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Abstract

Quantile, composite quantile regression with or without regularization have

been widely studied and applied in the high-dimensional model estimation and

variable selections. Although the theoretical aspect has been well established,

the lack of e�cient computation methods and publicly available programs or

packages hinder the research in this area. Koenker [11] has established and im-

plemented the interior point(IP) method in quantreg [12] for quantile regres-

sion with or without regularization. However, it still lacks the ability to handle

the composite quantile regression with or without regularization. The same

incapability also existed in Coordinate Descent (CD) algorithm that has been

implemented in CDLasso [8]. The lack of handful programs for composite

quantile regression with or without regularization motivates our research here.

In this work, we implement three di�erent algorithms including Majorize and

Minimize(MM), Coordinate Descent(CD) and Alternation Direction Method

of Multiplier(ADMM) for quantile and composite quantile regression with or

without regularization. We conduct the simulation that compares the per-

formance of four algorithms in time e�ciency and estimation accuracy. The

simulation study shows our program is time e�cient when dealing with high

dimensional problems. Based on the good performance of our program, we
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publish the R package cqrReg [7], which give the user more �exibility and

capability when directing various data analyses. In order to optimize the time

e�ciency, the package cqrReg [7] is coded in C++ and linked back to R by

an user-friendly interface.
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Chapter 1

Introduction

1.1 Quantile and Composite Quantile Regres-

sion

1.1.1 Quantile Regression

Weisberg [22] de�nes a regression model as the study of dependence. For

the most of statisticians, the goal of regression model is to summarize the

embedded patterns that hide in the observed data. In other words, how the

response variable varies as the value of the covariates changes. Denote the

response variable as Y = [y1, y2, ..., yn]T and the covariates matrix as X =

[x1,x2, ...,xn], where n is the sample size. The regression model can be denoted

asY = Xβ+ε, where β is the coe�cient and ε is the error term. There are two

major assumptions concerning the error. First, there is no common patterns

between the corresponding error and covariates, denoted as E(εi|X = xi) = 0.

The second assumption is that the error are independent, meaning that the

value of the error for one case gives no information about the value of the
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error for another cases [22]. There are many well known methods that have

been implemented for regression model estimation. The most common way

is to obtain the mean response variable by the ordinary least square (OLS)

estimation, which minimizes the sum of squared residuals.

n∑
i=1

(yi − f(xi,β))2. (1.1)

Under the normality assumption of the error distribution, it is the maximum

likelihood estimator. However, if the error follows heavy tailed distribution

or the data itself has outliers, the estimator will be ine�cient. In that case,

Ru�der Josip Boskovi¢, a Jesuit Catholic priest from Dubrovnik [19] introduces

the least absolute deviation (LAD) regression, which estimates the conditional

median function by minimizing the sum of absolute value of residuals.

n∑
i=1

|(yi − f(xi,β))|. (1.2)

The least absolute deviation regression works well even when the error has a

distribution without �nite variance. In addition, it is the maximum likelihood

estimation (MLE) if the error follows the Laplace distribution.

Generally, the least absolute deviation regression belongs to the family of

quantile regression. In other words, the least absolute deviation regression is

the 0.5 quantile level quantile regression. Denote the quantile level τ ∈ (0, 1),

quantile function obtains the value from the data that there are τ data below

it and 1 − τ data above it. The empirical version of the principals says, a

sample τ quantile uτ of n numbers y1, ..., yn is a minimizer of the function
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L(u) =
∑n

i=1 ρτ (yi − u) [13], where

ρτ (t) = t(τ − I(t < 0)) (1.3)

Koenker and Basett [13] de�ne the τth quantile regression as any vector β

minimizing the following

n∑
i=1

ρτ (yi − f(xi,β)). (1.4)

Quantile regression shares the nice property of least absolute deviation regres-

sion when countering outliers in the response measurements. Moreover, the

advantage of quantile regression goes beyond that. Quantile regression can

provide a big scope of the relationship between response variables and covari-

ates. Compare with the least absolute deviation regression that mainly focus

on the median of residuals, the quantile regression could provide more infor-

mation about how the response variable is in�uenced by covariates in the tail

parts.

In the era of "big data", the high dimensional problem makes many classical

regression method less powerful. In that case, Tibshirani [20] introduces well

known technique, called the lasso, for "least absolute shrinkage and selection

operator". It minimizes the residuals sum of square subject to the sum of

the absolute value of the coe�cients being less than a constant. The extended

version is the ordinary least square estimation with absolute value penalty [20]

.
n∑
i=1

(yi − f(xi,β))2 + λ|β| (1.5)

where λ ≥ 0 is a tuning parameter that controls the level of shrinkage in
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estimation process. The value of λ is estimated by cross validation. The Lasso

has two main advantages than ordinary least square estimation, in terms of

prediction accuracy and interpretation. For predicting accuracy, the lasso

shrinks some coe�cients into 0 that sacri�ces the bias in order to reduces the

variance of the predicted model that leads the prediction more accurate. For

interpretation, the less number of the predictors that have the strong e�ects

make the interpretation more clearly [20].

1.1.2 Composite Quantile Regression

Fan and Li [5] introduce the theory of oracle model selection to lead the con-

struction of optimal model selection procedures. Considering the following

linear model

Y = Xβ + ε (1.6)

The goal of variable selection is to identify the unknown set of coe�cients

β∗A : βj 6= 0, in other words the signi�cant components of β . Fan and Li

suggest the situation that there is the oracle who already know the true set of

A. Denote the LS − oracle as the oracle estimator derive from least square

estimation. Fan and Li prove that

√
n(βLS−oracleA − β∗A)

d→ N(0, σ2C−1AA) (1.7)

where X is the design matrix and lim
n→∞

1
n
XTX = C, and C is p × p positive

de�nite matrix. De�ned CAA the sub-matrix of C with both column and row

index in A [26]. However, the oracle "estimator" is not a real estimator due

to the known information about the true parameter. Fan and Li introduce the
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variable selection and coe�cient estimation procedure η is a LS − oracular

estimator, if β̂(η) has the following properties [26]:

� Consistent selection: Pr({j : β̂(η)j 6= 0} = A)→ 1

� E�cient estimation:
√
n(β̂(η)A − β∗A)

d→ N(0, σ2C−1AA)

Fan and Li show that the SCAD well satis�es the oracle properties. Zou

[26] elaborates the adaptive lasso also attains the oracle properties. However,

the β̂LS has the limitation of root-n consistency when facing the in�nite error

variance. Based on Fan and Li, Zou and Yuan [26] introduced a new regression

method called composite quantile regression (CQR) as following:

(b̂1, ...b̂k, ˆβCQR) = arg min
b1,...bk,β

k∑
i=1

ρτi(Y − bi −Xβ) (1.8)

where 0 < τ1 < τ2 < τ3... < τk < 1, denote bk the kth quantile intercept

coe�cient. The composite quantile regression simultaneously consider multiple

quantile levels that combines the advantage of the multiple quantile regression

model. The composite quantile regression model has the same coe�cients

across various quantile levels [26]. In addition, Zou and Yuan [26] present the

composite quantile regression with adaptive lasso penalty, which could also

obtains a CQR − oracular estimator that satis�es the oracle property and

durable in the in�nite error variance.

(b̂1, ...b̂k, β̂
CQRL) = arg min

b1,...bk,β

k∑
i=1

ρτi(Y − bi −Xβ) + λ
|β|

|βCQR|2
(1.9)

Besides the same setting for composite quantile regression, the βCQR is de-

rived from the composite quantile regression and λ is the tuning parameter.
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Moreover, Zou and Yuan [26] show the CQR − oracle has two noteworthy

properties:

� It has 70% more relative e�ciency than LS − oracle.

� Even if the error does not follow Gaussian distribution, its relative e�-

ciency could be arbitrarily large.

