
Designing Efficient and Secure Algorithms for Payment
Channel Networks

by

Sonbol Rahimpour

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Communications

Department of Electrical and Computer Engineering

University of Alberta

© Sonbol Rahimpour, 2022

Abstract

Major blockchains such as Bitcoin and Ethereum suffer from scalability is-

sues. For instance, Bitcoin can handle up to about 7 transactions per second,

whereas custodian payment networks such as Visa can handle tens of thousands

of transactions per second. One of the promising solutions to scale blockchains

such as Bitcoin is Payment Channel Networks (PCNs). In this thesis, we pro-

pose new solutions to make the existing PCNs, such as the Bitcoin’s Lightning

network, more efficient and secure.

Chapter 3 studies watchtowers, which are entities that watch the blockchain

on behalf of their offline clients to protect the clients’ payment channels. In

practice, there is no trust between clients and watchtowers, and it is challenging

to incentivize watchtowers to well-behave (e.g., to refuse bribery). To tackle

this problem, Chapter 3 proposes a novel reputation system, and uses the

system to incentivize watchtowers to not only deliver their promised service

but also reduce their service fees in competition with each other.

Chapter 4 proposes Spear, a new multi-path payment method that can

support redundant payments. We show that this redundant payments can

significantly improve the success rate of payment transfers in the Lightning

network. The challenge in supporting redundant payments is that the recipient

may overdraw funds from the redundant paths. In Chapter 4, we explain how

this can be done without requiring high computation or major changes to the

Lightning network.

Finally, Chapter 5 presents a powerful probing technique called Torrent

ii

to discover balances of channels in the Lightning network. Unlike the ex-

isting techniques, Torrent uses multi-path payments instead of single-path

payments. This—together with a novel max flow algorithm designed for the

Lightning Network—allows a single probing node to push a large flow of pay-

ments through a target channel, making it possible to discover balances of even

remote channels. Another major advantage of Torrent is that it can speed up

balance discovery through parallel payment transfers and pre-computation of

payment paths.

iii

Preface

The results presented in Sections 3.1- 3.6 were published in IEEE International

Conference on Blockchain and Cryptocurrency (ICBC) [1] in May 2021. The

results of Chapter 4 were presented in the 3rd ACM Conference on Advances

in Financial Technologies [2] in September 2021.

iv

To my beloved

parents, sister and my lovely husband

without whom I would not have survived

v

Acknowledgements

First of all, I would like to express my sincere appreciation to my supervi-

sor Dr. Majid Khabbazian who has helped me throughout my studies. Be-

sides my supervisor, I am also thankful to my thesis committee members,

Dr. Masoud Ardakani and Dr. Hai Jiang, for their comments and suggestions

to improve my thesis. I would like to thank Dr. Chen Feng for serving as

the external examiner for my final Ph.D. examination. I should also thank

Dr. Marek Reformat for offering his time to read my thesis and agreeing to

be an examiner for my final Ph.D. examination. I appreciate the advice of

Dr. Ehab Elmallah who was my candidacy examiner. Also, I must thank all

those whose actions, either directly or indirectly, have helped me to reach this

point in my life.

I am incredibly grateful to my parents and sister for their love and spiritual

support. Last but not least, I must express my deepest gratitude to my lovely

husband for his love, encouragement, and support. Thank him for helping me

to follow my dreams and believe in myself.

vi

Contents

1 Introduction 1

1.1 Incentivizing Watchtowers . 2

1.2 Redundant multi-path payments 3

1.3 Balance Discovery in the Lightning Network 4

1.4 Thesis Contribution . 6

1.4.1 Hashcashed Reputation 6

1.4.2 Spear: Fast Multi-Path Payment with Redundancy . . 7

1.4.3 Torrent: Balance Discovery in the Lightning Network

Using Maximum Flow 7

1.5 Thesis Organization . 8

2 Background 9

2.1 Bitcoin and Blockchain . 9

2.1.1 Bitcoin Transaction . 9

2.1.2 Bitcoin Mining . 10

2.2 Scalabality Problem and Solutions 10

2.2.1 Layer-one solutions: . 11

2.2.2 Layer-two solutions: 11

2.3 Hashcash . 12

2.4 Payment channels . 12

2.5 The Lightning network . 13

2.5.1 HTLC . 14

2.6 Watchtowers . 14

2.7 Maximum Flow . 16

2.8 Related Work . 17

vii

2.8.1 Reputation systems . 17

2.8.2 Proof of work . 18

2.8.3 Payment channels and watchtower 18

2.8.4 Payment Routing . 20

2.8.5 Balance Discovery attacks 21

3 Hashcashed Reputation 23

3.1 System components . 23

3.2 Interactions . 26

3.3 Protocol . 26

3.4 Adversarial model . 29

3.5 Security Analysis . 30

3.6 A reputation-based market of watchtowers 33

3.7 A reputation-based market of Timestamping 37

3.8 Conclusion . 41

4 Spear: Fast Multi-Path Payment with Redundancy 42

4.1 System Model . 42

4.2 Power of Redundancy . 43

4.3 Spear . 47

4.3.1 Procedure . 48

4.3.2 Security Guarantees 50

4.3.3 Implementation . 51

4.4 Spear versus Boomerang . 52

4.4.1 Latency . 52

4.4.2 Implementation . 57

4.4.3 Locktime . 57

4.4.4 Computational overhead 58

4.4.5 Flexibility . 59

4.4.6 Intermediate node’s misbehaviour 59

4.4.7 Fees . 60

4.5 Conclusion . 61

viii

5 Torrent: Balance Discovery in the Lightning Network Using

Maximum Flow 62

5.1 Torrent . 62

5.2 Implementation . 65

5.2.1 Network Model and Problem Definition 66

5.2.2 Linear Programming 66

5.2.3 Greedy Algorithm . 67

5.3 Simulation Results . 68

5.3.1 Linear Programming 69

5.3.2 Greedy Algorithm . 70

5.4 Conclusion . 71

6 Conclusions & Future Works 72

Bibliography 75

ix

List of Tables

2.1 Existing balance discovery methods. 22

x

List of Figures

1.1 A simple probing technique for discovering Alice’s Balance. . . 5

2.1 Simplified Bitcoin blockchain 10

2.2 The procedure of sending money from Alice to Bob through

Charlie in the Lightning network. 15

3.1 An illustration of how a reputation is calculated. 24

3.2 A sample of watchtower contract. 35

3.3 An illustration of how a timestamp server creates a Merkle tree. 38

3.4 A sample of timestamp contract 39

3.5 The process of verifying a Proof-of-breach. 40

4.1 HTLC and H2TLC in Bitcoin Script Pseudocode. 48

4.2 Making a payment in Spear. 50

4.3 Upgraded update-add-htlc message. Refer to Figure 4.4 for the

Onion routing packet field. 52

4.4 The onion routing packet field. Refer to Figure 4.5 for the

hop payload field. 53

4.5 The hop payload field. 54

4.6 The process for creating new commitment transactions 56

4.7 The process of creating an HTLC. 57

4.8 Transfer of a partial payment from S to P. The red dashed lines,

and solid blue lines show locktime in Boomerang and Spear,

respectively. 58

xi

5.1 A small payment network. Carol has two channels with nodes

n1 and n6, and is interested to discover balance of the channel

between Alice and Bob. Balances of Alice and Bob on this

channel are 200k and 150k Satoshis, respectively. 64

5.2 The percentage of discoverable channels by Torrents. 70

5.3 The percentage of discoverable channels by Torrents Type A

and B when they use the greedy algorithm. 71

5.4 The optimal percentage of discoverable channels. 71

xii

Chapter 1

Introduction

Permissionless blockchains can provide trust in a decentralized, trustless en-

vironment. This makes it possible for many applications such as financial

applications to rely on a blockchain rather than trusted third parties such as

banks. This shift in paradigm has brought a lot of interest and attention to

blockchain. Blockchain applications such as Bitcoin are not, however, quite

ready for mainstream use because they have scaling issues. Bitcoin, for ex-

ample, can handle up to ten transactions per second, and needs, on average,

at least ten minutes to add a transaction. Custodian payment systems such

as Visa, on the other hand, can handle tens of thousands of transactions per

second all with a short confirmation time.

Blockchain’s moon race for a scalable solution has led to a rich body of

literature, with solutions and proposals ranging from improving the consensus

algorithms, to sharding [3], [4] and side-chains [5]. Among these solutions,

“layer-two protocols” are among the most promising ones. These protocols al-

low users to conduct so-called off-chain transactions among themselves, with-

out requiring to add these transactions to the blockchain. In this thesis, we

focus on a class of layer-two protocols called payment channels.

A payment channel between two parties, say, Alice and Bob is essentially

opened by publishing a contract that locks up a fund. This fund is called the

channel capacity. For instance, if Alice and Bob each contribute 1 Bitcoin, then

by publishing the channel contract, they can create a channel with capacity

of 2 Bitcoins, with each party having a balance of one Bitcoin. After opening

1

the channel, Alice and Bob can transfer funds between themselves (without

touching the blockchain) by simply agreeing on a new balance on the channel.

These agreements are what is so-called off-chain transactions. When Alice

and/or Bob decide to close the channel, they send their latest agreement to

the contract. The contract, will then release the fund to each party according

to the submitted agreement.

Payment channels guarantee the security of off-chain transactions using the

locked-up fund. To maintain the security of the payment channel, however,

parties need to be frequently online and watch the blockchain for possible

frauds by the counter-parties; a party that goes offline risks losing payments

as the counter-party can close the channel using an outdated channel state.

A party who decides to go offline can employ a third-party, referred to as

watchtower [6], to watch the blockchain and protect the channel on the party’s

behalf.

1.1 Incentivizing Watchtowers

Incentivizing watchtowers is a non-trivial task. One approach to incentivize

watchtowers is to pay them at the beginning of the watching service we expect

them to provide in the future. The challenge with this approach is to make

sure that watchtowers will, in fact, fulfill the service for which they were paid.

There are known solutions [7], [8] that can handle this using complex smart

contracts. Such solutions are, however, not applicable to Bitcoin’s simple script

language. In addition, they generate extra load on the blockchain, which is

what payment channels try to avoid in the first place. Another approach is

to pay watchtowers a fee only when they detect a fraud [9], [10], [6]. A major

issue with this approach is that watchtowers will not receive any fee if (thanks

to them) no fraud occurs. In fact, this approach may incentivize watchtowers

to encourage frauds. In Chapter 3, we tackle this problem by designing a novel

reputation system and using it to incentivize watchtowers.

2

1.2 Redundant multi-path payments

Payment channels can be connected to each other to form a network. An

example of such payment network is the Bitcoin’s Lightning network. In the

Lightning Network, Alice can use her channel with Bob to make a payment

to another party, say Carol, who is already connected to the network. To

perform this, Alice first selects a path of payment channels P from herself to

Carol, and then transfers the payment to Carol through P . Because of privacy

concerns, the balance of channels in the Lightning Network are considered

private information. Since Alice is not aware of balances of channels on P

(except the first channel on P which belongs to her), her payment may fail

because a channel on the path may not have enough balance to forward the

payment. If Alice’s payment fails, she should retry the transfer by choosing a

different path. This adds a non-negligible delay to the payment process, and

increases the payment’s time-to-complete.

To reduce the chance of payment failure (hence, reducing the time-to-

complete), Alice may decide to split the payment into partial payments and

transfer these partial payments through multiple paths. On the one hand, this

helps as the smaller a payment, the more likely it is for the payment to go

through. On the other hand, the whole payment will fail if any of the partial

payments fails. In Chapter 4, we show that this multi-path payment approach

does not necessary help unless we use redundant paths. The main challenge in

adding redundancy in a multi-path payment method is to protect Alice from

overdrawing.

In [11], Bagaria, Neu, and Tse introduced Boomerang, the first multi-path

payment method with redundant payments, and showed that it can improve

throughput and time-to-completion of payments. To address the overdrawing

problem, Boomerang uses secret sharing to enable Alice to recover the payment

when Bob overdraws.

In Chapter 4, we will take a simpler approach, called Spear, to add redun-

dancy and protect Alice against overdrawing. While Boomerang’s approach

resembles coding techniques in data storage systems and communications, our

3

solution Spear resembles ARQ (Automatic Repeat Request), a method that

uses acknowledgements to achieve reliable data transmission over an unreliable

communication channel.

1.3 Balance Discovery in the Lightning Net-

work

The Lightning Network offers higher privacy than the Bitcoin blockchain. To

enhance privacy, the Lightning Network employs several mechanisms includ-

ing onion routing and balance concealment [12]. The onion routing hides the

sender and the recipient of a payment by encapsulating the payment informa-

tion in layers of encryption. As a result, each node on the payment path can

identify only its immediate predecessor and successor.

A successful payment will change the balance of all the channels on its

path from the sender to the recipient of the payment. Therefore, if channel

balances are made public, any network observer can extract payment transfer

information (including the source, destination, and the value of a payment)

by simply observing changes in the balance of channels. To prevent this, the

Lightning Network requires nodes to conceal the balance of their channels from

others.

Although balances are kept secret, several recent studies have shown that

they can be discovered or at least estimated using simple probing techniques:

suppose Carol is interested to know Alice’s balance on a channel between

Alice and Bob. A basic approach described in [13], is for Carol to first open

a channel with Alice. If successful, as shown in Figure 1.1, Carol then sends

a “fake payment” to Bob through Alice. Such a fake payment will trigger an

error message. If Carol receives the error message from Alice, she concludes

that Alice’s balance is lower than the amount of payment because only Bob, the

recipient of the payment, can determine that the payment is fake. Otherwise,

if Carol receives the error message from Bob, she knows that the payment

has successfully passed through the Alice-Bob channel, thus Alice’s balance

must be higher than the value of the payment. Carol can repeat sending fake

4

that Alice’s balance was not enough to let the payment go through. If Carol

receives an error message from a node that is before Alice on path P , however,

she will not gain any information about Alice’s balance. In other words, Carol

cannot gain any information on Alice’s balance if she cannot push enough flow

of money to Alice through P . Of course, Carol can try again by choosing a

different path. However, there is no guarantee that the new path can carry

enough flow to Alice. In fact, there may be no single path that can carry

enough flow from Carol to Alice.

Existing extensions use a sequential probing process in which fake payments

are sent sequentially. This slows down the balance discovery process. This is

not desired because Carol may need to know balances as soon as possible since

the Lightning Network is dynamic and balances can change quickly.

To address the above shortcomings, we present Torrent in Chapter 5. Un-

like the existing methods, Torrent can concurrently send several payments

through multiple paths. These payments are temporarily held at a receiving

node to prevents payment cancellations during the balance discovery process.

This technique allows Carol to quickly push a large flow of money through

Alice using concurrent payments. Using Torrent, Carol can discover Alice’s

balance if the maximum flow that she can bring to Alice is larger than Alice’s

balance. To achieve the maximum flow (or get close to it), we devise new algo-

rithms that work within the unique limitations of the Lightning Network and

our specific channel discovery problem. We show that, using these algorithms,

Carol can quickly discover balances of many remote channels with opening at

most two channels.

1.4 Thesis Contribution

1.4.1 Hashcashed Reputation

In Chapter 3, we propose a novel reputation system to stimulate well-behaviour,

and competition in online markets. Our reputation system is suited for markets

where a publicly-verifiable “proof-of-misbehaviour” can be generated when

one party misbehaves. Such markets include those that provide blockchain

6

services, such as monitoring services by watchtowers and blockchain-based

timestamping.

1.4.2 Spear: Fast Multi-Path Payment with Redun-
dancy

In Chapter 4 we evaluate and compare the success probabilities of multi-

path payment with and without redundancy, and demonstrate the superiority

of the former. We introduce Spear, a simple multi-path payment method

with redundancy. We prove Spear’s various security guarantees, and explain

how to implement Spear. Moreover, we compare Spear with its counterpart,

Boomerang, against several measures including delay (i.e., time-to-complete),

computational complexity, ease of implementation, maximum required lock-

time, resilience against intermediate node’s misbehaviour, and flexibility. Our

comparison results show that Spear improves Boomerang in all these measures,

hence is a better choice in applications where there is an out-of-band channel

between the payer and payee.

1.4.3 Torrent: Balance Discovery in the Lightning Net-
work Using Maximum Flow

In Chapter 5, we present a more powerful probing technique called Torrent.

