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Abstract

This thesis studies problems of filtering and estimation in modern computer control 

systems. The main focus is on filtering in control systems employing communication 

networks and in discrete-time control systems with multi-rate sampled data. More 

specifically, filtering problems are studied for systems with random sensor delays, 

multiple sensor data  packet dropout, uncertainty in observation, and networked 

control systems with multiple packet dropout. M ulti-rate Kalman filtering and 

the problem of parameter estimation for some general multi-rate systems are also 

explored.

The random sensor delay, multiple packet dropout, or uncertainty in observation 

is transformed into a stochastic parameter problem in the state-space framework. 

A new formulation is employed to model the multiple packet dropout in the sensor 

data, and in networked control systems. The formulation also can be used to assign 

separate dropout rates from the sensors to the controller and from the controller 

to the actuators. Based on the stochastic definition of the W2~norm> new relations 

for the 7f 2-norm of a stochastic parameter system with both stochastic and deter

ministic inputs are derived. Also, a generalized Woo-norm is studied for this type 

of system. The stochastic 7f 2-norm or Tfoo-norm of the filtering error is used as a 

criterion for filter design. The relations derived for the new norm definition are used 

to obtain a set of linear matrix inequalities to solve the corresponding filter design 

problem.
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A state lifting method is introduced that can be used to generalize the minimum 

variance Kalman filtering method to the multi-rate case for fast-rate state filtering 

and estimation. Based on multi-rate input-output data and fast-rate system models, 

the optimal Kalman gains and covariance matrices are found at the fast rate.

This thesis also studies the parameter estimation of a general multi-input, multi

output multi-rate system in the frequency domain. Two methods, dividing to sub

systems and input extension, are introduced for dealing with multi-rate systems, 

and the later method is used to convert a multi-input, multi-output multi-rate sys

tem into several sub-problems with fast input updating and slow output sampling. 

In this framework, all frequency-domain parameter estimation methods can be ap

plied. In this work, a least-square param eter estimation method is generalized for 

parameter estimation in the multi-input, multi-output case.

Several examples, including one with industrial data, are provided to show the 

effectiveness and applicability of the proposed methods.
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Chapter 1

Introduction

1.1 B ackground

Due to the rapid developments in digital computers and microcomputers, control 

systems are changing drastically. Nowadays, powerful microprocessor systems are 

used to control even the most basic control loops. Because of the higher flexibility 

and lower cost of digitally implemented control systems, digital controllers normally 

outperform their analog counterparts. Microcomputer-based smart sensors and ac

tuators are also employed in control systems. Advances in digital computer technol

ogy combined with control systems theory have led to  new developments in modern 

computer control systems. These new techniques give us flexibility of implementa

tion in different frameworks but also raise new challenges in design. Since digital 

computers are used for control system implementation, carrying out modelling and 

design in discrete time is naturally more convenient. Discrete-time modelling can 

be used either because of its simplicity in modelling and simulation or because of 

the system characteristics, for example, in a radar system, the information is nat

urally obtained once per each revolution of the antenna; an internal combustion 

engine is another example of a sampled system. The main focus in this thesis is on 

discrete-time models.

W ith the increasing presence of wired and wireless communication networks,

1
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control systems using communication networks and the internet are also an impor

tant emerging technology. Network-based control systems as executed over internet 

communication channels have become an increasingly challenging research area (see, 

e.g., [18,22,28,37,38,42,51,56-58,60,61]). Even though using a distributed control 

system over a network provides flexibility in installation and maintenance and results 

in cost savings, it makes the design problem much more challenging. In such dis

tributed control systems, data travel through different networks and communication 

channels from the sensors to the controller and from the controller to the actuators. 

As a direct consequence of the finite bandwidth for data transmission over networks, 

time delay and packet dropout are inevitable in networked systems where a common 

medium is used for data  transfers. In most network-based systems, time delay or 

data packet dropout is random. Similar problems arise in other practical systems 

such as wireless sensor networks or target tracking systems, where only sensor delay 

or dropout exists. Filtering and control in these systems are more challenging due 

to the stochastic nature of the delay or dropouts. Classical (non-delay-based) esti

mation and designs may not satisfy the performance and stability requirements and 

are not optimal for the delay or dropout cases. Clearly, new methods are needed in 

these cases.

State feedback is the most common strategy used in modern control systems for 

the stabilization and control of complex physical systems. In practice, especially in 

networked control systems, not all of the state variables are always available for di

rect measurement, so state filtering and estimation play a key role in state feedback 

methods. The filtering problem is to estimate the states or a linear combination 

of them by using the measured system inputs and outputs. W ith the introduction 

of state estimators by Luenberger [34], state estimators have been used to estimate 

state variables from readily available measurements. One of the early optimal esti-

2
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mators in a Gaussian noise environment is the so-called Kalman filter [23].

To work with sensor delay, uncertain observation or networked control systems, 

stochastic delay, dropout and uncertainty in observation are transformed into sto

chastic parameters in the state-space system representation. The commonly used 

transformation [36,53,56,57] can be used to model a maximum of one sampling 

delay, whereas the new model proposed in this thesis allows for multiple packet 

dropouts. Some existing methods try  to  generalize Kalman filtering to stochastic 

parameter cases, but these methods make complicated formulations and fail to  pro

vide the optimal solution [45]. Also, multiple packet dropouts in sensor data have 

not yet been well studied. In this thesis, by using a new formulation, estimation and 

filtering with multiple packet dropout are cast in the same framework as the single 

delay and uncertain observation problem. By introducing new notion of stochastic 

H 2 and 77oo-uornis, the filtering and estimation involving random sensor delay, mul

tiple packet dropout, uncertain observation, and networked control systems can all 

be treated in a unified framework and therefore are presented as a generalization of 

the classical case.

In conventional computer control, input updating and output sampling are per

formed in discrete time instants by using samplers and zero-order holds. In such 

discrete-time control systems, the plant input updating and output sampling are at 

the same rate. However, updating the control input and sampling the output at the 

same rate are not always possible due to various limitations such as the cost of fast- 

rate sensors and actuators. Moreover, sometimes the plant dynamics are such that 

sampling the different plant signals at the same rate is not economical and useful. 

As a result, a multi-rate sampling scheme should be considered for such cases. Of 

course, this scheme introduces the complication of mixed time steps. Such systems

3
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are often used in the chemical process industry (see, e.g., [19,39]). The Kalman 

filtering and parameter and output estimation for these systems will be studied in 

Chapters 5 and 6 .

1.2 Sum m ary o f C ontributions

The main contributions of this thesis are summarized as follows:

•  A new formulation is proposed to model the multiple packet dropout in sensor 

information.

• The new formulation is generalized to model the multiple packet dropout in 

networked control systems. This formulation enables us to assign separate 

dropout rates from the sensors to the controller and from the controller to the 

actuators.

• Based on the new definition of the W2-norm of a system with stochastic pa

rameters, new relations for the stochastic 7̂ 2-norm of a stochastic parameter 

system with both stochastic and deterministic inputs are derived.

• A generalized Woo-norm is studied for the systems with stochastic parameters 

and both stochastic and deterministic inputs.

• By using stochastic W2 and Woo norm definitions, a general framework is pro

vided to study filtering for different problems such as sensor delay, multiple 

sensor data packet dropout, uncertain observation, and networked control sys

tems with multiple packet dropout. The stochastic W2-norm or Woo-norm of 

the filtering error is used as a criterion for filter design. The relations de

rived for the new norm definition are used to obtain a set of linear matrix 

inequalities to solve the corresponding filter design problem.

4
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• A state lifting method is introduced th a t can be easily used to  generalize the 

minimum variance Kalman filtering method to the multi-rate case for fast-rate 

state filtering. The optimal Kalman gains and covariance matrices are found 

at the fast rate by using multi-rate input-output data and fast-rate system 

models.

• The parameter estimation of a general multi-input, multi-output multi-rate 

system in the frequency domain is studied. Two methods, dividing to subsys

tems and input extension, are introduced for dealing with multi-rate systems. 

Finally, a least-square parameter estimation method is generalized for para

meter estimation in the multi-input, multi-output multi-rate case.

1.3 O utline o f th e  T hesis

The remainder of this thesis is organized as follows.

In Chapter 2, the problem of optimal filtering for discrete-time systems with 

random sensor delay, multiple sensor data packet dropout, or uncertain observation 

is studied. The random sensor delay, multiple packet dropout or uncertainty in 

observation is transformed into a stochastic parameter in the system representation. 

A new formulation enables us to design an optimal filter for a system with multiple 

packet dropout in the sensor data. Based on a stochastic definition of the Tl2 -noim  

of a system with a stochastic parameter, new relations for the stochastic 7f 2-norm 

are derived. The stochastic T^-norm of the estimation error is used as a criterion 

for the filter design. The relations derived for the new norm definition are used to 

obtain a set of linear matrix inequalities (LMIs) to solve the filter design problem. 

Simulation examples show the effectiveness of the proposed method.

Chapter 3 studies the problem of optimal 7^2 filtering in networked control sys-

5
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tems (NCSs) with multiple packet dropout. A new formulation is employed to model 

the multiple packet dropout case, where the random dropout rates are transformed 

into stochastic parameters in the system’s representation. By generalization of the 

7f2-norm definition, new relations for the stochastic 7Y2-norm of a linear discrete

time stochastic parameter system represented in the state-space form are derived. 

The stochastic 2-norm of the estimation error is used as a criterion for filter design 

in the NCS framework. A set of LMIs is provided to solve the corresponding filter 

design problem. A simulation example supports the theory.

By using the same formulation as in Chapter 3, the problem of Tioo filtering in 

networked control systems with multiple packet dropout is studied in Chapter 4. 

Again, by employing the new formulation, random dropout rates are transformed 

into stochastic parameters in the system’s representation. A generalized Woo-norm 

for systems with stochastic parameters and both stochastic and deterministic inputs 

is derived. The stochastic Tfoo-norm of the filtering error is used as a criterion 

for filter design in the NCS framework. A set of LMIs is provided to solve the 

corresponding filter design problem. A simulation example supports the theory.

Chapter 5 studies the problem of optimal Kalman filtering for multi-rate processes. 

A state lifting method is introduced tha t can be easily used to generalize the min

imum variance Kalman filtering method to the multi-rate case for fast-rate state 

estimation. The optimal Kalman gains and covariance matrices are found at the 

fast rate by using multi-rate input-output data and fast-rate system models. Some 

examples, especially the one taken from a real mechanical system for air-fuel ratio 

control, validate the applicability of the proposed method to Kalman filter design 

in dual-rate and multi-rate processes represented in the state-space form.

In Chapter 6 , the parameter estimation of a general multi-input, multi-output 

multi-rate system in the frequency domain is studied. Two methods, dividing to sub-

6
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systems and input extension, axe introduced for dealing with multi-rate systems, and 

the later method is used to convert a multi-input, multi-output multi-rate system 

into several sub-problems with fast input updating and slow output sampling. In 

this case, frequency-domain parameter estimation methods can be applied for identi

fication purposes. Here, a least-squares parameter estimation method is generalized 

for parameter estimation in the multi-input, m ulti-output case. Several examples, 

including one with real industrial data, are provided to show the effectiveness of the 

methods proposed.

The thesis ends in Chapter 7 with our conclusions and some suggestions for 

directions for future work.

7
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Chapter 2

Optimal W2 Filtering for some 
D iscrete-tim e Stochastic 
System s

2.1 In trod u ction

For stabilization and control of complex physical systems, modern control methods 

use the state-space formulation. Several state-space control system design techniques 

have been developed to implement more sophisticated controllers. Remarkably, in 

almost all of these methods, control is in the form of a state feedback, which is 

applicable under the implicit assumption tha t all state variables are available for 

feedback. This assumption may not hold in practice, either because not all state 

variables are accessible for direct connection or because sensing devices or transduc

ers are not available or are very expensive for all state variables. In this case, in 

order to apply state feedback, a state estimator must be designed to estimate the 

states from measurable signals. W ith the introduction of state estimators by Luen- 

berger [34], they have been used to estimate state variables from readily available

measurements. One of the early optimal estimators used is the so-called Kalman 

The main material of this chapter was reported in [45].

8
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filter [23].

During the past few years, interest in delay systems has increased, mainly be

cause of the advantages of and new advances in networked control systems (NCSs) 

(see, e.g., [18,22,37,38,42,51,56-58]). In this control scheme, data  travel through 

the communication networks from the sensors to the controller and from the con

troller to the actuators. Time delay and packet dropout are inevitable in networked 

systems where a common medium is used for data transfers. In most network-based 

systems, time delay is random. Also, a random packet dropout could occur due to 

network congestion. Estimation and control in these systems are more challenging 

due to the stochastic delay or dropouts. Classical (non-delay-based) estimation and 

designs do not satisfy the performance and stability requirements and optimality 

in the delay or dropout cases. Therefore, new methods are needed in these cases. 

Generally speaking, three types of delay can be considered:

• Delay in states

• Input delay

• O utput (sensor) delay

Amongst all of these delays, the sensor delay has not received much attention even 

though it exists and is challenging. Even by considering the NCS with delay both 

from the sensor to the controller and from the controller to the actuator, the two 

delays can be lumped together to have a single delay [18]. As well, some prac

tical problems such as those involving wireless sensor networks or target tracking 

systems present the problem of stochastic sensor delay. Packet dropout is another 

problem tha t can arise in networked systems and is closely related to the sensor 

delay problem.

To work with sensor network systems, stochastic delay or uncertain information

9
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are usually transformed into a stochastic parameter of the system. The commonly 

used transformation [36,53,56,57] can be used to model a maximum of one sampling 

delay, while the new proposed representation in this chapter allows for multiple 

packet dropouts as well.

The derivation used in [56, 57] is based on instantaneous error variance mini

mization, which is a generalization of Kalman filtering in the delay case. In these 

studies, the augmented noise vectors are incorrectly assumed to be white, so that 

some dependencies between the noise terms seem to have been ignored, thus making 

the designs suboptimal.

D ata packet dropout is another common problem in networked systems. This 

dropout is a kind of uncertainty that may happen due to node failures or network 

congestion. In real-time feedback control systems, discarding the old packets and 

considering new packets so that the controller always receives fresh data for con

trol calculation are normally advantageous. The problem of packet dropout has 

been studied before (see, e.g., [28,60,61] and the references therein). While most 

previous work has used switched systems and Markov chains, the proposed method 

handles the problem of multiple packet dropouts in an easier way, by using the same 

framework used for the sensor delay systems.

Another problem closely related to sensor delay systems is the so-called uncertain 

observation system. In some cases, there is an uncertainty about the measurements: 

the measurements are either the current system output or just the noise. For exam

ple, this problem occurs in some cases like tracking systems. This problem has also 

been studied in some papers [36,58], The new general framework proposed in this 

chapter can also handle the problem of measurement uncertainty.

Uncertainty and delays in sensor information are more common and have been

10
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the focus of attention in the literature [36,56-58]. Classical methods fail to solve 

the filtering and estimation problems for cases with delays, uncertainty or packet 

dropout. Existing methods tha t try  to generalize the Kalman filtering to delay cases 

make complicated formulations and fail to provide optimal solutions. In addition, 

multiple packet dropouts in sensor data have not been well studied yet.

This chapter makes two main contributions. First, by using a new formulation, 

estimation and filtering with multiple packet dropout are cast in the same frame

work as tha t for a single delay and uncertain observation problem. Secondly, by 

introducing a new notion of the stochastic W2-norm, the estimation and filtering of 

random sensor delay, multiple packet dropout, and uncertain observation cases can 

all be treated in the same framework and therefore are presented as a generalization 

of the classical cases.

In this chapter, we consider the system as depicted in Figure 2.1. The input, w, 

is an exogenous signal, a random white noise, z is the signal to be estimated, and z 

is its estimate. The output to be minimized is the filtering error z — z — z. The aim 

is to minimize the 7̂ 2-norm of the filtering error. In the sensor delay and packet 

dropout cases, due to network effects, the filter input, y, is either the current plant 

output, y, or the previous one. In the case of an uncertain observation system, the 

filter input, y, is either the current plant output, y, or just the noise.

Network

State Filter

Plant

Figure 2 .1: Filtering with sensor delay, dropout or uncertain observation
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To solve this problem, the filter gains are designed so that the T^-norm of the 

estimation error is minimized. This minimization is transformed into the minimiza

tion of the ^ 2-norm of the transfer function from the input, w, to the filtering error, 

z. As the delay, dropout, or uncertainty in observation are stochastic, we face a 

stochastic parameter system, so the stochastic T^-norm (7f 2s-norm) is defined and 

problems are solved by using LMI techniques [4].

2.2 P relim inaries

2 .2 .1  N o r m s in  D e te r m in is t ic  P a ra m ete r  S y s te m s

Many goals in controller and filter design can be expressed in terms of the size of a 

signal. For example, in control problems, a controller without large actuator signals 

is desirable. In filtering and estimation problems, filter gains are designed so that 

the filtering or estimation error signal is as small as possible. Even though a signal’s 

size can be defined in different ways, the methods tha t satisfy certain properties 

have proven to be most useful and are called norms.

D efin itio n  1. Suppose V  is a vector space and <j> : V  —> ]R. cj> is a norm on V  if it 

satisfies [3]

Nonnegativity: <f>{v) > 0, with <j>(v) =  0 <=> v =  0,

Homogeneity: 4>{cv) =  \c\<j){v),

Triangle inequality: <p(v + w) < 4>{v) + 4>{w), 

for all c £ M and v, w G V.

