60                  | 0.68                      | 0.54                  | 99.0                                    | 0.54                   |
| 991            | 6 W310x179    | 179 350x16                                   | D 9       | S      | =        | 34000              | 300                         | 300         | 2480    | 9.0                     | 0.56                  | 99.0                      | 0.54                  | 99.0                                    | 0.54                   |
| 191            | _             | •                                            | D 9       | S      | Ξ        | 34000              | 300                         | 300         | 2480    | 9.0                     | 0.57                  | 0.68                      | 0.54                  | 99.0                                    | 0.54                   |
| 168            |               | _                                            | D 9       | S      | =        | 34000              | 300                         | 300         | 1653    | 0.4                     | 0.59                  | 0.68                      | 0.54                  | 99.0                                    | 0.54                   |
| 691            | 69 W310x179   | 179 350x16                                   | <b>9</b>  | S      | <b>:</b> | 34000              | 230                         | 350         | 2057    | 9.0                     | 0.51                  | 0.68                      | 0.54                  | 99.0                                    | 0.54                   |
| 2<br>185       | 0 W310x179    | 179 350x16                                   | 9<br>9    | S      | 1.1      | 34000              | 230                         | 350         | 1371    | 0.4                     | 0.53                  | 99.0                      | 0.54                  | 99.0                                    | 0.54                   |
| 17             | 1 W310x179    | 179 350x16                                   | 9<br>9    | S      | 1.5      | 34000              | 300                         | 300         | 1628    | 9.0                     | 0.38                  | 0.41                      | 0.35                  | 0.42                                    | 0.36                   |
| 17             | 2 W310x179    | 179 350x16                                   | 9<br>9    | S      | 1.5      | 34000              | 300                         | 300         | 9801    | 0.4                     | 0.39                  | 0.41                      | 0.35                  | 0.42                                    | 0.36                   |
| 17             | 3 W310x179    | 179 350x16                                   | 9<br>9    | S      | 1.5      | 34000              | 230                         | 350         | 1393    | 9.0                     | 0.36                  | 0.41                      | 0.35                  | 0.42                                    | 0.36                   |
| 17.            | 4 W310x179    | 179 350x16                                   | 9 g       | S      | 1.5      | 34000              | 230                         | 350         | 929     | 0.4                     | 0.37                  | 0.41                      | 0.35                  | 0.42                                    | 0.36                   |
| 175            | 75 W150x30    | (30 130x5                                    | 5 F       | ≩      | 0.4      | 2090               | 300                         | 300         | 627     | 9.0                     | 0.97                  | 0.98                      | 0.92                  | 0.00                                    | 0.94                   |
| 176            | 6 W150x30     | (30 130x5                                    | 5 F       | ≯      | 0.4      | 2090               | 300                         | 300         | 418     | 0.4                     | 0.98                  | 0.98                      | 0.92                  | 0.99                                    | 0.94                   |
| a) D           | - Orientatio  | a) D - Orientation of reinforcing plates     | sing plat | es     |          | F - Paral          | F - Parallel to the flanges | anges       |         |                         | G - Paral             | G - Parallel to the web   | web                   |                                         |                        |
| . (4<br>R      | - Buckling    | b) B - Buckling axis of the reinforced colum | einforce. | d colu | <b>1</b> | W - Wea            | - Weak axis of the rolled   | e rolled se | section |                         | S - Stron             | Strong axis of the rolled |                       | section                                 |                        |
| 2              | DUTTIL        | : A: : : : : : : : : : : : : : : : : :       | 1         |        | :        |                    | :                           | 1           |         |                         |                       |                           |                       | ; i                                     | į                      |

W - Weak axis of the rolled section b) B - Buckling axis of the reinforced column

e) P<sub>u2</sub> - Load carrying capacity of the I-section (predicted using the SSRC curve 2) d) P<sub>0</sub> - Pre-load

 $P_{\boldsymbol{\eta}}$  - Yield strength of the reinforced column c)  $\lambda$  - Slenderness parameter. d)  $P_0$  - Pre-load e)  $P_{u2}$  - Load f)  $P_{rea}$  - Load carrying capacity obtained from the finite element analysis

g) Pri - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1)

h)  $P_{r2}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2) i)  $P_{\rm rel}$  - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)

Table B.1 (cont'd)

| ı   |        |                                              |             |          |                |               |                    |                             |        |         |                |                          |                                                         |                         |                             |                                         |
|-----|--------|----------------------------------------------|-------------|----------|----------------|---------------|--------------------|-----------------------------|--------|---------|----------------|--------------------------|---------------------------------------------------------|-------------------------|-----------------------------|-----------------------------------------|
| 1   | FEA    |                                              |             |          |                |               |                    | Yield Strength              | rength | Pre     | Preload        |                          |                                                         |                         |                             |                                         |
| =   | model  | I-section                                    | Plate       | ۵        | æ              | <b>*</b>      | Area               | I-section                   | plate  | Pod     | $P_0/P_{u2}^c$ | $P_{fca}/P_{ry}^{\ \ f}$ | $P_{rl}/P_{ry}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | $P_{r2}/P_{ry}^{\ \ h}$ | $P_{\rm rcl}/P_{\rm ry}^{}$ | $P_{rc2}/P_{ry}^{\ \ j}$                |
|     | ò<br>N |                                              |             |          |                |               | (mm <sup>2</sup> ) | (MPa)                       | (MPa)  | (kN)    |                |                          |                                                         |                         |                             | 000000000000000000000000000000000000000 |
| •   | Ξ      | (2)                                          | (3)         | €        | (5)            | 9             | (7)                | (8)                         | (6)    | (10)    | (11)           | (12)                     | (13)                                                    | (14)                    | (15)                        | (91)                                    |
| İ   | 177    | W150x30                                      | 130x5       | ഥ        | ≱              | 0.4           | 2090               | 230                         | 350    | 486     | 9.0            | 0.95                     | 0.98                                                    | 0.92                    | 0.99                        | 0.94                                    |
|     | 178    | W150x30                                      | 130x5       | Ľ        | ≩              | 0.4           | 2090               | 230                         | 350    | 324     | 0.4            | 0.95                     | 0.98                                                    | 0.92                    | 0.99                        | 0.94                                    |
|     | 179    | W150x30                                      | 130x5       | Œ        | ≱              | Ξ             | 5090               | 300                         | 300    | 370     | 9.0            | 99.0                     | 99.0                                                    | 0.54                    | 99.0                        | 0.54                                    |
|     | 180    | W150x30                                      | 130x5       | Ľ        | ≱              | Ξ             | 2090               | 300                         | 300    | 370     | 9.0            | 0.64                     | 0.68                                                    | 0.54                    | 99:0                        | 0.54                                    |
|     | 181    | W150x30                                      | 130x5       | 뜨        | ≱              | Ξ             | 5090               | 300                         | 300    | 370     | 9.0            | 0.60                     | 0.68                                                    | 0.54                    | 99.0                        | 0.54                                    |
|     | 182    | W150x30                                      | 130x5       | ഥ        | ≯              | Ξ             | 5090               | 300                         | 300    | 370     | 9.0            | 0.61                     | 0.68                                                    | 0.54                    | 99.0                        | 0.54                                    |
|     | 183    | W150x30                                      | 130x5       | Ľ.       | ≥              | Ξ             | 5090               | 300                         | 300    | 247     | 0.4            | 0.62                     | 99.0                                                    | 0.54                    | 99.0                        | 0.54                                    |
|     | 184    | W150x30                                      | 130x5       | Ľ.,      | ≱              | Ξ             | 2090               | 230                         | 350    | 308     | 9.0            | 0.57                     | 89.0                                                    | 0.54                    | 99.0                        | 0.54                                    |
| 1   | 185    | W150x30                                      | 130x5       | Ľ        | ≱              | Ξ             | 5090               | 230                         | 350    | 206     | 0.4            | 0.58                     | 0.68                                                    | 0.54                    | 99.0                        | 0.54                                    |
| 186 | 186    | W150x30                                      | 130x5       | <b>[</b> | ≱              | 1.5           | 5090               | 300                         | 300    | 242     | 9.0            | 0.37                     | 0.41                                                    | 0.35                    | 0.42                        | 0.36                                    |
|     | 187    | W150x30                                      | 130x5       | Œ        | ≱              | 1.5           | 5090               | 300                         | 300    | 191     | 0.4            | 0.38                     | 0.41                                                    | 0.35                    | 0.42                        | 0.36                                    |
|     | 188    | W150x30                                      | 130x5       | Ľ.       | ≱              | 1.5           | 5090               | 230                         | 350    | 202     | 9.0            | 0.36                     | 0.41                                                    | 0.35                    | 0.42                        | 0.36                                    |
|     | 189    | W150x30                                      | 130x5       | Ľ.       | ≯              | 1.5           | 5090               | 230                         | 350    | 135     | 0.4            | 0.37                     | 0.41                                                    | 0.35                    | 0.42                        | 0.36                                    |
|     | 061    | W150x30                                      | 130x5       | Œ        | S              | 0.4           | 5090               | 300                         | 300    | 621     | 9.0            | 0.95                     | 0.98                                                    | 0.92                    | 0.99                        | 0.94                                    |
|     | 161    | W150x30                                      | 130x5       | Œ,       | S              | 0.4           | 2090               | 300                         | 300    | 621     | 9.0            | 0.95                     | 0.98                                                    | 0.92                    | 0.99                        | 0.94                                    |
|     | 192    | W150x30                                      | 130x5       | ഥ        | S              | 0.4           | 2090               | 300                         | 300    | 621     | 9.0            | 0.95                     | 0.98                                                    | 0.92                    | 0.99                        | 0.94                                    |
| B   | D-0    | a) D - Orientation of reinforcing plates     | reinforcin  | g plate  | y <sub>a</sub> |               | F - Parall         | F - Parallel to the flanges | ınges  |         |                | G - Parall               | G - Parallel to the web                                 | web                     |                             |                                         |
| 9   | B - B  | b) B - Buckling axis of the reinforced colun | of the rein | forced   | colum          | -<br><b>=</b> | W - Weal           | Weak axis of the rolled     |        | section |                | S - Strong               | - Strong axis of the rolled                             |                         | section                     | ,                                       |
|     |        |                                              |             |          | 1              |               |                    |                             |        | •       |                |                          |                                                         |                         |                             | ć                                       |

d) P<sub>0</sub> - Pre-load c) λ - Slenderness parameter.

e)  $P_{u2}$  - Load carrying capacity of the I-section (predicted using the SSRC curve 2)  $\mathbf{P}_{\mathbf{y}}$  - Yield strength of the reinforced column

g) Pri - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1) f) P<sub>fea</sub> - Load carrying capacity obtained from the finite element analysis

h)  $P_{r2}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2)

i)  $P_{rel}$  - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)

Table B.1 (cont'd)

|            |                                               |             |           |       |     |                    |                                   |             | ì                |                |            |                         |                                     |                      |                        |
|------------|-----------------------------------------------|-------------|-----------|-------|-----|--------------------|-----------------------------------|-------------|------------------|----------------|------------|-------------------------|-------------------------------------|----------------------|------------------------|
| FEA        |                                               |             | []<br>:   |       |     |                    | Yield Strength                    | rength      | Preload          | oad            |            |                         |                                     |                      |                        |
| model      | I-section                                     | Plate       | <b>Τ</b>  | Bp    | مر  | Area               | I-section                         | plate       | P <sub>0</sub> d | $P_0/P_{u2}^c$ | Pfea/Pry   | $P_{rl}/P_{ry}^{\ \ B}$ | $P_{r2}/P_{ry}^{\ \ h}$             | $P_{rel}/P_{ry}^{i}$ | $P_{rc2}/P_{ry}^{\ j}$ |
| No.        |                                               |             |           |       |     | (mm <sup>2</sup> ) | (MPa)                             | (MPa)       | (kN)             |                |            |                         |                                     |                      |                        |
| Ξ          | (2)                                           | 3)          | €         | (5)   | 9   | 6                  | (8)                               | 6)          | (10)             | (11)           | (12)       | (13)                    | (14)                                | (15)                 | (16)                   |
| 193        | W150x30                                       | 130x5       | ᄕ         | S     | 9.0 | 2090               | 300                               | 300         | 414              | 0.4            | 0.95       | 0.98                    | 0.92                                | 0.99                 | 0.94                   |
| 194        | W150x30                                       | 130x5       | Œ         | S     | 9.4 | 5090               | 230                               | 350         | 481              | 9.0            | 0.94       | 0.98                    | 0.92                                | 0.99                 | 0.94                   |
| 195        | W150x30                                       | 130x5       | Ľ,        | S     | 0.4 | 2090               | 230                               | 350         | 321              | 0.4            | 0.95       | 86.0                    | 0.92                                | 0.99                 | 0.94                   |
| 196        | W150x30                                       | 130x5       | Ľ,        | S     | Ξ   | 2090               | 300                               | 300         | 341              | 9.0            | 0.71       | 89.0                    | 0.54                                | 99.0                 | 0.54                   |
| 197        | W150x30                                       | 130x5       | Œ,        | S     | Ξ   | 2090               | 300                               | 300         | 341              | 9.0            | 0.67       | 89.0                    | 0.54                                | 99.0                 | 0.54                   |
| 198        | W150x30                                       | 130x5       | Œ         | S     | Ξ   | 2090               | 300                               | 300         | 341              | 9.0            | 0.63       | 99.0                    | 0.54                                | 99.0                 | 0.54                   |
| 166        | W150x30                                       | 130x5       | ī         | S     | -   | 2090               | 300                               | 300         | 341              | 9.0            | 0.65       | 89.0                    | 0.54                                | 99.0                 | 0.54                   |
| 200        | W150x30                                       | 130x5       | Œ         | S     | =   | 5090               | 300                               | 300         | 228              | 0.4            | 0.64       | 89.0                    | 0.54                                | 99.0                 | 0.54                   |
|            | W150x30                                       | 130x5       | <u> </u>  | S     | 1.1 | 2090               | 230                               | 350         | 285              | 9.0            | 0.59       | 89.0                    | 0.54                                | 99.0                 | 0.54                   |
| 202<br>187 | W150x30                                       | 130x5       | <u>17</u> | S     | =   | 2090               | 230                               | 350         | 961              | 0.4            | 19.0       | 89.0                    | 0.54                                | 99.0                 | 0.54                   |
|            | W150x30                                       | 130x5       | Ľ.        | S     | 1.5 | 2090               | 300                               | 300         | 222              | 9.0            | 0.44       | 0.41                    | 0.35                                | 0.42                 | 0.36                   |
| 204        | W150x30                                       | 130x5       | Œ         | S     | 1.5 | 2090               | 300                               | 300         | 222              | 9.0            | 0.44       | 0.41                    | 0.35                                | 0.42                 | 0.36                   |
| 205        | W150x30                                       | 130x5       | Ľ.        | S     | 1.5 | 2090               | 300                               | 300         | 222              | 9.0            | 0.44       | 0.41                    | 0.35                                | 0.42                 | 0.36                   |
| 206        | W150x30                                       | 130x5       | ני        | S     | 1.5 | 2090               | 300                               | 300         | 148              | 0.4            | 0.44       | 0.41                    | 0.35                                | 0.42                 | 0.36                   |
| 207        | W150x30                                       | 130x5       | ഥ         | S     | 1.5 | 2090               | 230                               | 350         | 186              | 9.0            | 0.42       | 0.41                    | 0.35                                | 0.42                 | 0.36                   |
| 208        | W150x30                                       | 130x5       | Ľ.        | S     | 1.5 | 2090               | 230                               | 350         | 124              | 0.4            | 0.43       | 0.41                    | 0.35                                | 0.42                 | 0.36                   |
| a) D - C   | a) D - Orientation of reinforcing plates      | reinforcing | g plate   | s     |     | F - Parall         | F - Parallel to the flanges       | ınges       |                  |                | G - Parall | G - Parallel to the web | web                                 |                      |                        |
| b) B - E   | b) B - Buckling axis of the reinforced column | of the rein | forced    | colum | _   | W - Weal           | - Weak axis of the rolled section | e rolled se | ction            |                | S - Strong | ; axis of t             | - Strong axis of the rolled section | section              |                        |
| •          | )                                             |             |           | ,     |     |                    |                                   | •           | •                | ,              | •          |                         | •                                   |                      | ć                      |

W - Weak axis of the rolled section d) P<sub>0</sub> - Pre-load b) B - Buckling axis of the reinforced column c) λ - Slenderness parameter.

e)  $P_{u2}$  - Load carrying capacity of the I-section (predicted using the SSRC curve 2)  $P_{\eta y}$  - Yield strength of the reinforced column

f) P<sub>fea</sub> - Load carrying capacity obtained from the finite element analysis

g) P<sub>r1</sub> - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1)

h)  $P_{r2}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2) i)  $P_{\rm rel}$  - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)