Unlike the existing techniques, Torrent uses multi-path payments instead of

single-path payments. This—together with a novel max flow algorithm de-

signed for the Lightning Network—allows a single probing node to push a

large flow of payments through a target channel, making it possible to dis-

cover balances of even remote channels. Another major advantage of Torrent

is that it can speed-up balance discovery through parallel payment transfers,

and pre-computation of payment paths. In addition, Torrent can work effi-

ciently in the absence of routing messages that indicate insufficient balances.

7

1.5 Thesis Organization

The remaining chapters of this thesis are organized as follows. Chapter 2 pro-

vides the necessary background. Chapter 3 deals with proposing a new repu-

tation system and using it to create a watchtower market. Chapter 4 evaluates

and compares our fast multi-path payment with redundancy method with pre-

vious methods with or without redundancy. Chapter 5 uses a novel max flow

algorithm to discover balances of channels. Finally, Chapter 6 concludes this

thesis and presents the possible extensions to our works.

8

Chapter 2

Background

2.1 Bitcoin and Blockchain

Bitcoin is the first decentralized digital currency proposed by Satoshi Nakamoto

in 2008. Bitcoin allows users to transfer currency in its network without

a trusted third party. In the Bitcoin network, nodes (miners) verify and

record transactions using a distributed ledger technology called blockchain.

A blockchain is created by blocks that are linked together by hash values (Fig-

ure 2.1). Each block includes some transactions’ data and a hash value of the

previous block. Other blockchain applications are secure sharing of medical

data [17], NFT marketplaces [18], real-time IoT operating systems [19], voting

mechanisms [20], and real estate processing platforms [21].

2.1.1 Bitcoin Transaction

A bitcoin transaction contains inputs and outputs to determine where the cur-

rency comes from and goes, respectively. The sender (or receiver) in a trans-

action is defined by an address. In Bitcoin, users create their own addresses

by generating private and public keys. The transaction’s outputs include the

amount of bitcoin and conditions for spending. After users create a transac-

tion, they broadcast it in the Bitcoin network. Upon receiving a transaction,

nodes verify it. If the transaction is valid, they keep a copy of the transaction

for themselves and broadcast it to other nodes.

9

transaction is on average about 384 bytes. In comparison, custodian payment

methods (such as Visa), can quickly confirm transactions and can handle tens

of thousands of transactions per second. Therefore, Bitcoin needs to scale be-

fore it can get widely adopted as a payment system. The current solutions to

scale Bitcoin (as well as other blockchains such as Ethereum) can be placed in

two classes: Layer-one and Layer-two.

2.2.1 Layer-one solutions:

Layer-one solutions try to improve the blockchain’s architect (such as the block

structure, and consensus algorithm). One such solution is to increase the size

of the block or decrease the interval between blocks, as it is used in Bitcoin

Cash [23]. The problem for solutions with larger blocks is that the blocks need

more time to propagate through the network, which causes occurring more

forks in the blockchain. Therefore, the probability of a double-spend attack is

increased [24].

Another approach to scaling blockchain is sharding [4], [3]. This idea has

roots in database sharding, where data is divided into shards, and shards are

placed on different servers. However, sharding increases the complexity of the

system.

2.2.2 Layer-two solutions:

Layer-two solutions concentrate on off-chain methods that move the massive

number of transactions or computational tasks off the blockchain. One of these

methods is payment channel networks such as Bitcoin’s Lightning network. In

this approach, users can exchange one million transactions per second without

submitting them to the blockchain. Another approach in Layer-two solutions

is state-channel [25], [26], [8]. State-channels are the general form of payment

channels. In state-channel solutions, users move their interactions (besides

their transactions) into off-chain. Side-chains such as [27] are another solution

that use a series of contracts on the main chain. We refer the reader to [28]

for more details about these solutions.

11

In addition to the scalability issue of Bitcoin, Bitcoin has a high environ-

mental cost, transaction fee, delay at processing transactions, and it is not

refundable.

2.3 Hashcash

Hashcash is a type of proof-of-work that is based on cryptographic hash func-

tions such as SHA-256. Let H be such a cryptographic hash function. For a

given string s, we say h is an n-bit hashcash of s, if H(s||h) in binary has n

leading zeros, where s||h indicates the concatenation of s and h. One can eas-

ily verify a hashcash h by computing H(s||h), and then counting the number

of leading zeros of the result. To find an n-bit hashcash, however, one requires

to compute the hash function 2n times, on average. Therefore, finding an

(n + 1)-bit hashcash requires, on average, twice as much work as finding an

n-bit hashcash. The value of n is used as the measure of the amount of work

performed.

2.4 Payment channels

Payment channels [29], [12] are a promising solution to the low throughput

and high latency of Bitcoin. Payment channels achieve this by handling most

transactions outside the Bitcoin blockchain. A payment channel can be viewed

as a temporary joint account between two parties, say Alice and Bob. The

channel is opened by a Bitcoin transaction, referred to as the opening transac-

tion (topen). The opening transaction commits the parties UTXOs (Unspent

Transaction Outputs) into a single 2-of-2 multisig output, controlled jointly

by Alice and Bob. Once the channel is opened, Alice and Bob can exchange

private transactions off the chain. These off-chain transactions, called com-

mitment transactions (ctx), commit the output of topen into a set of outputs

that divide the channel fund between Alice and Bob.

For example, suppose Alice and Bob each deposit two Bitcoins to open a

payment channel. The first commitment transaction, ctx1, divides the total

channel fund of four Bitcoins evenly between Alice and Bob. This commitment

12

transaction ensures that each party can get their money back in case the

counter-party disappears after the channel is opened. Now, suppose that Bob

wishes to purchase a good worth of one Bitcoin from Alice. To make the

payment, Bob provides Alice with a new commitment transaction, ctx2, which

updates the channel balance by giving Alice three Bitcoins and giving Bob one

Bitcoin.

In addition to this, Bob must revoke ctx1, as this transaction now reflects

an outdated balance. To this end, Bob will give Alice a so called justice

transaction jtx1. The justice transaction is used by Alice to penalize Bob if

he publishes ctx1 in the blockchain. To enable this punishment mechanism,

commitment transaction is designed such that once published by one party,

they give the counter-party a dispute period during which the counter-party

can send a justice transaction if there is any. In our example, if Bob publishes

ctx1, Alice can dispute it using jtx1 and collect the whole channel fund.

2.5 The Lightning network

Two parties may not have a payment channel between themselves, but they

may be connected through multiple payment channels. For example, Alice

may not have a payment channel with Bob, but she may have a payment

channel with Charlie, who has a payment channel with Bob. In this case, the

Lightning network enables Alice to transfer money to Bob through Charlie.

The challenge to transfer money from Alice to Bob through Charlie is that

the transfer from Alice to Charlie and the one from Charlie to Bob are inde-

pendent. Consequently, if one of these two transfers goes through, there is no

guarantee that the other one will go through. The Lightning network handles

this issue by binding the two transfers using a Hashed TimeLock Contract

(HTLC). Using HTLC, the two transfers on the way from Alice to Bob are

conditioned on Bob releasing a secrete preimage. This essentially ensures that

Bob’s secret preimage and Alice’s money are atomically exchanged.

13

2.5.1 HTLC

A Hashed Timelock Contract is a type of smart contract that enables the im-

plementation of time-bound transactions between two nodes in the Lightning

network. This contract pays money to a payee in a condition that the payee

must satisfy before a particular time (timelock).

Consider the previous example in which Alice wants to send money to Bob

through Charlie. Bob first generates a random number R (called preimage)

and computes its hash image H(R). Then, he gives this hash image to Alice.

Bob can use this hash image as part of an invoice. In response, Alice creates

an HTLC with Charlie. For creating the HTLC, Alice sends a message to

Charlie. This message includes the amount of money, H(R), timelock, and

some information about the following users in the path. Based on this HTLC,

Charlie receives her money if she gives Alice R within a specific timeframe.

After creating HTLC between Alice and Charlie, Charlie creates an HTLC

with Bob. The hash image in HTLC between Charlie and Bob is also H(R).

If Bob reveals R to Charlie by the timelock, he receives money from Charlie,

in which case Charlie can use R to claim her money from Alice1 (we represent

this example in Figure 2.2). The preimage can be acted as a receipt or proof

of payment.

2.6 Watchtowers

The punishment mechanism explained earlier requires each party to stay on-

line and monitor the blockchain for possible cheating by the counter-party.

Alternatively, a party may delegate the task of monitoring the blockchain to a

third party called watchtower. In practice, this is accomplished by giving the

watchtower the first 16 bytes of every ctx’s transaction ID (ctxtxid), as well

as every justice transaction encrypted using the second 16 bytes of the corre-

sponding ctxtxid. If the watchtower finds a transaction on the blockchain with

an ID whose 16-byte prefix matches a prefix that it has stored, it will decrypt

1The timelock in this HTLC is less than the timelock in the HTLC between Alice and
Charlie. By this method, when Charlie receives R from Bob, she has enough time to claim
her money from Alice.

14

the corresponding jtx transaction using the second 16 bytes of the transaction

ID, and then broadcasts jtx to the network to penalize the cheating party.

Note that a watchtower cannot identify a channel in this design unless one of

the two channel’s owners cheats.

There is a special case where one of the two parties does not need to watch

the blockchain, hence does not require a watchtower when the party goes

offline. This case is when Alice opens a payment channel with Bob and uses

this channel only to pay Bob. In other words, Alice does not receive/accept

any payment from Bob on the channel. We call such a channel a directional

payment channel from Alice to Bob. For a directional payment channel from

Alice to Bob, Alice does not need to watch the blockchain for old commitment

transactions. It is because Bob does not have any incentive to cheat, as old

transactions give Bob less money than the latest commitment transaction.

Note that unlike Alice, Bob needs to watch the blockchain as Alice has an

incentive to cheat by claiming an old commitment transaction.

2.7 Maximum Flow

The maximum flow problem is about finding the maximum amount of feasible

flow that a node (source) can send to another node (sink) in a flow network. A

flow network is a directed graph, where each edge has a capacity that restricts

the maximum flow that can pass through the edge. The amount of flow that

enters a node (other than the source and the sink) must be equal to the amount

of flow that leaves the node.

The maximum flow problem was first formulated in 1954 by Harris and

Ross for Soviet railway traffic flow [30]. Soon after, Ford and Fulkerson pro-

posed the first algorithm to solve the problem [31]. Since then many improved

solutions with lower computational complexities have been proposed. These

solutions are used today in various applications including mining industry [32],

optimizing spatiotemporal data scheduling methods [33], optimizing complex

transactions in a traditional bank accounts, Bitcoin wallet accounts and Bit-

coin exchanges [34] and controlling power transmission [35].

16

Despite the existing solutions, solving the maximum flow problem in the

Lightning Network is challenging because balances are not known. In the

absence of balance information, we can access an oracle2. The oracle can tell

us whether a given path can carry a given flow, and if so, can be asked to

make the payment and update balances of the channels on the given path.

2.8 Related Work

2.8.1 Reputation systems

Different reputation systems use different methods to calculate reputation. We

classify these methods into fact-based, and review-based methods. Fact-based

methods calculate the reputation of a party by solely taking the activities of

the party as input. Review-based methods, however, calculate the reputation

of a party using reviews the party receives from other parties.

Fact-based methods. These methods evaluate the performance of a

party using a predefined function that takes the party’s activities as input [36]–

[42]. Therefore, in fact-based methods, the reputation of a party is only a

function of its activities. For example, in [36] the reputation of a party is

increased or decreased based on the value of transactions on which the party

was honest or dishonest, respectively. Another example is CrowdBC [37], a

reputation system with two types of parties: requester and worker. A requester

is a party that offers a task, while a worker is a party that performs tasks

to improve its reputation. In CrowdBC, a requester and a worker negotiate

and generate a smart contract. This contract has an evaluation-function that

evaluates the performance of the worker. CrowdBC uses the output of this

evaluation-function as well as the average reputation of all other workers to

calculate the reputation of the worker.

Review-based methods. In this class, reputation of a party depends on

the reviews and scores it receives from other parties [43]–[45]. For example,

in online shopping stores such as eBay and Amazon, buyers can review and

rate sellers and items. These rates together represent the reputation of sellers

2The oracle is the Lightning Network itself.

17

and items. Another example is Kudos [45], which is an educational reputation

currency in a blockchain that records intellectual efforts, and related reputation

rewards. Academic people and institutions that award certificates or verify

innovations are parties of Kudos. When a person completes a certificate, their

institution sends them some amount of Kudos based on their review. In this

system, the amount of Kudos a party has represents the reputation of the

party.

2.8.2 Proof of work

Dwork and Naor [46] introduced the concept of proof-of-work in 1992. Mo-

tivated to combat junk emails, they proposed to require users to compute a

moderately hard function of their messages and some additional information

in order to send their messages. They called these functions pricing functions,

and introduced several of them in their work. In 1997, Back [47] proposed

Hashcash proof-of-work system to deter email spams, and denial-of-service at-

tacks. The Hashcah system is used today as part of consensus protocols in

many blockchains, including Bitcoin [48].

In addition to combating denial-of-service attacks (e.g.,[49]), proof-of-work

has been used to mitigate Sybil attacks [47], [50], [51], [46], [52], protect peer-

to-peer resource sharing [53], and reward well-behaving users [54]. For in-

stance, in [54], the authors proposed a micropayment method to reward Tor

relay operators. In the Tor network, selfish clients may utilize the shared

bandwidth of Tor relays without contributing any resources to the system

in return. To mitigate such selfishness, Tor clients must submit proof-of-work

shares, which Tor relays can resubmit to a cryptocurrency mining pool instead

of paying cash directly. By analyzing the cryptocurrencies market prices, the

authors showed that their method can compensate for a significant part of the

Tor relay operator’s expenses.

2.8.3 Payment channels and watchtower

Payment channels were first introduced by Satoshi Nakamoto [55]. These

channels first emerged as unidirectional for one-way payments [56], then transi-

18

tioned into bidirectional channels to support two-way payments. The two com-

mon bidirectional payment channels are the Lightning Network [12] and the

Raiden Network [26] which operate on Bitcoin and Ethereum blockchain [57],

respectively. There are several implementations of the Lightning network, in-

cluding C-lightning [58], Eclair [59], and LND [60].

To secure payment channels, users must frequently be online and watch

the blockchain to protect their funds. It is because one party may publish

an old commitment transaction while the other party is offline. Dryja [10]

suggested that users who decide to go offline for an extended period of time

delegate the task of watching the blockchain to third parties. Hertig [6] called

these third parties watchtowers. Designing a secure, efficient, and decentralized

watchtower protocol is a challenging task.

McCorry et al. proposed Pisa [7], a protocol that employs third parties

called custodian to protect Sprites channels [8]. In Pisa, users pay their custo-

dians every time they make a transaction on the channel. On the other hand,

custodians lock a collateral fund, which they lose if they misbehave.

In contrast to Pisa, which requires complex smart contracts, our protocol

does not rely on any smart contract. Avarikioti et al. proposed the DCWC

protocol [9], in which full nodes can act as a watchtower for multiple channels.

Unlike Pisa and our protocol, in DCWC, a watchtower gets paid only when

it catches a fraud. In another research work, Avarikioti et al. presented

BRICK [61], a protocol that detects and prevents fraud before it appears on

the blockchain. To this end, BRICK employs a committee of third parties

called Wardens. Wardens confirm the validity of each state channel and make

sure that only the correct state is published in the blockchain when a dispute

occurs.

The authors in [62] proposed Outpost, a lightweight structure for watch-

tower that encodes justice transactions within commitment transactions rather

than storing them in the watchtower. This construction saves an order of mag-

nitude in storage over existing watchtower designs. Finally, Avarikioti et al.

extended the Lightning network and introduced Cerberus Channels [63]. They

motivate watchtowers to work honestly by rewarding them for any update on

19

Cerberus Channels and forcing them to lock a collateral and pay a penalty

when a fraud occurs. Increasing locking collateral, however, decreases the mo-

tivation of watchtowers to accept the work. In our model, watchtowers do not

have to lock money. In case of a fraud, however, they are punished by losing

their reputation.

2.8.4 Payment Routing

There are three main classes of payment routing methods [28]: single-path

payment [12], multi-path payment [64]–[66], and packet-switch routing [67]–

[69]. In the single-path routing, Alice sends the whole payment through a

single path. In multi-path payment, Alice can split her payment into partial

payments and transfer them through different paths. Lastly, in the packet-

switch routing, Alice splits the payment into unit of payments and sends them

individually.

The multi-Path Payment (MPP) method [64] is the simplest type of multi-

path payment proposed for the Lightning Network. In MPP, Alice splits the

payment into partial payments and sends them through different paths. All

these partial payments are conditioned on the disclosure of a single preimage

known by Bob. When Bob receives all the partial payments, he can accep-

t/settle all these payments by disclosing his preimage.