One of the most commonly used norms is the so-called 2-norm, which (actually, 

its square) is associated with energy. For the signal v = (u(0), u (l), • • • }, the 2-norm

12
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is defined as follows [6]:

IMl2 =  [n(0)2 +  n(l)2 +  . . . ] 1/2. (2 . 1)

A notion closely related to the signal norm is the size of a transfer function or linear 

system, known as the system norm, which has to satisfy properties similar to those 

tha t must be satisfied by the signal norm. One of the most commonly used system 

norms is the 2-norm which is defined as

where G (z) is the system transfer function. As an immediate consequence of Parse- 

val’s equality, if the system’s input is a unit impulse, the output’s 2-norm equals the 

systems’s 2-norm. As well, if the input is standard white noise, then the ou tput’s 

root-mean-square value will be ||G ||2 [6]. If system G is represented in the state 

space form with A, B , C  and D  matrices, then in the SISO case, the H 2-norm of the 

system will be

(2 .2 )

||G ||2 =  (.D2 +  C LC ' ) 112 (2.3)

with L  being the controllability Gramian satisfying

L = A L A ' +  B B '. (2.4)

As well, in the MIMO case [6],

||G ||2 =  [trace(£>2 +  C LC ') ]1/2 (2.5)

with

L  =  A L A ' + B B '. (2 .6)

13
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2 .2 .2  F ilte r in g  in  D e te r m in is t ic  P a ra m ete r  S y stem s

The filtering problem is to estimate the states or a linear combination of them by 

using the measured system inputs and outputs. W ith the introduction of state esti

mators by Luenberger [34], they have been used to estimate state variables by using 

readily available measurements. Consider the system represented by the following 

equations:

f  x k+l =  A x k "b Buik , .
\  yk = C xk + Du>k.

The Luenberger-type estimator will be of the following form:

x k+i =  A x k +  K (y k -  C xk), (2.8)

where x  is an estimate of x, and K  is the estimator gain. This estimator has been 

extensively used in the literature. The Kalman filter [23] uses this type of estimator. 

As will be seen later, in the stochastic parameter case, the parameter matrices are 

not deterministic, so the Luenberger estimator cannot be directly used. The com

mon estimator used in tha t case is provided in (2.30). Besides the Kalman filter, 

other optimal filters such as optimal TL2 filters have been introduced [7,40]. The 

details are omitted here, but the adaptation and generalization for the stochastic 

parameter systems will be discussed in the following sections.

2 .2 .3  L inear M a tr ix  In eq u a litie s

A wide variety of problems in systems and control theory can be converted into 

optimization problems involving linear matrix equalities (LMIs). The resulting LMIs 

can be numerically solved efficiently by using the existing solver packages.

An LMI has the form
m

F{x) = Fo + ^ 2  x iFi > (2-9)
i = 1

14
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where x  S Km is the variable and the symmetric matrices F* — F f  e Mnx" , i  =  

0, • • • ,m , are given. The inequality symbol means that F{x) is positive definite. 

The LMI in (2.9) is a convex constraint on x\ i.e., the set {x\F (x) >  0} is con

vex. Multiple LMIs F l {x) > 0, • • • , F p(x) > 0 can be expressed as a single LMI: 

d iag(F 1(a;), • • • , F p(x)) > 0. The most im portant tool used to convert nonlinear 

convex inequalities into LMIs is the so-called Schur complements: the LMI

Q(x) S{x) 
S (x )T R (x) >  0 (2 .10)

is equivalent to

R (x) > 0, Q(x) -  S ( x ) R ( x ) ~ 1S ( x ) t  > 0, (2.11)

where symmetric matrices Q(x) and R (x) and the matrix S(x) are affine on x. 

In most cases, variables are matrices. The most famous example is the Lyapunov 

inequality

A t P  + P A  < 0 ,  (2.12)

where A  e  MnXn is given, and the symmetric matrix P  is the variable. Even if 

the last inequality can be converted into an LMI as expressed in the form of (2.9), 

leaving the LMI in a condensed form saves notation and leads to more efficient 

computation [4],

LMIs have been used to formulate different problems in filtering and control. The 

problem of optimal Ti.2  filtering has also been studied in the LMI framework (see, 

e.g., [40]). Using LMIs gives us the numerical solution while other methods such 

as the Kalman method, provide closed form analytical solutions. However, efficient 

numerical methods can be used to solve the LMI problems, and as will be discussed 

later, in some cases as in stochastic parameter systems, the explicit solutions either 

do not exist or have a complex form.

15
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2.3 P rob lem  Form ulation

2 .3 .1  S en so r  D e la y  an d  M u ltip le  P a ck et D r o p o u t

We consider the system depicted in Figure 2.1. Here, the plant is a discrete-time 

linear time-invariant (LTI) plant subject to random disturbances. Also, the case is 

considered where sensor data is contaminated with noise:

f  ifc+i =  aifc +  b Cbk _  .
\  yk -  cifc +  dwfc.

Here, xk  £ M” is the plant state vector, and a, b, c and d are system parameter

matrices with appropriate dimensions. u>k is an exogenous input with

£{£jk} =  0 ,

tions, the single-input, single-output (SISO) case is considered, but as will be men

tioned later, generalizing the results to the multiple-input, multiple-output (MIMO) 

case is not difficult. In the SISO case, yk £ R is the system output contaminated 

with zero-mean noise, ujk- In the following sub-sections, formulations regarding this 

system is considered to represent the delayed observations, multiple packet dropout, 

and uncertain observation.

One Sam pling D elay Form ulation

The formulation used in this section was first introduced in [36] and has become 

a common formulation for sensor delay systems [53,56-58]. Consider a system 

as described by (2.13). Consider that the current observation, yk, is the current 

system output, yk, with probability of a  or the previous one, y k - i, with probability

(2.14)

where £{.}  stands for the mathematical expectation. For simplicity in the deriva-
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of (1 — a). These expressions can be represented by the following relation:

Vk = 5kVk +  (1 “  h )V k -1, (2-15)

where the stochastic parameter 5k is a Bernoulli distributed white sequence taking 

the values 0 and 1 with

prob{<5fc =  1} =  £{5k} =  a, (2.16)

where a  € 1  is a known constant. It is also supposed tha t 5k is uncorrelated with 

u>k and the initial state values, so

prob{<5fc =  0 } =  1 — a  

var{<5fc} =  (1 — a)a. (2.17)

Now, by putting Equations 2.13 and 2.15 together, we have the sensor delay repre

sentation as
Xk+i =  a i fc +  buik
yk = c ik  + dujk (2-18)
Vk =  hV k  +  (1 -  S k)yk -1-

To obtain a compact representation of the plant and measurement system, the

system states can be augmented:

%k-\-1
x k+ 1

so we get
%k-\-1 =  ^-k ^k  “I- 
Vk — H- dkU?k
Zk =  Lxi 

where is the signal to be estimated and

(2.19)

(2 .20)

a O' b O'
a fc = I 0 > t>fc — 0 0

u>k
&k-i

(2 .2 1 )

Ck = [<5fcC (1 -  <Sfc)c] , d k = [dfcd (1 -  5k)d] , u k =

This formulation allows us to have a maximum of one sampling delay for observa

tions. If 5k =  0, then yk — Vk-i for every k > 1. Note tha t ck and dfc are functions
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of 8k, but for simplicity in notation, c*, and dfc instead of c(8k) and d(<5fc) are used, 

afc and bfc are constant matrices, but the subscript k is used for consistency with 

the following formulation.

M ultip le Packet D ropout Form ulation

In order to treat the case of multiple packet dropout, the following formulation is 

suggested:
X k-\-l — aX fc ~b bchfc

yk = cxk + du)k (2 .22)
Vk = Skyk + (1 -  5k)yk- i .

In this case, if 8k =  1, the observation is the current output. Otherwise, the obser

vation is the previous observation, as can be seen from (2.22). W ith successive 0’s

in 8k , multiple packet dropouts can be modelled.

Now, to have a compact representation, the system states and the observation 

can be augmented as

^fe+i
. Vk .

Thus,

where

%k+ 1 — afciTfc ~b bfc(hfc

Vk  =  ~b d-k& k

Zk  =  ^^Cfc !

(2.23)

(2.24)

a
5kC bfc

0
(1 -  Sk)

(1 -  <W] , d A: =

b
(2.25)

a k =

Cfc =  [<5fcC

Note tha t in this case, all matrices of the augmented system are functions of Sk , 

but for simplicity, still a.k, bfc, ck and dfc are used instead.

18
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2.3.2 U ncertain Observation Formulation

Normally, in filtering and estimation theory, the observation is always assumed to 

contain some information from either the current system output or the delayed one, 

as described in the previous subsection. In some practical cases, observations may 

contain either the actual output contaminated with noise or the noise alone, only

the probability of the occurrence of such cases is available to the estimator. An

example is trajectory tracking [36].

Here, we have the same discrete-time linear time-invariant (LTI) plant as before:

ifc+i = axk + b  ujk, (2.26)

with similar definitions for the states, system matrices and noise. Now, consider 

that the observation, yk, is the current system output with the probability of a  or 

the noise alone, with the probability of (1 — a). This expression can be represented 

by the following relation:

yk = Skcxk + du)k , (2.27)

where the stochastic parameter 6k and matrices c and d are as defined before. 

Now, all the relations can be put in the following form to provide a representation

similar to those of the above-mentioned cases:

{ %k+1 =  &k%k d- b kojk
Vk = ckx k +  d ku k (2.28)

Zk = L xk ,
where

a k = a, =  b, ck = Sk c, d*, =  d. (2.29)

In summary, a unifying framework, as in (2.20), can be used to model the sensor 

delay, multiple packet dropout, and uncertain observation. This unifying model can 

be easily used with the new derivations for the stochastic ?f2-norm to provide a 

unified optimal filter design for all of the above-mentioned cases.
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2.3.3 Filter Formulation

Consider the linear stochastic time-varying discrete-time system represented in (2.20) 

where Xk is the state vector, yk is the measurement output, uJk is the noise signal 

and Zk is the signal to be estimated. The goal in the filtering problem is to find the 

estimate zk of Zk such th a t a performance criterion such as the stochastic W2-norm 

of the estimation error is minimized. Now, consider the following filter:

p  . f ^k+1 — T  b fUk 
\  %k = LfXfc,

(2.30)

where Xk is an estimate of the state, and ay, b y  and Ly are the filter parameters to 

be designed. The filtering error is defined as Zk = Zk — Zk- Now, the system states, 

Xk, and the filter states, Xk, can be augmented to obtain the following augmented 

system:

H  : <! **+1 ~~ “ *Is" ' (2.31). /  C f c + i
' I Z k

=  AkCk +  Bku>k
= C(k,

where

Ck = Ak = a k 0
bycfc ay B k

b k
bydfc C = [L -  L f ], (2.32)

The filtering problem is to design a filter F  as in (2.30) such that the time-averaged 

filtering error variance is minimized.

2.4 7Y2-norm  o f S ystem s w ith  a S tochastic  P aram eter

As was shown in the previous section, the representation of a system with stochastic 

sensor delay, multiple packet dropout, or uncertain observation can be reformulated 

as a system with a stochastic parameter. The problem of filter design for systems 

with deterministic parameters has been fully studied in the literature (see, e.g., [7,40] 

and references therein). Attempts have been made to solve the filtering problem in
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the Kalman filtering framework [56,57], but complex formulations do not seem to 

provide an optimal solution. An important objective of this chapter is to introduce 

the stochastic T^-norm of the filtering error system as a performance index. To 

solve such a problem, a LMI formulation of the performance index and correspond

ing constraints are introduced. As a first step, it is tried to define the W2-norm of a 

system with a stochastic parameter, and the corresponding LMIs are considered in 

the next section.

For a deterministic stable discrete-time linear time-invariant (LTI) system, “if 

the input is a standard (unit variance) white noise, then the root-mean-square value 

of the output equals the Ft 2-norm of the system” [6].

As the time delay system under consideration is transformed into a time-varying 

system, the classical norm definition needs to be modified to be applicable in this 

case.

Let us consider a general stable discrete-time linear time-varying system G:

where A k,B k ,C k  and are time-dependent matrices (through the stochastic pa

rameter, Sk) with appropriate dimensions. Following the general definition of the 

H 2-norm of a time-invariant system, we define the W2-norm of the stochastic time 

variant system G, belonging to a class of systems represented in (2.33), as

with ojk a unit variance white noise input.

R em ark . The expression in (2.34) can be shown to satisfy the norm properties for 

a class of systems represented in (2.33). I f  the system is time-invariant, (2.34)

(2.33)

N - l

(2.34)
k=o
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reduces to the standard Tt2 -norm. Hence, it is regarded as a generalization of the 

Ti2 -norm to the stochastic parameter systems.

Suppose tha t C(0) =  0, then by using system representation we can write:

C(l) =  C i B qloo + D iuji

C(2 ) =  C 2AiBqu)q +  C2B1U11 +  D2LO2

C(3) =  C3 A 2 A 1 B 0 W0 +  C3 A 2 B 1UJ1 + C3B 2W2 +  D 3 LJ3

Then it is easy to derive

£{C(1)2} =  £{C 1B 0 u 0 lj'0 B ,0 C ,1 + D 1uj1uj'1D ,1} = £ {C 1BoB,0 C [ + D 1D[}  

£{C(2)2} =  £{C 2 A\BqCOqIjJqBqAÎ C2 +  C,2-BiWiWj5jC,2 +  D 2 U)2U2 D 2}

=  £{C 2 A 1B ,0 B ,0 A ,1C ,2 + C2 B iB [C '2 + D 2 D'2} (2.35)

*5

where (.)' is the transpose of (.). Now, suppose tha t Ak, Bk, C \ and Dk are afhne in 

a stochastic param eter Sk and

£ {S k} = a, var{4} =  q2. (2.36)

Thus, &k can be written as the sum of its mean value and a zero-mean stochastic

variable Ak with the same variance:

6 ^ = a  T Afc, (2.37)

where

£{Afc} =  0, var(Afc) =  q2, £ {AfcAs} = 0 ,  s ^  k, (2.38)

and
Ak  —  A  4 -  XkA 
Bk =  B  +  A  kB
Ck = c  + xkc
B>k =  D  +  X kD,  

22
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where A , A , ... are constant known matrices. Now, define

A q =  qA, B q =  qB , C q =  qC , D q =  qD , (2.40)

then

S { A kA'k}  =  £ { ( A  +  A kA )(A ' +  A kA ')}  =  A A ' +  A qA'q, (2.41)

and similarly,
{  £ { B kB'k} = B B '  +  B qB'q
\  £ { C kC'k} = C C '  +  CgC'g (2.42)
{ £ { D kD'k}  = D D '  +  D qD'q.

Thus,

£{C (1)2} -  C B B 'C ' +  C qB B 'C ,q +  C B qB'gC' +  C qBgB'gC'q +  D D l +  D qD'q 

5{C (2)2} =  C B B 'C '+  C qB B 'C ,q +  C B qB 'gC '+  C qBgB'gC'g +

+ C A B B 'A 'C '  +  CABgB'gA'C' +  C A qB B 'A 'qC' +  C A qB qB'qA!qC ' +  

+ C qA B B 'A 'C 'q +  C qA B qB'qA'C'q +  C qA qB B ' A'qC'q +  

+ C qA qB qB'qA'qC ,q +  D D '  +  D qD'q 

:. (2.43)

Putting all these relations into equation (2.34), we have

||G ||L  =  C {L X +  L 2\C ' +  C q[Li +  L 2}C'q +  D D ', (2.44)

where

h  =  B B ’ +  A B B 'A '+  A 2B B ’A 2' +  A 3B B ’A 3' +  ...

+ A A qBB 'A'qA' +  A A 2qB B 'A 2q A ' +  A A qA B B 'A 'A 'qA' +  ...

L 2 =  A qB B 'A 'q +  A 2qB B 'A 2q +  A 3qB B 'A 3q +  ...

+ A qA B B 'A 'A 'q + A qA 2B B 'A 2' A'q + A qA B B 'A 'A q +  ...

B B ' =  B B ' +  B qB q

D D ' =  D D ' +  D qD'q. (2.45)
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It is not difficult to see that

L \ = B B ' + A (L 1 + L 2)A' 
L 2 =  A q{L\ +  L2)A'q.

(2.46)

Adding relations of Li and L 2 together, we get

L c =  B B ' +  A L CA' +  A qL cA'q, (2.47)

where

L c =  L \  +  L2. (2.48)

Therefore,

||G ||L  =  C L cC ' +  C qL cC'q +  D D '. (2.49)

Thus, the result can be summarized as follows:

T heorem  1. (Tt2S-n orm ): Consider G, the discrete-time linear stochastic parame

ter system represented in (2.33). The stochastic H 2 -norm (Tl2 s-norm) of the system  

defined by (2.34) is

||G |&  =  C L cC ' +  CqL cC'q +  D D ' (2.50)

with

L c =  B B ' +  A L CA' -\- A qL cA'q. (2.51)

C o ro lla ry  1. (M IM O  Tfos-norm) : Consider G, the discrete-time linear stochastic 

parameter system represented in (2.33) in the MIMO case. The stochastic Tt2 -norm  

of the system is given by

\\G\\22s = trace{CLcC' + CqL cC'q +  D D '}, (2.52)

where

L c =  B B ' A L CA' T  A qL cA'q. (2.53)
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Equations (2.52) and (2.53) axe a generalization of the SISO case similar to the

classical one as in [6] and the proof is straightforward.

C orollary 2. Consider G, the stochastic parameter system represented in (2.33).

The stochastic B i-n o rm  of the SISO system is given by

||G ||la =  B 'L bB  + B'qL bB q +  D 'D , (2.54)

and for the MIMO case it is

||G |||a -  trace{B'LbB  + B'qL bB q + D 'D ),  (2.55)

where

L b = C 'C  +  A 'L bA + A'qL bA q

C 'C  = C 'C  + C'qCq. (2.56)

Proof. Let us define

A  = A ilA*A?aA * - - - A ii - - -  , ij = 0,1, - - , j  =  1,2, • • • (2.57)

as this term appears in (2.43). In the SISO case, the terms C A B  and B 'A 'C '

appearing in (2.43) are scalars. Thus,

(C A B ){B 'A 'C ') = {B 'A !C '){C A B ). (2.58)

For the MIMO case,

trac e{(C A B )(B 'A 'C ')}  =  trac e{(B 'A 'C ')(C A B )} . (2.59)

Thus, the new derivations in (2.54), (2.55) and (2.56) will require rearrangement in

the proof of Theorem 1 and Corollary 1. □
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2.5 O ptim al F ilter  D esign

Now, we have the required tools to solve the optimal filtering problem which has been 

solved for the deterministic parameter case before. Based on the new derivations for 

the W2s-norm as in the previous section, the design methods will be generalized to 

the stochastic parameter case. In the case of no stochastic parameter in the system, 

the results will be the same as those for the deterministic case. The optimal filtering 

problem can be stated as follows:

T he optim al H 2s filtering problem: Design a filter F  as in (2.30) such tha t the 

time-averaged estimation error variance is minimized.

