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ABSTRACT

This thesis presents an experimental evaluation of two state
estimation techniques, the Kalman filter and the Luenberger observer.

In both cases the estimated states were used in an optimal multivariable
control system designed for a pilot scale double effect evaporator.

A literature survey of the theory and applications of Kalman
filtering is presented along with the basic design equations. Open and
closed loop simulation studies showed that the stationary Kalman filter
can effectively reduce the effects of noisy measurements and accurately
estimate an unmeasured state variable. This study also evaluated the
effects of changing the design parameters for the Kalman filter and
relates design considerations to non-ideal situations such as unmeasured
process disturbances and incorrect initial state estimates. The experi-
mental study verified the simulation results and demonstrated that the
evaporator was controlled satisfactorily when the filter estimates were
used in the optimal feedback control Tlaw.

A literature survey is also presented for the Luenberger
observer together with the relevant theory. Simulation studies illus-
trated that for non-ideal situations (i.e. unmeasured disturbances,
incorrect initial state estimates and process and measurement noise)
some observer designs were not satisfactory and hence, "tuning" of the
design parameters was required. The simulation results also revealed
that "marginally" observable systems give rise to numerical problems
which make it difficult to design a satisfactory observer even for ideal
conditions. These results were verified experimentally where both a

first and a second order observer were implemented for the evaporator.
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CHAPTER ONE
INTRODUCTION

Control systems designed using state space models usually
require a knowledge of the state of the system, but often in practice
some of the state variables cannot be determined by direct measure-
ment. Physical variables available for measurement are usually
functions of the states, referred to as outputs, and in many instances
these measured outputs contain random noise which makes it difficult
to get a good estimate of the state variables.

The Titerature reports many methods of state estimation but
of these the Kalman filter [1,2] has recejved the most attention.

Since the classic work by Kalman [1] in 1960, many theoretical studies
have been reported including extensions to nonlinear systems [3-5].

The theory was originally applied in the aerospace industries and it
was only later recognized to be applicable to the process industries.
However, although several simulation studies have been reported, there
has been very Tittle work done on implementing the Kalman filter in the
process industries.

Luenberger [6] developed an alternative method of state esti-
mation for deterministic Tinear, time-invariant systems. The estimator
is known as the Luenberger observer and has the advantage of being a
minimal order observer. That is, the order of the observer need only
be equal to the number of unmeasured states rather than the order of
the process as is the case for the Kalman filter. Luenberger's work
has also been extended to stochastic processes [7] and time varying
systems [8]. Unfortunately, there have been only a few reports of

simulation studies using the Luenberger observer and apparently no



practical applications have been reported.

1.1 OBJECTIVES OF THE STUDY

The objectives of this study can be described in two parts.
Firstly, it was intended to evaluate the effectiveness of the station-
ary form of the Kalman filter by simulation studies and experimental
application to a pilot plant double effect evaporator. For this
investigation it was assumed that the observation time was long com-
pared with the transient response of the system and that the prior
noise statistics were wide sense stationary so that the use of the
statiohary form of the Kalman filter could be justified. It was also
desired to develop some practical guidelines for the effects of the
design parameters on the effectiveness of the filter.

The second part of the study involves a similar investigation
of the Luenberger observer. The practical problems involved with the
implementation of the observer are pointed out and the effects of
noise, unmeasured disturbances and poor initial state estimates
are investigated for different observer designs.

In both studies, the closed loop runs used optimal feedback
control based on the state estimates. The design of the optimal
controller was carried out previously by Newell [9] and his results

were used in this work.

1.2 STRUCTURE OF THE THESIS

The thesis consists of five chapters including this intro-
duction. Chapters Two and Three present the Kalman filter study and
Chapters Four and Five the Luenberger observer study.

In Chapter Two a literature survey of the theory and



applications of Kalman filtering is presented together with the basic
equations. Chapter Three briefly describes the double effect evapora-
tor and presents the results of the simulation and experimental
studies for the Kalman filter.

Chapter Four presents a Titerature survey for the Luenberger
observer and the relevant theory required for the subsequent investiga-
tion, the results of which are detailed in Chapter Five.

The general conclusions from both investigations are summar-

ized in Chapter Six.



CHAPTER TWO
LITERATURE SURVEY AND BASIC EQUATIONS FOR THE KALMAN FILTER

2.1 INTRODUCTION

In this study a literature survey is presented to summarize
the theoretical and practical work which has been reported on Kalman
filtering, particularly applications in the process industries. The
basic equations for the Kalman filter and other relevant theory

required for the evaporator application are also presented.

2.2 LITERATURE SURVEY

Since Kalman's classical analysis of linear filtering in
1960 [1], there have been numerous papers on this subject published
in the literature. Several authors have modified the theory to extend
the results to nonlinear systems while others have derived sub-optimal
equations which have the advantages of computational efficiency.

Although there have been many simulation studies involving
the application of the Kalman filter in the field of process control
for both Tinear and (more frequently) nonlinear systems, there have
been very few experimental studies reported.

It is intended that this survey give a brief outline of the
work that has been done in this field and, though by no means complete,
it is a representative review of the literature.

2.2.1 Basic Theory

Kalman [1] first presented the optimal linear filtering
theory for continuous systems in a rigorous manner in 1960. In this
paper he also introduced the Duality Principle which states that the

solution to the optimal estimation problem for a stochastic process



is equivalent to the solution to an optimal deterministic regulatory
control problem. One year later Kalman and Bucy [2] reported the
corresponding results in discrete form. These two papers are now
considered classical and are the basis for much of the recent work in
the field of state and parameter estimation.

In a later paper Cox [3] gave a concise account of the solu-
tion to the problem of estimating state variables and parameters for
a linear system and developed an approximation technique for nonlinear
systems. Sorenson [4] presented a comprehensive review of the use of
Kalman filtering techniques for both linear and nonlinear systems.

In a more recent publication Bucy [5] also reviewed the theory of
filtering for stochastic processes and included the historical devel-
opment in this field.

Gura and Bierman [6] aﬁa1yzed the question of computer
requirements for various linear filters including the standard Kalman
filter. Each algorithm was evaluated in terms of computer time
required and storage necessary when applied to a general filitering
problem. The study included as parameters, the size of the state
vector, the frequency and number of observations and the frequency
of state updates. The authors recommended different filters depending
on the parametric values but, in general, the standard Kalman filter
was found to be one of the better algorithms from a computational
yiewpoint. It should be noted that no attempt was made to include the
accuracy and numerical stability of the filters in the evaluation.
These are obv1ous1y important considerations.

Severa1 texts [7-10] provide a basic 1ntroduct1on to Kalman

filtering. Sage and Melsa [10] give a very clear treatment of the



pertinent equations for both the continuous and the discrete
case.

2.2.2 Some Extensions and Modifications to the Theory

Roki and Huddle [11] considered the same problem as Kalman
but imposed constraints on the permissible complexity of the esti-
mator with a view to reducing the computations required. The result
was a sub-optimal filter which, it was claimed, could be comparabie
in performance to the optimal filter. The theory was developed for
discrete, linear, time-invariant systems but Newmann [12] later pro-
posed a similar estimation technique for the continuous case. It is
interesting to note that for deterministic systems, this filter
reduces to the Luenberger observer (see Chapter 4).

Wells [13] proposed an approximation to the Kalman filter
for a linear system which eliminated the matrix inversion required in
the filter equations and was therefore computationally more efficient.

Another example of a recent modification to the standard
theory is Friedland's [14] treatment of bias or modelling errors.
Friedland developed a technique for estimating the bias which is then
used to correct the Kalman filter estimates. This procedure is similar
to the accepted practice of augmenting the state vector of the original
problem by adding additional components to represent the uncertain
parameter or bias. However, Friedland claimed that, by reducing a
single calculation involving large matrices, to a sequence of calcula-
tions involving smaller matrices, accuracy as well as computational
speed can be increased.

The application of Kalman filtering to nonlinear systems has

received a great deal of attention in recent years. Nonlinear



estimation theory was presented by Seinfeld [15] and Coggan and»Noton
[16]. The review by Bucy [5] also includes an account of nonlinear
filtering.

Singer [17] proposed a technique to determine when a signi-
ficant improvement in estimation accuracy can be achieved by using a
Kalman filter rather than a Wiener filter (which in this context
refers to the stationary form of the Kalman filter) to estimate the
state of a time-invariant system. He concluded from this research
that there are relatively few instances where the Kalman filter, with
a time-varying gain matrix, provides a significant improvement over
the corresponding stationary form. This conclusion Tends support to
the decision to use the stationary version of the Kalman filter in
the present work.

2.2.3 Applications

Most of the applications of estimation theory have been in
the field of aerospace and missile guidance and navigation [18],
including such well known missions as Ranger, Mariner and Apollo
Other applications cited by Bucy and Joseph [18] include numerical
integration, submarine navigation, fire control and aircraft navi-
gation.

In the field of chemical process control, which is the area
of interest in this study, the general trend in the literature has
been to emphasize the theoretical and computational aspects of filter-
ing rather than to present actual applications. There have been
several simulation studies presented but it is only in recent years
that a few experimental or industrial applications have been reported.

Wells and Layson [19] presented a simulation example



combining optimal control and estimation theory to two systems in

series with a time delay. The discrete form of the Kalman filter

showed that a significant improvement in control could be achieved
by using the combined optimal control and estimation policy.

In one of the earlier investigations of nonlinear systems,
Detchmendy and Sridhar [20] considered the problem of estimating
states and parameters using a sequential least squares estimator.

They demonstrated the feasibility of this technique with two simple
mechanical examples.

In the process control field several authors have very
recently applied Kalman filtering to nonlinear systems. Coggan and
Noton [16] used an extended Kalman filter for state and parameter
estimation for nonlinear systems with intermittent, irregular and
inaccurate measurements and large unmeasured disturbances. A blend-
ing system and a thermal system were simulated and the estimates were
shown to be accurate.

Seinfeld [21] proposed feedback control of nonlinear systems
using a nonlinear Kaiman filter for estimating the states and unknown
parameters. The scheme was applied to the control of a CSTR in a
simulation study and the results proved the technique to be very suc-
cessful. Gavalas and Seinfeld [22] presented a method for the online
sequential estimation of state variables and kinetic parameters in
plug flow reactors with slow catalyst decay. The resulting algorithms
were computationally simple, especially the discreﬁe filters. A plug
flow reactor with a first order irreversible reaction and catalyst
decay was simulated and two alternative discrete filters were success-

fully used to estimate the state variables and parameters.



Wells [23] also presented a form of the extended Kalman
filter and discussed its application to nonlinear systems. In
particular, a six dimensional model of a CSTR was simulated and the
filter gave state estimates which were very close to the actual
values. In a later paper, Wells [24] applied this algorithm to a
simulated basic oxygen furnace. A reduced, inaccurate, model was
used in the Kalman filter algorithm and only one measurement was
used to obtain optimal estimates of four states. The model was so
poor that good results were not obtained unless more measurements
were made available.

Sastry and Wood [25] considered the state estimation problem
where some of the parameters are unknown or known inaccurately in a
discrete linear model. An iterative algorithm was developed to update
or correct these parameters.

Goldmann and Sargent [26] have recently reported a signifi-
cant study of the factors affecting the performance of the Kalman
filter as applied to two simulated chemical processes. The authors
considered measurement noise, but not process noise, in their simu-
lations and investigated the sensitivity of the technique to errors
in the design matrices, R and P(0) (see Section 2.3), plant modelling
errors, and autocorrelated measurement noise.

As stated previously, there have been very few industrial
or experimental applications of Kalman filtering (in the process
industries) reported in the Titerature; the fo]]bwing are the only
three cases which have been uncovered in this brief survey.

Astrom [7] reported an application of linear stochastic

control theory to regulate the basis weight of paper at the dry-end
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of a papermaking machine. Control of the dry basis weight was con-
sidered as a system with one input, thick stock flow, and one output,
the estimate of the dry basis weight. A minimal variance control
strategy was implemented and a significant reduction of the variance
of the basis weight was obtained.

In a more complex application to a papermaking process,
Sastry et al [27,28] used an adaptation of Kalman filtering for the
identification of parameters in a nonlinear model. Simulation results
showed reasonable agreement with the actual operating data and the
model parameters obtained in the off-line study were used in tuning
DDC Toops. The simulation studies were so encouraging that the
company recommended that on-line experiments should be conducted in
order to optimize plant operation.

Noton et al [29,30] reported the use of an extended Kalman
filter in parameter and state estimation for an industrial multi-
reactor system. A nonlinear dynamic stochastic model was developed
and the filter was used to determine five unknown parameters off-line.
The Kalman filter was also implemented in a supervisory control scheme
where the computer communicated control actions to the operator. The

results were good enough to justify closed Toop computer control.

2.3 THEORY

The mathematical formulation of both the optimal control
problem and the optimal estimation problem is briefly outlined in this
section. This theory is well known and more details can be found in
several texts [8-10].

The process plant is assumed to be of the form:
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K(t) = Ax(t) +Bult) + D d(t) (2.1)

with output equation:
y(t) = Hx(t) (2.2)

where x, u, d and y are the state (dimension n), control (dimension m),
disturbance (dimension p) and output or measurement (dimension q)
vectors respectively. A1l the variables are in normalized perturbation
form and A, B, D and H are constant coefficient matrices.

The analytical solution to Equation (2.1) can be used to

derive the following discrete model [8]:

x(k+1) = ¢ x(k) +

ne>

u(k) +

no

dik)  k=0,1,2,... (2.3)

where ¢, A and g are the constant coefficient matrices for the discrete

model and are derived in the usual manner [31, p. 339]:

:
¢ = f Bt 4t (2.4)
0
T A(T-t)
) j A(T-t) g gt (2.5)
4 ) B
T A(T-t)
9 = J e= Ddt (2.6)
8 ) D

where T is the sampling period.
The quadratic performance index for the regulatory control

problem can be expressed as follows

T N g T
o= AT s 50 + L DN00ga ¢ (TG guen) @)
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where, x(N) is the final state vector,

S is the final state weighting matrix (nxn),

91 is the state weighting matrix (nxn),

51 is the (mxm) weighting matrix on the controls,
and superscript T denotes the vector transpose.

The optimal control policy, g*(k), which minimizes J can
be found using discrete dynamic programming [9]. From the performance
index it can be seen that the optimal control takes the state, x, from
an initial state, x(0), to a final state, x(N), which is as close as
possible to the origin. The first term in the performance index
ensures that a nonzero final state vector, x(N), is penalized. The
second term indicates that all state vectors, x(k), k = 0,1,2,...,
must also be close to zero, with the constraint, due to the last
term, that there is not an excessive expenditure of control "energy"
in doing so.

The well known optimal control law which results for N = «

is given by:
*
u (k) = Keg x(k) (2.8)

where EFB’ the optimal feedback control matrix, is time invariant and
the asterisk (*) denotes the optimal control policy.

Now consider the process to be a stochastic one with both
process and measurement noise; the deterministic model in Equations

(2.3) and (2.2) then becomes:
x(k+1) = ¢ x(k) + 2 u(k) + 9 d(k) + 1 w(k) (2.9)

and
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y(k) = Hx(k) + v(K) (2.10)
where
w(k) is the process noise vector (dimension r),
v(k) is the measurement noise vector (dimension q)»
and I' is the coefficient matrix of the measurement noise.