Table B.1 (cont'd)

| <b>V</b> (1)     |                                                |             |          |     |          |                    | Viold Ctronath                    | ronath    | Dra            | Drahond        |                  |                               |                   |                  |                  |
|------------------|------------------------------------------------|-------------|----------|-----|----------|--------------------|-----------------------------------|-----------|----------------|----------------|------------------|-------------------------------|-------------------|------------------|------------------|
| rea              |                                                |             | á        |     | ç        |                    |                                   | ucugui    |                | neo!           |                  | ÷                             |                   |                  | 9                |
| model            | I I-section                                    | Plate       | <u>-</u> | œ   | <b>~</b> | Area               | I-section                         | plate     | g <sub>o</sub> | $P_0/P_{u2}^c$ | $P_{fca}/P_{ry}$ | $P_{rl}/P_{ry}^{8}$           | $P_{r2}/P_{ry}$ " | $P_{rel}/P_{ry}$ | $P_{rc2}/P_{ry}$ |
| No.              |                                                |             |          |     |          | (mm <sup>2</sup> ) | (MPa)                             | (MPa)     | (kN            |                |                  |                               |                   |                  |                  |
| Ξ                | (2)                                            | 3           | €        | (5) | 9        | (2)                | (8)                               | (6)       | (10)           | (E)            | (12)             | (13)                          | (14)              | (15)             | (91)             |
| 209              | W150x30                                        | 175x5       | Ð        | ≱   | 0.4      | 5540               | 300                               | 300       | 578            | 9.0            | 0.96             | 0.98                          | 0.92              | 0.99             | 0.94             |
| 210              | W150x30                                        | 175x5       | ŋ        | ≩   | 0.4      | 5540               | 300                               | 300       | 578            | 9.0            | 0.96             | 0.98                          | 0.92              | 0.99             | 0.94             |
| 211              | W150x30                                        | 175x5       | Ö        | ≩   | 0.4      | 5540               | 300                               | 300       | 578            | 9.0            | 96.0             | 0.98                          | 0.92              | 0.99             | 0.94             |
| 212              | W150x30                                        | 175x5       | Ö        | ≥   | 0.4      | 5540               | 300                               | 300       | 386            | 0.4            | 0.97             | 0.98                          | 0.92              | 0.99             | 0.94             |
| 213              | W150x30                                        | 175x5       | Ö        | ≥   | 0.4      | 5540               | 230                               | 350       | 453            | 9.0            | 0.0              | 0.98                          | 0.92              | 0.99             | 0.94             |
| 214              | W150x30                                        | 175x5       | Ö        | ≩   | 0.4      | 5540               | 230                               | 350       | 302            | 0.4            | 0.97             | 0.98                          | 0.92              | 0.99             | 0.94             |
| 215              | W150x30                                        | 175x5       | Ö        | ≱   | =        | 5540               | 300                               | 300       | 225            | 9.0            | 0.72             | 99.0                          | 0.54              | 99.0             | 0.54             |
| 216              | W150x30                                        | 175x5       | Ð        | ≩   | =        | 5540               | 300                               | 300       | 225            | 9.0            | 99.0             | 89.0                          | 0.54              | 99.0             | 0.54             |
|                  | W150x30                                        | 175x5       | Ö        | ≩   | =        | 5540               | 300                               | 300       | 225            | 9.0            | 09'0             | 89.0                          | 0.54              | 99.0             | 0.54             |
| 78<br>881<br>881 | W150x30                                        | 175x5       | Ö        | ≱   | =        | 5540               | 300                               | 300       | 225            | 9.0            | 0.61             | 99.0                          | 0.54              | 99.0             | 0.54             |
|                  | W150x30                                        | 175x5       | Ö        | ≱   | -:       | 5540               | 300                               | 300       | 150            | 0.4            | 0.62             | 99.0                          | 0.54              | 99.0             | 0.54             |
| 220              | W150x30                                        | 175x5       | Ö        | ≩   | 1.1      | 5540               | 230                               | 350       | 193            | 9.0            | 0.63             | 99.0                          | 0.54              | 99.0             | 0.54             |
| 221              | W150x30                                        | 175x5       | O        | ≱   | Ξ        | 5540               | 230                               | 350       | 128            | 0.4            | 0.65             | 99.0                          | 0.54              | 99.0             | 0.54             |
| 222              | W150x30                                        | 175x5       | Ö        | ≩   | 1.5      | 5540               | 300                               | 300       | 137            | 9.0            | 0.38             | 0.41                          | 0.35              | 0.42             | 0.36             |
| 223              | W150x30                                        | 175x5       | ŋ        | ≥   | 1.5      | 5540               | 300                               | 300       | 137            | 9.0            | 0.38             | 0.41                          | 0.35              | 0.42             | 0.36             |
| 224              | W150x30                                        | 175x5       | Ð        | *   | 1.5      | 5540               | 300                               | 300       | 137            | 9.0            | 0.38             | 0.41                          | 0.35              | 0.42             | 0.36             |
| a) D -           | a) D - Orientation of reinforcing plates       | reinforcin  | g plate  | Š   |          | F - Parall         | F - Parallel to the flanges       | anges     |                |                | G - Paral        | G - Parallel to the web       | web               |                  |                  |
| . A              | Duabling ovie                                  | of the rain | formed   | į   | ş        | W. Wes             | . Weak axis of the rolled section | rolled a  | Potion         |                | S - Strong       | S - Strong axis of the rolled | he rolled         | section          |                  |
| o) D             | o) d - duckiiiig axis oi uie iciiiioiceu coini |             | 7075     | =   |          | 3) A : A           | A GAIS C:                         | 5 30101 2 |                |                |                  |                               |                   |                  |                  |

W - Weak axis of the rolled section d) P<sub>0</sub> - Pre-load b) B - Buckling axis of the reinforced column

e) P<sub>u2</sub> - Load carrying capacity of the I-section (predicted using the SSRC curve 2)

 $P_{\rm ry}$  - Yield strength of the reinforced column c)  $\lambda$  - Slenderness parameter. d)  $P_0$  - Pre-load e)  $P_{u2}$  - Load for the finite element analysis

g) Pri - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1) h)  $P_{r2}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2)

i)  $P_{\rm rel}$  - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)

Table B.1 (cont'd)

|                 |                                               |             |            |          |     |                    |                                         |           | ,       |                |                      |                               |                         |                                 |                          |
|-----------------|-----------------------------------------------|-------------|------------|----------|-----|--------------------|-----------------------------------------|-----------|---------|----------------|----------------------|-------------------------------|-------------------------|---------------------------------|--------------------------|
| FEA             |                                               |             |            |          |     |                    | Yield Strength                          | trength   | Pre     | Preload        |                      |                               |                         |                                 |                          |
| model           | I-section                                     | Plate       | <u>"</u> Ω | B        | ゾ   | Area               | I-section                               | plate     | $P_0^d$ | $P_0/P_{u2}^c$ | $P_{fca}/P_{ry}^{f}$ | $P_{rl}/P_{ry}^{\ \ B}$       | $P_{r2}/P_{ry}^{\ \ h}$ | $P_{rcl}/P_{ry}^{i}$            | $P_{rc2}/P_{ry}^{\ \ j}$ |
| Ż.              |                                               |             |            |          |     | (mm <sup>2</sup> ) |                                         | (MPa)     | (kN)    |                |                      |                               |                         | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 0                        |
| Ξ               | (2)                                           | (3)         | ₹          | <b>S</b> | 9   | 6                  |                                         | 6         | (10)    | (11)           | (12)                 | (13)                          | (14)                    | (15)                            | (91)                     |
| 225             | W150x30                                       | 175x5       | 9          | ≱        | 1.5 | 5540               | 300                                     | 300       | 16      | 0.4            | 0.39                 | 0.41                          | 0.35                    | 0.42                            | 0.36                     |
| 226             | W150x30                                       | 175x5       | Ö          | ≱        | 1.5 | 5540               | 230                                     | 350       | 122     | 9.0            | 0.40                 | 0.41                          | 0.35                    | 0.42                            | 0.36                     |
| 227             | W150x30                                       | 175x5       | ŋ          | ≯        | 1.5 | 5540               | 230                                     | 350       | 8       | 0.4            | 0.41                 | 0.41                          | 0.35                    | 0.45                            | 0.36                     |
| 228             | W150x30                                       | 175x5       | Ö          | S        | 0.4 | 5540               | 300                                     | 300       | 634     | 9.0            | 0.97                 | 0.98                          | 0.92                    | 0.99                            | 0.94                     |
| 229             | W150x30                                       | 175x5       | Ö          | S        | 0.4 | 5540               | 300                                     | 300       | 634     | 9.0            | 0.97                 | 0.98                          | 0.92                    | 0.99                            | 0.94                     |
| 230             | W150x30                                       | 175x5       | Ö          | S        | 0.4 | 5540               | 300                                     | 300       | 634     | 9.0            | 0.97                 | 0.98                          | 0.92                    | 0.99                            | 0.94                     |
| 231             | W150x30                                       | 175x5       | Ö          | S        | 0.4 | 5540               | 300                                     | 300       | 423     | 4.0            | 0.97                 | 0.98                          | 0.92                    | 0.99                            | 0.94                     |
| 232             | W150x30                                       | 175x5       | 9          | S        | 9.4 | 5540               | 230                                     | 350       | 491     | 9.0            | 0.95                 | 0.98                          | 0.92                    | 0.99                            | 0.94                     |
| 233             | W150x30                                       | 175x5       | Ö          | S        | 0.4 | 5540               | 230                                     | 350       | 327     | 0.4            | 0.95                 | 0.98                          | 0.92                    | 0.99                            | 0.94                     |
| 189<br>23<br>34 | W150x30                                       | 175x5       | ŋ          | S        | Ξ   | 5540               | 300                                     | 300       | 406     | 9.0            | 0.65                 | 89.0                          | 0.54                    | 99.0                            | 0.54                     |
|                 | W150x30                                       | 175x5       | ŋ          | S        | Ξ   | 5540               | 300                                     | 300       | 406     | 9.0            | 0.60                 | 99.0                          | 0.54                    | 99.0                            | 0.54                     |
| 236             | W150x30                                       | 175x5       | ŋ          | S        | Ξ   | 5540               | 300                                     | 300       | 406     | 9.0            | 0.56                 | 99.0                          | 0.54                    | 99.0                            | 0.54                     |
| 237             | W150x30                                       | 175x5       | Ö          | S        | =   | 5540               | 300                                     | 300       | 406     | 9.0            | 0.58                 | 99.0                          | 0.54                    | 99.0                            | 0.54                     |
| 238             | W150x30                                       | 175x5       | Ö          | S        | Ξ:  | 5540               | 300                                     | 300       | 270     | 0.4            | 0.59                 | 89.0                          | 0.54                    | 99.0                            | 0.54                     |
| 239             | W150x30                                       | 175x5       | ŋ          | S        | Ξ   | 5540               | 230                                     | 350       | 337     | 9.0            | 0.51                 | 99.0                          | 0.54                    | 99.0                            | 0.54                     |
| 240             | W150x30                                       | 175x5       | Ð          | S        | 1.1 | 5540               | 230                                     | 350       | 225     | 0.4            | 0.53                 | 0.68                          | 0.54                    | 0.66                            | 0.54                     |
| a) D - (        | a) D - Orientation of reinforcing plates      | reinforcin  | g plate    | Š        |     | F - Paral          | - Parallel to the flanges               | anges     |         |                | G - Paral            | G - Parallel to the web       | web                     |                                 |                          |
| ` 4             | b) B - Buckling axis of the reinforced column | of the rein | forced     | miles    | Ę   | W - We             | - Weak axis of the rolled section       | rolled se | ction   |                | S - Stron            | S - Strong axis of the rolled | the rolled              | section                         |                          |
| 1 - m (n        | DUCKIIIK AAIS                                 |             | 3)         |          | =   | 3                  | : : : : : : : : : : : : : : : : : : : : |           |         |                |                      |                               |                         |                                 | ,                        |

e)  $P_{u2}$  - Load carrying capacity of the I-section (predicted using the SSRC curve 2) d) P<sub>0</sub> - Pre-load

 $P_{\rm ry}$  - Yield strength of the reinforced column c)  $\lambda$  - Slenderness parameter. d)  $P_0$  - Pre-load e)  $P_{u2}$  - Load from the finite element analysis

g) Pri - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1) h)  $P_{r2}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2)

i)  $P_{\rm rel}$  - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)

Table B.1 (cont'd)

| No.   Classicion   Plate   D <sup>a</sup>   B <sup>b</sup>   X <sup>c</sup>   Area   I-section   plate   P <sub>0</sub> <sup>d</sup>   P <sub>0</sub> P <sub>0</sub> <sup>1</sup> <sup>2</sup>   P <sub>0</sub> P <sub>0</sub> <sup>1</sup> <sup>2</sup>   P <sub>1</sub> P <sub>P</sub> <sup>g</sup>   P <sub>1</sub> P <sub>P</sub> | <u> </u> |               |             |          |          |     |                    | i icia Silcingii | ucuguı | 21.2    | rreioau              | _         |            |                         |                      |                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|-------------|----------|----------|-----|--------------------|------------------|--------|---------|----------------------|-----------|------------|-------------------------|----------------------|------------------|
| No.         (II)         (2)         (3)         (4)         (5)         (6)         (7)         (8)         (9)         (10)         (11)         (12)         (13)         (14)           241         W150x30         175x3         G         S         1.5         5540         300         266         0.6         0.45         0.41         0.35           242         W150x30         175x3         G         S         1.5         5540         300         300         266         0.6         0.42         0.41         0.35           242         W150x30         175x3         G         S         1.5         5540         300         300         266         0.6         0.42         0.41         0.35           244         W150x30         175x3         G         S         1.5         5540         300         300         177         0.4         0.41         0.35           244         W150x30         175x5         G         S         1.5         5540         300         300         177         0.4         0.41         0.35           245         W150x30         175x5         G         S         1.5         5540         300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | model    |               | Plate       | ۵        | æ        | γد  | Area               | I-section        | plate  | $P_0^d$ | $P_0/P_{u2}^{\circ}$ |           |            | $P_{r2}/P_{ry}^{\ \ h}$ | $P_{rcl}/P_{ry}^{ri$ | $P_{rc2}/P_{ry}$ |
| (1)         (2)         (3)         (4)         (5)         (6)         (7)         (8)         (9)         (11)         (12)         (13)         (14)           241         W150x30         175x5         G         S         1.5         5540         300         300         266         0.6         0.45         0.41         0.35           242         W150x30         175x5         G         S         1.5         5540         300         300         266         0.6         0.42         0.41         0.35           243         W150x30         175x5         G         S         1.5         5540         300         300         266         0.6         0.42         0.41         0.35           244         W150x30         175x5         G         S         1.5         5540         300         300         267         0.6         0.36         0.41         0.35           245         W150x30         175x5         G         S         1.5         5540         300         300         277         0.6         0.96         0.94         0.35           245         W150x30         130x8         F         W         0.4         5870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Š        |               |             |          |          |     | (mm <sup>2</sup> ) | (MPa)            | (MPa)  | (kN)    |                      |           | :          | 0<br>0<br>0<br>0        |                      |                  |
| 241         W150x30         175x5         G         S         1.5         5540         300         366         0.6         0.45         0.41         0.35           242         W150x30         175x5         G         S         1.5         5540         300         300         266         0.6         0.42         0.41         0.35           243         W150x30         175x5         G         S         1.5         5540         300         300         266         0.6         0.39         0.41         0.35           244         W150x30         175x5         G         S         1.5         5540         300         300         177         0.4         0.41         0.35           245         W150x30         175x5         G         S         1.5         5540         300         300         60         0.37         0.41         0.35           246         W150x30         130x8         F         W         0.4         5870         300         300         418         0.4         0.35         0.41         0.35           248         W150x30         130x8         F         W         0.4         5870         300         300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ξ        | (2)           | 3           | <b>€</b> | (5)      | 9   | 6                  | (8)              | (6)    | (10)    | (E)                  | (12)      | (13)       | (14)                    | (15)                 | (16)             |
| 242         W150x30         175x3         G         S         1.5         5540         300         300         266         0.6         0.42         0.41         0.35           243         W150x30         175x5         G         S         1.5         5540         300         300         266         0.6         0.39         0.41         0.35           244         W150x30         175x5         G         S         1.5         5540         300         300         177         0.4         0.40         0.41         0.35           245         W150x30         175x5         G         S         1.5         5540         230         300         177         0.4         0.40         0.41         0.35           245         W150x30         175x5         G         S         1.5         5540         230         350         227         0.6         0.39         0.41         0.35           246         W150x30         130x8         F         W         0.4         5870         300         300         487         0.6         0.95         0.98         0.92           249         W150x30         130x8         F         W         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 241      | W150x30       | 175x5       | g        | S        | 1.5 | 5540               | 300              | 300    | 266     | 9.0                  | 0.45      | 0.41       | 0.35                    | 0.42                 | 0.36             |
| 243         W150x30         175x5         G         S         1.5         5540         300         300         266         0.6         0.39         0.41         0.35           244         W150x30         175x5         G         S         1.5         5540         300         300         177         0.4         0.40         0.41         0.35           245         W150x30         175x5         G         S         1.5         5540         230         350         151         0.4         0.49         0.41         0.35           245         W150x30         175x5         G         S         1.5         5540         230         350         151         0.4         0.35         0.41         0.35           247         W150x30         130x8         F         W         0.4         5870         300         300         47         0.6         0.95         0.98         0.92           249         W150x30         130x8         F         W         0.4         5870         230         350         487         0.6         0.95         0.98         0.92           250         W150x30         130x8         F         W         1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 242      | W150x30       | 175x5       | Ö        | S        | 1.5 | 5540               | 300              | 300    | 266     | 9.0                  | 0.42      | 0.41       | 0.35                    | 0.42                 | 0.36             |
| 244         W150x30         175x5         G         S         1.5         5540         300         300         177         0.4         0.40         0.41         0.35           245         W150x30         175x5         G         S         1.5         5540         230         350         157         0.6         0.37         0.41         0.35           246         W150x30         175x5         G         S         1.5         5540         230         350         151         0.4         0.37         0.41         0.35           247         W150x30         130x8         F         W         0.4         5870         300         300         418         0.4         0.95         0.98         0.92           249         W150x30         130x8         F         W         0.4         5870         300         350         487         0.6         0.95         0.98         0.92           250         W150x30         130x8         F         W         0.4         5870         300         300         371         0.6         0.95         0.98         0.94           251         W150x30         130x8         F         W         1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 243      | W150x30       | 175x5       | Ö        | S        | 1.5 | 5540               | 300              | 300    | 266     | 9.0                  | 0.39      | 0.41       | 0.35                    | 0.42                 | 0.36             |
| 245         W150x30         175x5         G         S         1.5         5540         230         350         227         0.6         0.37         0.41         0.35           246         W150x30         175x5         G         S         1.5         5540         230         350         151         0.4         0.38         0.41         0.35           247         W150x30         130x8         F         W         0.4         5870         300         300         418         0.4         0.98         0.92           249         W150x30         130x8         F         W         0.4         5870         230         350         487         0.6         0.95         0.98         0.92           250         W150x30         130x8         F         W         0.4         5870         300         371         0.6         0.95         0.98         0.92           251         W150x30         130x8         F         W         1.1         5870         300         371         0.6         0.59         0.68         0.54           252         W150x30         130x8         F         W         1.1         5870         300         30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 244      | W150x30       | 175x5       | g        | S        | 1.5 | 5540               | 300              | 300    | 177     | 0.4                  | 0.40      | 0.41       | 0.35                    | 0.42                 | 0.36             |
| 246         W150x30         175x5         G         S         1.5         5540         230         350         151         0.4         0.38         0.41         0.35           247         W150x30         130x8         F         W         0.4         5870         300         300         627         0.6         0.96         0.98         0.92           248         W150x30         130x8         F         W         0.4         5870         230         300         418         0.0         0.99         0.98         0.92           249         W150x30         130x8         F         W         0.4         5870         230         350         325         0.4         0.95         0.98         0.92           250         W150x30         130x8         F         W         1.1         5870         300         300         371         0.6         0.95         0.98         0.92           251         W150x30         130x8         F         W         1.1         5870         300         300         371         0.6         0.59         0.68         0.54           252         W150x30         130x8         F         W         1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 245      | W150x30       | 175x5       | ŋ        | S        | 1.5 | 5540               | 230              | 350    | 227     | 9.0                  | 0.37      | 0.41       | 0.35                    | 0.42                 | 0.36             |
| 247         W150x30         130x8         F         W         6.4         5870         300         300         627         0.6         0.96         0.98         0.92           248         W150x30         130x8         F         W         0.4         5870         300         300         418         0.4         0.97         0.98         0.92           249         W150x30         130x8         F         W         0.4         5870         230         350         325         0.4         0.95         0.98         0.92           250         W150x30         130x8         F         W         1.1         5870         300         300         371         0.6         0.68         0.58         0.54           251         W150x30         130x8         F         W         1.1         5870         300         300         371         0.6         0.59         0.68         0.54           252         W150x30         130x8         F         W         1.1         5870         300         300         371         0.6         0.59         0.68         0.54           254         W150x30         130x8         F         W         1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 246      | W150x30       | 175x5       | ŋ        | S        | 1.5 | 5540               | 230              | 350    | 151     | 9.4                  | 0.38      | 0.41       | 0.35                    | 0.42                 | 0.36             |
| 248         W150x30         130x8         F         W         6.4         5870         300         300         418         0.4         0.97         0.98         0.92           249         W150x30         130x8         F         W         0.4         5870         230         350         487         0.6         0.95         0.98         0.92           250         W150x30         130x8         F         W         1.1         5870         300         300         371         0.6         0.68         0.68         0.54           251         W150x30         130x8         F         W         1.1         5870         300         300         371         0.6         0.68         0.54           253         W150x30         130x8         F         W         1.1         5870         300         300         371         0.6         0.59         0.68         0.54           254         W150x30         130x8         F         W         1.1         5870         300         300         371         0.6         0.59         0.68         0.54           255         W150x30         130x8         F         W         1.1         587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 247      | W150x30       | 130x8       | ഥ        | ≱        | 0.4 | 5870               | 300              | 300    | 627     | 9.0                  | 96.0      | 0.98       | 0.92                    | 0.99                 | 0.94             |
| 249         W150x30         130x8         F         W         6.4         5870         230         350         487         0.6         0.95         0.98         0.92           250         W150x30         130x8         F         W         0.4         5870         230         350         371         0.6         0.95         0.98         0.92           251         W150x30         130x8         F         W         1.1         5870         300         300         371         0.6         0.64         0.68         0.54           253         W150x30         130x8         F         W         1.1         5870         300         300         371         0.6         0.59         0.68         0.54           254         W150x30         130x8         F         W         1.1         5870         300         300         371         0.6         0.59         0.68         0.54           255         W150x30         130x8         F         W         1.1         5870         300         300         247         0.4         0.61         0.68         0.54           255         W150x30         130x8         F         W         1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 248      | W150x30       | 130x8       | Œ,       | ≥        | 0.4 | 5870               | 300              | 300    | 418     | 0.4                  | 0.97      | 0.98       | 0.92                    | 0.99                 | 0.94             |
| 250         W150x30         130x8         F         W         0.4         5870         230         350         325         0.4         0.95         0.98         0.92           251         W150x30         130x8         F         W         1.1         5870         300         300         371         0.6         0.68         0.58         0.54           252         W150x30         130x8         F         W         1.1         5870         300         300         371         0.6         0.59         0.68         0.54           253         W150x30         130x8         F         W         1.1         5870         300         300         371         0.6         0.59         0.68         0.54           255         W150x30         130x8         F         W         1.1         5870         300         300         247         0.4         0.61         0.68         0.54           255         W150x30         130x8         F         W         1.1         5870         330         350         0.6         0.55         0.68         0.54           256         W150x30         130x8         F         W         1.1         58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | W150x30       | 130x8       | <u> </u> | ≱        | 0.4 | 5870               | 230              | 350    | 487     | 9.0                  | 0.95      | 0.98       | 0.92                    | 0.99                 | 0.94             |
| 251         W150x30         130x8         F         W         1.1         5870         300         300         371         0.6         0.68         0.68         0.54           252         W150x30         130x8         F         W         1.1         5870         300         370         0.6         0.69         0.68         0.54           253         W150x30         130x8         F         W         1.1         5870         300         371         0.6         0.59         0.68         0.54           255         W150x30         130x8         F         W         1.1         5870         300         371         0.6         0.59         0.68         0.54           255         W150x30         130x8         F         W         1.1         5870         300         370         0.4         0.61         0.68         0.54           256         W150x30         130x8         F         W         1.1         5870         230         350         0.6         0.55         0.68         0.54           256         W150x30         130x8         F         W         1.1         5870         230         350         0.6         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | W150x30       | 130x8       | <u></u>  | ≩        | 0.4 | 5870               | 230              | 350    | 325     | 9.0                  | 0.95      | 0.98       | 0.92                    | 0.99                 | 0.94             |
| W       1.1       5870       300       300       371       0.6       0.64       0.68       0.54         W       1.1       5870       300       300       371       0.6       0.59       0.68       0.54         W       1.1       5870       300       300       247       0.4       0.61       0.68       0.54         W       1.1       5870       330       350       319       0.6       0.55       0.68       0.54         W       1.1       5870       230       350       319       0.6       0.55       0.68       0.54         F- Parallel to the flanges       G- Parallel to the web                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | W150x30       | 130x8       | 江        | ≱        | 1.1 | 5870               | 300              | 300    | 371     | 9.0                  | 89.0      | 99.0       | 0.54                    | 99.0                 | 0.54             |
| W       1.1       5870       300       300       371       0.6       0.59       0.68       0.54         W       1.1       5870       300       300       247       0.4       0.61       0.68       0.54         W       1.1       5870       230       350       319       0.6       0.55       0.68       0.54         W       1.1       5870       230       350       319       0.6       0.55       0.68       0.54         F- Parallel to the flanges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 252      | W150x30       | 130x8       | Ľ,       | ≥        |     | 5870               | 300              | 300    | 371     | 9.0                  | 0.64      | 89.0       | 0.54                    | 99.0                 | 0.54             |
| W       1.1       5870       300       300       371       0.6       0.59       0.68       0.54         W       1.1       5870       300       300       247       0.4       0.61       0.68       0.54         W       1.1       5870       230       350       319       0.6       0.55       0.68       0.54         F - Parallel to the flanges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 253      | W150x30       | 130x8       | Ľ,       | ≩        | =   | 5870               | 300              | 300    | 371     | 9.0                  | 0.59      | 89.0       | 0.54                    | 99.0                 | 0.54             |
| W         1.1         5870         300         300         247         0.4         0.61         0.68         0.54           W         1.1         5870         230         350         319         0.6         0.55         0.68         0.54           F- Parallel to the flanges         G- Parallel to the web                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 254      | W150x30       | 130x8       | Ľ,       | ≱        | 1:1 | 5870               | 300              | 300    | 371     | 9.0                  | 0.59      | 99.0       | 0.54                    | 99.0                 | 0.54             |
| W 1.1 5870 230 350 319 0.6 0.55 0.68 0.54<br>F - Parallel to the flanges G - Parallel to the web                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 255      | W150x30       | 130x8       | Ľ        | ≩        | Ξ   | 5870               | 300              | 300    | 247     | 9.4                  | 0.61      | 99.0       | 0.54                    | 99.0                 | 0.54             |
| F - Parallel to the flanges G - Parallel to the web                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 256      | W150x30       | 130x8       | Œ,       | <b>≥</b> | 1.1 | 5870               | 230              | 350    | 319     | 9.0                  | 0.55      | 0.68       | 0.54                    | 99.0                 | 0.54             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a) D - C | rientation of | reinforcin  | g plate  | Š        |     | F - Parall         | el to the fl     | anges  |         |                      | G - Paral | lel to the | web                     |                      |                  |
| Lyn Derting min of the mindered actions W. Wood pair of the rolled cection C - Grong axis of the rolled section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 1             | of the same | 62000    | - 100    | 9   |                    | Lavie of th      |        | uoi jos |                      | C - Stron | o avic of  | Ped                     | section              |                  |