Based on the W2s-norm definition, we need to minimize the T^s-norm of the 

estimation error dynamics to solve the filtering problem.

If Ak and Bk contain a stochastic parameter as described before, we can write:

Bk (2.60)

Let us define A q and B q as

A g = qA, B q =  qB, (2.61)

where q2 =  varjAj,}. Define the transfer function from lj to z as H ^ .  Now, using 

Theorem 3, we can write

(2.62)

where

L c — B B  +  B qBq +  A L CA' +  AqLcAq. (2.63)
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The problem of Ti2 filtering for deterministic discrete time systems has been 

studied in the literature [14,40]. (See also [9] for a detailed discussion of the con

tinuous time case.) In the following, we try  to adapt the deterministic filter design 

problem to the stochastic cases by using the tools defined in the previous section.

The problem of filtering error variance minimization can be formulated as follows 

where the m atrix variables J  and P  are symmetric:

min trace(J) 
a. f , b j , Lf , P

s.t.

p
*

P C r
J > 0

~p A P A qP B B q
* P 0 0 0
* * P 0 0
* * * I 0
* * * * I

> 0.

(2.64)

(2.65)

(2 .66 )

Next, we want to convert the two matrix inequalities in (2.65) and (2.66) into 

LMIs. Then, the filter design problem turns out to be a convex programming prob

lem th a t can be solved efficiently by using the existing numerical methods available. 

Let us partition P  and its inverse as

P  = X  U 
U' x 2

p - 1 =
Y V  
V ' y2

(2.67)

where X , Y, X 2 and Y2 are symmetric and positive definite matrices. As P P  1 =  I, 

the following relations hold:

X Y  + U V' = I  

Y _1 = X  — U X ^ U '

Y 'U  +  V X 2 = 0. (2 .68)
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Now, we define the following nonsingular matrices:

T  =
z Y T  O'
0 v .

, 7i =
0 I , t 2 =

T  0
f

0 I
(2.69)

with Z  = X  x. By applying the congruence transformation to (2.65) by T\. we get 

the following LMI:

T[ P  P C r
T\ -

Z z L' -  Gr

* J * Y L'
* * J

> 0, (2.70)

where G = Lf U' Z .  We can also get a LMI by applying the congruence transforma

tion to (2.66) by T2:

T 'P T T' A P T T 'A q P f T'B T'Bq
* T 'P T 0 0 0
* * T 'P T 0 0
* * * I 0
* * * * I

>  0 , (2.71)

where it is not difficult to see that 

T 'P T  =

T ' A P T  =

Z
Y

Z a Z a
Y a +  F c  +  Q Y a +  F c

T 'A gP T  =

T 'B  =

T 'B q =

Z aq 
Y ag +  F cq

Z h  
Y b +  F d

Zb„

Z&q
Ya„ +  Fc,9J

(2.72)

Y b , +  F d ,j

with F  =  V b f  and Q = Va.fU 'Z. Thus, the results can be summarized as follows.

T h eo rem  2. (W2s-flltering ) The filter design problem of (2.64)-(2.66) is equivalent

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to the following convex programming problem:

z ,y ,Q,f ,g
min trace(J)

s.t. (2.73)

(2.70) and (2.71).

To find the filter parameters, a f ,  b j  and L j,  we need to know U and V, which do 

not appear in the LMIs. One of the matrices U or V  can be defined freely. Different 

choices give us different filter state-space realizations. One logical choice is to set 

L f  =  L  th a t can come from setting V  = V ' = —Y ,  leading to U = U' =  Z ~ l — Y -1 .

2.6 E xam ples

In this section, three simulation examples are provided to show the effectiveness and 

applicability of the proposed method for optimal filter design in systems with sensor 

delay, multiple packet dropout, and uncertain observation. All the simulations are 

based on Monte Carlo simulations with 100 runs for each value of a. The first 

example simulates the sensor delay system. The second example uses the same 

system as in Example 1, but multiple packet dropouts are simulated by using the 

new formulation. The third example studies the uncertain observation case. In 

Examples 1 and 3 the existing methods are compared with the proposed method, 

whose superiority is demonstrated.

E x am p le  1 - Consider a discrete-time LTI system represented by

{
%k+\ —
yk =  c xk + d u k (2.74)
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with the following matrix values:

'1.7240 -0.7788' 1'
1 0

, b  =
0

c =  [0.0286 0.0264] , d  =  0.2. (2.75)

Also, consider tha t the observations are governed by

Vk = skVk +  (1 -  h )V k -i-  (2-76)

The initial state values axe 5(0) — [0 0]' and 5(0) =  [2 — 2]'. System states

and their estimates due to the unit variance white noise input are plotted in the 

following figures where x,\ and refer to the first and second states, respectively. 

The simulations are done by using the method presented in [56], referred to as the 

Yaz and Ray method. Figure 2.2 shows the simulation results obtained by using the 

proposed stochastic H 2 and the Yaz and Ray method when the average observation 

uncertainty rate is a  = 0.2. Figure 2.3 compares the estimation error variance of the 

two methods, where ei and e2 refer to the estimation error for the first and second 

states, respectively. The graphs show the effectiveness of the proposed method with 

less overshoot and less filtering error variance.

E x am p le  2 - In this example, the same system as in Example 1 is used, but 

the observations in this case can have multiple packet dropout as in (2.22). The 

simulation results are given in Figure 2.4 for the classical and stochastic H 2 filtering 

with a  =  0.2. The estimation error variances in two cases are given in Figure 2.5, 

which shows tha t the stochastic design method provides superior results compared 

to those from the classical one. Figure 2.5 also shows tha t the proposed stochastic 

method has the same results when no randomness occurs in the observation (a  =  1).
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Figure 2.2: Actual and estimated states for the stochastic H 2 and Yaz and Ray 
methods, a  =  0 .2 , single delay case

E x am p le  3 - Consider a discrete-time LTI system represented by

•Ek+i &Sck d~ (2.77)

with uncertain observations as

yk = Sk cxk + du>k (2.78)

with the same definitions for a, b, c and d, the initial state values, the noise, and 

the uncertainty param eter S, as in Example 1. The system states and their estimates 

due to the unit variance white noise input are plotted in the following figures. The 

simulations are also done by using the method presented in [36], referred to as N ahi’s 

method. Figure 2.6 shows the simulation results for the stochastic H i and Nahi’s 

method when the average observation uncertainty rate is a  =  0.2. Figure 2.7 shows 

the estimation error variance for the two cases. The graphs show the effectiveness 

of the proposed method.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8 

6 

4 

2 

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

8 

6 

4 

2 

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a

Figure 2.3: Estimation error variance vs. a  (the stochastic H 2 and Yaz and Ray 
methods)
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Figure 2.4: Actual and estimated states for the classical and stochastic H 2 filtering, 
a  =  0 .2 , multiple packet dropout
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Figure 2.5: Estimation error variance vs. a  (the stochastic and classical H 2 methods)

R em ark . In Examples 1 and 3, the two methods converge when the observation 

noise tends to zero. The proposed method works better even in the deterministic 

case because this method uses a performance index considering the averaged error 

variance over all the times, not just the instantaneous error variance.

2.7 C onclusions

In this chapter, the problem of optimal filtering in the sensor delay, multiple packet 

dropout, and uncertain observation case has been studied. A new formulation was 

introduced to model the multiple packet dropout in the sensor data. To solve the 

problems, the stochastic W2-norm for systems containing a stochastic param eter was 

defined and the relations were developed. Based on this new derivations, the problem 

was transformed into a set of LMIs th a t can be solved by using existing solver
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Figure 2.6: Actual and estimated states for the stochastic Tt-i and Nahi’s methods, 
q =  0 .2 , uncertain observation
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Figure 2.7: Estimation error variance vs. a  (the stochastic H 2 and Nahi’s methods)
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packages. Some simulation examples showed the effectiveness and applicability of 

the proposed method.
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Chapter 3

Optimal TL2 Filtering in NCS  
with M ultiple Packet Dropout

3.1 In trod uction

As discussed in the previous chapter, many modern control methods employing the

state feedback strategy use state-space formulation. State feedback is applicable

under the implicit assumption that all state variables are measurable. However, in

practice, some state variables may not be directly accessible or the corresponding

sensing devices may be unavailable or very expensive. In such cases, state filters or

state estimators are used to give an estimate of the unavailable states. Luenberger

[34] first introduced state estimators, and many later studies have been conducted

in this area for different practical scenarios.

Networked control systems (NCSs) have gained attention during last few years

(see, e.g., [18,22,33,37,42,51] and references therein). Compared to using the

conventional point-to-point system connection, using a NCS has advantages like

easy installation and reduced set-up, wiring and maintenance costs. In a NCS, data

travel through the communication channels from the sensors to the controller and 

The material of this chapter was reported in [46].
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from the controller to the actuators. D ata packet dropout, a kind of uncertainty 

that may happen due to node failures or network congestion, is a common problem 

in networked systems. In real-time feedback control systems, discarding the old 

packets and considering new packets so tha t the controller always receives fresh data 

for control calculation are normally advantageous. The dropouts happen randomly. 

Because of random dropout, classical estimation and control methods cannot be 

used directly. Dropouts can degrade system performance and increase the difficulty 

of filtering and estimation.

Even though most research conducted on NCSs considers random delay, the 

closely related random packet dropout has not been well studied and only in last 

few years has been the focus of some research studies. To the best of our knowledge, 

no work has been conducted regarding filtering in packet dropout systems, but the 

problem of stabilization and control has been studied recently in packet dropout 

systems (see, e.g., [27,28,59-61] and references therein). In some of these studies, 

only sensor data  dropouts are studied ( [27,60]). While [27] considers adaptive 

genetic algorithms and simulated annealing algorithms, guaranteed cost control, 

and the state feedback controller, other references consider switched systems and 

Markov chains to solve the problem. The main problem in working with Markov 

chains is the unknown Markov states. Identifying the number of states of the Markov 

chain and their transient probability by using hidden Markov models are other issues 

in the research on NCSs.

The problem of optimal H 2 filtering has been tackled in deterministic cases (see, 

e.g., [14,40]), but, to the best of our knowledge, optimal H 2 filtering has not been 

studied in NCSs with multiple packet dropout. In this chapter, the problem of opti

mal H 2 filtering in a NCS with multiple packet dropout has been considered. A new 

formulation is proposed to formulate the NCS with multiple random packet dropout.
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By generalization of the T^-norm definition, new relations for the stochastic 7i2- 

norm of a linear discrete-time stochastic param eter system represented in the state 

space form are derived. The new derivations enable us to consider estimation and 

filtering of the NCS as a generalization of the classical case. To solve the filtering 

problem, the filter gains are designed so that the 7d2-norm of the estimation error 

is minimized. As dropout rates are stochastic, the problem formulation leads to a 

system with stochastic parameters. Thus, the stochastic H 2-norm (T^s-norm) of the 

estimation error is considered as a measure to minimize. W ith both deterministic 

and stochastic inputs present in the NCS framework, a weighted 7d2-norm is defined 

and used. The filtering problem is transformed into a convex optimization problem 

through a set of LMIs that can be solved by using existing numerical techniques [4]. 

The design method proposed in this chapter gives a general framework to study 

other scenarios like NCSs with random delays.

3.2 P rob lem  Form ulation

The schematic of the NCS under study is depicted in Figure 3.1. We suppose that 

the controller is already designed. The exogenous input, w, is a random white noise 

signal with unity variance, z is the signal to be estimated, and z  is its estimate. We 

want to minimize the variance of the filtering error, z. The plant is a discrete-time 

linear time-invariant (LTI) one subject to random disturbances. Also, the sensor 

data are contaminated with noise. The plant can be represented by the following 

equations:
f  x k+i =  a xk +  b i uk +  b 2uik , .
\  Vk =  c xk + dirt*, +  d 2 oJk ,

where x k 6  R" is the plant state vector, and a, b i ,  b2, c, d i  and d2 are system 

parameter matrices with appropriate dimensions. For simplicity in the derivations,
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Figure 3.1: NCS schematic with packet dropout

the single-input, single-output (SISO) case is considered, but the results can be 

easily generalized to the multiple-input, multiple-output (MIMO) case, as will be 

mentioned later. In the SISO case, yk G M is the system output contaminated with

zero-mean noise, u)fc. Also, Uk € 1R is the system command input.

Consider the system described by (3.1). The system output, y, is passed through 

the network and there may be random dropouts, only the probability of the dropouts, 

a i ,  is known. Thus, the current observation, yk, is the current system output, yk, 

with the probability of a i. In the case of no new data, previous data will be used, so 

the previous data, y k -i, will be used with the probability of (1 — a \). The filter has 

knowledge of the current control command, but the system input, Uk, is the current 

controller output, Uk, with the probability of 02 or the previous one, Uk-i, with 

the probability of (1 — 0:2). These expressions can be represented by the following 

relations:

f 2Ik = SikVk + (1 -  Sik)yk-i /o o',
1 u k = S2kUk +  (1 -  h k )u k - i ,

where the stochastic parameters (5^’s are Bernoulli distributed white sequences tak

ing the values of 0 or 1 with

piob{dik = 1} = £ { 6 ik} = at, 0 < a* < 1, i =  l ,2 , (3.3)
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where ctj’s are known constants. Also suppose that Slk's are uncorrelated with each 

other, Wk, and the initial state values, so

prob{<Sjfc =  0 } =  1 - a u  var{tfjfc} =  c*j(l -  a*) =  q,? (3.4)

Now, Equations (3.1) and (3.2) can be put together to have the NCS formulation 

with multiple packet dropout as follows:

%k+1 =  +  bififc +  b 2 u>k
yk ~  cxk A d\Uk ~h d 2£ok
Vk = <5lkVk +  (1 -  &lk)yk-l
Uk = $2kUk + (1 -  $2k)uk-l,

(3.5)

In order to get a compact representation, we augment the system states, measure

ment and the system input:

Vk

Uk

thus,
%k+ 1 ^-k^k d” bifcUfc b 2fc(I,fc
Vk =  ^ k ^ k  “h  di fcUfc d2fcc5fc

Zk = L xk

where zk is the signal to be estimated and

(3.6)

(3.7)

' a  0 (1 -  <52fc)bi <̂2fcbi ' b 2 '
3-k — ^ u c  1 -  6 ik <5ife(l -  <52fc)di , bi*, = ^ifc^2fcdi , b 2fc = h k & 2

. 0 0 l-< 5 2fc &2 k 0

c k  — [<5ifcC 1 -  5 \ k  <5ifc(l -  <52fc)di] , difc =  d 2fc =  (5ifcd2.
(3.8)

Note that a*, bifc, b 2fc, ck , difc and d 2fc are functions of Slk s, but for simplicity, 

we use &k, b u ,  b 2fc, ck , d ifc and d 2fc instead.

Considering the linear stochastic discrete-time system as in (3.7), we want to

find the estimate zk of zk such tha t the variance of the filtering error is minimized.

Now, consider the following filter:

f x k+i = af x k + b f uk +  cf yk
P - \ z k = L f x k, V -y)
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where Xk is an estimate of the state, and af ,  b f ,  c j  and L f  are the filter parameters 

to be designed. The filtering error is defined as % =  z^ — Now, the system states, 

Xk, and the filter states, Xk, can be augmented to get the following augmented 

system:

H  : (  9=+1 
I Zk

= AkQk + BikUk +  B 2kUk 
=  CQk ,

(3.10)

where 

Ak =

and

a  k 0
c/ cfc a j Bik = b i k

b f + Cfdik B 2k =
b 2fc

cjA 2k

Ck

C  — [L - L f ] ,

(3.11)

(3.12)

In the next section, to design the optimal H 2 filter, first the relations for the 

?f2-norm of systems with stochastic parameters are found.

3.3 T^-norm o f  System s w ith  S toch astic  P aram eters

As was shown in the previous section, the formulation of state estimation in the 

NCSs with random packet dropout leads to the state space representation of a 

system with stochastic parameters. The problem of state filtering for systems with 

deterministic parameters has been studied before (see, e.g., [7, 40] and references 

therein). Also, the problem was studied in the previous chapter for the case where 

only one stochastic parameter is present. In this section, to extend the problem 

to stochastic parameter systems with several parameters, the 772-norm of a system 

with stochastic parameters and both stochastic and deterministic inputs is defined. 

The stochastic 772-norm (772S-norm) of the filtering error dynamics can be used as 

a performance index for the filter design. The LMI formulation of the performance 

index and corresponding constraints are presented in the next section.
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For a deterministic stable discrete-time linear time-invariant (LTI) system, we 

have the following two facts:

Fact 1: I f  the input is standard (unit variance) white noise, then the root-mean- 

square value o f the output equals the 7i2-norm of the system [6].

Fact 2: A n immediate consequence of Parseval’s equality is that i f  the input is 

the unit impulse, then the 2 -norm of the output equals the H 2-norm of the system [6], 

As the NCS under consideration is reformulated as a time-varying stochastic 

system, the classical norm definition needs to be modified to be applicable in this 

case. To study an even more general case, consider a general stable time-varying 

stochastic system G with both deterministic input, uk, and unit variance white noise 

input, u>k:

c  f C k + l  =  +  B ikuk + B 2kwk /„ , o\
1 %  =  QCfc +  D lkuk +  D 2kwk,

where A k, B \k, B 2k, Ck, D \k and D 2k are stochastic time dependent matrices. 

Note tha t (3.13) is a generalization of the equations defined in (3.10).

To handle the problem of both the deterministic and stochastic inputs, the lin

earity property of the system is used to write

zk =  z ik +  z2k = G \uk +  G2 ujk, (3-14)

where

G l:  {  ^ ’fc+1 +  (3.15)
t  z \ k  —  ^ k C l , k  ^ l k u k

and

G2 : {  ^ +1 = ^ *  + B 2ku>k
{ z2k = CkC,2<k +  D 2ktok.