If it is assumed that the probability distributions of the
several variables are independent and each is uncorrelated with respect

to time, then:

cov [w(k) w(3)] = ELw(k)w' (3)1 = 0 for k#j

= Q(k) for k=j (2.11)
cov [y(k),v(§)] = ELy(K)YT(3)] = O for k#i

= B(k) for k=j (2.12)
cov [w(k),v(3)] = cov [v(k),w(3j)] = 0 for all k,j (2.13)

where g(k) and B(k) are the known (or assumed) covariance matrices for
the process and measurement noise, respectively, cov denotes the co-
variance and E the expected value.
An unbiased estimate of the states, %(k), is desired such
that:
E[x(k)] = E[x(k)] (2.14)

The minimum error variance estimator provides such an esti-

mate and minimizes the error covariance matrix, P(k):

p(k) = ECLx(K) - £()Ix(K) - &(0)1D) (2.15)

By minimizing the elements of this error variance matrix [10],

the best Tlinear estimator (i.e. filter) is obtained and is known as the
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Kalman filter.

It has not been necessary to make the assumption that the
noise is Gaussian. The Kalman filter is the best linear filter for
any distribution; if, however, the noise is Gaussian then it is the
best of all possible linear and nonlinear filters [10].

The optimal estimation problem can be solved directly (as
described in Section 2.3.1) or by using Kalman's Duality Principle
[1,8]. The Tatter method relates the optimal filtering problem to
the optimal regulatory control problem. Since the optimal control
problem has been fully developed from a theoretical and computational
viewpoint in recent years, the optimal filter can be readily obtained
by applying the Duality Principle. The rigorous derivations for both
methods are well known and rather lengthy hence only the results
are presented here. It should be noted that in this study both
methods were successfully employed in deriving the gain matrix for
the Kalman filter as a check on the calculations and the computer
programming.

Since much of the present investigation is concerned with
the significance of the 5 and g matrices, it is informative to examine
an alternative formulation of the problem. The Duality Principle [9]
states that the foregoing estimation problem has an interpretation as
the solution of a linear quadratic optimization problem. It has been

shown [8] that the specific form of this performance index is:

3= 1/20x(0) - %(0)17 P71(0) [x(0) - £(0)]

=

N
£1/2 7 (lyk) - B &K RTT(K) Dy(K) - H £(K)]

k=0 -
£ 8T(k) 97 (k) (k)} (2.16)
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where E(O), Q(k) and B(k) are defined in Equations (2.11) - (2.13)
and w(k) is the estimate of the process noise, w(k).

The problem is to find R(k) and W(k) such that the above
performance index is a minimum. The solution is not given here but
the form of Equation (2.16) should give some qualitative insight into
the significance of the matrices 2(0), R and Q which might be helpful
in understanding the results presented later.

2.3.1 Kalman Filter Equations

The solution of the optimal estimation problem yields the

Kalman filter equation;

<>

(k) = E(K) + K(k) [y(K) - H &(K)] (2.17)

where K(k) is the gain matrix for the Kalman filter, and
x(k) is the value of the state vector calculated from the

deterministic model:
x(k) = ¢ R(k-1) + 4 u(k-1) + ¢ d(k-1) (2.18)

Assuming that the process is statistically stationary (i.e. Q and R are
constant), the gain matrix can be calculated off-line from the follow-

ing recursive relations:

K(k) = M(K) HT(H (k) BT + Rt (2.19)
M(k+1) = ¢ P(k) ST +1Q £T (2.20)
B() = (1 - K(K) H) M(k) (2.21)

and the initial conditions:
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1

1) = P(O) = E(Ix(0) - £(0)[x(0) - £(0)1) (2.22)

Starting with the initial conditions, Equations (2.19) - (2.21) are
evaluated in an iterative manner until E(k) conyerges to a constant
value, K. If it is assumed that the observation interval is long com-
pared to the system dynamics then the stationary form of Equation

(2.17) can be used:
3() = F(k) + KIy(k) - H Z(K)] (2.23)

where K is the limiting solution of Equations (2.19) - (2.21) as
kK » o,

There is a significant advantage in using this equation for
implementing the Kalman filter since only one matrix, K, need be stored
in the computer instead of a large set of matrices, E(k). A further
consequence of the stationary filter is that the variance of the
initial error in the state estimate, E(O), has no effect on the final
gain matrix, K.

In deriving the gain matrix for the stationary Kalman filter,
the critical design parameters are the matrices R and Q since the choice
of these matrices stfongly influences the elements of K and hence the
performance of the filter. Given accurate information about the noise
statistics, the Q and 5 matrices can be specified exactly. However,
this is not the case in practice and, since it is necessary to assume
values for the elements of these matrices, it is very useful to know how
incorrect guesses of Q and 5 affect the behaviour of the filter. It
should be noted that although a 8 matrix with relatively large elements
strictly implies a high level of process noise, it can also be

loosely interpreted as a lack of confidence in the mathematical
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model. Therefore, where unmeasured disturbances are anticipated or
where the model is not accurate, better filter performance would be
expected if the elements of Q were chosen to be artificially large.

The specific values of the.ciements of matrices B and Q are
of little consequence, but the relative magnitudes are important. In
the present discussion and also in the subsequent studies, the actual
noise levels remain unchanged and it is the significance of the esti-
mates of these noise levels which is being invastigated. If the

“elements of R are large compared to those of g, then, the physical
implication is that there is little confidence in the noisy measure-
ments and more confidence in the process model. By referring back
to Equation (2.16) it can be seen that, due to the weighting matrices,
5'] and Q"], this situation corresponds to the third term in the per-
formance index dominating the second term. Thus, theoretically it
can also be seen that the estimate of the process noise is minimized
winich in turn means that the estimated state vector tends towards the
model state vector and thus the model response is favoured more than
the measurement.

Conversely, if Q has large elements compared to R, then there
is more confidence in the measurements and more weight is placed on the
measurements and less on the model when estimating the states. Again
by referring to Equation (2.16), the same conclusions can be drawn,
from a theoretical viewpoint. In this case the second term dominates
due to the small elements of R (relatively large elements of 5']) and
in minimizing the performance index, the difference between the measure-

ments and the estimated states is also minimized.
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2.3.2 Combined Estimation and Control

The optimal control law (for linear systems) based on a
quadratic performance index was given earlier in Equation (2.8) and
it was indicated that this scheme requires a knowledge of all the
state variables. In the previous section it was also demonstrated
that optimal estimates of the state variables could be made from
noisy measurements of the output variables by using the Kalman filter.

If the further assumption, that both the process noise and
the measurement noise are Gaussian is introduced, then according to
the Separation Theorem [9] the combination of the optimal filter
followed by the optimal deterministic controller is the optimal feed-
back control for the overall system.

The simplified block diagram in Figure 2.1 illustrates the
closed Toop system where the optimal estimate of the states is used
in the feedback control algorithm.

The relevant equations for the overall closed Toop system
are thus:

Kalman filter

(k) = x(k) + Kly(k) - H x(k)] (2.23)

where

x(k) = ¢ %(k=1) + 2 u(k-1) + 0 d(k-1) (2.18)

Optimal controller

uk) = w(K) = Ky R(K) (2.8)

2.3.3 Sub-Optimal Filters

Sub-optimal filters were also used in this study as a basis

for comparison with the Kalman filter. The filter equation is
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identical to that used in the optimal filter:

<>

(K) = (k) + Cly(k) - H &(K)] (2.23)

However, the gain matrix, g, is no longer the optimal one found from the
Kalman filter theory. Instead the elements are chosen from experience
and in this study the C matrices chosen were very sparse so that tne
estimates of each state variable were simply combinations of tﬁe
measured value of the variable (where available) and the calculated
value from the model response (Equation (2.18)). This type of filter
has been used in previous evaporator studies [32,33].

2.3.4 Exponential Filter

In many DDC applications an exponential filter [34] is used
to smooth noisy measurements. Since the experimental and simulation
results obtained with the Kalman filter will also be compared with
those from the exponential filter (see Chapter 3), the theory for the
latter is presented here.

An exponential filter reduces noise in a set of measurements
by combining the present measurement and the previous estimate in a
fixed proportion which is specified by the user. The scalar filter

equation is:

1t

Fi(kH) = 35(K) + ayly; (k#1) = §1(K)) (2.24)

where 1 denotes the 1th

output variable, and aiis the filter constant.
This equation can be used to estimate each measured state

variable. Equation (2.24) indicates that the amount of filtering

increases as the filter constant, o decreases. At first glance it

may seem that a very small value of o would give the best filtering,
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but as o becomes smaller, a time lag is introduced in the filter so
that it is necessary to achieve a balance between the degree of filter-
ing and this time lag when choosing oy - In the extreme case when

a; = 0, the time Tag is infinitely long and a constant output equal to
the initial state estimate results.

It is important to realize that the exponential filter
merely provides signal conditioning and gives no information about
unmeasured states. For the purpose of state feedback control, where
it is necessary to know all the states, the unmeasured states can be
estimated by driving the deterministic model with the estimates from
the exponential filters. This procedure was later carried out in

estimating an unknown state variable in the simulation and experimental

studies.
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CHAPTER THREE
EVALUATION OF THE KALMAN FILTER

3.1 INTRODUCTION

This chapter presents the simulation and experimental studies
which were carried out on a pilot plant double effect evaporator in
order to evaluate the effectiveness of the stationary Kalman filter.
Following a description of the process, the computer programs for the
simulation study are briefly described. The simulation results are
presented and discussed in two main sections: open loop studies and
closed Toop studies. The results of the experimental study are pre-
sented in the same format. Finally the conclusions from these studies

are presented in Section 3.10.

3.2 PROCESS DESCRIPTION

A schematic flow diagram of the evaporator in a double
effect "forward feed" mode of operation is shown in Figure 3.1. The
first effect is a calandria type unit with an eight inch diameter tube
bundle. It operates with a nominal feed rate of 5 1b/min of 3 percent
aqueous triethylene glycol. The second effect is a long~-tube verti-
cal unit with three 1" x 6' tubes and is operated with externally
forced circulation. The second effect is operated under vacuum and
utilizes the vapour from the first effect as the heating medium. The
product is about 10 percent glycol when the steam to the first effect
is at its nominal flowrate of 2 1b/min.

A fifth order state-space model of the evaporator was
derived by Newell [1] based on Tinearized material and energy balances.

The model equations are of the form given in Chapter Two and are
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presented in the appendix. The reader is referred to the notation
section for definitions of the variables and normal steady state
values. The process variables in the model are expressed in normalized
perturbation form.

For this process, one of the five state variables, C1 (the
first effect concentration), cannot be measured and in previous
multivariable control studies [1] C1 was estimated by a sub-optimal
combination of the deterministic model states and the measurements of
the other four state variables, W1, H1, W2 and C2. T1 was in fact
measured rather than H1, but this measurement together with the steady
state value for C1 allowed H1 to be calculated very accurately since
the dependence of this variable on Cl is very slight [1].

In the simulation study the fourth order measurement noise
vector, v, was generated by the IBM 1130 SSP subroutine, GAUSS, which
produced Gaussian, zero mean noise for each of the four output variables.
The process noise vector, w, was assumed to consist of six elements
associated with the three disturbances and the three manipulated
variables. Thus, in addition to the deterministic contribution of
these variables (accounted for in the model) it was assumed that there
was also a noise component for each input. The dimension of the pro-
cess noise vector is therefore six and the coefficient matrix, r, is a
5 x 6 matrix, with matrices 6 and A as its partitions. The subroutine
GAUSS was again used to generate the noise sequences.

Throughout the simulation studies the noise sequence for
all ten elements (process and measurement) had a standard deviation of

0.1.



25

3.3 COMPUTER PROGRAMS FOR THE SIMULATION STUDY

The fifth order linear evaporator model was simulated on
the Department's IBM 1800 computer. A program, called SPECS, was
written to simulate both open and closed Toop evaporator operation
with and without disturbances. For each run it was also possible,
by means of a random number generator, to include process noise or
process and measurement noise. In the latter case by entering the
appropriate options via the teletype, the program could punch out
on cards one of the following:

1) the unfiltered measurements,
or

2) the estimated states obtained using either a Kalman,

suboptimal or exponential filter.

Prior to each run, it was necessary to supply the initial
states, the estimate of the initial states and whether or not the
filter was to have knowledge of any step disturbances to the process.

For the closed loop runs there were additional program
options. The manipulated variables could be constrained within
certain physical limits to simulate the physical process more
accurately. Another basic option was the type of output to be punched
on cards. As in the open loop runs, the noisy measurements or the
estimated states (when a filter was used) could be recorded. It was
also thought desirable to be able te punch out the actual state
variables to provide a better idea of what the process was really
doing. Hence it was possible for all these runs to record and punch
out the states before measurement noise was added.

The gain matrix for the Kalman filter was calculated off-line
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by programming the recursive relations described in Chapter 2. The
results from this direct method, using program GAINM, were in good
agreement with those achieved by using Kalman's Duality Principle
and solving the equivalent optimal regulatory control problem.

The data recorded for both the simulation and experimental
runs were displayed by plotting various combinations of the states,
manipulated variables and disturbances for each run. The digital
plotting program, developed by Newell [2] was used and comprised two
coreloads, RBNO2 (for storing the data on files) and RBHNOI (for
plotting the stored data).

3.4 OPEN LOOP SIMULATION STUDY

Open loop studies were conducted to establish the significance
of the weighting matrices (Q and R), the initial state estimates, and
knowledge of step disturbances on the effectiveness of the Kalman
filter. One run was also made to show the performance of a sub-optimal
filter for which the gain matrix was chosen arbitrarily instead of
being computed from the Kalman filter equations. As a further compari-
son, the exponential filter was evaluated for three different values
of a, the filter constant.

In order to see significant improvements over the unfiltered
runs, noise levels were chosen to be reasonably high (0.1 standard
deviations for both process and measurement noise in ali runs).

The base case for Figures 3.2 - 3.5 was the open Toop
response of the deterministic model in Equation (2.3) with all the
state variables initially at steady state except the product concentra-
tion, C2, which was initially 30% below the normal steady state value.

In this situation, with no control and no disturbances, the product
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concentration gradually increases to the steady state value without
affecting the other state variables.

Figure 3.2 compares the deterministic response (i.e. the
base case), the four noisy measurements and the five estimates from
the Kalman filter. For the Kalman filter in this case (Kalman filter
1) the estimates (5 and Q) of the actual covariance matrices are exact
and correct estimates of the initial states are also used. Thus the
best possible data was supplied to the Kalman filter equations and the
estimates obtained should be optimal. As can be seen from Figure 3.2,
the estimated states were in fact very close to the deterministic
curves and considerable improvement over the unfiltered measurements
was obtained. Table 3.1 provides more information for Figures 3.2 -
3.5 and the numerical values for the parameters in this table (and
the figure captions) are given in the appendix. The horizontal
arrows denote the initial steady state in all the figures.

It should be emphasized that the results for the Kalman
filter, such as in Figure 3.2, can look better or worse depending on
the random number sequence that is used. Since the "random" numbers
are generated by a computer program in a systematic fashion the number
sequences are not, strictly speaking, random. For this reason, it
was possible to duplicate "random" number sequences; this proved to be
a useful feature in that identical noise sequences, for each variable,
could be repeated for every run. It should be made clear that the
number sequences of any one of the ten noise elements (six process
plus four measurement) was different from all the others for any given
run and not correlated in any way; but for any two runs the sequence

for one noise element could be the same. This meant that any bias or
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TABLE 3.1
DETAILS FOR FIGURES 3.2 - 3.5: OPEN LOOP SIMULATION

A1l figures show the deterministic response of the model with the
second effect concentration initially 30% below the normal steady
state. The other curves which appear in each figure are tabulated

below (see appendix for the elements of Q, R and C).