c)  $\lambda$  - Sienderness parameter. d)  $P_0$  - Pre-load e)  $P_{u2}$  - Load for the finite element analysis d) P<sub>0</sub> - Pre-load

e)  $P_{u2}$  - Load carrying capacity of the I-section (predicted using the SSRC curve 2)  $P_{ry}$  - Yield strength of the reinforced column

g) Pr1 - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1)

h)  $P_{\it l2}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2) i) P<sub>rel</sub> - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)

j) P<sub>rc2</sub> - Load carrying capacity of the reinforced column (predicted using the CSA curve 2)

Table B.1 (cont'd)

|          |                                              |             |          |       |     |                    |                             |         | -                             |                      |           |                         |                     |                                 |                                       |
|----------|----------------------------------------------|-------------|----------|-------|-----|--------------------|-----------------------------|---------|-------------------------------|----------------------|-----------|-------------------------|---------------------|---------------------------------|---------------------------------------|
| FEA      |                                              |             |          |       |     |                    | Yield Strength              | trength | ٦<br>ع                        | Freioad              |           |                         |                     |                                 |                                       |
| model    | I-section                                    | Plate       | <u>"</u> | æ     | مح  | Arca               | I-section                   | plate   | $\mathbf{P}_{0}^{\mathbf{q}}$ | $P_0/P_{u2}^{\circ}$ | Pica/Pry  | $P_{rl}/P_{ry}^{\ \ B}$ | $P_{r2}/P_{ry}^{h}$ | $P_{rcl}/P_{ry}^{l}$            | $P_{rc2}/P_{ry}^{\ j}$                |
| Š.       |                                              |             |          |       |     | (mm <sup>2</sup> ) | (MPa)                       | (MPa)   | (kN)                          |                      |           |                         |                     | 0<br>0<br>0<br>0<br>0<br>0<br>0 | • • • • • • • • • • • • • • • • • • • |
| (E)      | (2)                                          | (3)         | €        | (5)   | 9   | (2)                | (8)                         | (6)     | (10)                          | (11)                 | (12)      | (13)                    | (14)                | (15)                            | (16)                                  |
| 257      | W150x30                                      | 130x8       | Ľ        | ≱     | =   | 5870               | 230                         | 350     | 212                           | 0.4                  | 0.57      | 89.0                    | 0.54                | 99.0                            | 0.54                                  |
| 258      | W150x30                                      | 130x8       | Œ,       | ≩     | 1.5 | 5870               | 300                         | 300     | 242                           | 9.0                  | 0.37      | 0.41                    | 0.35                | 0.45                            | 0.36                                  |
| 259      | W150x30                                      | 130x8       | Ľ        | ≩     | 1.5 | 5870               | 300                         | 300     | 162                           | 0.4                  | 0.38      | 0.41                    | 0.35                | 0.42                            | 0.36                                  |
| 260      | W150x30                                      | 130x8       | Ľ,       | ≩     | 1.5 | 5870               | 230                         | 350     | 209                           | 9.0                  | 0.35      | 0.41                    | 0.35                | 0.42                            | 0.36                                  |
| 261      | W150x30                                      | 130x8       | íz.      | ≩     | 1.5 | 5870               | 230                         | 350     | 140                           | 0.4                  | 0.36      | 0.41                    | 0.35                | 0.42                            | 0.36                                  |
| 262      | W150x30                                      | 130x8       | <u>r</u> | S     | 0.4 | 5870               | 300                         | 300     | <b>617</b>                    | 9.0                  | 0.94      | 0.98                    | 0.92                | 0.00                            | 0.94                                  |
| 263      | W150x30                                      | 130x8       | ᄄ        | S     | 0.4 | 5870               | 300                         | 300     | 412                           | 0.4                  | 0.95      | 0.98                    | 0.92                | 0.00                            | 0.94                                  |
| 264      | W150x30                                      | 130x8       | Œ        | S     | 0.4 | 5870               | 230                         | 350     | 481                           | 9.0                  | 0.95      | 0.98                    | 0.92                | 0.99                            | 0.94                                  |
|          | W150x30                                      | 130x8       | Ľ        | S     | 0.4 | 5870               | 230                         | 350     | 320                           | 0.4                  | 0.95      | 0.98                    | 0.92                | 0.09                            | 0.94                                  |
| %<br>191 | W150x30                                      | 130x8       | Ľ        | S     | Ξ   | 5870               | 300                         | 300     | 329                           | 9.0                  | 0.72      | 99.0                    | 0.54                | 99.0                            | 0.54                                  |
|          | W150x30                                      | 130x8       | Ľ        | S     | Ξ:  | 5870               | 300                         | 300     | 329                           | 9.0                  | 0.67      | 89.0                    | 0.54                | 99.0                            | 0.54                                  |
| 268      | W150x30                                      | 130x8       | <u> </u> | S     | =   | 5870               | 300                         | 300     | 329                           | 9.0                  | 0.63      | 89.0                    | 0.54                | 99.0                            | 0.54                                  |
| 569      | W150x30                                      | 130x8       | Œ        | S     | Ξ   | 5870               | 300                         | 300     | 329                           | 9.0                  | 0.65      | 99.0                    | 0.54                | 99.0                            | 0.54                                  |
| 270      | W150x30                                      | 130x8       | 뜨        | S     | =   | 5870               | 300                         | 300     | 219                           | 0.4                  | 0.65      | 99.0                    | 0.54                | 99.0                            | 0.54                                  |
| 271      | W150x30                                      | 130x8       | ഥ        | S     | -:  | 5870               | 230                         | 320     | 282                           | 9.0                  | 0.60      | 89.0                    | 0.54                | 99.0                            | 0.54                                  |
| 272      | W150x30                                      | 130x8       | ഥ        | S     | 1:1 | 5870               | 230                         | 350     | 188                           | 0.4                  | 0.62      | 0.68                    | 0.54                | 99.0                            | 0.54                                  |
| a) D - O | a) D - Orientation of reinforcing plates     | reinforcin  | g plate  | S     |     | F - Parall         | F - Parallel to the flanges | ınges   |                               |                      | G - Paral | G - Parallel to the web | web                 |                                 |                                       |
| h) R - R | b) B - Buckling axis of the reinforced colur | of the rein | forced   | colum | ş   | W - Wea            | - Weak axis of the rolled   | _       | section                       |                      | S - Stron | Strong axis of the      | rolled              | section                         |                                       |
| 2 (2)    | UCRIIIS HAIN                                 |             | 1        |       | =   |                    |                             |         |                               | ,                    |           |                         |                     | 0.000                           | ć                                     |

c)  $\lambda$  - Slenderness parameter. d)  $P_0$  - Pre-load c)  $P_{u2}$  - Load f)  $P_{tea}$  - Load carrying capacity obtained from the finite element analysis d) P<sub>0</sub> - Pre-load

e)  $P_{u2}$  - Load carrying capacity of the I-section (predicted using the SSRC curve 2)

P<sub>ry</sub> - Yield strength of the reinforced column

g) Pr1 - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1) h)  $P_{r2}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2)

i)  $P_{\rm rel}$  - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)

Table B.1 (cont'd)

| FEA        |                                             |            |          |        |            |                    | Yield Strength              | trength | Pre     | Preload        |           |                         |                       |                      |                                 |
|------------|---------------------------------------------|------------|----------|--------|------------|--------------------|-----------------------------|---------|---------|----------------|-----------|-------------------------|-----------------------|----------------------|---------------------------------|
| model      | I-section                                   | Plate      | <b>"</b> | æ      | γc         | Area               | I-section                   | plate   | $P_0^d$ | $P_0/P_{u2}^c$ | Pfcu/Pry  | $P_{rl}/P_{ry}^{\ B}$   | $P_{r2}/P_{ry}^{\ h}$ | $P_{rel}/P_{ry}^{i}$ | $P_{rc2}/P_{ry}^{\ j}$          |
| S.         |                                             |            |          |        |            | (mm <sup>2</sup> ) | (MPa)                       | (MPa)   | (kN)    |                |           |                         |                       |                      | 5<br>0<br>0<br>0<br>0<br>8<br>8 |
| Ξ          | (2)                                         | (3)        | <u>4</u> | (5)    | 9          | 6                  | (8)                         | (6)     | (10)    | (11)           | (12)      | (13)                    | (14)                  | (15)                 | (10)                            |
| 273        | W150x30                                     | 130x8      | 뜨        | S      | 1.5        | 5870               | 300                         | 300     | 213     | 9.0            | 0.44      | 0.41                    | 0.35                  | 0.42                 | 0.36                            |
| 274        | W150x30                                     | 130x8      | Œ        | S      | 1.5        | 5870               | 300                         | 300     | 142     | 0.4            | 0.45      | 0.41                    | 0.35                  | 0.42                 | 0.36                            |
| 275        | W150x30                                     | 130x8      | Ľ.       | S      | 1.5        | 5870               | 230                         | 350     | 184     | 9.0            | 0.43      | 0.41                    | 0.35                  | 0.42                 | 0.36                            |
| 276        | W150x30                                     | 130x8      | Œ,       | S      | 1.5        | 5870               | 230                         | 350     | 123     | 0.4            | 0.44      | 0.41                    | 0.35                  | 0.45                 | 0.36                            |
| 777        | W150x30                                     | 175x8      | Ö        | ≩      | 0.4        | 6590               | 300                         | 300     | 900     | 9.0            | 0.96      | 0.98                    | 0.92                  | 0.99                 | 0.94                            |
| 278        | W150x30                                     | 175x8      | ŋ        | ≩      | 0.4        | 6590               | 300                         | 300     | 373     | 0.4            | 0.96      | 0.98                    | 0.92                  | 0.99                 | 0.94                            |
| 279        | W150x30                                     | 175x8      | Ö        | ≱      | 0.4        | 0659               | 230                         | 350     | 444     | 9.0            | 96.0      | 0.98                    | 0.92                  | 0.99                 | 0.94                            |
| 280        | W150x30                                     | 175x8      | Ö        | ≩      | 0.4        | 0659               | 230                         | 350     | 296     | 0.4            | 0.96      | 0.98                    | 0.92                  | 0.99                 | 0.94                            |
|            | W150x30                                     | 175x8      | Ö        | ≱      | ==         | 9                  | 300                         | 300     | 961     | 9.0            | 0.72      | 99.0                    | 0.54                  | 99.0                 | 0.54                            |
| 282<br>192 | W150x30                                     | 175x8      | Ö        | ≩      | =          | 6590               | 300                         | 300     | 961     | 9.0            | 0.65      | 99.0                    | 0.54                  | 99.0                 | 0.54                            |
|            | W150x30                                     | 175x8      | Ö        | ≩      | Ξ:         | 6590               | 300                         | 300     | 961     | 9.0            | 0.59      | 89.0                    | 0.54                  | 99.0                 | 0.54                            |
| 284        | W150x30                                     | 175x8      | Ö        | ≥      | Ξ          | 6590               | 300                         | 300     | 961     | 9.0            | 09.0      | 89.0                    | 0.54                  | 99.0                 | 0.54                            |
| 285        | W150x30                                     | 175x8      | Ö        | ≩      | -:         | 6590               | 300                         | 300     | 131     | 0.4            | 0.61      | 99.0                    | 0.54                  | 99.0                 | 0.54                            |
| 286        | W150x30                                     | 175x8      | Ö        | ≩      | =          | 6590               | 230                         | 350     | 174     | 9.0            | 0.62      | 89.0                    | 0.54                  | 99.0                 | 0.54                            |
| 287        | W150x30                                     | 175x8      | Ö        | ≱      | Ξ          | 6590               | 230                         | 350     | 911     | 0.4            | 0.64      | 99.0                    | 0.54                  | 99.0                 | 0.54                            |
| 288        | W150x30                                     | 175x8      | Ö        | ≩      | 1.5        | 6590               | 300                         | 300     | 114     | 9.0            | 0.38      | 0.41                    | 0.35                  | 0.42                 | 0.36                            |
| a) D - O   | a) D - Orientation of reinforcing plates    | reinforcin | g plate  | دة     |            | F - Paral          | F - Parallel to the flanges | anges   |         |                | G - Paral | G - Parallel to the web | web                   |                      |                                 |
| 0 0 0      | sing sailthea                               | aios che   | 60000    | mil Oo | <u> </u>   | W Wee              | Lavie of th                 |         | action  |                | S. Stron  | Strong axis of the rol  | led                   | section              |                                 |
| a - a ía   | D) B - Buckling axis of the femiology colum | ol me ien  | 22.50    |        | <b>=</b> 1 | ٠.                 | - Wear axis of the follow   |         |         | ,              |           |                         | }                     |                      | 6                               |

e)  $P_{u2}$  - Load carrying capacity of the I-section (predicted using the SSRC curve 2)  $P_{\boldsymbol{\eta}}$  - Yield strength of the reinforced column f) P<sub>fea</sub> - Load carrying capacity obtained from the finite element analysis d) P<sub>0</sub> - Pre-load c) λ - Slenderness parameter.