Inspired by Zou and Yuan, Wu and Liu [25] prove the oracle property of quan-

tile regression with adaptive lasso penalty. The oracle theorem for quantile

regression with adaptive lasso penalty depends on the following conditions:

� The regression error is independent and identically distributed , with

τth quantile zero and a continuous, positive density in a neighborhood

of zero.

� The design matrix X is a deterministic sequence for which there is a

positive de�nite matrix C where lim
n→∞

1
n
XTX = C

Based on the superior properties illustrate above, we conduct the quantile

regression with regularization in the following form:

β̂QRL = arg min
β

ρτ (Y −Xβ) + λ
|β|
|βQR|2

(1.10)

and composite quantile regression with regularization in the form of (1.9).

1.2 Four Algorithms for Convex Optimization

In this section, we brie�y review the four popular algorithms for the convex

optimization problem that our research problems belong to.
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1.2.1 Interior Point (IP) algorithm

Linear programing has been well known in the history of optimization. Its

formulation could be traced back to the 1930s and 1940s. Since the develop-

ment of the Simplex algorithm by Dantzig in the mid 1940s, many researchers

implement it in the economic, �nance and engineering area [23]. Due to non-

polynomial running time of Simplex algorithm, Karmarkar proposes the poly-

nomial time algorithm called primal dual interior point method that follows

the early work from Fiacco and McCornick on barrier methods for constrained

optimization [11]. In this section, we brie�y review the concept of linear pro-

graming and Interior Point (IP) method from Wright [23] and Koenker [11].

There are three fundamental properties of a linear programing problem

[23].

� A vector of real variable that the optimal value solves the problem

� A linear objective function

� The inequality or equality linear constrains

The standard form of the linear programing problem de�nes as following:

min cTx subject to Ax = y, x ≥ 0 (1.11)

where c and x are vectors in Rn, y is the a vector in Rm, and A is an m×n ma-

trix. The standard form of linear programing is also called the primal problem

that distinguishes from the dual problem, which is de�ned as following:

max yTd subject to ATd ≤ c (1.12)
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where d is a vector in Rm. The components of d are called the dual variable.

The dual problem consists of the same objects of primal problem that are

arranged in a di�erent way. The duality theory explains the relationship be-

tween the primal and dual problem. For instance, given the vector x satis�es

the constrains Ax = y, x ≥ 0 and d for (1.12), we have

yTd ≤ cTx (1.13)

In other words, the primal solution gives an upper bound on the dual, and

the dual objective gives a lower bound on the primal problem. The basic

idea of interior point method is using variants of Newton's method to derive

the optimal solution that satis�es the Karush-Kuhn-Tucker(KKT) condition

of the primal-dual problem. The details of duality theory and KKT condition

could be found in the reference book that is written by Wright [23]. Since our

research problem could be formulated as the linear programming problem, we

implement the interior point for the quantile regression and composite quantile

regression with or without regularization. We give details about how we trans-

late the our research problem into linear programing problem in Chapter 2. It

is worth noticing that we use the interior point method that is implemented

in the Rmosek [6].

1.2.2 Majorize and Minimize (MM) algorithm

Ortega and Rheiboldt [16] introduce the technique of implementing the ma-

jorize function of the original function to estimate the minimization point of

the original problem. The most well known example of MM algorithm is the

EM algorithm. It is widely used in estimating the maximal likelihood estima-
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tor. Although the basic idea is the same, EM stands for minorized-maximized

instead of majorize-minimize. Many application of MM algorithm could be

found, for example, Heiser[9] and Lange [15]. The MM algorithm breaks down

the relatively hard part of optimization problem into easier sub problems. In

addition, the solution of substitute problems always converges to a solution

of the original problems. In that case, MM algorithm is an ideal solver for

non-di�erentiable regression model like quantile and composite quantile re-

gression with or without regularization. Concerning the optimization problem

is to minimize the objective function L(θ) : Rp → R. Majorize and Minimize

algorithm proceed the estimation in two step. First, we establish a surrogate

function Q(θ|θk) : Rp → R satisfying

Q(θk|θk) = L(θk) (1.14)

Q(θ|θk) ≥ L(θ) for all θ (1.15)

The surrogate function Q(θ|θk) is called the majorize function of L(θ) at θk.

The second step of the MM algorithm is to derive the estimator θk+1 that

minimize the majorize function Q(θ|θk). The estimation process repeats the

above two steps until the estimator are converged. In other words, for each

iteration the algorithm creates the new surrogate function Q(θ|θk+1) and looks

for the local minimum. The challenge of MM algorithm is to derive the suit-

able majorize function that could be easily minimized [10]. In this thesis,

we illustrate the procedure of implementing the MM algorithm for quantile,

composite quantile regression with or without regularization in Chapter 2.
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1.2.3 Coordinate Descent(CD) Algorithm

Wu and Lange [24] introduce the Coordinate Descent(CD) algorithm for LAD

that is based on greedy coordinate descent and Edgeworth's [4] algorithm

for ordinary LAD regression. This section brie�y introduce the basic idea of

greedy coordinate descent algorithm and how Wu and Lange [24] generate the

new version LAD coordinate descent algorithm.

In the past ten years, due to the explosion of the information, many clas-

sical regression methods are losing their strength. The inner reason is the

standard regression method always involves matrix inversion, matrix diagonal-

ization that need enormous numbers of arithmetic operations as the cube of

the number of predictors. The challenge motivates many researchers like Park

and Hastie [17], Wang [21]. In that circumstance, Wu and Lange introduce

the coordinate descent algorithm, that has nice properties such as simplicity,

time e�ciency and stability. However, the concept of coordinate descent is full

of history. In 1887, Edgeworth introduced the algorithm in L1 regression that

become the main competitor of least square regression. In 1997, Portnoy and

Koenker [18] followed the algorithm from Boscovich to Laplace to Edgeworth.

Recently, Wu and Lange propose the greedy coordinate descent based on the

Edgeworth's algorithm from Claerbout and Muir [3]. To expose the nature

of coordinate descent algorithm, consider minimizing the single variable L1

regression model L(β) = |Y − Xβ − u|, where u is the intercept. The �rst

step is to update u by the sample median of z = |Y−Xβ| that will drive the

L(β) downhill. We could rewrite the loss function.

L(β) =
n∑
i=1

|xik||
yi − u−

∑
j 6=k xiβ

xi
− β| (1.16)
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Before the algorithm goes to second step, Edgeworth [4] de�nes the weighted

median of series of numbers (x1, . . . , xn) as {xk|Sk−1 < Sn/2 ≤ Sk, k ∈ n},

where the cumulative sum of numbers Sn =
n∑
1

xi. In the second step, the CD

algorithm sorts the numbers zi = yi−u
xi

, and then updates parameter β by the

order statistic z[i] whose index i satis�es following condition (in other words

weighted median)

i−1∑
j=1

w[j] <
1

2

n∑
j=1

w[j]

i∑
j=1

w[j] ≥
1

2

n∑
j=1

w[j] (1.17)

where wi = |xi| is corresponding to the zi. Moreover, the CD algorithm also

works for the lasso penalty. The lasso penalty function λ|β| could be regarded

as the term of absolute value pseudo-residuals.

λ|β| = |yn+1 − xn+1β| (1.18)

where yn+1 = 0, xn+1 = λ. In other words, we add one more row in the design

matrix equals the value of λ, at the same time add one more response variable

yn+1 = 0. Wu and Lange [24] demonstrate the weak consistency of penalized

L1 regression. In addition, the simulation study they have done proves the CD

algorithm is time e�cient and stable. In Chapter 2, the thesis comprehensi-

bly explains how coordinate descent(CD) algorithm could be implemented in

quantile, composite quantile regression with or without regularization.