Initial State

Figure Filter Used Q R ¢ Estimate
3.2 Unfiitered states - - - -

’ Kalman 1 01 R - correct
3.3 Sub-optimal - - 0 correct
3.4 Kalman 1 QL RL - c2 = 0.0
3.5 Kalman 2 01 R - correct

) Kalman 3 g1l RI - correct
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trend in the noise sequences could be repeated in every run so that a
comparison between different filters was not obscured by variations
in the generated noise vectors.

However, as a check on the randomness of the noise sequences
and the reproducibility of the plots, five runs using the Kalman filter
of Figure 3.2 were made with different random number sequences. The
results (not presented) showed that short term trends in the “"random”
noise can result in deviations of the estimated state variables from
their deterministic path but these deviations were always small. In
all cases, the Kalman filter gave satisfactory state estimates com-
parable to those shown in Figure 3.2.

3.4.1 Comparison with a Sub-Optimal Filter

In Figure 3.3 a sub-optimal filter was used to provide
estimates of the four measured states while the C1 estimate was
generated by the model and is therefore much smoother. Since the
degree of filtering is low here the estimates of the other four
states are very noisy. This shows that the gain matrix cannot be
chosen arbitrarily and on-line tuning would be required to find a

satisfactory sub-optimal filter.

3.4.2 Effect of a Poor Initial State Estimate

Figure 3.4 shows the effect of a poor initial estimate of the
second effect ﬁoncentration on the performance of the Kalman filter.
For tnis run, C2 was deliberately chosen to be zero instead of the true
value (30% below the steady state) and it can be seen that the esti-

mate recovers from this poor initial estimate after approximately

30 minutes.
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3.4.3 Effect of the Q and R Weighting Matrices

Throughout this study, the weighting matrices R and Q were
selected to be diagonal with all the diagonal elements equal for each

matrix:
= RI

g =qQ and

h—
n=x

Thus the scalar ratio R:Q refers to the relative magnitudes of the
diagonal elements of these two design matrices. The physical implica-
tion here is that the noise levels for all of the measured variables are
equal and not correlated with each other (similarly for the process

noise variables).

Figure 3.5 shows the results obtained from the Kalman filter
where the gain matrix, K, is computed from incorrect R:Q ratios.
Kalman filter 2 uses a R:Q ratio of 1:100 which can also be inter-
preted as an "estimated" measurement to process noise level ratio of
1:10. This meant that there was much more confidence in the measure-
ments than in the model and consequently little filtering took place.
Thus in Figure 3.5 the estimated states are noisy but the trend is
reasonably good. In the same figure the state estimates provided by
Kalman filter 3 (which uses a R:Q ratio of 4:1) were also plotted.
Here, there was slightly more confidence in the model than in the
measurements so that the estimates tended towards the model response
and hence were smoother than before. It is emphasized once more that
the actual noise levels used in all the simulation runs had a standard
deviation of 0.1 so that in reality the correct value of R:Q was
always 1:1.

It is tempting to suggest from these results that the higher

the R:Q ratio the better the filter performance and in fact, the state
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estimates become identical to the model response as R:Q tends to
infinity. However, as will be shown in section 3.4.4, a large R:Q
ratio is not desirable if the model is not accurate and can be
disastrous if unmeasured disturbances occur (i.e. disturbances which
are not measured and hence do not appear in the model calculations).

3.4.4 Effect of an Unmeasured Step Disturbance

In Figures 3.6 - 3.8 a 30% step down in feed concentration
was applied to the simulated process when it was initially at the
normal steady state. The details for these figures are given in Table
3.2.

Figure 3.6 compares the deterministic response, the noisy
measurements and the states estimated by Kalman filter 1A. A knowledge
of the step disturbance was included in the model calculations for
this filter and the assumed R:Q ratio of 1:1 was exact.

The same filter was used for two runs shown in Figure 3.7
but filter 1A has knowledge of the disturbance whereas filter 1B does
not. There is a significant discrepancy between the estimates and the
actual states for filter 1B.

The fact that this discrepancy is exaggerated if the model
is favoured more than the measurements is readily apparent from Figure
3.8 where both filters 2B and 5B were unaware of the step change in
feed concentration. Kalman filter 2B, with a R:Q ratio of 1:100,
favours the measurements strongly and thus the trend of the curves
(though noisy) is good. Conversely Kalman filter 5B favours the model
very strongly since R:Q = 100:1. Its estimates are very poor and the
curves are almost straight lines since the model was not aware of the

disturbance. This would obviously be an undesirable situation if



TABLE 3.2
DETAILS OF FIGURES 3.6 - 3.11: OPEN LOOP SIMULATION

A11 figures show the deterministic response of the model to a 30%
step down in feed concentration and the estimates tabulated below.

(See appendix for the elements of Q and B).

A - denotes a filter which has knowiedge of a step disturbance
B - denotes a filter which is unaware of a step disturbance

Figure Filter Used Q R o

3.6 Unfiltered states - - -

) Kalman 1A 01 Rl -

3.7 Kalman 1A Q R1 -

' Kalman 1B Q1 Rl -

3.8 Kalman 5B Q2 Rl -

’ Kalman 2B Q1 R2 -
3.9 Exponential 1 - - ol = 0.7
3.10 Exponential 3 - - a3 = 0.3
3.1 Exponential 4 - - od = 0.1
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control was to be based on these estimates.

3.4.5 Comparison with the Exponential Filter

An exponential (or RC) filter was also used to estimate four
of the states from the noisy measurements while the remaining state
(first effect concentration) was calculated from the deterministic
model. Again a 30% step down in feed concentration wés applied to the
steady state process and the exponential filter was used with three
different values of « as shown in Figures 3.9 - 3.11. The values of o
were decreased from 0.7 in Figure 3.9 to 0.3 in Figure 3.10 and finally
o = 0.1 was used in Figure 3.11. The results show that the exponential
filter can only smooth out the noise effectively when a very small
value of o is used. However, with the value of a used in Figure 3.11
there is a time Tag introduced which later proved to be a considerable
problem when implementing feedback control based on these estimates.

In Figure 3.11, the time lag in the estimate of C2 is partially
obscured by the fact that the particular noise sequence used tends to
fall below the mean value for a period before rising again towards the
end of the transient. However, by comparing this curve with the Kalman
Tilter estimate in Figure 3.6 the time lag is more obvious.

The details for these three figures are given in Table 3.2.

3.5 CLOSED LOOP SIMULATION STUDY

Simulation studies were also carried out for combined esti-
mation and control. The optimal feedback control for the deterministic
evaporator model has been investigated previously by Newell [1] and the
feedback control matrix used here (see appendix for Chapter 3) has been
shown to give excellent results. The purpose of the present work was

to use estimated states in the control calculations in an endeavour to
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improve upon the control obtained by using the unfiltered measurements.

The simulation runs show the deterministic response of the
closed loop system, the response of the stochastic system without any
filtering and also the response when estimated states are used in the
contro] calculations. The details for Figures 3.12 - 3.23 are given
in Table 3.3.

As indicated earlier, the states. displayed in the graphs for
the closed loop runs were the actual states before measurement noise
was added. Although the estimated states were used in the control
calculations, they were not displayed since they do not, in many
instances, accurately reflect the state of the process. Again for all
these runs, all noise Tevels were characterized by a standard deviation
of 0.1.

As a base case, a deterministic closed loop run was made with
a 20% step down in feed flow. Figure 3.12 shows how the simulated
process responds under optimal feedback control. There was a slight
offset in W1 and T1 but otherwise the states were kept very close to
their original steady state values. The primary controlled variable,
€2, was especially steady.

The same run was then repeated with process and measurement
noise included. Figure 3.13 shows the actual states when the control
was based on unfiltered measurements and a "model value" for Cl. The
deterministic curves also appear in the same figure as a comparison
but only one of the manipulated variables (steam flow, S) is shown
since the standard second page plot was almost incomprehensible due to
 the violent control action and overlapping of the noisy curves.

From Figure 3.13 it is evident that, although the general
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trend of the controlled variables is good, the states are very noisy
and the control action required is excessive. Figure 3.14 shows the
improved control that results when Kalman filter 1A (where the filter
is aware of the disturbance) is used. It is doubtful if these con-
trolled states could be made much closer to the deterministic case
since these curves must always reflect a certain level of process
noise and therefore some fluctuation is to be expected. The mani-
pulated variables sti1l fluctuate to a certain extent but this is
greatly reduced compared to the unfiltered case.

3.5.1 Effect of the Weighting Matrices and Unmeasured Step Disturbances

The effect of an unmeasured disturbance is illustrated in
Figure 3.15 where Kalman filter 1B was used. Since the estimates of
the states did not respond quickly enough to reflect the disturbance
in feed flow, the control action was not able to prevent a considerable
drop in the first effect level (W1) and a smaller drop in the separator
level (W2). Product concentration, C2, was controlled reasonably well
but the draining of W1 to less than half the original value is an
undesirable result.

In Figures 3.16 and 3.17 the run of Figure 3.14 was repeated
with Kalman filters 5A and 5B, respectively, where aﬁ R:Q ratio of
100:1 was used in computing the gain matrix. Filter 5A gave very good
results for the controlled states and it is notable that the mani -
pulated variéb]es are very smooth. The success of this run is due to
the accuracy of the model and the fact that the disturbance was
measured. In Figure 3.17 Kalman filter 5B was not aware of the dis-
turbance and the effect of weighting the model so heavily proved to

be disastrous: the first effect level drained out completely, the
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second effect level began to fall and the product concentration drifted
upwards. It can be seen by examining the manipulated variables that
very little control action has been taken. In fact the manipulated
variables respond only slightly due to the extremely small weighting
on the measurements which do reflect the disturbance to the process.

At the opposite extreme, Figure 3.18 shows the results when
an R:Q ratio of 1:100 was used in computing the gain matrix. With
such a high weighting on the measurements the results tended towards
the case with no filtering and there was little or no difference if
the step disturbance was not measured.

3.5.2 Comparison With a Sub-Optimal Filter

Figure 3.19 illustrates the results obtained by using sub-
optimal filter 2. Again the curves are quite noisy since the measure-
ments are weighted strongly and there are rapid fluctuations in the
manipulated variables (not shown). In this case there was also very
little difference in the performance of the filter if the disturbance
was not observed and included in the model calculations.

3.5.3 Comparison With the Exponential Filter

In the closed loop simulations four different exponential
filters were investigated. Knowledge of a step disturbance here only
affects the value of C1 (which is obtained from a model calculation),
since the other four state estimates are merely "smoothed" measure-
ments. Since‘on1y small changes in the estimate of Cl resulted (for
measured disturbances), in Figures 3.20 - 3.23 the filter did not
include a knowledge of the disturbance.

Figures 3.20 - 3.23 show the results for exponential filters

with « = 0.7, 0.5, 0.3 and 0.1 respectively. With large values of «
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there is clearly very little difference from the unfiltered run in
Figure 3.13. As a is decreased the high frequency noise is smoothed
out but a larger time lag is introduced and this results in a more
oscillatory response (see Figure 3.23). It would appear from these
results that contiol of the process cannot be improved by using an
exponential filter with the present control scheme. It should be
pointed out however that significant improvements could probably be
achieved with a small value of o if the time delay introduced was

accounted for in designing the deterministic controller.

3.6 EXPERIMENTAL PROCEDURE

To experimentally verify the previous simulation results, a
simifar set of runs were performed using the actual double effect
evaporator.

A statistical analysis of experimental data was initially
made in order to estimate actual measurement and process noise levels
at the normal steady state. These estimates were found to be very
much less than the 10% levels used in the simulation study. The
measurement noise levels were found to range from 0.1% to 2% and the
process noise levels from 0.1% to 5%; only three of the ten noise
elements were greater than 1% (W1 = 2%, B1 = 5%, B2 = 4%). As a
result it was decided to artificially add measurement noise to the
measured states before filtering and before performing the control
calculations. This was done with the same random number generator
that was used in the simulation program.

In all the runs the measurements were obtained from the
standard DDC loops which contain simple single variable filters such

as exponential or D.C. Union filters. This was done so that reasonably
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smooth, accurate data could be used to represent the state of the pro-
cess before adding the measurement noise. Obviously this means that

a small time lag is introduced immediately due to these DDC filters but
since the scan rate of the DDC Toops is very fast (about 60 times
faster than the data collection) this time lag is negligible. 10%
noise was added to each of the four measurements and since the data

had been filtered earlier by the DDC loops, it was assumed that each
element had the same noise level (i.e. 0.1 standard deviation).

No attempt was made to achieve 10% process noise levels as
this would have been a difficult problem physically, requiring noise
generators to drive the process. Thus most of the elements in the
process noise vector were insignificant and herein lies a difference
from the simulation study.

Only one open loop experimental run was made with the measure-
ments recorded and stored before any noise was added. This data was
then used as the basis for several computer runs which evaluated
various filters as in the simulation study. This procedure was very
convenient in that a computer run was much faster and more easily
accomplished than the corresponding experimental run.

For the closed loop runs, both the measurements before noise
was added and the estimates of the states were recorded and stored so
that either could be displayed at a later date. As indicated earlier,
the former set of data was assumed to give a fairly precise indication
of the true state of the process. Consequently, these states were of
more interest in the closed loop runs since they provided the means of
evaluating the combined estimation and control algorithm and hence the

effectiveness of the filter.
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3.7 COMPUTER PROGRAMS FOR THE EXPERIMENTAL STUDY

The program (EPECS) used for the off-line processing of the
open Toop experimental data was, in fact, a modified form of the simu-
lation program (SPECS), the main difference being the source of the
data. |

The computer programs used in the closed Toop experimental
work were basically those developed by Newell [3]. Only two modifica-
tions were required, with both made in the main control coreload,
RBN31.

The first change was to add artificial measurement noise
immediately prior to the filter calculations. Since an option for
using the Kalman filter equation had already been included in the
programs, this alteration was sufficient for all the Kalman filter
and sub-optimal filter runs. When using the exponential filter,
nowever, it was also necessary to change the coding for the filter
equation. Both changes were easily implemented and the user's manual

for these programs [3] is still appropriate.

3.8 OPEN LOOP EXPERIMENTAL STUDY

The open Toop experimental run for a 30% step down in feed
concentration was used to evaluate the Kalman filter with two different
R:Q ratios, a sub-optimal filter, and the exponential filter with three
different values of «. The details of Figures 3.24 - 3.32 are given in
Table 3.4.

In Figure 3.24 the "noise-free" run is shown together with
the data after noise was added but not filtered. This shows the actual
process states and the noisy measurements which are to be filtered in

order to obtain good state estimates. In all of the succeeding figures
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TABLE 3.4
DETAILS OF FIGURES 3.24 - 3.32: OPEN LOOP EXPERIMENTAL

Figures 3.24 - 3.32 show the open 1oop evaporator response to a 30% step
down in feed concentration before measurement noise is added, in addi-
tion to the estimates (after noise is added) as tabulated below (see
appendix for the elements of Q, R and g).