Another existing multi-path payment method for the Lightning Network is

Atomic Multi-Path Payment (AMP) proposed in [70]. In AMP, Alice uses a

“base preimage” for the payment, from which she derives payment preimages of

partial payments. As in MPP, Alice splits the payment into partial payments,

and transfers these payments through different paths. However, in AMP, Bob

needs to receive all the partial payments in order to construct the preimages

and claim the partial payments. Therefore, unlike MPP, in AMP Bob cannot

claim any partial payment before he receives all the partial payments.

In both MPP and AMP, the whole payment fails/delays if any of the par-

tial payments fails/delays. Packet-switch routing methods [66], [71]–[75] can

alleviate this to some extent. For example, in Ethna [76], and Interdimensional

Speedy Murmurs [72] protocol and its extension [66], in addition to Alice, in-

20

termediate nodes are able to split a payment. Furthermore, these protocols

allow intermediate users to select the next user on the path. However, as in

MPP and AMP, the whole payment fails/delays if any single partial payment

fails/delays. In addition, packet-switch routing methods may require a high

number HTLCs. This can put pressure on the network as each channel can

support only a limited number of (unsettled) HTLCs.

One can consider a fourth class of payment methods: multi-path payments

with redundancy. As far as the authors know, Boomerang [11] is the only

existing method that falls within this class. In this work, we propose Spear,

the second method within this class. As shown in [11] and this work, these

methods have a great potential in improving the performance of multi-path

payment.

2.8.5 Balance Discovery attacks

Table 2.1 compares the existing balance discovery methods. As indicated in

the table, the methods proposed in [13], [77], [78] require opening a channel

directly connected to the target channel. This may not be possible in practice

as the owners of the target channel may not accept new channels. In addition,

these methods are not scalable because they have to open a new channel for

every target channel.

The remaining balance discovery methods [14]–[16] do not require direction

connection to the target channel. However, they all use single-path payments,

and sequentially probe the target channel. As mentioned earlier, single-path

payments can generate a limited flow compared to multi-path payments, hence

have limited capability to discover balances of remote channels. Moreover,

these methods are slower than Torrent (the method we will explain in Chap-

ter 5) as they do not transmits payments in parallel.

21

Method Need a
direct

channel?

Relies on
error

messages?

Success
rate

Balance
discovery
attack [13]

Yes No 89.1%

Improved
balance
discovery
attack [77]

Yes No 98.37%

Generic
attack [78]

Yes Yes No Data

Probing channel
balances [14]

No. No 65%

Probing
attack [15]

No No No Data

Probing of
Parallel

Channels [79]

No No 80%

NIBT [16] No. Yes 92%

Torrent No. No 87%–
97%

Table 2.1: Existing balance discovery methods.

22

Chapter 3

Hashcashed Reputation

In this chapter, we propose our Hashcashed reputation system, and show how

the system can be used to create a market that stimulate well-behaviour and

competition. To showcase our reputation system, in this chapter, we create

an open market of watchtowers, where watchtowers are motivated to not only

deliver their promised service but also reduce their service fees in competition

with each other.

3.1 System components

Market. A market is identified by a number called the market ID. The main

purpose of this number is to distinguish different markets, hence it can be

set by, for example, a centralized organization that oversees global market ID

allocation. A market is composed of servers, which are entities that provide

a defined service to clients for profit. The markets we consider are open,

which means they allow any server to join and offer their service. Every server

is identified by an ID, which is a public key. The market has no central

authority to assign IDs to servers. Therefore, similar to Bitcoin users, servers

select their IDs on their own. As a result, an entity can enter the market with

many different IDs, as it can create many public keys.

Reputation. In our system, a server generates its own reputation and

proves it using a hashcash. More specifically, given a server ID, a market

ID, and a hashcash the reputation of a server is calculated as the number of

23

Server ID Market ID Hashcash

H

Reputation Factor :

000000000111000100101000001010100010010011111110110101001...

Binary

Figure 3.1: An illustration of how a reputation is calculated.

leading zeros of

H(serverID||marketID||hashcash)

in binary, where H is a cryptographic hash function (such as SHA-256). This

is illustrated in Figure 3.1. Note that the hashcash is basically a nonce, similar

to the nonce in the Bitcoin block headers. Also, note that reputation is tightly

linked to a single pair of server ID and market ID. This prevents an entity

from using a reputation for multiple IDs or over multiple markets.

A server can increase its reputation on its own by creating a better hash-

cash. This is in contrast to the existing reputation systems, where a server’s

reputation is increased when it receives good reviews from clients/customers.

Finding a better hashcash, however, is not free. The server has to mine itself,

or rent mining power (whichever the server finds more cost-effective). A server

may make such an investment to, for example, get a better share of the market

or merely maintain its share in a competitive (but profitable) market.

Definition 1 (Reputation cost) The reputation cost, cost(r), is an esti-

mate of the minimum energy (electricity) cost to generate a server ID with

reputation r. The cost of a server s with reputation r is denoted cost(s), and

is defined to be equal to cost(r). We remark that reputation cost is time vari-

ant, because energy cost and hardware efficiency change over time.

Remark 1 In our system, a server makes reputation by essentially burning

resources (to generate a hashcash). Alternatively, a server can generate rep-

utation by burning cryptocurrency. This way servers can use, for example,

PoS-based solutions (which are more energy efficient than PoW-based solu-

tions) to generate reputation. Note that a server must tie its proof-of-burn to

24

its serverID and marketID. This can be simply done by, for instance, paying

to an output that requires H(serverID||marketID) to be zero.

Remark 2 We remark that anyone can join the market but may not neces-

sarily profit from the market because of the competition that exists between

servers to provide the service at the lowest possible fee. It is not our intention

to guarantee that the market will have many servers in it. In fact, the market

may become dominated by a small number of “powerful” servers. However, we

aim at designing a market where every server has a strong incentive to fulfill

its contracts, and lower its service fee in competing with other servers.

Documents. The system generates two types of digital documents: con-

tracts, and proof-of-breaches. A contract is a stand-alone digital document

that includes a server ID, terms of the service, and the server’s signature. A

proof-of-breach, on the other hand, is a digital document that consists of a

contract and publicly-verifiable evidence proving that the server who signed

the contract has breached it.

Each contract contains two hash images: a client hash image selected by the

client and a server hash image selected by the server. A contract is considered

valid only if it is presented along with the preimage of the server’s hash image.

In contrast, a proof-of-breach becomes invalid if the preimage of the client’s

hash image is presented. As will be explained later, this mechanism allows

a digital document to be atomically exchanged for cryptocurrency. One can

view these preimages as one-time use on/off switches: the server’s preimage

activates the contract, while the client’s preimage terminates it.

Distributed storage system. The reputation system utilizes a dis-

tributed storage system to store servers’ records, including IDs, hashcash, and

proof-of-breaches. The main requirement of this storage system is to ensure

that each server’s record is stored by at least one node, who is willing to share

the record with others. As stated in the next proposition, this is a condition

that is naturally achievable in our system. Consequently, the proposed reputa-

tion system can rely on the set of servers/clients as part of a (perhaps larger)

distributed storage system that stores servers’ records.

25

Proposition 3.1 For every ID, hashcash, and proof-of-breach, there is at least

one node in the system that has incentive to store and share the record.

Proof. A server has full incentive to store and share its own ID and hashcash

with others. With regards to a proof-of-breach, there is at least one node

with a strong incentive to store and distribute the record: the victim of the

contract breach. Note that the proof-of-breach has no expiry date. Therefore,

the victim can store the proof for as long as they desire, and (re)distribute it

anytime they wish. In addition to the victim, servers have incentives to store

a proof-of-breach against the defaulting server. It is because the market share

of the defaulting server becomes available to all others when the server is out

of the market. Note that every server in the market essentially competes with

every other server, because all servers offer their service to the same pool of

clients. �

3.2 Interactions

The proposed reputation system supports two types of inter-component inter-

actions: client-server interactions and client-storage interactions. Client-server

interactions are to transfer reputation information including server ID, hash-

cash and server preimages (i.e., preimages that can invalidate existing proof-

of-breaches). They are also to communicate terms of services and fees and to

transfer contracts. Client-storage interactions, on the other hand, are to store

and retrieve proof-of-breaches from the distributed storage system.

3.3 Protocol

Consider a market with a set of servers that provide a service for profit. Each

server has an ID and a hashcash to represent its reputation. In this market, a

client who wishes to receive the service goes through the following steps.

1. Screening: The client collects reputation information (including server

IDs and hashcash) from the servers. In addition, it retrieves proof-of-

26

breaches from the distributed storage system and verifies them. Valid

proof-of-breaches can be cached at the client side. The client discards

servers with a valid proof-of-breach against them. The servers that are

not discarded are referred to as candidate servers.

2. Negotiation: The client negotiates the terms of service and fees with

the candidate servers through private communications. Alternatively,

instead of actively engaging with each client, servers may offer fixed

service plans that are ready to be signed.

3. Selection: Considering the servers’ reputations and their service fees, a

client selects a subset of the candidate servers to contract with. If the

client selects more than one server, it will contract with each candidate

server separately. We assume that the client receives no damage if at

least one of the selected servers fulfills the terms of the contract. For

example, in a watchtower market, if at least one watchtower respects

its contract and monitors the blockchain, the payment channel is fully

protected. If all the selected servers deny the fulfillment of the contract,

however, the client can create a proof-of-breach against every single se-

lected server.

In this work, we do not impose any specific method for selecting the can-

didate servers. In fact, it may not be possible to enforce a fixed selection

method, as clients may have other reasons (external to the system) to se-

lect a particular server. Nevertheless, we suggest the following properties

to be considered in designing any selection method.

(a) Reputation-aware: if the algorithm selects a server with reputa-

tion r and service fee f , then it must also select any server with

reputation r′ > r and service fee f ′ ≤ f ;

(b) Fee-aware: if the algorithm selects a server with reputation r and

service fee f , then it must also select any server with service fee

f ′ < f , and reputation r′ ≥ r.

27

(c) Damage-aware: for every selected server s, the contract’s value

for the client, val(c), must be less than cost(s)
k

, where k ≥ 1 is a

security parameter defined in Section 3.4.

The first two properties stimulate competition, and encourage servers to

increase their reputation and reduce their service fees. Note that both

reputation and service fee are considered by a client in selecting servers.

The third property encourages servers to behave, and is a defence mech-

anism against bribery, as will be explained in Section 3.5.

4. Purchase: To purchase a contract, the client first obtains a signed copy

of the contract from the server and verifies the contract. Then, the

client purchases the contract by, for example, atomically exchanging the

server’s preimage for cryptocurrency. Recall that a signed contract is

considered valid only when it is presented with this preimage.

5. Punishment: If the client ever discovers a breach in the contract, it

creates a proof-of-breach and stores it in the distributed storage sys-

tem. Optionally, the client can negotiate terms of settlements with the

defaulting server. The contract supports the atomic exchange of the

client’s preimage (which invalidates the proof-of-breach) for cryptocur-

rency. In our model, a proof-of-breach against a server will reduce the

server’s reputation to zero, unless the server provides the corresponding

client’s preimage indicating that the contract has been terminated as a

result of, for example, a settlement.

The main challenge in enabling the proposed reputation system is to enable

publicly verifiable proof-of-breaches. We believe that many markets that pro-

vide blockchain services, such as timestamping or cryptocurrency exchange,

can be (re)designed to provide this feature. In this work, we present one such

service: blockchain monitoring.

28

3.4 Adversarial model

An adversary can join the market with an arbitrary number of IDs. More-

over, a client cannot determine if a set of IDs belong to the same entity. We

assume that there are at least two independent service providers (servers) in

the market1.

An adversary can launch a denial of service attack by populating a storing

node with server IDs and/or proof-of-breaches. It may also bribe a storing

node to delete its proof-of-breach from its storage. An adversary can bribe a

server to breach a contract. However, we assume that at each point in time, a

server has standing bribes on at most k different contracts, where k ≥ 1 is a

system security parameter. In addition, we assume that the total amount of

bribe offered to a server to breach a contract c is not more than the value of c

for its client (otherwise, the bribe can be used to buy off the client directly!).

Moreover, we assume that a server s does not accept any of its standing bribes,

if the total amount of bribe offered to s (over all the contracts s is handling)

is less than cost(s), as defined in Definition 1.

For a single contract, a client may select and pay multiple servers. We

assume that the client does not receive any damage if at least one of these

servers fulfills the terms of the contract. For example, in the case of the

watchtower market, the client receives no damage if at least one of the paid

watchtowers monitors the blockchain and follows the terms of the contract

(e.g., submit the justice transaction in case of cheating). In selecting servers,

we assume that a client has a good estimate of the reputation cost function.

Finally, we assume that the client can create a proof-of-breach against all paid

servers if there is a term in the contract that is not fulfilled by any of the paid

servers.

1In an open market, if the market is profitable for a single provider, it makes sense for
another service provider to join the market.

29

3.5 Security Analysis

Sybil attack. In the Sybil attack, an adversary attempts to subvert the

reputation system by creating multiple IDs. In our reputation system, an

adversary cannot impact the reputation of servers by merely creating many

IDs. It is because, unlike other reputation systems such as recommendation

systems, in our system, the reputation of a server is not effected by other

nodes. In fact, there are only two things that can impact one’s reputation:

proof-of-work and proof-of-breach.

DoS attack. An adversary may create multiple IDs and/or fake contracts

to use up the storage of storing nodes. For instance, suppose that there are

nodes in the system that provide clients with server IDs, hashcash, and their

IP addresses. An adversary may try to overwhelm these nodes by flooding

them with server IDs. At some point, a node does not have enough storage

room to accept new IDs or has to replace old IDs with new ones coming.

A simple counter-measure against this type of denial-of-service attacks is

to use servers’ reputations to prioritize records. For example, a proof-of-breach

against a highly-reputable server has a higher priority than a proof-of-breach

against a normal server. With such prioritising, a storing node accepts and

stores a new record if either the node has enough room or the priority of

the new record is higher than the priority of the lowest-priority record in the

storage. In the latter case, the lowest-priority record is replaced with the new

record.

By the following proposition and considering today’s computational power,

storage capacity, and electricity cost it is impractical for an adversary to flush

out the records of all honest servers from a storage node.

Proposition 3.2 An adversary requires on average M · 2rmax hash computa-

tions to flush out the records of all honest servers from a storage node, where

M is the number of records the node can store, and rmax denotes the maximum

reputation of any honest server.

Proof. For an adversary to flush out the records of all honest servers from the

30

storage, it needs to create M records, each with reputation of at least rmax.

To create a reputation of at least rmax, the adversary needs to compute on

average 2rmax hashes. Therefore, in total, the adversary needs to compute at

least M · 2rmax hashes, on overage. �

For example, assuming that rmax ≥ 43, and the storage node can store 240

records, the adversary must compute at least 283 hashes in order to remove/re-

place all the honest servers’ records. Using an ASIC hardware with the speed

of 10 tera hashes per second this would take over 30,000 years. The same

hardware can generate a reputation of r = 43 in less than a second, hence

rmax ≥ 43 is a reasonable assumption.

Proposition 3.3 A defaulting server has no incentive to flush a proof-of-

breach against itself out of a storing node by generating a new ID and many

artificially-generated proof-of-breaches against the new ID.

Proof. Suppose that the new artificially generated proof-of-breaches pushes

out the valid proof-of-breach out of a storage node. Since the storage node

prioritizes records according to the reputation of the corresponding server ID,

the reputation of the new ID must be at least equal to the reputation of the

defaulting server. There is no incentive then for the defaulting server to try

to push out the proof-of-breach rather than starting fresh with the new ID. �

A storage node needs to verify records such as proof-of-breaches. Such

verification needs little but non-negligible resources such as computation and

memory. An attacker can overwhelm a storage node by sending many fake

proof-of-breaches to the node. A storage node can mitigate this type of DoS at-

tacks by simply requiring a small proof-of-work along with a submitted record.

This mitigation is, in fact, the original application of the hashcash, which is

to mitigate such DoS attacks.

Fake resolved proof-of-breaches. A server may create valid proof-of-

breaches against itself, and then resolve them to create a market image of

settling all disputes with clients. This method, however, does not impact the

31

server’s reputation because terminated/resolved contracts neither increase nor

decrease the server’s reputation.