g) P<sub>r1</sub> - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1) h)  $P_{r2}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2)

i)  $P_{\rm rel}$  - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)

Table B.1 (cont'd)

|          | FEA   |                                              |             |                |    |     |                    | Yield Strength                     | Irength     | Pre   | Preload        |                                                    |                                      |                         |                      |                                           |
|----------|-------|----------------------------------------------|-------------|----------------|----|-----|--------------------|------------------------------------|-------------|-------|----------------|----------------------------------------------------|--------------------------------------|-------------------------|----------------------|-------------------------------------------|
| Ξ        | model | I-section                                    | Plate       | D <sub>a</sub> | B  | ۲ς  | Area               | l-section                          | plate       | Pod   | $P_0/P_{u2}^c$ | Pfeu/Pry                                           | $P_{rl}/P_{ry}^{8}$                  | $P_{r2}/P_{ry}^{\ \ h}$ | $P_{rcl}/P_{ry}^{l}$ | $P_{rc2}/P_{ry}^{\ j}$                    |
|          | Š.    |                                              |             |                |    |     | (mm <sup>2</sup> ) | (MPa)                              | (MPa)       | (kN)  |                |                                                    |                                      |                         |                      | •<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• |
| :        | Ξ     | (2)                                          | (3)         | ₹              | 3  | 9   | 6                  | (8)                                | (6)         | (10)  | (11)           | (12)                                               | (13)                                 | (14)                    | (15)                 | (16)                                      |
| 1,,      | 289   | W150x30                                      | 175x8       | 9              | ≥  | 1.5 | 6590               | 300                                | 300         | 9/    | 0.4            | 0.39                                               | 0.41                                 | 0.35                    | 0.42                 | 0.36                                      |
| . 1      | 290   | W150x30                                      | 175x8       | ŋ              | ≥  | 1.5 | 9                  | 230                                | 350         | 901   | 9.0            | 0.40                                               | 0.41                                 | 0.35                    | 0.42                 | 0.36                                      |
| . 1      | 167   | W150x30                                      | 175x8       | ŋ              | ≥  | 1.5 | 6590               | 230                                | 350         | 7.1   | 0.4            | 0.41                                               | 0.41                                 | 0.35                    | 0.42                 | 0.36                                      |
|          | 292   | W150x30                                      | 175x8       | Ö              | S  | 0.4 | 6590               | 300                                | 300         | 636   | 9.0            | 0.98                                               | 0.98                                 | 0.92                    | 0.99                 | 0.94                                      |
|          | 293   | W150x30                                      | 175x8       | Ö              | S  | 0.4 | 0629               | 300                                | 300         | 424   | 0.4            | 0.98                                               | 0.98                                 | 0.92                    | 0.99                 | 0.94                                      |
|          | 994   | W150x30                                      | 175x8       | Ö              | S  | 0.4 | 6590               | 230                                | 350         | 494   | 9.0            | 0.97                                               | 0.98                                 | 0.92                    | 0.99                 | 0.94                                      |
| (1       | 295   | W150x30                                      | 175x8       | Ö              | S  | 0.4 | 6590               | 230                                | 350         | 330   | 0.4            | 0.97                                               | 0.98                                 | 0.92                    | 0.99                 | 0.94                                      |
| (4       | 296   | W150x30                                      | 175x8       | ŋ              | S  | -:  | 6590               | 300                                | 300         | 419   | 9.0            | 0.62                                               | 0.68                                 | 0.54                    | 99.0                 | 0.54                                      |
|          | 767   | W150x30                                      | 175x8       | Ö              | S  | -:  | 6590               | 300                                | 300         | 419   | 9.0            | 0.58                                               | 0.68                                 | 0.54                    | 99.0                 | 0.54                                      |
| 193      | 298   | W150x30                                      | 175x8       | ŋ              | S  | =   | 6590               | 300                                | 300         | 419   | 9.0            | 0.55                                               | 0.68                                 | 0.54                    | 99.0                 | 0.54                                      |
|          | 299   | W150x30                                      | 175x8       | ŋ              | S  | Ξ   | 6590               | 300                                | 300         | 419   | 9.0            | 0.57                                               | 99.0                                 | 0.54                    | 99.0                 | 0.54                                      |
| (~)      | 300   | W150x30                                      | 175x8       | g              | S  | =   | 6590               | 300                                | 300         | 280   | 0.4            | 0.58                                               | 99.0                                 | 0.54                    | 99.0                 | 0.54                                      |
| (4)      | 301   | W150x30                                      | 175x8       | Ö              | S  | Ξ   | 6590               | 230                                | 350         | 352   | 9.0            | 0.49                                               | 99.0                                 | 0.54                    | 99.0                 | 0.54                                      |
| . (~1    | 302   | W150x30                                      | 175x8       | Ö              | S  | Ξ:  | 6590               | 230                                | 350         | 235   | 0.4            | 0.52                                               | 0.68                                 | 0.54                    | 99.0                 | 0.54                                      |
| G)       | 303   | W150x30                                      | 175x8       | Ö              | S  | 1.5 | 6590               | 300                                | 300         | 277   | 9.0            | 0.38                                               | 0.41                                 | 0.35                    | 0.42                 | 0.36                                      |
| (-)      | 304   | W150x30                                      | 175x8       | Ö              | S  | 1.5 | 6590               | 300                                | 300         | 184   | 0.4            | 0.39                                               | 0.41                                 | 0.35                    | 0.42                 | 0.36                                      |
| <b>a</b> | 0-0   | a) D - Orientation of reinforcing plates     | reinforcin  | g plate        | Š. |     | F - Parall         | F - Parallel to the flanges        | anges       | į     |                | G - Paral                                          | G - Parallel to the web              | web                     |                      |                                           |
| 1        |       | , of the sail of                             | of the rain | forced         |    |     | W. Wen             | W. West axis of the rolled section | e rolled or | rtion |                | S - Stron                                          | S. Strong axis of the rolled section | he rolled               | section              |                                           |
| õ        | -     | o) B - Buckling axis of the femiology column |             | フン<br>5<br>5   |    |     | 30 AA - AA         | 11 10 CIVE 4                       | らりこうこと      | 553   |                | ֖֭֭֓֞֝֞֜֜֝֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֓֓֡֓֡֓֡֓֡֓֡֓֡֓֡ |                                      | 11::::                  |                      |                                           |

b) B - Buckling axis of the reinforced column M - M = M axis of the following c)  $\lambda$  - Slendemess parameter. (a)  $R_0 - R$  - Pre-load (b)  $R_0 - R$  - Load carrying (c)

e)  $P_{u2}$  - Load carrying capacity of the I-section (predicted using the SSRC curve 2) nent analysis  $P_{ry}$  - Yield strength of the reinforced column

f) P<sub>fea</sub> - Load carrying capacity obtained from the finite element analysis

g) Pri - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1)

h)  $P_{r2}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2) i) Prel - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)

Table B.1 (cont'd)

| FEA       |                                            |             |          |                |          |                    | Yield Strength                    | rength     | Pre     | Preload        |                        |                                                         |                         |                                   |                          |
|-----------|--------------------------------------------|-------------|----------|----------------|----------|--------------------|-----------------------------------|------------|---------|----------------|------------------------|---------------------------------------------------------|-------------------------|-----------------------------------|--------------------------|
| model     | model I-section                            | Plate       | <u>م</u> | B <sub>p</sub> | չ        | Area               | I-section                         | plate      | $P_0^d$ | $P_0/P_{u2}^c$ | $P_{fca}/P_{ry}^{\ f}$ | $P_{rl}/P_{ry}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | $P_{r2}/P_{ry}^{\ \ h}$ | P <sub>ICI</sub> /P <sub>IY</sub> | $P_{rc2}/P_{ry}^{\ \ j}$ |
| No.       |                                            |             |          |                |          | (mm <sup>2</sup> ) | (MPa)                             | (MPa)      | (kN)    |                |                        |                                                         |                         |                                   | 1<br>2<br>0<br>0<br>0    |
| Ξ         | (2)                                        | (3)         | <b>€</b> | (5)            | 9        | 6                  | (8)                               | <u>6</u>   | (10)    | (11)           | (12)                   | (13)                                                    | (14)                    | (15)                              | (16)                     |
| 305       | W150x30                                    | 175x8       | g        | S              | 1.5      | 6590               | 230                               | 350        | 244     | 9.0            | 0.35                   | 0.41                                                    | 0.35                    | 0.42                              | 0.36                     |
| 306       | W150x30                                    | 175x8       | Ö        | S              | 1.5      | 6590               | 230                               | 350        | 162     | 0.4            | 0.37                   | 0.41                                                    | 0.35                    | 0.45                              | 0.36                     |
| 307       | W310x179                                   | 350x16      | Ö        | ≯              | 0.4      | 34000              | 300                               | 300        | 3468    | 9.0            | 0.97                   | 0.98                                                    | 0.92                    | 0.99                              | 0.94                     |
| 308       | W310x179                                   | 350x16      | Ö        | ≯              | <b>:</b> | 34000              | 300                               | 300        | 1330    | 9.0            | 0.62                   | 0.68                                                    | 0.54                    | 99.0                              | 0.54                     |
| 300       | W310x179                                   | 350x16      | g        | S              | Ξ        | 34000              | 300                               | 300        | 2480    | 9.0            | 0.59                   | 99.0                                                    | 0.54                    | 99.0                              | 0.54                     |
| 310       | W310x179                                   | 350x16      | Ľ.       | S              | 1.5      | 34000              | 300                               | 300        | 1276    | 9.0            | 0.41                   | 0.41                                                    | 0.35                    | 0.42                              | 0.36                     |
| 311       | W150x30                                    | 130x5       | Ľ        | S              | Ξ:       | 2090               | 300                               | 300        | 341     | 9.0            | 0.63                   | 99.0                                                    | 0.54                    | 99.0                              | 0.54                     |
|           | W150x30                                    | 130x5       | Ľ,       | S              | 1.5      | 2090               | 300                               | 300        | 222     | 9.0            | 0.44                   | 0.41                                                    | 0.35                    | 0.42                              | 0.36                     |
| EIE<br>94 | W310x179                                   | 350x25      | Ö        | ≥              | 0.4      | 40300              | 300                               | 300        | 3353    | 9.0            | 96.0                   | 0.98                                                    | 0.92                    | 0.00                              | 0.94                     |
| 314       | W310x179                                   | 350x25      | Ö        | ≥              | Ξ:       | 40300              | 300                               | 300        | 1151    | 9.0            | 0.63                   | 99.0                                                    | 0.54                    | 99.0                              | 0.54                     |
| 315       | W310x179                                   | 350x25      | Ö        | ≥              | 1.5      | 40300              | 300                               | 300        | 899     | 9.0            | 0.41                   | 0.41                                                    | 0.35                    | 0.42                              | 0.36                     |
| 316       | W310x179                                   | 350x16      | g        | ≯              | 1.1      | 34000              | 300                               | 300        | 1330    | 9.0            | 99.0                   | 99.0                                                    | 0.54                    | 99.0                              | 0.54                     |
| 317       | W310x179                                   | 350x16      | g        | ≯              | 1.5      | 34000              | 300                               | 300        | 805     | 9.0            | 0.42                   | 0.41                                                    | 0.35                    | 0.99                              | 0.36                     |
| a) D - C  | a) D - Orientation of reinforcing plates   | reinforcing | g plate  | S              |          | F - Parall         | F - Parallel to the flanges       | anges      |         |                | G - Paral              | G - Parallel to the web                                 | web                     |                                   |                          |
| F) D      | Anothing avie                              | of the rain | forced.  |                | 2        | W . Wea            | . Weak axis of the rolled section | e rolled s | ection  |                | S - Stron              | S - Strong axis of the rolled                           | he rolled               | section                           |                          |
| 1 - 0 (0  | o) b - bucking axis of the fellioleca coin |             | 3015     |                | =        |                    | 1 10 01VB 4                       | 2 20101    |         |                |                        |                                                         |                         |                                   |                          |

e)  $P_{u2}$  - Load carrying capacity of the I-section (predicted using the SSRC curve 2) c)  $\lambda$  - Slenderness parameter. d)  $P_0$  - Pre-load e)  $P_{u2}$  - Load f)  $P_{tca}$  - Load carrying capacity obtained from the finite element analysis d) P<sub>0</sub> - Pre-load

g) P<sub>rl</sub> - Load carrying capacity of the reinforced column (predicted using the SSRC curve 1)

h)  $P_{r2}$  - Load carrying capacity of the reinforced column (predicted using the SSRC curve 2) i)  $P_{rc1}$  - Load carrying capacity of the reinforced column (predicted using the CSA curve 1)

## Appendix C

Statistical Analysis Data for the Professional Factors for the Columns from Group 2

## Statistical Analysis Data for the Professional Factors for the Columns from Group 2

This appendix serves as a supplement to Chapter 5. It presents the statistical analysis data used to obtain the professional factors for the columns from group 2 (columns reinforced with plates parallel to the flanges and buckling about the weak axis of the rolled section and columns reinforced with plates parallel to the web and buckling about the strong axis of the rolled section). The statistical analysis procedures for the columns from group2 are same as those from group 1 presented in Chapter 5.

Tables C.1 to C.3 present the analysis data for the simulated professional factors for columns from group 2 for values of the slenderness ratio,  $\lambda$ , of 0.4, 1.1 and 1.5 respectively. Tables C.4 to C.6 present the analysis data for the normalized professional factors for columns from group 2 for values of the slenderness ratio,  $\lambda$ , of 0.4, 1.1 and 1.5 respectively.

Plots of the simulated professional ratio,  $\rho_s$ , versus out-of-straightness for columns from group 2 for values of the slenderness ratio,  $\lambda$ , of 0.4, 1.1 and 1.5 are presented in Figures C.1, C.2 and C.3 respectively. The normalized professional ratio for l = 0.4, 1.1, and 1.5 are plotted in Figures C.4, C.5, and C.6 respectively.

Table C.1 Simulated Professional Factors for Columns form Group 2 ( $\lambda = 0.4$ )

| FEA   |     |     | Out-of-      |                  | SSRC 1             | SSRC 2             | CSA 1               | CSA 2               |
|-------|-----|-----|--------------|------------------|--------------------|--------------------|---------------------|---------------------|
| model | D   | В   | Straightness | $P_{fea}/P_{ry}$ | $ ho_{s}$          | $ ho_{s}$          | $ ho_{s}$           | $ ho_{s}$           |
| No.   |     |     | $\delta_0$   |                  | $(P_{fea}/P_{rl})$ | $(P_{fea}/P_{r2})$ | $(P_{fea}/P_{rc1})$ | $(P_{fea}/P_{rc2})$ |
| (1)   | (2) | (3) | (4)          | (5)              | (6)                | (7)                | (8)                 | (9)                 |
| 17    | F   | W   | L/8000       | 1.005            | 1.025              | 1.094              | 1.012               | 1.069               |
| 18    | F   | W   | L/2000       | 0.987            | 1.007              | 1.074              | 0.994               | 1.049               |
| 19    | F   | W   | L/1000       | 0.973            | 0.993              | 1.059              | 0.980               | 1.035               |
| 20    | F   | W   | L/1000       | 0.978            | 0.997              | 1.064              | 0.985               | 1.040               |
| 21    | F   | W   | L/1000       | 0.958            | 0.978              | 1.043              | 0.965               | 1.019               |
| 22    | F   | W   | L/1000       | 0.961            | 0.981              | 1.047              | 0.968               | 1.022               |
| 66    | G   | S   | L/1000       | 0.934            | 0.953              | 1.017              | 0.941               | 0.993               |
| 67    | G   | S   | L/1000       | 0.940            | 0.959              | 1.023              | 0.947               | 1.000               |
| 68    | G   | S   | L/1000       | 0.911            | 0.930              | 0.992              | 0.918               | 0.969               |
| 69    | G   | S   | L/1000       | 0.917            | 0.935              | 0.998              | 0.923               | 0.975               |
| 84    | F   | W   | L/1000       | 0.977            | 0.996              | 1.063              | 0.984               | 1.038               |
| 85    | F   | W   | L/1000       | 0.980            | 1.000              | 1.067              | 0.987               | 1.042               |
| 86    | F   | W   | L/1000       | 0.952            | 0.971              | 1.036              | 0.959               | 1.012               |
| 87    | F   | W   | L/1000       | 0.956            | 0.975              | 1.040              | 0.963               | 1.016               |
| 115   | F   | W   | L/1000       | 0.980            | 1.000              | 1.067              | 0.987               | 1.042               |
| 116   | F   | W   | L/1000       | 0.983            | 1.003              | 1.070              | 0.990               | 1.045               |
| 117   | F   | W   | L/1000       | 0.963            | 0.983              | 1.049              | 0.971               | 1.025               |
| 118   | F   | W   | L/1000       | 0.966            | 0.986              | 1.051              | 0.973               | 1.027               |
| 160   | G   | S   | L/1000       | 0.929            | 0.948              | 1.011              | 0.936               | 0.988               |
| 161   | G   | S   | L/1000       | 0.937            | 0.956              | 1.020              | 0.944               | 0.996               |
| 162   | G   | S   | L/1000       | 0.894            | 0.912              | 0.973              | 0.900               | 0.950               |
| 163   | G   | S   | L/1000       | 0.902            | 0.920              | 0.981              | 0.908               | 0.959               |
| 175   | F   | W   | L/1000       | 0.972            | 0.992              | 1.058              | 0.979               | 1.033               |
| 176   | F   | W   | L/1000       | 0.978            | 0.998              | 1.065              | 0.986               | 1.040               |
| 177   | F   | W   | L/1000       | 0.947            | 0.966              | 1.031              | 0.954               | 1.007               |
| 178   | F   | W   | L/1000       | 0.952            | 0.971              | 1.036              | 0.959               | 1.012               |
| 228   | G   | S   | L/8000       | 0.981            | 1.001              | 1.068              | 0.989               | 1.044               |
| 229   | G   | S   | L/2000       | 0.981            | 1.000              | 1.067              | 0.988               | 1.043               |
| 230   | G   | S   | L/1000       | 0.968            | 0.987              | 1.053              | 0.975               | 1.029               |
| 231   | G   | S   | L/1000       | 0.972            | 0.992              | 1.058              | 0.980               | 1.034               |
| 232   | G   | S   | L/1000       | 0.951            | 0.970              | 1.035              | 0.958               | 1.011               |
| 233   | G   | S   | L/1000       | 0.955            | 0.974              | 1.039              | 0.962               | 1.015               |

Note:  $\Delta_0$  - Initial imperfection

Prv - Yield strength of reinforced column

P<sub>fea</sub> - Finite elemetn analysis after reinforcing

P<sub>rl</sub> - Capacity after reinforcing (SSRC1)

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>rc1</sub> - Capacity after reinforcing (CSA1)

P<sub>rc2</sub> - Capacity after reinforcing (CSA2)

