

University Of Alberta

Clarification

Dialogues
for Plan Recognition in
Advice-Giving Settings

by

Kenneth J. Schmidt

A thesis
submiticd to the Faculty of Graduate Studies and Research
in partial l‘ull‘illmenmfme,_ Jiremen S

Bl L™ %

o and Direction des aitions ot
m:u'cmm des services bibliographiques

398 Wetington Sweet 305, e
Onawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exciusive flicence
allowing the National Library of
Canada fto reproduce, loan,
distribute or seell ooples of
his/her theels by any means and
in any form or format, making
this thesis availlable t0 interested

The author retains ownership of
the copyright in his/her thesis.
Nelther the thesis nor substantial
oxtracis from R may be printed or
otherwise reproduced without
his/her permission.

ISBN 0-612-11358-2

UNIVERSITY OF ALBERTA
RELEASE FORM
NAME OF AUTHOR: Kenneth J. Schmidt

TITLE OF THESIS: Clarification Dialogues for Plan Recognition in
Advice-Giving Settings

DEGREE: Master of Science

YEAR THIS DEGREE GRANTED: 1994

Permission is hereby granted to the University of Alberta Library to reproduce single
copics of this thesis and to lend or sell such copies for private, scholarly or scientific
rescarch purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as hercinbefore provided neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever
without the author’s prior written permission.

Fre S fmi

Kenneth J. Schmidt

Box 1710
TOG 210

Date: April 20, 1994

UNIVERSITY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty
of Graduate Studies and Research for acceptance, a thesis entitled

Clarification Dialogues for Plan Recognition in Advice-Giving Scttings
submitted by Kenneth J. Schmidt in partial fulfillment of the requirements
for the degree of Master of Science.

Veb v—Begk

Dr. Peter van Beok

< gﬁé D

Dr. John Buchanan

Dr. %laoling Sun

PB

Dr. Robin Cohen
External

Date: April 19, 1994

Advice-giving systems and question-answering sysiems may e
recognition (o provide more cooperative responses (0 user queries. A major gl of
such systems will occur when a user's actions are consistent with more thas-aiie il
Onc approach (o the problem of ambiguous plans has focused upon
determination of a single plan to explain the user’s actions. This approach hasil
danger of committing o the wron &ephn Another approach is that of clarifyi
with the user. 'l'li:symmquﬁgs mnbumﬂgpmblephns,mm,,
ambiguity. Such clarification dialogu — Omaing
we allow that any complex domait Factic
sysicm, may involve numerous detailed and cnmplex plms ‘In such adwite
seitings, it is desirable to reduce, and attempt to minimize, the clarification
reguired W resolve ambiguity. Lmlemhlmbeenh:mﬂnsmofchﬂﬂemunnf
detailed and complex plans. We propose several strategies and methods aimed at
reducing clarification dialogue in advice-giving settings. strategies enhance and
mnmmmmmmmmmnmmmmm We
have combined these methods into a new general clarification framework that allows the

handling of complex and detailed plans. Gwchﬁfmmmmmmm
,,,,, dialogue with the user.

It provides a formulation of what to ask the user and id jnlaﬂmniﬁminwhnm
clmﬁcmduloguem:yhﬁnﬁamdu:ed,mmﬁ:hmqmcﬂy 10 a user's
qmylnpam:uln - we have identified situations in which unnece r clarification can
huwmdz pping mmabomml:vanlmnfphnr",[mﬁngmkgy
actions that ify critical sets of plans that matier to the ambiguity.

recognizing the user’s plan and never backtracks into a

Acknowledgments

1 would like to especially thank my supervisor, Peter van Beek. for his invaluable
help and input toward this research. 1 would also like (0 extend a special thank you o
hmg Peter van Beek and Robin Cohen for allowing me the opportunity of co-authoring
related papers on the subject material. I also thank the Natural Sciences and Engincering
Research Council of Canada for their financial support. Lastly, | would like (o thank my
wife, Joanne. as well as our children; Mark, Allison, Heather and Cathy. for their support
and perseverance.

Table of Contents

222 Hmtnmgm(:luiﬁmﬁmbidmfnrﬁmnﬂve B
Responses............ 21

3.5. Basic Top-Down Clarifi
3.5.1. Basic Clarification Eiilple in the Cmthg Domais.................. 32
3.6. Improving the Basic Top-down APProach....................ereesssessessssssss 37

3.6.2. ComPIeX PIans.............cooovverveeenreecvsissnessressesssesseonseonsesssssossnsns 42

3.6.3. Skipping Branch Points in Diamond Configurations.................. 48

3.6.4. Ordering the Disjunctive Events of a Branch Point 46

3.6.5. Exploiting the Fault Partitions of Recognized Plans................... 47

3.6.6. Pointless Clarification QUestions.......................ccoovvervvvervvrrennnn., 9

3.6.7. Plan Recognition and Critiquing Methods................oovvvnnvnennn. 0

Chapter 4. A General Clarification Frameworkoooveevenvennronnoesreresrnn, $2
4.1, The OVErAll SCUINEcoivviirneieceereeee e ssessnsessssese s sssess s sees 52

4.2. The Data for CIafifiCRliONc.ceovvceerrrerrensrnnss e ressesensesssossssssssesesns 92

... 68

7
4.8. Using Key Events 7

4.9. ShArEd EVENLS..............coucecenrccieecnnicssesessasessesnessenessorss sressessessessss B

List of Figures

2.1 Portion of Kaw!7's Cooking HIERarChycooerreveeieeimvneenesesesessrosessssosesses 13
2.2 Recognized Plans FIOm ODSCIVRLONS..................ooeeirsimmeeessssessessssssssessesssnsens 16
3.1 Plan library for COOKING EXAMPIESc..cceovevneeeecresnerrisensresnessessssssssssesssssesses 27
3.2 Event hicrarchy from observation of marinara SAUCE................ooevveeeerrverressininnnn, 29
3.3 Event hicrarchy for CMPUT 16! in the Course-AdvViSorccocovvverenenionens 34
3.4 Mathcmatical Science portion of the event hierarchy of figure 3.3........................ 36
A.5 Event Hicrarchy from "make sauce” ObSEIVALONcocvvrermrorrrennsnsrnessenon., 40
3.6 Hicrarchy with 2 "bushy” BOUOM...................oooveverreirncieseinnsesisessssssssnesessessessssens 4]
3.7 Event hierarchy with cOmpIEX PIARScoouecvunisnenensesencesesssesssnesssssormonss 43
3.8 A Diamond CORMIGURRLON................ovvvenrrvenserensinessssensesesssssssasssmsssssssessnssssessssssssnns 45
4.1 The partitioning of Science plans for course Calculus 102.............c.coovernenrnnnnnn. 63
4.2 Remaining Partitions without Biological Science Plans................c.coocomenevveerrresreonn: 64
4.3 Pantitions for plans with Mathematical SCIENCESccconmrrenensreensssssssesssonn: 65
4.4 The choose wine sub-branch, viewed as a diamond sitation.................................. 67
4.5 T "SWICK™ SHURUONoocceverrerrernarrsennnrssenssssssssssssssssssmmmssssasessssesssssossesss T
4.6 Event hierarchy 10 illustrate branch point skippingcoooveveevveecrrmnrrcssnnnns 13
4.7 The fault partitions of the hierarchy of fIgure 4.6................ccoooevevevererrresesssnesssssones T4
4.8 Remaining partitions fOr PIANS With EVERL V.cveeeveeerreererer e oo esssesseses 76
4.9 Key events with three remaining fault PRItHIONS.ooonnvensssenssresssssosssseos 80
4.10 Bypassing a branchpoint with shared events.......... SRR . 7 .
411 OVermiding faulLscouuveeeeneneenereerrenessenesssnsosssssenes resssasansasesssesssrasssnsarese S

Chapter 1. Introduction

As research advances in the ficld of Anificial Inwlligence. the users of interactive
automated consultants or advice-giving sysiems will expect these systems 1o approach the
level of compelence and cooperation received from human cxperis. When we consult
with human experts, we cxpect much more than simple ‘yes' or 'no’ replies (o answer our
questions. We expect human experts to provide cooperative responses that provide
additional information or advice to help in achieving our goals, prevemt us from being
misled, or at least warn us if our intended actions or goals may be faulty. In order 10
provide such cooperative responses, the human expert must be able 10 determine a client's
plans or intentions. often from interactive dialogue with the client. As an example of this,
consider the following hypothetical conversation between a new university student and a
general course-advising councilor;

Student: I'm interested in learning about using com uters for music applications.
Can 1 take the computer course, CMPUT 199, on advanced
programming languages?

Advisor: Do you intend to obtain a Bachelor of Arts degrec?
Student: Yes.

Advisor: The quota for this course has not yet heen filled, 0 it is possible for you
take the course as a science option. However, this panticular course
involves intensive programming and is gencrally not recommended fos
first year Arts students. See your particular department advisor if you
wish (0 take the course. Recommended computer courses are CMPUT
161 or CMPUT 172 on computer applications.

, This conversation illustrates several points. The student has Nt yet registered ot
It was possi kfmhﬂﬁenlmbehmmmmmﬁmpnmsm&
university had to offer. The advisor did not really ascertain the exact program (or plan) of
hm&mﬁem&hﬁm&ﬁmmmmmmmﬁem
mMngmmmwﬁhkmﬂmﬁnﬁmanwnﬁm
program. This may be established as the dial uc continues. However, the advisor did
|l|e gﬁftﬂlyhmmﬁdm&wmuhﬂﬁ:yuhﬁmﬁs‘
ihe advisor provided a cooperative response 1o the student e's question by explaining why
the course was not suitable and offering alicrnatives. By akin&eme clarification
uestion, the advisor was able 10 provide an approprisic response 10 ® Yucry.

odvi Seveuﬂismnehwlﬁdiaﬂnmﬁmolt“‘t:e into an iseractive
advice-giving sysiem. Some of these are natural language gencralion issues, plan
recognd .Mdmwmﬁﬂﬁmmmg
mmMM#-mmm-hhmEMy
ambiguous plans with the user. i sysicm must also determine what 10 ask the wser in
mmm&mamgm ength. j be

s for iCe-giving sossion increase in sumber or complexity

ans for an & - , ,
icreasingly important. The problem, then, is that of reducing

Several rescarchers have pointed out the importance of some form of plan
recognition, in automated sysiems, for the purpose of providing cooperative responses to
the users of such sysiems. Plan recognition is a process that identifies possible pluns from
the obscrvation of an agent's actions (or a description of actions). Once a user’s plan or
iniention is recognized, a cooperative response can be provided for user queries based
upon the plan and its suitability to the user's intended J.:l A major difficulty occurs
when the uscr’s action or query is consisient with more than one gelin The ambiguity of
the plans may affect which response is provided. Heuristics may be used to commit to a
single plan, but this approach involves several problems that occur when the selected plan
is incorrect. Another approach, for interactive sysiems, is that of asking the user certain
questions in order to clarify which plans are being pursued. This approach avoids the
issue of overcommitting to the wrong plan and backtracking to determine the correct
plan. However, if we are permitied the use of such clarification dialogues, we do not want
the dialogucs 1o be lengthy, verbose, or confusing 10 the user. Such dialogues will only
scrve (0 make the sysiem appear to be unintelligent, awkward, and even uncooperative.

This thesis presents a general framework for clarification dialogues. Several
stralcgies, methods, and guidelines are incorporated, all with the perspective of reducing
or minimizing clarification dialogue, but retaining coherence, to provide advice-giviag
sessions agreeable 1o the user. W=MMmmmmhmMmWMy
the work of van Beck and Cohen [van Beek and Coben 91; van Beck, et. al. 93] on
resolving plan ambiguity for cooperative response generation. In their work, van Beek
ambiguous and consisient with more than onc plan. The key contributions of their work

i ad 0 a question with 3 ' Bt

are in providi jon with a question that
is that of critiguing possible plans and identifying plans with the same fauls, for the
purpose of deicrmining when the sysiem should respond. For example, a plan to entertain
a guest by scrving a meat dish meal would be a fauity plan if the guest is a vegetarian,
Cmmmgmhazhnwnﬂmmmephwmlﬁdlmﬁg&wm
guest. A responsc is given if all possible plans have the same fault annotation; if not, the
sysicm epiers into a clarification dialogue. The second key feature is that the plans have a
hierarchical structure represente b%‘ln event Rierarchy that is similar to the plan
represcatation of Kautz [Kautz 87). This hierarchy of evemts (or actions) is used in

determining what t0 ask the user, by employing a top-down traversal of the hieras
msMcxrmmﬂmﬁmwgh‘“mmheﬁeMicw
lﬁj im’rg Vigii

ach. We
‘approach by adding new strategies, and addressing some of its

~

1.2. Summary of Key Contributions

The general clarification framework that we propose is capable of handling
complex plans that involve multiple noceasary steps (i.c., necessary sub-plans). The basic
approach could not adequately deal with such complex plans. It was basically limited 0
single observations from which hicrarchies of non-complex plans would result from plan
recognition. Since our framework is capable of dealing with complex plans, it allows the
possibility of multiple observations that may often be related o different sub-branches of
those plans. This capability is achieved by maintaining the event hicrarchy in a tree-like
structure and specifying a stack data structure 10 keep track of multiple sub-branches.

In reducing the number of clarification qucstions asked, the problem is basically
that of choosing the right question, or the best question, in order to reduce ambiguity as
quickly as possible. The basic approach emplom critiquing componcnt that assigns fault
annotations (a set of faults) to recognized - To provide a response, clarification
continues, climinating possible plans. uniil all remaining plans have the same fault
annotation. At this point ambiguity no longer matters to providing a response (o a user
query. To determine if ambiguity matiers, the plans are partitioned according to their favh
annotations. All plans of a particular pantition will have the same fault annotation (i.c..
they all have the same set of faults). Ambiguity does not matier if there is only onc
partition. Ambiguity matiers if there is more than onc partition. Here, we propose
maintaining these faulr partition data structures and exploiting them to sclect clari ym'g‘
events (o ask the user. Most of the following methods and strategies utilize this fau
partitioning of the possible plans.

At any disjunctive branch point in the clarification process, there will be a set of
alternative actions that indicate altemative possible plans. The basic approach clarifics
these alternatives by asking a single 'Yes/No' type question about a singlc alternative, or
by asking a single menu-type question in which each menu item is an alicrnative action of
the branch point. chmadoptlhisqueﬂioaiu‘fmrmthe purpose of clarity (o the
user and providing a basic platform for clarification dialogues. Should menu-lype
questions not be used, the basic allowed the use of likelibood factors in
selecting which aliernative 0 ask first. In the ahsence of statistical information 1o
determine one over another, the selection of the alternative for the acxt ‘Yes/No'

ion was left underspecificd. Here we propose a default criterion of rules to

ine the next aliernative (o ask, in the case that menus arc infeasible and
information on the likelihood of plans is not available. We determine the aumber of
remaining fault partitions to both a 'Yes' and ‘No' for cach aliernative. We select the
alternative t0 ask next, based the results. rules arc designed to climinatc

itions as rapidly as possible uatil ambiguity no longer matters. Our
mmm%mmammwrm%mgnmm ,
between these methods, as well as the default situation.
mumvawwmmbammmmmxmm-m

sub-branches arc represemied by evest hierarchies that ha veral disjunctive
m.hmmu&mmfm%mmu

in o action sub-branch. These
sikustions aliow the possibiity of skigping bramch poLss for laiooton ey
while a top-down tra of the evest . We a criterion as
0 when the - mmum& branch
;ﬂ-.ue:‘o:wm::am’ur% .-al:
mwwummmwmmmmm&u

skip to, and then establish sets of events that uniguely idcnufgelhe plans of each fault

ition. These sets allow us (o determine if the ambiguity can be resolved from the new

point. If the tcmainil:gepanilions can be reduced to one xﬂjﬁm by only asking

ahout events occurring after the branch point that is skipped to, then we confirm that it is
safc to skip ahcad (o that branch point.

We have identified certain situations in which we are able to abandon the top-
down traversal of the event hierarchy, in order to effectively reduce clarification dialogue.
When all plans of a particular fault partition share a specific event that is not held by
other . that event uniquely identifics the plans of that partition. We term such events
to be key events. By asking the user a 'YulNo'g:uion nrsuing a key event, we
can substantiaic or climinaic an entire partition. For example, a Yes' reply 1o a key event
will substantiate all plans of a single pantition. Since no other plans hold this event, they
are climinated from further consideration. The remaining plans will all belong to one
partition and their ambiguity will not matter to providing a response. The use of key
events may jeopardize dialoguc coherency. For this reason, our present clarification
framework limits their usc. However, we briefly describe an extension of the concept 1o
cvenis that uniguely identify all plans of more than one partition.

We introduce the notion of overriding faults for the purpose of avoiding pointless
clarification. If clarification dialogue determines that the user is intending 10 pursue an
kamemmmewmgwm directly. In such

ambiguity still matters (o a more precise response. Overriding faults override,
take over, other faults of a plan. They indicate that a certain action should

or precedence

not be pursued for a particular observation. Such faults are associsted with these actions.

gar‘i'lc'lcm oirm W n&'m ’:nc: o de : rspumc Sponse that sddetame
any i o A vide a response that addresses

the overriding fault of the action. pro '

general clarification frame or process, for soliciting clarification from users for plan
recognition. This is not meant to imply that the framework must be taken as a whole, but
illustrates how the different strategics can be integrated. The framework considers both
m-thquweﬂu’YeﬂNo’qmﬁmhalbwﬂhﬁgai
differemt like as well as providing a basic default approach in the absence of
any likelthood factors. We have provided algorithms and examples for the
rmdnminvolvedimhefme\vaks | as basic data requirements, 10 bring the
ramework up 1o the stage of implementation and empirical testing.

1.3. Thesis Organization and Outline

Chapier 2 of this thesis provides necessary background information. A general
historical background and setting is given for advice-giving sysiems that deal with plan
recognition for the purpose of cooperative response ration. Also, some related work
in clarification dialogue is discussed. but there is relatively little rescarch in the arca of
reducing such dialogue in the presence of detailed or complex plans. That is the primary
topic addressed by this thesis.