Following the general definition of the 7i2-noTm of a time-invariant system, the 

H 2-norm of the stable stochastic time varying system G\ is defined as

1 N ~ 1
(3-17)

~~>° °  f c = 0  
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where the input uk is a unit impulse. Similarly, we can define

(3.18)

where the input uik is standard (unit variance) white noise.

R em ark . The expressions in (3.17) and (3.18) can he shown to satisfy the norm, 

properties. I f  the system is time-invariant, the expressions (3.17) and (3.18) reduce 

to the standard H i-norm . Hence, they are regarded as a generalization of the norm  

to stochastic parameter systems with deterministic or stochastic inputs.

In the previous chapter, a derivation was given for the H 2-norm of a system 

containing only one stochastic parameter. Even though the same method can be 

generalized to the cases with more than one stochastic parameters, the formulation 

will be more complex when the number of parameters increases. In the following 

section, relations are derived in a closed form for the 7i 2-norm of G2 that can be 

easily used for the cases with more than two parameters. The derivations for G 1 

will be very similar and will be discussed later. A discussion of the H 2-norm of G  

follows.

By using the G 2 subsystem representations in (3.16),

£{-^2fc} — £{(CfcC2fc +  D 2kWk){C,2 kC'k +  u 'k^ 2k)}- (3.19)

As u>k is unit variance white noise,

£ { 4 J  =  E{CkL2kC'k +  D 2 kD'2k}, (3.20)

where

L*2 ,k+l =  £ { C 2 , f c + l C 2 , f c + l } - (3.21)
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Thus,

L 2 ,k+ 1 =  £ {(A k(2k +  B 2kWk){Ak(,2k +  =  £{A kL 2kA'k + B 2kB 2k}. (3.22)

Matrices A k ,B 2k,Ck and £>2fc are dependent on stochastic parameters S^'s. The 

5ik s are Bernoulli distributed white sequences with a known mean value of a* and

variance of qf. Therefore, the Sit's can be written as the sum of their mean value

and the zero mean stochastic variables Ajfc’s with the same variance:

Sik — "F Aiki (3.23)

where

£{Aik} =  0, var{Aifc} =  qf, £{AlfcA2s} =  0 , V f c / s .  (3.24)

Now, from (3.11) and (3.8), we can write

Ak = A  +  XikA\ + \ 2kA 2 +  AifcA2fev4i2, (3.25)

where A, A \, zt2 and A \ 2  are known constant matrices. Define

A qi = q\A i, A q2 = q 2 A 2, A qi2 — q ^ A ^ ,  (3.26)

then

£ {A kL 2kA'k} =  A L 2kA' + A q\L 2kA!ql +  A q2 L 2kA 'q2 + A q\2 L 2kA'ql2. (3.27)

Similar relations can be found for £ {B 2kB2k}, £{C kL 2kCk} and £{D 2kD'2k} as fol

lows:

£ {B 2kB 2k} =  B 2 kB'2k +  B 2 ,qiB2ql + B 2 >q2 B 2 q 2  + B 2 ,qi2 B 2 q l 2  

£{C kL 2 kC'k} =  C L 2kC' +  CqlLi2 kCqi + Cq2 L,2 kCq2 +  Cqi2 L 2kCqi 2 (3.28)

£ {D 2kD2k} = D 2kD2k + D 2 ,qiD'2tql +  D 2 tq2 D 2 q2 -I- D 2 tqi 2 D 2 ql2.

Let us define:

■02-®2 =  B 2 B 2 +  B 2 , q l B 2tqi  +  B 2 , q 2 B 2 q2  +  -B2 , q l 2 B 2 q l 2

D 2 D 2 = D 2 D 2 + D 2 :qlD2ql + D 2 ,q2 D 2 q 2  + D 2 ,qu D 2ql2. (3.29)
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Putting all these relations into equation (3.18), we have the following theorem:

T h eo rem  3. ( T t 2 s - n o r m ) -  Consider G 2, the stable discrete-time linear stochastic 

parameter system represented in (3.16). The H ^-n o rm  of the system defined by 

(3.18) is

\\G2 \\22s = £ { C kL cC'k + D 2kD'2k\
(3.30)

=  C L cC  + CqlL cC'ql + Cq2 L cC 'q2 +  Cql2 L cC 'q l2  +  D 2 D '2

with

L c = £ {A kL cA'k + B kB'k)
(3.31)

=  B 2 B 2 + A L CA' + A q\L cA'ql +  A q2 L cA q2 + A qu L cA qi2.

The generalization of the results to the MIMO case is provided in the following 

Corollary.

C o ro lla ry  3. (M IM O  W2s“n ° rm ) :  Consider G2, the stable discrete-time linear 

stochastic parameter system represented in (3.16) in the MIMO case. The Tt2s-norm  

of the system is given by

HG2IIL =  £ {trace(CkL cC'k + D 2kD'2k)}
(3.32)

=  trace{CLcC' +  Cq\L cCqi +  Cq2 L cCq2 + Cqi2 L cCqi2 + D 2 D'2},

where

L c =  £ {A kL cA'k +  B kB k}
(3.33)

=  B 2 B 2 +  A L CA' + A qiL cA'ql +  A q2 L cA 'q2 + A qn L cA'ql2.
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This corollary is a generalization of the SISO case similar to the classical one as 

in [6] and the proof is quite straightforward.

So far, we have found the ?f2s-norm of system G2 with stochastic input wk as in 

(3.16). Following the same method, similar relations are obtained for system G 1 in 

(3.15) with a deterministic input. The results are given in the following corollary.

C o ro lla ry  4. Consider G 1, the stable discrete-time linear stochastic parameter sys

tem represented in (3.15). The Tt2S-norm of the system defined by (3.17) is 

HGrllL =  E{trace{CkLcC'k +  D 2kD'2k)}
(3.34)

=  trace{CLcC' +  CqlLcCqi +  Cq2 L cCq2 +  Cql2 L cCqi2 +  DiD'i},

where

Lc = £ {A kL cA'k + B kB k}
(3.35)

=  B \B [  +  A L CA' +  A qiL cA'ql + + A q2 L cA 'q2 + A qn L cA 'q l 2

with

B \B [  =  B iB [ + B i tqiB'lq l +  B i tq2 B 'l q 2  +  B i tqi2 B ’l q l 2

D lD [  =  D \D \ +  D itq\D'lq l + D \tq2 D 'l q 2 +  D \tqi2 D'lq l2 - (3.36)

Now, to combine the stochastic and deterministic inputs, the weighted 2-norm 

of G is defined as follows:

\\G\\ls = II Gi | | |s +  p||G 2 |lis , (3.37)

where p € M is a weighting factor.
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R em ark . The expression in (3.37) can be shown to satisfy the norm properties. It 

can be regarded as a generalization of the norm of systems with both deterministic 

and stochastic inputs.

The following theorem gives the relations for the stochastic weighted 2-norm 

of the system G. The proof is straightforward and is omitted.

T h eo rem  4. Consider G, the stable discrete-time linear stochastic parameter sys

tem represented in (3.13). The H.2s-norm of the system defined by (3.37) is

||G ||L =  trace{G LcC' + C qlL cCqi +  Cq2LcC'q2 +  Cql2LcG'qi2 - \ - D \D [ +  D 2 D 2 } ,  (3.38) 

where

L c =  B i B [  4- B 2 B 2  + A L CA' +  A qi L cA'qi +  A q2LcA'q2 +  A qi2L cA'qi2 (3.39) 

with B iB [ , D iD [, B 2 & 2  and D 2 & 2  as defined in (3.36) and (3.29) and

B 2 — pB 2 , D 2 — pD 2 - (3.40)

3.4 O ptim al F ilter  D esign

Now, we have the required tools to solve the optimal TL2 filtering problem in the 

NCS framework with multiple packet dropout. We want to design a filter F  as in

(3.9) such th a t the estimation error variance is minimized. Based on the T^s-norm 

definition, it is needed to minimize the 7i 2s-norm of the filtering error dynamics to 

solve the filtering problem.
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The problem of TL2 filtering for deterministic discrete-time systems has been 

studied in the literature (see, e.g., [14,40] and references therein). In the following, 

we try  to adapt the deterministic filter design problem to the stochastic cases by 

using the tools developed in the previous section.

Consider H , the filtering error dynamics defined in (3.10). By using Theorem 4

m l trac e{C LcC '} (3-41)

L c = +  B 2 B 2 +

+ A L CA' + A qiL cA'qi +  A q2 L cA 'q2 +  A q\ 2 L cA!qV2 - (3-42)

As a generalization of the H 2 filtering in the deterministic ( [14,40]) and dropout

( [45]) cases, the li.2s filtering in the NCS can be formulated as follows:

min trace(J)
af,hfjCf,Lf,P

S.t.

> 0
p  P C r 

C P  J

P  Ea EBi Eb 2

*  0 0
* * H/ 0
* * * H/

>  0

(3.43)

(3.44)

(3.45)

(3.46)

where the matrix variables J  and P  and the matrix inequalities are symmetric, p is 

known, and

Ea = [A P  AqlP  A q2 P  AqnP]

Sj3i =  [B\ B 1:qi B i %q2 ^ 1^ 12]

S b 2 =  P [B2 B 2 ,ql B 2 ,q2 ^ 2,912]

EP = diag(P, P ,P ,P ),  E / =  diag(/, 1,1,1).

Now, it is desirable to convert the two matrix inequalities in (3.44) and (3.45) into 

LMIs. Then, the filter design problem turns out into a convex programming problem 

that can be solved efficiently by the numerical methods available.
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Let us partition P  and its inverse as

u , p ~ l =
Y V '

u ' x 2_ V ' y 2_
(3.47)

where X , Y, X 2 and Y2 are symmetric and positive definite matrices. Now, we define 

the following nonsingular matrices:

z Y ' T O'
0 V[ , 2 i =

0 I , T2 = d iag(T ,T , T , T , T , I , I , I , I , I , I , I , I ) ,

(3.48)

where Z  — X ~ l , and I  is the identity matrix with appropriate dimension. By 

applying the congruence transformation with T\ to (3.44), we get the following 

LMI:

T[
P P C r T\ =

'Z z L' -  C

* J
* Y L'
* * J

> 0, (3.49)

where G = L fU 'Z .  We can also get an LMI by applying the congruence transfor

mation with T2 to (3.45):

T '2 [3.45] r 2 > 0, (3.50)

where it is easy to see that

T 'P T  = 

T 'A P T  =

T 'A g tP f  =

T 'B i  =  

T 'B 2 = 

T 'B ltq* =  

T 'B 2 tq*

7a

Z  aq 
Y  a,* +  Fc,

Z  Z  
Z  Y

Za
Y a  + F c  + Q Y a  + F c

Z  a9*
Y  aq,  -f- FCq*

Z b i
F b i  + M  + F d i  

Z b 2 
y b 2 +  F d 2

Zb^q*
Y b \ q t  +  F d i q *

Z b 2q*
Y b 2q* +  F d 2q»

q*

(3.51)
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where F  = V c f, Q = V a fU 'Z  and M  = V h f.  Also, q* stands for <71,(72 and <712. 

Thus, the results can be summarized as follows.

T h eo rem  5. (W2s-flltering) The filter design problem of (3-43)-(3.45) is equivalent

to the following convex programming problem:

min trace(J)
Z,Y,Q ,F ,G ,M

s.t. (3.52)

(3.49) and (3.50).

To find the filter parameters, a f ,  b f ,  c j  and L f ,  we need to know U and V, 

which do not appear in the LMIs. One of the matrices U or V  can be defined 

freely. Different choices give us different filter state-space realizations. One logical 

choice is to set L f  =  L  tha t can come from setting V  = V ' = —Y ,  leading to

u  =  u ' =  z - 1  -  y - 1 .

R em ark . Even though the problem of multiple packet dropout in the NCS frame

work have been studied, the general tools used are capable of solving the other related 

problems as well. A delay problem is a direct reformulation o f the augmentation 

procedure and can be solved similarly. More discussion on this topic will appear in 

Chapter 7.

3.5 E xam ple

A simulation example is given in this section to support the developed theory. Con

sider a discrete-time LTI system represented by (3.7) with the following matrix
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values:

'1.7240 -0.7788' 1' 0.5'
1 0 > t>i = 1 > b 2 = 1

c =  [0.0286 0.0264] , d i =  1 , d 2 =  1, L = I2, (3.53)

where I 2 is an identity matrix with the size of 2. The initial state values are 

5(0) =  [0 0]' and 5(0) =  [2 — 2]'. The system states and their estimates due

to sinusoidal input are plotted in the following figures. Note tha t the controller is 

not designed here. It is assumed tha t it simply sends some sinusoidal commands. 

Figure 3.2 shows the simulation results for the case when the average sensor to the 

controller and the controller to the actuator dropout rate are 0.2 and 0 .8 , respec

tively, with a weighting factor of p =  2. This result shows the superiority of the 

proposed "His filtering over the classical one. Figure 3.3 shows the variance of the 

estimation error of aq when a \ and Q2 change from 0.1 to 1 with the step size of 0 .1. 

The weighting factor p, is set to 1. When less dropout occurs, a smaller estimation 

error variance is achieved. In the case of no dropout (a \ =  <22 =  1), as expected, 

the least estimation error equal to that in the deterministic case is achieved. This 

example demonstrates the effectiveness of the proposed method.

3.6 C onclusions

In this chapter, the problem of optimal H.2 filtering in the NCS environment with 

multiple packet dropouts has been studied. The stochastic 2-norm of systems 

containing stochastic parameters was defined, and the relations were developed. A 

weighted 7f 2-norm was defined to be used in systems with both deterministic and 

stochastic inputs. Based on the new derivations, the problem was transformed into 

a set of LMIs tha t can be easily solved by existing software packages. A simulation 

example showed the effectiveness and applicability of the proposed method.
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Figure 3.2: Actual and estimated states for the classical and stochastic H 2 filtering, 
a i  =  0 . 2 ,  0 L2  =  0 . 8 ,  p  =  2

2 0 -

8

0.20.5 0.40.60.8

a.1a.

Figure 3.3: Estimation error variance vs. a \  and 02  for x \,  stochastic TL2 with p =  1
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Chapter 4

Optimal TLoq Filtering in NCS  
with M ultiple Packet Dropout

4.1 In trod uction

As discussed before, state feedback is the most common strategy used in modern 

control systems. However in practice, not all of the state variables are always avail

able for direct measurement, therefore state filtering and estimation play a key role 

in state feedback methods. The filtering problem is to estimate the states or a linear 

combination of them by using the measured system inputs and outputs.

The importance of networked control systems was also discussed in Chapter 3. 

Networked control systems (NCSs) have been the focus of several research studies 

over the last few years (see, e.g., [18,37,51] and references therein). Compared 

to using the conventional point-to-point system connection, using a NCS has ad

vantages in installation, wiring, and maintenance cost and time. In a NCS, data 

travel through the communication channels from the sensors to the controller and 

from the controller to the actuators. D ata packet dropout can occur due to node

failures or network congestion and is a common problem in networked systems. In 

The material of this chapter was contained in [47].
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real-time feedback control systems, it is normally advantageous to discard the old 

packets and consider the new ones so that the controller always receives fresh data 

for control calculation. Packet dropouts usually occur randomly. Because of random 

packet dropout, classical estimation and control methods cannot be used directly 

in NCS systems. Dropouts degrade system performance and make the filtering and 

estimation more difficult and challenging.

The random packet dropout has been the focus of some research studies in the 

last few years. The problem of filtering in multiple packet dropout systems has 

been studied in Chapter 3 and in [45,46] in the W2 framework. Also, the problem 

of stabilization and control has been studied recently in this type of system (see, 

e.g., [27,28,60,61] and references therein). In some of these studies, only sensor data 

dropouts are studied [27,60].

The problem of Woo filtering and control of the deterministic parameter systems 

has been fully studied (see, e.g., [8,12-14,40] and references therein). This problem 

has also been studied in the stochastic cases [11,54,55]. In all of these references, 

the stochastic Woo problem is studied when only stochastic inputs axe present. The 

problem of stochastic packet dropout has also been studied in the context of sensor 

delay and NCS [45,46] in the W2 setting. But, to the best of our knowledge, optimal 

Woo filtering has not been studied in NCSs with multiple packet dropout.

In this chapter, the problem of optimal Woo filtering in a NCS with multiple 

packet dropout is considered. By using the proposed formulation, we can formu

late the NCS with multiple random packet dropouts both from the sensors to the 

controller and from the controller to the actuators. The Woo-norm definition is gen

eralized to derive new relations for the stochastic Woo-norm of a linear discrete-time
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stochastic parameter system represented in the state-space form with both deter

ministic and stochastic inputs. The new derivations give us a general framework so 

that the same tool can be used to study some other problems like random sensor 

delay or uncertain observation. To solve the filtering problem, the filter gains are 

designed so tha t the Tfoo-norm of the estimation error dynamics is minimized. As 

dropout rates are random, the problem formulation leads to a system with stochas

tic parameters. Thus, the stochastic 7doo“norm of the estimation error dynamics 

is considered as a measure to minimize. The filtering problem is transformed into 

a convex optimization problem through a set of LMIs tha t can be solved by using 

existing numerical techniques [4].

4.2 P rob lem  Form ulation

Figure 4.1 shows the schematic of the NCS under study in which the controller is 

already designed. The plant is a discrete-time linear time-invariant (LTI) system 

subject to random disturbances. Also, the sensor data are contaminated with noise. 

The plant can be represented by the following equations:

where Xk £ R" is the plant state vector, and a, b i, b 2, c, d i and d 2 are system 

parameter matrices with appropriate dimensions. The exogenous input vector, w, is 

the zero mean stochastic disturbance input belonging to the space of mean square 

summable vectors, yk is the system output contaminated with w*,. Also, Uk is the 

system command input. 2- is the signal to be estimated, and z is its estimate.

Consider the system described by (4.1). The system output, y, is passed through 

the network and there may be random dropouts, only the probability of the dropouts, 

oq, is known. Thus, the current observation, yk, is the noise corrupted current sys-

{
Xk+i = a  x k + b i u k + b  2 tbk 
yk = c x k +  d i u k + d 2

(4.1)
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Network

State Filter

Controller

Plant

Figure 4.1: NCS schematic with packet dropout

tem output, yk, with the probability of a \. In the case of no new data, previous data 

will be used, so the previous data, y k -1, will be used with the probability of (1 —«i). 