L - Column length

D - Orientation of reinforcing plates

F - Parallel to the flanges

G - Parallel to the web

B - Buckling axis

W - Weak axis of the rolled section

S - Strong axis of the rolled section

Table C.1 (Cont'd)

| FEA   | •   |     | Out-of-      |                  | SSRC 1             | SSRC 2             | CSA I               | CSA 2               |
|-------|-----|-----|--------------|------------------|--------------------|--------------------|---------------------|---------------------|
| model | D   | В   | Straightness | $P_{fea}/P_{ry}$ | $ ho_{s}$          | $ ho_{s}$          | $ ho_{s}$           | $ ho_{s}$           |
| No.   |     |     | $\delta_0$   |                  | $(P_{fea}/P_{rl})$ | $(P_{fea}/P_{r2})$ | $(P_{fea}/P_{rel})$ | $(P_{fea}/P_{rc2})$ |
| (1)   | (2) | (3) | (4)          | (5)              | (6)                | (7)                | (8)                 | (9)                 |
| 247   | F   | W   | L/1000       | 0.965            | 0.984              | 1.050              | 0.972               | 1.026               |
| 248   | F   | W   | L/1000       | 0.972            | 0.992              | 1.058              | 0.979               | 1.034               |
| 249   | F   | W   | L/1000       | 0.949            | 0.968              | 1.033              | 0.956               | 1.009               |
| 250   | F   | W   | L/1000       | 0.954            | 0.973              | 1.038              | 0.961               | 1.014               |
| 292   | G   | S   | L/1000       | 0.977            | 0.997              | 1.063              | 0.984               | 1.039               |
| 293   | G   | S   | L/1000       | 0.979            | 0.999              | 1.066              | 0.986               | 1.041               |
| 294   | G   | S   | L/1000       | 0.970            | 0.990              | 1.056              | 0.978               | 1.032               |
| 295   | G   | S   | L/1000       | 0.970            | 0.990              | 1.056              | 0.977               | 1.031               |

Note:  $\Delta_0$  - Initial imperfection

Prv - Yield strength of reinforced column

Pfea - Finite elemetn analysis after reinforcing

P<sub>r1</sub> - Capacity after reinforcing (SSRC1)

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>re1</sub> - Capacity after reinforcing (CSA1)

P<sub>re2</sub> - Capacity after reinforcing (CSA2)

L - Column length

D - Orientation of reinforcing plates

F - Parallel to the flanges

G - Parallel to the web

B - Buckling axis

W - Weak axis of the rolled section

S - Strong axis of the rolled section

Table C.2 Simulated Professional Factors for Columns from Group 2 ( $\lambda = 1.1$ )

| FEA<br>model<br>No. | D   | В   | Out-of-Straightness $\delta_0$ | P <sub>fea</sub> /P <sub>ry</sub> | $\begin{array}{c} \text{SSRC 1} \\ \rho_s \\ (P_{\text{fea}}/P_{\text{r1}}) \end{array}$ | $\begin{array}{c} SSRC\ 2 \\ \rho_s \\ (P_{fea}/P_{r2}) \end{array}$ | $\begin{array}{c} \text{CSA 1} \\ \rho_s \\ (P_{\text{fea}}/P_{\text{rc1}}) \end{array}$ | $\begin{array}{c} \text{CSA 2} \\ \rho_{s} \\ (P_{\text{fea}}/P_{\text{rc2}}) \end{array}$ |
|---------------------|-----|-----|--------------------------------|-----------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| (1)                 | (2) | (3) | (4)                            | (5)                               | (6)                                                                                      | (7)                                                                  | (8)                                                                                      | (9)                                                                                        |
| 23                  | F   | W   | L/8000                         | 0.641                             | 0.942                                                                                    | 1.189                                                                | 0.971                                                                                    | 1.190                                                                                      |
| 24                  | F   | W   | L/2000                         | 0.601                             | 0.883                                                                                    | 1.114                                                                | 0.909                                                                                    | 1.115                                                                                      |
| 25                  | F   | W   | L/1000                         | 0.556                             | 0.818                                                                                    | 1.032                                                                | 0.842                                                                                    | 1.033                                                                                      |
| 26                  | F   | W   | L/1000                         | 0.560                             | 0.823                                                                                    | 1.038                                                                | 0.848                                                                                    | 1.039                                                                                      |
| 27                  | F   | W   | L/1000                         | 0.572                             | 0.841                                                                                    | 1.062                                                                | 0.867                                                                                    | 1.062                                                                                      |
| 28                  | F   | W   | L/1000                         | 0.511                             | 0.751                                                                                    | 0.947                                                                | 0.773                                                                                    | 0.948                                                                                      |
| 29                  | F   | W   | L/1000                         | 0.538                             | 0.791                                                                                    | 0.998                                                                | 0.814                                                                                    | 0.999                                                                                      |
| 70                  | G   | S   | L/8000                         | 0.603                             | 0.887                                                                                    | 1.119                                                                | 0.914                                                                                    | 1.120                                                                                      |

Note:  $\Delta_0$  - Initial imperfection

P<sub>rv</sub> - Yield strength of reinforced column

P<sub>fea</sub> - Finite elemetn analysis after reinforcing

P<sub>rl</sub> - Capacity after reinforcing (SSRC1)

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>re1</sub> - Capacity after reinforcing (CSA1)

P<sub>rc2</sub> - Capacity after reinforcing (CSA2)

L - Column length

D - Orientation of reinforcing plates

F - Parallel to the flanges

G - Parallel to the web

B - Buckling axis

W - Weak axis of the rolled section

S - Strong axis of the rolled section

Table C.2 (Cont'd)

| FEA   |     |     | Out-of-      |                  | SSRC 1             | SSRC 2             | CSA 1               | CSA 2               |
|-------|-----|-----|--------------|------------------|--------------------|--------------------|---------------------|---------------------|
| model | D   | В   | Straightness | $P_{fea}/P_{ry}$ | $ ho_{s}$          | $ ho_{s}$          | $ ho_{s}$           | $ ho_{s}$           |
| No.   |     |     | $\delta_0$   | _                | $(P_{fea}/P_{r1})$ | $(P_{fea}/P_{r2})$ | $(P_{fea}/P_{rel})$ | $(P_{fea}/P_{rc2})$ |
| (1)   | (2) | (3) | (4)          | (5)              | (6)                | (7)                | (8)                 | (9)                 |
| 71    | G   | S   | L/2000       | 0.575            | 0.845              | 1.067              | 0.871               | 1.067               |
| 72    | G   | S   | L/1100       | 0.541            | 0.796              | 1.004              | 0.819               | 1.005               |
| 73    | G   | S   | L/1100       | 0.541            | 0.795              | 1.003              | 0.818               | 1.004               |
| 74    | G   | S   | L/1100       | 0.573            | 0.842              | 1.062              | 0.867               | 1.063               |
| 75    | G   | S   | L/1150       | 0.478            | 0.702              | 0.886              | 0.723               | 0.887               |
| 76    | G   | S   | L/1150       | 0.506            | 0.743              | 0.938              | 0.765               | 0.938               |
| 81    | G   | S   | L/1100       | 0.544            | 0.799              | 1.009              | 0.823               | 1.009               |
| 82    | G   | S   | L/1100       | 0.537            | 0.789              | 0.996              | 0.813               | 0.996               |
| 83    | G   | S   | L/1100       | 0.540            | 0.794              | 1.002              | 0.818               | 1.003               |
| 88    | F   | W   | L/8000       | 0.643            | 0.946              | 1.193              | 0.974               | 1.194               |
| 89    | F   | W   | L/2000       | 0.603            | 0.886              | 1.118              | 0.912               | 1.119               |
| 90    | F   | W   | L/1000       | 0.564            | 0.829              | 1.045              | 0.853               | 1.046               |
| 91    | F   | W   | L/1000       | 0.569            | 0.837              | 1.056              | 0.862               | 1.057               |
| 92    | F   | W   | L/1000       | 0.577            | 0.849              | 1.071              | 0.874               | 1.072               |
| 93    | F   | W   | L/1000       | 0.528            | 0.776              | 0.979              | 0.799               | 0.980               |
| 94    | F   | W   | L/1000       | 0.544            | 0.800              | 1.009              | 0.823               | 1.010               |
| 119   | F   | W   | L/8000       | 0.652            | 0.959              | 1.210              | 0.988               | 1.211               |
| 120   | F   | W   | L/2000       | 0.607            | 0.893              | 1.126              | 0.919               | 1.127               |
| 121   | F   | W   | L/1000       | 0.564            | 0.830              | 1.047              | 0.855               | 1.048               |
| 122   | F   | W   | L/1000       | 0.571            | 0.839              | 1.058              | 0.864               | 1.059               |
| 123   | F   | W   | L/1000       | 0.579            | 0.852              | 1.074              | 0.877               | 1.075               |
| 124   | F   | W   | L/1000       | 0.538            | 0.791              | 0.998              | 0.815               | 0.999               |
| 125   | F   | W   | L/1000       | 0.554            | 0.815              | 1.028              | 0.839               | 1.029               |
| 164   | G   | S   | L/8000       | 0.641            | 0.942              | 1.189              | 0.970               | 1.190               |
| 165   | G   | S   | L/2000       | 0.598            | 0.879              | 1.108              | 0.905               | 1.109               |
| 166   | G   | S   | L/1150       | 0.564            | 0.829              | 1.045              | 0.853               | 1.046               |
| 167   | G   | S   | L/1150       | 0.574            | 0.845              | 1.066              | 0.870               | 1.066               |
| 168   | G   | S   | L/1150       | 0.589            | 0.865              | 1.092              | 0.891               | 1.093               |
| 169   | G   | S   | L/2750       | 0.507            | 0.745              | 0.941              | 0.768               | 0.941               |
| 170   | G   | S   | L/1200       | 0.534            | 0.785              | 0.990              | 0.808               | 0.991               |
| 179   | F   | W   | L/8000       | 0.681            | 1.001              | 1.263              | 1.031               | 1.264               |
| 180   | F   | W   | L/2000       | 0.642            | 0.944              | 1.191              | 0.972               | 1.191               |

Note:  $\Delta_0$  - Initial imperfection

Pry - Yield strength of reinforced column

P<sub>fea</sub> - Finite elemetn analysis after reinforcing

P<sub>rl</sub> - Capacity after reinforcing (SSRC1)

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>rc1</sub> - Capacity after reinforcing (CSA1)

P<sub>rc2</sub> - Capacity after reinforcing (CSA2)

L - Column length

D - Orientation of reinforcing plates

F - Parallel to the flanges

G - Parallel to the web

B - Buckling axis

W - Weak axis of the rolled section

S - Strong axis of the rolled section

Table 5.6 (Cont'd)

| FEA   |     |     | Out-of-      |                  | SSRC 1             | SSRC 2             | CSA 1               | CSA 2               |
|-------|-----|-----|--------------|------------------|--------------------|--------------------|---------------------|---------------------|
| model | D   | В   | Straightness | $P_{fea}/P_{ry}$ | $ ho_{s}$          | $ ho_{s}$          | $ ho_{s}$           | $ ho_{s}$           |
| No.   |     |     | $\delta_0$   | -                | $(P_{fea}/P_{r1})$ | $(P_{fea}/P_{r2})$ | $(P_{fea}/P_{rc1})$ | $(P_{fea}/P_{rc2})$ |
| (1)   | (2) | (3) | (4)          | (5)              | (6)                | (7)                | (8)                 | _ (9)               |
| 181   | F   | W   | L/1000       | 0.605            | 0.889              | 1.122              | 0.916               | 1.123               |
| 182   | F   | W   | L/1000       | 0.608            | 0.894              | 1.128              | 0.921               | 1.129               |
| 183   | F   | W   | L/1000       | 0.616            | 0.906              | 1.143              | 0.933               | 1.143               |
| 184   | F   | W   | L/1000       | 0.572            | 0.841              | 1.062              | 0.867               | 1.062               |
| 185   | F   | W   | L/1000       | 0.585            | 0.860              | 1.085              | 0.885               | 1.085               |
| 234   | G   | S   | L/8000       | 0.648            | 0.953              | 1.202              | 0.981               | 1.203               |
| 235   | G   | S   | L/2000       | 0.604            | 0.887              | 1.120              | 0.914               | 1.120               |
| 236   | G   | S   | L/1000       | 0.564            | 0.829              | 1.046              | 0.854               | 1.047               |
| 237   | G   | S   | L/1000       | 0.581            | 0.854              | 1.077              | 0.879               | 1.078               |
| 238   | G   | S   | L/1000       | 0.590            | 0.868              | 1.095              | 0.894               | 1.096               |
| 239   | G   | S   | L/1000       | 0.511            | 0.751              | 0.947              | 0.773               | 0.948               |
| 240   | G   | S   | L/1000       | 0.535            | 0.787              | 0.992              | 0.810               | 0.993               |
| 251   | F   | W   | L/8000       | 0.677            | 0.996              | 1.257              | 1.026               | 1.258               |
| 252   | F   | W   | L/2000       | 0.637            | 0.937              | 1.182              | 0.965               | 1.183               |
| 253   | F   | W   | L/1000       | 0.594            | 0.873              | 1.102              | 0.899               | 1.103               |
| 254   | F   | W   | L/1000       | 0.593            | 0.873              | 1.101              | 0.899               | 1.102               |
| 255   | F   | W   | L/1000       | 0.608            | 0.893              | 1.127              | 0.920               | 1.128               |
| 256   | F   | W   | L/1000       | 0.547            | 0.804              | 1.015              | 0.828               | 1.015               |
| 257   | F   | W   | L/1000       | 0.566            | 0.832              | 1.049              | 0.857               | 1.050               |
| 296   | G   | S   | L/8000       | 0.624            | 0.918              | 1.158              | 0.945               | 1.159               |
| 297   | G   | S   | L/2000       | 0.585            | 0.860              | 1.085              | 0.885               | 1.086               |
| 298   | G   | S   | L/1000       | 0.551            | 0.811              | 1.023              | 0.835               | 1.024               |
| 299   | G   | S   | L/1000       | 0.566            | 0.832              | 1.049              | 0.856               | 1.050               |
| 300   | G   | S   | L/1000       | 0.578            | 0.849              | 1.072              | 0.875               | 1.072               |
| 301   | G   | S   | L/1000       | 0.494            | 0.726              | 0.916              | 0.747               | 0.916               |
| 302   | G   | S   | L/1000       | 0.520            | 0.764              | 0.964              | 0.787               | 0.964               |

Note:  $\Delta_0$  - Initial imperfection

P<sub>rv</sub> - Yield strength of reinforced column

P<sub>fea</sub> - Finite elemetn analysis after reinforcing

P<sub>r1</sub> - Capacity after reinforcing (SSRC1)

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>rc1</sub> - Capacity after reinforcing (CSA1)

P<sub>rc2</sub> - Capacity after reinforcing (CSA2)

L - Column length

D - Orientation of reinforcing plates

F - Parallel to the flanges

G - Parallel to the web

B - Buckling axis

W - Weak axis of the rolled section

S - Strong axis of the rolled section

Table C.3 Simulated Professional Factors for Columns from Group 2 ( $\lambda = 1.5$ )

| FEA   |     |     | Out-of-      |                  | SSRC 1             | SSRC 2             | CSA 1               | CSA 2               |
|-------|-----|-----|--------------|------------------|--------------------|--------------------|---------------------|---------------------|
| model | D   | В   | Straightness | $P_{fea}/P_{ry}$ | $ ho_{s}$          | $ ho_{s}$          | $ ho_{s}$           | $ ho_{s}$           |
| No.   |     |     | $\delta_0$   |                  | $(P_{fea}/P_{ri})$ | $(P_{fea}/P_{r2})$ | $(P_{fea}/P_{rc1})$ | $(P_{fea}/P_{rc2})$ |
| (1)   | (2) | (3) | (4)          | (5)              | (6)                | (7)                | (8)                 | (9)                 |
| 30    | F   | W   | L/8000       | 0.415            | 1.020              | 1.181              | 0.999               | 1.161               |
| 31    | F   | W   | L/2000       | 0.379            | 0.930              | 1.076              | 0.911               | 1.058               |
| 32    | F   | W   | L/1000       | 0.355            | 0.871              | 1.008              | 0.853               | 0.991               |
| 33    | F   | W   | L/1000       | 0.362            | 0.889              | 1.029              | 0.870               | 1.011               |
| 34    | F   | W   | L/1000       | 0.338            | 0.830              | 0.961              | 0.813               | 0.945               |
| 35    | F   | W   | L/1000       | 0.351            | 0.862              | 0.997              | 0.844               | 0.980               |
| 77    | G   | S   | L/1350       | 0.374            | 0.919              | 1.064              | 0.901               | 1.046               |
| 78    | G   | S   | L/1350       | 0.383            | 0.942              | 1.090              | 0.922               | 1.071               |
| 79    | G   | S   | L/1350       | 0.349            | 0.857              | 0.992              | 0.839               | 0.975               |
| 80    | G   | S   | L/1350       | 0.361            | 0.887              | 1.027              | 0.869               | 1.010               |
| 95    | F   | W   | L/1000       | 0.357            | 0.878              | 1.016              | 0.860               | 0.998               |
| 96    | F   | W   | L/1000       | 0.360            | 0.885              | 1.024              | 0.866               | 1.006               |
| 97    | F   | W   | L/1000       | 0.365            | 0.897              | 1.038              | 0.879               | 1.020               |
| 98    | F   | W   | L/1050       | 0.344            | 0.846              | 0.980              | 0.829               | 0.963               |
| 99    | F   | W   | L/1050       | 0.351            | 0.862              | 0.997              | 0.844               | 0.980               |
| 126   | F   | W   | L/1400       | 0.356            | 0.875              | 1.013              | 0.857               | 0.995               |
| 127   | F   | W   | L/1050       | 0.368            | 0.903              | 1.045              | 0.884               | 1.027               |
| 128   | F   | W   | L/1100       | 0.349            | 0.856              | 0.991              | 0.839               | 0.974               |
| 129   | F   | W   | L/1100       | 0.361            | 0.886              | 1.026              | 0.868               | 1.008               |
| 171   | G   | S   | L/1350       | 0.384            | 0.943              | 1.091              | 0.924               | 1.073               |
| 172   | G   | S   | L/1350       | 0.389            | 0.956              | 1.106              | 0.936               | 1.087               |
| 173   | G   | S   | L/1300       | 0.363            | 0.891              | 1.031              | 0.873               | 1.014               |
| 174   | G   | S   | L/1300       | 0.369            | 0.908              | 1.050              | 0.889               | 1.032               |
| 186   | F   | W   | L/1000       | 0.374            | 0.918              | 1.062              | 0.899               | 1.044               |
| 187   | F   | W   | L/1000       | 0.379            | 0.931              | 1.077              | 0.911               | 1.059               |
| 188   | F   | W   | L/1000       | 0.362            | 0.890              | 1.030              | 0.872               | 1.012               |
| 189   | F   | W   | L/1000       | 0.371            | 0.912              | 1.055              | 0.893               | 1.037               |
| 241   | G   | S   | L/8000       | 0.452            | 1.111              | 1.286              | 1.088               | 1.264               |
| 242   | G   | S   | L/2000       | 0.417            | 1.024              | 1.185              | 1.003               | 1.164               |
| 243   | G   | S   | L/1000       | 0.391            | 0.961              | 1.112              | 0.941               | 1.093               |
| 244   | G   | S   | L/1000       | 0.400            | 0.982              | 1.136              | 0.962               | 1.117               |
| 245   | G   | S   | L/1000       | 0.369            | 0.907              | 1.050              | 0.889               | 1.032               |