Chaper 3 provides a setting and detailed description of the basic approach that we
build upon, as well as outlining its limitations. chapter also gives a focused
terminology (or terms that arc often repeated. Throughout this thesis. two domains are
used for examples and illustration, which arc introduced in this chapter. The cooking
domain is quite small and is used primarily 1o clearly illustrate the key contributions of
otl}is thesis. course-advisor domain provides a more practical setting and a larger scake

Chapier 4 presenis the general clarification process in a unificd framework. The
different methods and sirategics are presented incrementally. with examples of their use.
The algorithms are presented from top-level procedures toward more lower-level
procedures. The chapter also includes a bricf discussion about different guestioning and

response formats.

Chapter S provides a bricf summary and discussion of open problems and future
research directions.

Chapter 2. Background

Although plan recognition and cooperative response generation can be viewed as
two scparate areas of Anificial Inclligence research in their own right, the focus here is
pon | 'fr uscful cmnbimuan in me;um-mwﬁng or advm-ziving sysiems; and more

Hm:ecogmm“apmmumrmorcmm“wuplmwpmm
observation of the agent's actions. In our case, descriptions of actions serve as
mﬂvamm:dscﬁhmormnlﬁﬁmmmcmmnmmann future
actions. Plan recognition, by itself, is useful in many areas, such as story understanding.
discourse modeling, modeling naive ps holos intelli l:ampmgr sysiem interfaces,
nndmgncphnmng(gemmin[mm D). Our in 'm;mﬁmliuin
its usefulness in question-answering or advice- ﬁvin m;glems, where recognizing the
particular plans underlying a user’s queries is an inval aid (o generating appropriate
and cooperative responses 10 those queries.

Cooperative response generation, by itself, docs not necessarily go hand in hand
mi!;&anm:ogniﬁon j,imilhmmﬂmmﬁgl ;leplminm“::

a more cooperative response 10 a s query exam consider
mmgwhHMa questioner (Q) and respondent (R) [Webber 87]:

Q. Which ships have a doctor on board?

The questioner concludes that these ships have a doctor and all others do not.
More preciscly, themisledmhhevemhexﬂmecﬁmptyiaof
mpwmmcrsﬂowever.inheliﬂedlﬁpsmmemlyih &mmis
misicading, even though it is comrect. A better response might be "All 43 of them”. This
can be scen as a more coo ,’,,fvemhemﬂmhhtnmuhmﬁu
being misled. Mmﬁﬁmmmhvﬂwdhmvﬂqmm ,
remvlemapnmgmmrwnmmhe Dpes
uscful, and not be misleading. | , be i

mm".mwﬁ:ﬁ!m'&knm‘mr,
knowing full well that the station is closed.

e ST o 7 oy ittt

'On the next corner, b it's eﬁ:d.mnhnqmm

station about three blocks away in the other direction ',
This response not only provides the correct answer (0 the question (i.e., 'Ow the
ormer’), bt is cooperat ,’ihhkmﬂ-mhk“&ﬁ@g&

agent's goal. Our particular interest, here, is with sysiems in which plan recognition plays
a central role in cooperating with an agent, to help that agent in aclticvi:f a goal or
warning the agent about faulty plans to achicve a goal. As such, these types of systems fit
moreinwnnmofadvice-giving-mmmmmc concern is in helping the
user with respect to the user’s higher-level goals. In the future, such automaied consulting
sysiems will have application in many diverse domains. Some of the many possibilitics
are:

* financial advisors

* carcer consulting systems

* course advisor and schedule-planning sysiems ,

* telephone registration systems or automated telephone consultants

* automated tutorial/training or help systems for complex domain environments

« holiday planning ond Wvel agency sysicms

For any sysiem, gathering the exact conient of a cooperative response 10 a query
andptucnﬁngmemmwmcwinamwlangua‘ﬁfomisanimpmmlm.
Our concern is not really in this arca, and we refer reader (0 recent work by
Gaasicriand on gencrating cooperative answers in deductive databascs [Gaasterland 92).
T@ewm-ﬁm;wgemﬁnpuww&mm.mmﬁn“mom@mlo'hc.of
primary responses that are cooperative users in achicving
Mm.mfdmmummmwnrmﬂmvhuMm
plan recognition for cooperative response ion. Clarification is the process that
deals with resolving ambiguity of ized plans, interactively with the user, in order o
provide a ve . To our knowledge, very little rescarch has heen done in
this area and clarification is the problem to which this thesis is addressed.

2.1. Plan Recognition and Cosperative Response Generation

2.1.1. Genesereth'’s ADVISOR

The early work by Allen and Perrault on recognizing and analyzing istentions
md&ewakh&:”ho?; mco.:iﬁoaudmt'lp‘:mi spons ion,
area ve response geaeration.

Before describing their the work done by Genescreth, with respect 10 the

ADVISOR. ks is that of novice users with a ul computer program
for symbolic mathematics (called YMA). leceim crroncous resell (o a
series of MACSYMA commands, the user can ask the AD for and receive
advice about inappropriste commands, as well as suggestions of that should

The ADVISOR's implementation is based on the that novice users
mnumm.wmmmmm.m
MUSER. In solving a kwk”bwymaﬁm
graph called a plan. To the wser, this plan s proof that the commands
mmum&«mum the plan is correct). The consuliation
process of the ADV

i
]
i
Ii
Eé
1
!

obtained, its underlying beliefs are checked for errors, that can then be reported to the
user.

The data made available to the ADVISOR is the relevant sequence of
MACSYMA commands used and the overall goal of the user. lfthisgmlunmmhed
the ADVISOR obtains it by asking the user for a statement of the goal. The NnC
MACSYMA commands can be viewed as an observation, by the sysiem, of mulliple
actions pﬁomed by lhe user (hter. we deal with certain pmb!emc n:pe:tr qf such

p:ﬂnllyl;%%nxﬁplm{wm g
em:r
employs the MUS ﬂmn T forring farher prar

in inferring further plan structure. ‘l‘li:meau
mm-mumpleemufmmmmmmm:b > last

phminmgth:mﬂplmkmﬂm_ 0
plan recognition procedure fail in produc plete

what it has figured out and asks j—mfwiﬂp
ADVISOR attempts to identify a misconception, either)
error in the user’s plan or by a general debugging process. confirms a
m@mmm,,'mghmmﬁmithklm Also, the
ADVI p ity of aletnﬂivemmﬁuninmdmhg
and if successful, informs the user.

Apant from the implementation itself, Genﬂgeih
inerest to the arca of automated consultation.

-mmm;mmﬂkmm;;:;,‘;: M

for such of man- in genenal.
*The use of b mﬂawﬂﬁmmmpﬁn

If we accept that plan recognition does vital role in antomated consultation,
Mummﬁ‘ﬁymhlﬁg;ﬁum&ipﬁhﬂ?
wﬁmuﬁnmmﬁeﬂehmmﬂﬂuﬂ

S ot i, i o o e
ﬁmﬁhmqnﬁﬂuﬁrmmuhfnb

don o B e R
m#aﬂnhﬂuMnauﬁwph(ﬁm-bu&ii

Genesereth did not formalize many of the principles behind the ADVISOR,

t in the form of a LISP implementation. Issucs of multiple goals and concurrent

muluple plans were not dealt with, and these glay an important role in other plan
recognition systems such as that of Kautz [Kautz 8

2.1.2. Intentions from Utterances

The work of Allen and Perrault [Allen 83 Allen and Perrault 80] on recognizing
and analyzing intentions from natural language utie s hegwmnly aimed at providing
a plan-based model to explain a wide range of linguistic and which would be
Mﬂfmﬂ:d&imofqmmmg:munth they show how their
model can account for responses that pro information lhan that which is
explicitly requesie fnwellurﬂpmm incomplete senience fragmemts and indirect

he fmﬁulﬁmﬂmﬂnh' 10 infer the speaker’s plans and
mohmcl:sinmPgm of recognizis

' plans and generating helpful
Wﬁmhmdmifmnlmm > on a simple train
mmwwmmshwnrkmmmmhﬂpfnmmlmﬂ aatural
language undersianding sysiems.

As an example of providing more information than that requesicd, Allcn and
Perrault give the foll gex@gmmnmwcmnlmmfmlmm
in a train station:

patron: When does the Montreal train leave?
clork: 3:15 atgate 7.

mmw:m:m&geﬁsmuhemgmedhyﬁe
clerk wanting to assist the patron in furthering the patron's goals. The resporse not oaly
contains the train ,,,,,;ﬂme.whnchwuexﬂ:ciﬂymuﬂed.hinmmm
location. From the question, the clerk was able to infer the patron's plausibie plan of
boarding the train to Montreal. Obstacies to exccuting this plan were the patron’s lack of
ofmehmﬁnendlh_ arture location. In order (0 be more helpful

and cooperative, the clerk's response also included the departure location.

byA!!mudl‘Erﬂnlnnvnhesaﬂn[

mmmmmnmmmA
given that P is a precondition (or effect) of A.

The rules 10 form chains of inference) which
Heqplied orm (?'Sﬂph- :l;dp

’ ' _;h : u=(ﬁﬁ ﬁnﬁhuntg
mnmﬁ included in a helpful response 10 the

mmm&mmmmmumm
extent. Their example is the following:

9

Clerk: To Windsor?
Patrom: Yes.
Clerk: 3:15.

From the patron’s question, two plans are possible. The patron either wants to
meet the train from Windsor or board the train going t0 Windsor. There is no reason to
accept one plan over the other. Allen's model accepts both plans and detects an
ambiguity. The expectation that first occurred in the search is then asked about. The
answer asserts only one plan to be accepied, afier which obstacle detection and response
continuc as usual.

It was not Allen’s intent (o deal extensively with clarification, but rather 1o explain
it through the model. However, several issucs should be pointed out with respect (o this
two expeciations or goals; that of boarding a train or meeting a train. Also, there are no
equivalent (0 the plan in terms of describing the plan. In this case, clarification is a simple

g St 200 lsa (Sidmr 4 arel 81; Sidmor 83 presened » model o
imio Becown: soveres dfferemt Einds of belief sours i coms framework. This model takes

Cubenymamodzlfmmghm;mkaﬂMﬂn”t —
uril i extended discourse in an information-seeking environment lt‘mrry R3). This
model allows a complex domain of goals and plans in which the user's plan is
rementally built as dialogue progresses. It maintains two differest forms of context
d&'ihcﬂphn(mgoﬂ)mmlnw‘gl:ngwm“nmﬂ:;

sals from current or {0 incorporate previous

movenﬂphnemexl.] ,—plmmCirhenyuyﬂem ﬂliedTRA(.T
structures of goals and actions. Each of these g uﬂmhsmmph.
represents a primitive in the domain. A STR fMﬁlF&ﬁﬂNﬁhﬂﬂ]um
10 represent the plans, 5o that a plan has prec ons, a set of partially ordered actions.
mlmufeﬁmmhmcﬂexpndmdiﬁmlkvehﬂml containing the
goals and actions of r fully ex d plans. The mechanism included plan
recognition rules of Allen, Sidner and Isracl. Carhefrypmmmutmmmcmpkx
information-secking environ th: user may investi several low-level s
Mmy&mmsdmydnﬂmthg&rhve mmmm&-u
parts of a specific plan. Am mmmmyluihe?;ii, ly evidemt
ﬁmmumomminms ialogue. Carberny silds the

The work of Joshi, Webber, and Weischedel on preventing fal
Webber, and Weischedel, 1984; Jnihiet.ul !Hﬂ.m;;,,
tgewﬁmmh :

S e
ld‘th t?zr'm' ,-l’ ly addresses the

ﬂmmﬁmnm“ ﬁ'mi"ﬁ'?; ,
ﬂl!'lﬁiwmnfmg-“m“ e woned

considered, because it is sub-optimal in the case of better plans or cannot be achieved in
the case of alternative plans.

A different model of plan inference in cooperative question-answering was
proposed by Pollack, in which the beliefs of actors and observers are distinguished, and
not assumed to be identical with respect to actions in the domain [Pollack, 1986). Plans
are vicwed as mental phenomena (or a state of mind), and having a plan is analyzed as
having a particular configuration of beliefs and intentions. Invalid plans can be associsted
with particular discrepancies between the beliefs ascribed to the actor (by the observer)
and the belicfs actually held by the observer. Pollack claims that the content of a
cooperative response (o such invalid plans is affected by the type of discrepancy. One
cxampile (from Pollack’s SPIRIT implementation in domain of computer mail)
involves the following responses to a question:

(Question) I want to prevent Tom from reading my mail file. How do I set the
permissions on it to faculty-read only?

(Responsel) Well, the command is SET PROTECTION = (Faculty:Read), but
that won't keep Tom out: file permissions don't apply 10 the system
manager.

(Responsc2) Well, the command is SET PROTECTION = (Faculty:Read), but
that won't keep Tom out: he's the sysiem manager.

From the user' simplc plan (i.c., preventing Tom from readis
mmzuﬁu&-mﬂmmgm.uuzmmnm-

2.1.4. Kautz's Plan Recognition

A theory of plan recognition that was more formal, gencral and powerful than
previous approaches was proposed by Kautz [Kautz 87; Kautz and Allen 86). Kawtz's
:ystem allows the handling of concurrent actions and concurrent plans, abstract evem

descriptions and the sharing of steps between actions, and the ability (0 deal with
du;uncme information. It can also handle both incremental and non-incremental
Oﬂﬁon Mimpmmmmvmuﬂmnfm;plmrempmmmmﬁl 0
conclusions and predictions can still be made from a set of obse
withom uniquely identifying (or prematurely committing) to a particular plan. Since we
adopt Kautz's plan representation in our examples, the following discussion highlights
some of the basic aspects and terminology involved.

mm:rmmwmumumﬁmmrm;
set of observations, an event hierarchy, and certain assum ns. The cvent hierarchy is a
set of first-order predicate calculus statements about rehnon:hps between events,
ns and cffects of events, and equali 'iﬂmpmﬂmﬁiu(inm
pmoi‘lhuzuyﬂemlsmnoh';,, (pode] 10 support reasoning abowt 3

X situations). A plan library is is represcnied by such an event hierarchy, hﬁlum

vmﬁ&dmdhimw(fmmm)mmhalfm Figure 2.1 is a
gnh presentation of a portion of Kauiz's cooking hierarch

13

Figure 2.1 illustrates several im poinis. In this small plan library, there are
two end events of Prepare Meal and Wash Dishes. These are events performed for their
own sake and are not components of a%odler events. They represent the top-level
actions in the domain considered. thick, gray arrows represent abstraction, or
"isa®, links. Thus, every Make Pasta Dish is also a Prepare Meal and every Make
Marinara&auccisllsoanakcSance.‘lheselinksalsolevulmespecialimionsofm
event, e.g., Make Pasta Dish and Make Meat Dish are specializations (or alternative
ways) of preparing a meal. An event may have multiple abstraction parents. The thin,
black arrows represent decomposition links. An event can be decomposed into events that
are necessary actions, or subtasks, of the event in question. For example, the event of
Make Spaghetti Marinara decomposes into the events of Make Spaghetti Noodles and
Make Marinara Sauce. The evemt of Make Pasta Dish requires three subsieps of Make
Noodles, Boil, and Make Sance. Decomposition links indicate the uses for an event, ¢.g.,
Make Marinara Sauce can be used to Make Chicken Marinara or can be used w0 Make
S ghmiu‘:;ium.mhtiiau?iuyhmbevie;edaa'wor' in which
a;nmoa' decomposition links respectively correspond to
connections between nodes.

Kautz’s plan recognition applies certain critical mmm:'
: are

%ég
Eﬁ
il
il
i
i
H

Hi
i
I
j
!
i

r
! 5
3!
h
i
i
;

!
5
}
i
z
i
i
|

H
I
.

I

[

i
|
[g
i

i
|
g
;
%
|

rwumuhaveabudgbeenmognmmwwcﬁhmdofmmwmldkm
nto account, providing tha! such likelihoods can be appropriately assessed and

Although Kautz does not deal with the issue of clarification, he does comment
upon its importance, specifically with respect to medical diagnosis, but also in general
terms: .