A - denotes a filter which has knowledge of a step disturbance

B - denotes a filter which is unaware of a step disturbance

Figure Filter Used 8 R E o
3.24 Unfiltered - - - -
3.25 Kalman 6A Q4 Rl - -
3.26 Kalman 6B Q4 Rl - -
3.27 Kalman 1A Q Rl - -
3.28 Kalman 1B Q R1 - -
3.29 Sub-optimal 2 - - 2 -
3.30 Exponential 1 - - - ol = 0.7
3.31 Exponential 3 - - - o3 = 0.3

3.32 Exponential 4 - - - od = 0.1
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in this section, the actual states and the estimated states have been
plotted together in order to readily evaluate the performance of the
filter. Plots for the actual values of C1 could not be included since
C1 was not measured.

Figure 3.25 shows the estimates given by Kalman filter 6A
which uses a R:Q ratio of 25:1 and includes knowledge of the step
disturbance in the model calculations. The estimated states are
accurate because the model (which is favoured strongly here) is a good
one and the step disturbance is measured.

It can be seen from Figure 3.25 and the other figures that
there is a small "blip" at t = 140 minutes in the actual C2, Wl and
W2 curves. The reason for this is not fully understood although this
problem has been investigated by several previous workers. The source
of the "blip" appears to be the sight glass which is used to measure
the first effect level. Various explanations of this phenomenon have
been proposed and tests are currently being carried out in order to
solve this problem.

In contrast to Figure 3.25, the C2 estimate in Figure 3.26,
where the fiiter was not aware of the step disturbance, is very
inaccurate. With an R:Q ratio of 1:1, Kalman filters 1A and 1B were
used to obtain the curves in Figures 3.27 and 3.28 respectively. In
Figure 3.27 the model was aware of the disturbance and the estimates,
ihough a little noisy, are in very good agreement with the actual
states. The noise is still filtered out reasonably well in Figure
3.28, but again, because the disturbance was not included in the model

calculations, there is some discrepancy between the actual and estimated
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values of C2. However, the effect of an "unseen" disturbance is not
nearly as great as it was in Figure 3.26 due to the lower R:Q ratio
and, consequently, greater reliance on process measurements.

Sub-optimal filter 2 was used in Figure 3.29 resulting in
estimates which were only a slight improvement over the unfiltered
states. In the curves shown here, knowledge of the disturbance was
included in the model calculations, but with such a low degree of
filtering this factor has little significance. Figures 3.30, 3.31
and 3.32 show the performance of an exponential filter for increasing
values of a. In each of these plots four of the states were esti-
mated by the exponential filter while the fifth state, C1, was cal-
culated from the deterministic model which included a knowledge of
the disturbance.

In Figure 3.30, where a value of o = 0.7 was used, the esti-
mated states are almost identical to the unfiltered states as was the
case in the simulation studies. With o = 0.3, Figure 3.31 shows a
marked improvement in reducing noise and still gives accurate estimates
of the states. In Figure 3.32 the curves were further smoothed by
using an o of 0.1 but there is a slight indication of the estimate

lagging the actual curve for the case of C2.

3.9 CLOSED LOOP EXPERIMENTAL STUDY

A total of ten closed loop experimental runs were also made
on the evaporator and each run was plotted separately for clarity.
The manipulated variables plotted are the actual measured flows and
not the calculated values.

The base case is shown in Figure 3.33 where a "noise-free"
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run was made, using the four state measurements and a value of Cl cal-
culated from the deterministic model as estimates of the states for
control purposes. The disturbance applied was a 20% step down in feed
flow followed by a 20% step up, approximately 30 minutes later. The
process was controlled very successfully and little movement of the
primary controlled variable, C2, was detected. The details for
Figures 3.33 - 3.42 are given in Table 3.5.

This run was repeated with noise added to the measurements
and with the control calculations based on the noisy measurements and
the model value for Cl1. The results in Figure 3.34 show the actual
states, C2, W1 and W2. C1 is not shown since the actual value could
not be determined and the T1 curve which normally appears on the second
page plot had to be omitted since the wild fluctuations of the mani-
pulated variables rendered this page incomprehensible. Due to the
noisy measurements the manipulated variables fluctuate rapidly and
the states, though controlled reasonably well trendwise, are quite
oscillatory.

Figures 3.35 and 3.36 illustrate the results obtained by
using a Kalman filter based on a R;Q ratio of 25:1 and as expected
the curves are very smooth. In Figure 3.35 the disturbance was "seen"
and consequently the trend of the process was controlled reasonably
well. Figure 3.36 confirms the results obtained in the simulation
studies where a filter, which favours the model quite strongly, is not
aware of a disturbance. Since the estimates did not reflect the dis-
turbances in the feed flow, the first effect drained out on the step
down and then recovered on the step back up. By comparing the mani-

pulated variables in Figures 3.35 and 3.36 these results are readily



73

suorjeinoged [ |- p=po - ¥ Letjusuodxy Len3oy 2v°¢c

{043U0D UL pasn

L0 40 anjea |opow | g-p=go - - € Lel3usuodx3 Len3oy b€

- [T €0 gy uewpey Len3oy b€

- [ £0 v uewjey Len3oy 6€°€

- XY 13 gl uewgey Len3oy 8¢ ¢

- I 0 VL uew|ey Len3oy L£°€

- [ D g9 uew|ey Len3ay 9€°€

- ] 70 Y9 uew|ey Lengoy 5e°¢

suoiLjeinojeds - - - (Asiou) uo23| 4 ON Lenjoy ve°¢
[043U0D Ul pasnh

LD 40 anjeA |spou - - - (9344-3st0u) uaz|L4 oN Len3oy ge e

syaeway 0 q i pasn 491114 pake|dsiq sa1e3s a4nb iy

dduequnisip days e Jo adeMmeun SiL YOLYM 4d3[ L © SIOUBP - g
ddueqanisip dajs e o abpajMouy sey yoLym 433 |1} e Ssajousp - y
.Am pue m 40 sjuswsls ayz 4oj xipuadde 99s)
MOL®q p3je|nqel ade wyjiaoBb[e |043U0D Y3 UL pasn ssgewr}sa ay, -dn %oeq da3s %0z © Aq pamo| |04

MOL4 Po34 ul umop da3s %02 © 03 403eua0deAd By} 4o asuodsad doo| P3SOLD ®Y3} MOYS Zp°€ - ££°C saunbLy

IVINIWI¥IAXI d007 Q3S0TD  :2b°€ - €£°€ SIUN9I4 40 STIVLQ
S°€ 3avL



74

3 JFINT 3IVEAAL

$59004d 9344-3SLOU (94/4%02+°4%02-/dX3) €€°€ TNIIA

vT /
‘NI NI AT

OeH

LA Jd NI NONTD

SAIMANIN NI =1L S3EUNIA NI 3RIL
ET vOT = = 9= o) oET Y01 &z s o
+ + + + —t + + + 4_
. |
.m.\-..g“. T TO + +
—-.'41_.& i
£ |
w\wa_M T —-\ “+ M m - N: lw..
PPV YV VA ViV ol —
) I th !
w M/\.\/\/\/\z s 2 i
1
t + w ~+ +— +
|
» T
A M. % \J \
A A i} ? i
-?\,\/\,2 /\qf B% VU W
e
Je«é/a 2
>
g> A o
N d P
w __ , P2
o ! s 35 3
+ 4 b 7 +
i | ]
; | _
! | ”
+ + —+  E— : -




CONCN IN FC GLYCDL

LEVEL IN  IN- H2O

£

O

| | 2
- Qw\/\\/vw\//\/\/\/\/\’VVWV\J NS A

N r T

N T T

R +
W1

=

14
}
i
T

1 i
N AV , . S
}..
o T T T
0 & 5 78 Lich

TIML IN MIREITES

FIGURE 3.34  (EXP/-20%F,+20%F/FB) actual states, control based
on unfiltered measurements

75



76

3 T3 NT 3500V393L

S9]RWL3S3 Y9 4] L URW|RY UO paseq |OJIUOD ©S33e]S [enjoe

S3MNIN NI WL

CET vCT 274 oS a2 (o]
G- lo
3t e WL

m,\(/\l)\t(,l)).).\(/\lsy\l(l)\()\.\()\l). AN
S .
n
“ N
° Y

4

A |

(%3

B NI 3Ly

|

R
(3]

S

NIAZGT NI A074 WV3ELS

i

(84/4%02+°4%202-/dX3)

GE€°E J¥n9ld

S3UNIN NI Il
S

CET vGT 84 3z C
4 + + $ 4_
1
i
!
E 4./.
i
| e &
W’\'\"I\lll\.\l\l\ll\'\l\l\j’/\l\v
(U}
4y
B a3
T + N
1
i He
!
i
i
! |
._. +0
\ —_—— N d
2 !
i
Y S + 4

(XM NI NT 1337

VIR T NT N



77

4 930 NI INivi3an3L

S93ewWL}Sd 99 493 L4 uew]ey

SALMNIA NI 3NIL
CET Ot 87 5 S G
w . +o
n
Mw .%%5‘&
S
m /\I.}\.\/lr//\l:\'{;v
] Lm/\llt\.(.l\l)\l.f\l\o\(l\l\! b
o i
?%%{HL((‘)\(‘\I\J\/\(E
+ 28 4+
+ 14 \w,ﬁb
T —~1 L.,..
+ 4 +om
{

NIW/BT NI MOd WV31S

HIAAGT NI J1VaM0

uo paseq [043uod €sajels jenjoe (9d4/4%02+°4%02-/dX3)

207

9€°€ JYNIIA

SAMNIN NI 3AIL
=74 == Q2

G
.
!
1

| ia
i
+ +~
+ ..+U
- Iulll{\\'.lll
2 . dn
!
+ — ; ; 4 |

NI T3A

O NI

ey MTONTNTD

LUE



78

understood. In the latter case the control action is almost nil since
the estimates did not indicate any deviation from the steady state and
hence the process was virtually uncontrolied. Had the second step in
feed flow not been applied, the first effect would have drained out
completely.

The runs shown in Figures 3.35 and 3.36 were repeated using
Kalman filter 1 (Figures 3.37 and 3.38) and Kalman filter 4 (Figures
3.39 and 3.40). For each of these two filters, the first figure
mentioned shows the results obtained with knowledge of the disturbances,
and the second, those obtained without this knowledge.

The curves in Figures 3.37 again show good control but, since
Kalman filter 1A has a 1:1 ratio for R:Q, the state estimates are more
noisy and the controlled variables fluctuate more than with Kalman
filter 6A. However C2 is still controlled very well. In Figure 3.38
the first effect level did begin to drain out on the step down in feed
flow but not to the same extent as with Kalman filter 6B. This is to
be expected since the measurements were weighted more heavily for this
run. The control of C2 is not quite as good as in Figure 3.37 but is
still acceptable. There is very little difference between Figures 3.39
and 3.40 since Kalman filter 4 has an R:Q ratio of 1:4, and consequently
knowledge of the disturbance is less significant. Therefore, a small
R:Q ratio offers the advantage that the control is Tess likely to suffer
due to "unseen" disturbances. However, the general control of the
levels and, to a lesser extent the second effect concentration was not
$o good since by weighting the measurements more heavily, the estimates
and hence the manipulated variables are noisier. This in turn Teads to

the actual states being noisier. The contro] of the process is still,
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nevertheless, a considerable improvement over the case of unfiltered
measurements (c.f. Figure 3.34).

Figures 3.41 and 3.42 illustrate the detrimental effect of
the lag introduced by low values of a in the exponential filter. Since
the simulation studies and open loop experimental studies indicated
that only small values of « would produce any significant differences
from the unfiltered case, only a = 0.3 and a = 0.1 were used in the
closed loop experimental runs.

In Figure 3.41, with o = 0.3, the curves were smoothed
considerably but the time lag due to the filter resulted in oscilla-
tions of greater amplitude than the original noisy fluctuations. The
flattened parts of the separator level oscillations indicate that on
three occasions this level dropped below the physical 1imit of the
measuring device (sight glass). Another detrimental effect was that
since the process was controlled so poorly with this filter, the first
effect pressure oscillated from very high to very low values quite
rapidly. This resulted in solution overflowing from the separator
to the condenser periodically, whenever the first effect pressure
became high.

With o = 0.1 the situation became more extreme as shown in
Figure 3.42. Here, although the oscillations were still smoother their
amplitude increased and the frequency decreased. The same problems
were again encountered but to a greater extent. The separator level
was controlled so badly in fact that, at approximately the 60 minute
mark, a bad input was read by the computer; consequently this control
loop was put on manual operation by the DDC program with a Tow output

value such that the separator level rose and did not return to its
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normal steady state. From a control point of view this run was a
disaster and the previous one in Figure 3.41 was not much better. These
runs confirm the conclusion of the simulation study that using the
present control algorithm, which does not account for any time lag in
estimation, an exponential filter could not improve upon the unfiltered

control run.

3.10 CONCLUSIONS

Both simulation and experimental studies demonstrated that
the Kalman filter could successfully be used to estimate the states of
a stochastic process. Further, it has been shown that these estimates
can be very effectively used in an optimal multivariable control system
giving a marked improvement over the situation where noisy measurements
are not filtered.

A sub-optimal filter of the same form as the Kalman filter
but having an arbitrary gain matrix was also briefly studied. The
e]ement§ of the gain matrices used were found to be too high so that
the filtering of the noisy measurements was inadequate. Although it
might be possible to improve the estimates of the sub-optimal filter
by trial and error changes in the elements of the gain matrix, the
systematic selection of this matrix by the Kalman filter is a distinct
advantage.

A conventional exponential filter was considered in some
detail but it was found that very small values of o were required to
reduce the noise level in the open loop state estimates. Due to the
time Tlag inherent in this technique, it was observed that values of
o small enough to reduce the noise produced oscillations in the closed

Toop system. These oscillations increased in amplitude as o was
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decreased. It should be possible to iﬁprove upon this situation if
the time lag was accounted for in the control system, but for the
present control algorithm, the exponential filter was nct able to
improve upon the situation with no filter.

The success of the Kalman filter depended very strongly on
two factors:

1) the choice of the weighting matrices R and Q, and

2) knowledge of the step disturbance in the model calcula-

tions.

If the model of the process under consideration is reasonably
accurate and it is possible for the filter to "see" any input dis-
turbances, "best" closed loop results can be achieved by using a high
R:Q ratio as shown in Figure 3.16 (simulation) and Figure 3.35
(experimental). However, by weighting the model so heavily (i.e.
large R:Q ratio) the control will be disastrous if the filter is not
aware of sustained disturbances (Figures 3.17 and 3.36).

For the case where it is not possible to measure the input
disturbances, the estimation and hence the control cannot be as good.
Here the measurements have to be weighted more heavily in order to
compensate for unmeasured disturbances; hence the R:Q ratio must be
relatively small (see Figures 3.18 and 3.40). Even a 1:1 ratio was
found to give reasonable results in a closed Toop experimental run
(Figure 3.38) but this filter may not have been so successful had the
second step in feed flow not been applied. A similar situation
arises if the model does not represent the process very accurately.
In this case the measurements have to be weighted more heavily and

again a small R:Q ratio is required.
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The studies here dealt with a stochastic process with
'relatively high noise levels. Although the conclusions indicate
general trends for any such process, it should be noted that for
less noisy systems the measurements could be weighted more heavily
while still achieving good results.