Note:  $\Delta_0$  - Initial imperfection

Prv - Yield strength of reinforced column

P<sub>fea</sub> - Finite elemetn analysis after reinforcing

P<sub>rl</sub> - Capacity after reinforcing (SSRC1)

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>rc1</sub> - Capacity after reinforcing (CSA1)

P<sub>re2</sub> - Capacity after reinforcing (CSA2)

L - Column length

D - Orientation of reinforcing plates

F - Parallel to the flanges

G - Parallel to the web

B - Buckling axis

W - Weak axis of the rolled section

S - Strong axis of the rolled section

Table C.3 (Cont'd)

| FEA   | -   |              | Out-of-      |                  | SSRC 1             | SSRC 2             | CSA 1               | CSA 2               |
|-------|-----|--------------|--------------|------------------|--------------------|--------------------|---------------------|---------------------|
| model | D   | В            | Straightness | $P_{fea}/P_{ry}$ | $ ho_{s}$          | $ ho_{s}$          | $ ho_{s}$           | $ ho_{s}$           |
| No.   |     |              | $\delta_0$   |                  | $(P_{fea}/P_{rl})$ | $(P_{fea}/P_{r2})$ | $(P_{fea}/P_{rc1})$ | $(P_{fea}/P_{rc2})$ |
| (1)   | (2) | (3)          | (4)          | (5)              | (6)                | (7)                | (8)                 | (9)                 |
| 246   | G   | S            | L/1000       | 0.379            | 0.930              | 1.077              | 0.911               | 1.058               |
| 258   | F   | $\mathbf{W}$ | L/1000       | 0.368            | 0.904              | 1.046              | 0.886               | 1.029               |
| 259   | F   | W            | L/1000       | 0.377            | 0.925              | 1.071              | 0.906               | 1.052               |
| 260   | F   | W            | L/1000       | 0.353            | 0.868              | 1.004              | 0.850               | 0.987               |
| 261   | F   | W            | L/1000       | 0.361            | 0.888              | 1.027              | 0.870               | 1.010               |
| 303   | G   | S            | L/1000       | 0.381            | 0.937              | 1.085              | 0.918               | 1.066               |
| 304   | G   | S            | L/1000       | 0.393            | 0.966              | 1.118              | 0.946               | 1.099               |
| 305   | G   | S            | L/1000       | 0.352            | 0.864              | 1.000              | 0.846               | 0.983               |
| 306   | G   | S            | L/1000       | 0.365            | 0.897              | 1.038              | 0.879               | 1.020               |

Note:  $\Delta_0$  - Initial imperfection

P<sub>rv</sub> - Yield strength of reinforced column

P<sub>fea</sub> - Finite elemetn analysis after reinforcing

P<sub>r1</sub> - Capacity after reinforcing (SSRC1)

 $P_{r2}$  - Capacity after reinforcing (SSRC2)

P<sub>rc1</sub> - Capacity after reinforcing (CSA1)

P<sub>rc2</sub> - Capacity after reinforcing (CSA2)

L - Column length

D - Orientation of reinforcing plates

F - Parallel to the flanges

G - Parallel to the web

B - Buckling axis

W - Weak axis of the rolled section

S - Strong axis of the rolled section

Table C.4 Normalized Professional Factors for Columns from Group 2 ( $\lambda = 0.4$ )

| FEA   |     |     | Out-of-      | SSRC 2             |                                                                |                    | SSRC 2                        |
|-------|-----|-----|--------------|--------------------|----------------------------------------------------------------|--------------------|-------------------------------|
| model | D   | В   | Straightness | $ ho_{s}$          | $\rho_s = m \delta_0/L + b$                                    | $ ho_{\text{seq}}$ | $\rho_{n}$                    |
| No.   |     |     | $\delta_0$   | $(P_{fea}/P_{r2})$ | SSRC 2                                                         | •                  | $\rho_{\rm s}/\rho_{\rm seq}$ |
| _(1)  | (2) | (3) | (4)          | (5)                | (6)                                                            | (7)                | (8)                           |
| 66    | G   | S   | L/1000       | 1.02               | $\rho_s = -49.041 \times \delta_0 / L + 1.09$                  | 1.041              | 0.977                         |
| 67    | G   | S   | L/1000       | 1.02               | $\rho_{\rm s} = -49.041  \text{x}  \delta_0 / \text{L} + 1.09$ | 1.041              | 0.983                         |
| 68    | G   | S   | L/1000       | 0.99               | $\rho_{\rm s} = -49.041  {\rm k}  \delta_0 / {\rm L} + 1.09$   | 1.041              | 0.953                         |
| 69    | G   | S   | L/1000       | 1.00               | $\rho_{\rm s} = -49.041  {\rm k}  \delta_0 / {\rm L} + 1.09$   | 1.041              | 0.959                         |
| 17    | F   | W   | L/8000       | 1.09               | $\rho_{\rm s} = -49.041  {\rm k}  \delta_0 / {\rm L} + 1.09$   | 1.084              | 1.009                         |
| 18    | F   | W   | L/2000       | 1.07               | $\rho_{\rm s} = -49.041  {\rm k}  \delta_0 / {\rm L} + 1.09$   | 1.065              | 1.008                         |
| 19    | F   | W   | L/1000       | 1.06               | $\rho_{\rm s} = -49.041  {\rm k}  \delta_0 / {\rm L} + 1.09$   | 1.041              | 1.018                         |
| 20    | F   | W   | L/1000       | 1.06               | $\rho_{\rm s} = -49.041  {\rm k}  \delta_0 / {\rm L} + 1.09$   | 1.041              | 1.022                         |
| 21    | F   | W   | L/1000       | 1.04               | $\rho_{\rm s} = -49.041  {\rm k}  \delta_0 / {\rm L} + 1.09$   | 1.041              | 1.002                         |
| 22    | F   | W   | L/1000       | 1.05               | $\rho_{\rm s} = -49.041  \text{x}  \delta_0 / \text{L} + 1.09$ | 1.041              | 1.005                         |
| 84    | F   | W   | L/1000       | 1.06               | $\rho_{\rm s} = -49.041  {\rm k}  \delta_0 / {\rm L} + 1.09$   | 1.041              | 1.021                         |
| 85    | F   | W   | L/1000       | 1.07               | $\rho_{\rm s} = -49.041  \text{x}  \delta_0 / \text{L} + 1.09$ | 1.041              | 1.025                         |
| 86    | F   | W   | L/1000       | 1.04               | $\rho_{\rm s} = -49.041  {\rm k}  \delta_0 / {\rm L} + 1.09$   | 1.041              | 0.995                         |
| 87    | F   | W   | L/1000       | 1.04               | $\rho_{\rm s} = -49.041  {\rm k}  \delta_0 / {\rm L} + 1.09$   | 1.041              | 0.999                         |
| 115   | F   | W   | L/1000       | 1.07               | $\rho_{\rm s} = -49.041  {\rm k}  \delta_0 / {\rm L} + 1.09$   | 1.041              | 1.025                         |
| 116   | F   | W   | L/1000       | 1.07               | $\rho_{\rm s} = -49.041  \text{x}  \delta_0 / \text{L} + 1.09$ | 1.041              | 1.028                         |
| 117   | F   | W   | L/1000       | 1.05               | $\rho_{\rm s} = -49.041  {\rm k}  \delta_0 / {\rm L} + 1.09$   | 1.041              | 1.008                         |
| 118   | F   | W   | L/1000       | 1.05               | $\rho_{\rm s} = -49.041  {\rm k}  \delta_0 / {\rm L} + 1.09$   | 1.041              | 1.010                         |
| 160   | G   | S   | L/1000       | 1.01               | $\rho_{\rm s} = -49.041  \text{x}  \delta_0 / \text{L} + 1.09$ | 1.041              | 0.971                         |
| 161   | G   | S   | L/1000       | 1.02               | $\rho_{\rm s} = -49.041  \text{x}  \delta_0 / \text{L} + 1.09$ | 1.041              | 0.979                         |
| 162   | G   | S   | L/1000       | 0.97               | $\rho_{\rm s} = -49.041  \text{x}  \delta_0 / \text{L} + 1.09$ | 1.041              | 0.934                         |
| 163   | G   | S   | L/1000       | 0.98               | $\rho_{\rm s} = -49.041  \text{x}  \delta_0 / \text{L} + 1.09$ | 1.041              | 0.943                         |
| 175   | F   | W   | L/1000       | 1.06               | $\rho_{\rm s} = -49.041  {\rm k}  \delta_0 / {\rm L} + 1.09$   | 1.041              | 1.016                         |
| 176   | F   | W   | L/1000       | 1.07               | $\rho_{\rm s} = -49.041  {\rm k}  \delta_0 / {\rm L} + 1.09$   | 1.041              | 1.023                         |
| 177   | F   | W   | L/1000       | 1.03               | $\rho_{\rm s} = -49.041  \text{x}  \delta_0 / \text{L} + 1.09$ | 1.041              | 0.990                         |
| 178   | F   | W   | L/1000       | 1.04               | $\rho_{\rm s} = -49.041  \text{x}  \delta_0 / \text{L} + 1.09$ | 1.041              | 0.995                         |
| 228   | G   | S   | L/8000       | 1.07               | $\rho_{\rm s} = -49.041  \text{x}  \delta_0 / \text{L} + 1.09$ | 1.084              | 0.986                         |
| 229   | G   | S   | L/2000       | 1.07               | $\rho_{\rm s} = -49.041  {\rm x}  \delta_0 / {\rm L} + 1.09$   | 1.065              | 1.002                         |
| 230   | G   | S   | L/1000       | 1.05               | $\rho_s = -49.041x\delta_0/L + 1.09$                           | 1.041              | 1.012                         |
| 231   | G   | S   | L/1000       | 1.06               | $\rho_{\rm s} = -49.041  \text{x}  \delta_0 / \text{L} + 1.09$ | 1.041              | 1.017                         |
| 232   | G   | S   | L/1000       | 1.03               | $\rho_{\rm s} = -49.041  \text{x}  \delta_0 / \text{L} + 1.09$ | 1.041              | 0.994                         |
| 233   | G   | S   | L/1000       | 1.04               | $\rho_{\rm s} = -49.041  \text{x}  \delta_0 / \text{L} + 1.09$ | 1.041              | 0.998                         |
| 247   | F   | W   | L/1000       | 1.05               | $\rho_s = -49.041 \times \delta_0 / L + 1.09$                  | 1.041              | 1.009                         |

B - Buckling axis

D - Orientation of reinforcing plate

W - Weak axis of the rolled section

F - Parallel to the flanges

S - Strong axis of the rolled section

G - Parallel to the web  $P_{r2}$  - Capacity after reinforcing (SSRC2)  $P_{fea}$  - Finite elemeth analysis after reinforcing

Table C.4 (Cont'd)

| FEA<br>model | D   | В            | Out-of-<br>Straightness | SSRC 2<br><sub>Ps</sub>          | $\rho_{\rm s}={\rm m}\;\delta_{\rm 0}/{\rm L}+{\rm b}$ | $\rho_{seq}$ | SSRC 2              |
|--------------|-----|--------------|-------------------------|----------------------------------|--------------------------------------------------------|--------------|---------------------|
| No.          |     |              | $\delta_0$              | $(P_{\text{fea}}/P_{\text{r2}})$ | SSRC 2                                                 | ·            | $ ho_{s}/ ho_{seq}$ |
| (1)          | (2) | (3)          | (4)                     | (5)                              | (6)                                                    | (7)          | (8)                 |
| 248          | F   | W            | L/1000                  | 1.06                             | $\rho_s = -49.041 \times \delta_0 / L + 1.09$          | 1.041        | 1.017               |
| 249          | F   | $\mathbf{W}$ | L/1000                  | 1.03                             | $\rho_s = -49.041 \times \delta_0 / L + 1.09$          | 1.041        | 0.992               |
| 250          | F   | W            | L/1000                  | 1.04                             | $\rho_s = -49.041 \times \delta_0 / L + 1.09$          | 1.041        | 0.998               |
| 292          | G   | S            | L/1000                  | 1.06                             | $\rho_s = -49.041 \times \delta_0 / L + 1.09$          | 1.041        | 1.021               |
| 293          | G   | S            | L/1000                  | 1.07                             | $\rho_s = -49.041 \times \delta_0 / L + 1.09$          | 1.041        | 1.024               |
| 294          | G   | S            | L/1000                  | 1.06                             | $\rho_s = -49.041 \times \delta_0 / L + 1.09$          | 1.041        | 1.015               |
| 295          | G   | S            | L/1000                  | 1.06                             | $\rho_s = -49.041 \times \delta_0 / L + 1.09$          | 1.041        | 1.014               |

B - Buckling axis

D - Orientation of reinforcing plate

W - Weak axis of the rolled section S - Strong axis of the rolled section

F - Parallel to the flanges G - Parallel to the web

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>fea</sub> - Finite elemetn analysis after reinforcing

 $\rho_{seq}$  - Professional ratio predicted by the equation

Table C.5 Normalized Professional Factors for Columns from Group 2 ( $\lambda = 1.1$ )

| FEA   |     |     | Out-of-      | SSRC 2             |                                                                  |             | SSRC 2              |
|-------|-----|-----|--------------|--------------------|------------------------------------------------------------------|-------------|---------------------|
| model | D   | В   | Straightness | $ ho_{s}$          | $\rho_{\rm s}={\rm m}\;\delta_{\rm 0}/{\rm L}+{\rm b}$           | $ ho_{seq}$ | $\rho_{\mathrm{n}}$ |
| No.   |     |     | $\delta_0$   | $(P_{fea}/P_{r2})$ | SSRC 2                                                           |             | $\rho_s/\rho_{seq}$ |
| (1)   | (2) | (3) | (4)          | (5)                | (6)                                                              | (7)         | (8)                 |
| 70    | G   | S   | L/8000       | 1.12               | $\rho_s = -168.09 \times \delta_0 / L + 1.1992$                  | 1.18        | 0.95                |
| 71    | G   | S   | L/2000       | 1.07               | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.12        | 0.96                |
| 72    | G   | S   | L/1100       | 1.00               | $\rho_s = -168.09 \times \delta_0 / L + 1.1992$                  | 1.05        | 0.96                |
| 73    | G   | S   | L/1100       | 1.00               | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.05        | 0.96                |
| 74    | G   | S   | L/1100       | 1.06               | $\rho_s = -168.09 \times \delta_0 / L + 1.1992$                  | 1.05        | 1.01                |
| 75    | G   | S   | L/1150       | 0.89               | $\rho_s = -168.09 \times \delta_0 / L + 1.1992$                  | 1.05        | 0.84                |
| 76    | G   | S   | L/1150       | 0.94               | $\rho_s = -168.09 \times \delta_0 / L + 1.1992$                  | 1.05        | 0.89                |
| 81    | G   | S   | L/1100       | 1.01               | $\rho_s = -168.09 \times \delta_0 / L + 1.1992$                  | 1.05        | 0.96                |
| 82    | G   | S   | L/1100       | 1.00               | $\rho_s = -168.09 \times \delta_0 / L + 1.1992$                  | 1.05        | 0.95                |
| 83    | G   | S   | L/1100       | 1.00               | $\rho_s = -168.09 \times \delta_0 / L + 1.1992$                  | 1.05        | 0.96                |
| 23    | F   | W   | L/8000       | 1.19               | $\rho_s = -168.09 \times \delta_0 / L + 1.1992$                  | 1.18        | 1.01                |
| 24    | F   | W   | L/2000       | 1.11               | $\rho_s = -168.09 \times \delta_0 / L + 1.1992$                  | 1.12        | 0.99                |

Note: L - Column length

B - Buckling axis

D - Orientation of reinforcing plate W - Weak axis of the rolled section

F - Parallel to the flanges

S - Strong axis of the rolled section

G - Parallel to the web

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>fea</sub> - Finite elemetn analysis after reinforcing

Table C.5 (Cont'd)