"Much of the research effort in medical expert sysicms has
been on discovery procedures. The diagnostic sysiem must
take an active role, asking questions in order to narrow
down the set of possible discascs. None of the work in plan
recognition has dealt with this issue, yet it is critical if we
are 1o build sysiems which can actively engage in a
discourse or other task involving plan recognition.”
(Kautz 87, p. 17]

Our major interest in plan mylion is the result obtai
's

2

rather
itself. As an example of Kautz we use the plan library given in
igure 2.1, with a single observation of Make Marinara Sauce. The result is an event

wlar a@oM is ¢i netti
but we do not know which without further ¢ . A second observation of Make
Snkmﬂwdeswmum“wmlmmuwmuﬂhgm
ml#mmﬂdiagmemmmmnmvmm;fmempk.wi&mtw&e
agent and the time involved. This result is shown in figure 2.2(b).

mm-ﬁdamiﬂmhipﬂﬂ
ﬂdﬁmmzlﬂ_ﬁ-m

The agent insends 10 prepare a meal which is a mest dish
ﬁiﬁikﬂﬂe&nmt’-ﬁmm

In figure 2.2(b), the result of plan recognition is a single plan:

The agent intends to prepare a meal which is a pasta dish
which is spaghetti marinara, by making marinara sauce
and by making spagheni noodies. :

Obtaining a user's plans and higher-level goals would allow a sysiem (0 take them
into consideration in providing a response to user questions. A plan recognition
component that can determine the overall goals from a user's query would allow betier
g}inmacﬁevemmp:levﬂmmmnlmmmﬂ(ulm!ﬂ
7]) that cooperative sysiems, in order to be truly cooperative, should formulate a

and Weischedel) regarding siated goals and inicaded goals, 0 include

-Yagﬁepﬁ)!hemm; the course is offered and there arc no space

of obtaining credit for the course)

s, but you a mmxwmammwm&mﬁe
i course type (considers the overall goal of obtaining a degree).

may have. Plan represcntation is simik
Eiéyﬁﬁl-i“i‘uﬁr

17

substeps and “or” nodes form collections of aliernative (alr) sieps. The arcs of the graph
arc cach associated with a probability. Subsicp arcs all have a probability of 1.0, but alt
arcs have probabilities that reflect the likelihood of their selection by the user. These
values provide a means of gt:fetﬂng one plan over another. The point is that the
particular user model can isolated and altered by substituting a new set of
mbobiliﬁc& Calistri-Yeh alsa deals with invalid plans, not by explicitly storing them,
b{ assigning probabilitics (and therefore, a user model) to certain features of a set of
classified plan-based misco ions that may cause a plan to be invalid. These
mi ions can be roughly divided into constraint misconceptions (c.g.. violated
bindings, preconditions, optimization, and temporal ordering) and structural
misconceptions (which iavolve substituted, missing, or extra steps). Constraint
mhcuweptiomdonmmmemduinmerphwm aths with structural
misconceptions do not exist in the correct plan library and require aliering the graph
topology. Plan recognition is based on a best-first search from a single top-level goal and
works by incrementally extcm Eml solution J‘ulu (expanding the most likely
path) until the user’s query is result is a single plan that explains the user’s
graph structure. A controlling heuristic function, to determine the optimum path, is
caiculated from the probabilitics of aliemative steps from a parent node, and the
pmhobilityol‘havingapmiculumiscawepﬁonwithap*a‘ﬁcul;rprn'@e

There are some key differences between Calistri-Yeh's plan recognition and our
own framework which is based on Kautz-style plan recognition. Currently, we cannot
account for structural z novel plans from a dynamic altering
of the initial plan library. Calistri-Yeh's framework would require a large number of
probability statistics; considering different for all aliemnative sieps as well as

hco:e:doai conp.fhoa (mchu::) Ba'sﬂhﬁuw m?’;‘é
m n to a correct . lishing such numbers for cach
o mmmm o g&mmﬁiiﬂ]ﬂ‘m ’

the inherent problem of selecting wrong plan (or worse, the wrong
).Gimaaudﬂmwhﬁuﬂupv&bﬂidu.ﬂmﬁamm
the M must eagage in some form of

will involve aspects of the user realizing the mistake and

domain. There may be applications in which it is not desirable to identify all possible

plans that can explain an observation. Conversely, a complete plan libras u oo

restrictive: an inference component to form complex and novel plans dynamicatly

he a tremendous asset, as would the capability of accounting for Calistri-Yeh's mwll
sconceptions. An excellent discussion of these shoricomings is pm\nded by Goodman

nndLitmm who employ and modify Kautz's framework 1o recog!

component for an iniclligent graphics interface [Goodman an Lilinn 92). Similasty, for

question-answering and cooperative solving systems, Kautz's plan rece is
not ideal. Beddalliuhm (ilmin;lmwmlycnmg:‘ e plan
library, violated constiraints and preconditions serve to prunc the possible set of

mmmmamxmmmmuemm to produce only the
correct set of phnslhuwﬂlexphinanohﬁrvm adme—gwgng sysicms, we also
wanl the in ﬂneemmmymmmmmmmmuemmdﬂ
the user, mmwmmummmmmheexpmmmr

In light of the above discussion, we should emphasize that we do not advocate o
suppun any particular method or style of plan recognition. The process itsclf does not
meus We do assume that the result of plan recognition provides us with a
pouih mofﬂmﬁhephmmmhfmﬁnhmhulmtumﬂn
similar 10 Kautz's representation (or an “and/or” graph, such as in Calistri-Yeh's
repfﬁenmm) Weimmmdmm:emgmwﬂlmwﬁen
ic response related (o a particular plan. Given these assumptions, the problem is

0 if the user of an advice giving sysiem asks a question (expecting a response)
Ei,mdphmmmbi;m(. there is more than one possible plan 0
observa ')Cﬁ:sﬂmkfwﬂ::ygmmchi[yhplmm&em

2.2. mﬁAmmbmmm

We view clarification as a process in which the sysiem takes an active role in
ohuninglh:mmndgl(dphnndpﬂs)bywnhm This is a significamt
deparwure from sysiems which rely on passive observation of previous
actions) and heu determine a single plan. quﬂhd&emmﬂ
pfefminmdermmmm;; y dialogue. Mm.lhﬁenm:m&

user.
Some of the implicﬂiom involved in active user model ;equisilim were

investigs had 91] with m o ' ind
Wu m:ymlug:e A vﬁﬂn

plans and establish a partial order on them. A plan is deemed to be better than another
plan if all of its attributes are superior.

Wu's system initiates active acquisition (or clarification) when the sysiem adopts
an AAG. These are adoptied for several reasons. Exactly what is asked, upon the
particular reason. Basically, the main reasons for generating an AAG are the following:

1. The recognizer produces In this case, an AAG is generated
’ fyuMw&wmmm:&me(x

correct a misconception).

2.The produces multiple of non-c utility. In this
crlle..nm ismued:dim the user’s “ty
preference.

3. I no plan closely maiches the specificness of known user goals, then an AAG
is generaied Lo determine a more specific user goal.

4. In comparing the difficulty of plans, if some plans have a precondition which

cannot be determined, then an AAG is to determine the ease of
xﬁcvhm&:gm.»\u of this would be that of:

User: 1 get 1o the Marina?

System: Do you drive?

Example 2.1

In the above using Wu's reasons for AAGs, the user’s original
ma:mi -m»mzuamwm:y;rrt::hﬁnu
mauhy.ltuk.ammahﬂmhmmm
a more specific goal. The discounts such plans as windswrfing 10 the contes of the
bay. but leaves two plans with non-comperable wility. Thet is, a d@rive 10
Tesasure loland may just as good as a cruise, for the purposs of photographing the
m&(?)':ﬂ ::M“*dﬂ. mw&;‘nmﬂw
(8a) and (80) ase a result of AAGs for veason number 1.

Wa's system allows for broad scope, with respoct recognition
ma.‘emm.d%mnhmbrMM;

H n.“u.a m“ u
“N_“Mw _mmmmmumﬁ”m K i _mM ,ﬂi
mmumw umm%mm H w mm& it mm. i
T w mmm mw.m mmum nnuum uuﬂm. i} mm—
i Mmmm.m R m%m.m“..a .,mm_:
i L i
“mmmw Mm wwwm fmm At mMWM nu H uw
Lk it mm il m__._,ms xmmm__
iy e it
mmm mm mummmM m mmmmmumwm :IRTHT

2!

of the interactive and colisborative nature of dialogue, by asking the user clarification
questions about pursuing certain actions that compose the possible plans.

_An important part of the overall proposal is that of a critiguing component or
wocedure. Providing a cooperative response depends on the plan of the user. For
exampie, am“ﬁmamﬂaﬂmﬁﬂfﬂ“mpmﬁﬁmh
mmﬂmiﬂugmhmﬁm:m:hmﬁeﬁmhtkmgﬁ
sense. The critiquing component yzes possible plans by pl

recogaition, and annotates them with their fowlts. That is, a containing an action that

has a failure of a precondition is assigned a fault or 1 that indicates the failed

pﬁﬂmmgmdlheﬂaitWﬂMEﬂnhmmmfm

and provides another primitive action 10 suggest 0 the user. Aplnhvﬁjﬂponl
incnnm:nmmﬁmwuldhe a fault annotation

:vﬂidfaﬂtmﬂmmﬂhehnofmm;ninmmmms

phnlusnnhgmmm:fmlu The fault annotation of a plan consists of the set of faults of

the plan.
To@mmwhenﬂgmmzﬁmychﬁyﬁﬂmmmmgf the

fault annotations of the plans are comp puEe ing different plans,
these fault annotations can be view mbednih of Wu's utility of plans in the
previous section. Eﬂmﬁhpﬁmnfﬂﬁﬁsm pity does not matier 1o
providing a cooperative . That is, the response may simply provide a direct
answer (0 the user’s quer have the same fault, or the same set of

fmmﬂﬁgﬂym-mm In this case, the response provides s
to the wser’s question, bmﬂnﬂhaﬁﬁm!hfornﬂnn”" ault
annotation that is common o0 all of the possible plans. In essence, the ambiguity does not
mﬂaﬂhh&ehmhﬁ“ﬁﬂiﬂﬁ-mm&mﬁ

() ”’mm&mﬂﬁgmmiiDI

A;mnglbumﬁmlynmvﬁse&ndm > 8 specific

mhnmmrmﬂﬁemrm_ :,,,,Vl‘nrelmﬁaﬁni hHul

pestions ﬁ-m Y 'Hn' eply pertain o
- i:u':ts&-hauggm

Chapter 3. The Basic Approach and Its Limitations

Smﬂgfmuoflm;m:hnldxmmmwﬂlvmBeekmdﬁmlll
van Beek er. al. 93), this section describes that work and its limitations, and establishes
certain terminology. Before this description, we will first look at how the clarification

process may fit into ‘a larger picture’, in some complete but arbitrary sysiem.

3.1. Clarification as & Part of a Larger System

mmdcmrmum:lunmwmm:mamnphfm
a set of possible plans. This is accomplished by actively asking the user ahout compon
pmsvfﬂ:phumlmfmofphhhuedmmhemtdm&mm
sysie;. or ,,,’,,mumyugm:fmofchnfmdphmmvuymly
with respect to purpose, architecture, organization and implementation. However, there
are certain common denominators that such sysiems will have,

In such sysicms, phnrecu;mmnphyzmmpoﬂnmmk'ﬁemlcdplm
recognition may be central such as in an information- -secking or advice-giving

eavﬁnmﬂnlhcmm&mkﬂphmmyoﬂ be peripheral and
used as an aid ng some other primary task. Agmdempleonhisis

—r’i,JHACSYHAAD,Mhm case, the plan ition compones
receives some form of in mhmﬂauﬂvﬂmdsﬁ_m ave taken place or
mim@dmm fmoﬁiish?ﬁih,,w,,, ind its

m of the pl:
mmmwu; i
iheemﬂruﬂu:ﬂhwiﬁn pplication mus dic arc:

iidmwmlﬂhwutﬂwiﬁmmm

’ mumﬂmmmmAmnmh
made as (0 whether the observations are related.

) mmmmgrnmkmnmdmmm

* A decision must be made about incoherent plans. That is, something must be
done with respect (o observations that cannot be accounted for by the plan
recognition component, providing such observations are allowed 1o occur.

pursuing. If this set contains only one plan, the sysiem can respond to the user. For an
advice-giving setting, the response atiempts (0 answer a user’s question in a cooperative

ition results in more than one plan, the system must handle this in
may be used to reduce the number of plans 1o a single plan, if this

If plan reco
some way. Heuristi 7 7
was not already undertaken by the plan recognition component. Aliernatively,
clarification with the uscr may be undertaken if the sysiem is interactive in nature. There
is also the possibility of combining the two methods. The clarification process will be
used, if necessary, to reduce the number of plans to the point at which a response can be
provided. Afier a response is provided, the sysiem resumes with its primary task.

interactive and responds 10 user questions in a cooperative manner.

‘The clarification process of the basic approach relies upon two critical factors.
First, the recognized plans are represented by a ierarchy of events (actions). The second
factor is that the plans have been analyzed (critiqued) prior 1o clarification. Our model
therefore contains some form of critiquing process that aamotates or assigns faults (0 the

4. There exists a better plan: primitive actions.

™ should first determine if the action is
geapossc should state this and provide

tlinue acti *ﬁmhmmmmwumplm
mnotdaemined. memmmymmmmmm
but its precise determination was not required to answer the user’s question.

MEhgﬁqﬂmephmwinmﬂm:mzdm&mhwk
same fault annotation. In this situation, the clarification process be gh;Tiesynm
responds 10 the aser’s gu ,,,;wilhlmilﬂmnmm mﬁeplm
mcwmmmmwlﬂﬁemnwm, ,
(w.wednnmmmm:m). At the end of clarification,
mugmﬁmﬁmm;:m mrﬁmfm?ﬁmﬂﬁ:

can be provided to s question. In practice, our model partitions the
rocogni, mmmmfmmmm*ﬁm
will vehmfmmfammﬁmﬁmmu””” oC
thenmberof ngmmhhmmllmﬁhmum&nm

oaly one partition remains.

e i
r moet a (' ’ phmhmﬁbyn
m«mnfhummrﬂmm)‘MBmm
level in the domain, 30 in essence, the wser’s goal of boardiag a train suffices as a
wﬂuﬂﬁm’:ﬂﬁ.ﬁﬁfy we simply ask the weer abowt one evest
te Fum.ifﬁumiﬁnnﬁuﬁﬁhhedhwmm
uk' yuhn:q&nhmww ifﬁ is 'Yes', the plas
Mﬁeﬁfmwmnmnh ﬁd‘ Dardin
train to0 Windsor is climinated. In this latter case, the
of meeting the train from Windsor. Ammlﬂﬂ i,)

remaining plan.
When the detailed, and in number,
theie clarification bocomes a sigaiicam: peoblen. w‘é“"...ﬂ*“m;'&‘?m
mmummmndmmnwﬁm That is, we

mnhchﬂ‘nﬁmmm:ﬂhg.mﬁmﬂﬁﬂ;m'ﬁh
user. In order o achieve this, the clarification process should follow certain guidclines:

1. The individual clarification questions showld be concise and cicar. The wser
m-anmnﬂum“ﬂh:hu“h

Question, & mmkpﬁ:ﬁ
li::;i:-llmmﬂ::-’

2. The number of clarification questions asked should be minimizcd, as far as
pnﬂh‘!eﬁnﬂ;mﬂﬁ:-ﬁ' ﬂﬁhﬁi;r;
climinate or plans. We should
e quisions ot whi mot oo 1 e Pt

As an example of dealing with numerous complex plans, consider a course-
m:;;--;mm‘vna rticelar umiversity eiv:m
Cooperative responses are provided 1 weer questions of 'Can | enroll in course XY or

25

"Should I caroll in course X7, or even the imperative command of Register me in course
X'. The response t0 such questions must consider several factors such as,

* Does the course exist and is it crrently being taught?
* Is there space available, or are all course sections full? If 50, is there an

alicmative course that will fit the user’s plan.

-Alemm necessary prerequisite or co-requisite courses, and if 30, does the user
have ?
* Is the course an clective? If it is, are there any restrictions on electives that are

imposed by the user’s program of studies?
-Huwm&zmﬁhwﬂiﬁ:uﬂ 7 Is the course suitable for the
user’s particular departn ,,,Lnlﬂndy? the course appropriate for the user’s

me program? Does the
mgil degree re B‘ nt ﬂ;mhhmmMn

Given that the sysiem does not have wm&m(ﬁtm
the user may be a high school student), plum

3 crhaps 'Dnymﬁu-nndnhnls: mmm
in Computing 10 this question were ‘Yes' thea clarification would
be over. Thmenmmeﬂi&ﬂmnyﬁﬂdﬁ 2
mmmh'ﬂn » We Can climinsic that one plan, but must ; MﬁBWe

specialization hmﬁ;&an immm

3.3. Terminology

f M&:&:::Mngofm '"mmm‘&“m'
requency (0 warrant a ¢ respect (o

This section is intended to provide a common ground for intended meaning of theae
mForeacbofthcfollowingmsﬂneumybeammmmdlmofeqmvakﬂ
mhwndedlohavethememng We begin our terminology with the ‘plan
library'. Most other terminology stems from this.

* Plan Library: Plan recognition recognizes plans from hlnry'nus
ki be of first-order
e b o 4 2 of e e s

In ths the nodes of the correspond 0 events or
mh&emmmwﬂe between these actions.
MbmthMﬁmMMkﬂa
hhqfawmgmmdwfmmwn
reference 10 the plan library shown in figure 3.1.

/' ‘\
.,....,..e./ ...,.,..,... 2.
X

TR

Mpuhllh mahe meat dish
chooes
Germen m
wine

mmm
follucini spaghetti
mm

[\J

” “
Figure 3.1 Plan library for cooking examples (Kautz 1987; modified)
1)

}

Event (action): Events are the individual entities that form a plan. In the
form of the plan library, MMmﬁpﬁbﬁmmmmﬁ
The events of the plan library are related by two types of links.

Abstraction Links: The thick upward pointing arrows represent abstraction (or
"isa") links between events.
Links: Thmmwﬂpﬁmumsmm
" decomposition (or “sublask”) links.

Abstraction: An cvent that is an abstraction of other events, and has an
abstraction link to those events. The abstraction is the event at the armrow-
head of an abstraction link. Make Passa Dish is an abstraction of make

ighetti pesto. Every make spaghetti pesto evemt is also a make pasia dish
%Meﬂuﬁwmhmm

Specialization (disjunct, disjunctive event, alienative): An event that is a
(wwyﬂﬁhg)mahmﬁhmmm“

by an abstraction kink. The specialization is at the bottom of the abstra
zm Make spaghetti pesto is a specializa

,’”(m'ﬁym)nakm

_ Eﬁ(@ummpﬁwmm) An cvent that is
is inked 10 that cvent by a H.Wciﬁysﬁng
mgmmmmﬂnkmﬂdl

link. Make noodies is a conjunct (or necessary siep) of make passs dish.
Every event of make passe dish requires an event of make noodies.

lﬂhnkmhﬂmﬂ:“ﬂnﬁbm
eunjﬁ:lbya,f,,,,, ,"Hmmhnﬁe (not the asTow-
head) of a decom link. The event of make can be weed for
hmﬂnﬁmﬂ.mﬂpﬁﬁkigdﬁﬁx
Similarly. make fettucini marinara, make spagheni marinara 30d make
chicken marinara are all wees of the event of make marinara sance.

ﬁ!ﬁf&hnwﬂeﬁhmﬁmmk y. It is the root

of the tation of the plan Nbrary. The end e
Al ﬂ&nﬂm&"‘&:’a

has no or conjuncts. We can view these
: mhnmmmmn
Hmﬁhhhﬂ'hll

Gﬂ(ﬁkdmxnmmmhdﬂﬁhmg

Event Hierarchy: We now reserve this term for the output of plan recognition,
Since we gencrally adopt Kautz's theory of plan recognition. this will be a
deductive process from ampkprlMyhdn&mﬁ.M;md
q_::mogniﬁmwillbemmhkmbyindwfmofadimk‘dm‘

i willesnnﬁallybcamb-yaphoﬂhep&plﬁcalmmkmﬁﬂh:
phnlibmy.mcvmomnwcognimdphmwinhetcmsenedhyuﬁs
sub-graph. It is important to distinguish this from the plan library itsclf.
Mfm.wedcﬁmthcmofmhicmhywmxmm
hicmchyofevenumuisrecopﬁzed(momw)fmwpbnm@ilﬁm
process. For example, with the plan library of figure 3.1. and an observation
of make marinara sauce, our pian recognition component may give us the
event hierarchy shown in figure 3.2,

™.