1.2.4 Alternating Direction Method of Multipliers (ADMM)

This section brie�y reviews the powerful convex optimization algorithm that

is well suited to the research problem of the thesis. It is called Alternating Di-
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rection Method of Multiplier(ADMM), and introduced by Boyd [1]. However,

the algorithm itself is not invented by Boyd, it was �rst introduced in 1970s,

and well established in 1990s. It follows the decomposition-coordination pro-

cedure, in which the global optimization problem is solved by coordinating the

solution of local sub problems. ADMM could be regarded as the mixture of

the dual decomposition and augmented Lagrangian methods for constrained

optimization [1]. It is implemented in many �elds, such as iterative algorithms

for L1 problems in signal process by Bregman [2]. We implement the ADMM

in this work, since quantile, composite quantile regression with or without reg-

ularization are typically convex optimization problems. Firstly, we review the

basic idea about ADMM in the following part of this section. In Chapter 2,

the thesis illustrates the procedure about how we implement the ADMM for

our problem. First, the general form of ADMM problem is:

min f(x) + g(z)

subject to Ax+Bz = c (1.19)

where f and g are convex. The Lagrangian function can be wrote as:

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2)||Ax+Bz − c||22 (1.20)
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where ρ is the constant number called penalty parameter. The ADMM dual

variables for each iteration k are:

xk+1 = arg min
x
Lρ(x, z

k, yk)

zk+1 = arg min
z
Lρ(x

k+1, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c) (1.21)

Combined the linear and the quadratic term in augmented Lagrangian, equa-

tion (1.20) can write as

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2)||Ax+Bz − c||22

= f(x) + g(z) + (ρ/2)||Ax+Bz − c+ u||22 − (ρ/2)u2, (1.22)

with u = (1/ρ)y and uk = (1/ρ)yk. Then the ADMM dual variables (scaled

dual form) are:

xk+1 = arg min
x

(f(x) + (ρ/2)||Ax+Bzk − c+ uk||22)

zk+1 = arg min
z

(g(z) + (ρ/2)||Axk+1 +Bz − c+ uk||22)

uk+1 = uk + (Axk+1 +Bzk+1 − c) (1.23)

The two forms (1.21 and 1,23) are clearly equivalent, but the formulas in the

scaled form of ADMM are often shorter and more convenient to solve than

in the unscaled form. At each iteration, we update the termination threshold

variables. For instance, we de�ne primal residual rk+1 = Axk+1 + Bzk+1 − c,

and dual residual sk+1 = ρATB(zk+1 − zk). The program terminates if the

following conditions are satis�ed
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� ||rk||2 ≤ εpri =
√
pεabs + εrelmax{||Axk||2, ||Bzk||2, ||c||2}

� ||sk||2 ≤ εdual =
√
nεabs + εrel||ATyk||2

where
√
p,
√
n is the square root of the dimension of c, ATyk respectively. We

de�ne εabs = 10−2 and εrel = 10−4 in our program for computational time

e�ciency.

1.3 My Contribution

As the sparse linear regression model estimation becomes more important,

the least square regression with lasso penalty gets the attention from many

computing scientists and statisticians. The concept of model selection oracle

theory illustrates the optimal behavior during the model selection procedure

that is introduced by Fan and Li [5]. However the limitation of least square

oracle theory occurs when the error variance is in�nite, in which case Zou

and Yuan [26] establish the composite quantile regression with adaptive lasso

penalty that maintains the oracle model selection theory. The superior prop-

erty of composite quantile regression with adaptive lasso penalty attracts many

researchers. However, the non-di�erentiable loss function and regularization

keep many researchers away from this area. R package such as quantreg

[12] is developed and well known to estimate and determine the signi�cant

parameters of the quantile regression with or without lasso penalty. How-

ever, it does not handle the composite quantile regression with or without

regularization. The same happened for the R package CDLasso [8], which

implements the Coordinated Descent (CD) method for LAD and LAD lasso.

The lack of program nor package for composite quantile regression with or
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without regularization motivates our research here.

In this thesis, we implement three algorithms and use Interior Point algo-

rithm for quantile, composite quantile regression with or without regularization

1. Interior Point (IP) [14] method, which starts from interior point towards

minimum. It is worth noticing that we transform quantile, composite

quantile regression with or without regularization problem into the lin-

ear programing format. In that case, we use the linear programing solver

called Rmosek [6] for the estimation. We brie�y introduce the IP algo-

rithm in Section 1.2 but details in Chapter 2.

2. Majorize and Minimize (MM) [10], which majorize both loss function and

penalty function into di�erentiable smooth function and then minimize

them through Newton's method. We give a brief introduction of MM

algorithm in the Section 1.2 but details in Chapter 2.

3. Coordinate Descent (CD) [24], which is the greedy algorithm for each

parameters. The basic idea of CD algorithm could be found in Section

1.2 but details in Chapter 2.

4. Alternating Direction Method of Multiplier (ADMM) [1], which is well

known as convex optimization algorithm. We give a brief introduction

of ADMM algorithm in Section 1.2 but details in Chapter 2.

The global convergence result is proved by the convexity of the loss function

and regularization. In Chapter 3, we conduct the simulation to compare the

performances of each algorithms in time e�ciency and estimation accuracy.

Due to superior performance of our program, we present a fresh R pack-

age named cqrReg [7] (Composite Quantile Regression with regularization),

15



which is coded in C++ and linked back to R by an user-friendly interface.

The numerical simulation result shows that cqrReg [7] package is e�cient and

consistent in large data sets.

16



Chapter 2

Algorithms

2.1 Quantile Regression

We recall the de�nition of quantile regression as deriving any vector β ∈ RP

that minimizes the loss function

L(β) = ρτ (Y −Xβ − u)

for easy notation, we de�ne r = Y −Xβ − u.

2.1.1 IP Algorithm

The quantile regression problem could be formulated as the linear program:

min
u,v
{τeTu+ (1− τ)eTv | Y = Xβ + u− v, (u, v) ∈ R2n

+ } (2.1)

17



which has the dual form

max
d
{Y Td|XTd = 0, d ∈ [τ − 1, τ ]n} (2.2)

where e is N × 1 vector of one. We use the Rmosek [6] package for solving

linear programing problem in the following format

min {cTx+ c0}

subject to lc ≤ Ax ≤ uc

lx ≤ x ≤ ux

where x ∈ Rn, the constraint matrix A ∈ Rm×n, the objective coe�cients c ∈

Rn, objective constant c0 ∈ R, lower and upper constraint bounds lc ∈ Rmand

uc ∈ Rm, and lower and upper variable bounds lx ∈ Rn and ux ∈ Rn. We

formulate the quantile regression into the following linear programing form:

min {τeTu+ (1− τ)eTv}

subject to Y = Xβ + u− v

having bounds−∞ ≤ β ≤ ∞

0 ≤ u ≤ ∞

0 ≤ v ≤ ∞

In order to match the input format of package, we de�ne x = (β, u, v), c =

(01×p, τ1×n, (1−τ)1×n), A = (X, In×n,−In×n), lc = uc = y, lx = (−∞1×p+1, 01×2n),

ux =∞1×(p+2n+1).
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2.1.2 MM Algorithm

Based on the idea of MM algorithm, we approximate the piecewise quantile

function into the function ρετ (r), which less than L(β) for all β. We denote the

perturbation parameter ε > 0.