The filter has knowledge of the current control command, but the plant input, Uk, 

is the current controller output, Uk, with the probability of a 2 or the previous one, 

Uk-i, with the probability of (1 — 0 /2 )- These expressions can be represented by the 

following relations:

f Vk = hkVk + (1 -  &ik)yk-i /4 2)
1  uk =  52 kuk +  (1 -  52k)uk- i ,

where the stochastic parameters Sik’s are Bernoulli distributed white sequences tak

ing the values of 0 or 1 with

prob{<5jfc =  1} =  £{Sik} = <*i, 0 < a* < 1, i =  1,2, (4.3)

where cv,’s are known constants. We also suppose th a t Slk's are uncorrelated with

each other, Ok, and the initial state values, so

prob{Sik =  0 } =  1 -  a*,
(4.4)

var{dife} =  Qj(l -  a ^ .

Now, we put equations (4.1) and (4.2) together to have the NCS formulation with
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multiple packet dropout as follows:

Xk+i = axk +  b i uk + b 2 ujk
y = c x k + di uk +  d2 <4
Vk =  hkVk +  (1 -  Sik)Uk-i
Uk = fakUk +  (1 -  S2k)u k -1 -

In order to get a compact representation, the system states, measurement and the

(4.5)

system input can be augmented:

Xk+l
Xk+ 1 

2Ik 
Uk

Thus,
Xk+l ~  akXk T b \kUk b2k^k 
Vk =  CkXk T d ikUk T d 2k^k 
zk = L x k,

where Zk is the signal to be estimated and

(4.6)

(4.7)

' a  0 (1 -  <f2fc)bi 2̂fcbi b 2
a k  = difeC 1 -  (iifc ^ ( 1  -  i 2fc)di j bn, = S l k h k d l > b2fc = <̂ ifcd2

0 0 1 -  S 2k f o k 0

Ck = [<5ifcC 1 -  5ik 5ifc(l -  <̂ 2fc)di] , difc = <5ifc<52fcdi, d2fc = $ifcd2.
(4.8)

Note that a k, b^., b2fc, ck, dn, and d2fc are functions of <4’ s, but for simplicity, 

a k, b ^ , b2fc, ck, d ^  and d2̂  are used instead.

Considering the linear stochastic discrete-time system in (4.7), we want to find

the estimate 4  of Z k  such tha t the Tfoo-norm of the filtering error dynamics is

minimized. Now, consider the following filter:

p  . f  4 + 1  =  a / 4  +  b f U k  +  C f V k  q \

' 1 4  =  L f x k, l4'9j

where 4  is an estimate of the state, and ay, b y ,  cy and L j  are the filter parameters

to be designed. The filtering error is defined as 4  =  — 4 •  Now, the system states,

Xk, and the filter states, X k ,  can be augmented to get the following augmented

system:

TT f  Cfc+i  =  A kC,k +  B i k U k  +  B 2k ^ k  ( ,  i r q

H ' 1 h  =  C & , (4'10)
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where

a  k 0
cf ck a /.

B\k = b lfc 
.b/ + Cfdik B “ = [ c , X j .  - L A -

(4.11)

Note th a t system H  has two types of inputs, deterministic, u^, and stochastic, w*,.

4.3 7Yoo-Norm for D eterm in istic  P aram eter System s

In this section, a brief introduction to the Woo-norm for systems with deterministic 

parameters will be given. For the signal v — {u(0), u (l), • • • }, the oo-norm is defined 

as follows [6]:

IMloo =  supfc|u(A:)|. (4.12)

In other words, the oo-norm of a signal is the least upper bound on the amplitude. 

The Woo-norm of a system is defined as follows:

||G||oo =  maxfl|G(eJ0)|, (4.13)

where G (z) is the system transfer function. The fact is tha t the best bound on the 

2-norm of the system output over all inputs of unit 2-norm equals the oo-norm of 

G [6]. If we name the system inputs as u and the system outputs as y, then

IIGIloo =  sup{||y ||2 : N h  =  1}. (4.14)

4.4 Woo-Norm for S toch astic  P aram eter S ystem s

As was shown in the problem formulation, the formulation of filtering in the NCS 

framework leads to state-space representation of a system with stochastic parame

ters with both deterministic and stochastic inputs. In this section, the definition
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of the Woo-norm is extended to a system with stochastic parameters. The stochas

tic Woo-norm of the filtering error dynamics is used as a performance index, and 

corresponding LMI formulations are given in the next section.

In order to study an even more general case, consider a general stable time- 

varying stochastic parameter system G as follows:

r  f  C f c + i  =  ^ f c C f c  +  B i k U k  +  B 2k U k  ,  j-n
\  zk = C k£k + D lkuk + D 2ku;k, K }

where A k, B \k, B^k, Ck, D\k and D^k are stochastic time dependent matrices. 

Note tha t (4.15) is a generalization of the equations defined in (4.10).

In the deterministic parameter case, the Woo-norm of a linear discrete time- 

invariant system is the maximum bound on the 2-norm of the output over all inputs 

of unit 2-norm [6]. Now, to combine the stochastic and deterministic inputs, the 

weighted stochastic Woo-norm of G (referred to as the stochastic oo-norm for sim

plicity) is defined as follows:

OO
£ £ { p f c l l 2}

ll^lloo =  SUP ~5o     (4-16)
£ 5 { | K I I 2 +  p I M 2}
k=0

where p € K is a known weighting factor.

Before proceeding to the main theorem, we consider the following definitions and 

proposition adapted from [11,35]:

D efin itio n  2. The stochastic parameter system in (4-15) is exponentially stable in 

the mean-square sense or internally stable if there exist 0  > 0 and 0 < r  <  1 such 

that with zero inputs (uJk = 0 and Uk = 0 ),

f { | | a | |2} < /3 r fc<f{||Co||2}! V k > 0 . (4.17)

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



P rop osition  1. The stochastic parameter system in (4-15) is exponentially stable 

in the mean-square sense i f  there exists a positive definite matrix P  such that

£{A'kP A k} -  P  < 0. (4.18)

Proof. Suppose tha t (4.18) holds. Since P  > 0, there exist k,\ > 0 and «2 > 0 such

that

K.\I < P  < K2 1, (4.19)

where 7 is a unitary matrix with appropriate dimension. Thus we can write,

M e d ia n 2} < £{Ckp<k} <  L i l i a n 2}- (4.20)

Now, we can see that

£{Ck+ip <k+i} =  £{^kA'kP A k(4k} = £{Ck{A'kP A k -  P ) (k} + £{CkP t k}. (4.21) 

As (A'kP A k — P) <  0, there exists K3 , 0 <  K3 < K2 , such tha t

£{Ck+iP<;k+i} < - ks£ {n a il2} + s{CkpCk} <  (4 .22)
«2

Thus,

M e d ia n 2} <  £ { (kPCk} < (1 -  -)£ {G t-iP C fe -i}
^ 2 (4 23)

< (1 -  ^ ) fcf{CoPCo} <  «2(1 -  - ) ^ { | |C o | | 2},
«2 «2

or

i|2i ^  o J c r nr ii2fdlCfcll2} < ^ { I lC o ld }  (4.24)

with /? = ^  and r  =  1 -  □' /Cl K2

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D efin itio n  3. The stochastic parameter system in (4-15) is input-output stable if  

there exists a constant 7  > 0 such that

OO OO

£ f { p fc| | 2 } <  7 2 £ £ { M 2 +  P I N I I 2 }- ( 4 . 2 5 )
k~ 0 k=0

Now, consider system G as in (4.15). Suppose tha t the system matrix parameters 

are functions of stochastic variables 8 ik and 8 2 k as follows:

Ak = A  + \ \k A i  +  \ 2kA 2 + \ ik M k M 2 , (4-26)

where

&ik =  Oi +  A ikt i — 1,2 (4.27)

and

^{Aifc} =  0, var{A ik} = qj (4.28)

and A ,  A \ ,  A 2  and A 1 2  are known constant matrices. Define

A qi — q iA \, A q2 — <72^ 2, -4?i2 =  9192^ 12, (4.29)

then,

£{A'kAk} =  A  ' A  +  A q l A q  1 +  A ' q 2 A q 2  +  A ’ql2 Aq\2 - (4.30)

Using a similar approach,

£ { B ' l k B l k }  =  B [ B i  +  B [  q l B i tq i  +  B ' l  q 2 B i :q 2  +  B [  q l 2 B i tq i 2  

£ { - ® 2 f c ^ 2 f c }  =  B 2 B 2  +  B 2 q l B 2 , q l  +  B 2 q 2 B 2 tq 2  +  ^ 2 , g l 2 ^ 2 , g l 2  

£ { C ' k C k }  =  C ' C  +  C'qlCql +  C ' q 2 C q  2  +  C ' q l 2 C q l 2  (4.31)

£{D'ikD\k} =  D'qDi +  D[ qlDltqi + D'l q2D itq2 + D[ ql2D ijqn  

£ { D 2 k D 2 k }  =  D 2 D 2  +  D 2 q l D 2 , q l  +  D 2 q 2 D 2 , q 2  +  ^ 2 , g l 2 - ^ 2 , g l 2 .
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R em ark . It is straightforward to extend the number of stochastic parameters in the 

relations, but for simplicity in notation, only two variables as $1 and 6 2  are consid

ered.

The following theorem gives sufficient condition for the system in (4.15) to be 

both internally and input-output stable.

T h eo rem  6 . For 7 > 0, the system G in (4-15) is exponentially stable in the mean- 

square sense and satisfies the condition in (4-25) i f  there exists P  = P ' > 0 

such that

'S £{A'kP B lk + C'kD lk} £  {A'kP B 2k +  C'kD2k}
* £ { B ikP B ik + D'lkD lk} -  p7 2/  £{B'lkP B 2k + D[kD2k}
* * £ { B '2kP B 2k + D '2kD 2k} - 7 2/

with S  =  £{A'kP A k +  C'kCk} -  P.

< 0 , (4.32)

Proof. Suppose tha t condition (4.32) holds, thus, s  < 0. As £{C kCk} > 0, we 

conclude that

£{A'kP A kj  -  P  < 0. (4.33)

Thus, based on Proposition 1, system G in (4.15) is exponentially stable in the

mean-square sense.

Now, let us define the Lyapunov function as

P* =  £{('kP (k}, P  = P ’ > 0 . (4.34)

Thus,

4\Vk = Vk+i - V k =  £{Cfc+iPa+i -  Ckp a }

= £{Cfe(Afc.P A k — P)Ck +  u'kB'lkP  B \kuk + ui'kB !2kP  B 2 kwk+
(4.35)

+  B ikuk +  C,kA!kP  B 2kwk +  u'kB[kP  A kC,k +  ukB'lkP  B 2kojk+

+ w 'kB 2 k P  A k C k  +  B i k U k } .
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Also,

£ { p f c l |2} =  £{C '< }  =  £{{Ck(k + Dikuk +  Dik^k)' (CfcOfc +  DikUk + D2k^k)}

= {̂CfcCfcCfcCfc + u>kD[kDikUk + w'kD'2kD2kU + CkCkDikuk+

+ C'k̂ 'k̂ k̂̂ k + ukDikC(k + u'kD'lkD2k̂ k + ̂ fc-t̂ /cC’Oc + UĴ D̂ DikUk}.
(4.36)

By adding the term

£ { Y ( \ H r - \ \ ^ r ) + p Y
, 2 / n , ,  112  |i i | 2 \  , / i i -  | | 2  I I -  | | 2h k i n  + m r - w h r ) }  (4 .37)

to the right hand side of the equation in (4.35), we can write: 

A V k = £ {-\\zk\\2 + 7 2 ( I K | | 2  + p\\uk\\2) + [z'k u'k 

where 4> is the matrix defined in (4.32). As $  < 0,

A I 4  -  S {-\\zk\\2 +  7 2 ( I M 2  +  P\\uk \\2)} < 0 ,

*k
Uk
Wfc.

}, (4-38)

(4.39)

or

^ { p fc||2} < 7 2(IKII2 +  H K I I 2) - A ^ .

Now we sum up both sides of (4.40) for k =  0,..., oo to get

0 0  OO

E  £ { p * l l 2} <  E ' A I M 2 +  ^ I M 2) +  y o -  Voo.
k=0 k=0

Considering zero initial conditions, it can be concluded that

OO OO

E f { i^ i i2} < E ^ 2(ii^ii2+ * i i 2)-
fc=0 fc=0

(4.40)

(4.41)

(4.42)

□
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4.5 O ptim al T ix  F ilter  D esign

Now, we have the required tools to  design the optimal H 00 filter in the NCS frame

work with multiple packet dropout. The filtering problem can be stated as follows:

O ptim al Hoo filtering problem : Design a filter as in (4.9) with minimum 7  such 

that the filtering error dynamics in (4.10) are exponentially stable in the mean- 

square sense and the Hoo criterion in (4.25) is satisfied.

Consider H,  the filtering error dynamics defined in (4.10). By using Theorem 6 ,

the optimal Hoo filtering problem can be formulated as follows:

min 7  
a/  >k/ ,Cf ,Lf  >P

S . t .

£{A 'kP A k +  C'kC k - P }  £{A 'kP B \ k ) £{A!kP B 2k]
* £ {B 'lkP B lk } -  P12I  £ { B [ kP B 2k}
* * £  {B'2kP B 2k}  — 7 2/

< 0.

(4.43)

Now, it is desirable to convert the matrix inequality in (4.43) into an LMI. Then, 

the filter design problem turns into a convex programming problem tha t can be 

solved efficiently by using available numerical methods. By using simple matrix 

manipulations, the matrix inequality in (4.43) can be shown to be equivalent to the 

following matrix inequality:

ijr'n-1 '!' -  T < 0, (4.44)

where

=

'A! a 'a K i2 A 'qU C
B [ q2 B [ q 12 0

b '2 B'2v1 B'2q2 B 2qi 2 0
(4.45)

and

n =  d ia g ( - P - 1, - P - 1, - P - 1, - P - 1, / ) ,  r =  d ia g ( - P ,- p 7 2/ , - 7 2/) .  (4.46)
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By using the Schur complement [4], the last inequality is equivalent to the following 

matrix inequality:
n ®

r < 0 ' (4 47)

As P _1 exists, we put Q =  P _1 in (4.47) and apply the congruence transformation 

with diag(/, I, I, I ,  I ,  Q, I, I )  to get the following matrix inequality:

- Q 0 0 0 0 AQ Bi b 2
0 -Q 0 0 0 AqlQ Blql B2ql
* * - Q 0 0 Aq2Q B\q2 B2q2
* * * - Q 0 AqnQ Blq\2 B2qn
* * * * I CQ 0 0
* * * * * -Q 0 0

* * * * * * ~P 12I 0

* * * * * * *

(M1

< 0 . (4.48)

Let us partition Q and P  as

Q = \ X  U ]  P  =  Q - i = [ y  V ] (449)
^  U' X 2. ’ V V' y 2 ’ ( ’

where X ,  Y, X 2 and Y2 are symmetric and positive definite matrices. We define the 

following nonsingular matrices:

T  = Z  Y  
0 V' T  = d ia g ( T ,T ,T ,T , I ,T , I , I ) . (4.50)

By applying the congruence transformation with T  to (4.48), we get the following 

LMI:

- T ' Q T 0 0 0 0 T 'A Q T T 'B i T 'B 2

0 - T 'Q T 0 0 0 T 'A q iQ T T 'B \q i T 'B 2ql

* * - T ' Q T 0 0 T 'A q2Q T T 'B lq2 T 'B 2q2

* * * - T ' Q T 0 T 'A ql2Q T T 'B lql2 T 'B 2qi 2
* * * * I C Q T 0 0
* * * * * - T ' Q T 0 0
* * * * * * —PJ2! 0
* * * * * * * - 7  2I

< 0 , (4.51)
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where it is easy to verify that

T 'Q T  = 

T 'A Q T  = 

T 'A ^ Q T  =  

T 'B X = 

T 'B 2 = 

T 'B hq* =

T 'B 2 ,g* =

Z  Z  
Z  Y

Z a  Z a
Y a  + F c  + J  Y a  + Fc

Z a q*
Y a q* +  F c qt

Zbx
Ybx + M  + F d i

Z b 2 

Y  b 2 + F d 2

Z b

Z
Y  aq* + F c qtj

1 q*
_ybig* +  F d iqt

Z b 2 q*

(4.52)

Y b 2q* +  F d 2q*_

C Q T  = [ L - G  L ] , 

with F  =  V c f , G — CfU'Z, J  = V a fU 'Z  and M  = V b f .  Also, q* stands for qi,q2 

and <7i2- Thus, the results can be summarized as follows.

T h eo rem  7. (Tfoo-filtering) The Hoo filter design problem of (4-43) is equivalent

to the following convex programming problem:

min 7
j ,z x f ,g ,m  ( 4 5 3 )

s.t. (4.51).

To find the filter parameters, a / ,  b f ,  cf  and L j ,  we need to know U and V, 

which do not appear in the LMIs. One of the matrices U or V  can be defined 

freely. Different choices give us different filter state-space realizations. One logical 

choice is to set L f  = L  th a t can come from setting V  = V ' =  — Y ,  leading to

u  = u' =  z - 1 - y - 1.
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R em ark . Even though we studied the problem of "Hoo filtering with multiple packet 

dropout in the NCS framework, the general tools used can be extended to solving 

problems in other frameworks such as sensor delay, multiple packet dropout of sen

sor information, and uncertain observations. These mentioned end up with the same 

formulation as in (4-10). For detailed derivations in the TL2 case involving see Chap

ter 3 or [45].