L
=N
7N !
merinars %mm‘/mm

Figure 3.2 Evemt hierarchy from observation of marinara sauce
Plan: A iucoleedoaoﬂhkedemhwwothgm.ﬁeg:ﬂmd

description of a plan of the evest figure 3.2 be that of
‘emertaining a guest by preparing a meal, which is which is
chicken-i:n. .zdhg » m‘.umﬂ“&h&ﬁgﬂ

cvent and some top-level event. The abstraction links in the event hierarchy
wphu mmmmmmams.zm, s three
s .

aarinam, make marinara sauce).

Y.

specialization

event

there are different possible aliemative
cremt possible plans. The of
ve branch points at prepare meal and make passa

marinara, make marinara sauce).
such
indicate
two disjuncti

marinara, make marinara sauce).
Disjunctive Branch Peint: An event that has more than one

p3: (end, entertain guest, prepare meal, make meat dish, make chicken

A
.2 has

p2: (end, entertain guest, prepare meal, make pasta dish, make spaghetti

disjunct).
32
dbh.

L

b4

Cerain observations can be made with
hicrarchy (the recognized plans):

exception (o this is the
have no more than one disjunctive

preparing a meal x, x will either be a
than one
Sucst, prepase
wm
event make

respect 1o the plan library and the event

ha number of
eats Hnkod dhetiy betow it Tt outy voem to
which may only have disjunctive events.
o
both.

ve evenls
‘tcdyuwh.
dish, bm
These are
vodll a
make
)'o.“
m:nccm

end even,

*Anyecventin a
eveu

: Higle

il

they may all have the same goal.

i

* Recognized plans may have different goals (i.c., different top-level events) or

* Any event in the

i

il
2

i
il

L %.E. “

simple 'Yes' or
the form of a menu
the menu,

hh&ﬁ‘:'ﬁlﬂﬂﬂhﬂﬂ&slmfmfnﬁel‘
" S ¢« PLAN-RECOGNITION(Qwery)
S « CRITIQUE(S)
#f AMBIGUITY-MATTERS(S) then
"~ 8eCLARIFY(S) | ‘

current branch point is set (0 be the end event. Whenever the current branch point has
only one child (or has onz‘one tcminin; disjunctive event that has not heen asked
ahout), it is set 1o the next disjunctive point of the hierarchy in top-down fashion.
That is, since ambiguity still matiers, some other branch point lower in the hierarchy must
still be clarified. All clarification questions pertain to single disjunctive events. A 'Yes'
ﬂnywmha will eliminase all plans that do not contain the event. A 'No' repl

Il eliminate all plans that do contain the event. After the user's reply, some plans will
be climinated from further consideration as possible plans. After each clarification
question we check to sce if the ambiguity of the remaining plans mater. If it does, we ask
another question that is based upon the current branch point; otherwise, we exit
clarification with a set of plans that all have the same fauli(s). The basic clarification
algorithm is as follows;

mﬁn CLARIFY(S)

CB « end /* set the current branch point */
while AMBIGUITY-MATTERS(S)

i CB has only one child or one remaining event then
CB ¢ nexi disjunctive branch point in top-down order

Select a disjunctive event (E) of CB (0 ask the user about

user's answer is 'Yes' then
S & plans having E
CB«E

eloe S ¢ S - (plans having E)

ond
retwrn(S)

branch point is set to be the event of prepare meal. Some aliernative of the current branch
point is selecied (0 ask the user about. In this case. it does not matier which aliernative
(pasta dish or meat dish) is selected. Assume the user is asked about making a meat dish,
es "Are you making a meat dish?". If the reply is ‘No', all plans involving a meat dish
(p3) are removed from the set of possible . This will leave plans pl and p2 as the
remaining possible plans. in which case ambiguity no longer matters since both plans are
faultless. If the user's reply were 'Yes', then the possible plans are those plans that do
involve makinf a meat dish. This means that the only remaining plan is that of p3.
Ambiguity will no longer matier, and a response is provided with respect 1o the fauht
annotation of f1. The actual dialogue might be similar to the following two cases:

Case I:
User: Is it okay to make marinara sauce?
S s Are you making a meat dish?
reply: No.
System resposse: Yes, you can make marinara sauce.

Case 2:

User: Is it okay to make marinara sauce”

) : Are you making a meat dish?

reply: Yes.

(the remaining meat dish plan has a fault)

System response: Yes, you can make marinara sauce, but your gucst is a

3.5.2. Basic Clarification Example in the Course-Advisor Domain

To provide a more practical and complex setting than the cooking domain, we
assume a course-advisor sysiem that is intended (o give advice regarding first-year
courses at a h tical university. It is assumecd that the sysiem a0t have any
background information with respect to the users of the sysiem (the users are assumed 10
be new students who have not yet regisiered, but do intend (o regisier in some degree
program). The sysicm can find faults with respect (o a particular course and possible
programs of study.

For our example, we assume that the user's question is abowt enrollment in a
particular computer course (CMPUT 161) on word-processing applications for personal

com The user’s plan also involves obiaining a Bachelor of Science degree
ﬁ:‘h g science, but the sysiem does not know this. A scrious fault
-161.

g
Y 4

m':mmmm«»«mmm

the course
Also, the department of computing science recommends
courses for first: . .ar students. We sicp W’ﬂn dialogue of the cxample, m

explanations al ¢ . 1 siep, beginning with the user’s question.
User: Ca. ‘ ‘ake CMPUT 161?

For cxample. there are 12 possibie plans that involve an Engineering degree, all of which
require a computing science course. There are 11 mn;h;pmmﬂinvol\Elum
of Arts degree. In wotal, the event hierarchy of figure represents 40 possible plans.
Smofﬁmﬂmmyhiﬂﬂu&humﬁamofﬁmhwﬁﬁeﬁuﬁm

annotations, to which the response mm:mmmofm,,,
mmnﬁnbkl‘on pmw umerating and labeling lheplmmf
lbeevenlllieumhyul‘ﬁgueili! from Iﬂﬂghl.theuler'spumculu ' would be

p22.

2 Area of Science M
N/ eboro

Couree '”w1.1
Fige 3.3 Event Meraschy for CMPUT 161 in the Course-Advisor

‘hnﬁ_ﬁﬂmiﬁnﬂ“mﬁﬁiﬁﬁ
proupings for general BSc. progeams as given in the 199384 Cabindar of the Univensity of Alberta.

M

Givcntheevemhmhyal‘ﬁm“mcﬁmdisjun:uvem'hmlulk
event of ger degree, which becomes the current branch point. This event has three
disjuncts (or aliernatives). For this :m;l{e we assume there are no hewristics (o
determine which aliemative to ask first. By default, we ask about the akematives in left (o
right order, with respect to their position in figure 3.3. This gives us our first clarification
question.

System: Do you intend to obtain an Engineering degree?

Based on the reply, 12 plans (pl 10 p12) are eliminated from further considera
The current branch point does not change and the next clarification qmun is with
respect to the next aliemative.

System: Do you intend to obtain a Bachelor of Science degree?
User reply: Yes.

Since the user’s reply was a 'Yes', the remainin
mvolj”aBScdepee(merE)mr ning p

od. These were the 11 Bachelor of Arts plans (p(
rem“n‘ﬁs m:cmmmhlamﬁeeﬁd!
even ﬂymcﬁﬂnm&m

System: Will you be ¢«

' 4 (p13 10 p16) that involve ﬁemmmﬂm

mwmmhwﬁhmd athematical sciences?
User reply: Yes.
MTesuplywillm&mbkﬂaummnaeh the evemt of

Hﬂcmdhm;es(pl?mpﬂ) The current branch
is also the mext : mpﬁ.ﬂﬁ;ﬁﬂ

s

Statistics
v /
\
omput course
course CMPUT 161

Figure 3.4 Mathematical Scicnce portion of the event hierarchy of figure 3.3.

Al this point in the clarification,
WdMﬂWW:M@m(s}{m
162) as a first-year computing science course iroductor)
wﬁp mﬂmm he MBRIRG CORCopts. A

is application specific course T 161. Th which
coueof‘m lOl.‘l\emmﬁ:em.e X of computia
represent different , L.,
M(Mmzwymmm

In following the basic top-down the next clarification question deals
m.m&wuumd-muﬁ':u
System: Do you imtend 1o enter the department of Mathematics?

User reply: No
e o R e o o e T
for the remaining plans (p19 10 p22). The current branch does not change.

System: Do you iniend to enter the department of Statistics?

The two plans involving statistics (p19 and p20) are eliminated. The remmg
ﬁ.nbkplm(pilnndpﬂ)hmhhvethemﬁmm Smublm
ger matiers, a responsc is given based upon the common fault annotation lhz
remaining plans.

. mem:mm“mmrwkm
iﬁi‘lﬁf: mting Science deps

'ﬁgmmnfmﬂhm ainin
mmgphmhﬁd:ﬁmfﬂm&f
M)mnmmmm ace the evemt of Computing
Science is the only disjuact of Ma Sdmn it becomes the next

junctive branch point and | mmmmnu&hgﬂchﬂ'm
pesti ut Com ,,,”Stme.mmmﬁq plans must include
omputing Science by default. Rather, the nexi clarificat) question wowld ask if the
mmm‘hmﬁmmmM

mmmmanuﬂixcmmmmmu
- : user's of tion. In light of the number of plans involved,

 pa questions were short and clear, nﬂumm
nﬁﬂmrﬂmummumm

ﬂmma‘m

muﬂh i‘i'nriil nﬁeﬂaﬂ;’ IPORSe
m m!ﬂm u required was
paﬂ‘cmﬂl!yl,,, rogram writtes | H.Km(::l l‘ll)‘]‘hm-?:‘

. ol Whﬁqmimmhﬂyﬁﬂ“mﬁhrsmg
clarification questions ’qa") dﬂ‘ﬁuql:(ﬁ_ _r"hp-;

' 'iﬁﬂhhﬁguéin-im;m&hed
Bing. ¢.5.. “With reapect 10 a Bachelor of Arts degree, ...

The implementation also experimented with a criterion for asking about the "most

%pﬁﬁhﬂmmhﬁwﬁmmm

we want (0 ask about that tive most likely 10 be in the user’s plan. This was

ﬁcuﬁpﬁshedbym;nmg likehh@;i bers m;plnth;mgmx
mm mryrepm previous s enrollments. In keeping

assume iisemm uting scieace atudents that took

Ilgmcm ﬁlhhpeviu-fu number for the user’s

ph(p.‘lz)no.inp,,,, , ﬂummanﬂm

arc summed toge :wfﬁumm&mm

g pha ’j,,hZﬂnﬂ&tﬂldhm

' mn‘muxmm
rey mfﬂn iﬂdﬁmm

e impl , : is0 investigated the wee of menus
hmgmmmﬁmmmhmﬁmm

B e R Y
to . mara e .
dhmmMﬁ
’ﬂfﬁm'r.“ﬁlﬂﬁ':ﬁ“h

m&:hmgm-ﬁ.'ﬁgd,," 15 menus with owr previous cowrse

advisor cxample would give us the following dialogue:
User: Can | take CMPUT 1617

ﬁ““ymhmﬁgikmm‘
zwm
smm

Do you imtend 10 emter the of
m you 7 depantment
z.m

3mm
User

Wﬁﬂﬂgﬂynh‘am}
~ science ssudents obtain credit for the
Systom T 'm canmot m
programming courses such a8 CMPUT 163 and CMPUT 164 0 moet fisnt
YOOr compuiir couse foquisements.

mewwwmw um«m“.mmmuuum ummuua
mmm u«m mummm mmwmmm M um~*. mum mav.
mmmmz m&_mmmmmm : I.m:wm_ﬁ 2
f,.m HiF SN mmum: i
,,,mmw wm % Mm.m%m ﬁm”mmmmﬁ_% :
gl gl 11 11 LIRS
__mmwm..ﬁm%mx i
i mzw Wmmm m m mw I m,m.mmm *m; .m.. m

types of questions as well as menu questions. Also, when we do usec menus, we do not
restrict our questions (o this format, but freely mix in 'Yes/No' types of questions for
specific purposes in reducing the total number of questions.

mfmm

roach would give us the user’s plan much
in atiempting to do clarification with a

mwl‘iﬂm DES iguloﬂlgu:r ﬁdmmﬁm&
ﬁmyﬁ(w:adﬂnhe“ﬁz-gﬁph)

Tiel‘inpm&.ﬂ mmhmﬁgmm

mmmﬂlﬂmﬁmmw m)ﬁedaMdmkmmr

md@zspﬁnmﬁm -ﬂfmm:mmqa
ﬁﬁmﬂmmmmyﬂhﬁﬁﬁm,' s of a pasta dish
ulput as possibie plans from the same observation. In such a case. the challenge is

dxrm ing MthmBiﬂmgmﬁmclilﬁeﬁm Mutltiple ohservations
meMMm Mznﬂmﬁ:pﬂtnﬂ&mumﬁﬁﬂm

n, Howevr, ifthewe were severa possible meat dshes (e 8., e
ﬁguess) e next branch p hkmﬁmmu&.ﬁ(m-gmp-
duwn)ﬁ-mm of the meat dish branch?

41

a4 g g
WMWWW i mhm i ! Mmmm 3 w._u gl “mw
HELERE TE
.umm E m g o %m Mmr
2008 31 il Prigiih g g s
Wiy ik gl i pichlin o
il 1
i gl e {) dll i |
i bl B | mmumm%mm 1 MG
SN CRHCTTT i Il

complex e

In order 0 achieve

of these plans.
lmmbemraﬂanalmhg X

assume that plan recognition gives us the evem

meke
N 1
Figure 3.7 Evemt hicrarchy with complex plans
be whic or red, aad cach

by the event hicrarchy of figure 3.7 arc all

choose choose
red wine
choose
French
e
the hierarchy as
chl:“wﬂeluy
may
enicriaining

marinara or one of the two

With these two observations,
hierarchy of figure 3.7.

- :.m i
st

If we apply the basic i« approach (o the event hierarchy of figure 3.7, the
first problem we encounter is mmm;meﬁma;mvemmm
mhwfmﬂkm“wﬂa“ﬁwﬂmﬂ Assume we decide o go
with wine.

| leave us with mmplminvol whiewine’lh
ituation is aga o’ﬁlynofm lhenm

p m 7 wﬁmi nhnm),u-'r*
miﬁ“‘““iﬂ““?ﬁ““ Apoint steck. |
maticrs, and we canaot deicrmine » lower branch point ? hicrarchy, we pog the

“mhﬁmh: cgctarian system
no fanlt with ,,*’*’eﬁsmdmwﬂgmm&ﬂymgl
7#(ﬁﬁfm)ﬂﬁl“ﬁfﬂ’

N.Hm iilﬁil matter, Tﬁwﬂmph a further clarification ation question with

hmﬁaﬂﬂhaﬂﬁbywmkim
Mnh&iﬂ-ﬁm mbiguity

hﬁmﬁh!ﬁ“ﬁyﬁ_hl“
oM

mumhacunmwhicbmb-m;uekarmmihz&mnﬂmm,
ber of possible plans. but not the responsc). The faulticss plans
includcplanshavingWwwﬁenwnupwurhvi@gmdwine.rmwamm
not matter for a response (0 a faultless annotation. Swmilarly. of the two plans havi
b have

In this latier case, the dialogue is reduced by ome clarification question. The

§

chicken red wine and the other has white wine, but both plans
exactly the same fault, h will result in the same response 10 that fault. Again, the
mmmofmm.mng‘mvecﬁ:bl?j;

mnmwdnﬂgﬁwmmﬁﬁmm '
cveats below the sub-branch. A method for doing this is proposed and

These diamond cmﬁgmmwusugappoﬂmt{eaf skipping branch points
from the diamond top to the diamond bottom. As an example, assume that the current
branch point is the event of BA degree in figure 3.8. Also assume that all remaining plans
have fsult annotations peculiar to the area of Arts concentration. So all plans that involve
Fine Arts have the fault annotation of fl, plans involving the Humanities have a different
fault annotat ol‘ﬁ.ndnllplminvnlvinﬁme ial Sciences have a fault annotation
of 13. The basic top-down approach would first clarify the aliematives of the BA event,
and then proceed from there to the branch point of Area of Arts Concentration. The
ensuing dialogue may be:

i:- Will you be entering the Honors BA. program?
Systom: fnm‘be trating in the Humanities?
Eg- ill you be concentrating in the Humanities”

ly: Yes.
7 By skipping branch points to the diamond bottom at which the plans converge, the

ave the same fault annotation as do all Specialization plans involving the
mfiu:rwmﬂmmm roblem i

derermining if the ambiguity can be res
it gl e oo

In our general clarification process, the possible plans are partitioned. according
to their fault annotations, before clarification questions begin. For the remainder of this
thesis, it will be useful (o think in terms of ue;e fault partitions of the recognized plans.

,lforme iﬁc rtition. Clarification

mmeunnmberof ble* no longer contains
any plans, that partition is eliminated. Aml ’uitymlongermrsm e is only
one remaining partition (all remainin to that partition and have the same
fault annotation). lﬁlmydme.lhm mﬂmm artition, then ambiguity matiers.

Wiuilhﬁviewpomkmetmrwemdueemcnmhﬂﬂfwllpﬂiﬁmﬂiem
ambiguity will no longer matier. m&.clmﬁmmmmuelmm artitions,
uwllnplm&m:ume? ons we wanl (0 ask. One problem with asking s
uestions, is that we need to lndﬂzcnucﬂkeymnumﬂwillelimimmm We

not restrict these events (o be the direct aliernatives of the current branch point. Also,
we ask about these events with a "Yes/No' type of question, whether we are using menus
or not.

As an emgle we can again usc the course advisor domain and the event
hierarchy of figure 3.3. The only change is with respect (o the computer course. We
assume all computer courses result in the same recognized plans. the only difference
being the exact type of computer course, which will affect the fault annotations of the
?mh%em*mhﬁmmmukmmm
65, a course on formal sysiems and logic that has both a prerequisitc and a co-re

computer science course requirement. Computing scicnce students will meet (lle:e
mmhnmﬁﬂudemuym&um&u&:ﬂf: ,
partitioned into two fault partitic ne pat partition ai
plans, i.c., the honors and specia ng science programs. The othe
(mmi)mhk;ﬂplmeiﬂﬂf ch has the same (ault annot
respect to the prerequisite and ¢

user's plan involves entering an honors prog
lppmth(wimm)wmldgweuﬁef,, i

(ﬂeqnevyrzsulﬁindﬂp&n:é’w&dﬁm;‘prﬁm.)