ρετ (r) = ρτ (r)−
ε

2
ln(ε+ |r|) (2.3)

In the second step, we majorize the approximation function at rk by the

quadratic function

ζετ (r|rk) =
1

4
[

(r)2

ε+ |rk|
+ (4q − 2)r + c] (2.4)

The MM algorithm operates by minimizing the majorizer

Qε(β|βk) = ζετ (r|rk) (2.5)

Before continuing to the estimation step of MM algorithm, we brie�y intro-

duce the solver for linear convex optimization problem called Newton-Raphson

method. Generally, Newton-Raphson method is the high dimensional case of

Newton's method, which is well known for locating the root of a function. The

basic idea of Newton's method is based on the gradient of the function. In

one dimensional case, for any di�erentiable linear function f(x), we look for

{x∗|f ′(x∗) = 0} where f ′ is the gradient function. First we pick the starting

point xk in the domain, then de�ned the gradient function gk(x) = ax + b at
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f(xk). Newton approximates gk(x) by

gk(x) ≈ gk(xk)
′x+ gk(xk)− gk(xk)xk

where a ≈ gk(xk)
′, b ≈ gk(xk)− gk(xk)xk. For gk(xk+1) = 0, we have

xk+1 = xk − gk(xk)/gk(xk)′

= xk − f ′(xk)/f ′′(xk)

where f ′′(xk) is the 2nd derivative at xk or Hessian matrix in in high di-

mensional case. It has been proved that for di�erentiable function the New-

ton's method converge to the local minimum. Based on the Newton-Raphson

method, we derive the iterative update schema of our problem as follow:

βk+1 = βk + ∆k
ε (2.6)

where ∆k
ε is the step direction

∆k
ε = −H(f(β))−1G(f(β)) (2.7)

= −[df(βk)′Wε(β
k)df(βk)]−1df(βk)′vε(β

k)′ (2.8)

where H is the Hessian matrix of the optimization function, G is the gradient

of the optimization function. Given the �rst di�erential of Qε(β|βk) (gradient)

dQε(β|βk) =
1

2
(

r

ε+ |rk|
+ 2q − 1)dr(β)

=
1

2
vε(β

k)df(β)
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where

vε(β
k) = (1− 2q − r1(β)

ε+ |r1(βk)|
, ...(1− 2q − rn(β)

ε+ |rn(βk)|
)

Given the second derivative of Qε(β|βk) (Hessian matrix)

d2Qε(β|βk) ≈
1

2
df(βk)′Wε(β

k)df(βk)

where df(β) is the n×p matrix with entry ∂
∂βj
fi(β) in ith row and jth column.

In the linear regression, we have df(β) = X. For easy notation, we de�ne

Wε(β
k) as a n by n diagonal matrix with ith diagonal entry [ε+ |ri(βk)|]−1. In

each iteration, the algorithm updates β by the updated scheme until satisfy

the convergence criteria, which ∆k
ε is less than 10−4.

2.1.3 CD Algorithm

By the general idea of CD algorithm, we replace u in residuals r = Y −Xβ−u

for �xed β by the sampling quantile value of the numbers z = Y − Xβ at τ

level, which will drive L(β) downhill. Then we could rewrite the loss function

L(β) =
n∑
i=1

|xik||
yi − u−

∑
j 6=k xijβj

xik
− βk| ·Θ (2.9)

we de�ne the quantile weight vector Θ = {τr>0, (1 − τ)r<0} that corresponds

to the quantile function. In that case, the quantile loss function transfers to

the L1 loss function that matches the original problem of CD algorithm. The

second step, we sort the numbers zi =
yi−u−

∑
j 6=k xijβj

xik
and update parameter

β by the order statistic z[i] whose index i satis�es (in other words weighted
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median)
i−1∑
j=1

w[j] <
1

2

n∑
j=1

w[j]

i∑
j=1

w[j] ≥
1

2

n∑
j=1

w[j]

where wi = |xim| ·Θi is corresponded to the zi. The algorithm starts from β1

to βp. In each iteration, we greedily update βi by the optimal value that is

derived from the update schema. At the end of each iteration, we check the

convergence of predictor β by the average absolute value di�erence threshold

φ = 10−4.

2.1.4 ADMM Algorithm

We could rewrite the quantile regression into ADMM form

min ρτ (z)

subject to Y = Xβ + z

where f(x) = 0, g(z) = ρτ (z). Based on the general iteration steps of ADMM,

we have the iteration steps for quantile regression :

βk+1 = arg min
β

(ρ/2)||Y −Xβ − zk + uk/ρ||22

= (XTX)−1XT (y − zk + uk/ρ)

zk+1 = arg min
z

ρτ (z) + (ρ/2)||Y −Xβk+1 − z + uk/ρ||22

= S 1
ρ
(c− 2τ − 1

ρ
)

uk+1 = uk + ρ(Y −Xβk+1 − zk+1)

where c = Y −Xβk+1 +uk/ρ, Sa(v) = (v−a)+− (−v−a)+. In each iteration,

the program terminates if the primal residual ||rk||2 ≤ εpri and dual residual

22



||sk||2 ≤ εdual , where

rk+1 = Y −Xβk+1 − zk+1

sk+1 = ρXT (zk+1 − zk)

εpri =
√
nεabs + εrel max{||Xβk+1||22, ||zk+1||22, ||Y ||22}

εdual =
√
pεabs + εrel||XTuk+1||22
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2.2 Quantile Regression with Regularization

We recall the de�nition of quantile regression with regularization as deriving

the vector β ∈ RP , which minimizes the sum of the loss function and the

adaptive lasso penalty function.

L(β) = ρτ (Y −Xβ) + λ
|β|
|βQR|2

where the βQR is derived from the general quantile regression. For easy nota-

tion, we de�ne the residual r(β) = Y −Xβ.

2.2.1 IP Algorithm

The quantile regression with regularization could be formulated as the linear

programing problem:

min {τeTu+ (1− τ)eTv + λβ∗/βQR
2}

subject to Y = Xβ + u− v

β ≤ β∗

−β ≤ β∗

having bounds−∞ ≤ β ≤ ∞

0 ≤ u ≤ ∞

0 ≤ v ≤ ∞

0 ≤ β∗ ≤ ∞

In order to match the format for Rmosek package, we de�ne x = (β, u, v, β∗),

c = (01×p, τ1×n, (1−τ)1×n, λ/β
QR2

), A1 = (X, In×n,−In×n, 0n×p), A2 = (0p×1, Ip×p, 0p×(2n), Ip×p),

24



A = (A1, A2)
t, lx = (−∞1×p+1, 01×2n+p, ), l

c = uc = y, ux =∞1×(p+2n+1).

2.2.2 MM Algorithm

Recalled the approximation function ρτ (r), which we de�ne in (2.1.2)

ρετ (r) = ρτ (r)−
ε

2
ln(ε+ |r|)

We could rewrite the original problem into approximation loss function with

adaptive lasso penalty function

Lε(β) = ρετ [Y −Xβ] + λ
|β|
|βQR|2

De�ned p(β) = |β| as penalty function. Suppose that we are given an initial

value β0. If β0
j is very closs to 0,then set β̂j = 0; other wise, the penalty

function is locally approximated by a quadratic function using:

∂

∂βj
{p(|βj|)} = p′(|βj|+)sgn(βj) ≈

p′(|β0
j |+)

|β0
j + ε′|

βj

when β0
j 6= 0. In other words,

p(|βj|) ≈ p(|β0
j |) +

[β2
j − (β

(0)
j )

2
]p′(|β0

j |+)

2|β0
j + ε′|

Majorize at rk by the quadratic function

ζετ (r|rk) =
1

4
[

(r)2

ε+ |rk|
+ (4q − 2)r + c] + p(β)
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The MM algorithm operates by minimizing the majorizer

Qε(β|βk) = ζετ (r|rk) +
λ

|βQR|2
{p(|β0|) +

[β2 − (β(0))
2
]p′(|β0|+)

2|β0 + ε′|
}

Based on the Newton-Raphson method, we derive the iterative update schema

as follow:

βk+1 = βk + ∆k
ε

where ∆k
ε is the Gaussian step direction

∆k
ε = −H(f(β))−1G(f(β)) (2.10)