Eclipse attack. An attacker can eclipse honest servers to prevent (new)

clients from discovering them. To combat this, servers can register their record

on a secure blockchain. Such a record should include the server ID, reputation,

IP address, and a signature to authenticate the record. Other methods such

as those mentioned in [80] may also be used to mitigate the eclipse attack.

Bribery. A defaulting server may attempt to bribe the storing nodes to

delete a proof-of-breach. Bribing, however, cannot guarantee that a digital

document is purged. In fact, the victim of a contract breach would always

keep its proof-of-breach and can re-distribute it at any time. The main hope

of a defaulting server who is willing to remain in the market is to settle with

the client (by purchasing the client’s preimage, which invalidates the contract)

or start over with a new reputation.

Another type of bribery is when an adversary offers a bribe to a server

to breach a contract. For instance, a payment channel party may bribe a

watchtower to stop monitoring the channel for its counter-party. This type

of bribery is a serious threat against any digital market. Note that since a

server provides services to many clients, it may receive multiple bribes from

multiple adversaries. Nevertheless, Proposition 3.4 shows that every contract

in the market is “bribe-safe”, as defined below.

Definition 2 (Bribe-safe) A contract is bribe-safe if the cost of every server

responsible to execute the contract is more than the total amount of bribes

offered to the server.

Note that the condition in the above definition is somewhat strong, because

a contract is still safe even when a single paid server (as opposed to all) fulfills

its contractual obligation.

Proposition 3.4 Under the assumptions described in the adversarial model,

every contract in the proposed system is bribe-safe if the selection methods used

by the clients are damage-aware.

32

Proof. Let s be any server in the market, and C be the set of contracts for

which the server has a standing bribe offer. Let brb(c) denote the total amount

of bribe offered to breach a contract c, val(c) denote the maximum value of c

for the client, and cost(s) denote the cost of server s as defined in Definition 1.

By the selection method’s third property, we have

∀c ∈ C : val(c) <
cost(s)

k
.

In addition, by our adversarial model assumptions, we have

∀c ∈ C : brb(c) < val(c),

and |C| ≤ k, where |C| denotes the cardinality of C. Therefore, we get

B ≤
∑

c∈C

brb(c) <
∑

c∈C

val(c)

≤
∑

c∈C

cost(s)

k
=
|C|

k
cost(s) ≤ cost(s),

where B is the total amount of bribe offered to s. Thus, the total amount of

bribe offered to s is less than cost(s). Therefore, by our adversarial model’s

assumption, the server does not accept a bribe to breach any contract c ∈ C. �

3.6 A reputation-based market of watchtow-

ers

Our reputation system can be used in various digital markets which offer

blockchain services. In this section, we show one example where we apply our

system in a market of watchtowers that provides blockchain monitoring service

to payment channel holders who decide to go offline.

Consider a market of watchtower servers, where each server has an ID

(public key), and a reputation as defined in Section 3.1. The market utilizes

a distributed storage system, which stores the server’s records, including ID,

hashcash, IP address, proof-of-breaches, and preimages. Recall that servers

and victims of contract breaches participate in this distributed storage system,

33

and for each record, there is at least one node that has a strong incentive to

store the record and distribute it.

Screening. Consider a payment channel between Alice and Bob and sup-

pose that Alice is interested to pay one or more watchtowers to monitor the

blockchain on her behalf while she is offline. First, in a screening process, Alice

contacts the storage system, collects all servers’ records, and evaluates servers.

A server’s evaluation includes a single computation of the hash function to cal-

culate the server’s reputation, and verification of proof-of-breaches against the

server if there is any. Verification of a proof-of-breach is expected to be harder

than a single computation of the hash function. However, a client needs to

verify a proof-of-breach at most once, as it can cache the result for later use.

The watchtowers that successfully pass Alice’s evaluation are referred to as

candidate watchtowers.

Negotiation. In this step, Alice communicates the terms of a contract

with the candidate servers, and negotiates for service fees. At the end of this

step, Alice knows how much fee each candidate watchtower charges for the

contract. Figure 3.2 shows a watchtower contract sample, which consists of a

market ID, server ID, server’s hashcash, a set of 16-byte transaction ID pre-

fixes, a set of encoded justice transactions, the range of blocks that the watch-

tower has to monitor, server’s hash image, client’s hash image, and server’s

signature. The client’s and server’s hash images are hashes of random numbers

generated by, respectively, the client and the server. Note that contract’s data

does not reveal any information about the client.

Selection. Considering the reputations of the candidate watchtowers and

their service fees, Alice selects a set of watchtowers to contract with. As men-

tioned earlier, we do not enforce any specific selection algorithm. We, how-

ever, suggest any selection method to be 1) reputation-aware; 2) fee-aware,

and 3) damage-aware. Algorithm 1 shows one possible selection method. In

this method, Alice first determines the contract’s maximum value, val(c).

This value should be set to at least the payment channel fund, which is

the maximum amount Alice would lose on the channel if Bob cheats. Then,

among candidate watchtowers whose reputation cost is more than the thresh-

34

Alice Watchtower

Transaction ID prefixes

Encoded justice transactions

The range of blocks

Client's hash image

Watchtower Contract

Watchtower Contract

Market ID:

Server ID:

Server's hashcash:

Server's hash value:

Server's signature

Figure 3.2: A sample of watchtower contract.

old T = k ·val(c), the algorithm chooses the one with the minimum fee. If there

are multiple such watchtowers with the minimum fee, one with the maximum

reputation is selected. Thus, if the algorithm selects a server s with reputation

r, and service fee f , then for every server s′ we have

f ′ ≥ f OR r′ ≤ r,

where f ′ and r′ denote the service fee and reputation of s′, respectively. This

implies that the algorithm is both reputation-aware and fee-aware. In addition,

the algorithm is damage-aware as the reputation cost of the selected server is

at least k times the contract’s value.

When selection is complete, Alice contacts the selected servers and pro-

vides them with her hash images2. In response, every server returns a signed

contract. Note that a signed contract is only considered valid when it is pre-

sented with the server’s preimage. To finalize the contract, Alice pays each

server to receive the server’s preimage.

Purchase. To purchase the server’s preimage, Alice can use the Light-

ning network, or a payment channel with the watchtower. This may seem

paradoxical, as the payment channel that Alice uses to pay the watchtower

has to be protected by a watchtower, too. To get around this issue, Alice

uses a directional payment channel to pay the watchtower. As explained in

Section 2.6, Alice does not need to monitor the blockchain for a directional

payment channel, i.e., a channel that she uses only to make payments.

2Different hash images are used for different servers.

35

Algorithm 1: A watchtower selection method.
Data: A threshold T , and a set of servers S
Result: s† ∈ S

initialization;

s† ← servers in S with reputation cost of at least T ;
for every s ∈ S do

if (cost(s) ≥ T)& (fee(s) ≤ fee(s†) then
if (cost(s) > cost(s†) || (fee(s) < fee(s†) then

s† ← s;
end

end

end

To purchase the contract using a directional payment channel, Alice uses

the watchtower’s hash image in her HTLC. This, as discussed earlier, ensures

that the contract and the service fee are atomically exchanged. As soon as the

payment goes through (i.e., once Alice receives the watchtower’s preimage),

the contract becomes valid, and Alice can go offline.

Note that every time Alice transacts with Bob, she needs to update her

contract with the watchtower (by updating a few parameters in the existing

contract), and pay the watchtower to get a new preimage.

Proof-of-breach. Since the Bitcoin blockchain is public, anyone can check

if, for example, the ctx transaction has been published. Therefore, anyone can

verify whether a given contract has been breached. In particular, a contract to-

gether with the server’s preimage serve as a proof-of-breach. Given a contract

and a preimage, one can check whether

• the format of the proof-of-breach is valid;

• the contract’s signature is verified using the server’s ID;

• the hash image of the given preimage is equal to the server’s hash image

in the contract;

• ctx was published in one of the blocks that the watchtower was obliged

to monitor;

• jtx is a valid transaction (e.g., it can spend from ctx);

36

• jtx was not published within the dispute period.

The proof-of-breach is valid if and only if all the above conditions hold. Supple-

mentary data such as the Merkle proof of the existence of ctx can be appended

to a proof-of-breach to assist light clients (e.g., app-based mobile clients) with

the verification process3. This reduces the verification process to a few signa-

ture verification (e.g., checking the server’s signature), a few hash computa-

tions (e.g., to verify a Merkle proof), and some simple format checking (e.g.,

checking the format of the contract).

Settlement. The victim of a contract breach may settle with the default-

ing server. This can be done readily by atomically exchanging the client’s

preimage for cryptocurrency.

3.7 A reputation-based market of Timestamp-

ing

In the previous section, we showed how our reputation system can be used

in a watchtower market to incentives watchtowers to respect their contracts,

and compete with each other. Our reputation system can be adapted by other

markets, too. The main challenged in doing so is to design contracts in such

a way that a publicly verifiable proof-of-breach can be generated by a client

if the server breaches the contract. In this section, we use a timestamping

market as another example on how our reputation system can be used.

Consider a market in which servers provide blockchain-based timestamps

for client’s documents. As before, each server has an ID (public key), and

a reputation as defined in Section 3.1. In this market, a server 1) receives

and collects hash images of clients’ documents; 2) creates a Merkle tree us-

ing the collected clients’ hash images; 3) embeds the root of the Merkle tree

in a transaction; and 4) publishes the transaction on the blockchain. When

the transaction is published, the server can provide each client with a Merkle-

proof to prove that the client’s hash image was included in the Merkle tree.

3To show that jtx does not exist, the Merkle proof of the existence of a transaction
(other than jtx) that spends from ctx can be provided. This proves that jtx does not exist
because at most one transaction can spend the output of ctx.

37

C1

H12 H34

C2 P2 C3 P3 C4 P4

H1

 Root

H1234

P1

H2 H3 H4

Figure 3.3: An illustration of how a timestamp server creates a Merkle tree.

The Merkle proof (together with the published transaction’s ID) serves as a

timestamp on the client’s document. This timestamp proves that the client’s

document existed at a certain date (i.e., the date the transaction was pub-

lished).

Why using a timestamp server? A client, say Alice, can timestamp

her document on her own by embedding the document’s hash image in a

transaction and publishing it on the blockchain. This requires Alice to pay a

transaction fee. Using the timestamp server, however, Alice pays much less

for a timestamp, as a timestamp server’s fee is much lower than a transaction

fee; a server can afford this because it aggregates many clients’ hash images

into a single hash image (i.e., the root of the Merkle tree), and publishes this

single hash image.

The second main motivation to use a timestamp server is to reduce the load

on the blockchain. If every client uses their own transaction to timestamp their

document, many transactions need to be published on the blockchain, which

results in higher transaction fees.

Merkle tree and proofs. A Merkle tree [22] is a binary tree in which ev-

ery non-leaf node is labelled with the cryptographic hash of the concatenation

of its children. As shown in Figure 3.3, the timestamp server creates a Merkle

tree using the client’s hash images as the labels of every other leaf nodes. The

remaining leaf nodes receive a secret unique preimage as a label. As will be

explained later, these preimages are used by the server to sell Merkle proofs.

A Merkle proof is a proof that a leaf is a part of the tree with a given

root. The Merkle proof for a leaf node consists of the labels of the siblings of

38

all of the nodes in the tree in the path from the leaf to the root. All these

labels, except that of the leaf’s sibling, is placed in the contract as the “partial

Merkle proof”. The label of the leaf’s sibling is used as a preimage in the

HTLC contract that sells the Merkle proof.

Screening, negotiation and selection. These steps are performed sim-

ilar to the watchtower market. The only difference is in the set of items that

are placed in the contracts.

As in a watchtower contract, a timestamp contract includes a market ID,

server ID, the client hash image4, the server’s hashcash, and its signature on

the whole contract. As shown in Figure 3.4, other items placed in a timestamp

contract are:

1. the hash image of the client’s document;

2. the ID of the transaction that includes the root of the Merkle tree;

3. the partial Merkle proof;

4. the server hash image, which is set to the hash of the label of the client’s

sibling in the Merkle tree.

Timestamp Contract

Market ID:

Server ID:

Client hash image:

Server's hashcash:

Server's signature

C1

H12 H34

H1

 Root

H1234

P1

H2

Transaction ID

H1234

H(P1) Hash image of the client’s

Partial Merkle proof

Server hash image

Transaction ID

document:

Figure 3.4: A sample of timestamp contract

4Note that this is different from the hash image of the client’s document. Recall that
the client hash image is used as a mean to deactivate the contract after a settlement.

39

Figure 3.5: The process of verifying a Proof-of-breach.

Proof-of-breach
Verification

Valid
Signature?

Valid
preimage?

Merkle
root

published?

Valid
Merkle
proof?

Proof-of-breach
is invalid.

Proof-of-breach
is valid.

Yes

Yes

Yes

Yes

No

No

No
No

Purchase. The server’s preimage is the only part missing from the Merkle

proof (the server places the rest of the proof in the contract). To have the

complete Merkle proof, the client has to purchase the server’s preimage. As

in the watchtower market, the server can atomically exchange its preimage for

a fee using the Lightning network or payment channels. An issue, however, is

that a server may give an invalid Merkle proof to the client. A client cannot

verify the Merkle proof prior to getting the whole proof (which includes the

server’s preimage), and by the time the client has the whole proof, the exchange

has already been completed (i.e., the server has already received the fee). This

is the part that our reputation system comes to play; after paying the fee, if

a client realizes that the Merkle-proof is invalid, she can create a publicly

verifiable proof-of-breach, which destroys the server’s reputation.

Proof-of-breach. As in the case of watchtower market, the contract to-

gether with the server’s preimage that the client receives after the payment

of the fee can be used as a proof-of-breach. To verify a proof-of-breach, one

40

should check whether

• the contract’s signature is verified using the server’s ID;

• the hash image of the preimage is equal to the the server hash image

embedded in the contract;

• the root of the Merkle tree is in a published transaction, whose ID is

given in the contract;

• the Merkle proof is valid.

The flowchart 3.5 shows how the answers to the above questions determines

if the proof-of-breach is valid.

3.8 Conclusion

In this chapter, we proposed a proof-of-work based reputation system to incen-

tivize well-behaviour and stimulate competition in online marketplaces. An

advantage of our system is that it does not rely on any blockchain or smart

contracts to, for example, punish misbehaviour. Instead, it stores a proof of

misbehaviour as a record in a distributed storage, which is only required to

store each record in at least one node. This is an easy requirement to achieve

since for each record, there is at least one party who is strongly motivated

to store and (re)distribute it. Finally, to showcase our reputation system, we

designed an open market of watchtowers. Our reputation system motivates

watchtowers not only to behave according to their obligation but also compete

with each other by progressively improving their reputation and by reducing

their service fees.

41

Chapter 4

Spear: Fast Multi-Path
Payment with Redundancy

This chapter presents Spear, our simple multi-path payment method with

redundancy. There is only one other method (called Boomerang) in the liter-

ature that supports redundant payments. In this chapter, we show that Spear

has lower latency and computation than Boomerang and, unlike Boomerang,

needs only a minor change to the Lightning Network. In addition, Spear triv-

ially supports division of a payment into uneven partial payments. This gives

the payer maximum flexibility to decide on the number of partial payments

and their values.

4.1 System Model

We model the Lighting Network as a graph G = (V,E), where V is the set

of nodes and E is the set of channels. For any channel (u, v) ∈ E, let b(u, v)

denote the balance of node u, and f(u, v,m) denote the fee that node u charges

to forward a payment of amount m to v on channel (u, v). For each channel

(u, v) ∈ E, the channel capacity is defined as c(u, v) = b(u, v) + b(v, u).

Single-path payment. Let P = (v1, v2, . . . vl, vl+1) be a path in G. A

single-path payment of m from v1 to vl+1 on path P is called successful if and

only if

∀1 ≤ i ≤ l : b(vi, vi+1) ≥ mi, (4.1)

42

where ml = m, and mi, i < l, can be calculated recursively as

∀1 ≤ i < l : mi = mi+1 + f(vi, vi+1,mi+1).

A successful transfer of payment m over P will result in the following

changes in balances

∀1 ≤ i ≤ l : b(vi, vi+1)←− b(vi, vi+1)−mi

b(vi+1, vi)←− b(vi+1, vi) +mi

(4.2)

Multi-path payment. Another option for v1 to transfer m to vl+1 is to

split m into partial payments m1,m2, . . . ,mk, where
∑k

i=1 mi = m, and transfer mi, 1 ≤ i ≤ k, on a path Pi. Such multi-path

payment is called successful if and only if sequentially transferring of mi on Pi

result in k successful transfers according to (4.1). Note that channel balances

are updated according to (4.2) after a successful transfer of a partial payment

and prior to the transfer of the next partial payment.