User 3 nlzmlutul‘m&m
(The reply eliminates Engineerin «nd Arts plans, leaving 17 possible Bachelor of
Science plans which are still divided into two partitions.)

Systems: Will you be concentrating in the area of
1. Physical Scieaces
2. Mathematical Sciences
35:&&:“
User reply: 2. o
(The reply results in 6 remaining plans which all involve Mathematical Sciences,
bt we still have two fault partisions. hﬁm—lﬂubﬁm;ﬁgh

partision-2 now conssins only 4 plans)
9

tment of

System: Do you intend 1o enter the depa
% Madlﬂmues
3 CmpuungScienee
User reply: 2
(The reply eliminates all plans m‘g mﬁemﬂc:ndmmﬂn science,
leaving only two statistics plans artition-1 is now en can be
elinbmed. kavhgmlypniﬁm-z with the two le plans. Since there
only o saining partition, ambiguity no longer matters.)

S responss: The course, CMPUT 1685, has science prerequisi
’“Iﬂﬂi smen md:mpﬁn;niamm—mq‘uggpgsgmem “

Although the basic approach can climinate a large proportion of the
powblr wmmumm there is the possibility of doing betier, by

ng the remaining fault partitions. Instead of asking about an alternative of the
cummhnnchanwmymththmem&Muwemmg
shared by all the ofap ar fault partition. In this case,
plans that share the event of computing science. By;ﬂummevﬁtfmm
mefouowmgclﬁﬁcuinndm

User: Should I enroll in CMPUT 165? B
(The query results in 40 plans divided into 2 partitions.)
frlﬁwmﬂmmh@mﬁ%;&mﬁ

(ﬂcrfﬂyrmdlﬂmm nputing science. This eliminases
partition-1, hﬁugﬁeaﬁermrﬁﬁm with 38 possible plans. But ambiguity
no longer maners.)

Whlifﬁens‘smplymmh:?as i.c., the user did intend 10 enter the
department of computing science, rather than statistics:

User: Should | enroll in CMPUT 165?
(ﬁﬁftjﬁﬁhﬁﬂﬂﬂiﬁ*&hﬁ?ﬁiﬁﬁﬂu}

there are only two pmmmbigui bgrmmeunyleply The event is

heldbyalloﬁhe of partition- 1 by any of the plans in patition-2, so
it serves 10 isolate a single imhi:cue we view the event of computing science
to be a key event. lnlh:f chapler we discuss the use of such key events, as well
as some of the p :Mhmmumsmmwimm We also extend the
concep(mﬂm m;mmﬁmfmhmmm

With the basic approach, the clarification process terminaies when ambig: tywu
longer matters. In cerain situations, it may be desirable 10 stop further clarific
providing a response, before this termination condition. mmrmmm:mm
clarification is somewhat pointless (0 the user, even though ambiguity still matters W
snwldl a proper response in light of the user’s exact plan. If we ascertain that the user

uvd!gmmnmmﬁm:hmldmhmwzdthmchﬁf Eeixmihle
dleﬁnlimoflhncvml,mm:mm; operative
as being pointless and even erati ¢ shoul unpf, rchriﬁmmnmd
directly wam the user about the event.

As an example, consider our cookin domain with an event hicrarchy that
includes several meat dishes (see figure 3.6), mi;mhngnaimmfw;
meﬂmminamma.mmulw but the user docs not know this.
hﬂﬁmmﬂmdﬁhh&:ﬂﬁﬁmlmﬂfmmm

ambigﬂlynmmpmviﬁn;am In this situstion, we might have the following

User: Is it okay 10 make marinara
User reply: Yes.
System: muhmdmmapmmrym*

ﬁm“mm o

Mm:nem nlhgnily no longer matters at this point)

System respense: Yes, you can make marinara sauce, but your guest is a
vegetarian, and you are out of flank sicak, but the corner siore has some.

We can imagine the user

A) ting upsct
W‘ ;:’hﬂm“é hﬁlm The additional information
about flank stcak might be 3 ted, but is pointiess in light of the wser's goal of

omertaining a guest. A betier dialogue would have been:
User: Is it okay 10 make masinara sauce?
{rm#uﬂqamﬂ?
i:,,f'ﬂmhkmiimiﬂnﬁkp“)
®»

System response: Yes, you can make marinara sauce, but your guest is a

With the above dialoguc, ambiguity still matters. That is, the remaining plans
have different fault annotations. Pouliry dishes may have certain faults different from
beef dishes. Plans involving hamburger may have certain faults that are different from
plans involving sicak. However, all remaining plans do include the event of make mear
dish, an event that should not be pursucd by the user. The event should not be undertaken
bhecause it has a rather serious fault associsied with it. Because of a violated precondition,
all plans containing the make meat dish event have a fault annotation that includes a fault
cmmg;vqmﬁmgmmm:fmlnnfmhammmmem
associated with it should not be undental

specmmum of lhef event. These npechligtmsmy h:long 0 plans hmg fnull

nmmmmrmmmn; ecial but these faults are of
littke cx ence in lightohl‘ammm he should not be pursued. We
term these special ?mmhem fanlts. The faults are of s —
mmeyomm uﬂun&efﬂﬁmﬁmo{aMWeemﬁeimn

the next chapier, but the basic idea is that we terminate clarification when we know that
the user is intending to purswe an cvent that has an overriding fault associated with it, and
wemm:riﬁuemlhnﬂe,ﬂgk”:,,, ing fault.

mmeBMmhnmmdammmm,
For example, the exact wording of clarification WMammnm
qma:yhe:mdmhe-dmﬁabymm&m Aanages
onent, or they may be obtained from a database of mmﬂm
e particular domain. Two components of vilal importance to ous
Mmmnheﬂﬂursﬂnﬂ
us (0 provide cooperative | scs o wser questions. Critiquing the recognized plans

mm:mfhmmﬁunmmmcﬁbemmgn
cmﬁmhfmmm

e ROGe).
t of the conjunctive events (necessary components) of the node.
-A&lsfrmpg(ﬁﬂ which contain (involve) the

y

top-level event or

when
fication questions. For example,

question about
y be formidable.

many different departments

criliquing may present a
fication, before an

is to first use clari
first establish the

we
use of clari

an initial dialogue of our coursc-advisor might be:

general clarification process that we

ic form of plan recognition or critiquing process.
course-advisor, and a
t have ma

Thatis,

goal (to be an additional observation) with the

uirements, the
fi
process docs not assume any particular method of
w;u:«um:omeoﬂheimsinvolved
plans a

spoct
Even though our clarification

plan recognition or critiqui

our
ble

study, plan recognition and

problem. One solution that we

tion or cri

ith
possi

there may be several faculties, each with

rent programs of

input

propose does not rely upon any
g

Beyond these basic
itiquing takes place.

scaling up (0 a large system
any university course, the
g
recogni

C
with diffe

significant
plan

User: Can | take CMPUT 161?

umnuumm . mm
iliei I

mwau mmu Mmmm
emm Mmm

M mﬁa b
W i ..,_w.. M m.m wmmu
..m.m..ﬁmwm: I um

wmmm mmm mmmmn .

51

Chagpter 4. A General Clarification Framework

This chapter describes our proposal for a general clarification . The first
section provides the top level setting. The next section describes the data and data
structures uscd by the clarification procedures. The remaining sections walk throu
different :s::cls of lower-l‘svcl prmdm&e providing :l:'otitluns inm .
examples, and explanations. We incorporaie the strategies and concepts address
limitations of the basic wn approach, as described in the previous chapter. These
different concepts are unified into a single, general clarification framework.

4.1. The Overall Setting

WMm.nM&dmmm;humwags
question a cooperative . procedure for responding to a s
uestion is simila 10 that described in the previous chapicr y

GENERATE-RESPONSE(Quwery)

Check if Query is
O wpu: Mo [Query) is not possible as (reason for failure]"
: "No, as [reason for
cloe begin
S & PLAN-RECOGNITION(Qwery)
S « CRITIQUE(S)

P « Partition(S)
i AMBIGUITY-MATTERS(P) then

S « CLARIFICATION(S, P)
RESPOND(Qwery, S)

1. A set of plams, where each plan consists of:

2

The Faults consist of a list of fault labels that make up the fault annotation nﬂlw
plmmdnsde&mmedbyugmmngmn.mllummw

particular clarification process. The procedure that partitions the plans
requires this data. Here, we only partition the plans once. Changes arc made
to these partitions, but the possible plans are never re-pantitioned. The
partition number designates which partition the plan belongs to and is
obtained when the plans are partitioned. In addition (o this basic data. we

could possibly add a likelihood factor for the plan, as described in the
previous chapier.

For convenience, we also keep the set of remaining possible plans as a simpie list
ofplinhlglsmdmmulmnpiﬂe_pﬂ

2. A set of events, where each event consists of:

This set of events is meant 1o represent the event hicrarchy that results from plan
mowmmmwmyhﬁmﬂﬂgmma“m
label 10 be used in place of the event name. All of the other ficlds are lists.
'l’he.fpecmh:mwfgldualmnfcmh(mmhkk)mnﬁem

izations (the dis ',,ordmves)dhemﬁgihﬂy the
D ;nuﬁeldnihsnnk ,

@hlﬂk)mﬂhmﬁmﬁﬁmum'mhmmﬁ:
mm“mmmmmMme&hnf
M?nﬂheﬂﬁg ummgmmﬂ&mm
be necessary for a om-up approach (or yam -0ut (actic)
Here, we always presume a top-down approach which ncver backs up o
gets stuck in fi an cvenl (0 ask the uscr abowt. If using the concept of
overriding faults, another ficld should be added, to contain the fault
label(s) of the overriding fauli(s).

SAmﬂﬂﬂ_.mg:ﬁmmnf

The Plan Labels ficld is a list of those plans (plan labeis) which belong 10
the particular partition. Mlﬂwhmhmfﬂ
i.c., the same set of faults. As we clarify, this list may be reduced. When the
hstisemply we consider the partition t0 be climinated.

For convenience, wenmnﬁnofm, mulinufcmm
numbers), and denote this lmrm be , rel edm

mnma

particular schematic [the recognized and
mﬂ 37mm43$:ﬂd£afmmz“lm4?

53

The possibic pians arc:

®3.111),2)
(rﬂ L))
(3. [0}, 1)
(p6.111).2)

(U indicates fanltless, and f1 indicates a fault concerning a vegesarian guest)
The plans correspond (o the following:

possible_plans = [p1.p2,p3,p4,p3.p6)

The eveats are;

(end, [emtertain guest), (), |
(emertain guest, (], [&nmp F.sg ':ﬂl. (p1.p2,p3.p4.p5.p6))

(mm(mmmmmm |

g ?m ':’é%llf l ll (p1.p2,p3.p4,p5.p6))
choose mﬁﬂﬂ)
(mmmn.ﬂ.ln P3.p4.p5 ¢ H) l

Flﬂﬁ-ll:.“ “ﬁkwi%&])

 (p)p2:p4,
(make ment %liﬁe@ﬂ:ﬂnﬁhﬂ.ﬂ.
(&H“lklﬂﬁ“m P4))
(make 8 -ihn.[].[nﬁgu'hmml. 2,pS))
(make chicken marieans. 1 make marinars smce) 53,5

(l;(p;f 204051 (the fowless parsision)
(z.lp;.paﬁ I (the vegetavian partision)
romaining_partitions = [1,2]

=2 (there are only two fault parsitions)

Exampls 4.1 The duta for the evens kisravely of figure 3.7

clarification we only make changes (0 the data with respect to:
;m&mmmmmnmmm)

cisied with a partition. These plans may be reduced in number
mmgchrfmmﬁmﬁmnﬂlmmm:m&

c#mmﬂpmmmlgm

i mmﬂ*mmm g .

3. remove partitions with empty sets of plans.

4. check ambiguity. It will matier if there is more than one partition. I this is the
@ﬁmmm“m

mnm;ﬁmewmm
menus, es/No' questions.
2. Meaus and ‘Yea/No' type qu '!F‘

In cither case, we are allowed 0 wse key evemts (‘Yes/No' questions), when
w»um m“mupﬂﬂﬂpﬁy waer may be

. e will always Bave ome, and curent
ic ﬁﬂh&aﬂm:l’r:‘dy

amClhﬂymﬂ.hﬁmﬁmﬁihﬁim

Wﬁﬁmﬁhhmhﬂlﬁﬁmn(ﬂrih:y

a spocialization (disien jonct]

éﬁmuﬂnh hild the new CB and continue from there.
&Tﬁlﬂie case ot the very start when the end cvent is the CB. We
lower in the | bility exi
n!uhlﬁﬁiﬁmdﬁ

the conjunctive children, since we may have 10 come back 10 them Iaster. To do

m“m:mﬂmﬂmFﬁMthEﬁe
nchpoint stack (BPS). Initially we set the end event t0 be the CB and create
pty stack. In this case, of a CB having onl) conjunctive children, we

ive children, owr mext

puslses:h child onto the stack. Since there are no aliernati
current branchpoint will be the top of the stack.

d. The CB has both conjunctive and disjunctive children. In this case, we push
each conjunctive child onto the BPS and we deal with the aliernatives as in

case (a) or (b) above, depending on the number of aliernatives.
¢. The CB has no children. It is a leaf event in the event hierarchy. In this case, we
mﬁﬁﬂﬂklﬂmkhﬂ Ehmhﬂpygdnﬂll
more than one remaining partition, then there is an error.

hﬁmnn“ﬁgmmmmﬂm(M)

the weer is foll nponcat events (or conjuncts) do not distinguish different plans,
and we do not ask 3 them, although there may be a case for referving (0 them in order

10 maintain comext and coherence with the user. In traversing the hierarchy, we are
for those branch points that have more than one aliernative, and we ask about
ernatives. In essence, we always want 10 find the next such branchpoint and have

, gencral clarification pros kllfﬂlkﬂl(hlﬁf”f' key events
ﬁnhaphﬁ-ﬁemﬁm wilih'.ym:id cedure CLARIF

phnr;prﬁnm both are actually global 10 all sub-procedures*/

W KEY_EVENTS_POSSIBLE(CB) then KEY_EVENTS

geﬂmﬂ:ﬂncﬂﬂﬂc‘lmm
oloe

one remaining partition, in which case we retum the remaining plans. which all
&ghlﬁ:mgﬂm s v

To illustrate the above al orithm, wemﬂepumghempkﬂ anecqs
data of example 4.1. In this case, Hm“ﬁmﬂmfmﬁwnm
points, using key events, or ¢ ing faults. In essence, we just illustrate the hasic top-
down approach of the previous chapier, except wnmdealmgmﬂlcnmpkxphm
‘m:e;dsmymmeﬁlyfnlhwﬁmbymimgmﬁmﬂ

Step 1: (CB = end)
Initially, the current branch poimt (CB) is set 1o be the end cvent and owr
anchpoint stack (BPS) is empty. Since there are two partitions, ambiguity matiers. End
mwhwmmmh!ﬁmm Sﬁ:elhsadevmhumly
mduﬂwﬂ:mxsgt:;ﬂmh:gﬂmunw This
one pass through the while change is ﬁmhmdmm
gwest, rather than the end event.

Step 2: (CB = entertain guest)
The evemt of entertain guest has two conjunctive children. In this case assume we
ﬁa”mmﬂmmmﬂﬁmpddmmwmmknﬁ Since

entertain guest has no alicrnatives, we pop the stack and st CB o the result. CB is now
the evest of choose wine and the contains only onc sub-branch of prepare meal.
mmﬁemmmnm

Step 3: (CB = choose wine)

The event of choose wine has no conjuncts, so the BPS docs a0t change.
WQMthmmmdmﬁdmmmaﬁem
ﬁmxl isjunc }hﬂpﬁ.ﬁﬂﬂhpﬂdﬁhm

procedure,
the s abowt the of choose wine.
oo user f disjuncts 4

emWethvﬁ;wﬁewﬁeﬂerﬁ ,;1,hml£gredwiiem1‘iis

IH.PSI)H(I.I D
boms = [1.2) (mdl:cf)

mmpmmummmmrmchfm
ns, and we et CB 10 this result. In this case CB is the event of choase white wine.
ty still matiers, since we still have two partitions.

Step 4: (CB = choose white wine)
mmﬂMew&wﬁehmmﬁoﬂynﬁ:Md
choose French wine. CB is set 1o this one ahemative and no other changes occwr.

Siep 5: (CB = choose French wine)

The event of choose French wine is a leaf event. Sisce there are 8o ¢ the
branchpoint stack does not change. Since the cvent has #o alicratives, we pop the stack
and set CB 10 be the resul. Al this point, CB is the event of prepare meal and BPS is
empty. This completes another pass through the Joop.

Step 6: (CB = prepare meal) o
meveﬂofmgnmalbuwommofmh asta dish and make meat
dish, 30 we again pass mwmmmmﬁxmmm
Assume the first question (o be about making a pasta dish and the user reply i
be ‘Yes'. We keep all pasta dish plans and remove all plans involving a meat dish, This
gives us the f result:

o possible_plans = | 5]
* the partitions are (.l:"lﬁl])
* remaining_partitions =

=]
mmmurauemmu' the partition concerning a ve A

other remaining partition containing two faultiess plans. The CB is set 10 the result
CLARIFY procedure which is the cvent of make pasta dish.

Step 7: (CB = make dish) ,
Al this point the condition of the while fails. Since there is only one

P II. l. o l | N i _ N ﬂ ;,
are returned. The mlh:pmvid_eaeoopuuiv;wmh gl ol‘(géneu?g)

plans. In this case, are faultless.