In general it is advantageous to weight the measurements
as highly as possible (while eliminating fhe noise as much as possible)
so that the problems of having an inaccurate model or "unseen" dis-

turbances are minimized.
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CHAPTER FOUR
LITERATURE SURVEY AND BASIC EQUATIONS FOR THE LUENBERGER OBSERVER

4.1 INTRODUCTION

In 1964 Luenberger [1] formally demonstrated that the state
vector of a linear, time-invariant, deterministic system cqu]d be
reconstructed from observations ofAthe system inputs and outputs.

It was shown that the Luenberger observer js itself a linear system
whose complexity decreases as the number of output quantities available
increases.

In most control situations the entire state vector is not
available for measurement and the minimal order Luenberger observer
has been shown to be a most useful tool in reconstructing these
states. Luenberger demonstrated that the design of the observer is
relatively simple and proved thét the order of the observer need only
be equal to the number of unmeasured states, i.e. a "minimal-order

observer".

4.2 LITERATURE SURVEY

The theory was originally developed by Luenberger [1,2] and
since then many modifications and extensions have been proposed as
described by Luenberger in his recent review of observer theory [3].

A few of these extensions will be briefly discussed below.

For the continuous-time case, several authors [4,5,6] have
extended the theory to include time-varying systems and noise [7].
Aoki and Huddle [8] derived the discrete form of the observer for a
deterministic system and also developed an estimator for a stochastic,

discrete-time, linear, time-invariant system. The authors illustrated
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by a simple example that the performance‘of the observer could be com-
parable to that of the optimal filter. The design of this stochastic
observer is considerably more complex than for the deterministic case
but the form of the final equations is identical in both cases. The
authors call the observer a “"constrained estimator” since a constraint
is imposed in the design in order to achieve a minimal-order observer.
It is interesting to note that if this constraint were not imposed, the
stationary Kalman filter is obtained. The time-varying discrete case
has also been investigated [9,10]. '

Newmann [11] developed a reduced-order filter for a linear,
stochastic, continuous system analogous to the work in [8] for the
discrete case.

There have been several papers published (and some confusion
in the literature) regarding the effect of an observer on control system
performance, as indicated by a qUadratic cost functional. Sarma and
Deekshatulu [12] used the Luenberger observer in an optimal linear
regulator and demonstrated the improved performance over the optimal
regulator with incomplete state feedback. However, the authors stated
that, even with a correct initial state estimate and a deterministic
system, there is a small loss in performance due to the inclusion of the
observer in the closed-loop system. Porter and Woodhead [13], and
Newmann [14] quickly corrected this misconception and showed that the
loss in performance, under these conditions, was due entirely to
numerical inaccuracy. Bongiorno and Youla [15,16] presented a compre-
hensive mathematicai treatment of this problem, proving that in general,
there is an increase in cost when an observer is used in a control

system due to inevitable inaccuracy in the initial state estimates. It
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should also be noted that in practical applications there are model
inaccuracies and noise which contribyte to a further increase in cost.
The authors also demonstrated mathematically that this increase in cost
cannot be made arbitrarily small by choosing observer eigenvalues with
highly negative real parts. This is a somewhat surprising result since
the estimation errors are reduced more quickly with large negative
eigenvalues. (The corresponding result for the diséreEg case applies
to small positive observer eigenvalues.) The possibi]ity that a feed-
back law, other than the optimal one, could be better, when the observer
is employed in regulators, was also investigated. The authors concluded
that, with no prior statistical information about the initial states, no
feedback control law could reduce the additional cost (for all initial
plant states) below the value obtained with the optimal deterministic
controller. These conclusions were all obtained for the infinite-time
optimal feedback contro] problem. Sarma and Jayaraj [17] presented the
corresponding results for the finite-time problem.

Newmann [18]_derived an expression for the increase in cost
in terms of the initial conditions of the observer and also showed that
the increase was an implicit function of the design parameters of the
observer. He investigated the situation where statistical information
about the initial state estimates is available and optimized the design
of the observer by choosing the design parameters to minimize the
increase in cost. This procedure was extended to optimize the feedback
control matrix but it was thought that the increased computations may
not be justified. VYuksel and Bongiorno [19] also presented an algorithm
for the design of "asymptotic state estimators" (or observers). It was

shown that this estimator can be employed in optimally designed requlators
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The dangers of having estimator eigenvalues with large negative
(continuous case) real parts was again pointed out (i.e. cost +
as A > -x),

Other authors [20,21] have Proposed alternative design pro-
cedures for the observer which obviate some of the mathematica]
difficulties involved with the original technique while stil] fulfill-
ing the basic requirements.

There have been several reports of observers being used in
feedback controf systems [22-26] but these studies ape all of a
theoretical nature. Bona [26] investigated the application of an
observer to an inertial navigation system and compared the results
with those obtained using the Kalman filtep. Both techniques were
found to give comparable results but the observer was much easier to
implement. The author also confirmed that very smali eigenvalues
(discrete case) can give bad results when noise (or model1ing errors)
are present.

Most of the literature on this topic is concerned with
theoretical aspects of observers. There have been a few numerical
and simulation examples reported with reference to guidance and track-
ing systems. This survey has not revealed any reports of observers

being used in the field of process control.

4.3 THEQRY
The obseryep theory is presented for a discrete-time system
since this is appropriate for digital computer control systems. The

basic derivation is given along with two alternative design proceduyres.
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The dynamics of any errors in the estimates obtained from the observer
is analyzed and an expression for the steady state error between the
actual and estimated states for unseen disturbances is derived.
4.3.1 Basic Theory

The basic theory involved in designing a minimal-order
Luenberger observer for a discrete linear time-invariant system is
presented here. The nomenclature is (where appropriate) consistent
with the equations for the Kalman filter study.

The discrete state space model is given in Equation (4.1):
x(k+1) = ¢ x(k) + A u(k) + 8 dk) , k=0,1,2... (4.1)
with output equation:

y(k) =

[ o g

x(k) (4.2)

The optimal feedback control law whose derivation was discussed in

Chapter 2 has the following form:
!(k) = =KFB ’.((k) (4.3)

The object of the observer design is to reconstruct the state variables,
X, from observations of the process inputs, u and d, and outputs, Y» so
that the optimal feedback control Taw (Equation (4.3)) can be used.

Since the rigorous mathematical design of the Luenberger
observer has been presented in the literature many times [1-3,8], various
results will be summarized below without proof.

If the order of the process (i.e. the dimension of the state
vector) is n and the number of outputs is m, where m<n, then the (n—m)th

order observer has the following form:
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z(k+1) = E z(k) + E z(k) + F d(k) + G u(k) (4.4)

where the observer is driven by both the inputs and outputs of the
process (see Equation (4.1)). The (n-m)-dimensional vector, z, is the
observer state vector. In Equation (4.4) there are four matrices to
be specified (E, €, F and g). These matrices must satisfy the follow-

ing relations such that a transformation matrix, I, exists:

Te-EI = CH (4.5)

F=Te (4.6)

¢ - T (4.7
Then the relationship between, z and x, is given by:

2(k) = T x(K) (4.8)
provided that

2(0) = T x(0) (4.9)

The transformation matrix, T, s an mxn matrix.

If Equation (4.9) is not satisfied, Luenberger [1] reasoned
that since the eigenvalues of the dynamic matrix, E, could be selected
to be arbitrarily small, the error in the observed states tends to zero
as time tends to infinity (see Section 4.3.3 for a treatment of the
dynamic error equation). As was noted in the literature survey, however,
there is a trade-off between the speed of response to errors and the

increase in cost for closed loop systems so that there is an optimum

range of eigenvalues which will satisfy both goals within reasonable
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Timits.
Two equations are now available for reconstructing the

entire state vector:

y(k) = Hx(k) (3.2)

z(k)

it
n—
>
~~
~
N
———
S
oo
o

Combining these gives

z(k) I
ce . = e ).S(k) (4.]0)
y(k) f
or soiving for x(k) gives
177" [z
x(k) =
L
or Z(k)
x(k) = L] (4.11)
y(k)
where L is termed the reconstruction matrix and is defined by:
I -]
E = 1. (4.]2)
H

Thus, if the observer is driven by the inputs and outputs of
the process then the entire state vector can be reconstructed from the

outputs of the process together with observer states according to
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Equation (4.11).
Some auxiliary relations are derived for use in the second
design technique. The reconstruction matrix, L, may be partitioned so

that Equation (4.11) becomes:

o Jz(k)
§(k) = [L] Lol
x(k) = Ly z(k) + Ly y(K) (4.13)

[N

It is immediately obvious from the definition of L that:

L, JF
L. - L R B |

| -

or

LI+l H =1 (4.14)
It can then be easily shown that the relations:

(4.15)

{1na]
i
1=
e
5

(4.16)

no
u"
11—
e
|INg

are necessary and sufficient conditions for Equation (4.5) to be satis-
fied.

These are the basic relations for the Luenberger observer; the
design methods are considered in the next section.

4.3.2 Design Techniques

Two design techniques are considered. The first is the

original method presented by Luenberger [1] and the second is an
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alternative approach developed by Newmann [21]. These methods will be
referred to in this study by the names of the respective authors.

(a) Luenberger's Method

Referring back to Equation (4.4) there are four design

matrices to be specified (E, C, F and G) with the constraints:

I $ - E I = Q E (4.5)
F=Te (4.6)
G = Ta (4.7)

By specifying E and S the transformation matrix, I, is fixed. Equations
(4.6) and (4.7) then fix matrices [ and G, respectively, so that the
problem reduces to one of selecting E and C such that T exists and the
reconstruction matrix, L, is invertible. Luenberger [1] showed that
if $ and E have no common eigenvalues and the system is observable,
then T exists and L will be nonsingular. Here g may be arbitrarily
specified. The observer can then be designed in the following steps:
(1) Specify E (eigenvalues distinct and distinct from those of 2) and C.
(2) Evaluate T from Equation (4.5).
(3) Calculate F and G from Equations (4.6) and (4.7).
(4) Calculate L from Equation (4.12).
The state variables can then be reconstructed from a combination of the
process outputs and the observer states.

Step (2) is the most difficult and Luenberger [27] has pub-
lished a paper which may be helpful in solving Equation (4.5). The
problem can also be solved by the application of Kronecker matrix

products [28,29].
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The advantage of this design method is that the designer has
direct control of the matrix E and hence control of the eigenvalues of
E. From the foregoing discussion this is obviously a desirable feature.
The disadvantage is in the difficulty of step (2) and possible i11-
conditioning of matrix, L.

(b) Newmann's Method

Newmann's approach relies on the arbitrary choice of the
transformation matrix subject to the condition that the resulting
reconstruction matrix is nonsingular.

Utilizing Equations (4.15) and (4.16), his design reduces to
choosing one matrix, I.

The procedure is as follows:

(1) Choose any I so that L exists (this involves calculating L from
Equation (4.12) as a check).
(2) Obtain L

and L, by partitioning E.

p—"
nN

i
I

(3) CcCalculate E, C, F and G from Equations (4.15), (4.16), (4.6) and
(4.7) respectively.

The states can then be reconstructed as before.

The advantages of this method are:

(1) Only one design matrix need be specified.

(2) Inversion is guaranteed without any restrictions on the eigenvalues
of E and it is no longer necessary that the plant be completely
observable.

The one disadvantage is that there is no direct control over
the eigenvalues of E and hence no control over the speed of response

to errors.
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*
4.3.3 Error Dynamics of the Observer Estimates

The estimated state variables, X, which are reconstructed
by the Luenberger observer, can be related to the actual states, Xs

by the following equation:

(k) = x(k) + ax(k) (4.17)

1>

which defines the error vector, ax.

Multiplying throughout by T gives:

-

&(k) = Tx(k) + T ax(k)
or

2(k) = z(k) + az(k) (4.18)

Thus, recognizing the possibility of errors in the estimated states,

the observer equation becomes:

z(k+1) = E 2(k) + C y(k) + F d(k) + G u(k) (4.19)

Now

or from Equation (4.8):
8z(ke1) = 2(k+1) - T x(k)
Substituting for Z from Equation (4.19) gives:

p2(kt1) = E2(k) + Cy(k) + F d(k) +

{Jep}

u(k) - T x(k+1)
or

sz(kH1) = E 2(k) + € y(K) + E d(k) + G u(k) - Tox(k) - Tod(k) - Tau(k)

* For the Luenberger observer study in Chapters 4 and 5, "estimates"
refers to the values of the state variables calculated by the
observer, and is not used in the statistical sense.
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Rearranging gives:
az(k#1) = E (k) + (cH - Tg) x(k) + (F - To) d(k) + (6 - Ta) u(k) (4.20)

Substituting Equations (4.5), (4.6) and (4.7) gives:

az(kH) = E () - E T x(k)
or

az(k#l) = E(z(k) + 22(k) - T x(K))
or

sz(k#l) = E az(k)

Thus we have the dynamic error equation for the observer states:
az(k#1) = E az(k) (4.21)

which shows that if the eigenvalues of E are small then the error in
the observation will quickly tend to zero with time.

Since it was of interest to investigate the performance of
the observer with unmeasured step disturbances to the process it was
decided to derive an expression for the steady state gain of the
dynamic error equation for the process state variables.

The analysis proceeds as before except that the observer
is not driven by the disturbance vector, d. Equation (4.79) tnen

becomes :
2(k¥1) = E 2(k) + L y(k) + G u(k) (4.22)

Carrying this through the analysis, Equation (4.21) has an additional

term due to the unmeasured disturbance vector, d:



sz(k+1)

= £ az(k) -

W—i
no

d(k)

100

(4.23)

After a step disturbance to the process Az(k+1) will eventually

equal Az(k) at the new steady state, i.e. Equation (4.23) becomes

iz,

EAzgq - 1e C-lss

where ss denotes the steady state.

Rearranging Equation (4.24) gives:

s

-1
(E - l) l o qss

Going back to Equation (4.13) gives:

x(k)

and

x(k)

="

z(k) + L, y(k)

N

I

Ly z(k) + L y(k)

Recalling Equation (4.17):

ax(k)

gives

x(k) - x(k)

(4.24)

(4.28)

(4.17)

(4.27)

(4.28)

(4.29)
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Substituting Equation (4.25) into Equation (4.29) gives the steady
state gain equation for the error in the reconstructed states due to

an unmeasured disturbance:

e = Ly (E- D)7

—SS

nrm
n—
o

do (4.30)

Obviously, for no disturbances, gss = 0 and consequently the
steady state error in the reconstructed states is zero. In general,
the vector Moo will have zeros corresponding to the measured states
and nonzero elements for the unmeasured states. It can be seen from
Equation (4.30) that the steady state offset is not a simole function
of the observer design parameters and it is impossible to design an
observer which will minimize the offsets for all states for all

disturbances.
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CHAPTER FIVE
EVALUATION OF THE LUENBERGER OBSERVER

5.1 INTRODUCTION

The results of the simulation and experimental evaluations
of the Luenberger observer are presented in this chapter. First a
simple numerical example, chosen from a report by Munro [1], was
investigated for both continuous-time and discrete-time models (the
results for the discrete case are presented in detail). The com-
puter programs used in the double effect evaporator simulation and
experimental studies are briefly described followed by presentation
of the results.