4.2 Power of Redundancy

In [11], the authors experimentally showed that Boomerang, a multi-path pay-

ment with redundancy, can lead to 40% reduction in latency and 200% increase

in throughput. In this section, we look at redundancy from a slightly different

angle, and show its power in improving the success probability of payments.

It may seem at first glance that dividing a payment into partial payments

and transferring them through different paths can significantly improve the

chance of a successful payment. In this section, we show that this may not

be the case if we do not add redundant partial payments. To this end, let us

simplify our model by making the following assumptions

1. All channels have the same capacity C;

2. There is no service fee;

3. The balance of a channel is drawn uniformly at random independent of

other channels.

43

With the above assumptions, we get the following proposition.

Proposition 4.1 Let P1,P2, . . . ,Pk be k paths from node A to node B. Let li

denote the length of path Pi (i.e., li is the number of channels on Pi). Let Pk

denote the probability that a payment of m =
∑k

i=1 mi can be transferred from

A to B by simultaneously transferring partial payments of mi on path Pi.

Then, we have

Pk = Πk
i=1

(

1−
mi

C

)li

,

if paths Pi are disjoint, and

Pk < Πk
i=1

(

1−
mi

C

)li

,

otherwise.

Proof. Suppose paths Pi, 1 ≤ i ≤ k, are disjoint. Let Ei be the event that

the transfer of partial payment mi on Pi is successful. We have

Pr(Ei) =
(

1−
mi

C

)li

,

where
(

1− mi

C

)

is the probability that a channel has enough balance to forward

mi. The events Ei, 1 ≤ i ≤ k, are independent, because paths Pi, 1 ≤ i ≤ k,

are disjoint. Therefore, we get

PK = Πk
i=1Pr (Ei) = Πk

i=1

(

1−
mi

C

)li

.

Now, let us consider the case where paths Pi are not disjoint. Consider any

channel. The probability that this channel can transfer two partial payments

mi and mj is
(

1−
mi +mj

C

)

which is less than
(

1−
mi

C

)

·
(

1−
mj

C

)

.

This implies that transferring mi and mj on two different channels is more

likely to succeed than transferring them on a single channel. Consequently,

the success probability of transfer of payments is maximized when paths Pi

are disjoint. �

44

Corollary 4.2 Let l denote the length of the shortest path between A and B.

Then, the probability that a payment m goes through a shortest path is

P single
success =

(

1−
m

C

)l

.

Lemma 4.3 Let l denote the length of the shortest path between A and B.

Then we have

Pmult
success < e−

ml
C ,

where Pmult
success denotes the success probability of multi-path payment.

Proof. For any real number 0 < α < 1, and any integer n ≥ 1, we have

(1− α)n < e−αn.

Therefore, by Proposition 4.1, we get

Pmult
success = max

k,mi,li

{

Πk
i=1

(

1−
mi

C

)li
}

< max
k,mi,li

{

Πk
i=1e

−
mili
C

}

≤ max
k,mi

{

Πk
i=1e

−
mil

C

}

= max
k,mi

{

e−
(∑k

i=1
mi)l

C

}

= e−
ml
C

�

Proposition 4.4 We have

P single
success > 1 + ln

(

Pmult
success

)

Proof. By Corollary 4.2, the success probability of single-path payment is
(

1− m
C

)l
. Therefore

P single
success =

(

1−
m

C

)l

≥ 1−
ml

C

> 1 + ln
(

Pmult
success

)

,

45

where the second inequality is by Lemma 4.3, and the first inequality is by the

fact that (1 − α)n ≥ 1 − αn for any real number 0 < α < 1, and any integer

n ≥ 1. �

Example 1 An important consequence of Proposition 4.4 is that if multi-path

payment has a high probability of success so does single-path payment. For

example, if Pmult
success = 99%, then by Proposition 4.4, we get that P single

success >

98.99%. As another example, if Pmult
success = 90%, then by Proposition 4.4, we

get that P single
success > 89.46%. Note that this result holds for any values of m, l,

and C.

Proposition 4.4 essentially shows that if single-path payment has low prob-

ability of success, we cannot expect multi-path payment to achieve a high

probability of success. By adding redundant payments to our multi-path pay-

ment, however, we can achieve a high probability of success even when the

success probability of single-path payment is low. Let us clarify this in the

following example.

Example 2 Suppose l = 4, m
C
= 1

3
, and there are k = 10 disjoint paths. Then,

by Proposition 4.1, we get

P single
success =

(

1−
m

C

)l

=

(

1−
1

3

)4

≈ 20%

and

Pmult
success =

(

1−
m

kC

)kl

=

(

1−
1

10× 3

)10×4

≈ 26%

Now, if we use a multi-path payment method with redundant payments by trans-

ferring m
5
on every path, then the probability that at least five of these partial

payments are successfully received can be shown to be at least 98%. This means

that the probability of success of multi-path payment with redundancy can be

higher than 98%, that is

P redundant
success > 98%,

46

where P redundant
success denotes the success probability of multi-payment with redun-

dancy. Note that by Lemma 4.3, the probability of success of multi-path pay-

ment (without redundancy) for this example is at most

Pmult
success < e−

ml
C = e−

4

3 ≈ 26.36%,

even when there are infinitely many disjoint paths.

4.3 Spear

An overview. Suppose Alice wishes to send a payment to Bob over a single

path. To do so, Alice first acquires a hash digest from Bob. Then, she selects

a single path to Bob, and sends the payment (conditioned on Bob disclosing

the preimage) through the selected path. Finally, Bob accepts the payment by

releasing his preimage. In this single-payment scheme, Bob’s hash digest can

be used as part of an invoice, and its preimage can be treated as a receipt/proof

of payment.

Spear can be viewed as an extension of the above single-payment scheme.

It allows Alice to select multiple paths, including some redundant ones, to

send partial payments to Bob. Spear follows the same procedure as the single-

payment scheme, except it uses a slightly modified version of Hashed Timelock

Contract (HTLC), which is the contract that conditions the release of payment

on the disclosure of Bob’s preimage. As will be explained later, the main

purpose of using the new HTLC is to prevent Bob from overdrawing. We refer

to this new HTLC as H2TLC.

Figure 4.1 compares HTLC and H2TLC. As reflected in the figure, the only

difference between HTLC and H2TLC is that H2TLC uses two hash digests

instead of one. In other words, the transfer of money in H2TLC is conditioned

on releasing two preimages instead of one. In Spear, one hash digest is set

by Bob, while the second one is set by Alice. This simple addition gives both

parties control over the release of the payment in the H2TLC contract.

As in the single-payment scheme, in Spear Alice first acquires a hash digest

from Bob. She then uses this hash digest in setting up H2TLC in every selected

47

HTLC:{
Vout : [{

value : <payment>
scriptPubKey :

IF
HASH160 <Hash Bob>
EQUALVERIFY <PK1>

ELSE
<delay> CSV DROP <PK2>

ENDIF
CHECKSIG

}]
}

(a) HTLC

H2TLC:{
Vout : [{

value : <payment>
scriptPubKey :

IF
HASH160 <Hash Alice>
EQUALVERIFY
HASH160 <Hash Bob>
EQUALVERIFY <PK1>

ELSE
<delay> CSV DROP <PK2>

ENDIF
CHECKSIG

}]
}

(b) H2TLC

Figure 4.1: HTLC and H2TLC in Bitcoin Script Pseudocode.

path. The second hash digest in a H2TLC is, however, set by Alice alone.

Unlike Bob’s hash digest which is the same on every path, Alice’s hash digest

varies from one path to another. When Bob receives multiple partial payments

whose sum is equal to the whole payment, he would contact Alice over an out-

of-band channel and ask her to provide him with the corresponding preimages.

Alice will check whether the sum of the partial payments is indeed equal to

the original payment, and if so she sends the requested preimages to Bob.

At this stage, Bob can accept all the partial payments by releasing his own

preimage together with Alice’s preimages. As in the case of single-payment

scheme, Bob’s preimage can be treated as a proof of payment.

4.3.1 Procedure

Spear makes a payment in four steps:

• Step 1: Alice receives an invoice from Bob through an out-of-band chan-

nel. The invoice includes the amount F that Alice has to pay and a hash

digest hb
1. We remark that, unlike Boomerang, Alice and Bob are not

1Bob generates hb by first drawing a secret (preimage), and then applying a cryptographic
hash function to it.

48

required to agree on how F will be divided into partial payments; Spear

allows Alice to divide F to any number of partial payments. Moreover,

Spear allows Alice to set uneven partial payments, as explained in the

next step.

• Step 2: Alice selects k payment paths to Bob. For each path, she sets

an amount of partial payment, and a unique hash digest by applying a

cryptographic hash function to a secret unique to the path. She then

initiates the transfer of the partial payments all together. Note that, in

Spear, Alice can choose any number of paths, and any amount for the

partial payments. For example, suppose F = $8. Alice can set k to 12

and send $1 on each of these 12 paths. Or, she may select seven paths

(i.e. k = 7), send $4 on the first path and $2 on each of the remaining

six paths.

• Step 3: Using the out of band channel, Bob informs Alice of the partial

payments he has received and request preimages to claim the payment.

In response, Alice will reveal a subset of her preimages to Bob. To

prevent Bob from overdrawing, Alice makes sure that the sum of the

partial payments corresponding to the released preimages is equal to F .

• Step 4: Let P be the set of partial payments whose preimages have

been released by Alice in Step 3. In Step 4, Bob claims all the partial

payments in P if

1. The sum of payments in P is at least F , and

2. Bob has enough time to claim all the payments in P .

While claiming the partial payments, Bob cancels any received redundant

payment.

Figure 4.2 illustrates Steps 2 and 4 of the above procedure. Note that these

steps are basically equivalent to applying the conventional single-payment

scheme multiple times, with the only exception that each partial payment

uses H2TLC instead of HTLC. In particular, notice that the timeouts on each

49

this as stated in the next proposition.

Proposition 4.6 If Bob follows the protocol, then Alice will know Bob’s secret

preimage only if Bob receives the full payment.

Proof. According to Step 4 of the Spear procedure, Bob does not claim any

partial payments if he is not guaranteed to receive at least an amount of F .

In other words, Bob will release his secret preimage only if he is guaranteed a

total payment of at least F . �

The following corollary is a direct consequence of Propositions 4.5 and 4.6.

Corollary 4.7 Alice can use Bob’s secret preimage as a proof that she has

paid Bob.

4.3.3 Implementation

Implementing Spear is relatively simple. In Spear, each partial payment is han-

dled similar to the conventional single-payment scheme with only one excep-

tion: the transfer of payment on channels must be conditioned on the release

of two preimages instead of one. We emphasize that, in Spear, all other pa-

rameters such as timeouts remain the same as the conventional single-payment

scheme.

Consider any channel on a partial payment path. Suppose this channel

is between nodes C and D. According to BOLT2[81], node C must send an

update-add-htlc message to node D in order to create an HTLC. In Spear,

however, node C needs to create an H2TLC instead of an HTLC. For this, C

must send an update-add-H2TLC message to node D. As shown in Figure 4.3,

update-add-H2TLC is basically an update-add-htlc message with an addi-

tional field, which carries Alice’s hash digest. The size of an update-add-htlc

message is 1450 Bytes. Since update-add-H2TLC carries an extra element (i.e.,

a hash digest of size 32 bytes) its size is 1482 bytes, which is about 2% larger

than the size of an update-add-htlc message.

2BOLT (Basis of Lightning Technology) is the standardized technical specification for
the implementation of the Lightning Network.

51

1 . type : 128 (update add ht l c)
2 . data :

◦ [channe l i d : channe l i d]
◦ [u64 : id]
◦ [u64 : amount msat]
◦ [sha256 : payment hash]
◦ [u32 : c l t v e x p i r y]
◦ [1366∗ byte : on i on rou t ing packe t]

(a) HTLC

1 . type : 128 (update add h2tlc)
2 . data :

◦ [channe l i d : channe l i d]
◦ [u64 : id]
◦ [u64 : amount msat]
◦ [sha256 : payment hash]
◦ [sha256 : sender payment hash]
◦ [u32 : c l t v e x p i r y]
◦ [1366∗ byte : on i on rou t ing packe t]

(b) H2TLC

Figure 4.3: Upgraded update-add-htlc message. Refer to Figure 4.4 for the
Onion routing packet field.

4.4 Spear versus Boomerang

In [11], the authors devise Boomerang, and show that the latency of trans-

fers reduces and the throughput increases when redundant payment paths are

added. Our work is motivated by this positive result and aims to improve it

through the design of Spear. To evaluate the improvement, in the following,

we compare Spear and Boomerang against several factors, including payment

latency, implementation complexity, computational overhead, and required liq-

uidity and timeouts.

4.4.1 Latency

The main objective of both Spear and Boomerang is to reduce the payment

latency, that is the time needed to complete the payment process. Therefore,

it is interesting to first see how these two methods compare to each other in

52

1 . type : on ion packet
2 . data :

◦ [byte : v e r s i on]
◦ [po int : pub l i c key]
◦ [1300∗ byte : hop payloads]
◦ [32∗ byte : hmac]

(a) onion packet

1 . type : hop payloads
2 . data :

◦ [b i g s i z e : l ength]
◦ [hop pay load length : hop payload]
◦ [32∗ byte : hmac]
◦ . . .
◦ f i l l e r

(b) hop payloads structure

Figure 4.4: The onion routing packet field. Refer to Figure 4.5 for the
hop payload field.

terms of latency.

Both Spear and Boomerang use two types of exchanges: 1) exchanges over

the Lightning Network, and 2) exchanges over an out-of-band channel. The

main advantage of Spear over Boomerang with regards to latency is that it

needs two exchanges of the former type while Boomerang requires three: both

Spear and Boomerang use the first exchange to forward Alice’s partial pay-

ments to Bob, and the second exchange for Bob to release his secret preimage.

At the end of the second exchange, the transfer of payment is complete in

Spear, while Boomerang requires an additional exchange so Alice can free up

liquidity. As will be explained, exchanges over the Lightning Network are con-

siderably slower than exchanges over an out-of-band channel. Therefore, one

can expect Boomerang to be about 50% slower than Spear (as it requires three

exchanges over the Lightning Network as opposed to two). In the following,

we analyze this claim.

For a fair comparison, let us assume that both Spear and Boomerang use

the same set of paths and the same amount of partial payments on these paths.

53

1 . type : hop data (f o r realm 0)
2 . data :

◦ [s h o r t channe l i d : s h o r t channe l i d]
◦ [u64 : amt to forward]
◦ [u32 : ou t g o i n g c l t v v a l u e]
◦ [12∗ byte : padding]

(a) hop data

1 . t l v s t r eam : t l v pay l oad
2 . types :

i . type : 2 (amt to forward)
i i . data :

� [tu64 : amt to forward]
i i i . type : 4 (ou t g o i n g c l t v v a l u e)
i v . data :

� [tu32 : ou t g o i n g c l t v v a l u e]
v . type : 6 (s h o r t channe l i d)
v i . data :

� [s h o r t channe l i d : s h o r t channe l i d]
v i i . type : 8 (payment data)

v i i i . data :
� [32∗ byte : payment secret]
� [tu64 : t o ta l msa t]

(b) tlv-payload

Figure 4.5: The hop payload field.

Proposition 4.8 Let δ denote the average round-trip time between two nodes

that are connected with a channel, γ denote he average round-trip time between

Alice and Bob, and l denote the length of the longest path over which a partial

payment is transferred from Alice to Bob.

Then, the average payment latency of Boomerang and Spear can be estimated

as 6l · δ + γ and 4l · δ + 2γ, respectively.

Proof. To estimate the latency of the two payment protocols, we break their

process into sequential steps, and then estimate the time they need for each

step. In the first step, both processes require a single round of communication

between Alice and Bob over an out-of-band channel. Spear requires this step

so Alice can obtain the hash digest from Bob, while Boomerang requires this

54

step so 1) Alice can obtain the polynomial coefficients from Bob, and 2) Alice

and Bob can agree on the number of partial payments. By definition of γ, this

step requires γ seconds.

In the second step, both protocols transfer partial payments from Alice to

Bob. All these transfers occur in parallel, hence the time needed for this step

can be estimated by the time needed for the partial payment to go through the

longest path. Let l be the length of the longest path whose partial payment is

accepted by Bob. The partial payment on this path goes through l channels,

sequentially. At each channel, the two “channel holders” must create new

commitment transactions [12]. To perform this, as illustrated in Figure 4.6,

first the two users agree to make a new commitment. Then each user generates

a new commitment transaction. Since the commitment transaction is revoca-

ble, users must sign and exchange Revocable Delivery Transaction (RDTX).