The CLARIFY procedure depends the particular mode the system is using.
Hue.aneMkcmMc::w —

r CLARIFY(CB)

Case mode is
menus: branchpoint «— CLARIFY_MENUS(CB);
Mkelihoods: branchpoint ¢~ CLARIFY_LIKELIHOOD(CB)
dofault: branchpoint «— CLARIFY_BASIC(CB).

return (branchpoint)

Here, the CLARIFY is only meant 10 distinguish which mode the
sysiem is using, and hence exact clarification method 10 be used. If we are wsing
menus, we use CLARIFY_MENUS. If using likelihood factors, ‘we use
u?m'mmuemumw»ueﬂym.ﬁhkﬁ:

SR o
AL procedures basically
44 Clarify Procedure with ne Mouns and ne Likelihoods (CLARIFY_BASIC)

The sitation is that hne-ut-=uu with more -
mm):nh:m m>‘ﬁ.&a-w:

as few clarification questions as possible. We atiem t0 achieve this goal by | the
number of fault ﬁmucﬂMyum& Ihe problem is that of selecting events
(0 query the user about which have the most effect on ¢ partition

| Our overall gol s 0 provide responac 1o the user's question by asking the uscr

Conversely, we want 10 avoid askin g about events that have no effect upon the number of
mumngmﬁmﬂmmtheemhhamwem

1. We can ask the altematives of the CB. This approach maintains the current
coniext and coherency of the dialogue. We term this approach w |
hierarchical approach.

2. It may be possibic to skip ahead 10 another branch poimt where all the plans
having CB also have that particy i branch poiet. This is iermed 0 be

mm. , h#lhﬂ“ﬂpemﬁmaﬂ

3. We can select an event from the hierarchy that is unigue e 10 2 Certain partition,
mgnemﬂewndMMWemﬁmmhm
?-monurmﬁii artit *:hmly:ﬁle tition. We check

ocedure. Afler any clanification question, we also check 10 see if ke

We discuss branch point skipping and ke events in detail in later sections. In this
ikelihood of plans is ot cousidered. That is, we do not have any —

Given m partitions (s > 1), and x aliernatives of the current branch point (x > 1),
then a 'yes' result of » partitions for each of the x alternatives, will mean that each
alicrnative is present in every partition. A ‘Yes' reply to any particular aliernative will
leave us with the same number of partitions, since that alierative is in every pastition.
Since we have more than one alternative (x > 1), then every partition must contain at Jeast
x aliernatives. In this case, a 'No’ reply 1o any particular alternative will not eliminate any
partitions, since every partition must contain at least one plan having a different
alicrmative. Therefore, should all 'yes' results be m partitions, all ‘no’ results must also be »
partitions (no partition can be climinated with a ‘No' reply). For example, if we have two
aliernatives of red wine and while wine and each type of wine is involved in some plan of
cach partition, then a 'Yes' or 'No' reply (o a question about either wine will leave the
same number of partitions.

Should every alierative have a ‘yes' result of m partitions, then we know that
every aliemative will have a ‘'no’ result of a partitions. This not only saves us from
calculating the ‘no’ results, but it also means that we may be able to skip branch points.
Wcueablewskipbuncl:ﬁoimifdlinmveniucvenu(evenl:bamthe

inis) are not required to mam.ﬂvgmabk h point will have this

al situation, that is, a current branch point (CB) ® partitions and more than one
aliernative, with cach aliernative having a 'yes' result of m partitions, and a 'no’ result of »

tions. This situation does not mean that we can skip to another branchpoint; only that
t may be possible. Whencver this situation arises, we check for the possibility of
akippzigbunchpoim.

If the ‘yes' results are not all m partitions, then we cannot skip branch points. At
::mui u:ee hmﬁm s&‘um:&dm'%ﬂ)ﬁm
ve the user . ves (plans) are equal wit
Wl&cﬂoﬁ.uymwmmma to the user will have a (1/x)
we

&:fbducmuimxduuﬁm).‘ro ine which aliernative (0 ask
determine the ‘'no’ result for each aliemative.

of To&r:kk‘m‘%fag}d:ﬁﬂw.w“mﬁgmgm
partitions it is exclusive t0. plans a partition must all be plans ha the
alternative event. The number of such fora aliernative, will be the
number of partitions climinated on a ‘No' to that ve. The ‘no’ result for that
altemative will be n minus this number, giving us the number of remaining partitions on
a ‘No' reply 0 the cvemt.

Once we have the 'yes' results we can make certain decisions:

1. If the ‘yes’ results are all », we check for branch point skipping. If we can skip
we do 30. If we cannot, then we ask the aliernatives in any order. Since the
'no’ results are also all » pastitions, none of the aliernatives will affect the
number of remaining pertitions.

2. If the 'yes' results are not all , then we determine the ‘'no’ result for each
aliemative. We base our selection on the ‘yes' and ‘'no’ results in the
manner:

In this way we will, on average, reduce the number of fault partitions more
quickly than by an arbitrary choice.

Assuming there are more than two alternatives, and we select one of these to ask
the user, we must account for changes in case of a 'no’ reply to that event, since it may
affect the other remainin‘z“altcmtivcs. The 'yes' results of the remaining alicmatives wi{l

not change and we can simply reuse them. We need 10 recalculate the 'no’ results for the

remaining aliernatives, since some plans may have been eliminated from partitions
containing them, now making the aliernative exclusive to such partitions when it was
formerly not exclusive (o those partitions.
The general algorithm for the CLARIFY_BASIC procedure is given below:
muhn CLARIFY_BASIC(CB)
n
next_branchpoint « nil
for cach altemative of CB, find its 'yes' result
if all 'yes' results are m pantitions then
begin
NB & BRANCH_POINT_SKIP(CB)

NB is not nil thes next_branchpoint « NB

else next_branchpoint < CLARIFY_ALTERNATIVES(CB).
ond

else next_branchpoint « CLARIFY_ALTERNATIVES(CB)
retura (next_branchpoint).

L]

mﬂc CLARIFY_ALTERNATIVES(CB)

alt_events « set of alternatives of CB
branchpoint e nil

while ((branchpoint is nil) and (AMBIGUITY-MATTERS(P))) do

for cach aliemative of alt_events, find its ‘no’ result
selection « one of alt_events based on 'yes/no’ results

Ask user about selection

if reply is 'Yes' then
branchpoint « selection

possible_plans « selection’s plans N possible_plans
ADJUST-PLANS(selection)

else /* the reply is 'No' */

alti_cvents « alt_events - selection.
if ali_cvents has only one Event then

branchpoint < one Event
possible_plans ¢ one Evenr's plans N possible_plans
&DJUST-PLANS(W Event)

possible_plans ¢« possiblc_plans - selection’s plans
: ADJUST-PLANS(nil)
ond
return (branchpoint)
ADJUST-PLANS(new-branchpoint)
for cach fault partition do

Remove climinated plans from partition's plans
- ¥ pantition has no plans thea remove partition /*i.c., n e (n-1)*/

nmsmr\l;v-mm&nu rasl®)
them KEY_EVENTS. e '

To illustrate the CLARIFY_BASIC procedure, lelummemcmadvmr
domain. Assume that the user's question pertains (0 a pa '8 COUrse,
Calculus 102, and that the event ,nemhyﬂmmlumplm nition is that of
figure 3.3 on 34, with the current branch point being the event of Area of Science
Concentration. is, we have already establi that the user intends 10 obtain a BSc.
degmel‘onhisemph we also assume that key events are not usable. Since the curent
Mﬁnﬂh4dﬂhﬁmwwnmmgmymmr2ui:mmﬁe

Bmwﬁmedmkmdfmehﬁncmm Al this point, let us
assume the fi

OTheuer'sphninvdvaa program in the depas

Computing Science (i.c., indglreanf viathematical Science:

* There are 17 res possible plans.

ﬂ'hcl7pouiblephmmﬁdmdiﬂo8mminﬁlpuﬁm That is, the

has determined fault annotations, and the partitioning
oftheremumng ble plans (according to their fault annotations)

mfmlpiﬁﬁmsmm“mmm1m
pmiuon.mhgmtym , o

* The 8 partitions are simp umera depicted in figure 4.1 (the type of
» indicated ¢ (H)fmlhmnnd(S)[ﬁSpecﬂiziﬁiﬁ.i; the
" i ecify a certain plan, rather than the plan

1) 2 3
H-Genetios (Biologicel) otos (Biologiosl) | | H-Microbiology (Biological)

Figure 4.1 The partitioning of Science plans for course Calculus 102,

In this example, the CLARIFY_BASIC procedure is ven the branch point event
of Area of Science Concentrastion, which has four ﬂernfuves. With this
Mu:hwsmdﬁﬂim(n-!) In this case, the 'yes' result of each

mm
Earth Sciences:

Biological Sciences

Since all dlemwves do not have a 'yes’ result of - artitions (m
skip branch points. Therefore, we must clarify the
CLARIFY_ALTERNATIVES procedure. We determine the 'no’ result of each
aliemative. ﬁmgﬁwt this example the alternative with the minimal ‘'no’ result is the
alternative with the minimal expected number of remaining fault partitions. The ‘no’

results arc:

Physical Sciences: 8 (i.c., a 'No' reply leaves 8 partitions)
M.athematical Sciences: 6 e part

wlnchhnthemmml ",}(le II4(4)+3M(5)-I914) Aski i;thisevem
will leave us with § mm:imng fault plﬂmons on a 'No' reply, and 4 remﬁmn; fault
g-uuonsm:'veneply According (o our pro rules, we would select the event of

jological Sciences (0 first ask the user. ilh this example, the user's reply would be
‘No'. As a result of this reply, the possible pi mmﬁmdmthmplmﬁndnm
involve the cvemt of Biological Sciences. ﬁljm; e plans, three partitions sre
ehmjﬁn:;d mdm:puﬂmhnn‘mologﬂlplm removed. Aldmpmntthgm;hﬁng

Aﬁerﬂmglﬁm“mlmmsmmiﬂ Sinr.emmn
still matters alicrmative must be asked. 1 multcflhe”:;”’g

the iblc plans to the event's plans would be incorrect. After adjusting the plans, three
parmns remain, as shown in figure 4.3, ¥

4 5
H-Statistics (Mathematical) 8-Statistics (Mathematical)

[]
H-Mathematics (Mathematical)
S-Mathematics (Mathematical)
H-Computing Science (Mathematical)
8-Computing Science (Mathematical)

Figure 4.3 Panitions for plans with Mathematical Sciences

The CLARIFY_BASIC procedure returns the next branch point event of
Mathematical Sciences. This event has no conjuncts, but three alicmatives for the
departments of Mathematics, Statistics, and Cm:ruﬁng Science. As a result, we would
:’ain use the CLARIFY_BASIC ure with the new current branch point of

athematical Sciences, and we need o clarify the aliemmatives of this cvent. The
'yes' and ‘no’ results for these aliematives are;

, Yes No
Mathematics 1 3
Statistics 2 1
Computing Science | 3

Using the selection rules, we first ask the user abowt enicrin
Mnks(mmmmm«ammm).mumumgw
enter Computing Scicnce, the reply is 'No'. Afier adjusting the plans, we are left with one
mmms)mrmuu?mmmumm
no longer matters, and a is provided for the plans of partition number 6, c.g..
"You may take the course lm.bu&kuhlmkumnlngy
the departments of Mathematics and Computing Science”.

4.5. Clarify Procedure with Likelihoods (CLARIFY_LIKELIHOOD)

The ures are essentially the same as that for the CLARIFY_BASIC
algorithms bed in the previous section. The only difference is that disjunctive
gmdahruwhpoimmmbngumﬂyﬁkdy.mdknbcﬁmmmtw

The situation is that we have a current branchpoint (CB) with more than one
aliernative (specialization) and @ fault pantitions with m > 1, since ambiguity still matters.

The aliematives are presented (o the user in some ¢ nfmfmmﬁmh
alicrnative being a scparate menu item. This format ble dialogue
suitable to the context of the possible alternatives. mmer’s 1l be the selection of
one menu ilem, whichmemslhitﬂgugrlxmgndmgmf wurdotlinplmcnllr
alicrnative.

 The procedure is similar 10 the previous CLARIFY_BASIC procedure. The basic
Mmmﬂwumhlmﬁhﬁ‘muﬁmeﬂmMﬁmmm
The algorithm would be the following:

DeY CLARIFY_MENUS(CB)
- -

for cach aliemative of CB, find its ‘yes' result

¥ all ‘yes' results are m partitions thea
begin

NB « BRANCH_POINT_SKIP(CB)
I NB is not nil then

selection « user's menu choice of aliematives of CB
EKLMF”

ADJUST- I’LANS(Jekﬂﬁn)

pastitions, then we cannot skip branch points, since some aliernative of the current branch
point is required to determine the eventual response.

, Mmlwnmﬁﬁhuﬁmmﬁmmmmmwmmpwﬁk
ﬁmhmmmmmmwmmm&mkwh
the event | (and that event is not a leaf event), then we have a diamond
mﬁmﬂﬁ&@mﬁmhﬁu&m“ﬁpﬁmuﬂ&dﬁmﬂ
bummheinglh:levemnwﬁchkpm rge. In this case, all remaining plans

have the events of the diamond top and the diamond botiom. and the branch point we skip

o will be the event that is the ¢ W bottom. Simldibew ing from the
mmmmmvggbaﬁuhmmmm mmmm
evenl at the branchpoint stack (BPS).

wlmwempmmllbelhg l?
¢ can also view this situation as being similar t0 umondcmﬁmm Figure 4.4
illustrates this for our cooking domain.

Figure 4.4 The choose wine sub-branch, viewed as a diamond situation

We can only skip branch points if all interveni “events arc nol required o
resolve ambiguity i0 the point that it no longer matiers. In the case of diamonds, the

"Mm“iﬂweﬁdﬁeﬂhﬂy.ﬂmm
ﬁ:mmm-ihmﬂ'jf ance. In the second case, the
mm“mnfmﬂhmmmmlﬂim(hhh
branchpoin Eﬂh:heimdhnmu:).ihmwﬁrbm:mwe

have U e (oule then ke ambigaly oos o
hmfﬂwmd‘m; v

Although the above viewpoint may be simpler, the determinatic of faults for a
M(m;ineveﬂnhufmn ﬂfnplu)pmnminpoﬂem.\h
experiment with the possibility of only having faults associated with evmuﬁn
mﬂﬂ“nmmﬁ:fmﬂlmﬂmuﬂm
restrictions on the critiquing process and the configun ;;’ofihephnlihmym
';:;,gm “y““;‘lhﬁm ﬁu:eleh Fg:xnplemwin:byg:lf m;

than g a event. red myl:e
faultless, and chicken marinara by itself may be faultless, but red wine with chick
nmmnymbemﬂaedlobe:mdmhnﬂmndﬁoﬂdhveamw:
cannot assign the fault to cither single event (in our given cooking library), but we migl
change the plan library to account for this fault. In light of this, we do not assume
flﬂumnﬁﬁaﬂmtﬁmﬁvﬂuﬂﬂenam we determine if we can end

yﬂaheﬂﬂmmﬁ mmmmm“
nkipm‘ﬂmapmh more general and does not im mze tions on the
mmupmmmymﬁmm(mh hierarchy of plan

In order to determine if we can skip branch points, we must first determine the
presence of a diamond bottom. There are two differest cases for a bottom. In the one
,j:*phnmymmgﬁmﬂ#eﬁﬂﬁmﬁeﬁu
mmm In the second case, all remaining plans

point stack is not cmpty. In this case the diamond be OF rathe
“ﬁiplﬁ nﬂﬁﬂ:ﬁwﬁhhnhmﬂﬁ:mhﬁeﬁmm.k
m;gmnmwnmmphﬁmﬂbhmmh&g
diamond bottom. In d , consider

that have sub-branches (i.c., wlodyemﬂsmﬂgzelﬁdecﬂﬂ.drm

dpﬁﬁmﬁ?ﬁhhﬁ)ﬁh ':fam;h?mﬂ
o .- ;hg!eemﬁiwm sadvertently bypass a possible futur ich

The BRANCH_POINT._ Smpmmemmmmnpmm to skip to or a
mhm;nngmnﬂ:cmmnpmmnmhmpped

ure BRANCH_POINT_SKIP(CB)

botiom « FIND_DIAMOND_BOTTOM(CB)
i bottom is nil them return (nil)

intervening < FIND_INTERVENING_EVENTS(CB, bottom)
il intervening is nil them return (nil)

safety < SAFE_SKIP(CB, intervening, botiom)

if safety is true then
¥ botiom = BPS(lop) then retura (BPS(pop))
else retura (botiom)

elve return (nil)

"TOM procedure, a singic path from CB can be
ll‘ﬁng ,mwmmncmnhm
ning plans converge, that event is returned as the diamond
botiom. Hﬁhﬁamm m-: ally come upon some leaf cvent. In this
mﬁhmlﬂhm)] stack 2

disjunctive events between CB and the botiom, or a nil reselt. The procedure can
mmmﬂlﬁmtt;mhm That is, if the bottom is is the cvemt
ﬂhﬁﬁwnhﬁ“m“wnhﬁh cane (a

47.1.

mﬁmﬁmmnﬁnmﬁn 60
Zﬂy“ﬁMEﬁﬁﬂmw er” the

res ' 10 skip branch points from CB 10 the
E* ::ﬂiﬂﬁ;gﬁmrm:mhaﬂﬂ
n"“" "““"-a“"‘. Trc reouh s rtemod

nenon-exclusive set is a disjunctive event that is common o all
f partition. The set does not inchede cvents that have alssady
events are thoee from the end cvent 10 CB, plus the botiom

cvent (all remainin s share these events). Furthermore, the set cannot include any
inlervening cvents, \ r-exclusive set is a disjunctive event
Muatmgﬂnnmfkmwmmnm In order (o be valid, the set
must be exclusive o the plans of its particular partition. That is, plans in other partitions
ﬁmwdﬁemgtdm(mhmun be shared by plans from different
Mhmﬁamwh)ﬁﬁmda gtismmﬂl
mﬂ;pﬂmwmm&mmkaﬁmmEMﬁm
such set is then unique to the plans of the partition for that sct and only includes
disjunctive events occurring afier the bottom. Note that if a particular valid set has only
mm“mmﬁmmmhﬂdﬂmmthmﬂemsam
evenl.

every partition has a valid and non-empty common-exclusive set, then we can
mmmﬁmﬁmmm resuming the hierarchical app
f ﬁ:m we eventually ae the last member of the hon-exclusive set

&mﬁmmm;huﬁiﬂumm“qnﬂym
remain, m&mmhh&uﬂﬂﬂhmmmﬂf J
puudm\'lemldmivﬂyﬂ;ﬁgb"”
events of cach partition, such as "Are '
common-cxclusive event. A reply of ‘Y

Aguneweﬁnphmhpﬁnnﬁmhmm nt of CB to
nchpoi ,Xndwe mkﬁﬁimimﬁmmﬂ lh

Partition] contain the particular combination of events comtained in CEI. s0 CEl is
exclusive to Partition]. Furthermore, neither common-exclusive set can be a proper
subset of the other. MWenumﬂmgfmmuﬂcmefmmemmemkﬂ
ﬁdthuemthemfﬂullmnm; For example, CEl cannot be a subact of
CE2, because plans in Partition2 we mhinallemﬁnf(‘ﬁlmatmgtﬁlmﬂ
exclusive to of Partition]. In essence, CEI cannot be any subset of the events
denoted by "X...leaf". If it were, CE| wunldnmbeexclmvemlheplmsnfﬁmtml
'l'hcm]yulherpmﬁbﬂﬂyuthﬂ(?ﬁluemply which contradicts our condition that
every partition have a non-empty common-exclusive set. Therefore, this stuck situation
mpmmmmmmmwmfﬁﬂmm

' > argument can also be used (o show that we can relax the condition 10
(n-l)mmh@;avﬂiﬂuﬂwmmx:ﬁnvemﬁihm:
m@;nmﬂhmpﬁmmmnwmﬂmﬂmp&mam
situation, (scts. In figure 4.5, we
AN ASSUN . ARy . But in this case no other common exclusive set can
hsﬂply'lﬁsniﬂmﬂ Im&auﬁ:mfmfm!mhﬂbﬁn
ihnmmhempty contradic ,*ﬁemmmwnmmm
eventually, clarification from Branchpoin Xmsﬂlelum(n-l)mﬁm
renning out of events 10 ask. The situation in which we can get stuck is the case where
m«-mmmhvemmmmmm In such a case, it is
Mmendmwmphnniﬂmmmhnmm:mﬁtm

icd intervening events.