4.6 E xam ple

In this section, a simulation example is provided to show the applicability and 

effectiveness of the proposed filtering method. Consider a discrete-time LTI system 

represented by (4.5) with the following matrix values:

1.7240 -0.7788' '1' 0.5'a  =
1 0

, t>i = 1 , b 2 = 1 (4.54)
c =  [0.0286 0.0264], d i =  1 , d 2 =  1, L  = I2, 

where I 2 is a 2 x 2 identity matrix. The initial state values are x(0) =  [0 Of and 

x(0 ) =  [1 — i f .  We assume tha t the controller is already designed and simply sends 

some sinusoidal commands to the actuator. The system states and their estimates 

are plotted in the following figures. Figure 4.2 shows the simulation results for the 

case when the average sensor to the controller and the controller to the actuator 

dropout rates are 0.2 and 0.8, respectively, with a weighting factor of p — 0.5. This 

result shows the superiority of the proposed TL^ filtering over the classical one where 

no compensation is applied for dropouts. Figure 4.3 shows the changes of 7  when ai  

and a 2 change from 0.1 to 1 with the step size of 0.1 for p = 1. W ith less dropout 

rate, a smaller 7  is achieved. This example demonstrates the effectiveness of the 

proposed method.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



. 7 Actual 
-  -  Stochastic H .

J  \ Classical H_ .

y v
' X X ' "

________________ I________________ I________________ I________________
0 50 100 150 200

6I---
4 - ; '
2 -

- 2  -

0 50 100 150 200
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Figure 4.3: 7  vs. a \  and c*2 for p =  1
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4.7  C onclusions

In this chapter, the problem of optimal 7i00 filtering in the NCS framework with 

multiple packet dropouts has been studied. The relations for the stochastic Woo- 

norm of systems containing stochastic parameters and with both stochastic and 

deterministic inputs were developed. Based on the new derivations, the problem was 

transformed into a convex programming problem by using LMIs th a t can be easily 

solved by existing software packages. A simulation example showed the effectiveness 

and applicability of the proposed method.
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Chapter 5

Kalman Filtering for M ulti-rate 
System s

5.1 In trod uction

The importance of state filters was discussed in the previous chapters. One of the

early optimal state filters is the Kalman filter, named after Rudolph E. Kalman,

who published a famous paper describing a recursive solution to the discrete-data

linear filtering problem [23]. The Kalman filter is essentially a set of mathematical

relations implementing an estimator tha t minimizes the estimation error covariance.

The Kalman filter is applicable where system models are known or can be found

based on physical rules.

Effective control and monitoring of a process requires frequent information on

essential process variables and states. In many processes, however, the essential

variables are either not measured or are measured infrequently. In particular, in

processes where measurements are available at different frequencies, multi-rate state

estimators can provide frequent estimates of the variables. Infrequent measurements

are usually related to key process variables, and thus their use in estimation leads 

Some material of this chapter was reported in [44],
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to more reliable estimates, especially in the presence of measurement noise.

State estimation has been studied in multi-rate systems [1,16,17,20,25,48-50]. 

Andrisani and Gau [1] consider the case where the measurements are sampled at two 

different rates; the proposed optimal filter consists of two parallel Kalman filters: 

one processing the fast-rate measurements and the other processing the slow-rate 

ones. Hara and Tomizuka [20] use lifting to build a lifted discrete-time plant model, 

and then a discrete-time dual-rate estimator is designed; with it, estimation is based 

on the information from the output given at the output sampling (slow-rate) and 

the same values are used at inter-sample instants. It is proposed to use constant 

estimation gains in inter-sample instants; also a relation between the single-rate and 

dual-rate estimation gains is provided in order to have the same set of eigenvalues; 

however, the proposed method is not optimal.

Thein et al. [49,50] introduce the idea of parallel observer systems, which have 

two separate observers running parallel with each other. The slow observer system 

performs during the output measurement period, and the fast observer system runs 

at the control input period (the fast rate). Both systems are Luenberger-type ob

servers. The estimated states of the slow-rate observer are used to feed the fast-rate 

state estimates.

In the most recent work, Sheng et al. [48] consider dual-rate systems. They 

design dual-rate filters in the H.2 and Hoo settings so tha t the estimation error at 

the fast-rate can be minimized by satisfying a pre-specified criterion. As well, LMI 

techniques are employed for solving the problems.

In this chapter, the state lifting technique is introduced to include inter-sample 

states in a lifted system representation. Then, by generalizing the Kalman filter to 

dual-rate and multi-rate cases, optimal Kalman gains are designed that can be used
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to estimate the fast-rate states based on the multi-rate measurements. The optimal 

gains in the inter-sample instants are found to be zero; it means tha t in the optimal 

sense, the output estimates should be used to drive the Luenberger-type estimator. 

Simulation results support this conclusion.

5.2 S ta te  L ifting

One of the most important and widely used techniques for handling multi-rate sys

tems is the so-called lifting method [6,24], which converts a periodic discrete-time 

system into a time-invariant system. By lifting, a multi-rate system is converted 

into a single-rate one, which can be analyzed by using many different methods. By 

lifting, a multi-rate system can easily be transformed into a single-rate system, but 

the main drawback is the dimension increase. For example, consider the case in

volving an underlying clock with frame period qT, with a discrete-time signal v(k) 

available every T, where q is some positive integer; tha t is, u(0) occurs at time t  = 0, 

v (l) a t t  = T ,  etc. The lifted signal, v, is defined as follows: If v — {u(0),u(l), • • • }, 

then
/

v{0 ) v(q) '

u (l)
5

v (q +  1)
, . . .

k _v(q -  1)_ _v(2 q -  1)_

Thus, the dimension of v(k) equals q times tha t of v(k), and v operates with the 

frame period qT. The lifting operator L  is defined to be the map v —> v. The inverse 

lifting, L ~ l , is defined in an obvious way.

For a multi-rate system, we can lift the input and output to obtain a single-rate 

system with a period which is the least common multiple (LCM) of the input and 

output periods. Then the lifted model will be LTI [6,26].

Consider a dual-rate system, with input updating at the fast rate, T , and output
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sampling at the slow rate, qT, where q is an integer and T  is a real number. By 

lifting, the input and output are lifted to get a time-invariant system. If the fast-rate 

system is
I 'T', . ,  — A  nr* t _ L  R i i i

(5.2)x k + 1  = A x k + B u k 
Vk = C xk +  D uk

with k an integer and A, B , C  and D  matrices of appropriate dimensions, then the 

lifted model will be

x (k+ l)q

Ukq

A  X k q  +  B  U k q  

Cxkq + BUkg,

with

A =  A n, B =  [An- XB  A n~2B  

C = C, D = \D 0 ••• 0],

B 1

(5.3)

(5.4)

and

Akq

^ u kq  ^  

Ukq+1
(5.5)

\ u k q + q - l J

Using this method, the slow-rate states can be related to the fast-rate input and 

slow-rate output. In equation (5.3), we have a relation for only the states in time 

instants where the output data are available, but in our study, we are interested 

in state estimation at the inter-sample instants and the fast-rate state estimates as 

well, thus we need to establish relations between the fast-rate states and the input- 

outputs. The following relations for estimated states show how such a lifted model 

can be obtained. To emphasize the incorporation of inter-sample states, this kind 

of lifting is called state lifting. To derive the equations, we consider the Luenberger- 

type state estimation and constant output during the inter-sample instants (by using 

a zero-order hold).

Based on the fast-rate system relations and by considering the Luenberger-type 

estimator, we can easily write the following relations. Here, the estimation gains
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are named Llkq for the i inter-sample instant in the kq h frame period:

% k q + 1 =  A x k q  - f-  B u k q  L k q { y k q C x k ) )

%kq+ 2 — Axkq+ 1 +  B u kq+l +  Bkq(ykq — C^fcg)

=  A  Xfcq +  A B u kq +  B u kq-|_i -f- [ALkq +  LfogKykq — C xkq)

%kq+i = A x kq+i—i +  BUfc^+i-l +  L kq(ykq — C x kq) (5-6)

=  A lXkq +  A 1 1Bllkq +  •■•-!- Bukq+i- 1 +  [A 1 l L\q + ■ ■ ■ +  L \q](ykq — Cxkq),

or

where

= ^ ( f c + l ) g —  A  X f a f  +  S  +  Lkq (Ukq ~  QXkq),

A =

B =

^&kq+1  ̂
%kq+2

\ X k  q + q j

/ 0  0 •• 
0 0 ••

\ 0  0 •

{  B  
A B

U (kq)

A\
A 2

A i )

0 
B

/  Ukq N
Ukq+ 1  

\ u kq+q-l)

0 \
0

\ A q~2B  A q~3B  ■■■ B )

C =  [0 0 C],

(  I 0 0 \
A I 0

—kq

A q ~ 2 ■ • I )

<%\
h kq

(5.7)

(5.8)

\ L l q )

Using a similar approach, we can state lift the system to find the following relations:

X ( f c + i ) g  =  A  y±kq + B SI*,, (5.9)
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with the same A and B as in (5.7) and

■(k+l)q

^x kq+1\  
x kq+ 2

(5.10)

\ X k q + q /

Similarly, the state lifted representation for multi-rate systems can be found.

5.3 D u al-rate  and M ulti-ra te  K alm an F ilter

Kalman [23] introduced the classical Kalman filter as a means of recursively solving 

the discrete-data linear filtering problem by minimizing a mean squared error. To the 

best of our knowledge, no general method has been proposed for using the Kalman 

filter to estimate the fast-rate states in the case of multi-rate observations. Here, 

the state lifted model derived in the previous section is used to find the Kalman 

filter gains for the fast-rate estimates in dual-rate and multi-rate cases. Consider a 

system with the fast-rate model represented by

( x k + 1  = A x k + B u k + vk 
I  Vk = C xk + u k,

where vk and uik are discrete-time Gaussian white-noise processes with zero mean 

and

£{vkVk } = R i,  8 {u kJ k } = R 2. (5.12)

Then

A ( k + l )q  -  A  % kq  +  ^  H fcg +  L kq (Vkq ~  £  X k g ) (5.13)

and

A (fc + 1  )q — A  X kq -I- B  XJkq  +  V (5.14)
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with A, B, U and Lkq as introduced before and

(  I  
A

v

f i \
0

( Vkq \
Vkq+l 

\ V k q + q - 1 /

( 5 .1 5 )

y A q - l  A q - 2  . . .  J J

Now, the optimal states can be found by applying the Kalman filtering method to 

the state lifted model. The following theorem gives the optimal state reconstruction 

in the dual-rate case where the input is updated at the fast rate and the output is 

sampled at the slow rate.

Theorem 8. (Dual-rate Kalman filter)- Consider the system in (5.11) with a 

dual-rate output observation. The state estimation in (5.13) is optimal in the sense 

of providing a minimum variance of the estimation error if  the estimation gain is 

given by the following relations:

Lkq = A P kq(R 2 + C P kq CT) - 1

(5.16)
P{k+1), =  A  Pkq AT + E i  ~  A Pkq & { R 2 +  C Pkq C^ ) - 1 C Pkq A t .

Proof. The proof of the theorem is a straightforward generalization of the single-rate 

one [2] and is omitted. □

Corollary 5. The optimal Kalman gains are 0 at the inter-sample instants, and at 

the time instants where the output measurements are available, the gains are given 

by

Pkq

T)TITI
( k + l ) q

76

=  APkq C T (R 2 +  C P ^ C Tr 1 

= A nPkqA n +  (An~l R i A n~lT  -I- • • • +  i?i)

—A nPkq CT (R 2 + C P p C T ) ~ 1 x CPkq A n. (5.17)
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Proof. Suppose that
( P lkl  P EA. y  Ay

p 2 1  p 2 2  # 4 p 2 n
kq kq ’ ’ ' kq

l p n l  p n 2  p n n  ,
V f c g  kq ' ‘ ‘ r kq  /

Now we can write

(5.18)

A P fe9CT =

/ <

A 2pn l

A P f q ' 

A 2P t f  ■

• \

• A 2P %
( ° )

0
—

/  A P ^ C T \  

A 2P ^ C T

[ A n p n l j^npn2 • A nP ™ ) \ C Tj \ A nP ™ C TJ

(5.19)

and

i ?2 +  C P *0 CT =

Thus,

or

and

i ?2 +  [0 0 ••• C]P*,[0 0 C f  = R 2 + CPj}qCT .
(5.20)

-kq

(  AP ™ C T \  

A 2 pnnC T (R 2 + c p ^ c t ) - \

\ A npnnCT)

L \q = A P ^ C t (R 2 + C P % C T)~'

L l q = - - -L nkq = 0

(5.21)

(5.22)

-(T+1)9 =  A nP % A n +  (A n~1 R 1A n~lT + --- + R!)

-  A nPjf™CT x (R 2 + C P nnkqCT) - l C P ^ A n.
(5.23)

□
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5.3.1 M ulti-rate Case

The idea of input extension [43] can be used to solve the Kalman filter problem for 

the multi-rate case. For simplicity, consider a multi-rate system where the inputs are 

updated at every p T  =  2T  and the output samples are available at every qT = 3T. 

Then we can write:

— (k + l)p q ' —  — kpq  ~b —  — kpq ' —kpq (%-kpq —  — k p q ) ‘ (5.24)

with

k + l)p q

(  x kp q + 1 \  

x k p q + 2

\ x k p q + p q J

Y-kpq = ( V kpq  

\V k p q + q

i i-kpq
u kpq  \  

u k p q + 2 I » A  

\^ k p q - \-A /

B =

— kpq

\
( I

A
A 2

0
0

\ 0

B
A B  

A 2B  +  A B  
0 
0 
0

0 0 0 
7 0 0
A  I  
0 0 
0 0

0
I
A

( A 0 0 0 0 0\
A 2 0 0 0 0 0
A 2 0 0 0 0 0
0 0 0 A 0 0
0 0 0 yl2 0 0

\ 0 0 0 A 3 0 0/

0 0 \
0 0
B 0
B 0

A B B
a 2b  a b  + b )

0 0 A 2

0  0 \  
0 0 
0 0 
0 0 
I  0 
A I )

( L \ p q

L kpq

kpq
0
0

V 0

o \  
0 
0

r 4
kpq

r 5
kpq

L k p q )

(5.25)

(5.26)

and

— (k + l)p q  A  X -kpq  —  Hfepg X (5.27)

where
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tk p q

— (k + l)p q

( % kpq+ 1 \  

%kpq+2

\ x kp q + & /

( I 0 0 0 0 0 \ (  Vfcpq ^

A I 0 0 0 0 ^ k p q -\-1

A 2 A I 0 0 0 'Vkpq+ 2

0 0 0 I 0 0 Vkpq+3
0 0 0 A I  0 Vkpq+4

^ 0 0 0 A 2 A I ) Kv kp q + 5 /

(5.28)

Again, by using a similar approach, we reach the following Corollary:

(5.29)

C o ro lla ry  6 . The optimal Kalman gains are 0 at the inter-sample instants, and at 

time instants where the output measurements are available, the gains are given by 

Llpq = A P llqCT (R 2 +  C P " qC T ) - '

L t p q  = A P “ Ct (R 2 + CP%qCT ) - '  

and

P(k+I)pq = A 3P ^ ( A 3)t  + A * R 1( A 2f +

+ A R \A t  + R l -  A 3 P " qCT (R 2 + C P l lpqCTr 1 C P llq(A3)T,

P(Li)pq = A 3 P%q(A3)T + A 2 R 1 (A 2 f +  (5.30)

+  A R yA T + R i -  A 3 P%qC T (R 2 + C P $ qC T) ~ 1 C P ^ q(A3)t .

The optimal solution is found to be zero estimation gains at the inter-sample 

instants. These results suggest that the estimated output could be used in the Lu- 

enberger type state estimation of equation (5.7) at the inter-sample instants.
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5.4 E xam ples

In this section, two examples are given to show the applicability of the multi-rate 

Kalman filter in dual-rate and multi-rate cases. The first example is based on a 

mathematical model, and the second one comes from a real mechanical system.

E x am p le  1 - Consider a fast-rate system model represented by the following ma

trices:

qT  =  0.75 (multi-rate ratio of 3/2, frame period of 1.5). Also consider the initial 

states of a:(0) =  [0.0 0.1]' and i:(0) =  [0.1 0.0]'. Figure 5.1 shows the actual,

Figure 5.1 reveals th a t the multi-rate Kalman filter gives good state estimates and 

outperforms the slow single-rate one.

E x am p le  2 - In this example, an air-fuel ratio control system in spark-ignition en

gines is considered. The complete modelling and data  are given in [5]. The problem 

is modified for ease of understanding and to show the applicability of the proposed 

multi-rate Kalman filter design method. The following paragraphs summarize the 

problem.

Current strict emission standards require accurate and fast air-fuel control in 

automotive systems. To achieve a desired air-fuel ratio, we need to know some 

engine variables, especially the liquid fuel puddle mass, which cannot be measured 

directly due to technical and economical constraints. Therefore, a model of the 

system is derived and a Kalman filter is designed to estimate the desired variable.

\-1 .8 1 1 7  0.3991/ \0 .0111/ (5.31)

C  =  (-0 .8  0 .6), D = 0D = 0

with an input updating period of p T  =  0.5 and an output sampling period of

slow-rate and multi-rate estimated variables for a step input with magnitude of 2 .
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Figure 5.1: Actual, slow single-rate and multi-rate Kalman filter estimates

Different models are suggested for spark-ignition engines, mostly in the time domain, 

but the modelling here is based on the engine cycle.