= −[df(βk)′Wε(β
k)df(βk)− Et]−1{vε(βk)df(βk)− Etβk}′ (2.11)

where H is the Hessian matrix of the optimization function, G is the gradient

of the optimization function. Given the �rst di�erential of Qε(β|βk) (gradient)

dQε(β|βk) =
1

2
(

r

ε+ |rk|
+ 2q − 1]dr(β) + Etβ

k

= −1

2
vε(β

k)df(β) + Etβ
k

vε(β
k) = (1− 2q − r1(β)

ε+ |r1(βk)|
, ...(1− 2q − rn(β)

ε+ |rn(βk)|
)

Given the second derivative (Hessian matrix)

d2Qε(β|βk) ≈ −
1

2
df(β)′Wε(β

k)df(β) + Et

where Et is the diagonal matrix with ith entry p′(|βkj |+)/(ε′+ |βkj |)/|β
QR
j |2 =

sign(βkj )/(ε′+ |βkj |)/|β
QR
j |2. The approximation parameter ε′ = φ ·p/2 where φ
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is the tolerance or termination threshold value. And df(β) is the n× p matrix

with entry ∂
∂βj
fi(β) in row i and column j, where in linear regression df(β)

is X. Wε(β
k) is an n dimensional diagonal matrix with ith diagonal entry

[ε + |ri(βk)|]−1. In each iteration, the algorithm updates β by following the

updated scheme until satis�es the convergence criteria, which ∆k
ε is less than

termination threshold.

2.2.3 CD Algorithm

Based on the CD algorithm, we de�ne r = y −Xβ − u. In each iteration, we

replace u for �xed β by the sampling quantile of the numbers z = Y − Xβ,

which will drives L(β) downhill. Then we could rewrite the loss function for

each βm

L(β) =
n∑
i=1

|xim||
yi − u−

∑
j 6=m xijβj

xim
− βm| ·Θ +

λ

|βQRm |2
|0− βm| (2.12)

where is Θ = {τr>0, (1 − τ)r<0} Sort the numbers {zi =
yi−u−

∑
j 6=k xijβj

xik
, 0}

update parameter β by replace β by the order statistic z[i] whose index i

satis�es (in other words weighted median)

i−1∑
j=1

w[j] <
1

2

n∑
j=1

w[j]

i∑
j=1

w[j] ≥
1

2

n∑
j=1

w[j]

where wi = {|xim| ·Θ, λ

|βQRm |2
} is corresponding to the zi. The iteration schema

is the same as for quantile regression.
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2.2.4 ADMM Algorithm

Before we illustrate the details of implementing ADMM algorithm for quantile

regression with regularization, we need to present the ADMM algorithm for or-

dinary least square regression with lasso penalty function. Because the update

step of quantile regression with regularization involves with the lasso problem.

we recall the ordinary least square regression with lasso penalty function as

deriving the vector β ∈ RP , which minimizes the following function

L(β) = ||Xβ − Y ||22 + λ||β||1 (2.13)

we could rewrite the it into ADMM form,

min (1/2)||Xβ − Y ||22 + λ||z||1

subject to β − z = 0

Iteration step:

βk+1 = (XTX + ρI∗)
−1(XTY + ρzk∗ − uk∗)

zk+1 = Sλ
ρ
(βk+1
∗ + uk/ρ)

uk+1 = uk + ρ(βk+1
∗ − zk+1)

where β∗ is β without intercept, z∗ = (0, z), I∗ = (0, I), and u∗ = (0, u)

Termination criteria: In each iteration, the program terminates if the primal

residual ||rk||2 ≤ εpri and dual residual ||sk||2 ≤ εdual
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where

rk+1 = βk+1 − zk+1

sk+1 = ρ(−1)(zk+1 − zk)

εpri =
√
nεabs + εrel max{||βk+1

∗ ||22, || − zk+1||22}

εdual =
√
pεabs + εrel||uk+1||22

After we present the ADMM for LSE Lasso, we could rewrite the quantile

regression with regularization into ADMM form

min ρτ (r) + λ
|β∗|
|βQR|2

subject to r +Xβ∗ + b = Y

Iteration step:

rk+1 = arg min
z

ρτ (r) + (ρ/2)||Y − r −Xβk + uk/ρ||22

= S 1
ρ
(c− 2τ − 1

ρ
)

βk+1 = arg min
β

λ
|β∗|
|βQR|2

+ (ρ/2)||Y − rk+1 −Xβ + uk/ρ||22

= 1/2||Y −Xβ − rk+1 + uk/ρ||22 + λ
|β∗|
|βQR|2ρ

= LSE(X, Y − rk+1 + uk/ρ, λ
|β∗|
|βQR|2ρ

)

uk+1 = uk + ρ(Y − rk+1 −Xβk+1)

where c = Y −Xβk +uk/ρ, β∗ is β without intercept, LSE means we translate

the problem into least square estimation with lasso penalty as we describe

earlier in this section. In each iteration, the program terminates if the primal
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residual ||rk||2 ≤ εpri and dual residual ||sk||2 ≤ εdual

where

pk+1 = Y − rk+1 −Xβk+1

sk+1 = ρX∗(β
k+1
∗ − βk∗ )

εpri =
√
nεabs + εrel max{|| − rk+1||22, || −X∗βk+1

∗ ||22, || − Y + b||22}

εdual =
√
nεabs + εrel|| − uk+1||22
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2.3 Composite Quantile Regression

We consider composite quantile regression as following

(b̂1, ...b̂k, β̂
CQR) = arg min

β

k∑
i=1

ρτi(Y − bk −Xβ)

where 0 < τ1 < τ2 < τ3... < τk < 1 , bk is the kth quantile level intercept

coe�cient.

2.3.1 IP Algorithm

The composite quantile regression problem could be formulated as the linear

program:

min {
K∑
k=1

τke
Tuk + (1− τk)eTvk}

subject to Y = Xβ + uk − vk + bk

having bounds−∞ ≤ β ≤ ∞

0 ≤ uk ≤ ∞

0 ≤ vk ≤ ∞

−∞ ≤ bk ≤ ∞

In order to match the format inRmosek package, we de�ne x = (b1, ..., bK , β, u1, ...uK , v1, ..., vK),

ui = (ui1, ...., uin), vi = (vi1, ...., vin), c = (01×(p+K), τ 1×n1 , ..., τ 1×nK , (1−τ1)1×n, ..., (1−

τK)1×n), Ai = (0n×(i−1), en×1, 0n×(K−i), X, In×n1 ,−In×n2 ), A = (A1, ..., AK)t,

lc = uc = (y, ..., y)
K

, lx = (−∞1×(p+K), 01×2nK), ux =∞1×(p+2nK+K).
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2.3.2 MM Algorithm

Since the majorize step is the same as quantile regression, we only illustrate

the iterative update schema here. In each iteration, we update

βk+1 = βk + ∆k
ε

where ∆k
ε is the Gaussian step direction

∆k
ε = −H(f(β))−1G(f(β))

= −[
K∑
j=1

df(βk)′W j
ε (βk)df(βk)]−1{

K∑
j=1

vjε (β
k)df(βk)}′

vjε (β
k) = (1− 2τj −

r1j(β)

ε+ |r1j(βk)|
, ..., (1− 2τj −

rnj(β)

ε+ |rnj(βk)|
))

where H is the Hessian matrix of the optimization function, G is the gradient

of the optimization function. We de�ne W j
ε (βk) as a n by n diagonal matrix

with ith diagonal entry [ε + |rji (βk)|]−1 where the rji (β
k) is the ith residual

for quantile level τj. And df(β) is the n ∗ p matrix with entry ∂
∂βj
fi(β) in

ith row and jth column. In the linear regression, we have df(β) = X. For

easy notation, In each iteration, the algorithm updates β follow the updated

scheme until satisfy the convergence criteria, which ∆k
ε is less than 10−6.