Another viewpoimt of this safety determination is that we are

altempting 0
determine if the faults of the remainin plans are solcly based upon the different paths
ﬂmhmﬂ‘ahhﬁrg

4.7.2. Examples of Branch Point Skipping
As a simple cxampic of branch point

of 4.1, with the evemt hierarchy of figere 3.7. The 1 ":i : ' :
ﬁmm Hwhﬂmfwmwm ﬁemllwmldhg

p3: (ﬂﬂm““ﬁﬂﬁﬁhmm,mmgﬂ
dish, chicken marinara, marinara ssuce).

p4: (end, entertain guest, choose wine, white wine, French wine, prepare meal,
pﬂﬁmmm“)

ps: (ﬁ“m@mwﬁ,ﬂh@ﬁmﬁm preparc meal,
pasta dish, spaghetti marinara, marinara ssuce).

pﬁ(ad. ﬁmmmm . French wine, prepare meal,

FIRATa SMNCE).

red wine and choose white wine. The ‘yes' result of each aliernative is » partitio
is,a’ﬁs‘ieplylﬂﬁmenedmm uﬁumldlaveuswﬁhmfmnﬂ
(the same is true for a ‘No')Tmsuﬂmm‘tm be able to skip branch
points, 30 the BRANCH_| Smmdmuuﬁhzdmdaﬂmmtthch

point to skip 0.

The first sicp of the BRANCH_POINT_SKIP procedure is that of finding the
diamond hottom. In tracing any fmﬂwmmlﬁekﬂmtofrﬁaﬂx
French wine. Although all plans e on this event, it is a leaf event, and indicates
Mweammﬁ:mdm.ﬁtﬁiﬂi bottom is the top of the BPS. This is not a
diamudmﬁm(hﬁnm),mmemofwmmm
Since the br t stack is not empty, the top of the stack is returned as the botiom
Gie., kevmdmmmdnkmmemﬁﬁm)

~ The second siep of the BRANCH_POINT_SKIP procedure determines the set of
mery ’veemuﬁm(zﬂﬁdmm In this case, these events are
chmae wine, chmenﬂkwﬁr and choose French wine.

m(SﬂS@ﬁﬂdmgﬁemﬂ
pnimhy:ﬂﬂil exclusive set for Those disjunctive
:mmmﬂ“ﬂhmmmﬂmh est, French wine, and
mixﬁ‘lﬁemﬂmmﬁmnEﬁMM" lis the event ¢

mlunﬁmmmmmmwn with
white wine and fettucini marinara, plaa

Juwﬁwﬁm-ﬂmmm&mm

first partition, it is not exclusive (o the plans of that partition, since the plans of the
second ition also include this event (and therefore, the sct). In this casc. our
B _POINT_SKIP procedure would have returned a nil result. indicating that the
choose wine branch point cannot be skipped and the W of wine should be clarified.

To illustrate more complex branch poim mgm:am shows an event
hierarchy with events simp& labeled by letters an ers. This cvent hierarchy
a total of 96 possible plans. If we were w list he disjunctive events of the first

and last plans, these would be (adfmovi3) and (acknrwé). In this casc, assume that the
:per's plan involves the disjunctive events: (acingv23). These events are circled in the
igure.

1 2 3
AN plans with M plans with All plans with
m and o. nandvand 4. nand wand S,
24 plans 7 Igpi:m 8 plans

4 5 e

All plans with Al plane - th
qn:ndp‘ nandve 43

Figurc 4.7 The fault partitions of the hierarchy of figure 4.6.

Without branch point skipping, a menu clarification of the event hierarchy of
figurc 4.6 would give us the following dialogu::

Sym‘:’ Do you intend 1o

¢
User reply: c.
System: Do you intend 10

User reply: j. ,
(A1 shis point, we have 24 remaining plans, but we still have 6 fault partitions.
Ev’::y partition contains plans which involve the events of ¢ and j.)

System: Do you intend to
m

n
User reply: n. 7 o B o o
(The reply results in the elimination of ail plans with event m. This will eliminate
two partitions (numbers | and 4) leaving 4 remaining partitions, all of

which contain plans involving events e, j, and n.)

System: Do you intend to

q

r
Userreply:q. o
(A1 this point there are 6 1 aining plans in 4 fault partitions:

L

Partition 2 has plans (aejnqvi4) and (aejngv24)
Partition 3 has the plan (aejngw$) '
Partition § has plans (’arjnqu;) and (aejngv23)

, Partition 6 has the plan (aejngw6)
The next branch point is event u, on er branch point stack.)

System: Do you intend 10
v

W
(There are now 4 plans in two partitions.)

System: Do you intend W
l

2
Userreply: 2. | ,
(Only 2 plans remain, but they are in different partitions)

System: Do you intend to
3

4
User reply: 3. 7
(Only one plan and one partition remain. Ambiguity no longer matters.)

The above dialogue required 7 menu—l;ge clarification questions. Now, we
consider the same situation utilizing branch point skipping:

Step 1: (CB = b and BPS contains eventu) ,
Initially, clarification will begin with the current branch point of cvent b, and the
branch point stack containing event ». The 'yes' result of each aliemative of the currest
bnnchpdmi:n.aﬁmfﬂm.ﬂuk.ewmdndrmincmpmuhn.'l‘hiz
indicates that we may be able to skip the cutrent branch point. In searching for a dismond
bottom we trace one path downward in the hicrarchy (c.g., path d-1-i-c), and find that alf
pians converge on cvemt ¢. This event is the diamond botiom. The intervening paths,
artition consists of the eveats listed for cach partition in figure 4.7, Each set is
valid and non-empty. Since this is true, the BRANCH_POINT_SKIP procedure retums
m:dhmn:'nndbnmmofevenlcuu:mmﬂlmﬂpm‘!‘hccmenlhmchpxmls

set to this event.

Step 2: (CB = c and BPS contains event u) ,

The current branch point has two alternatives of cvents m and n. The 'yes' result
for event m is 2 partitions, while the ‘yes' result of cvent n is 4 partitions. Since all 'yes'
results do not equal 6 partitions, this branch point cannot be skipped. This will give us the
first clarification question: '

System: Do you intend t0
m

Unnl:ly: n.

~ All remaining plans involve cvent & in 4 remaining partitions. Partition numbers |
and 4 have been climinated. The current branch poit is sct (0 event .

73

Step 3: (CB = n and BPS contains event u)

The current branch point has two alternatives of ¢ and r. In this case, the 'yes'
result of both aliernative: i.lnnlumiom(ie 4piniliom) It is possibie that the current
branch point may be skipped. In searching for a bottom, a sin h from the current
branch point (e.g., q-s)remlhinaleafevenlwithnnchildzen ¢ the branch point
munmmpty.evem:ismmnednmem,mmmemlmwmfmm
remaining four partitions are the same, ¢ that event a is no longer a member of any
set. The common-exclusive sets are all valid and non-empty. The top of the branch point
mnmmm-:mmmmupm The result is that the current
branch point is set to event u, and the branch point stack is now empty.

Step 4: (CB = u and BPS is empty)

The alternatives of the current branch point (events v and w) each have a 'yes'
result of 2 partitions. Since m is 4 partitions, the current branch point cannot be skipped.
Therefore, the second clarification question is asked:

System: Do you intend to
v

w
User reply: v.
The reply climinates all plans involving event w, and two partitions. Although

onl tions remain (m = 2), there are 32 remainin
ﬁ'ﬂﬂmmmamMA?mmuimmﬂ'&hmw
evenis that make up the plan.

2 5
(adingqvi4) (sdingv13)
(adingvad) (adingv23)
(adinrv14) (adirev13)
(sdgnqvi4) (sdgnqv1)
(sdgnquae) (sdgnevy)
(adgnrvie) (adgnevi3)
(adgneva4) (adgreva3)
(soingvi4) (seinqv13)
(soinqvas) (soivqv2) @-1—— User's Plon
(sojrwv1d) (seev13)
(sejnrvad) (sohwvad)
(sslng14) (solngv19)
(aolowv14) (solnrv13)
(esknrv2e) (aslewva3)

Figure 4.8 Remaining partitions for plans with event v,
The current branch point is set 10 the wser’s reply of event v.

Step 5: (CB = v and BPS is empty)

Since the current branch point has two conjunctive children, sub-branch v is
placed on the branch point stack, followed by sub-branch x. Since there are no
alternatives, sub-branch x becomes the current branch point.

Step 6: (CB = x and BPS contains event y)

The current branch point has two aliematives (events / and 2), but the 'yes' result
for each is m partitions. aliematives are in each remaining partition. In searching for
a diamond botiom, we hit the leaf event of event 7. mmmukhmmy‘
so event y is returned as the bottom. The common-exclusive set for partition number 2

ins event 4, while the common-exclusive set for partition number S contains event J.
Bothmamvﬂidnﬂm—empty Since this is true, the result of popping the BPS (event
y) is retumed as the branch point to skip to. The current branch point is set 10 event y, and
the BPS is empty.

Shp?‘(ﬂiyllﬂlﬂitgzy

The current bran has two aliernatives (events 3 and 4). Since the 'yes'
result of each is | partition, the third and final clarification question is asked:

System: Do you intend (0
3

4

Thecmmbnnchpimhmmevemj but at this point ambiguity no longer
mnmAﬂﬂmwiﬁevm(!hvebean:ﬂMimm artition number 2.
Tllﬂe mnmniningg:ﬂﬁmmﬁnﬁg 16 plans, all of which have the same

In this case, mqmmnmmmmm
mmm seven,

,,Eefmele:vin;thehmofhnﬂpnﬂ*;ﬁ
Jy:xhsdﬁ"ﬂa‘mphﬂn"famo

-nm\mn hen . fjhhm
' nmmmu e le

the case that it is safe 10 o D 10 another branch point. That is, there may be the possibd)
of skipping for the remaining aliernatives of the CB. If we wish 10 pursue the
we would check for branch point skipping aficr each ‘No' reply 10 an aliornative of the
mmmm-;y.xmymhmﬁﬂlehqﬂe.ﬂ
depends on the event hierarchy config that may result from any given plan
library. The same can be said for bras mmum We would argue that
mﬂhwhgnmmivﬁmm:ﬂﬁ.mu
mmmm.mmmﬁm - i
m:mhmnmhaﬂmiﬂeﬂmfnm&:mhaﬁm&gh

!‘

435 Using Key Events
A proper definition of a key event is the following:
Akymgﬁawfd’lm@mmm

onder)
that is a member of all of the ' fault
pm.' mun-n-ts!:r-uy h;ium':-—;‘:ru

A fault partition may have several events that are shared by all plans of that
Karuuon and no other plans. Among these events, the key event is the first such event in
hical top-down order.

When we ask the user about a key event, a ‘Yes' reply will mean that the
wmnnmgphnsmmﬂyﬂmgphmmMMVemukeymL Since such plans
located in one tion, ambiguity will no longer matier, and we can respor

onc partition. In other words, a ‘Yes' reply to any key event will mean

thatcmfkuionhmmdwenm mmmm;wmmuym
ﬁllmm“dimmmphu vingthnemﬁimﬂlnﬂplmninm,
puniﬂon melhimm art '

[ying from the current lnnchpolnl is that the

iuncmfuggﬂm;ﬁnﬁry m;m e, if our current
muﬁn: we mi a key event of making spaghetti if th
mmmcmtmunmﬂgﬁfm uestion m
you making a pasta dish?', or it might be 'Are you making a meat dish?". In the CASC
lhemmybewmdaingwh we did not ask this inlheﬁmnhee.ﬂehor
m-mﬂm“[gmgmmugm“,mﬁsmyMMM
mMm(Mﬂmmxwhmmwwm
mmwmgm::mmmmuusmym; to making a

keLemnﬁlml aiepmiﬂmm;l‘m“m
o i ve B fault partitions, we must have at least . i - 1) key

" mm“d:’m rent branchpoint

mdu:ekeyevenmfwehnvemujhofdlem"Peﬂupsueminllltmuvewﬂlleﬂma
new current branchpoint with aliernatives that greatly affect the number of partitions, or
(o another branchpoint that does not. This will depend on the user's plan. Once we choose
10 go to key events, we ase forced into eliminating one partition at a time until we ask the
correct key event. With any large number of {3 ',,ﬁ,ﬁm;.wemayhelengthninglhr
number o of clarification questions, instead of reducing them. Thereulhnmgquenumm‘
itkﬁgvﬂwhﬁimcﬂtmﬂ&ﬁﬁhmﬁhu e number of hic
questions versus the average num y event questions. p'—mblemwiﬂ!tey
mnumuntumdﬂmmm“mymmﬂnmﬂm
events (o either two or three remaining pantitions.

We only consider using key events when there are two or three remaining fault
partitions, and we have key evenis for all but one of them. At most, we ask the user two
more clarification question Almmwemakem'hnp'm:midmemibﬂnyﬂ
going back and forth among different groups of plans in our line of questioning. We
check for the possibility of using key events before clarification begins. We alao check
after every clarification question, providing that ambiguity still matters.

The key event proc
procedure KEY_EVENTS_POSSIBLE(branchpoint)
i (m>3) then return (falsc) /* n is the partition number */
olse key_events « FIND_KEY_EVENTS(branchpoint)

M (number of key_events < (m - 1)) then return (false)
else return (true)

jures (for 3 fault partitions) are:

The procedure of FIND_KEY_EVENTS returns a set of key event-partition
mﬁmﬁmmﬂmmﬁleyemﬂ:mmed with its particuiar partition. One
mmfﬁm ”mﬂ‘;mgﬁuﬂm:, he
e o L L T
first such event is a key event for the partition. :y“ ' lnylleeﬁployedh
ﬁnﬁgﬁeﬁdmﬂﬁueﬁfmhﬂmﬁj

re KEY_EVENTS

while (n > 1) do:
begia
event « an cvent from key_events
if reply is 'Yes' then ,
remove all plans not having event
remove all partitions except the one with even?
ne|
remove: all plans with event
remove partition with evens
ne(m-1)
end

To further illustratc the use of key events, we can use the hicrarchy of figure 3.3
with the fault partitions shown in figure 4.9.

Figure 4.9 Keyemwﬁmmﬂgm artitions.

Given the partitioning of 4.9, it is possible t0 use key events immediatel;
mm::m 3-! ve key events. In traver the hierarchy of
disj evmfnr:pluonhgﬂmnm the events of
ummsﬂm;nmuymmmmm sting Science
and Statistics plans that also abstract (0 Mathematical Sciences). The eveat of
Mathematics is a key event of the first pastition, since all plans of the partition contain the
event, but no other plans do. S ”jﬁemof&mmicsh:keymfuh
second partition. mnummgmmk&uhﬂm;* Of
would be about emering the of Mathematics. If the reply were 10 be 1 ', them
mm&mmmummn et of Economics. A
‘Yes' or "No' re V0 this last question will leave one remaining partition. Is this betser
than the hierarchic m‘!hﬁaﬁng ﬂﬁm‘ﬁe“ﬂky
mhﬂ&mhamﬂﬂy g & certain number of clarification

questions.

hierarchical approach. we may only need one clarification question, For example, with
the fault partitionin of figure 4.9, and a user’s plan to obtain an Engincering degree, a
single menu question about the degrees, would have left one remaining partition.
However.ﬁﬁmyhﬁmﬁyinvdﬂng'tﬁh'.m:mﬂpumuﬁm, relaied w0
;kgyevenkwecmddchﬁfympoim;ﬂerbﬂn:hm,(mngphm.m“
panitjm:)mﬁlwejamimnoimgﬂm:keyevemnmmﬁmtw
mhmwthlwchmﬁmMAﬁchﬁnmmbym
with three remaining pas itions, rather than two, may largely depend upon the depth of

Akjgyevemiudisgicﬁvemmhnplmpfmg,ﬁulnpmiﬁmmdhua
memhaofnyaﬁerpndﬂmhmyﬂhgrfaﬂtpuﬁumAhymdﬁuu
hﬁngndﬁhmﬁveevgmmmmﬂlphm@fmmlm, rtition (but not all
mﬁm)ﬂmheldbymyohmun;pluWemmummhﬂmJ
at a time. For examp 2, if we had six fault partitions and a shared cvent for three of those
partitions, then 3 "Yes' or ‘No' reply 10 that evest would leave us with three remainin
wﬁmWemmniﬂeﬂmﬂﬁmﬁm-mmm“ﬂﬂﬁhwa
shared event for (w2) partitions. In such a case, 2% partitions would requirc x clarification
questions. Can we make a case for using shared events?

events. We may find more than one shared event for any particular | [partitions. L
this case we would like the shared event 10 be the highe 1 such event in order (o be
consisient with our top-down approach. Assuming that we find more than onc shared
emt(ﬁmmhmnﬂmmﬂwﬂﬁ)hnmimmmm
them according to how closely they approach (w/2) pastitions.

have further complications. The reply will either be 'Yes' or ‘No'.

hﬁemda'ﬂnmﬁynmﬁeﬂmdMﬂhﬁﬂeﬂ
are in one of the following two cases:

1. We have more shared events or key events that we can ask. B

2. We do not have any shared events or key events for the remaining partitions.

We want (o avoid the second case because it means retuming to the current
mmmdchﬁfyin g from there. lnmﬂﬂonvaidthi&wemdmeheckomm
g partitions for shared and key events for a 'No' reply, making sure that we have
(0 take us all the way down (0 one remaining partition. Also, shared events will

have similar coherency and context problems as with using key events,

A 'Yes' reply 10 a key event will mean that ambiguity no longer matiers. However,
a ‘Yes' reply to a question about a shared event will leave us with more than one
remaining partition. If we do not have fmm events or key events for these
remaining partitions, then we must go back to our hierarchical a ch. In this case we
set the current branchpoint to be the shared event we just asked the user. The p
mum“mymphelybymmmjmcﬁwmmuﬁmuo

IV\\
)’\ ANITAN

Figure 4.10 sypnﬁnp;,;; pint with shared events.