| model         D         B         Straighmess δ0 $\rho_s$ $\rho_s$ = m $\delta_0/L + b$ $\rho_s eq$ $\rho_n$ (1)         (2)         (3)         (4)         (5)         (6)         (7)         (8)           25         F         W         L/1000         1.03 $\rho_s$ = -168.09x $\delta_0$ /L + 1.1992         1.03         1.00           26         F         W         L/1000         1.06 $\rho_s$ = -168.09x $\delta_0$ /L + 1.1992         1.03         1.01           27         F         W         L/1000         1.06 $\rho_s$ = -168.09x $\delta_0$ /L + 1.1992         1.03         1.03           28         F         W         L/1000         1.90 $\rho_s$ = -168.09x $\delta_0$ /L + 1.1992         1.03         0.92           29         F         W         L/1000         1.12 $\rho_s$ = -168.09x $\delta_0$ /L + 1.1992         1.13         0.97           88         F         W         L/2000         1.12 $\rho_s$ = -168.09x $\delta_0$ /L + 1.1992         1.13         1.00           90         F         W         L/1000         1.06 $\rho_s$ = -168.09x $\delta_0$ /L + 1.1992         1.03         1.01           91         F         W         L/1000         1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FEA   |     |     | Out-of-      | SSRC 2             |                                                                  | ····        | SSRC 2               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|--------------|--------------------|------------------------------------------------------------------|-------------|----------------------|
| No. δ <sub>0</sub> ( $P_{res}/P_{c2}$ ) SSRC 2 $\rho/\rho_{seq}$ (1) (2) (3) (4) (5) (6) (7) (8) (25 F W L/1000 1.03 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.00 26 F W L/1000 1.04 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.01 27 F W L/1000 1.06 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.03 28 F W L/1000 1.06 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 0.92 29 F W L/1000 1.00 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 0.97 88 F W L/8000 1.19 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.18 1.01 89 F W L/2000 1.12 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.18 1.01 90 F W L/1000 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.02 90 F W L/1000 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.01 91 F W L/1000 1.06 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.02 92 F W L/1000 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.04 93 F W L/1000 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.04 93 F W L/1000 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.04 91 F W L/1000 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.04 91 F W L/1000 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 0.95 92 F W L/1000 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 0.95 119 F W L/2000 1.13 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 0.95 119 F W L/2000 1.13 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 0.95 119 F W L/2000 1.06 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 0.95 110 F W L/2000 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.02 112 F W L/1000 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.02 112 F W L/1000 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.04 112 F W L/1000 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.04 112 F W L/1000 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.04 112 F W L/1000 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.04 112 F W L/1000 1.09 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.04 112 F W L/1000 1.09 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.04 112 F W L/1000 1.09 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.04 112 F W L/1000 1.09 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.18 1.01 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.19 1.10 1.00 1.01 1.01 1.01 1.01 1.01 | model | D   | В   | Straightness | $ ho_{s}$          | $\rho_s = m \delta_0 / L + b$                                    | $ ho_{seq}$ | $ ho_{\mathfrak{n}}$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No.   |     |     | $\delta_0$   | $(P_{fea}/P_{r2})$ | SSRC 2                                                           |             | $ ho_{s}/ ho_{seq}$  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1)   | (2) | (3) | (4)          | (5)                |                                                                  | (7)         | (8)                  |
| 27 F W L/1000 1.06 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 1.03 2.8 F W L/1000 0.95 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 0.92 2.9 F W L/1000 1.00 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 0.97 8.8 F W L/8000 1.19 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.18 1.01 8.9 F W L/2000 1.12 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.18 1.01 9.0 F W L/1000 1.05 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 1.01 9.1 F W L/1000 1.05 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 1.02 9.2 F W L/1000 1.07 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 1.04 9.3 F W L/1000 1.07 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 1.04 9.3 F W L/1000 1.07 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 0.95 9.4 F W L/1000 1.01 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 0.95 1.19 F W L/2000 1.01 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 0.98 1.19 F W L/2000 1.21 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.18 1.03 1.22 F W L/1000 1.05 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.18 1.03 1.22 F W L/1000 1.05 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 1.02 1.22 F W L/1000 1.05 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 1.02 1.22 F W L/1000 1.05 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 1.04 1.24 F W L/1000 1.05 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 1.04 1.24 F W L/1000 1.07 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 1.04 1.24 F W L/1000 1.07 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 1.04 1.26 F W L/1000 1.07 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 1.04 1.27 F W L/1000 1.09 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 1.04 1.04 F W L/1000 1.07 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.05 1.04 1.06 G S L/2000 1.11 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 1.00 1.64 G S L/2000 1.19 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.12 0.99 1.66 G S L/1150 1.05 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.15 1.01 1.05 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.16 0.93 1.00 1.07 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.17 1.18 1.01 1.05 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.19 1.10 1.01 1.02 1.01 1.01 1.01 1.01 1.01                                                                                                                                                                                                                                                                                                                                                                                                 | 25    | F   | W   | L/1000       | 1.03               | $\rho_{\rm s} = -168.09 \text{x} \delta_0 / \text{L} + 1.1992$   | 1.03        | 1.00                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26    | F   | W   | L/1000       | 1.04               | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.03        | 1.01                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27    | F   | W   | L/1000       | 1.06               | $\rho_{\rm s} = -168.09 \text{x} \delta_0 / \text{L} + 1.1992$   | 1.03        | 1.03                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28    | F   | W   | L/1000       | 0.95               | $\rho_{\rm s} = -168.09 {\rm x} \delta_0 / {\rm L} + 1.1992$     | 1.03        | 0.92                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29    | F   | W   | L/1000       | 1.00               | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.03        | 0.97                 |
| 90 F W L/1000 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.01 91 F W L/1000 1.06 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.02 92 F W L/1000 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.04 93 F W L/1000 0.98 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 0.95 94 F W L/1000 1.01 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 0.98 119 F W L/8000 1.21 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.18 1.03 120 F W L/2000 1.13 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.12 1.01 121 F W L/1000 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.02 122 F W L/1000 1.06 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.03 123 F W L/1000 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.04 124 F W L/1000 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.04 124 F W L/1000 1.00 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.00 164 G S L/8000 1.19 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.00 165 G S L/2000 1.11 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.12 0.99 166 G S L/1150 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 0.99 167 G S L/150 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.01 168 G S L/1150 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.01 168 G S L/1150 1.09 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.01 168 G S L/2000 1.19 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.01 168 G S L/150 0.99 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.04 169 G S L/2750 0.94 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.15 1.07 1.08 F W L/2000 1.19 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.16 0.93 1.79 F W L/8000 1.26 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.18 1.07 1.07 F W L/8000 1.26 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.18 1.07 1.07 F W L/8000 1.29 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.10 1.09 1.11 0.11 0.11 0.11 0.11 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                | 88    | F   | W   | L/8000       | 1.19               | $\rho_{\rm s} = -168.09 \text{x} \delta_0 / \text{L} + 1.1992$   | 1.18        | 1.01                 |
| 91 F W L/1000 1.06 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.02 92 F W L/1000 0.98 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 0.95 94 F W L/1000 1.01 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 0.98 119 F W L/8000 1.21 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.18 1.03 120 F W L/2000 1.13 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.12 1.01 121 F W L/1000 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.02 122 F W L/1000 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.03 123 F W L/1000 1.06 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.04 124 F W L/1000 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.04 124 F W L/1000 1.09 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.00 164 G S L/8000 1.19 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.00 165 G S L/2000 1.11 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.00 166 G S L/150 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 0.99 167 G S L/150 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.01 168 G S L/150 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.01 168 G S L/2750 0.94 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.14 0.83 170 G S L/2000 1.19 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.04 169 G S L/2750 0.94 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.15 1.07 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.16 0.93 1.79 F W L/8000 1.26 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.16 0.93 1.79 F W L/8000 1.26 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.16 0.93 1.79 F W L/8000 1.29 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.18 1.07 1.80 F W L/2000 1.19 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.09 1.82 F W L/1000 1.13 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.09 1.82 F W L/1000 1.14 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.09 1.83 F W L/1000 1.14 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.09                                                                                                                                                                                                                                                                                                                                                                                                    | 89    | F   | W   | L/2000       | 1.12               | $\rho_{\rm s} = -168.09 {\rm x} \delta_0 / {\rm L} + 1.1992$     | 1.12        | 1.00                 |
| 92 F W L/1000 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.04 93 F W L/1000 0.98 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 0.95 94 F W L/1000 1.01 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 0.98 119 F W L/8000 1.21 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.18 1.03 120 F W L/2000 1.13 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.12 1.01 121 F W L/1000 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.02 122 F W L/1000 1.06 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.03 123 F W L/1000 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.04 124 F W L/1000 1.00 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.04 124 F W L/1000 1.03 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.00 164 G S L/8000 1.19 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.00 165 G S L/2000 1.11 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.18 1.01 165 G S L/150 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.15 0.99 167 G S L/150 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 0.99 167 G S L/150 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.01 168 G S L/150 1.09 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.01 168 G S L/2750 0.94 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.04 169 G S L/2750 0.94 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.16 0.83 170 G S L/1200 0.99 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.16 0.83 170 G S L/1200 0.99 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.16 0.83 170 G S L/1000 1.26 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.17 0.06 0.93 179 F W L/8000 1.26 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.18 1.07 181 F W L/1000 1.12 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.09 182 F W L/1000 1.13 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.09 182 F W L/1000 1.14 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.01 1.01 184 F W L/1000 1.06 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.03                                                                                                                                                                                                                                                                                                                                                                                   | 90    | F   | W   | L/1000       | 1.05               |                                                                  | 1.03        | 1.01                 |
| 93 F W L/1000 0.98 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 0.95 94 F W L/1000 1.01 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 0.98 119 F W L/8000 1.21 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.18 1.03 120 F W L/2000 1.13 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.12 1.01 121 F W L/1000 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.02 122 F W L/1000 1.06 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.03 123 F W L/1000 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.04 124 F W L/1000 1.00 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.04 124 F W L/1000 1.03 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.00 164 G S L/8000 1.19 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.00 165 G S L/2000 1.11 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.18 1.01 165 G S L/1150 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 0.99 167 G S L/1150 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 0.99 167 G S L/1200 0.91 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.01 168 G S L/2750 0.94 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.04 169 G S L/2750 0.94 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.16 0.83 170 G S L/1200 0.99 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.16 0.83 170 F W L/8000 1.26 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.04 1.89 F W L/8000 1.26 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.07 181 F W L/2000 1.19 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.06 0.93 179 F W L/8000 1.26 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.09 182 F W L/1000 1.13 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.09 182 F W L/1000 1.14 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.09 183 F W L/1000 1.14 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.01 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 91    | F   | W   | L/1000       | 1.06               | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.03        | 1.02                 |
| 94 F W L/1000 1.01 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 0.98 119 F W L/8000 1.21 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.18 1.03 120 F W L/2000 1.13 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.12 1.01 121 F W L/1000 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.02 122 F W L/1000 1.06 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.03 123 F W L/1000 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.04 124 F W L/1000 1.00 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.04 124 F W L/1000 1.00 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.00 164 G S L/8000 1.19 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.00 165 G S L/2000 1.11 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.12 0.99 166 G S L/1150 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 0.99 167 G S L/150 1.05 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.01 168 G S L/2750 0.94 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.04 1.09 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.04 1.09 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.01 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.01 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.01 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.01 1.09 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.04 1.09 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.14 0.83 1.70 G S L/1200 0.99 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.16 0.93 1.79 F W L/8000 1.26 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.18 1.07 1.80 F W L/2000 1.19 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.12 1.07 1.81 F W L/1000 1.12 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.09 1.82 F W L/1000 1.13 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.09 1.83 F W L/1000 1.14 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.01 1.01 1.04 F W L/1000 1.14 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.01 1.01 1.01 1.01 1.01 1.01 1.01                                                                                                                                                                                                                                                                                                                                                                                  | 92    | F   | W   | L/1000       | 1.07               | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.03        | 1.04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93    |     | W   | L/1000       | 0.98               | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.03        | 0.95                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 94    | F   | W   | L/1000       | 1.01               | • •                                                              | 1.03        | 0.98                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119   | F   | W   | L/8000       | 1.21               | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.18        | 1.03                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120   | F   | W   | L/2000       | 1.13               | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.12        | 1.01                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121   | F   | W   | L/1000       | 1.05               | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.03        | 1.02                 |
| 124 F W L/1000 1.00 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 0.97 125 F W L/1000 1.03 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 1.00 164 G S L/8000 1.19 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.18 1.01 165 G S L/2000 1.11 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.12 0.99 166 G S L/1150 1.05 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.05 0.99 167 G S L/1150 1.07 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.05 1.01 168 G S L/1150 1.09 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.05 1.01 169 G S L/2750 0.94 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.05 1.04 169 G S L/2750 0.94 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.14 0.83 170 G S L/1200 0.99 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.06 0.93 179 F W L/8000 1.26 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.18 1.07 180 F W L/2000 1.19 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.12 1.07 181 F W L/1000 1.12 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 1.09 182 F W L/1000 1.13 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 1.09 183 F W L/1000 1.14 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 1.01 1.11 184 F W L/1000 1.06 $ρ_s = -168.09xδ_0/L + 1.1992$ 1.03 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 122   | F   | W   | L/1000       | 1.06               | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.03        | 1.03                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 123   | F   | W   | L/1000       | 1.07               | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.03        | 1.04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 124   | _   | W   | L/1000       | 1.00               | $\rho_{\rm s} = -168.09 {\rm x} \delta_0 / {\rm L} + 1.1992$     | 1.03        | 0.97                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 125   | F   | W   | L/1000       | 1.03               | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.03        | 1.00                 |
| 166 G S L/1150 1.05 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.05 0.99 167 G S L/1150 1.07 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.05 1.01 168 G S L/1150 1.09 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.05 1.04 169 G S L/2750 0.94 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.14 0.83 170 G S L/1200 0.99 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.06 0.93 179 F W L/8000 1.26 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.18 1.07 180 F W L/2000 1.19 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.12 1.07 181 F W L/1000 1.12 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.03 1.09 182 F W L/1000 1.13 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.03 1.09 183 F W L/1000 1.14 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.03 1.01 184 F W L/1000 1.06 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.03 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 164   | G   | S   | L/8000       | 1.19               | $\rho_{\rm s} = -168.09 \times \delta_0 / L + 1.1992$            | 1.18        | 1.01                 |
| 167 G S L/1150 1.07 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.01 168 G S L/1150 1.09 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.05 1.04 169 G S L/2750 0.94 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.14 0.83 170 G S L/1200 0.99 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.06 0.93 179 F W L/8000 1.26 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.18 1.07 180 F W L/2000 1.19 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.12 1.07 181 F W L/1000 1.12 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.09 182 F W L/1000 1.13 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.09 183 F W L/1000 1.14 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.11 184 F W L/1000 1.06 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 165   | G   |     | L/2000       | 1.11               | $\rho_{\rm s} = -168.09 \times \delta_0 / L + 1.1992$            | 1.12        | 0.99                 |
| 168 G S L/1150 1.09 $\rho_s = -168.09 \times \delta_0 / L + 1.1992$ 1.05 1.04<br>169 G S L/2750 0.94 $\rho_s = -168.09 \times \delta_0 / L + 1.1992$ 1.14 0.83<br>170 G S L/1200 0.99 $\rho_s = -168.09 \times \delta_0 / L + 1.1992$ 1.06 0.93<br>179 F W L/8000 1.26 $\rho_s = -168.09 \times \delta_0 / L + 1.1992$ 1.18 1.07<br>180 F W L/2000 1.19 $\rho_s = -168.09 \times \delta_0 / L + 1.1992$ 1.12 1.07<br>181 F W L/1000 1.12 $\rho_s = -168.09 \times \delta_0 / L + 1.1992$ 1.03 1.09<br>182 F W L/1000 1.13 $\rho_s = -168.09 \times \delta_0 / L + 1.1992$ 1.03 1.09<br>183 F W L/1000 1.14 $\rho_s = -168.09 \times \delta_0 / L + 1.1992$ 1.03 1.11<br>184 F W L/1000 1.06 $\rho_s = -168.09 \times \delta_0 / L + 1.1992$ 1.03 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 166   | G   |     | L/1150       | 1.05               |                                                                  | 1.05        | 0.99                 |
| 169 G S L/2750 0.94 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.14 0.83 170 G S L/1200 0.99 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.06 0.93 179 F W L/8000 1.26 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.18 1.07 180 F W L/2000 1.19 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.12 1.07 181 F W L/1000 1.12 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.03 1.09 182 F W L/1000 1.13 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.03 1.09 183 F W L/1000 1.14 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.03 1.11 184 F W L/1000 1.06 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.03 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |     |     | L/1150       | 1.07               |                                                                  | 1.05        | 1.01                 |
| 170 G S L/1200 0.99 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.06 0.93<br>179 F W L/8000 1.26 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.18 1.07<br>180 F W L/2000 1.19 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.12 1.07<br>181 F W L/1000 1.12 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.03 1.09<br>182 F W L/1000 1.13 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.03 1.09<br>183 F W L/1000 1.14 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.03 1.11<br>184 F W L/1000 1.06 $\rho_s = -168.09 \times \delta_0/L + 1.1992$ 1.03 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 168   | G   |     | L/1150       | 1.09               | $\rho_{\rm s} = -168.09 \text{x} \delta_0 / \text{L} + 1.1992$   | 1.05        | 1.04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 169   | _   |     | L/2750       | 0.94               | $\rho_{\rm s} = -168.09 \text{ x} \delta_0 / \text{L} + 1.1992$  | 1.14        | 0.83                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |     | _   |              | 0.99               | $\rho_{\rm s} = -168.09 \times \delta_0 / L + 1.1992$            | 1.06        | 0.93                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 179   | F   | W   | L/8000       | 1.26               | $\rho_{\rm s} = -168.09 \times \delta_0 / L + 1.1992$            | 1.18        | 1.07                 |
| 182 F W L/1000 1.13 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.09<br>183 F W L/1000 1.14 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.11<br>184 F W L/1000 1.06 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180   | F   | W   | L/2000       | 1.19               | $\rho_{\rm s} = -168.09 {\rm x} \delta_0 / {\rm L} + 1.1992$     | 1.12        | 1.07                 |
| 183 F W L/1000 1.14 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.11 184 F W L/1000 1.06 $\rho_s = -168.09x\delta_0/L + 1.1992$ 1.03 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 181   | F   | W   | L/1000       | 1.12               | • •                                                              | 1.03        | 1.09                 |
| 184 F W L/1000 1.06 $\rho_s = -168.09 \times \delta_0 / L + 1.1992$ 1.03 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 182   | F   | W   | L/1000       | 1.13               | • •                                                              | 1.03        | 1.09                 |
| · •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 183   | F   | W   | L/1000       | 1.14               | $\rho_{\rm s} = -168.09 {\rm x} \delta_0 / {\rm L} + 1.1992$     | 1.03        | 1.11                 |
| 185 F W L/1000 1.08 $\rho_s = -168.09 \times \delta_0 / L + 1.1992$ 1.03 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 184   | F   | W   | L/1000       | 1.06               | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.03        | 1.03                 |
| Note: L. Column length R. Ruckling axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |              | 1.08               | $\rho_{\rm s} = -168.09 \text{x} \delta_0 / \text{L} + 1.1992$   | 1.03        | 1.05                 |

B - Buckling axis

D - Orientation of reinforcing plate

W - Weak axis of the rolled section

F - Parallel to the flanges

S - Strong axis of the rolled section

G - Parallel to the web P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>fea</sub> - Finite elemetn analysis after reinforcing

Table C.5 (Cont'd)

| FEA   |     |     | Out-of-      | SSRC 2                           |                                                                  |             | SSRC 2                        |
|-------|-----|-----|--------------|----------------------------------|------------------------------------------------------------------|-------------|-------------------------------|
| model | D   | В   | Straightness | $ ho_{s}$                        | $\rho_s = m \delta_0/L + b$                                      | $ ho_{seq}$ | $\rho_{\mathtt{n}}$           |
| No.   |     |     | $\delta_0$   | $(P_{\text{fea}}/P_{\text{r2}})$ | SSRC 2                                                           |             | $\rho_{\rm s}/\rho_{\rm seq}$ |
| (1)   | (2) | (3) | (4)          | (5)                              | (6)                                                              | (7)         | (8)                           |
| 234   | G   | S   | L/8000       | 1.20                             | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.18        | 1.02                          |
| 235   | G   | S   | L/2000       | 1.12                             | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.12        | 1.00                          |
| 236   | G   | S   | L/1000       | 1.05                             | $\rho_{\rm s} = -168.09  {\rm x}  \delta_0 / {\rm L} + 1.1992$   | 1.03        | 1.01                          |
| 237   | G   | S   | L/1000       | 1.08                             | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.03        | 1.04                          |
| 238   | G   | S   | L/1000       | 1.09                             | $\rho_{\rm s} = -168.09  {\rm x}  \delta_0 / {\rm L} + 1.1992$   | 1.03        | 1.06                          |
| 239   | G   | S   | L/1000       | 0.95                             | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.03        | 0.92                          |
| 240   | G   | S   | L/1000       | 0.99                             | $\rho_{\rm s} = -168.09 {\rm x} \delta_0 / {\rm L} + 1.1992$     | 1.03        | 0.96                          |
| 251   | F   | S   | L/8000       | 1.26                             | $\rho_{\rm s} = -168.09 \text{x} \delta_0 / \text{L} + 1.1992$   | 1.18        | 1.07                          |
| 252   | F   | S   | L/2000       | 1.18                             | $\rho_{\rm s} = -168.09 \text{x} \delta_0 / \text{L} + 1.1992$   | 1.12        | 1.06                          |
| 253   | F   | S   | L/1000       | 1.10                             | $\rho_{\rm s} = -168.09  \text{m}  \delta_0 / \text{L} + 1.1992$ | 1.03        | 1.07                          |
| 254   | F   | S   | L/1000       | 1.10                             | $\rho_{\rm s} = -168.09 \text{x} \delta_0 / \text{L} + 1.1992$   | 1.03        | 1.07                          |
| 255   | F   | S   | L/1000       | 1.13                             | $\rho_{\rm s} = -168.09 \text{x} \delta_0 / \text{L} + 1.1992$   | 1.03        | 1.09                          |
| 256   | F   | S   | L/1000       | 1.01                             | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.03        | 0.98                          |
| 257   | F   | S   | L/1000       | 1.05                             | $\rho_{\rm s} = -168.09 \times \delta_0 / L + 1.1992$            | 1.03        | 1.02                          |
| 296   | G   | S   | L/8000       | 1.16                             | $\rho_{\rm s} = -168.09 \times \delta_0 / L + 1.1992$            | 1.18        | 0.98                          |
| 297   | G   | S   | L/2000       | 1.08                             | $\rho_{\rm s} = -168.09  \text{x}  \delta_0 / \text{L} + 1.1992$ | 1.12        | 0.97                          |
| 298   | G   | S   | L/1000       | 1.02                             | $\rho_{\rm s} = -168.09 \times \delta_0 / L + 1.1992$            | 1.03        | 0.99                          |
| 299   | G   | S   | L/1000       | 1.05                             | $\rho_{\rm s} = -168.09 \times \delta_0 / L + 1.1992$            | 1.03        | 1.02                          |
| 300   | G   | S   | L/1000       | 1.07                             | $\rho_{\rm s} = -168.09 {\rm x} \delta_0 / {\rm L} + 1.1992$     | 1.03        | 1.04                          |
| 301   | G   | S   | L/1000       | 0.92                             | $\rho_{\rm s} = -168.09 {\rm x} \delta_0 / {\rm L} + 1.1992$     | 1.03        | 0.89                          |
| 302   | G   | S   | L/1000       | 0.96                             | $\rho_s = -168.09 \times \delta_0 / L + 1.1992$                  | 1.03        | 0.93                          |