In addition, they must cancel the previous commitment transaction by signing

a Breach Remedy Transactions (BRTX), and exchanging these transactions.

This process, as shown in Figure 4.7, requires two rounds of communications

between the two channel holders, hence requires about 2δ seconds. Since this

process is repeated sequentially over l channels, the second step in both Spear

and Boomerang require about 2δ · l seconds3.

In the next step, Spear requires a single round of communication between

Alice and Bob over the out-of-band channel. In this step, Bob informs Al-

ice about the set of receive partial payment. In response, Alice sends Bob

the corresponding preimages. This step therefore needs γ seconds. Note that

Boomerang does not require this step. In the next step, both Spear and

Boomerang require Bob to release his secret and claim the partial payments.

Similar to the second step, this step requires about 2δ · l seconds in both proto-

cols. In the final step, which is only required by Boomerang, Alice renounces

the option to react and frees up the liquidity. Similar to the previous step,

this step requires 2δ · l seconds.

3In this step, Bob cancels the redundant partial payments at the same time that he
accepts the other partial payments. The time needed to finish this step is, therefore, more
accurately captured as 2δ ·max(l, l′), where l′ is the length of the longest redundant path.

55

Proof. In Boomerang, Alice has to compute

∀i ∈ {1, 2, . . . , v, . . . , w} H(Pi) = Πv
j=0H(αj)

(ij), (4.3)

where w is the total number of partial payments, v is the maximum number

of partial payments that Bob can accept, and H(αj) are digests that Bob

provides Alice. By (4.3), Alice needs to compute w · v exponentiations. Note

that the largest exponent in (4.3) is wv. Therefore, by Yao’s result [83], Alice

needs to perform at least

(w · v + o(1)) log(wv)/ log log(wv) ∼ w · v2

field multiplications. Therefore, the minimum number of field operations

needed by Alice is (w · v2)/w = v2. �

4.4.5 Flexibility

In Boomerang, Alice and Bob must agree (out-of-band) to partition the pay-

ment into v partial payments. In addition, Boomerang inherently requires all

the partial payments to be of the same value. In Spear, on the other hand,

Alice can decide on her own how to divide the payment into partial payments.

Moreover, Spear allows Alice to divide the payment into unequal partial pay-

ments. This provides high flexibility to Alice to handle the payment. For

instance, if Alice has a prior knowledge that a certain path (e.g. a direct chan-

nel to Bob) can carry a large portion of the total payment, then she can use

this path to transfer a large partial payment to Bob in a single partial pay-

ment. Or, Alice may try to transfer larger partial payments on shorter paths

than on larger paths, since a partial payment is more likely to go through a

shorter path than a larger one (e.g., see Corollary 4.2).

4.4.6 Intermediate node’s misbehaviour

In the Lightning Network, an intermediate node can stall a payment for hours

by accepting an incoming payment and not forwarding the payment to the next

node. In the single-path payment scheme, Alice has to wait for a long period

59

of time (until this payment is canceled) before she can make a second attempt

to pay Bob. HTLC-based multi-path payment methods are also vulnerable; if

a single partial payment is stalled by a misbehaving node, Alice has to wait

until this partial payment is canceled before she can make a second attempt.

This may not be desired, as Alice may prefer to pay Bob as soon as possible,

even if one or more partial payments are stalled/locked for a period of time.

Multi-path payment methods with redundant paths such as Spear and

Boomerang naturally mitigate this issue. It is because these methods, by defi-

nition, support redundant paths, and as long as Bob receives enough number of

partial payments, the payment can go through. However, there is a difference

between Spear and Boomerang when it comes to freeing up liquidity.

In Boomerang, if a misbehaving node stalls a single partial payment on

path P then Alice may not free up the liquidity on other paths until the

partial payment on P is canceled. It is because, Alice cannot distinguish

between the following two scenarios: 1) an intermediate node on path P is

stalling the partial payment; 2) Bob is holding on to the partial payment on

P so he can claim it later. Therefore, Alice may not renounce the reverse

components of Boomerang contracts to free up their liquidity, as there is a

chance that Bob overdraws later, at which point Alice can revert the partial

payments. In Spear, on the other hand, Bob can immediately free up the

liquidity on all the paths except P by accepting the partial payments, and

cancelling the redundant ones. Therefore, in Spear, the misbehaving node on

path P can only delay the process of freeing up the liquidity of path P but

not other paths.

4.4.7 Fees

In both Boomerang and Spear, the sum of partial payments Bob receives can

be higher than the full payment. In this case, assuming Bob is honest, he will

only claim a subset of the received partial payments whose sum is equal to

the full payment. In Spear, Bob can go a bit further and help Alice to reduce

her fees by reporting all the partial payments he receives. This allows Alice

to choose the subset of partial payments whose sum of fees is minimum. In

60

Boomerang, on the other hand, Bob does not know which subset of partial

payments to accept in order to reduce Alice’s fees. It is because, Bob is

unaware of the fees Alice is paying on each partial payment path (unless Alice

communicates this information to Bob).

4.5 Conclusion

In this work, we showed that a payee can significantly improve the success

probability of payments by sending redundant partial payments. We proposed

Spear, a simple multi-path payment method with redundancy, and showed

how it can be implemented in the Lightning Network. Moreover, we compared

Spear with Boomerang, the only existing multi-path payment with redun-

dancy in the literature. Our comparison results show that Spear has several

advantages over Boomerang, including lower delay, ease of implementation,

and lower computational requirement. The approach used in Spear can be

used in other payment methods, such as packet-switch routing methods, for

further performance improvement.

61

Chapter 5

Torrent: Balance Discovery in
the Lightning Network Using
Maximum Flow

In this chapter, we propose Torrent, a powerful probing technique to discover

balances of channels in payment networks. Torrent can concurrently send

several payments through multiple paths and consequently speeds up balance

discovery of channels. Torrent uses a novel max flow algorithm in the Lightning

network to discover balances of remote channels.

5.1 Torrent

Torrent can be viewed as a multi-path payment approach to channel discov-

ery; rather than probing the balance of a target channel through a series of

sequential single-path payments—as done in the existing methods—Torrent

uses multiple paths to concurrently transmit partial payments through the

target channel. To ensure that these partial payments are not canceled dur-

ing the channel discovery process, receiver(s) in Torrent temporarily hold the

received payments.

Let fmax denote the maximum flow that Torrent can push through the tar-

get channel assuming that the target channel has an infinite balance. Torrent

works based on the idea that the balance of a target channel can be discov-

ered if fmax is greater than the balance of the channel. This is because, under

the above condition, the balance of the target channel becomes the bottleneck

62

for the maximum flow that can be transferred through the target channel.

Under this condition, therefore, balance of the target channel is equal to the

maximum amount of money that can be sent through the target channel.

In this work, we show this condition holds for a vast majority of channels

in the Lightning Network.

Example 4 Figure 5.1 shows a small payment networks with 11 channels and

10 nodes. Carol has two nodes and is interested to know the balance of Alice

on the Alice-Bob channel. Assume that there are enough balances on Carol’s

channels. If we change Alice’s balance from 200k to ∞, then the maximum

flow that Carol’s node on the left (the sender) can send to her node on the

right (the receiver) is 230k Satoshis. Note that Carol can send

60k via path (n1, n2, Alice, Bob, n4, n6)

160k via path (n1, n3, Alice, Bob, n5, n6)

10k via path (n1, n2, Alice, Bob, n5, n6)

Also, note that cutting channels (Bob, n4) and (n5, n6) will disconnect the

sender and the receiver. These two channels can carry a total flow of

60k+ 170k = 230k

Therefore, fmax = 230k, which is higher than Alice’s balance of 200k. Con-

sequently, in this example, Torrent is able to discover Alice’s balance. We

remark that the maximum flow that a single path from Carol’s sender to her

receiver can carry is at most 160k. Therefore, the best conclusion that the

existing channel discovery methods can make in this example is that Alice’s

balance is at least 160k.

63

5.2 Implementation

As before, suppose Carol is interested to know Alice’s balance. To implement

Torrent, Carol needs to open a set of channels, and use them to send/receive

a large flow of payments through the target channel, i.e. Alice’s channel.

If Carol knows balances of all channels except the target channel, then she

can use linear programming—as we will show later—to find an optimal set

of payment paths that can transfer the maximum flow through the target

channel. In practice, however, Carol does not know balances of channels. This

makes the problem of finding the max flow challenging.

To solve the above unique max flow problem, we propose two algorithms.

The first algorithm assumes that all channels, except the target channel, have

a certain minimum balance. For example, it may assume the balance of every

channel is at least 10% of its capacity. Using this assumption, the algorithm

uses a linear program to solve the max flow problem. The advantage of this

approach is that it can discover balances very fast because 1) it can pre-

compute paths and the amount of payments that should be transferred on each

path; 2) it can send all the payments in parallel as the amount of payments

are known a priori. Of course, the minimum balance assumption may not hold

for all channels. However, this may not negatively impact the algorithm if the

feasible max flow is considerably higher than the balance of the target channel.

In addition, the algorithm can always re-attempt a failed payment by trying

smaller payments on the failed paths.

The second algorithm is a greedy iterative algorithm. In each iteration,

the algorithm updates its view of the network based on results of the previous

iteration, then selects a set of short disjoint paths and pushes the maximum

possible flow through these paths.

In the following, we explain these two algorithms for Torrent Type A.

These algorithms can be easily converted and used for TypeB, because Type B

is essentially a special case of Type A where receivers are the owners of the

target channel. We start by modeling the Lightning Network and defining our

max flow problem.

65

5.2.1 Network Model and Problem Definition

We model the Lighting Network as a graph G = (V,E), where V is the set of

nodes and E is the set of channels. For any channel (u, v) ∈ E, let b(u, v) de-

note the balance of node u, and c(u, v) denote the channel capacity. Therefore,

we have c(u, v) = b(u, v) + b(v, u). Recall that c(u, v) is public information

while b(u, v) is private to nodes u and v.

The Max Flow Problem in LN. Given a graph G, a capacity function

c(.), a source s ∈ V , a destination d ∈ V , and a target channel (a, b) ∈ E, the

problem is to find the maximum flow that s can send to d through the target

channel (a, b). In addition to finding the maximum flow, the problem asks for

a set of paths and payments that can achieve the max flow. Note that, in this

problem, the balance function b(.) is unknown. However, there is an access

to an “oracle”, which can be asked whether or not a given path can transfer

a given payment. The oracle can also make a payment on a given path—

assuming that the path can carry the payment—and accordingly update the

balance of channels on the path. Note that this oracle is the Lighting Network

itself.

5.2.2 Linear Programming

Given the balance function b(.), the max flow problem can be solved in poly-

nomial time using the following linear program (LP). This LP is similar to the

one used to solve the traditional max flow problem with the main difference

being that our LP maximizes the flow that enters the target channel while the

traditional one maximizes the flow that leaves the source.

max fab

s.t. 0 ≤ fuv ≤ b(u, v), ∀(u, v) ∈ E
∑

u:(u,v)∈E

fuv =
∑

w:(v,w)∈E

fvw, ∀v 6= s, d

(5.1)

In the above linear program, the variable fuv represents the flow from u

to v on channel (u, v) ∈ E. To avoid the target channel (a, b) to become the

bottleneck, we set b(a, b) =∞ in the above linear program.

66

LP Advantages. As mentioned earlier, in practice we do not have a

direct access to the balance function b(.) (we only have access to the oracle).

Nevertheless, we can still benefit from solving the above LP by approximating

the function b(.). For instance, we may assume that b(u, v) = 0.1× c(u, v) for

every channel (u, v) 6= (a, b). This assumption may not hold for all channels

although the assumption is somewhat conservative—for each channel (u, v)

either b(u, v) ≥ 0.5× c(u, v) or b(v, u) ≥ 0.5× c(u, v). Nevertheless, if by using

the above assumption, we find that the max flow that can go through the target

channel is considerably higher than, say, the capacity of the target channel,

we can most likely discover the balance of the target channel in practice.

The second advantage of this approach is that it can significantly speed up

balance discovery because 1) we can use the method to pre-compute paths

and payments, and 2) transmit all these payments in parallel. Note that if the

max flow that Torrent can send through the target channel is higher than the

balance of the channel, the balance of the channel can be safely assumed to

be equal to the total amount of payments received at the receiver.

5.2.3 Greedy Algorithm

Our second algorithm is a greedy algorithm that works in iterations. In the

first iteration, the algorithm finds a maximal set of disjoint paths2 that go

through the target channel. It then transmits payments on the selected paths

until it saturates every single one of them. Before moving to the next iteration,

the algorithm removes bottleneck channels, i.e. those from which it received

an error message. For instance, if the algorithm receives an error message from

node u indicating an insufficient balance on channel (u, v), then the algorithm

removes the channel (u, v) in the direction of u to v. The algorithm, however,

keeps the other direction (i.e. v to u) of channel (u, v) as the channel may be

able to transfer payments in this direction.

After removing channels, the algorithm proceeds to the next iteration and

repeats the above process. The algorithm terminates as soon as it concludes

2These paths share the target channel as well as the source and destination channels;
otherwise, they are disjoint.

67

that it cannot transfer more payments though the target channel. This hap-

pens if it receives an error message indicating an insufficient balance on the

target channel, or if the algorithm is unable to transmit more payments using

new paths. When the algorithm terminates, it returns the amount of total

payments collected at the receiver as the balance of the target channel.

Example 5 Consider the simple payment network shown in Figure 5.1. If we

run the greedy algorithm on this network, the algorithm can select paths

p1 = (n1, n2, Alice, Bob, n4, n6)

and

p2 = (n1, n3, Alice, Bob, n5, n6)

in its first iteration. In this network, the algorithm can send up to 60k on path

p1 and up to 160k on path p2. Since the sum of these two payments is higher

than Alice’s balance of 200k, at some point in this iteration the algorithm may

receive an error message from Alice indicating insufficient balance. If this

happens, the algorithm terminates and returns 200k as Alice’s balance since

this is the maximum it could transfer through her channel.

If Alice avoids sending error messages, the algorithm will move to next iter-

ations and tries to find new paths and send new payments to increase the total

received amount of 200k. Ultimately, the algorithm will terminate. Clearly,

the algorithm can never deliver more than 200k to its receiver because Alice’s

channel is the bottleneck. Therefore, when the algorithm terminates, it will

return the max amount it could deliver to its receiver (i.e. 200k) as Alice’s

balance.

5.3 Simulation Results

To evaluate the performance of Torrent, we downloaded a snapshot of the

Lightning Network3, which included 9169 nodes, and 76856 channels. We used

the snapshot to generate the topology graph G and the capacity function c(.).

3The snapshot was downloaded in March 2021.

68

The snapshot does not include the balance information as this information is

private. Therefore, we used the following two methods to assign balances to

channels:

• Fractional Balances. In this method, balances of every channel (u, v) ∈

E, except the target channel, are set to a fixed fraction of the channel

capacity. That is, for every (u, v) ∈ E both b(u, v) and b(v, u) are set to

α · c(u, v), where α < 0.5 is a fixed number.

• Random Balances. This method selects balance of every channel

(u, v), except the source and destination channels, uniformly at random

from the interval [0, c(u, v)].

To run Torrent Type A, we open two channels with the two nodes that have

the highest degrees in the network. For Torrent Type B, we use only one of

these two channels. In our simulations, we assume that the opened channels

have enough balances.

5.3.1 Linear Programming

In our first set of simulations, we set the balances of all channels (except the

source, target and destination channels) to a fraction 0.05 ≤ α ≤ 0.3 of their

capacity. Then, we run Torrents Type A and B by solving the max flow prob-

lem using linear programming. We marked a target channel as discoverable if

Torrent could generate a flow of at least equal to the capacity of the target

channel. Note that this amount of flow is guaranteed to be at least equal to

the balance of the target channel (no matter what the balance is), because

balances of every channel are capped by the channel capacity.

Figure 5.2 shows the percentage of discoverable channels by Torrents Type

A and B, respectively. For instance, if we set α = 0.05—that is we set the two

balances of every channel to 5% of the channel capacity—then Torrent Type

A and B can, respectively, discover balances of 84% and 94.9% of all channels

in the network. Note that with such low balances set for channels, the existing

channel discovery methods are unlikely to discover the balance of any target

channel unless they open a channel directly connected to the target channel.