2.3.3 CD Algorithm

Based on the CD algorithm, we de�ne r = Y − Xβ − u. In each iteration,

we replace bk for �xed β by the sampling quantile levels of the numbers z =

Y −Xβ, which will drives loss function downhill. Then we could rewrite the
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loss function

L(b1, . . . , bk, β) =
k∑
l=1

n∑
i=1

|xim||
yi − bl −

∑
j 6=m xijβj

xim
− βm| ·Θl

where Θl = {τ lr>0, (1 − τ)lr<0}. We sort the numbers zil =
yi−bl−

∑
j 6=m xijβj

xim
,

which are n · k numbers. In the 2nd step, we update the parameter β by the

order statistic z[i] whose index i satis�es (in other words weighted median)

i−1∑
j=1

w[j] <
1

2

n∑
j=1

w[j]

i∑
j=1

w[j] ≥
1

2

n∑
j=1

w[j]

where wil = |xim| ·Θil is corresponding to the zil. The iteration schema is the

same as for quantile regression.

2.3.4 ADMM Algorithm

we could rewrite the composite quantile regression into ADMM form,

min ρτ (z)

subject to X∗β + z = Y ∗

where f(x) = 0, g(z) = ρτ (z),

X∗(n·k)×(p+k) =



(1 0 0 · · · 0)n·k X

(0 1 0 · · · 0)n·k X

(0 0 1 · · · 0)n·k X

...
...
...
...

...
...

(0 0 0 ... 1)n·k X


Y ∗n·k=



Y

Y

Y

...

Y


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where X∗(n·k)×(p+k) is k number of original design matrix stack up with inde-

pendent intercept coe�cients, and Y ∗n·k is k number of Y stack up. In that

case, we have the same iterative update schema and termination criteria as

quantile regression.
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2.4 Composite Quantile Regression with Regu-

larization

We recall the de�nition of composite quantile regression with regularization as

estimation procedure for β ∈ RP .

(b̂1, ...b̂k, β̂
CQRL) = arg min

β

k∑
i=1

ρτi(Y − bk −Xβ) + λ
|β|

|βCQR|2
(2.14)

where 0 < τ1 < τ2 < τ3... < τk < 1 and bk is the kth quantile intercept

coe�cient.

2.4.1 IP Algorithm

The composite quantile regression with regularization could be formulated as

the linear program:

min {
K∑
k=1

(τke
Tuk + (1− τk)eTvk) + λ|β∗/βCQR2|}

subject to Y = Xβ + uk − vk + bk

β ≤ β∗

−β ≤ β∗

having bounds−∞ ≤ β ≤ ∞

−∞ ≤ bk ≤ ∞

0 ≤ u ≤ ∞

0 ≤ v ≤ ∞

0 ≤ β∗ ≤ ∞
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In order to match the format in Rmosek package, we de�ne

x = (b1, ...., bK , β, u1, u2, ...uK , v1, v2, ..., vK , β
∗), ui = (ui1, ...., uin), vi = (vi1, ...., vin),

c = (01×(p+K), τ 1×n1 , ..., τ 1×nK , (1− τ1)1×n, ..., (1− τK)1×n, λ/βQR
2
),

Ai = (0n×(i−1), en×1, 0n×(K−i), X, In×n1 ,−In×n2 , 0n×p), Ak+1 = (0p×K , Ip×p, 0p×2n,−Ip×p),

Ak+2 = (0p×K ,−Ip×p, 0p×2n,−Ip×p), A = (A1, ..., AK+1, AK+2)
t, lc = (y, ..., y,−∞1×2p)

K

,

uc = (y, ..., y, 01×2p)
K

lx = (−∞1×(p+K), 01×2nK+p), u
x =∞1×(2p+2nK+K).

2.4.2 MM Algorithm

Since the majorize step for loss function and penalty function is the same as for

quantile regression with regularization, we only show iterative update schema

here. In each iteration, we update

βk+1 = βk + ∆k
ε

where ∆k
ε is the Gaussian step direction

∆k
ε = −H(f(β))−1G(f(β))

= −[
K∑
j=1

df(βk)′W j
ε (βk)df(βk)− Et]−1{

K∑
j=1

vjε (β
k)df(βk)− Etβk}′

vjε (β
k) = (1− 2τj −

r1j(β)

ε+ |r1j(βk)|
, ..., (1− 2τj −

rnj(β)

ε+ |rnj(βk)|
))

where H is the Hessian matrix of the optimization function, G is the gradient

of the optimization function. We de�ne Et as the diagonal matrix with ith

entry p′(|βkj |+)/(ε′ + |βkj |)/|β
CQR
j |2 = sign(βkj )/(ε′ + |βkj |)/|β

CQR
j |2, the ap-

proximation term for the penalty function ε′ = φ · p/2 where φ is the converge

tolerance. df(β) is the n · p matrix with entry ∂
∂βj
fi(β) in row i and column
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j, where in linear regression df(β) is X and W j
ε (βk) is an n dimensional di-

agonal matrix with ith diagonal entry [ε + |rji (βk)|]−1. In each iteration, the

algorithm updates β follow the updated scheme until satisfy the convergence

criteria, which ∆k
ε is less than 10−6.

2.4.3 CD Algorithm

We de�ne the kth quantile residual r(β) = Y − bk −Xβ. Then we replace bk

for �xed β by the sampling quantiles of the numbers z = Y −Xβ, which will

drives L(β) downhill. Then we could rewrite the loss function

L(bi, . . . , bk, β) =
k∑
l=1

n∑
i=1

|xim||
yi − bl −

∑
j 6=m xijβj

xim
− βm| ·Θl +

λ

|βCQRm |2
|0− βm|

where is Θl = {τ lr>0, (1−τ)lr<0}. We sort the numbers {zil =
yi−bl−

∑
j 6=m xijβj

xim
, 0},

which are n·k numbers. In the 2nd step, we update the parameter β by replace

β by the order statistic z[i] whose index i satis�es (in other words weighted

median)
i−1∑
j=1

w[j] <
1

2

n∑
j=1

w[j]

i∑
j=1

w[j] ≥
1

2

n∑
j=1

w[j] (2.15)

where wil = {|xim| · Θil,
λ

|βCQRm |2
} is corresponding to the zil. The iteration

schema is the same as for quantile regression.

2.4.4 ADMM Algorithm

We could rewrite the composite quantile regression into ADMM form,

min ρτ (r) + λ
|β|

|βCQR|2

subject to r +X∗β∗ + b∗ = Y ∗

37



where f(x) = 0, g(z) = ρτ (z),

X∗(n·k)×(p+k) =



(1 0 0 · · · 0)n·k X

(0 1 0 · · · 0)n·k X

(0 0 1 · · · 0)n·k X

...
...
...
...

...
...

(0 0 0 ... 1)n·k X


Y ∗n·k=



Y

Y

Y

...

Y


b∗n·k=



b1

b2

b3
...

bk


τ ∗n·k=



τ1

τ2

τ3
...