B - Buckling axis

D - Orientation of reinforcing plate

W - Weak axis of the rolled section

F - Parallel to the flanges

S - Strong axis of the rolled section

G - Parallel to the web

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>fea</sub> - Finite elemetn analysis after reinforcing

Table C.6 Normalized Professional Factors for Columns from Group 2 ( $\lambda = 1.5$ )

| FEA       |          |          | Out-of-      | SSRC 2             |                                                                |                    | SSRC 2              |
|-----------|----------|----------|--------------|--------------------|----------------------------------------------------------------|--------------------|---------------------|
| model     | D        | В        | Straightness | $ ho_{s}$          | $\rho_{\rm s}={\rm m}\;\delta_0/{\rm L}+{\rm b}$               | $ ho_{\text{seq}}$ | $\rho_{\mathtt{n}}$ |
| No.       |          |          | $\delta_0$   | $(P_{fea}/P_{r2})$ | SSRC 2                                                         | •                  | $ ho_{s}/ ho_{seq}$ |
| _(1)      | (2)      | (3)      | (4)          | (5)                | (6)                                                            | (7)                | (8)                 |
| 77        | G        | S        | L/1350       | 1.06               | $\rho_s = -190.38 \times \delta_0 / L + 1.2219$                | 1.08               | 0.98                |
| 78        | G        | S        | L/1350       | 1.09               | $\rho_s = -190.38x\delta_0/L + 1.2219$                         | 1.08               | 1.01                |
| <b>79</b> | G        | S        | L/1350       | 0.99               | $\rho_s = -190.38 \times \delta_0 / L + 1.2219$                | 1.08               | 0.92                |
| 80        | G        | S        | L/1350       | 1.03               | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.08               | 0.95                |
| 30        | F        | W        | L/8000       | 1.18               | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.20               | 0.99                |
| 31        | F        | W        | L/2000       | 1.08               | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.13               | 0.96                |
| 32        | F        | W        | L/1000       | 1.01               | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.03               | 0.98                |
| 33        | F        | W        | L/1000       | 1.03               | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.03               | 1.00                |
| 34        | F        | W        | L/1000       | 0.96               | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.04               | 0.93                |
| 35        | F        | W        | L/1000       | 1.00               | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.04               | 0.96                |
| 95        | F        | W        | L/1000       | 1.02               | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.03               | 0.98                |
| 96        | F        | W        | L/1000       | 1.02               | $\rho_{\rm s} = -190.38 \times \delta_0 / L + 1.2219$          | 1.03               | 0.99                |
| 97        | F        | W        | L/1000       | 1.04               | $\rho_{\rm s} = -190.38 {\rm x} \delta_0 / {\rm L} + 1.2219$   | 1.03               | 1.01                |
| 98        | F        | W        | L/1050       | 0.98               | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.04               | 0.94                |
| 99        | F        | W        | L/1050       | 1.00               | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.04               | 0.96                |
| 126       | F        | W        | L/1400       | 1.01               | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.04               | 0.97                |
| 127       | F        | W        | L/1050       | 1.05               | $\rho_{\rm s} = -190.38 {\rm x} \delta_0 / {\rm L} + 1.2219$   | 1.04               | 1.00                |
| 128       | F        | W        | L/1100       | 0.99               | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.05               | 0.94                |
| 129       | F        | W        | L/1100       | 1.03               | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.05               | 0.98                |
| 171       | G        | S        | L/1350       | 1.09               | $\rho_{\rm s} = -190.38 {\rm x} \delta_0 / {\rm L} + 1.2219$   | 1.08               | 1.01                |
| 172       | G        | S        | L/1350       | 1.11               | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.08               | 1.02                |
| 173       | G        | S        | L/1300       | 1.03               | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.08               | 0.96                |
| 174       | G        | S        | L/1300       | 1.05               | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.08               | 0.97                |
| 186       | F        | W        | L/1000       | 1.06               | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.03               | 1.03                |
| 187       | F        | W        | L/1000       | 1.08               | $\rho_{\rm s} = -190.38 \times \delta_0 / L + 1.2219$          | 1.03               | 1.04                |
| 188       | F        | W        | L/1000       | 1.03               | $\rho_{\rm s} = -190.38 \times \delta_0 / L + 1.2219$          | 1.03               | 1.00                |
| 189       | F        | W        | L/1000       | 1.06               | $\rho_{\rm s} = -190.38 \times \delta_0 / L + 1.2219$          | 1.03               | 1.02                |
| 241       | G        | S        | L/8000       | 1.29               | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.20               | 1.07                |
| 242       | G        | S        | L/2000       | 1.18               | $\rho_s = -190.38 \times \delta_0 / L + 1.2219$                | 1.13               | 1.05                |
| 243       | G        | S        | L/1000       | 1.11               | $\rho_{\rm s} = -190.38 \times \delta_0 / L + 1.2219$          | 1.03               | 1.08                |
| 244       | G        | S        | L/1000       | 1.14               | $\rho_{\rm s} = -190.38 \times \delta_0 / L + 1.2219$          | 1.03               | 1.10                |
| 245       | G        | S        | L/1000       | 1.05               | $\rho_s = -190.38 \times \delta_0 / L + 1.2219$                | 1.03               | 1.02                |
| _246      | <u>G</u> | <u> </u> | L/1000       | 1.08               | $\rho_s = -190.38 \times \delta_0 / L + 1.2219$                | 1.03               | 1.04                |

B - Buckling axis

D - Orientation of reinforcing plate

W - Weak axis of the rolled section

F - Parallel to the flanges

S - Strong axis of the rolled section

G - Parallel to the web  $P_{r2}$  - Capacity after reinforcing (SSRC2)  $P_{fea}$  - Finite elemeth analysis after reinforcing

Table C.6 (Cont'd)

| FEA<br>model<br>No. | D   | В   | Out-of-Straightness $\delta_0$ | $\begin{array}{c} \text{SSRC 2} \\ \rho_{s} \\ (P_{\text{fea}}/P_{r2}) \end{array}$ | $\rho_s = m  \delta_0 / L + b$ SSRC 2                          | $ ho_{seq}$ | SSRC 2 $\rho_n$ $\rho_s/\rho_{seq}$ |
|---------------------|-----|-----|--------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------|-------------------------------------|
| (1)                 | (2) | (3) | (4)                            | (5)                                                                                 | (6)                                                            | (7)         | (8)                                 |
| 258                 | F   | W   | L/1000                         | 1.05                                                                                | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.03        | 1.01                                |
| 259                 | F   | W   | L/1000                         | 1.07                                                                                | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.03        | 1.04                                |
| 260                 | F   | W   | L/1000                         | 1.00                                                                                | $\rho_{\rm s} = -190.38 {\rm x} \delta_0 / {\rm L} + 1.2219$   | 1.03        | 0.97                                |
| 261                 | F   | W   | L/1000                         | 1.03                                                                                | $\rho_{\rm s} = -190.38 {\rm x} \delta_0 / {\rm L} + 1.2219$   | 1.03        | 1.00                                |
| 303                 | G   | S   | L/1000                         | 1.08                                                                                | $\rho_{\rm s} = -190.38 \times \delta_0 / L + 1.2219$          | 1.03        | 1.05                                |
| 304                 | G   | S   | L/1000                         | 1.12                                                                                | $\rho_{\rm s} = -190.38 {\rm x} \delta_0 / {\rm L} + 1.2219$   | 1.03        | 1.08                                |
| 305                 | G   | S   | L/1000                         | 1.00                                                                                | $\rho_{\rm s} = -190.38 \text{x} \delta_0 / \text{L} + 1.2219$ | 1.03        | 0.97                                |
| 306                 | G   | S   | L/1000                         | 1.04                                                                                | $\rho_s = -190.38 \times \delta_0 / L + 1.2219$                | 1.03        | 1.01                                |

B - Buckling axis

D - Orientation of reinforcing plate

W - Weak axis of the rolled section

F - Parallel to the flanges

S - Strong axis of the rolled section

G - Parallel to the web

P<sub>r2</sub> - Capacity after reinforcing (SSRC2)

P<sub>fea</sub> - Finite elemetn analysis after reinforcing

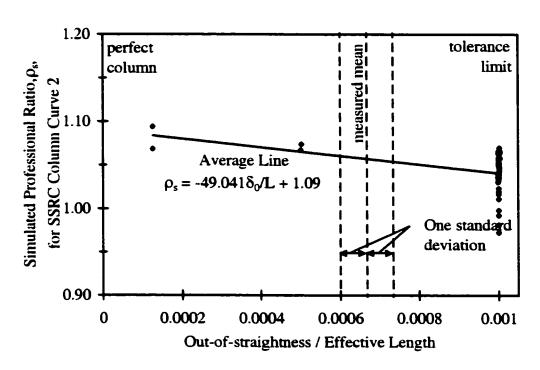



Figure C.1 Simulated Professional Ratio vs. Value of Out-ofstraightness for Columns from Group 2 ( $\lambda = 0.4$ )

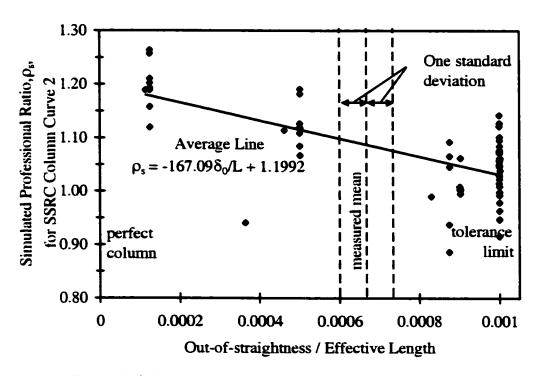



Figure C.2 Simulated Professional Ratio vs. Value of Out-ofstraightness for Columns from Group 2 ( $\lambda = 1.1$ )

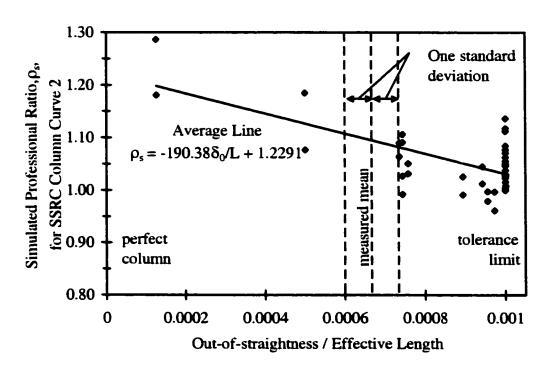



Figure C.3 Simulated Professional Ratio vs. Value of Out-ofstraightness for Columns from Group 2 ( $\lambda = 1.5$ )

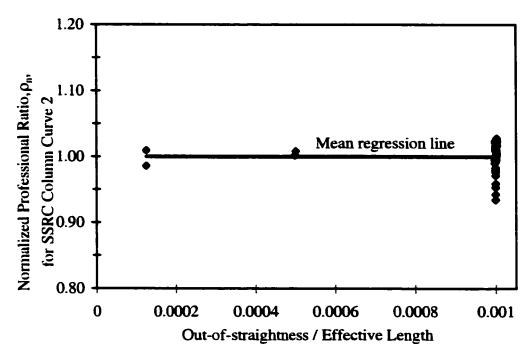



Figure C.4 Normalized Professional Ratio vs. Value of Out-ofstraightness for Columns from Group 2 ( $\lambda$  =0.4)

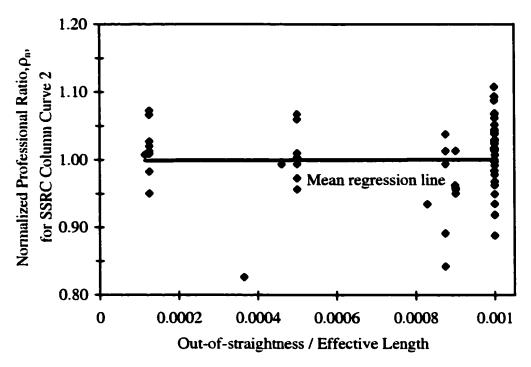



Figure C.5 Normalized Professional Ratio vs. Value of Out-ofstraightness for Columns from Group 2 ( $\lambda$  = 1.1)

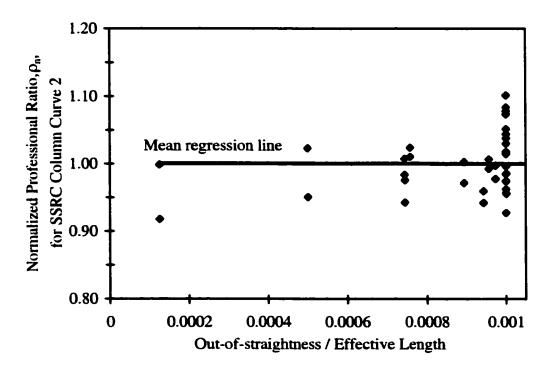



Figure C.6 Normalized Professional Ratio vs. Value of Out-ofstraightness for Columns from Group 2 ( $\lambda = 1.5$ )

## **Recent Structural Engineering Reports**

## Department of Civil and Environmental Engineering University of Alberta

- 222. Strength of Joints that Combine Bolts and Welds by Thomas J. Manuel and Geoffrey L. Kulak, July 1998.
- 223. Strip Model for Capacity of Slab-Column Connections by Shahab Afhami, Scott D.B. Alexander, and Sidney H. Simmonds, August 1998.
- 224. Behaviour of Large Diameter Line Pipe under Combined Loading by Patrick R. DelCol, Gilbert Y. Grondin, J.J. Roger Cheng and David W. Murray, September 1998.
- 225. *An Analysis of the Cyclic Behaviour of Steel Gusset Plate Connections* by Scott S. Walbridge, Gilbert Y. Grondin, and J.J. Roger Cheng, September 1998.
- 226. Rehabilitation of Unreinforced Masonry Walls with Externally Applied Fiber Reinforced Polymers by Michael L. Albert, J.J. Roger Cheng, and A.E. Elwi, October, 1998.
- 227. Fatigue of Bearing-Type Shear Splices by Georg Josi, G.Y. Grondin, and G.L. Kulak, April, 1999.
- 228. Out-of-Plane Cyclic Behavior of Masonry Walls Reinforced Externally with GFRP by Marc D. Kuzik, A.E. Elwi, and J.J. Roger Cheng, August 1999.
- 229. Cyclic Behavior of Stiffened Gusset Plate–Brace Member Assemblies by Trina Nast, G.Y. Grondin, and J.J.R. Cheng, November 1999.
- 230. *Behaviour of Sleeper-supported Line Pipe* by Jeffrey D. DiBattista, J.J.R. Cheng, and D.W. Murray, April 2000.
- 231. Field Assessment of Crowchild Trail Bridge by Kong K. Taing, J.J.R. Cheng, and S. Afhami, January 2000.
- 232. *Ductile Fracture of Steel* by Heng Aik Khoo, J.J. Roger Cheng, and T.M. Hrudey, August 2000.
- 233. *Shear Lag in Bolted Cold-Formed Steel Angles and Channels in Tension* by Amy Sin-Man Yip and J.J. Roger Cheng, September 2000.
- 234. Behaviour of Reinforced Concrete Beams Strengthened in Shear with FRP Sheets by Christophe Deniaud and J.J. Roger Cheng, October 2000.
- 235. *Behaviour of Distortion-Induced Fatigue Cracks in Bridge Girders* by R. Fraser, G.Y. Grondin, and G.L. Kulak, December 2000.

- 236. Stiffener Tripping in Stiffened Steel Plates by I.A. Sheikh, A.E. Elwi and G.Y. Grondin, January 2001.
- 237. *Critical Buckling Strains for Energy Pipelines* by A.B. Dorey, J.J.R. Cheng and D.W. Murray, April 2001.
- 238. Local buckling and Fracture Behaviour of Line Pipe under Cyclic Loading by Brian Myrholm, J.J.R. Cheng and D.W. Murray, May 2001.
- 239. *Behaviour of Welded Cold-Formed Steel Tension* Members by Alvaro Lemenhe and J.J.R. Cheng, July 2001.
- 240. Behaviour and Rehabilitation of Distortion-Induced Fatigue Cracks in Bridge Girders by M. D'Andrea, G.Y. Grondin, and G.L. Kulak, September 2001.
- 241. Punching Shear Capacity of Slab-Column Connections with Steel-Fibre reinforcement under Lateral Cyclic Loading by Sascha K. Schreiber and Scott D.B. Alexander, September 2001.
- 242. Behaviour of Slabs with Fibre-Reinforced Polymer Reinforcement by Carlos E. Ospina, Roger J.J. Cheng, and Scott D.B. Alexander, October 2001.
- 243. Behaviour of Slab-Column Connections with Partially Debonded Reinforcement under Cyclic Lateral Loading by M.A. Ali and S.D.B. Alexander, January 2002.
- 244. *Block Shear Behaviour of Coped Steel Beams* by Cameron R. Franchuk, Robert G. Driver, and Gilbert Y. Grondin, September 2002.
- 245. *Behaviour of Transverse Fillet Welds* by Anthony K.F. Ng, Robert G. Driver, and Gilbert Y. Grondin, October 2002.
- 246. Analysis of Buried Pipelines with Thermal Applications by Nader Yoosef-Ghodsi, and D.W. Murray, October 2002.
- 247. Fracture of Wrinkled Energy Pipelines by Das, S., Cheng, J.J.R., Murray, D.W., November 2002.
- 248. Block Shear Behaviour of Bolted Gusset Plates by Bino Baljit Singh Huns, Gilbert Y. Grondin, and Robert G. Driver, December 2002.
- 249. *Numerical Solutions for Pipeline Wrinkling* by Song, X., Cheng, J.J.R., Murray, D.W., January 2003.
- 250. Behaviour of Steel Columns Reinforced with Welded Steel Plates by Ziqi Wu and Gilbert Y. Grondin, February 2003.