69

Chapter 6

Conclusions & Future Works

Payment channel networks (PCNs) are among the most promising solutions

to scale blockchains. These networks have a lot of room for improvement

with regards to efficiency, privacy and security. In this thesis, we studied,

analyzed and improved payment channels and PCNs by 1) designing a watch-

tower solution based on our novel reputation system (Hashcashed reputation);

2) increasing the payment success rate in PCNs through the design of a multi-

path payment method with redundancy (Spear); and 3) designing a powerful

method to discover balances of channels in PCNs (Torrent).

Hashcashed Reputation. We proposed a reputation system based on

proof-of-work to encourage well-behaviour and inspire the spirit of competi-

tion in online marketplaces. To punish misbehaviour our proposed system

maintains a proof of misbehaviour as a record in a distributed storage. This

is an advantage compared to other reputation systems since our proposed sys-

tem does not depend on a blockchain or smart contracts. In our system, it

is enough to store each record in at least one node. This is an easy require-

ment to achieve since there is at least one party who is strongly motivated to

store and (re)distribute it for each record. Finally, to showcase our reputation

system, we designed two open markets of watchtowers and blockchain-based

timestamping. We showed that our reputation system motivates watchtowers

(or timestamp servers) not only to behave according to their obligation but

also compete with each other by progressively improving their reputation and

cutting their service fees.

72

Spear. In this work, we showed that redundant partial payments can

remarkably improve the success probability of payments. We proposed Spear,

a simple multi-path payment method with redundancy, and showed how it

can be implemented in the Lightning Network. Moreover, we compared Spear

with Boomerang, the only existing multi-path payment with redundancy in the

literature. We showed that Spear outperforms Boomerang in terms of delay,

ease of implementation, and computational requirement. The approach used

in Spear can be extended to other payment methods, such as packet-switch

routing methods, for further performance improvement.

Torrent. In the third work, we proposed Torrent, a novel and powerful

balance discovery approach. Despite the existing balance discovery methods

that use single-path payments, Torrent takes advantage of multi-path pay-

ments. This enables a single node to send a large flow of payments through

any target channel. Torrent can function properly even when the Lightning

Network does not convey error messages to reflect insufficient balances. It is

because Torrent can estimate a balance by calculating the maximum amount

of funds that it can deliver to its receiver(s) through the target channel. For

many channels in the Lightning Network, this maximum is equal to the bal-

ance of the target channel thanks to the large flow that Torrent can generate.

Despite the existing methods, Torrent transmits payments in parallel, which

notably hasten the balance discovery process.

Future Works. Our proposed reputation system presented in Chapter 3 is

flexible, and can be customized to achieve different needs. For instance, the

system does not impose any specific selection method. One can, therefore,

design a customized selection method to achieve a certain objective in the

market.

Another possible future research is to relax the system reliance on the

security parameter k. One approach is to ask clients to publish a digest of

their ongoing committed contracts. This way, a new client can, for example,

avoid a server whose total commitment value is greater than its reputation cost.

Fortunately, clients have incentive to ask servers to sign such digests. They

also have incentive to provide these digests to other servers. It is because

73

a client does not want its server to over-commit as it increases the risk of a

successful bribery. Also, a server has an incentive to record the digests of other

servers, as these digests can show a potential customer that other servers have

already committed to many contracts (another means to attract a customer).

An interesting future work for Torrent (Chapter 5) is to find an efficient

algorithm to solve the max flow problem in the Lightning Network. The

algorithm can receive the network topology and channel capacities (but not

balances) as input. It also has access to an oracle that answers to questions on

whether or not a path p can transfer an amount m, and if so, can transfer the

payment by updating balances of the channels on path p. Unlike the existing

maximum flow solution, the efficiency of the algorithm will be determined by

the number of times it accesses the oracle (rather than the algorithm’s time

complexity).

74

Bibliography

[1] S. Rahimpour and M. Khabbazian, “Hashcashed Reputation with Ap-
plication in Designing Watchtowers,” in IEEE International Conference
on Blockchain and Cryptocurrency, ICBC, IEEE, 2021, pp. 1–9. doi:
10.1109/ICBC51069.2021.9461123. [Online]. Available: https://doi.org/
10.1109/ICBC51069.2021.9461123.

[2] S. Rahimpour and M. Khabbazian, “Spear: fast multi-path payment
with redundancy,” in AFT ’21: 3rd ACM Conference on Advances in
Financial Technologies, ACM, 2021, pp. 183–191. doi: 10.1145/3479722.
3480997. [Online]. Available: https://doi.org/10.1145/3479722.3480997.

[3] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A Secure Sharding Protocol For Open Blockchains,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ACM, 2016, pp. 17–30. doi: 10.1145/2976749.2978389. [On-
line]. Available: https://doi.org/10.1145/2976749.2978389.

[4] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “OmniLedger: A Secure, Scale-Out, Decentralized Ledger via
Sharding,” in IEEE Symposium on Security and Privacy, SP, IEEE
Computer Society, 2018, pp. 583–598. doi: 10 . 1109/SP.2018 .000 - 5.
[Online]. Available: https://doi.org/10.1109/SP.2018.000-5.

[5] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller,
A. Poelstra, J. Timon, and P. Wuille, Enabling blockchain innovations
with pegged sidechains, http ://www.opensciencereview.com/papers/
123/enablingblockchain-innovations-with-pegged-sidechains, 2014.

[6] A. Hertig, Bitcoin Lightning Fraud? Laolu Is Building a ‘Watchtower’ to
Fight It, https://www.coindesk.com/laolu-building-watchtower-fight-
bitcoin-lightning-fraud, Last Accessed: 2018-02-22.

[7] P. McCorry, S. Bakshi, I. Bentov, S. Meiklejohn, and A. Miller, “Pisa:
Arbitration Outsourcing for State Channels,” in Proceedings of the 1st
ACM Conference on Advances in Financial Technologies, AFT, ACM,
2019, pp. 16–30. doi: 10 . 1145/3318041 .3355461. [Online]. Available:
https://doi.org/10.1145/3318041.3355461.

75

[8] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry, “Sprites
and State Channels: Payment Networks that Go Faster Than Light-
ning,” in 23rd International Conference on Financial Cryptography and
Data Security, FC, ser. Lecture Notes in Computer Science, vol. 11598,
Springer, 2019, pp. 508–526. doi: 10 .1007/978 - 3 - 030 - 32101 - 7\ 30.
[Online]. Available: https://doi.org/10.1007/978-3-030-32101-7%5C 30.

[9] G. Avarikioti, F. Laufenberg, J. Sliwinski, Y. Wang, and R. Wattenhofer,
“Towards Secure and Efficient Payment Channels,” CoRR, 2018. arXiv:
1811.12740. [Online]. Available: http://arxiv.org/abs/1811.12740.

[10] T. Dryja and S. B. Milano, “Unlinkable outsourced channel monitor-
ing,” Talk transcript, 2016. [Online]. Available: https : / / diyhpl . us /
wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-
monitoring/.

[11] V. K. Bagaria, J. Neu, and D. Tse, “Boomerang: Redundancy Improves
Latency and Throughput in Payment-Channel Networks,” in 24th In-
ternational Conference on Financial Cryptography and Data Security,
FC, ser. Lecture Notes in Computer Science, vol. 12059, Springer, 2020,
pp. 304–324. doi: 10.1007/978-3-030-51280-4\ 17. [Online]. Available:
https://doi.org/10.1007/978-3-030-51280-4%5C 17.

[12] J. Poon and T. Dryja, The bitcoin lightning network: Scalable off-chain
instant payments, 2016.

[13] J. Herrera-Joancomart́ı, G. Navarro-Arribas, A. Ranchal-Pedrosa, C.
Pérez-Solà, and J. Garćıa-Alfaro, “On the Difficulty of Hiding the Bal-
ance of Lightning Network Channels,” in Proceedings of the ACM Asia
Conference on Computer and Communications Security, AsiaCCS, ACM,
2019, pp. 602–612. doi: 10.1145/3321705.3329812. [Online]. Available:
https://doi.org/10.1145/3321705.3329812.

[14] S. Tikhomirov, R. Pickhardt, A. Biryukov, and M. Nowostawski, “Prob-
ing Channel Balances in the Lightning Network,” CoRR, 2020. arXiv:
2004.00333. [Online]. Available: https://arxiv.org/abs/2004.00333.

[15] U. Nisslmueller, K.-T. Foerster, S. Schmid, and C. Decker, “Toward Ac-
tive and Passive Confidentiality Attacks on Cryptocurrency Off-chain
Networks,” in Proceedings of the 6th International Conference on In-
formation Systems Security and Privacy, ICISSP, SCITEPRESS, 2020,
pp. 7–14. doi: 10.5220/0009429200070014. [Online]. Available: https:
//doi.org/10.5220/0009429200070014.

[16] Y. Qiao, K. Wu, and M. Khabbazian, “Non-Intrusive and High-Efficient
Balance Tomography in the Lightning Network,” in Proceedings of the
ACM Asia Conference on Computer and Communications Security, Asi-
aCCS, ACM, 2021, pp. 832–843. doi: 10.1145/3433210.3453089. [On-
line]. Available: https://doi.org/10.1145/3433210.3453089.

76

[17] K. Fan, S. Wang, Y. Ren, H. Li, and Y. Yang, “MedBlock: Efficient
and Secure Medical Data Sharing Via Blockchain,” Journal of medical
systems, vol. 42, no. 8, pp. 1–11, 2018. [Online]. Available: https://doi.
org/10.1007/s10916-018-0993-7.

[18] U. W. Chohan, “Non-Fungible Tokens: Blockchains, Scarcity, and Value,”
Critical Blockchain Research Initiative (CBRI) Working Papers, 2021.

[19] Q. Wang, X. Zhu, Y. Ni, L. Gu, and H. Zhu, “Blockchain for the IoT
and industrial IoT: A review,” Internet of Things, vol. 10, p. 100 081,
2020. [Online]. Available: https://doi.org/10.1016/j.iot.2019.100081.

[20] F. S. Hardwick, A. Gioulis, R. N. Akram, and K. Markantonakis, “E-
Voting With Blockchain: An E-Voting Protocol with Decentralisation
and Voter Privacy,” in IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications (
GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data, IEEE, 2018, pp. 1561–1567. [Online]. Available:
https://doi.org/10.1109/Cybermatics%5C 2018.2018.00262.

[21] I. Karamitsos, M. Papadaki, N. B. Al Barghuthi, et al., “Design of the
blockchain smart contract: A use case for real estate,” Journal of Infor-
mation Security, vol. 9, no. 03, p. 177, 2018.

[22] R. C. Merkle, “A Digital Signature Based on a Conventional Encryption
Function,” in Advances in Cryptology - CRYPTO ’87, A Conference on
the Theory and Applications of Cryptographic Techniques, ser. Lecture
Notes in Computer Science, vol. 293, Springer, 1987, pp. 369–378. doi:
10.1007/3-540-48184-2\ 32. [Online]. Available: https://doi.org/10.
1007/3-540-48184-2%5C 32.

[23] Y. Kwon, H. Kim, J. Shin, and Y. Kim, “Bitcoin vs. Bitcoin Cash: Coex-
istence or Downfall of Bitcoin Cash?” In IEEE Symposium on Security
and Privacy, SP, IEEE, 2019, pp. 935–951. doi: 10.1109/SP.2019.00075.
[Online]. Available: https://doi.org/10.1109/SP.2019.00075.

[24] Y. Sompolinsky and A. Zohar, “Secure High-Rate Transaction Process-
ing in Bitcoin,” in 19th International Conference on Financial Cryptog-
raphy and Data Security, FC, ser. Lecture Notes in Computer Science,
vol. 8975, Springer, 2015, pp. 507–527. doi: 10.1007/978-3-662-47854-
7\ 32. [Online]. Available: https://doi.org/10.1007/978-3-662-47854-
7%5C 32.

[25] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun: Virtual
Payment Hubs over Cryptocurrencies,” in IEEE Symposium on Security
and Privacy, SP, IEEE, 2019, pp. 106–123. doi: 10.1109/SP.2019.00020.
[Online]. Available: https://doi.org/10.1109/SP.2019.00020.

[26] Raiden Network, https://raiden.network/, Last Accessed: 2020-08-19,
2018.

77

[27] J. Poon and V. Buterin, “Plasma: Scalable autonomous smart con-
tracts,” White paper, pp. 1–47, 2017.

[28] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais,
“SoK: Layer-Two Blockchain Protocols,” in 24th International Confer-
ence on Financial Cryptography and Data Security, FC, J. Bonneau and
N. Heninger, Eds., ser. Lecture Notes in Computer Science, vol. 12059,
Springer, 2020, pp. 201–226. doi: 10 .1007/978 - 3 - 030 - 51280 - 4\ 12.
[Online]. Available: https://doi.org/10.1007/978-3-030-51280-4%5C 12.

[29] C. Decker and R. Wattenhofer, “A Fast and Scalable Payment Network
with Bitcoin Duplex Micropayment Channels,” in Stabilization, Safety,
and Security of Distributed Systems - 17th International Symposium,
SSS, ser. Lecture Notes in Computer Science, vol. 9212, Springer, 2015,
pp. 3–18. doi: 10 . 1007/978 - 3 - 319 - 21741 - 3\ 1. [Online]. Available:
https://doi.org/10.1007/978-3-319-21741-3%5C 1.

[30] A. Schrijver, “On the history of the transportation and maximum flow
problems,” Mathematical programming, vol. 91, no. 3, pp. 437–445, 2002.
doi: 10.1007/s101070100259. [Online]. Available: https://doi.org/10.
1007/s101070100259.

[31] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,”
Canadian journal of Mathematics, vol. 8, pp. 399–404, 1956.

[32] A. Paithankar and S. Chatterjee, “Open pit mine production schedule
optimization using a hybrid of maximum-flow and genetic algorithms,”
Applied Soft Computing, vol. 81, 2019. doi: 10.1016/j.asoc.2019.105507.
[Online]. Available: https://doi.org/10.1016/j.asoc.2019.105507.

[33] Q. Zhu, M. Chen, B. Feng, Y. Zhou, M. Li, Z. Xu, Y. Ding, M. Liu, W.
Wang, and X. Xie, “Optimized Spatiotemporal Data Scheduling Based
on Maximum Flow for Multilevel Visualization Tasks,” ISPRS Inter-
national Journal of Geo-Information, vol. 9, no. 9, p. 518, 2020. doi:
10 . 3390/ ijgi9090518. [Online]. Available: https : / /doi . org/10 . 3390/
ijgi9090518.

[34] J. I. Orlicki, “Generalized Minimum Cost Flow and Arbitrage in Bitcoin
Debit and Custodian Networks,” in I Simposio Argentino de Informática
Industrial e Investigación Operativa (SIIIO 2018)-JAIIO 47 (CABA),
2018.

[35] A. Armbruster, M. R. Gosnell, B. M. McMillin, and M. L. Crow, “Power
Transmission Control Using Distributed Max Flow,” in 29th Annual In-
ternational Computer Software and Applications Conference, COMP-
SAC, IEEE Computer Society, 2005, pp. 256–263. [Online]. Available:
https://doi.org/10.1109/COMPSAC.2005.121.

78

[36] C. Huang, Z. Wang, H. Chen, Q. Hu, Q. Zhang, W. Wang, and X.
Guan, “RepChain: A Reputation-Based Secure, Fast, and High Incen-
tive Blockchain System via Sharding,” IEEE Internet of Things Journal,
vol. 8, no. 6, pp. 4291–4304, 2021. doi: 10.1109/JIOT.2020.3028449.
[Online]. Available: https://doi.org/10.1109/JIOT.2020.3028449.

[37] M. Li, J. Weng, A. Yang, W. Lu, Y. Zhang, L. Hou, J.-N. Liu, Y. Xi-
ang, and R. H. Deng, “CrowdBC: A Blockchain-Based Decentralized
Framework for Crowdsourcing,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 30, no. 6, pp. 1251–1266, 2019. doi: 10 . 1109/
TPDS.2018 .2881735. [Online]. Available: https : //doi . org/10 .1109/
TPDS.2018.2881735.

[38] M. Nojoumian, A. Golchubian, L. Njilla, K. Kwiat, and C. Kamhoua,
“Incentivizing blockchain miners to avoid dishonest mining strategies by
a reputation-based paradigm,” in Science and Information Conference,
Springer, 2018, pp. 1118–1134.