This system has two parameters: air flow and fuel flow. The mass of air flow 

entering the cylinder per cycle, m a, is a function of engine speed, N ,  and throttle 

angle, a, specified by the driver, that is: m a = m a(a, N ).  For the fuel flow, we have 

the following relations:

/  rnfp(k + 1) =  (1 -  fp )m fp{k) +  (1 -  f a)m }i(k)
\  m f (k) = f 0 m fp{k) + f am f i (k),

where m fp is the liquid fuel puddle mass, rnjt is the injected fuel mass, rnj the fuel 

mass into the cylinder per cycle, f a is the fraction of injected fuel tha t enters the 

cylinder directly each cycle and fp  is the fraction of fuel puddle tha t evaporates 

and enters the cylinder each cycle. In [5], a universal air-fuel ratio heated exhaust 

gas oxygen (UEGO) sensor is used to establish the observer design and then an 

economical sensor is used in practice. The dynamics of the UEGO system are
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described as follows:

(5.33)

with <j>e as the equivalence ratio in the exhaust manifold, (prn as the equivalence ratio 

measured by the UEGO, r e the lag time constant and td the transport delay. In 

discrete time, Equation (5.33) can be represented as

4>m(k  +  1 )  =  7 o 4>m (k) +  J i M k  -  ! )  +  I2<t>e(k), (5.34)

where
70 =  e  T / Te
'ji =  e-m 7Vr<? — e~TlTc

=  \  _  e - m T / r e7 2
(5.35)

, m  =  2 -  (dEVO/ 720) -  (td/T )  

with T  as the sampling time, and 0Ev o  the crank angle at which the exhaust valve

opens. Putting all this together and considering <j)m as the output, we reach the

following state space relations for the discrete engine model:

(m!v\ 
4*e 
4>d 

\ /

( \ - f 0  0 0 0 \  / m fP\
o o oma J v

k+ 1

0 1 0  0
V o 7 2  7 1  7 0 /  k

( m u \
(k ) =  (0  0 0 1) J e

<Pd
\  4*7X1 )  jl

4>d 
\  4*771 J

+

/ I  -  f a \
A F ,  r
771a •'*

0
\  0 /

(m fi)k

(5.36)

This time-varying representation is considered at a fixed engine speed of IV =  1200, 

which the relations are derived for. These relations are for the single-rate case. Now, 

consider the dual-rate case with ratio 2 , so that an even simpler and slower sensor 

are used. To close the control loop, an optimal dual-rate Kalman filter is designed 

because the m /p cannot be measured economically. The throttle angle, a, is changed 

between 40 and 50 degrees and the estimated m jp and the actual one are depicted 

in Figure 5.2. Also, the equivalence ratio is plotted, showing it to be desirable. The 

results given in this example do not completely agree with those in [5], because not
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Figure 5.2: Throttle angle, actual and estimated m fp and measured ratio 

all data are given in th a t paper, so some values are assumed here.

5.5 C onclusion

The problem of Kalman filter design for dual-rate and multi-rate processes was 

considered. The optimal Kalman gains were found to be zero at the inter-sample 

instants where the output samples were not available. Some examples were given 

to support the proposed method.

Actual
Dual-rate
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Chapter 6

Frequency-domain Parameter 
Estim ation of General 
M ulti-rate System s

6.1 In trod u ction

In a conventional sampled-data control system, the plant input updating and output 

sampling are at the same rate. However, it is not always possible to update the 

control input and sample the output at the same rate due to various limitations such 

as the cost of fast-rate sensors and actuators. Also, sometimes the plant dynamics 

are such that sampling the different plant signals at the same rate is not economical 

and useful. As a result, a multi-rate sampling scheme should be considered for such 

cases. Of course, this scheme introduces the complication of mixed time steps.

Figure 6.1 shows a general multi-input, multi-output (MIMO), multi-rate sys

tem, where every input has its own updating rate and every output is sampled at 

its own rate. Continuous arrows are used for the continuous signals and dotted ar

rows for the discrete signals. Here, Pc is a continuous-time plant, H is a multi-rate

zero-order hold, and § is a multi-rate output sampling device which can be defined 

The material of this chapter was reported in [43],
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as follows:

( Hpih 

\

\

HprnhJ

( S q i h

\

\

Sqnh )

( 6 .1 )

These correspond to holding m  input channels of u with periods pih, i = 1, • • ■ , m, 

and sampling n  channels of output yc with periods qjh, j  = 1 , • ■ • , n, respectively. 

Here, pi and qj are different integers and h is a real number called the base period. 

If we partition the signals accordingly,

Uc =

u, =

[ V c l \ ( m \

: , » -
\ y c n j w
( UCl \ (  U\  ̂

: I . u  =

\ UCmJ \ U m /

(6 .2)

(6.3)

(6.4)

then

u ^ t )  =  U i {k ) , kp ih  <  t  <  (k  +  l ) p ih ,

Vjik ) = yCj(kqjh), j  =

We use u  to denote a fictitious case in which all inputs are at the fast rate; tha t is,

Pj =  1 , i = 1, • ■ • , rn. Similarly, y denotes the output when all outputs are sampled

at the fast rate, or qj = 1, j  = 1 , • ■ • , n.

U y

Figure 6.1: General MIMO multi-rate system

Such systems are often used in the chemical process industry. For example, 

in polymer reactors [39], the composition and density measurements are typically 

obtained after several minutes of analysis, whereas the control inputs can be ap

plied at relatively fast rate. For another example, consider an industrial bleaching
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process [19] tha t is a chemical process applied to cellulose materials to increase 

their brightness and usefulness; in this process, some output variables, like bright

ness, need laboratory analysis and are in the slow rate and are irregularly sampled, 

while inputs can be applied at a relatively fast rate. One of the problems with such 

a system is finding the estimation of the system parameters and the output at those 

time instants when measurements are not available.

One application of this work is output monitoring at the fast rate. Another 

interesting application is the use of output estimates to run an inferential control 

scheme, as most inferential control algorithms need the parameters of fast single-rate 

models, which are not usually available. Some work has been done in this area. The 

existing multi-rate identification methods can be divided into two main categories: 

state-space identification and frequency-domain identification. Li et al. [26] studied 

the identification of a multi-rate sampled-data system consisting of a continuous

time process with or without time delay, a sampler with period pT, and a zero-order 

hold with period qT (p < q), and the problem of identifying a fast-rate model with 

sampling period pT. The method used was state-space based, employing the lifting 

technique. Their work is continued by Wang et al. [53] where a fast-rate model 

with sampling period T  is identified. Lu and Fisher [29-32] studied the parameter 

and output estimation of dual-rate systems in the frequency domain; they proposed 

least-square and projection-based algorithms for dual-rate noise-free systems. Ding 

and Chen [10] studied the problem of parameter and output estimation for the dual

rate case for stochastic systems.

In this chapter, two simple methods are introduced for dealing with general 

multi-rate systems. These methods are named dividing to subsystems and input 

extension and are useful in the frequency domain. In the first method, a multi-
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rate system can be divided into some dual-rate subsystems and existing estimation 

methods can be used for the parameter estimation of each subsystem; then, the pa

rameters of the original system can be extracted. In the second method, a multi-rate 

system can easily be converted to a dual-rate system with all input updating at a 

fast-rate. A least-square parameter estimation algorithm is derived for such systems.

When system parameters are estimated, they can be used for different applica

tions like inter-sample output estimation as shown in Figure 6.2. Here, the process 

input(s) and sampled output(s) are fed into a parameter estimation engine that 

produces estimates of the assumed model’s parameters at the fast rate. Based on 

the estimated parameters and known inputs, the output can be estimated at the 

fast rate. In Figure 6.2, 6  and y are used to show the estimates of parameters and

y-

>  H

Output
Estimation

Parameter
Estimation

Figure 6.2: Multi-rate output estimation algorithm

6.2 P rob lem  Transform ation

To estimate a fast-rate model of the system, we assume a model structure for the 

system and try  to estimate the parameters. This model is transformed into some
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multi-input, single-output, dual-rate subsystems and their parameter estimation is 

studied in the frequency domain.

Consider tha t we have a MIMO multi-rate system as in Figure 6.1 and tha t a 

series of input and output values are given. Then we assume a fast-rate frequency- 

domain model (transfer function) for this system and want to estimate the model 

parameters based on these multi-rate data.

Now, suppose tha t the fast-rate system model with period h in the frequency 

domain is P ; that is,

y = P{z)u  , (6.5)

where

with

h i ' (P u { z )  Pn (z) ■■■ P im(z )\ f  U \  ^

V2
—

P2 l(z) P2 2 (z) ••• P2m {z) u 2

\VnJ ^P„l ( z)  Pn2{Z) • • •  Pnm{z) j )

Pij(z) —
bjj(z)

aij(z) = 1 +  aj-z 1+afj2 ■ + a?jZ-N

bij(z) =  ti-j +  bjjZ * + 6;2  - 2  ,
' Z  +  ' ■ +  K z

N - N

To deal with this MIMO problem, it can be divided to n  MISO subsystems 

each one, we can write,

(6 .6 )

(6.7)

(6 .8 ) 

For

yi(k) = P nui(k)  +  Pi2 u 2 (k) H b Pimum[k). (6.9)

W ithout loss of generality, it can be assumed tha t all a i j (z )  are equal to a(z)  with

a{z) = l - \ -a \z  + a 2z +  b ajv^' - N (6 .10)

thus

yi(k) = b- ^ Ul(k) + b- ^ u 2 (k) + ■■■+ b- ^ u m(k), (6.11)
a(z) a{z) a(z)
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a{z)yi(k) = bn(z)ui(k) + bi2 {z)u2 {k) H +  bim{z)um (k). (6.12)

This relation, even if available, does not help in the multi-rate problem, because if 

we expand this relation in the time domain, we have 

y%{k) =  -  a\yi{k  -  1 ) --------- aNyi(k -  N )  + b ^ u ^ k )  + 6-jUi(fc -  1) H--------h

+  b ^u i(k  -  N )  H +  bQimum{k) + b\mum{k -  1) H +  b?mum(k -  N ).
(6.13)

However, we have no information about yi(k — j )  , j  /  Iqi, supposing k is an integer 

multiple of qi. To obtain a recursive equation by directly using the available multi

rate data, equation (6.13) needs to be transformed into a form so tha t the a(z) is 

a polynomial in z~qi instead of z~ l , and bij(z) is a polynomial in z~Pi. By using 

properties of zero-order holds and by the method suggested later, bij(z)'s can still 

be polynomials in z~ l .

For a general discussion, let the roots of a(z) be A, to get

N

aiz) = n  t 1 ~  (6-14)
2=1

Define
N

K ( z ) =  I I  (! +  Ai*“ 1 +  Xi z ~ 2 +  • ■ • +  Xf ' ^ ' 9i+1) (6.15)
i=l

Then
N  N

a (z )<A?i(z ) = n  (■*■_  x iz ~ i ) n  ( ^ + h— i-\ f ~ i z ~ qi+i)
i=1 i=1
N

=  J ]  (1 -  A ^ X l  +  A ^ - 1 +  X 2z ~ 2 +  • • • +  A?i- 1 2 - * +1) 
i=l 
N

=  n  ( i - A f z -94) (6-16)
2=1

=  1 -  Aqiz ~ qi -  Aqiz ~ qi • • • +  ( - l ) ArA1A2 • • • \ Nz~Nqi 

=  1 -  (Af  +  A* • • • +  \ % ) z ~ q' +  • • • +  ( - 1 ) WAiA2 • • • AN z ~ Nqi

= : 1 +  o t i \ z ~ qi +  a i 2 z ~ 2qi  h a n N Z ~ N g i .
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However, in the multiplication of bij(z)<j>qi(z), generally all the coefficients are nonzero:

N
hj{z)<j)qi{z) — +  b\jZ 1 H-------VbfjZ +  1 H I- X f  xz 9,+1)

i = 1

=: f3fj + f3fjZ 1 +  fifjZ 2 H +  Pi]Nz Nq'-
(6.17)

Thus, multiplying the numerator and denominator of Pi j( z )  by <j>qi{z) transforms 

the denominator into the desired form where the denominator is a polynomial in 

z~qi:

P(jW  =  h M p M  =: S i M ,  (6.18)

Now, equation (6.13) can be written as

N m Nqi
Ih(k) =  -  5 3  a ijVi(k -  3<li) +  E E  P ijU j(k - l ) .  (6.19)

1=1 1=1 (=o

For the input data, we can consider a zero-order hold property. Figure 6.3 shows 

that by using the zero-order hold, we have input information to the plant a t every h 

instant, because the output of the zero-order hold remains the same until the next 

update. Using a zero-order hold property, we propose two methods for dealing with 

multi-rate systems: dividing the multi-rate data to p  subsets, and extending the 

input such tha t the input updating rate becomes h.

6 .2 .1  D iv id in g  to  S u b sy s tem s

This method can be used to convert a multi-rate system into some dual-rate sub

systems. After estimating the parameters of the subsystems, the parameters of the 

original multi-rate system can be extracted by using simple least-squares methods.

To discuss this method, consider a second-order SISO system with transfer func

tion P(z):
b0 + bxz~ l +  b2 z ~ 2

P(z)  =   -----------j-----------tt, (6.20)
w  1 + axz - 1 + a2 z ~ 2 v ’
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0 pjh 2 p th

Figure 6.3: Zero-order hold

with an input updating period of 2h or p =  2, and an output sampling period of 3h, 

or q =  3. Using the method just discussed, a polynomial, <j>q(z), can be found such 

that

P ( z )  = V W  =  = § & L  f6 o n
V 1 u(k) a{z)4>q{z) ol{z) ’ K 1

with

a{z) = 1 +  a i z -3 +  ct2 Z~6,
(6 .22 )

0(z) = 00 + Piz 1 H +06Z 6-

Expanding equation (6.21) in the time domain gives

y(k) = —a iy (k  -  3) -  ct2 y(k  -  6) +  A)it(fc) +  Piu(k -  1) -I h 06u(k -  6). (6.23)

Suppose th a t a series of input values {u (k ) ,u (k—p), • • • } and output values {y(k) .y (k -  

q), ■ ■ ■ } are given. We cannot simply use equation (6.23) as the input values are not

given at every time instant, but considering the zero-order hold property we can

write:

u(lpq — 1) =  u(lpq — 2),

u(lpq — 3) =  u(lpq — 4), (6.24)

u{lpq — 5) =  u(lpq — 6),

9 1
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and

u(lpq +  q) = u(lpq +  q -  1), 

u(lpq + q -  2) =  u(lpq + q — 3), (6.25)

u(lpq +  q -  4) =  u(lpq + q -  5).

Thus, the system can be divided to two (in general p) subsystems and write equa

tion (6.23) for each one; one for k — Ipq and the other one for k = Ipq +  q with I a 

positive integer. Thus, for subsystem 1 we can write:

y(kpq) +  Qiy(kpq -  q) +  a 2 y{kpq -  2q) =

PQu(kpq) +  (Pi +  p 2 )u(kpq -  1) +  (Pz +  Pi)u(kpq -  3) +  (/35 +  P6 )us(kpq -  5) 

=: Poiu(kpq) -I- Puu(kpq -  1) +  P2 \u(kpq -  3) +  Pz\u(kpq -  5). (6.26)

For subsystem 2;

y(kpq  +  q) +  aiy(kpq) +  a 2 y(kpq -  q) =

(Po + Pi)u(kpq +  q) +  (P2 +  P2 )u(kpq + q -  2) +

(Pi + Ph)u(kpq +  q -  4) +  peu(kpq +  q -  6 ) =:

P0 2 u(kpq + q) +  P\2 u(kpq + q -  2) + P2 2 u(kpq +  q -  4) +  P3 2 u(kpq +  9 - 6).

(6.27)

For each of the two subsystems, any parameter estimation method can be used to 

find an estimation of a \ , a 2 and Poi,Pn, • • • , P3 2 ■ Then, by using the simple least- 

square method, the estimates of a t and Pi can be found.

6 .2 .2  In p u t E x te n s io n

The simpler method given here can easily be used to convert a multi-rate MIMO 

system into a dual-rate MIMO system with all input updating at the fast rate.
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Consider Figure 6.3, which shows tha t we have information about the input at 

every time instant, by simply taking the same input until the next update. Thus, 

if we name the slow rate input, which updates every pjh  instant as uJs, and the fast 

rate input, which updates every h instant as u, the following relation is obtained:

Uj(k) =  u3s{ipj) for k = ipj, ipj +  1, • • • , ipj + p j  — 1. (6.28)

6 .2 .3  P a ra m ete r  E stim a tio n

When the multi-rate models are transformed properly, any frequency-domain iden

tification method can be used for parameter estimation. Here, we use the dual-rate 

least squares method suggested in [10] and adapt it for MISO systems.

If we consider the stochastic case, equation (6.9) can be written as

m
Vi(k) = ^ 2 p ij(z ) ‘uj ( k ) +  vi(k), i = 1 ■ * -n, (6.29)

l

where vl (k) is assumed to be a white Gaussian and zero-mean random signal. Sub

stituting the polynomial a (z ) in z~qi from (6.16) and /3y in z~ l from (6.17) leads 

to the following regression equation,

Vi(k) = <pf (k)6 i + Vi(k), (6.30)

where the superscript T  denotes the matrix transpose, and the param eter vector 

and information vector ipi(k) are defined by

« .  =  k  « i 2 • • •  a w  $ 2  ■■■ P°im P i i qi P i 2 qi /C l ( 6 - 3 1 )

and

= [-y i(k -Q i)  - y i { k - 2 q i )  ••• - y i ( k - N q i )  m (k )  u 2 (k) •••

um(k) ■■■ u i ( k - N q i )  u 2 ( k - N q i ) ••• um{k -  Nqi)]T . (6.32)
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Notice tha t 0, contains all the parameters to be estimated in the model in (6.9), 

and if k is an integer multiple of qi, then <fii(k) contains only the available data 

which are the past output measurements (slow-rate) and the past and current in

puts (fast-rate).

Let 6 i{kqi) be the estimate of (9j at time kqt . The following recursive least 

squares algorithm is proposed for estimating the param eter vector (9, of the dual

rate system:

Oi(kqi) = 6 i{kqi -  qi) + Pi(kqi)ipi(kqi)[yi(kqi) -  ipj (kqi)§i(kqi -  %)],

9i(kqi + I) = 6 i(kqi); 1 = 0,1, • • • , % -  1, (6.33)

Plr l (kqi) = P ^ l {kqi -  qi) +  pi{kq i)p j  [kq{), P;(0) =  P f  (0).

To initialize the algorithm, we take -Pj(O) =  pi0I  with p l0 normally a large positive

number, and 0,(0 ) — @io; some real vector. Notice tha t the parameter estimate Qi 

is updated at every qi samples, namely, a t the slow rate, as is the matrix Pi. In 

between the slow samples, 6 i is simply held unchanged. It is easy to see tha t by 

defining

Li(kqi) := Pi(kqi)pi(kqi) = - 2i , (6.34)
1 +  tpf (kqi)Pi(kqi -  qi)<fi{kqi) 

the covariance matrix Pi can be updated as follows:

p . ( «  =  m *  -  v )  -  Fi{k*  ~ ~  «>
1 + <pf (kqi)Pi(kqi -  qi)pi(kqi)

= [I -  Li(kqi)tpf(kqi)\Pi(kqi-qi).  (6.35)
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6.3 M odel R econ cilia tion

When a param eter estimation method is applied, the a  and (3 parameters can be 

estimated, and normally, a fast-rate model as in equation (6.5) is desired. Here, we 

study the problem of extracting the a and b parameters from the estimated a  and 

/3 parameters obtained from n  MISO subsystems.