Using the evaporator model, three simulation studies were
performed with different assumptions concerning which state variables
are measured in each case. The first study considers the situation
where the first effect enthalpy and the first effect concentration are
not measured so that a second order observer is required. Another
second order observer was investigated for the second case where the
first and second effect concentrations are not measured, and finally
the product (second effect) concentration only was assumed to be
inaccessible, yielding a first order observer. The first and third
" of these studies were also investigated experimentally. A descrip-

tion of the double effect evaporator is given in Chapter 3.

5.2 NUMERICAL EXAMPLE OF MUNRO [1]

A numerical example was chosen from a report by Munro (1.
The original problem comprised a fourth-order, continuous, state space

model with two inputs, d, and two outputs, y:
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-2 1 0 0] 0 0
0 -2 1 0 0 0
x(t) = x(t) + d(t)  (5.1)
0 0 -1 1 0 1
| -1 0 0 0] 1 0]

The eigenvalues for this system consist of two complex

conjugate pairs:

- 0.307 £ 0.318 j

+

>
—d
w
N
1

+

- 2.192 + 0.547 j

Munro extended Luenberger's original design procedure to
include a systematic selection of the coefficient matrix C (in the
dynamic observer equation) after having specified E. The final observer
design for this example was presented in his report but no attempt was
made to evaluate the effectiveness of the observer.

The E and C matrices used by Munro were:

-3 0]

E = F (5.3)
} L0 -3 ]
-1 -1 T

¢ = ' (5.4)
= -1 -6 ]

In the present work, this observer design was verified using
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the original design method and the input matrices (E and C) specified

by Munro. This observer was then simulated using IBM's Continuous
Systems Modelling Program (CSMP) on an IBM 1800 digital computer. Since
the simulation results for the continuous observer correspond very
closely to the results for the discrete case (see below), they will not
be considered in detail.

The system equations and the dynamic observer equation were
then discretized to obtain the corresponding discrete system. Using
this design as a base case, two other observers were designed with
faster dynamics by simply reducing the eigenvalues of the E matrix.
These three observers were evaluated to discover the effect of
unmeasured disturbances and incorrect initial estimates; the results
are presented in the following section.

5.2.1 Evaluation of the Observer for the Discrete System

The continuous model was discretized for a time interval of

0.13 using the GEMSCOPE program [2]. The resulting discrete model is
given by:

[ 0.7687 0.1011  0.0069 0.0003]

-0.003  0.7687 0.1081 0.0076
x(k+1) = x(k)
-0.0076 -0.0003 0.8767 0.1232

[ -0.1756 -0.0073 -0.0003  1.0000 |

0.0000 0.0003 ]
0.0003 0.0076
0.0083 0.1232

| 0.1315  0.0000 _
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y(k) = x (k) (5.6)

The observer design is identical to that for the continuous

case except the discrete form of the observer is now used:

0.6771 0 -0.1077 0.1077
z(k+1) = z(k) + y(k)
0 6.771 -0.1077 -0.6460 | -

0.0014 -0.0048
+ d(k) (5.7)
0.1334 -0.3926

where

-1.1625 1.2839 -0.1150 0.0167 |
z(k) = i x(k 5.8)

0.0942 -0.0176 -3.1858 1.2158 ;~

and the reconstruction matrix is:

0 0 1 0

0.7788 -0.0094 0.9062 0.0595
L = (5.9)
= 0 0 0 1

1
i

0.0112 0.8223  -0.0644  2.6211_

The other designs differed only in that the eigenvalues of E were made
more negative (see Table 5.1 for these values).

A11 the observer designs successfully reconstructed the state
variables when the initial state estimates were exact and the observer

was aware of all disturbances.
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The effects of incorrect initial state estimates and unseen
disturbances in each of the inputs (d1 or d2) were investigated. 1In
each investigation, the actual response and the response of the
observer were generated using the digital simulation program SPES
and plotted by the program LPLOT. The results are summarized in
Table 5.1. |

Figure 5.1 shows the actual model response to a nonzero
initial value for x1. Figures 5.2 - 5.4 illustrate the response of
the observer to bad initial estimates for x2 and x4. In each of
these three figures, only estimates of x2 and x4 are plotted since
the remaining two state variables (x1 and x3) are reconstructed
exactly. This follows since x1 and x3 are also output variables
(cf. equation (5.6)). These figures show that the errors in the
state estimates decrease more rapidiy when observers with smaller
eigenvalues are used.

In Figure 5.5 the model response to a step change in dl
is plotted, while Figures 5.6 - 5.8 show the reconstructed states
%2 and x4 for the case where the observer was not driven by the step
disturbance. State variable x2 is reconstructed exactly but x4
deviates somewhat from x4. By comparing Figures 5.6 - 5.8, it can be
seen that smaller eigenvalues reduce this discrepancy.

An unmeasured step change in d2 again gave an excellent esti-
mate of x2, bﬁt a significant ervor in the estimate of x4 resulted.
Figure 5.9 shows the actual response of the model and the reconstructed
states x2 and %4 are illustrated in Figures 5.10 - 5.12. In this case
the smaller eigenvalues change the shape of the %4 curve but do not

appear to reduce the final offset.
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The results obtained with incorrect initial state estimates
are as expected. However, the theory does not predict either the
effect of unmeasured disturbances or the best eigenvalues (large or
small) which should be used when such step changes occur. The results
here indicate that the effect of these unmeasured disturbances depends
on the specific disturbance and that changes in the eigenvalues may
improve one situation but not the other. Exactly the same conclusions

were drawn from the corresponding study of the continuous system.

5.3 COMPUTER PROGRAMS FOR THE SIMULATION AND EXPERIMENTAL STUDIES

The computer programs used were basically those described in
Chapter 3 for the Kalman filter studies. The simulation program, SPECS,
was modified to include the Luenberger observer for state estimation.
Process and measurement noise were optional for the observer but other-
wise the program remained unchanged. An additional program, LUEN, was
written to perform the observer design calculations off-line. The
experimental programs were simply adapted to include the Luenberger
observer option, and the plotting routines were used as before to

present the results.

5.4 EVAPORATOR SIMULATION STUDY 1: W1, W2, C2 MEASURED

In the first simulation study for the double effect evapora-
tor, three states (W1, W2 and C2) were measured and a second order
observer was used to reconstruct the entire state vector, x, (i.e. the
remaining states, C1 and H1).

Several observer designs for a range of observer eigenvalues
successfully reconstructed the states in both open and closed loop

runs where there was no noise present, no unmeasured disturbances and
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no incorrect initial conditions. Referring back to the theoretical
analysis in Chapter Four, it is obvious that the state reconstruction
should be exact for these conditions. The results presented here
illustrate the performance of the observer when these ideal conditions
no longer hold; the details of the figures are presented in Table 5.2.

5.4.1 Effect of Incorrect Initial Estimates

Small observer eigenvalues were successfully employed in
open-loop (see Figure 5.16) and closed-loop (Figure 5.17) runs with
incorrect initial state estimates. When larger eigenvalues were used,
the observer was still effective but the response to the initial error
was slower. With small observer eigenvalues in the closed-loop control
scheme, the response time could be reduced and oscillations were only
introduced when the eigenvalues became as small as 107 (see Figure
5.13).

The results here were as expected with an eventual breakdown
in the observer estimates which was attributed to numerical diffi-
culties due to the very small eigenvalues. With even smaller eigen-
values than those used in Figure 5.13 the oscillations became very
bad and the general trend of the state variables was not controlled.

5.4,2 Effect of Unmeasured Feed Flow Disturbances

Figure 5.14 shows the response of an observer with large
eigenvalues to an open loop run which included a nonzero initial value
for C2 and two unmeasured disturbances in feed flow. As expected, the
three measured states are reconstructed exactly. The C1 curve is esti-
mated quite accurately but H1 (i.e. %1) deviates from the true value
(the actual curves are also plotted for comparison). A closed loop run

subject to the same initial conditions and disturbances was also made



116

4 %02 F %0€- = 1) %0€- =20 TO &3 VE 48A43Sq0 Len3oy a4 02°G
4 %02 * %0€- = 13 %0€- =20 TJ 3 Y2 43A43sqQ Len3oy a4 6L°G
. o 2 g€ 4dA43SqQ .
49 %0¢- 3094409 oz 5 ThH 97 A9A435G0 pajewt3s] 10 8L"g
4 %02 * RET T WM moe- =20 T 7@ s womesqp Lenyoy a4 R
4202 ¥ %06- = 1D %0€- =20 10 <3 ge 43A48sq0 pajewLysy 10 9L°G
4 %02 10984409  %0€- =20 [0 I3 9z 43AJ43sqQ Len3oy a4 GL°G
4 %02 F 1084409  %0€- =23 [0 L3 gg 43A43sq0 pajewL}s3 10 vL1°G
4 %02 * ROET S W s0e- =20 O STT vl Jonssqo Len3oy a4 £L°S
aosuequnasiqg ajewL]sy 2123 ) 3 pasf saunbLy ul L041U0) 34nb 14
dais 23e1$ leL3Lut 439AJ3SqQ pafeidsiqg
LeL3Lug : . $39101S

*3ouUeQUN]SLp da3s B JO 34BMEUN SL YOLYM UDAU3SQO ue S830u3p - g
*2oueqanlsip dajs e jo 3abpa|mouy Sey YdLyMm udAUISQO ue S330u3p - Yy
*xi1puadde ayj3 uL punoj aq ued sadLJjew w pue m 3Yz 40 sjusuels Y3
4O SSN(BA [@DL43WNU BY3} pue MO|3q paje|ngel aJe S|Le3sp J4ayjung *[04AJUCI Oeqpsdl fewtydo yaLm

suna 9yl 404 pa3rold os|e ade $9303S Y} JO SIIRWILISD JIBXI YILM SIAUND doo-paso|d ,ledplL, 9yl
+25uU0dSad JDAUDSQO Y3} YILM uosiaedwod e 40} pajjold si dsuodsaa jenjde ayj sund doo| uado ayy 404

L AGNLS NOILYINWIS :02°G - €L°G S3uN9I4 40 S1Iviid

¢°G 378Vl



117

4933 NI UUWBEI06L

S97RWLIST YL 43A43Sq)

U0 paseg [043u0) —— “3SRY LBIPT +++ (94/4702%/W1S) €175 NI
SIIMNIA NI 3NIL SIIMNIN NI 3811
= Y s e ) ) =S =Y 5 & o
5 o u
et}
z
LB
Z
| 2
s Z

NIW/AT NI 310

27

32
T

}n

ot

NI B30

02 -NI

TOAE Id NI NONDD



118

3 930 NI 2NUIR3ESGL

g2 J4dA49sqQ
Wod4 sojewilsy —— “s3a1eIS | eNIOY +++ (70/4%02%/WIS) PL*G 3¥N9I4

S3ITNIN NI 3nIf SZIMNIN NI 3AIL
b= 2 1= V4 5 ge (=11 [e) (= =74 £5 (= &7
B+ o
o W:. 1
g o
m,m —— ¢ ———t t %e = +
—
S z ) A + + $
o p——+ J W
—
i, Z {

02H NI NI OB

-+

8}
r4:] uva 4+ N + + + . . .
3 + ———t
% 12
1 19 gvr L
=z
—t—t—t— — st @
4 = + +- + +- +
Z L
T —+ + +—t T L A

TOAY 3d NI NONDD

ot

+
f
-+
4

+



119

(Figure 5.15) using optimal feedback control based on the observer
estimates (EFB is given in the Appendix). The same observer was used
for the closed loop run and the actual controlled states are illus-
trated together with the ideal curves (i.e. deterministic system with
exact states estimates) in Figure 5.15. The results show that the
system responds to the initial offset quite quickly and the "unseen"
feed flow disturbances do not upset the process unduly.

The runs in Figures 5.14 and 5.15 were then repeated using
faster (i.e. smaller) observer eigenvalues. In the open loop run
(Figure 5.16), the C1 and H1 curves show spikes due to the "unseen"
disturbances and in the case of the C1 estimate there is a considerable
offset between the step changes. It is noteworthy that for this run
there was also a bad initial estimate for C1 but the fast eigenvalues
deal with the situation very quickly and effectively, as can be seen
in the C1 and H1 curves. The results of the closed loop run are shown
in Figure 5.17. The offset due to the observer in the open Toop run
obviously has a bad effect on the control of Wi and C2, particularly.

It would appear then that for "unseen" disturbances in feed
flow, the larger (slower) eigenvalues are better. Again it should be
noted that the run shown in Figure 5.17 includes bad initial esti-
mates for both C1 and H1 but since the observer responds so quickly
this has a negligible effect on the closed loop response.

5.4.3 Effect of Unmeasured Feed Concentration Disturbances

Figure 5.18 shows the actual open loop response of the model
to a 30% step down in feed concentration. Also plotted are the recon-
structed states using two observer designs - one with fast eigenvalues

(Observer 3B) and one with slow eigenvalues (Observer 2B). The
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observer with slow eigenvalues does not respond very well to the
unmeasured disturbance. The C1 curve is not very good and the H1 curve
is very poor resulting in a final estimate of about 1.6 times the actual
steady state value. The fast eigenvalues allow the observer to recon-
struct the states almost exactly. This implies that fast eigenvalues
are better for a feed composition disturbance which is contrary to the
conclusions reached in the previous section for feed flow disturbances.

5.4.4 (Qbserver Design Considerations

In practical situations there are liable to be incorrect
initial estimates and "unseen" disturbances so that it is desirable to
design an observer which is satisfactory for all these situations. As
was seen in the previous sections, there is no observer which is best
for all conditions; consequently some sort of compromise in the design
is necessary. In view of this problem, an investigation of the steady
state errors in the observer estimates was carried out in an attempt
to find a satisfactory design. This design should give small observer
errors for all types of unmeasured disturbances and should also
respond quickly to incorrect initial state estimates.

Referring to the theory in section 4.3.3, it can be seen
that the steady state error in observing the states can be calculated
for any observer design and for each of the three types of disturbances
(F, CF and HF). A computer program was written to perform this task
and the steady state errors for three typical "unseen" disturbances
were tabulated as a function of the observer eigenvalues. A study was
also made to determine if different g matrices (coefficient matrix of
the model outputs in the dynamic observer equation) would affect the

observer errors for "unseen" disturbances.



125

The disturbances considered were:
(a) a +20% step change in feed flowrate,
(b) a -30% step change in feed concentration, and
(c) a +20% step change in feed enthalpy.
The results of this study are presented in Table 5.3. The

C matrix used in this study was G]:

Referring to Table 5.3 it is difficult to choose the ‘best' set of
observer eigenvalues. Faster eigenvalues are more satisfactory for
disturbances (b) and (c) whereas the slowest eigenvalues are best for
disturbance (a). The best compromise seems to be the eigenvalue set:
0.7, 0.8, This design gives reasonably small errors for disturbances
(b) and (c) and although the estimate of (] for disturbance (a) is not
very good, it is desjrable that the observer eigenvalues should not be
too Targe in order to achieve a quick response to incorrect initial
state estimates. Another reason for not using the largest eigenvalues
is that, for the evaporator; disturbance (b) is the one which is most
difficult to detect and is therefore the most Tikely "unseen"
disturbance,

Using the largest set of eigenvalues in Table 5.3, the ele-
ments of the C matrix were varied to discover the effect of this matrix
on the steady state estimation error for “unseen" disturbances.