[39] M. Orlovsky and A. Sobol, ERC-1329: Inalienable Reputation Token,
https://github.com/ethereum/EIPs/issues/1329, Accessed: 2020-08-19.

[40] T. Salman, R. Jain, and L. Gupta, “A Reputation Management Frame-
work for Knowledge-Based and Probabilistic Blockchains,” in IEEE In-
ternational Conference on Blockchain, Blockchain, IEEE, 2019, pp. 520–
527. doi: 10 .1109/Blockchain.2019.00078. [Online]. Available: https :
//doi.org/10.1109/Blockchain.2019.00078.

[41] Q. Zhuang, Y. Liu, L. Chen, and Z. Ai, “Proof of Reputation: A Rep-
utation based Consensus Protocol for Blockchain Based Systems,” in
Proceedings of the International Electronics Communication Conference,
2019, pp. 131–138.

[42] J. Yu, D. Kozhaya, J. Decouchant, and P. J. E. Verissimo, “RepuCoin:
Your Reputation Is Your Power,” IEEE Transactions on Computers,
vol. 68, no. 8, pp. 1225–1237, 2019. doi: 10 .1109/TC.2019.2900648.
[Online]. Available: https://doi.org/10.1109/TC.2019.2900648.

[43] R. Dennis and G. Owen, “Rep on the block: A next generation reputa-
tion system based on the blockchain,” in 10th International Conference
for Internet Technology and Secured Transactions, ICITST, IEEE, 2015,
pp. 131–138. doi: 10.1109/ICITST.2015.7412073. [Online]. Available:
https://doi.org/10.1109/ICITST.2015.7412073.

[44] A. Schaub, R. Bazin, O. Hasan, and L. Brunie, “A Trustless Privacy-
Preserving Reputation System,” in ICT Systems Security and Privacy
Protection - 31st IFIP TC 11 International Conference, SEC, J.-H.
Hoepman and S. Katzenbeisser, Eds., ser. IFIP Advances in Informa-
tion and Communication Technology, vol. 471, Springer, 2016, pp. 398–
411. doi: 10.1007/978-3-319-33630-5\ 27. [Online]. Available: https:
//doi.org/10.1007/978-3-319-33630-5%5C 27.

79

[45] M. Sharples and J. Domingue, “The Blockchain and Kudos: A Dis-
tributed System for Educational Record, Reputation and Reward,” in
11th European Conference on Technology Enhanced Learning, EC-TEL,
K. Verbert, M. Sharples, and T. Klobucar, Eds., ser. Lecture Notes in
Computer Science, vol. 9891, Springer, 2016, pp. 490–496. doi: 10.1007/
978-3-319-45153-4\ 48. [Online]. Available: https://doi.org/10.1007/
978-3-319-45153-4%5C 48.

[46] C. Dwork and M. Naor, “Pricing via Processing or Combatting Junk
Mail,” in Advances in Cryptology - CRYPTO ’92, 12th Annual Interna-
tional Cryptology Conference, ser. Lecture Notes in Computer Science,
vol. 740, Springer, 1992, pp. 139–147. doi: 10.1007/3-540-48071-4\ 10.
[Online]. Available: https://doi.org/10.1007/3-540-48071-4%5C 10.

[47] A. Back, “Hash cash: A partial hash collision based postage scheme,”
URL http://www. hashcash. org, 2001.

[48] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, pp. 1–9, 2008.

[49] D. Mankins, R. Krishnan, C. Boyd, J. Zao, and M. Frentz, “Mitigating
Distributed Denial of Service Attacks with Dynamic Resource Pricing,”
in 17th Annual Computer Security Applications Conference (ACSAC),
IEEE Computer Society, 2001, pp. 411–421. doi: 10.1109/ACSAC.2001.
991558. [Online]. Available: https ://doi .org/10 .1109/ACSAC.2001 .
991558.

[50] M. Baza, M. Nabil, M. M. E. A. Mahmoud, N. Bewermeier, K. Fidan,
W. Alasmary, and M. Abdallah, “Detecting sybil attacks using proofs
of work and location in vanets,” IEEE Transactions on Dependable and
Secure Computing, pp. 1–1, 2020. doi: 10.1109/TDSC.2020.2993769.

[51] N. Borisov, “Computational Puzzles as Sybil Defenses,” in Sixth IEEE
International Conference on Peer-to-Peer Computing (P2P), IEEE Com-
puter Society, 2006, pp. 171–176. doi: 10.1109/P2P.2006.10. [Online].
Available: https://doi.org/10.1109/P2P.2006.10.

[52] H. Rowaihy, W. Enck, P. D. McDaniel, and T. L. Porta, “Limiting Sybil
Attacks in Structured P2P Networks,” in 26th IEEE International Con-
ference on Computer Communications (INFOCOM), Joint Conference
of the IEEE Computer and Communications Societies,, IEEE, 2007,
pp. 2596–2600. doi: 10.1109/INFCOM.2007.328. [Online]. Available:
https://doi.org/10.1109/INFCOM.2007.328.

[53] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer, “Karma: A secure
economic framework for peer-to-peer resource sharing,” in Workshop on
Economics of Peer-to-peer Systems, vol. 35, 2003, pp. 1–6.

80

[54] A. Biryukov and I. Pustogarov, “Proof-of-Work as Anonymous Micro-
payment: Rewarding a Tor Relay,” in 19th International Conference on
Financial Cryptography and Data Security FC, ser. Lecture Notes in
Computer Science, vol. 8975, Springer, 2015, pp. 445–455. doi: 10.1007/
978-3-662-47854-7\ 27. [Online]. Available: https://doi.org/10.1007/
978-3-662-47854-7%5C 27.

[55] M. Hearn, “Anti DoS for tx replacement,” bitcoin-dev mailing list, 2013.

[56] J. Spilman, “Anti DoS for tx replacement,” bitcoin-dev mailing list, 2013.

[57] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” in Ethereum project yellow paper, vol. 151, 2014, pp. 1–
32.

[58] Blockstream, https : / / github . com/ElementsProject / lightning/, Last
Accessed: 2020-08-19.

[59] Eclair, https://github.com/ACINQ/eclair, Last Accessed: 2020-08-19.

[60] Lightning Labs, https ://github .com/lightningnetwork/ lnd, Last Ac-
cessed: 2020-08-19.

[61] Z. Avarikioti, E. Kokoris-Kogias, R. Wattenhofer, and D. Zindros, “Brick:
Asynchronous Incentive-Compatible Payment Channels,” in 25th In-
ternational Conference on Financial Cryptography and Data Security,
FC, ser. Lecture Notes in Computer Science, vol. 12675, Springer, 2021,
pp. 209–230. doi: 10.1007/978-3-662-64331-0\ 11. [Online]. Available:
https://doi.org/10.1007/978-3-662-64331-0%5C 11.

[62] M. Khabbazian, T. Nadahalli, and R. Wattenhofer, “Outpost: A Respon-
sive Lightweight Watchtower,” in Proceedings of the 1st ACM Confer-
ence on Advances in Financial Technologies, AFT, ACM, 2019, pp. 31–
40. doi: 10.1145/3318041.3355464. [Online]. Available: https://doi.org/
10.1145/3318041.3355464.

[63] Z. Avarikioti, O. S. T. Litos, and R. Wattenhofer, “Cerberus Channels:
Incentivizing Watchtowers for Bitcoin,” in 24th International Conference
on Financial Cryptography and Data Security, FC, ser. Lecture Notes in
Computer Science, vol. 12059, Springer, 2020, pp. 346–366. doi: 10.1007/
978-3-030-51280-4\ 19. [Online]. Available: https://doi.org/10.1007/
978-3-030-51280-4%5C 19.

[64] MPP, routing: multi-part mpp, https://github.com/lightningnetwork/
lnd/pull/3967, Last Accessed: 2020-11-12, 2020.

[65] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei, “SilentWhis-
pers: Enforcing Security and Privacy in Decentralized Credit Networks,”
in Proceedings of the 24th Annual Network and Distributed System Secu-
rity Symposium, NDSS, The Internet Society, 2017, pp. 1–15. [Online].
Available: https ://www.ndss - symposium.org/ndss2017/ndss - 2017 -

81

programme/silentwhispers-enforcing-security-and-privacy-decentralized-
credit-networks/.

[66] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, “Settling Pay-
ments Fast and Private: Efficient Decentralized Routing for Path-Based
Transactions,” in Proceedings of the 25th Annual Network and Distributed
System Security Symposium, NDSS, The Internet Society, 2018, pp. 1–
15. [Online]. Available: http://wp.internetsociety.org/ndss/wp-content/
uploads/sites/25/2018/02/ndss2018%5C 09-3%5C Roos%5C paper.
pdf.

[67] V. Sivaraman, S. B. Venkatakrishnan, K. Ruan, P. Negi, L. Yang, R. Mit-
tal, G. C. Fanti, and M. Alizadeh, “High Throughput Cryptocurrency
Routing in Payment Channel Networks,” in 17th USENIX Symposium
on Networked Systems Design and Implementation, NSDI, USENIX As-
sociation, 2020, pp. 777–796. [Online]. Available: https://www.usenix.
org/conference/nsdi20/presentation/sivaraman.

[68] V. Sivaraman, S. B. Venkatakrishnan, M. Alizadeh, G. C. Fanti, and
P. Viswanath, “Routing Cryptocurrency with the Spider Network,” in
Proceedings of the 17th ACM Workshop on Hot Topics in Networks, Hot-
Nets, ACM, 2018, pp. 29–35. doi: 10.1145/3286062.3286067. [Online].
Available: https://doi.org/10.1145/3286062.3286067.

[69] D. Piatkivskyi and M. Nowostawski, “Split payments in payment net-
works,” in Proceedings of the International Workshops on Data Privacy
Management, Cryptocurrencies and Blockchain Technology - ESORICS,
ser. Lecture Notes in Computer Science, vol. 11025, Springer, 2018,
pp. 67–75. doi: 10 .1007/978- 3- 030- 00305- 0\ 5. [Online]. Available:
https://doi.org/10.1007/978-3-030-00305-0%5C 5.

[70] O. Osuntokun, AMP: Atomic Multi-Path Payments over Lightning, https:
//lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/
000993.html, 2018.

[71] P. Hoenisch and I. Weber, “AODV-Based Routing for Payment Chan-
nel Networks,” in Proceedings of the First International Conference on
BlockchainICBC, Held as Part of the Services Conference Federation,
SCF, ser. Lecture Notes in Computer Science, vol. 10974, Springer, 2018,
pp. 107–124. doi: 10.1007/978-3-319-94478-4\ 8. [Online]. Available:
https://doi.org/10.1007/978-3-319-94478-4%5C 8.

[72] L. Eckey, S. Faust, K. Hostáková, and S. Roos, “Splitting Payments Lo-
cally While Routing Interdimensionally,” IACR Cryptol. ePrint Arch.,
p. 555, 2020. [Online]. Available: https://eprint.iacr.org/2020/555.

[73] P. Prihodko, S. Zhigulin, M. Sahno, A. Ostrovskiy, and O. Osuntokun,
“Flare: An approach to routing in lightning network,” White Paper,
pp. 1–40, 2016.

82

[74] B. Viswanath, M. Mondal, P. K. Gummadi, A. Mislove, and A. Post,
“Canal: scaling social network-based Sybil tolerance schemes,” in Pro-
ceedings of the 7th European Conference on Computer Systems, Bern,
Switzerland: ACM, 2012, pp. 309–322. doi: 10.1145/2168836.2168867.
[Online]. Available: https://doi.org/10.1145/2168836.2168867.

[75] P. Moreno-Sanchez, A. Kate, M. Maffei, and K. Pecina, “Privacy Pre-
serving Payments in Credit Networks: Enabling trust with privacy in
online marketplaces,” in Proceedings of the 22nd Annual Network and
Distributed System Security Symposium, NDSS, The Internet Society,
2015, pp. 1–15. [Online]. Available: https://www.ndss-symposium.org/
ndss2015/privacy-preserving-payments-credit-networks-enabling-trust-
privacy-online-marketplaces.

[76] S. Dziembowski and P. Kedzior, “Ethna: Channel Network with Dy-
namic Internal Payment Splitting,” IACR Cryptol. ePrint Arch., pp. 1–
18, 2020. [Online]. Available: https://eprint.iacr.org/2020/166.

[77] G. van Dam, R. A. Kadir, P. N. E. Nohuddin, and H. B. Zaman, “Im-
provements of the Balance Discovery Attack on Lightning Network Pay-
ment Channels,” in ICT Systems Security and Privacy Protection -
35th IFIP TC 11 International Conference, SEC, ser. IFIP Advances in
Information and Communication Technology, vol. 580, Springer, 2020,
pp. 313–323. doi: 10.1007/978-3-030-58201-2\ 21. [Online]. Available:
https://doi.org/10.1007/978-3-030-58201-2%5C 21.

[78] G. Kappos, H. Yousaf, A. M. Piotrowska, S. Kanjalkar, S. Delgado-
Segura, A. Miller, and S. Meiklejohn, “An Empirical Analysis of Privacy
in the Lightning Network,” in 25th International Conference on Finan-
cial Cryptography and Data Security, FC, ser. Lecture Notes in Com-
puter Science, vol. 12674, Springer, 2021, pp. 167–186. doi: 10.1007/978-
3-662-64322-8\ 8. [Online]. Available: https://doi.org/10.1007/978-3-
662-64322-8%5C 8.

[79] A. Biryukov, G. Naumenko, and S. Tikhomirov, “Analysis and Probing
of Parallel Channels in the Lightning Network,” IACR Cryptol. ePrint
Arch., pp. 1–24, 2021. [Online]. Available: https://eprint.iacr.org/2021/
384.

[80] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse Attacks on
Bitcoin’s Peer-to-Peer Network,” in 24th USENIX Security Symposium,
USENIX Security 15, USENIX Association, 2015, pp. 129–144. [On-
line]. Available: https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/heilman.

[81] BOLT 2: Peer Protocol for Channel Management, https://ln.dev/read/
02-peer-protocol, Last Accessed: 2020-10-26.

83

[82] A. Mizrahi and A. Zohar, “Congestion Attacks in Payment Channel Net-
works,” in 25th International Conference on Financial Cryptography and
Data Security, FC, ser. Lecture Notes in Computer Science, vol. 12675,
Springer, 2021, pp. 170–188. doi: 10 . 1007 / 978 - 3 - 662 - 64331 - 0 \ 9.
[Online]. Available: https://doi.org/10.1007/978-3-662-64331-0%5C 9.

[83] A. C.-C. Yao, “On the Evaluation of Powers,” SIAM Journal on com-
puting, vol. 5, no. 1, pp. 100–103, 1976. doi: 10.1137/0205008. [Online].
Available: https://doi.org/10.1137/0205008.

[84] Lightning-Network-Daemon, lnd v0.13.0-beta, https://github.com/lightn-
ingnetwork/lnd/releases/tag/v0.13.0-beta, 2021.

84

	Introduction
	Incentivizing Watchtowers
	Redundant multi-path payments
	Balance Discovery in the Lightning Network
	Thesis Contribution
	Hashcashed Reputation
	Spear: Fast Multi-Path Payment with Redundancy
	Torrent: Balance Discovery in the Lightning Network Using Maximum Flow

	Thesis Organization

	Background
	Bitcoin and Blockchain
	Bitcoin Transaction
	Bitcoin Mining

	Scalabality Problem and Solutions
	Layer-one solutions:
	Layer-two solutions:

	Hashcash
	Payment channels
	The Lightning network
	HTLC

	Watchtowers
	Maximum Flow
	Related Work
	Reputation systems
	Proof of work
	Payment channels and watchtower
	Payment Routing
	Balance Discovery attacks

	Hashcashed Reputation
	System components
	Interactions
	Protocol
	Adversarial model
	Security Analysis
	A reputation-based market of watchtowers
	A reputation-based market of Timestamping
	Conclusion

	Spear: Fast Multi-Path Payment with Redundancy
	System Model
	Power of Redundancy
	Spear
	Procedure
	Security Guarantees
	Implementation

	Spear versus Boomerang
	Latency
	Implementation
	Locktime
	Computational overhead
	Flexibility
	Intermediate node's misbehaviour
	Fees

	Conclusion

	Torrent: Balance Discovery in the Lightning Network Using Maximum Flow
	Torrent
	Implementation
	Network Model and Problem Definition
	Linear Programming
	Greedy Algorithm

	Simulation Results
	Linear Programming
	Greedy Algorithm

	Conclusion

	Conclusions & Future Works
	Bibliography