τk


where X∗(n·k)×(p+k) is k number of original design matrix stack up with inde-

pendent intercept coe�cients, and Y ∗n·k is k number of Y stack up. And bi and

τi is the n× 1 vector. We conduct the iterative update schema as follow

rk+1 = arg min
r

ρτ (r) + (ρ/2)||Y ∗ − r −X∗βk + uk/ρ||22

= S 1
ρ
(c− 2τ ∗ − 1

ρ
)

βk+1 = arg min
β

λ

|βCQR|2
||β∗||1 + (ρ/2)||Y ∗ − rk+1 −X∗β + uk/ρ||22

= 1/2||Y ∗ −X∗β − rk+1 + uk/ρ||22 +
λ

|βCQR|2 · ρ
||β∗||1

= NLSE(X∗, Y ∗ − rk+1 + uk/ρ,
λ

|βCQR|2 · ρ
)

uk+1 = uk + ρ(Y − rk+1 −Xβk+1)

where c = Y ∗ − X∗βk + uk/ρ, β∗ is β without intercept. NLSE is the least

square error regression with lasso penalty that has the same formulation as

LSE excepts we do not shrink the �rst k element of β. In each iteration,

the program terminates if the primal residual ||rk||2 ≤ εpri and dual residual
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||sk||2 ≤ εdual , where

rk+1 = Y −Xβk+1 − rk+1

sk+1 = ρX∗(β
k+1
∗ − βk∗ )

εpri =
√
n ∗ kεabs + εrel max{|| −X∗βk+1

∗ ||22, || − rk+1||22, || − Y + b∗||22}

εdual =
√
n ∗ kεabs + εrel||uk+1||22
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Chapter 3

Simulation

In evaluating the performance of four di�erent algorithms, we mainly focus on

the following model,

Y = Xβ + ε

where Y is the response variable vector with dimension n, and X is the design

matrix with dimension n× p. And β is the coe�cient vector with dimension

n and ε is the error term. In the simulation study, we propose two kinds

of random error ε, which either follow N(0, 1) or t distribution with degree of

freedom 3. In the following Section 3.1 and 3.2, we compare the performance of

four algorithm for quantile regression and composite quantile regression with

or without regularization.
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3.1 Quantile Regression and Composite Quan-

tile Regression

We set the dimension of design matrix n = 200, 400, 600, 800, 1000, 2000, and

p = 5. We independently generate each row of the design matrix from mul-

tivariate normal distribution N(0, I). In every simulation the true value of

β is generated from the random sample of uniform variable in (−1, 1). We

conduct the quantile regression with τ = 0.3. The performance is compared

by the average absolute value di�erence between the estimate coe�cients and

true parameters, which denotes as Error. The average running time denote

as Time in seconds over 50 replications.

Table 3.1: Quantile regression with normal distributed error
(n,p) IP MM CD ADMM

Error T ime Error T ime Error T ime Error T ime
(200,5) 0.08 0.002 0.060 0.0002 0.036 0.002 0.063 0.002
(400,5) 0.052 0.0022 0.051 0.0004 0.046 0.003 0.055 0.0038
(600,5) 0.043 0.0029 0.033 0.0005 0.043 0.0416 0.042 0.005
(800,5) 0.037 0.0048 0.031 0.0005 0.034 0.0046 0.035 0.006
(1000,5) 0.0336 0.0053 0.026 0.0006 0.031 0.0064 0.031 0.008
(2000,5) 0.0213 0.01 0.018 0.001 0.022 0.0096 0.022 0.013

Table 3.2: Quantile regression with t distributed distributed error
(n,p) IP MM CD ADMM

Error T ime Error T ime Error T ime Error T ime
(200,5) 0.082 0.0018 0.09 0.0002 0.08 0.0018 0.087 0.002
(400,5) 0.06 0.0028 0.059 0.0004 0.06 0.004 0.065 0.003
(600,5) 0.05 0.003 0.047 0.0005 0.045 0.0038 0.053 0.005
(800,5) 0.045 0.003 0.045 0.0005 0.038 0.005 0.044 0.007
(1000,5) 0.039 0.004 0.038 0.0026 0.033 0.006 0.04 0.029
(2000,5) 0.03 0.008 0.028 0.001 0.026 0.009 0.03 0.014
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Table 3.1 and 3.2 report the performance of four algorithm for the quantile

regression with the error from N(0, 1) or t distribution with degree of freedom

3, respectively. In the following �gure 3.1, we could clearly �nd out the four

algorithm we implemented are stable in time consumption and estimation

accuracy. The accuracy is increased as the number of observations in the

design matrix increase. Although, the scale of two plots are di�erent, we

still could conclude the running time has the positive linear relationship with

the number of events in design matrix. And MM algorithm has the superior

performance in time consumption.

Table 3.3 and 3.4 reports the performance of four algorithm for the compos-

ite quantile regression model with normal distributed error from N(0, 1) and t

distributed error with degree of freedom 3, respectively. We use the same set-

ting for the design matrix in quantile regression, besides the composite quantile

regression includes 9 quantile levels τ = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9).

The simulation result matches our expectation in variable estimation accuracy,

time consumption and durability to heavy tailed error distribution.

Table 3.3: Composite quantile regression with normal distributed error
(n,p) IP MM CD ADMM

Error T ime Error T ime Error T ime Error T ime
(200,5) 0.058 0.009 0.057 0.0008 0.058 0.008 0.057 0.029
(400,5) 0.043 0.021 0.047 0.001 0.04 0.011 0.043 0.057
(600,5) 0.035 0.03 0.034 0.0012 0.039 0.017 0.034 0.088
(800,5) 0.029 0.047 0.029 0.0014 0.031 0.018 0.029 0.122
(1000,5) 0.025 0.064 0.028 0.0015 0.024 0.025 0.024 0.16
(2000,5) 0.077 0.14 0.017 0.0026 0.018 0.044 0.017 0.36
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Table 3.4: Composite quantile regression with t distributed error
(n,p) IP MM CD ADMM

Error T ime Error T ime Error T ime Error T ime
(200,5) 0.06 0.01 0.07 0.0009 0.074 0.009 0.07 0.029
(400,5) 0.046 0.021 0.054 0.0016 0.051 0.016 0.048 0.059
(600,5) 0.038 0.035 0.041 0.0019 0.043 0.023 0.041 0.09
(800,5) 0.037 0.047 0.037 0.0027 0.033 0.027 0.037 0.12
(1000,5) 0.032 0.067 0.032 0.0031 0.029 0.037 0.031 0.16
(2000,5) 0.023 0.159 0.021 0.0046 0.021 0.06 0.02 0.36
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Figure 3.1: Compare the running time of four algorithm for quantile and
composite quantile regression
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3.2 Quantile Regression and Composite Quan-

tile Regression with Regularization

In this section, we conduct the simulation in order to compare the performance

of four algorithm in variable selection. In that case, we set n = 100, 200, 500,

and vary p from 1.5n to 5n. The regression model is generated by the same

way as for quantile, composite quantile regression. In every simulation the

true value of β = (0, 4, 0, 6, 8, 0, 10, 0, ..., 0). The convergence threshold of each

simulation is 10−4. We set 10−3 threshold for non zero values, which means

if the absolute value of non zero coe�cient is less than 10−3 we set them to

zero. The performance of each algorithm is compare by three index. The �rst

one is the average numbers of false predictors selected as Nfalse, which means

the estimator has non-zero value at the index that suppose to be zero. The

second is the Ntrue denotes as the number of true parameters selected. The

last one is the average computing time in seconds over 100 replications.

Table 3.5 and 3.6 report the quantile regression with adaptive lasso penalty,

which the regression model with the error from N(0, 1) or t distributed error

with degree of freedom 3, respectively.

Table 3.7 and 3.8 report the composite quantile regression model with

adaptive lasso penalty with τ = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) quantile

levels. We conduct the simulation at the same setting as for quantile regres-

sion with regularization, except we did not include the interior point method.

Because the Rmosek package is hard to install in many operation systems,

and we do not include it in our package. The simulation result matcesh our

expectation in variable selection accuracy, time consumption and durability to

heavy tailed error distribution. However, the MM algorithm seems a little bit
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slow in variable selection. We believe the inversion of high dimensional design

matrix is the main reason, since it take a lots �oating point operations.