As in the previous study, regarding the observer eigenvalues,

it is very difficult to see, a priori, how (or if) changes in the
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elements of the C matrix will affect the observer estimates. It was
therefore decided to investigate -the situation systematically by
changing the weighting of various columns of C and also by increasing
all the elements of the g matrix. The weighting on two specific
elements was also increased, in turn, to see if this would produce any
improvements.

The results are presented in Table 5.4. It appears that,
although changes in the C matrix do affect the steady state estimation
errors quite significantly, there is no C matrix which will give better
results, for all situations, than 1. Simulation studies (not pre-
sented) indicated that changes in the C matrix had very little effect
on the dynamic response of the observer. The numerical values of the
elements of the C matrices used can be found in the appendix.

5.4.6 Effect of Process and Measurement Noise

The Luenberger observer was not originally designed for
stochastic processes [3] but it was of interest in this study to see
how process and measurement noise would affect the performance of the
observer. Several runs with noise were made using the observer for
both open and closed loop simulations. In general the observer did
not respond well to noise and only the obscrvers with large eigen-
values provided a satisfactory estimate.

Figures 5.19 and 5.20 compare the performance of the observer
with 10% noise levels (process and measurement noise) with the ideal
case of perfect, noise-free state estimates. The runs began with C2
initially 30% below the normal steady state value and with an incorrect
initial estimate for C1. The observer estimates were used in the

optimal controller and the curves show the actual controlled state
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variables before measurement noise was added. Two step disturbances in
feed flow were applied. The observer eigenvalues used in Figure 5.19
were large and although the curves are very noisy the general trend
seems to be controlled. However, in Figure 5.20 where smaller eigen-
values were used, the control is very poor and quite unacceptable.

It can be concluded that, as expected, the deterministic
Luenberger observer is not a very satisfactory method of state esti-
mation for stochastic systems, but where noise is encountered better
results can be achieved with larger rather than smaller observer
eigenvalues. In this case, a better approach would be to use either
the estimator proposed by Aoki and Huddle [4], which is an extension
of the observer for stochastic systems, or the Kalman filter used in

the first part of this thesis.

5.5 EVAPORATOR SIMULATION STUDY 2: W1, HI, W2 MEASURED

For the second simulation study it was assumed that state
variables C1 and C2 could not be measured so that the observer was
again second order and was driven by the outputs W1, H1 and W2. Many
problems were encountered with this system and although the reasons
are not fully understood, it is believed that these difficulties are
due to the systeﬁ being "marginally" observable.

Before discussing this point further, the results for this
system are briefly summarized.

The first problem was that even for perfect conditions (i.e.
correct initial state estimates, no noise and no unmeasured disturbances)
an oscillatory closed loop response was observed with an observer
design using eigenvalues of 0.1, 0.2. These eigenvalues are not very

small and it is surprising that the control is so poor. Strange results
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were also encountered when the effect of incorrect initial estimates was
investigated. For bad initial estimates of C2 the observer behaved nor-
mally with smaller eigenvalues giving a faster response. However, for
bad initial estimates of CI only very large eigenvalues would give stable
observations and hence the response was slow. Runs with "unseen" distur-
bances were al1 unsatisfactory due to very sharp peaks in the observed
curves.

In Luenberger's original paper [3] it was stated that further
study would be required for "marginally" observable systems. The
observability of the system was checked by applying a standard test

[5, p. 401]. This meant constructing the matrix S:

T! 1210 71

]
B R U L UL O

= et

o

(5.10)

The system is completely observable if and only if the 5 x 15 matrix is

of rank 5. If there is a nonzero 5 x 5 determinant then the rank of S

is 5. However, if these determinants are all very small the system,
though theoretically observable, is very close to being unobservable and

a case can be made for stating that it is "marginally" observable. Now

in Luenberger's design method it is necessary for the system to be
observable so that the L matrix is non-singular. If the system is "mar-
ginally" observable then the L matrix will be close to being singular and
numerical difficulties can be expected with the matrix inversion procedure
required to generate L.

By.checking the observability of system 2 it was found that the
determinants were very small and also much smaller than those for system
1 (by an order of ]04).

A more physical interpretation of observability is given by
Ogata [5, p. 3727 -- "Essentially, a system is qomp]ete]y observable

if every transition of the system's state eventually affects the system's
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output". By examining the transition matrix, ¢ (see appendix) it can
be seen that a change in C2 affects only C2, and to a very small extent,
W2. Furthermore a change in W2 affects only W2. Although a change in
Cl1 affects all five state variables, the measurement states (W1, H1,
W2) are affected much less than the unmeasured ones. Thus from a
physical viewpoint it also follows that this system is "marginally"
observable. Intuitively, we would also expect some difficulty in esti-
mating two concentrations based on measurements of only holdups and

the first effect enthalpy. By contrast for system 1 changes in C1 and
H1 (especially) affect the measured states to a much larger degree so
that we would expect system 1 to behave more satisfactorily than system

2.

5.6 EVAPORATOR SIMULATION STUDY 3: W1, H1, W2, C2 MEASURED

An investigation similar to Simulation Study 1 (in section
5.4) was carried out for the case where state variables W1, H1, W2
and C2 are measured and C1 is estimated by the first order observer.
This is the current physical situation for the pilot plant evaporator
since the first effect concentration is not measured on-line. A direct
comparison was also made here with the sub-optimal filter used by
Newell [6] for this system to see if the Luenberger observer could
improve upon previous results. The sub-optimal filter used was
identical to that for the Kalman filter study and the gain matrix had

the following form:

09 0 0 0 ]
0 0 0 0
0 0.9 0 0
0 0 09 0

| 0 0 0 0.9 |
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A study was made of the steady state estimation errors due
to "unseen" disturbances for several observer designs in order to find
the "best" design. This was similar to the analysis carried out for
system 1 in section 5.4.4,

Again, the disturbances considered were as before:

(a) a +20% step change in feed flowrate,
(b) a -30% step change in feed concentration, and
(c) a +20% step change in feed enthalpy.

The C matrix was arbitrarily chosen to be:
¢c =0 1 1 1]

and several values of the scalar, E, were tried in order to find the
"hest" design for all unmeasured disturbances.

Erom Table 5.5 it can be seen that large eigenvalues are
better for disturbances (a) and (c) whereas small eigenvalues give
smaller errors for disturbance (b). Using the Targest eigenvalues,
the errors appear to be tolerable for all types of unmeasured dis-
turbance whereas a small decrease gives a rather large error for
nunseen" disturbances in feed flow. It was therefore thought desir-
able to choose E = 0.9 as the "best" observer design for all possible
situations.

it is of interest to compare the steady state estimation
errors obtained with the Luenberger observer to those for the
stationary Kalman filter (for the case of unmeasured disturbances).
Therefore, a similar error analysis was carried out for the Kalman
filter (see appendix for Chapter 5 for the derivation of the steady

state error equation). It can be seen from Table 5.6 that offsets
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TABLE 5.6
DEPENDENCE OF KALMAN FILTER STEADY STATE ESTIMATION ERRORS ON THE
R:Q RATIO

Steady State Error (%) in:

~ " - = Type of Unmeasured
Filter R:Q Ratio W1 Cl H1 W2 C2 Disturbance
Kalman 1 1:1 -30 4 0 -10 -1
Kalman 2 1:100 0 -23 0 0 0 +20% feed flow
Kalman 5 100:1 -248 9 0 -388 11
Kalman 1 1:1 2 26 0 6 16
Kalman 2 1:100 0 5 0 0 0 -30% feed concen-
Kalman 5 100:1 0 30 0 8 30 tration
Kalman 1 1:1 5 -1 -2 4 -3
Kalman 2 1:100 0 0 0 0 0 +20% feed
Kalman 5 100:1 35 -4 -2 1826 -12 enthalpy
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also occur for the Kalman filter when unmeasured step disturbances are
applied to the process. However, these errors are not restricted to
the estimates of the unmeasured variable, C1. Due to the multivariable
nature of the Kalman filter, all the estimates are affected by an
incorrect model (one which is unaware of step disturbances). Three
filters .were analyzed: Kalman filter 1 has an R:Q ratio of 1:1,

Kalman filter 2 a ratio of 1:100 and Kalman filter 5 a ratio of 100:1.
Thus filter 1 weights the model and measurements equally whereas filter
2 favours the measurements strongly and filter 5 favours the model.

The results show that the steady state estimation errors increase as
the weighting tends towards the model, as would be expected. It is
interesting to note that for Kalman filter 2, where the measurements
are favoured, the only steady state error is in C1 which is not
measured.

Using the "best" observer design, comparisons were made
between the Luenberger observer and the sub-optimal filter for two
types of “unseen" disturbance and for incorrect initial estimates of
Cl. The details for the subsequent figures in this study are presented

in Table 5.7.

5.6.1 Comparison of the Luenberger Observer and Suboptimal Filter for

an Incorrect Initial Estimate of Cl

Two open loop runs were performed where the initial estimate
of C1 was 30% below the actual steady state value. Although the
unforced process remained at the initial steady state, the estimated
curves show an initial transient due to the bad initial state esti-
mates. Figure 5.21 shows the actual states and the response of both

the Luenberger observer and the sub-optimal filter. A smaller value of
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E would speed up the rate of response of the Luenberger observer but
this would cause problems for some of the later runs with "unseen"
disturbances.

5.6.2 Comparison of the Luenberger Observer and Suboptimal Filter

for an Unseen Disturbance in Feed Flowrate

Here, the system was subjected to a 20% step up in feed flow
after 30 mins. and a step back down after 60 mins. Both open and
closed loop runs were made for the sub-optimal filter and the
Luenberger observer.

For the open loop system, Figure 5.22 shows the actual
states and the response of both the observer and the sub-optimal
filter to the unmeasured disturbances. It is apparent from these
curves that the sub-optimal filter is slightly better than the
Luenberger observer; However, for the closed Toop runs the differ-
ence in the curves cannot be detected (Figure 5.23) and both methods
give a satisfactory closed loop performance which is very close to the
ideal case. The closed loop runs exhibit excellent control because
slight inaccuracies in the C1 estimate have 1ittle effect on the
control action since the optimal controller design included Tittle
weighting of the C1 response (i.e. deviations of C1 are not considered

to be as critical as those in C2, W1 and W2).

5.6.3 Comparison of the Luenberger Observer and Suboptimal Filter

for an Unseen Disturbance in Feed Concentration

The base case for this comparison was a 30% step down in feed
concentration at the 10 minute mark and again both open and closed loop
runs were made with the Luenberger observer and the sub-optimal filter.

Neither open loop run gave a very accurate estimate of C1 but the
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observer is slightly better than the sub-optimal filter (see Figure
5.24). The closed loop runs in Figure 5.25 were both very good in
that the primary controlled variable (C2) and the two levels were all
controlled very well. The observer is only slightly better than the
sub-optimal filter and in both cases the control was very close to
the ideal case.

It can be concluded that the observer is only very slightly
superior (if at all) to the sub-optimal filter used by Newell [6] but
it remains to be seen whether experimental runs (with a small degree
of process and measurement noise and slight model inaccuracies) will

confirm this result.

5.7 EVAPORATOR EXPERIMENTAL STUDY 1: W1, W2, €2 MEASURED

Both open and closed loop runs were made on the evaporator using
the second order observer to estimate the entire state vector. The
details of the experimental runs in this study are given in Table 5.8.

The base case for the open loop runs was the same response to
a -30% step change in feed concentration that was used in the Kalman
filter study in section 3.8. The open loop data taken from the evapora-
tor included the four state measurements, W1, H1, W2 and C2, although
the off-line analysis of this data using the second order observer
required only three of these measurements: W1, W2 and C2. In the
figures, for the open loop runs, the four measured variables are plotted
for comparison with the observer estimates. The actual C1 response is
not shown since this variable was not measured. Figure 5.26 compares
the estimated responses of observers 5A and 5B with the actual response.
Observer 5A reconstructed the states reasonably well but amplified the

noisy data so that the estimated T1 (i.e. H1) curve fluctuates more
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than the original data. Since W1, W2 and C2 are measured, the estimates
of these states (from the observer) are simply the actual experimental
values. Observer 58 gave a similar response except that the unmeasured
disturbance resulted in offsets for both the unmeasured states, C1 and
Hl. It is interesting to note the response of the observer to the
unanticipated disturbance in the experimental data towards the end of
the run {t = 140 min.).

Observer 3B was used in Figure 5.27 and again the results are
in good agreement with the simulation study (see Figure 5.18). The
C1 and H1 (especially) curves are not accurately reconstructed due to
the "unseen" disturbance in feed concentration.

For the closed loop runs, three of the four measurements
were again used to drive the second order observer and the reconstructed
state vector was then used in the optimal feedback control law. The
standard EFB (see appendix) was used in all the runs except the one
i1lustrated in Figure 5.31. The four measured state variables are
plotted to evaluate the performance of the observer-controller combina-
tion.

Figure 5.28 shows the closed lToop performance of the system
where observer 5A was used to reconstruct the entire state vector. In
this run there was a 20% step down and a 20% step up in feed flowrate
and the observer was aware of these disturbances. The control is
reasonably good although there is some oscillation following the first
step in feed flow. The response to the second step was much better and
this may be an indication of system nonlinearities.

In Figure 5.29 the curves show the closed loop response to an

unmeasured 20% step down in feed flowrate. Observer 5B was used and it
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can be seen that the control is comparable with that obtained by
using observer 5A in Figure 5.28.

Figure 5.30 shows the effect of an "unseen" -30% step dis-
turbance in feed concentration on the closed 1oop system. Again
observer 5B was used and the controlled variables are very smooth.
However, the C2 curve tends to drift down slightly while the W1
curve moves upwards.

In an attempt to reduce the oscillations between step changes
observed in Figure 5.28, this run was repeated using a feedback control
matrix with lower gains. This control matrix was derived by weighting
the controls in the discrete quadratic performance index (see section
2.3). The standard control matrix was derived with a zero weighting

on the controls and a state weighting matrix:
Q, = diag. [10, 1,1, 10, 100]

The control matrix for the run in Figure 5.31 had the same state

weighting but also had a control weighting matrix:

R, = diag. [0.05, 0.05, 0.05]

This had the effect of restricting the expenditure of control "energy"

and hence resulted in a feedback control matrix with lower gains:

6.5 -1.2 -3.2 =-0.1 -13.1
= | 3.8 0.4 0.7 1.4 9.7
3.1 1.1 0.0 9.8 11.6

Kep

Figure 5.31 shows the results obtained using this control

matrix together with observer 5A. The oscillations in both state



150

08T

o2

4930 NI R UWBFHOL

OE2

96 =74 8y va 0

S9]RWLIST §G A9ALBSQQ UO paseg |[043U0) ©SI33e3S [en3jdy

S2IMNIN NI 3AIL

4
T

- -
T T

SISV AV VLT B

NIN/AT NI 40 WY31S

NIW/ET NI 31V

(=24

(84/40%0€-/dx3)  0€°S JWN9I4

SAIMNIN NI 3911
95 2< ev va 0

T

L

141
CH °NI NI DA

3
T

4
—tr

ER) I

12

14

Z
TIGA 3d NI NONDD

()7



151

4 930 NI RUWBE0L

CBT

02

oe=2

SAIMNIA NI SNIL
=74 ev

(XLA3R[ [O43UOD ¥

iy

N\

L

d

m-.V

4

o

2
L

1
g
g

>>>>\(/\k/\<

LY

-

-

NINATD NI #OW WELS

NIWE NI 3LVl

Jeqpasd UL Pasn Suteg JamoT)
$91eWL}ST |G J9ALRSQQ UO paseq L043uo) ©SI3els Len3oy

(94/4%02%/dX3)

L€°G JUN9I4

SAMNIN NI 3L
24 sv va

- 3 -
+

147

4

ot

NI BAND

O2H NI

TOAD 22 NI NONDD



152

variables and control variables are reduced considerably giving some
improvement over the run in Figure 5.28. Again a better response was

observed for the second step disturbance.