One solution to this problem is to use the concept of model order reduction

[15], as we want to reduce the order of the model represented by the a  and (3 

parameters. However, the model order reduction methods cannot guarantee the 

convergence of the parameters. Actually, for practical cases, when no real model of 

the system exists, and only input-output data are available, the concept of model 

order reduction can be used to find a reduced order fast-rate model.

Another solution to the problem can be constructed by using equation (6.18). If 

we denote the estimate of parameters by (?), we can write:

bij(z) _ Pij{z)

or

a(z) di(z) ’
(6.36)

(6.37)
1 +  a \z  1 + -----1- clnz n  1 + d i iz  qi +  • • • +  diNZ~Nqi

where cq and Bl3 are given by the estimation algorithm. By multiplying the poly

nomials in the nominator and denominator of Equation (6.37), equation (6.36) can 

be converted to a set of polynomial equations and the parameters a and can be 

extracted. Suppose that the vector of parameters is defined as

8  =  [oi a2 ■■■ aN b°n  ■■■ hft • • • b°nm ■■■ b%m}; (6.38)
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then we can write:

S0 =

/ S i 1 S i 1 0

where

(  1
ij

7 i

q*3 —t j  t-u

Q12
0 0 s *2

0

1
11 I]

7 2  7 1

I ij
■ 7 2

\ S p m 0 0

0 \

0

1

S 2 mJ

f p n \

P \2
e  =

\ P n m /

= p,

V 0

72J
13

7I n

0 7 I n )

SP

0 0 0

- p % 0

- P i : - / %  '
0

- P i :  ' 0

~ k N 1 
1

- B qiN

o - 0 f j

7/
=  {

%: _  } a ik l = km, k = 1 ,2, '  ■■ , N
0 else

(6.39)

(6.40)

(6.41)

Pv = 0ij  f t j  ••• P f  0 ••• 0]3

The least squares solution of equation (6.39) is given by

6 = [ST S)~ 1S T p.

(6.42)

(6.43)

6.4 E xam ples

To show the applicability of the proposed method, three illustrative examples are 

given, one for the SISO case and two for the MIMO systems, including one with 

real industrial data.
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Example 1 - Consider a system with the fast-rate transfer function P ( z ):

b1 z - 1 + b 2 z - 2 O.4120-1 +  O.3O90-2
^  1 + a iz - 1 + a2 z ~ 2 1 - 1 .60- ! + 0 .80z - 2 ' ( ^

Several sampling cases are considered for this system:

• Single-rate case (p — q = 1),

•  Dual-rate case with output sampling at q =  2,

• M ulti-rate case with p  =  2 and q = 3.

For the dual-rate case, (f>{z) =  1 — a i0_1 +  O20~2 is used to get

, b ( z ) 4 > ( z )  0.4120z-1 +  O.96820-2 +  O.824O0-3 +  0.2472z-4
P W  = =  1 — 0.962-2  +  0.64?-4------------------ ' (6-45)

Also, 4>{z) =  l  — a i z ~ 1 + (a2 —a2 )z ~ 2 — aia 2 z~ 3 +a 2 Z~i  can be used for the multi-rate 

case to get

O.4120-1 +  0.968z-2 +  1.21950-3 +  1.O710-4 +  O.6590“ 5 +  O.19780"6 
^  ~  1 -O.256O0-3 +  O.512O0-6 '

(6.46)

To deal with the multi-rate case, both suggested methods are used. To provide a fair 

comparison, the same total data points of the input-output data are maintained for 

all cases. The relative parameter estimation error ( P E E )  measured in the Euclidean 

norm is defined as

P E E  = \\e -  e\\/\\e\\. (6.47)

A lower P E E  is obtained for the single-rate case and a higher for the multi-rate 

case, as information in between the sampling instants is lacking compared to that 

available in the single-rate case. As the noise is different for different cases, and 

in order to reduce its effects on our comparison, simulations are done several times
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Table 6.1: Estimated Parameters, single-rate case

ai a-2 hi &2 P E E %
SR -1.5077 0.7114 0.4222 0.3903 8.3
DR -1.4786 0.6819 0.3971 0.2601 9.5

MR1 -1.5550 0.7612 0.6530 0.0486 19.33
MR2 -1.3317 0.5609 0.4257 0.3688 19.59

True Value - 1.6 0.8 0.412 0.309 -

Table 6.2: Estimated Parameters, dual-rate case

d i 0 .2 0 1 0 2 03 04 P E E %
DR -0.9555 0.6048 0.5193 0.9243 0.7988 0.1657 8.5

True Value -0.96 0.64 0.4120 0.9682 0.8240 0.2472 -

for each case (100 times in this example) and the mean value of P E E  is extracted. 

To run the simulations, a persistent excitation input sequence, a random binary 

sequence (RBS) in the frequency range of 0 to 1/27T, is applied as an input, and an 

additive white noise with zero mean and unity variance is considered at the output. 

The total number of input-output data is considered to be 2000. The following 

tables show the results. SR stands for single-rate, DR for dual-rate, MR1 for the 

multi-rate case with input extension, and MR2 for the multi-rate case of dividing 

into subsystems.

Table 6.3 shows that the two suggested methods for multi-rate systems have very 

similar results, while the input extension method can easily be applied to MIMO 

systems. Figure 6.4 shows the step response of the system and the estimated model

Table 6.3: Estimated Parameters, multi-rate case

Qfl a2 0i 02 03 04 05 06 PEE%
M R l -0.1892 0.4691 0.5712 0.8963 1.2240 1.2271 0.6560 0.1539 18.43
MR2 -0.1173 0.4300 0.3279 0.8724 1.3622 1.1358 0.8916 0.0463 18.15

True Value -0.2560 0.5120 0.4120 0.9682 1.2195 1.0712 0.6592 0.1978 -
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Figure 6.4: Step response of the system and the estimated model for Example 1 

using the dividing to subsystems method.

E x am p le  2 - Consider a two-input, two-output system as shown in Figure 6.5. The 

input u\  is updated every 2 h period, while the input u.2 is updated at the fast rate. 

The outputs y\ and 1/2 are sampled every 3h and 2h, respectively. The following 

fast-rate model is used for the plant P:

(6.48)
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Figure 6.5: MIMO multi-rate system of Example 2

This system is transformed into two two-input, one-output subsystems as fol

lows:

bxn z~ l + b \xz ~ 2 b\2 z ~ 4 +  b\2 z ~ 2 bn{z)ui  +  b u(z )u 2
V1  ̂ j ITT | _o i | ITT j _o ̂ 2 7 ,1 +  a\z  1 +  022:  ̂ 1 + a i z  +  02^  ̂ a(z)

_  ^2i +  +  b\l z ~ 2 2̂2 +  b\2 z ~ l +  fe22z~2 _  ^2l(z)wi +  &22(-Z)u2
2/2 1 + a \z~ l + a,2 Z~ 2 Ul 1 + a \ z _ 1  + a2 Z~ 2 U 2  a(z)

(6.49)

Now we can use <f>i(z) — 1 — ai-z-1 — (a2 +  a?)-?-2 — aia 2 2 -3 +  a2z~4 for subsystem 

1 and <k(z) — 1 — a iz -1 +  a,2Z~2 for subsystem 2 to get

bu{z)(j>i{z)ui + bn(z)<f>i(z)u2 _  0 n (z )u i  +  (3 n { z )u 2
V l =

b2 \ {z) 4>2 {z)ui  +  b22{z)4>2{z)u2 P2 l{z)ui + /322(z)u2
2/2 =  --------------------- / / n------------------- = -------------------------------- • i 6 -5 0 )a{z)(j>2 {z) a 2 (z)

Now, the suggested least-squares algorithm is applied to each one. To run the 

simulations, persistent excitation input sequences, random binary sequences (RBS) 

in the frequency range of 0 and 1/277, are applied as inputs, and additive white 

noise with zero mean and unity variance is considered at the outputs. Then the 

average estimation error for 100 simulations for all of the parameters is calculated 

as P E E  = 22.81. Figures 6.6 and 6.7 show the step responses of the model and the 

actual system.

E x am p le  3 - The results obtained in this chapter can be extended to MIMO cases 

with irregularly sampled systems as well. Here, a real industrial system shown
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Figure 6 .6 : Step responses of the system and the estimated model for Example 2 
(for y{)
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Figure 6.7: Step responses of the system and the estimated model for Example 2 
(for j/2)
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Figure 6 .8 : Millar Western bleaching process [19]

in Figure 6.8 is studied. This system is used for an industrial bleaching process 

at the Millar Western, Alberta. Pulp bleaching is a chemical process applied to 

cellulose materials to increase their brightness and also to increase the capacity 

of paper to accept printed or written images, thus increasing its usefulness. The 

bleaching process at Millar Western uses hydrogen peroxide as a bleaching agent. 

In this process, the cleaned and filtered pulp is squeezed in presses and heated before 

entering the bleaching tower P I ,  where the pulp sits for about one and half hour in a 

hydrogen peroxide bleach solution. The resulting semi-bleached pulp is de-watered 

in another press and additional hydrogen peroxide is added in a mixer. This stage 

takes about three and half to five hours. The pulp is washed and pressed to extract
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a bleach solution [19]. There are nine different inputs consisting of the peroxide and 

caustic add rate at P I  and P 2, the P2  discharge tem perature and correction, the 

N a 2 S 0 3  and caustic add on chips, and the PQM freeness. Among the outputs, we 

use the most im portant one, which is the brightness, to show the effectiveness of 

the proposed method. Information for the inputs is ready every ten minutes, while 

the output is sampled completely irregularly. To overcome the problem, first-order 

interpolation is used to estimate the output in between the samples and then re

sample it to obtain a regularly sampled output. Moreover, as the inputs are either 

constant or have low changing rates, the inputs are re-sampled to obtain a lower 

input-output rate ratio. Using this method, a 9-input, one-output system is obtained 

with an input updating period of 50 minutes and an output sampling period of 100 

minutes. As the inputs have either no or slow changes, and the system is in almost 

steady state conditions, not enough input excitation is available to find a dynamic 

model of the system. Therefore, only a steady state model (zero order model) is 

extracted. The data from April 1st to June 17, 2001 are used for estimation, and 

data from July 5 to July 30, 2001 for validation. Figures 6.9 and 6.10 show the 

results for the real output and the estimated one for the two different time intervals.

As we do not have the real model of the system, we cannot use the P E E  as 

defined earlier as an evaluation benchmark. To evaluate the model quality, the 

Cross-correlation Coefficient (CC) and Mean Squared Error (MSE) are used. Both 

of the benchmarks are based on the measured output (y ) and the estimated one (y) 

and are defined as follows:

C C (y ,y)  = cov(y,y) (6.51)
>/va r(y )va r(y )

M S E (y ,y ) (6.52)
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Using these benchmarks, we get CC  = 0.9464 and M S E  — 0.9484 for the data in 

the evaluation time interval. Given the difficulties with the problem (irregularity in 

output samples and lack of input excitation), we conclude that the model obtained 

works well.

6.5 C onclusion

In this chapter, parameter estimation methods for general multi-input, multi-output 

multi-rate systems in the frequency domain were studied. Two methods for dealing 

with multi-rate systems were proposed, and a multi-rate least squares estimation 

was derived. Simulation examples showed the applicability of the proposed methods 

to both SISO and MIMO systems.
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Chapter 7

Conclusions and Future Work

In this thesis, some basic problems in filtering and estimation in networked control 

systems and multi-rate systems have been studied. This chapter summarizes the 

main contributions of this work and proposes some future research directions to 

expand the present study and to apply the results to other related problems.

7.1 C onclusions

In this thesis, the problems of filtering and estimation in modern control systems 

were investigated. The sensor delay systems, networked control systems, systems 

with uncertain observation, and multi-rate systems were considered.

The problem of optimal TL2 filtering for discrete-time systems with random sensor 

delay, multiple sensor data packet dropout, uncertain observation, or networked 

systems with multiple packet dropout was studied. To find the filter gains, the 

stochastic variables arising from the random sensor delay, multiple packet dropout 

or uncertainty in observation were transformed into the stochastic parameters in 

the system representation. New formulations were employed to model the multiple 

packet dropout in sensor data and networked control systems. A stochastic definition
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of the ^ 2-norm of a system with stochastic parameters was given and new relations 

for the stochastic W2' norm were derived. The stochastic ^ -n o r m  of the estimation 

error was used as a criterion for the filter design. The relations derived for the new 

norm definition were used to obtain a set of linear matrix inequalities (LMIs) to 

solve the filter design problem.

As an alternative to the H 2-norm filter design, the problem of Hoo filtering 

in networked control systems with multiple packet dropouts was studied. Again, 

by employing the new formulation, random dropout rates were transformed into 

stochastic parameters in the system’s representation. A generalized Tfoo-norm for 

systems with stochastic parameters and both stochastic and deterministic inputs was 

derived and the stochastic Woo-norm of the filtering error was used as a criterion 

for the filter design in a NCS framework. A set of linear matrix inequalities (LMIs) 

was provided to solve the corresponding filter design problem.

Another problem arising in computer control systems is the problem of multi

rate sampling. The problem of optimal Kalman filtering for multi-rate processes 

was also studied in this thesis. A state lifting method was introduced and used to 

generalize the minimum variance Kalman filtering method to the multi-rate case for 

the fast-rate state estimation. The optimal Kalman gains and covariance matrices 

were found at the fast rate, based on multi-rate input-output data and fast-rate 

system models.

Also, the parameter estimation problem of a general multi-input, multi-output 

multi-rate system in the frequency domain was studied. Two methods, dividing to 

subsystems and input extension, were introduced for dealing with multi-rate systems, 

and the later method was used to convert a multi-input, multi-output multi-rate 

system into several sub-problems with fast input updating and slow output sampling. 

Then, a least-squares parameter estimation method was generalized for parameter
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estimation in the multi-input, multi-output multi-rate case.

Several examples, including one with real industrial data, were used to show the 

effectiveness and applicability of the proposed methods.

7.2 E xten sion s and Future W ork

The use of computers and communication networks in control systems is growing 

extensively, but many open problems remain. Based on the research discussed in 

this thesis, some directions for future research are suggested:

• In this thesis, the problem of filtering with sensor delay was studied. The 

formulation used to model the delay can handle at most one sampling delay. 

The problem was also studied for the multiple packet dropout case. A closely 

related problem is tha t of multiple delay in both sensor delay and networked 

control systems. Consider the following system

f %k+ 1 =  "b bthfc, . j.
\  yk = c xk + dujk,

with the same definitions for the states, inputs and outputs and system pa

rameters as in Chapter 2. The single delay model used for the sensor delay 

system is as follows:

Uk =  faVk +  (1 -  Sk)yk- 1 , (7.2)

where 6 k is a Bernoulli distributed white sequence taking the values of 0 or 1

with

p rob{4  =  1} =  S{5k} =  a, 0 <  a  < 1, (7.3)

where a  is a known constant. A direct generalization to  the two-sampling

delay case may be considered as follows:

yk = h  kyk + Sik(6 2 kyk- i  + ^2* ^ - 2)- (7.4)
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Here <5 =  1 — <5. The difficulty in using the relation in (7.4) is tha t it cannot 

guarantee tha t the delay will not jump from no-delay to a two-sampling delay: 

if Sik = 1, then yk =  yk. Now, if <fiifc+1 =  0 and S2:k+1 =  0 , then y k + 1  =  yk_ i, 

while we already know the information of yk. To overcome the problem, the 

following relation can be used:

Dk  =  f i l kVk  +  +  5 l , k - l f > 2 k ) y k - l  +  £lfc<52fc<5l,fc-l2/fc—2- ( 7 . 5 )

In a more general case, the following relation can model the multiple delays 

for up to M  sampling delays:

M —l I l - j

Vk =  h k V k  +  n  +  +

l = 0 j = U = 0  „  ( 7 - 6 )M  M - j+ n n
3 = 1 *=0

The delayed states can be easily augmented to get a compact stochastic pa

rameter state-space form for the multiple delay systems. However, even for a 

small delay size (say, 3), a complicated formulation will result. More investi

gation is needed to find a more useful delay modelling for the multiple delay 

case.

• The most im portant use of estimated states is in control applications. The 

proposed methods in this thesis were given to estimate the system states and 

variables. It will be very interesting to use the estimated variables in a control 

action, and study related closed-loop issues.

• A very interesting problem is that of identification with randomly sampled or 

uncertain information. The situation of randomly sampled data is common 

in industry, especially when the results are coming from manually sampled 

outputs or are analytical results. A similar scenario exists in networked control
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systems where the random delays and packet dropouts occur due to limited 

channel bandwidth. The stochastic ^ 2-norm formulation may be used as an 

entry to solving this problem. A stochastic least squares method will be more 

beneficial. To the best of our knowledge, this problem has not been solved 

yet.

• In this thesis, the problems of estimation in NCS and in multi-rate systems 

have been studied. An interesting problem would be to consider the multi

rate sampling in networked systems. This sampling scheme could be used to 

decrease the to tal amount of information passed through the communication 

channel. This scenario will lead to less channel traffic and a lower delay and 

packet dropout rate would be achieved.

• One of the direct uses of state filtering and estimation is system monitoring. 

Estimation in the sensor delay and sensor packet dropout cases can be re

garded as a monitoring system. A more interesting case would be the case in 

which both inputs and outputs are passed through communication channels 

for monitoring purposes.

• The stochastic Tfoo-norm with both stochastic and deterministic inputs was 

studied in this thesis. Only the sufficiency requirement was given in the proof. 

Proof of necessity would be beneficial.

• In the filtering and estimation study in this thesis, the stochastic delays or 

dropouts were considered while the parameters of the plant were assumed to be 

known without any uncertainty. Adding uncertainty to the plant parameters 

makes the problems more realistic, but more challenging.
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