Table 3.5: Quantile regression with regularization and normal distributed error
(n,p) MM IP

Time Ntrue Nfalse Time Ntrue Nfalse

(100,200) 0.1 4 0.1 0.074 4 0
(100,300) 0.25 4 0 0.024 4 0
(100,500) 0.812 3.9 0 0.98 4 0
(200,400) 0.58 4 0 0.627 4 0
(200,600) 1.64 4 0 1.96 4 0
(200,1000) 6.23 4 0 8.85 4 0
(500,750) 4.09 4 0 5.1 4 0
(500,1000) 10.3 4 0 11 4 0
(500,1500) 24 4 0 38 4 0

(n,p) CD ADMM
Time Ntrue Nfalse Time Ntrue Nfalse

(100,200) 0.014 4 0 0.017 4 0
(100,300) 0.02 4 0 0.041 4 0
(100,500) 0.035 4 0 0.152 4 0
(200,400) 0.048 4 0 0.088 4 0
(200,600) 0.054 4 0 0.161 4 0
(200,1000) 0.11 4 0 0,791 4 0
(500,750) 0.18 4 0 0.522 4 0
(500,1000) 0.24 4 0 0.852 4 0
(500,1500) 0.36 4 0 2.41 4 0

In the following �gure 3.2, we set n = 100, and p = (200, 400, 500, 800, 1000).

We compare the performance of four algorithm for composite quantile regres-

sion with regularization in quantile levels τ = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9).

As the plot shows, the running time has a posive linear relationship to the di-

mension p. And the ADMM algorithm and CD algorithm have the superior

time e�ciency both in quantile and composite quantile regression with regu-

larization. In addition, for composite quantile regression with regularization,

the ADMM run faster than CD algorithm for p ≤ 1000.

45



Table 3.6: Quantile regression with regularization with t distributed error.
(n,p) MM IP

Time Ntrue Nfalse Time Ntrue Nfalse

(100,200) 0.11 4 0.1 0.072 4 0
(100,300) 0.23 4 0 0.026 4 0
(100,500) 0.782 3.9 0 1.01 4 0
(200,400) 0.62 4 0 0.64 4 0
(200,600) 1.46 4 0 1.83 4 0
(200,1000) 6.41 4 0 8.95 4 0
(500,750) 4.01 4 0 5.3 4 0
(500,1000) 10.5 4 0 10.4 4 0
(500,1500) 23 4 0 37.4 4 0

(n,p) CD ADMM
Time Ntrue Nfalse Time Ntrue Nfalse

(100,200) 0.015 4 0 0.018 4 0
(100,300) 0.022 4 0 0.039 4 0
(100,500) 0.037 4 0 0.162 4 0
(200,400) 0.051 4 0 0.091 4 0
(200,600) 0.056 4 0 0.154 4 0
(200,1000) 0.12 4 0 0,781 4 0
(500,750) 0.16 4 0 0.546 4 0
(500,1000) 0.23 4 0 0.843 4 0
(500,1500) 0.37 4 0 2.34 4 0
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Figure 3.2: Compare the running time of four algorithm for quantile and
composite quantile regression with regularization
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Table 3.7: Composite quantile regression with regularization and normal dis-
tributed error

(n,p) MM CD ADMM
Time Ntrue Nfalse Time Ntrue Nfalse Time Ntrue Nfalse

(100,200) 0.11 4 0.74 0.13 4 0 0.043 4 0
(100,300) 0.29 4 0.62 0.18 4 0 0.089 4 0
(100,500) 1.01 4 0.52 0.32 4 0 0.21 4 0
(200,400) 0.75 4 0.64 0.47 4 0 0.24 4 0
(200,600) 1.9 4 0.61 0.676 4 0 0.463 4 0
(200,1000) 7.4 4 0.25 0.615 4 0 1.52 4 0
(500,750) 5.4 4 0.6 2.4 4 0 1.56 4 0
(500,1000) 9.8 4 0.74 2.6 4 0 2.38 4 0
(500,1500) 27.5 4 0 3.6 4 0 5.67 4 0

Table 3.8: Composite quantile regression with regularization and t distributed
error.

(n,p) MM CD ADMM
Time Ntrue Nfalse Time Ntrue Nfalse Time Ntrue Nfalse

(100,200) 0.12 4 0.8 0.12 4 0 0.052 4 0
(100,300) 0.27 4 0.3 0.17 4 0 0.085 4 0
(100,500) 0.891 4 0.67 0.33 4 0 0.21 4 0
(200,400) 0.635 4 0.54 0.474 4 0 0.22 4 0
(200,600) 1.9 4 0.72 0.546 4 0 0.452 4 0
(200,1000) 7.52 4 0.25 0.621 4 0 1.41 4 0
(500,750) 5.28 4 0.8 2.38 4 0 1.52 4 0
(500,1000) 10.3 4 0.8 2.63 4 0 2.43 4 0
(500,1500) 28.5 4 0 3.8 4 0 5.86 4 0

Based on the simulation result of both quantile and composite quantile regres-

sion with or without regularization, we reach the conclusion that for large n

and small p data set, MM algorithm and CD algorithm is preferred for quan-

tile and composite quantile regression. And for high dimensional date set, CD

algorithm have superior performance in time consumption, however it depends
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on the good initial point. In that case, the ADMM algorithm is recommend for

its stability and time e�ciency. It is worth noticing that in the simulation we

use the IP algorithm from quantreg [12], because Rmosek is hard to install

in many operation systems.
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Chapter 4

Conclusion

Quantile, composite quantile regression with or without regularization have

been widely studied and applied in the high-dimensional model estimation and

variable selection. Fan and Li [26] propose the SCAD method to derive the

oracle model estimator. However, the SCAD method has the limitation on the

in�nite variance of error distribution. In that case, Wu and Liu [25], Zou and

Yuan [26], introduce the quantile, composite quantile regression with adaptive

lasso penalty and prove its nice oracle properties, respectively. Although the

theory of quantile, composite quantile regression with or without regulariza-

tion have been well established, the ine�ciency of the computational program

leaves the challenge to many researchers. The tough part of the estimation is

the non-di�erentiable quantile loss function and adaptive lasso function. There

are four widely used algorithms for convex optimization problems including

Interior Point (IP), Majorize-Minimize(MM), Coordinate Descent (CD) and

Alternating Direction Method of Multipliers(ADMM). The Interior Point (IP)

method has been implemented in R package quantreg [12] by Koenker [12],

but the package does not include the composite quantile regression with reg-
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ularization. The coordinate descent method also has been implemented in R

package CDLasso [8], however it only focuses on the LAD regression with

or without regularization. Unfortunately, there is no available program that

has implemented neither Majorize-Minimize (MM) nor Alternating Direction

Method of Multipliers(ADMM) for quantile and composite quantile regression

with or without regularization.

In this thesis, we implement the above three algorithms and use Interior

Point algorithm for quantile and composite quantile regression with or with-

out regularization. The basic idea of each algorithm is covered in the Section

1.2 but the details of each algorithms in Chapter 2. In Chapter 3, we con-

duct the simulation to compare the performance of four algorithms in time

e�ciency and estimation accuracy. The simulated data is independently gen-

erated from multivariate normal distributed random samples with random

errors from N(0, 1) or heavy tailed t distribution with degree of freedom 3.

According to the simulation result, the four algorithms match our expectation

both in time e�ciency and estimation accuracy. The CD and ADMM have

the superior performance both in variable selections and the time consump-

tion. The simulation results of MM seems to be slow and slightly inaccurate

in variable selection model. It may cause by the matrix inversion and selected

approximation parameter. However, in the quantile regression and composite

quantile regression with large n observation, MM has the superior perfor-

mance in time consumption when compares with other algorithms. Due to the

outstanding performance of our program, we publish the R package named

cqrReg[7], which ful�lls the need for e�cient solvers for quantile, composite

quantile regression with or without regularization.

Nonetheless, there still are some limitations that we need to resolve in the
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future work. For instance, in regularization model, we do not include the

method for choosing the tuning parameter, however the user could easily con-

duct the cross validation to derive the suitable tuning parameter. We will

continue working on implementing faster numerical methods for matrix inver-

sion in MM. We will publish the paper of our work in the future. Overall, the

cqrReg [7] package provides four reliable and e�cient algorithms for quantile

and composite quantile regression with or without regularization. The cqrReg

[7] package is an e�cient supplement to the quantreg [12] and CDLasso [8]

in large data sets. We will continue maintaining and developing the package

in the future.
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