5.8 EVAPORATOR EXPERIMENTAL STUDY Z: W1, H1, W2, C2 MEASURED

In this study C1 is the only state variable which is not
measured and consequently a first order observer was used to recon-
struct the entire state vector. Both open and closed Toop runs were
made. For the latter case a comparison was made between the perform-
ance of the observer and a sub-optimal filter. The details of the
runs in this study are given in Table 5.9.

In the open loop runs the base case was again the response
to a 30% step down in feed concentration. In Figure 5.32, the actual
measurements are plotted together with the states reconstructed by
observer 4B which was not aware of the step disturbance. As expected,
all the measured states were reconstructed exactly. The actual Cl
curve is not known but by comparing the estimate with the corresponding
model response it would appear that C1 remained higher than the true
value.

The closed loop run shown in Figure 5.33 illustrates the
control obtained by using observer 4A to estimate the state vector.
The disturbance applied was a 20% step down followed by a 20% step up
in feed flow. The standard EFB (see appendix) was used.

The control is good and compares favourably with the corres-
ponding run (Figure 5.34) where the sub-optimal filter of section 5.6
was used to estimate the states.

In Figure 5.35 observer 4B was again used and an unmeasured

20% step down in feed flowrate was applied to the process. As can be



DETAILS OF FIGURES 5.32 - 5.37:

The open Toop run compares the actual response and the estimated
response of observer 4B to a 30% step down in feed concentration.

In the closed Toop runs either the observer estimates or the sub-

TABLE 5.9

EXPERIMENTAL OBSERVER RUNS

optimal filter estimates were used in the control calculations

but the actual states are shown in the figures.

the process was initially at steady state and the initial state
estimates were correct.

of 0.9 and a coefficient matrix, C = [1 1 1 1].

Figure

5.32
5.33
5.34

5.35
5.36

5.37

For all the runs

Observer 4 was designed with an eigenvalue

153

A - denotes a filter which has knowledge of a step disturbance.

B - denotes a filter which is unaware of a step disturbance.

Control

oL
FB
FB

FB
FB

FB

States
Displayed

Observer 4B
Actual
Actual

Actual

Actual

Actual

States used
in Control

Observer 4A

Sub-optimal
Filter A

Observer 4B

Sub-optimal
Filter B

Observer 4B

Disturbance

-30% CF
+20% F
+20% F

-20% F
-20% F

-30% CF
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seen from the curves, the response in comparable to that for the first
step distrubance shown in Figure 5.33 where the distrubances were measur-
ed. When this run was repeated using the sub-optimal filter, the control
was also good and virtually identical to the previous run (see Figure
5.36). The sub-optimal filter was not aware of the disturbance in this
case.

Finally, Figure 5.37 illustrates the effect of an unmeasured
30% step down in feed concentration with observer 4B used to recon-
struct the states. The control here is good but the C2 curve drifts
down slightly and W1 drifts up just as they did in the corresponding

case for the second order observer.

5.9 CONCLUSIONS

The simulation and experimental studies for the double effect
evaporator illustrated that the Luenberger observer could be success-
fully implemented in a multivariable control system. A satisfactory
design was achieved for both a first order and a second order observer
and the control based on these observer estimates was comparable to
the ideal case where all the states are measured.

It was shown that the observer responds quickly to incorrect
initial state estimates even when large observer eigenvalues are used.
As predicted from the theory, the observer response time is decreased
as the eigenvalues are made smaller. Varying the elements of the Q
matrix in the design of the observer had 1ittle effect on the dynamic
response.

In the experimental runs, the observer was found to be quite

sensitive to process and measurement noise; this is not a surprising
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result since the Luenberger observer was initially proposed for only

deterministic systems. It is recommended, however, that large eigen-
values be used whenever noise is a significant factor since the esti-
mates can become quite oscillatory under these conditions with small

observer eigenvalues.

The response of the observer to unmeasured step disturbances
is difficult to predict and the observer errors depend on both the
observer design and the type of disturbance applied to the process.

A satisfactory observer design which gives acceptable offsets in the
estimates for all disturbances can only be found by off-line analysis
of these errors for several different designs. Even though the design
matrices can be chosen somewhat arbitrarily, it is obvious that in
order to obtain the "best" design the choice of these matrices must be
strongly influenced by:

(1) speed of response desired,

(2) behaviour of the observer for unmeasured disturbances,

(3) process and measurement noise levels.

An important conclusion of this study is that considerable
difficulty in designing a satisfactory observer can be encountered for
systems which are "marginally" observable. - The second evaporator
simulation study (section 5.5) considered a system which was theoretically
observable but only "marginally" so. For this situation a satisfactory
design was not found even under ideal conditions (i.e. correct initial
state estimates, all disturbances measured and no noise). The diffi-
culties are due to the matrix inversion procedure required to generate
the reconstruction matrix, L; for "marginally" observable systems this
matrix is close to being singular so that numerical problems arise and

the gains tend to be very large.
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A comparison of the first order observer with the sub-optimal
filter used in all the previous control studies on the evaporator
illustrated that there was very little difference in the performance
of the two estimators. In view of this fact and the effort required in
designing the observer, it is recommended that the much simpler sub-

optimal filter be used for this application.



163

CHAPTER SIX
OVERALL CONCLUSIONS FROM THE KALMAN FILTER AND LUENBERGER OBSERVER STUDIES

Both the Kalman filter and the Luenberger observer were success-
fully implemented in a multivariable control system for a pilot scale,
double effect evaporator.

Simulation and experimental studies demonstrated that the
stationary form of the discrete Kalman filter could provide satisfactory
estimates of the states of a stochastic process. The success of the
Kaiman filter was found to depend on the accuracy of the mathematical
process model and the choice of the weighting matrices in the design
of the filter. Theoretically, the weighting matrices should be made
equal to the noise covariance matrices. However in practice, these
matrices are not known exactly and process models are imperfect so that
estimates of the matrices are used. In particular unmeasured distur-
bances necessitate weighting the measurements more heavily in designing
the filter (i.e. assume large elements for the process noise covariance
matrix). Fortunately, the Kalman filter is quite insensitive to these
design matrices and satisfactory results can be obtained with weighting
matrices which are considerably different from the ideal values.
Generally, it is desirable to weight the measurements as highly as
possible to eliminate problems associated with inaccurate process models
or unmeasured disturbances. However, if the measurements are weighted
too heavily, little filtering occurs, and the resulting state estimates
are too noisy.

A satisfactory Luenberger observer for the evaporator was

designed but in general, there were more problems with this technique
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than would be expected from the theory. The standard observer is quite
sensitive to noise and unmeasured disturbances and is not recommended
for a stochastic process. A comparison of the observer with a simple
sub-optimal filter indicated that the performance of both estimators
was almost identical and in view of this, it is difficult to justify
the effort required to obtain a satisfactory design.

For the evaporator application it is recommended that the
current method of state estimation (i.e. the sub-optimal filter) be
retained. The Luenberger observer does not give any improvement over
this filter. The Kalman filter could be used to systematically select
a gain matrix which may give slight improvements over the sub-optimal
filter. However, since the current filter gives such satisfactory results

it hardly seems likely that any improvement would be significant.

6.1 FUTURE WORK

The future work in this area would involve more studies with
the Kalman filter. Firstly a brief study could be conducted using the
Kalman filter without the addition of artificial noise, and applica-
tions where more than one state variable is not measured could be
considered. A more detailed study would involve the application of
the extended Kalman filter in order to estimate the "drift" in the
product concentration measurement. This is a continual problem and
at the present time it is necessary to clean and recalibrate the
refractometer daily. An accurate estimate of this "drift" would be a

great asset to the continuous operation of the evaporator.
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NOMENCLATURE FOR CHAPTER THREE

Process Yariables

Five element state vector:

W1 Holdup in the first effect

C1 Concentration in the first effect
H1 First effect solution enthalpy

W2 Holdup in the second effect

C2 Concentration in the second effect
Three element control vector:

S Steam flowrate to the first effect
B1 First effect bottoms flowrate

B2 Second effect bottoms flowrate
Three element disturbance vector:

F Feed flowrate

CF Feed concentration

HF Feed enthalpy

Other Process Variables

01 Overheads from first effect
02 Overheads from second effect
P1 Pressure in first effect

P2 Pressure in second effect
TF Temperature‘of feed

T1 Temperature in first effect

T2 Temperature in second effect

Alphabetic

Gain matrix for the sub-optimal filter

46
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Steady State

1b. (16.0 in)
4.59% glycol
1.90 BTU/1b.
1b. (11.0 in)
10.11% glycol

2.00 1b./min.
3.49 1b./min.
1.58 1b./min.

5.0 1b./min.
3.2% glycol
162 BTU/1b.
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Gain matrix for the Kalman filter
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(f) Code for Computer Graphs
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Type of run:

SIM Simulated

EXP Experimental

Disturbance (i'/X%/XX) :

+,- Positive or negative step

X% Step size as percentage of steady state
XX Process variable disturbed

Control mode:

OL  Open loop

FB  Optimal multivariable feedback
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k Time increment counter
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x  Five element state vector:
W1 Holdup in the first effect 46 1b. (16.0 in)
C1 Concentration in the first effect 4.59% glycol
H1 First effect solution enthalpy 1.90 BTU/1b.
W2 Holdup in the second effect 42 1b. (11.0 in)
C2 Concentration in the second effect 10.11% glycol

u  Three element control vector:
S  Steam flowrate to the first effect 2.00 1b./min.
Bl First effect bottoms flowrate 3.49 1b./min.
B2 Second effect bottoms flowrate 1.58 1b./min.

d  Three element disturbance vector:
F  Feed flowrate 5.0 1b./min.
CF Feed concentration 3.2% glycol
HF Feed enthalpy 162 BTU/1b.

T1  Temperature in first effect

(b) Alphabetic

E Observer coefficient matrix for the outputs

d Disturbance vector

dl, d2 Elements of disturbance vector for numerical example

E Observer transition matrix

k Time increment counter

ot N

State reconstruction matrix

Time
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Difference between actual and estimated model state vectors

Qutput vector

Observer state vector
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Control coefficient matrix
Disturbance coefficient matrix
Transition matrix

Eigenvalue

Subscripts

Vector
Matrix

Steady state value

Superscripts
Estimated value

Model value

Code for Computer Graphs

Denote time of step disturbance

Denote initial steady state
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Simulated

Experimental

Disturbance (¥/x%/xx):

+
X%

XX

Control mode:

oL
FB

Positive or negative step
Step size as percentage of steady state

Process variable disturbed

Open loop

Optimal multivariable feedback
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Weighting matrices for the process noise
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Weighting matrices for the measurement noise
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(d) Vvalues of o for the exponential filter

al = 0.7
a2 = 0.5
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(e) Matrices for the discrete evaporator model
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APPENDIX FOR CHAPTER FIVE

(a) Steady state error in the Kalman filter estimates for unmeasured

step disturbances

The steady state error in the Kalman filter estimate for
unmeasured deterministic disturbances can be derived from the follow-
ing three equations:

Filter equation:

x(k)

x(k) + K[y(k) - H x(k)] (a-1)

Model equation:

x(k)

1]
e
1>
——
=~
]
—
Nt
+
e
f s
Camn)
=~
1
—
S
+
o

o d(k-1) (a-2)
Deterministic process:

x(k) = ¢ x(k-1) +

ne>

u(k-1) + ¢ d(k-1) (a-3)
For a deterministic process the output equation is:
y(k) = H x(k) (a-4)

It should be noted that x(k) # x(k) if there are model inaccuracies
(eg. unseen disturbances) or incorrect initial state estimates.
To proceed with the analysis it is necessary to define the

following error equations:

x(k) + ax(k) (a-5)

x(k)

and

x(k) = x(k) + ax(k) (a-6)
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Now suppose there are unmeasured step disturbances applied

to the process; Equation (a-2) then becomes

x(k) = ¢ x(k-1) + A u(k-1) (a-7)
and
aR(K) = ¢ [&(k-1) - x(k-D)] - ¢ d(k-1)
ax(k) = ¢ ax(k-1) - 8 d(k-1) (a-8)
At steady state Equation (a-8) becomes:
Mg = & Moo - 8 g (a-9)

Now substituting Equation (a-6) into Equation (a-1) gives:
x(k) = X(k) - K H ax(k) (a-10)

and subtracting x(k) from both sides yields:

ax(k) = aK(k) - K H ax(k)

s(k) = (L= KH) 8R(K) (a-1)
Again, at steady state Equation (a-11) becomes:
mxg = (L= KH) ok (a-12)
and substituting Equation (a-9) into Equation (a-12) gives:
B T (I-% H) ¢ ixgq - (I-KH) 8d
or
- -1
Mg = (L-g+KHel (KH-18dg (a-13)
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Equation (a-13) expresses the steady state estimation error
as a function of the unmeasured step disturbances. Obviously for no
disturbances (or for measured disturbances) AXeo = 0. The errors
incurred for unmeasured disturbances can be evaluated by solving

Equation (a-13) on the computer.

(b) Design matrices for the 2nd_order Luenberger observer

Observer Design matrices
Observer 1 E16 and C1
Observer 2 E1l and C1
Observer 3 E2 and C1
Observer 5 \ E22 and C1

E2 = diag. [0.001, 0.002]
1l = diag. [0.945, 0.940]

El6 = diag. [0.00001, 0.00002]
E22 = diag. [0.7, 0.8]
M1
¢ o= -

(1 1

7100 100 100
_C__i_ =

1100 100 100

T001 1
o1 1

110 17
12 =

1 10 1




=

5

=

& =

(c) Matrices

0.1 1 1
0.1 1 1]
1 0.1 17
1 0.1 1
T 1 0.1]
1 1 0.1
10 1 17
11 1
M 1 1]
10 1 1

for the discrete evaporator model

.0 -0.008 -0.0912 0
0 0.9223  0.0871 0
0 -0.0042  0.4377 0
0 -0.0009 -0.1052 0
0 0.0391  0.1048 1.0
[ -0.0119  -0.0817 0 7]
0.0116 0 0
0.1569 0 0
-0.0137 0.0847  -0.0406
_ 0.0137  -0.0432 0 _

0
0
0
0.0001

0.9603 |
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[ 0.1182 0 -0.0050 |
-0.0351  0.0785  0.0049
6 = -0.0135 -0.0002  0.0662
0.0012 0 -0.0058
| -0.0019  0.0016  0.0058 |

1 ¢ 0 0 0]
0 0 1 0 0
H =
- 0 0 0 1 0
0 0o o0 o 1]
10.78 -1.61 -4.82 0 -19.57
EFB = 5.35 0.36 0.55 0 12.49

7.52 1.27 0.18  24.61 32.69

(d) Eigenvalues for the discrete evaporator model

Y o= 1.0, 1.0, 0.9606, 0.9220, 0.4407