In figure 4.10, assume we get a 'Yes' t0 the shared event of SE. This event is
shared by hmﬁmfmm ing we did not have any more key
mwﬂ.mehmMmkmeﬂSEmm
larification from there. The probiem with this is that we do not place event bb on the
branchpoint stack. m“hw-tﬂmneﬁnuhpﬁﬁmamﬁ
placing such missed conjenctive events on the branchpoint stack.

[«)

mn““ﬂﬂm.ﬂ j"mmﬂhmc

Many of these rroblcms are similar to those for k?v events. They are mentioned
here, but not yet resolved to the point that we may confidently propose a proper and
consisient method for their use, other than our limited use of key events. Cer ly the
advantages of using such shared events in combination with key events has the potential
for greatly reducing the number of clarification questions asked, but their proper
exploitation is as yet unresolved and left to future rescarch. '

4.10. Overriding Faults

It ma beﬂwuxthacuuinfmluh.vemwhmimmmm.Hafan!l
is with a certain disjunctive event (e.g.. because of a constraimt violation of
Mevem).mdMfwhisdeemedwfﬁcientmldvﬁelheugrmm;’m
evenmhenitisalsowﬂkientwmiscdwmm,pumin*my; ecialization of
Mmt(WdMMdmm@ioﬂmﬂmmL ihe user should not he
following a n course of action, no maticr what the particular plan may be.

To quickly review the examplc of the previous cliapicr, assume that we are
marinumealwcnminam guest is a vegetarian and the sysicm knows this,
thisfactviolmaconunimfmﬂneevmmfmkzmdﬂ.hm'hem
madbktypuofmdtdm.bmdnem&ypedmmmnnm ish should not
made in the first piace.

Such faulis, which make an event an inappropriate course of action, we term to be
overriding faults. The fault has such importance as (o override the faults of diverging
WWMMWeMMmthgMMMﬂMHM

If we know that the user is imending 10 pur e an event that has an overriding
fault, then we should halt further clasification dialogue and respo d with a response that
mmewmumwuommmﬂg;yangmmm
dﬂmh&em&aﬂxmuysﬁﬂhmﬂmmfﬂlﬁﬁmm;

Wemuﬂyh«mm&hmmhmchﬁhhm&w
fwlumumhwdwim&eemummmduﬁnﬂgmgmi
mecmwuﬁmwt{‘mum“dmmmemhkmhc
the next current branchpoint to see if it has an overridi fault. If the cvent has an
W%MmeMchMﬂ rovide a respoase (0 address the

As an we can use the evont hicrarchy of figure 3.3 with an obscrvation

of a course, m.ummmwmrmm

Figure 4.11 Overriding faults.

. 4F:):chntyumed:folhmngbnefmpmmlmformhﬁullhhelof
igure 4.11:

computer courses nmrwm car m‘? : Quires ::* 7
mm\rﬁﬁ-hnmﬁ);ﬂm.)

involves the two departn
overriding fault.)

pl: Physics students are strongly recommended to take computer course CMPUT
186 on basic Pascal programming.

p2: Chemist students are strongly recommended o0 take computcer course
y 187 on basic C programming.

memt of [variable], recommends the intrc

rents of Chemistry and Physics. This is an

Given the above fault partitioning (40 ble plans divided 10 poss
partitions), our clarification process mﬂgm (even m::.mg more than
MMM)NEMHH&-HMI@M:
ormrmengﬁe,’ ysical Sciences. In

m).wednmlﬁlherclﬁf " which engincerin s being pursuc
” e the fmmémhhlﬁa?ﬁfdlw‘;ﬂdhmﬂ: hﬂhlhe
s involved a Bachelor degree, case the response would have
m the fault of AO, without further nﬂhemol‘hﬂsﬂ:;l(ﬂ;g
(as

uﬁehﬂﬁanﬁﬂsﬁmmfgﬂ)whm,f
social sciences of Economics, Geography, or History).

ans, in the different p
,d‘E Thsviewmlem
in i‘nlluﬂ cin -

mmm“hﬁﬂaﬂ allow us 10 ask 'Yes/No' questions about single
mﬁhmﬂwﬁmwggi ly one :

and the user is considering a mmmmmmwm consider
the following two dialogues with respect to clarity:

Dialogue | (Questions abowt singie events):

Do you intend 10 serve red wine? Yes.
Aleywulkhgwmﬂm

Dialogue 2 (Questions about more than one event);

Dnymhndhmﬁwhdnﬂeq*ﬂ“ndnymhﬂn
Do iﬂuﬂm-:iwhg -ﬂm ? Y

you 0 serve pesio? Yes.
(ﬁmdpnﬂkuﬁz-dmm

. In genenal unmnmmmgmvmmn
ig:m the question, its ' mfm’ nﬂﬁguﬁmm

kkpﬂbmmﬂmhfﬁdmhm*fi,;,
ﬂéﬂﬁmllﬁﬁl : '

* We have o consider the number of fault partitions that the response is inlended
to cover.
-W:madmcmsiderﬂ:nmmofﬁumforinymm

* We must consider the number of differemt in each partition, since cach
must be described 50 users know which nluipplylnlhnf Mt

* We need 1o consider the number of events required 10 adex f;:fiydmnhem
* Lastly, wn:nsdme@bwhmnhgﬁymuhmahﬂumw
mmdﬂﬁaﬁmm
ythleulhepmﬂ using non-homogenous menus. But here again,
certain a mmbem ﬂebngmm:lﬁqofmmhhm

ofmplgx fmwﬁchhﬁvﬂlmhmﬁﬁmwﬂmfmm
each menu mmhvemdacﬁhmhmmLTEmumfw
Hmﬁwﬁﬂihmwmgmmymhchmkm A scries of
evenis may hemqunedmmglydﬂeﬂh::ﬂngle i (0 the user. A lengthy menu
of such descriptions may not be as desirabie as several shorter and clearer menus.

Mm;hwem:eemwﬁmm:mofmpbxchﬁﬁmm

questions and complex responses, the cases are arguable. We still require further rescarch
into this arca.

mmmwhwmﬁu;mmmm in which several

iﬁmm“ﬂnﬁﬁeﬂhuﬂgmmm_ ' . We do not intend
1y bt e sphicd 10 cvery sitwation. 1o e

tbm these, will have little use for branch |
m&mﬂmwﬁm

Chapter 5. Summary and Future Research
S.1. Contributions of this Thesis

Advice-giving systems that use plan recognition, for the purposc of providing a
cooperative response o users of the system, must deal with ambiguity of recognized
plans, should more than one plan explain a set of observations. For interactive sysiems,
one method of resolving the ambiguity is that of clarifying the plans with the user. That
is, the sysiem takes control, and asks the user certain questions about the possibie plans,
in order to determine the user's plan. A cooperative response can then be made in light of
the user's plan. It is desirable to keep such clarification dialogues to a minimum. is,
as falr,ears possible, the system's clarification questions should be concise, clear, and few in
number.

In their work on ambiguity and cooperative responsc generation, van Beek
and Cohen (see [van and Cohen 91] and [van Beek er. al. 93)) proposc solutions as
t0 when the sysiem should clarify, and what the sysiem should ask. These solwtions
involve a critiquing component and a hierarchy of events (o represent the recognized
plans. The critiquing component assigns faults (0 the possibic plans, which are pastitioned
according to these wm.mmcmintoaclmf'wuiondmogwo:l‘{mm
faults of possible plans differ, and their ambiguity matiers to the cventual responsc.
Mmmmmmhwwmfwuawmuﬁmwmm
fault without determining the exact plan of the user. Should the faulis of the plans differ,
the sysiem clarifies by asking about events in the hicrarchy representing the possible
plans. In wp-down fashion, the user is asked about the different alicrnative choices of
each disjunctive branch point in the hierarchy, until all remaining plans have the same
fault. The individual clanfication are concise and clear, whether using 'Yes or
No'ty:queaimabouudn ve, or menu questions about the aliernatives of
a single branch point. This s has built upon this basic approach to clarification

The perticular contributions are the following:
1. We have provided a method of clasification that can deal with complex
hierarchical

plans. S:'ch plans involve uump:: mmm

(necessary sub-plans
plan). By maintaining the event hierarchy in a trec-like structure, and

branch siack, clarify the
B R B S T S
manner.

2. We have proposed a criterion as (0 when we should look for the possibility of
skipping branch points in the event hierarchy. Whencver cach ahernative of
a current is uwn-mumuuhn
possibility of branch point. this not be the case, some
aliemmative makes a t0 the remaining partitions (and the response),
and the branch poist should not be skipped.

3. Given the possibility of skipping branch points, we have provided a method of
determining when we can skip branch points, in the case that plans converge
10 a single cvent and in the case they do not. In the former case, the branch
point to skip to is the event at which the plans converge. In the latter case,
the branch point to skip to is the next event on the branchpoint stack. In
either case, we determinc if the ambiguity can be resolved (so that it no
longer matters) by only asking those events occurring after the branch point
we would skip to. If 0, the response does not depend upon clarifying any
intervening event.

4. We have proposed a sct of rules to determine the order in which the different
alternatives of a current branch point are clarified, in the case that menu
clarification questions are not used and the likelihood of plans cannot be
determined. By first determining the remaining partitions for a 'Yes' and 'No’
reply to each aliernative, the user is asked that alternative leaving the fewest
remaining partitions on average. The strategy atiempis (o eliminate the
number of partitions more quickly than with a random selection.

5. We have described the concept (and limited use) of key events that “isolate” the
Msﬂnmmufamlmmm;dgm;Mchhmm
cither substantiate or eliminate all plans of a fault partition. We have also
described some of the problems with their use. We have also briefly
described an extension of this concept to that of shared events that isolate
mdtehanme artition, but as yet, the proper use of this concept has not

6. We have described a method that avoids pointless clarification in the case that
the user is intending a certain action that is inappropriate for an observation.
An overriding fault is associsted with such an action, and a response is
plans may still matier to providing a cooperative response for the

e gt e b sy

With respect to the clarification process, we believe that further exploration of the
usc of key and shared events may provide promising results. The idea behind this is
simple in concept, in that we always ask the user about that cvent which will leave the
fewest remaining partitions on either a 'Yes' or 'No' reply. The particular event does not
have to be an aliernative of the current branch point, but can be any disjunctive event in
the given event hierarchy. Currently, there are two major obstacles to this approach. One
is that of maintaining a coherent direction of clarification questioning. second
roblanisﬂmofdeleminingimzhiemhicllwmnh hemnmned That is,

wer overall clarification result from “sticking w" the hicrarchical
approach, even though the alienatives of the current branch p tdnnmleaveiwcr
Mﬁmsdunmlhredevemhwefmﬂiememhy Closcly related o this, is the
possibility of using a bottom-up approach and determining if this approach will reduce
ambiguity fasier than the top-down method.

By relaxing the ground rules for our clarification cz:eslmm:nd the response, the
flexibility and minimization of clasification dialogue can be cnhanced. at the expense of
clarity to the user. The degree of clarity must be considered. However, in certain
situations, we can visualize much shorter clarification dialogues. For example, the
following dialogue consisis of a single non-homogenous menu question, in which cach
menu item isolates or covers onc or more fault partitions (c.g., by shared cvents, key
events, or combining the two), and the response covers two partitions.

System: Do you intend to 7
1. Obtain an Enginee , d;fgmennBSc in Physical Sciences?

6Th:wmmmumﬁ5mi
User reply: 4.

Systom response: If are taking the Honors in Computing Science
kﬁmmYmm . However, course X is a good
choice for the Specializati

mcmmmumym:thm
is of importance. If we can ask compl questions, then rules must be
t0 maintain clarity, and they must be empirically tested on a wide range of

1 H

Mof‘suwe:lell,lhe Hﬁoﬁf:ﬂuﬂhﬂkiﬁﬂkl‘bﬂm . The
hierarchy of events that make lﬁi‘y meamt 0 possible actions
: glhuvs \ mnmmmwmnﬂ,

1
I

i
:

ﬁ‘ gk

i
,-!

i!

~ Lastly, there are many issues that are application specific. A sysiem using a
graphical uscr interface might consider only using hierarchical pop-up menus to clarify a
user's plan. Branch lEivim skippil:E, would be an imlpomnl issue in limiting the set of
menus presented to the user, and this may influence further work in hierarchy des:msr
such systems. Sysiems having a natural language component must contend with issues
related 10 combining cvents and faults into smooth and clear text, to avoid the "stilted”
and awkward results that may occur from using “canned” clarification questions and
responses. Increasing the efficiency of plan recognition, critiquing, and clarification for
specific applications are dependent upon the scale, purpose, and type of application.

References

[Allen 83] Allen, J.. Recognizing intentions from natural language utterances: In
Computational Models of Discourse, Michacl Brady and Robent C. Berwick, (editors),
pages 107-166, MIT Press, Cambridge, Mass., 1983,

[Allen and Perrault 80] Allen, J. and Perrault, C.; Analyzing intention in utterances;
Artificial Intelligence. 15: 441-458, 1980.

[Buchanan and Shonliffe 84] Buchanan, B. and Shortliffe, E.; Rulc-based cxpert sysicms.
The MYCIN experiments of the Stanford heuristic programming project; Buchanan B.
and Shortliffe, E. (editors), Addison-Wesley Publishing Company. Reading MA., 1984,

[Calistri-Yeh 91] Calistri-Yeh, R.: Utilizing user models to handle ambiguity and
mucngpznﬁns glg ll‘obusl plan recognition; User Modeling and User Adapted Interaction
1(4): I

(Carberry 83] Carberry, S.. Tracking user goals in an information-seeking environment;
Fmgeedmgs of the Third National Conference on Artificial Intelligence, pages $9-63,
198

(Fikes and Nilsson 71] Fikes, R. and Nilsson, N.; STRIPS: a new approach o the
application of theorem proving to problem solving; Artificial Intelligence 2, 1971,

(Gaasterland 92] Gaasterland T.; Generating cooperative answers in deductive databases;
PhD thesis, Umversnym‘mrym 1992.

[Genesereth 79] Genesereth, M.; The role of plans in automated consultation;
gmree&u;;wgf the Sixth Intemnmal Joint Conference on Antificial Intelligence, pages
11-319, 1

{Goodman and Litman 92) Goodman, B. and Litman D.; On the interaction between |
foco l%%hﬂﬁmuﬁm Userﬂndehgmdllsrrﬂdq&dhkm
):

[lnm wmmwmmmm A., Webber, B. and Weischedel, R.;
! 8, Proceedings of COLING-84, pages 134-138, Sianford CA., Jﬂy. 1984,

[Jmﬁe;-luljnﬂi A, Welll:: ‘B. and Weischedel, R.; Living up to expectations:
: expent | redin :g‘ﬁerﬁHMCaﬁmnArﬂeﬁ
ce, pages | I‘IS Austin, TX., August 1984,

(Kass and Finin 88] Kass, R. and Finin, T.; Modeling the uscr in natural language
sysiems; Computational Linguistics, 14: s-zz.smlm

[Kautz and Allen 86] Kautz, H. and Allen, J.; Generalized plan reco
di:m National Cﬁmumm peges 2*37

Kawtz 87) Kawtz. H.; A Formal Theory of Plan Recognition ; PRD thesis, Univensity ¢
Rochester, 1987, Avﬂh:“d‘&qﬂhf:

{Pollack 86] Pollack, M.; A model of plan inference that distinguishes bewmocn e & Hed»
of actors and observess; Proceedings of the 24th Conference of the Ass:: i for
Computational Linguistics, pages 207-214, New York, 1986.

lStdncr and Israc] 81) Sidner, C. and Israel, D.; Recognizing intumliee mcaans and
's plans; Proceedings of the Seventh lmernaaoua’ Joint Confirres on Arsiivinl

Intelligence, pages 203-208, Aug. 1981.

(Sidner 83] Sidner, C.; What the r means: the recognition of FI plams
discourse; International Journal of rs and Matlmmﬁcs. "™

[Tennant 87] Tennant H.; Menu-based natural language: of ANNicial
Intelligence, S. C. Shapiro (eduor). John Wiley & Sons, mem

[van Beek 87) van Beek, P.; A model for generating better explanatioss: Prowwedings of
g::n 2{{:: Cc’o.v;j;grel% of the "Association Jor Computational Linguinties. pugis. 215-220,
]

[van Beek and Cohen 91] van Beek, P. and Cohen R.; Resolving plan ambiguity for
cooperative response generation; Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence, pages 938-944, Sydney, Australia, 1991.

{van Beek er. al. 93) van Beek, P., Cohen, R., and Schmid, K.; From plan critiquing to
c':l;;nll“m dullgsuc for cooperative response mion Compusational Inselligence, 9.
- y

[Webber 87)] Webber, B.; Question answering; ia of Antificial Intelligence, S.
csum(eam).mwmy&mmsu-g 1987.

(W 911 Wa. D.; Actve acquisition o user model: mplicatins fo docison-theoreic
1)1 'i'é"l&"ld plan recognition; User Modeling and User-Adapted Inseraction

