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ABSTRACT

This thesis is concerned with the asymptotic minimax properties of M-
estimators for scale when the underlying distribution is only approximately known.
It is assumed that the underlying distribution lies within a certain convex set
P of distributions. Two common types of P which are of interest are the =-
contamination neighbourhood model G.(G) and the Kolmogorov neighbourhood
model K,.(G).

Consider Huber’s (1981) theory of robust M-estimation of a scale parameter.
An M-estimate of scale is defined as S(F}), where F, is the empirical distribution

function based on a sample Xi,...,X, ~ F, and the functional S(F') is defined
implicitly by
o0 z _
[ xgirt =0
Under certain regularity conditions, n?[S(F,)— S{F)] is asymptotically normally

distributed with mean 0 and variance

SHF) 2o0 x* (3 )dF(2)
(o0 X' (55 )3y JAF (o))

A problem which is of interest is to find an estimating function xo such that

V(x,F)=

sup V(xo, F) <supV(x, F)
F F

for all other x and for all F in P satisfying So(F) = 1 where Sy is the M-
estimator corresponding to the estimating function xo. We study the cases when
P equals to the G,(G) or K.(G). Note that xo is optimal in a minimax sense

as it minimizes the maximum asymptotic variance over a certain neighbourhood

of distributions.



Define the asymptotic loss

Vix,F
ROGF) = g

Huber (1981) showed that when ¢ < .04,
R(XO’FO) > R(xan) (*)

for all F € G.(®) where G.(®) is the e-contamination normal neighbourhood
model, Fy € G¢(®) minimizes Fisher information for scale over G.(®) and xo(z) =
—:%(x) — 1. Hence the minimax property holds: the maximum (over F) value
of R(x, F) is minimized by xo. Here we show that (*) does not hold for large ¢
case (¢ >.2051). And with the aid of some numerical calculations, (*) does not
hold for .0997 < ¢ < .2051. We can also see that the role of ¢ in the large ¢
case can be replaced by some non-normal distributions. Moreover, under fairly
general conditions, we also show that (*) does not hold when F is assumed to lie
in a Kolmogorov neighbourhood model K,(G) and Fy € K,(G) minimizes Fisher
information for scale over K.(G).

Finally, a note on Thall’s (1979) paper is provided. Thall (1979) developed a
theory of robust estimation of a scale parameter by reformulating Huber’s (1964)
location parameter results in the scale parameter context. The results were then
applied to a particular problem of robust estimation of the parameter 6 of the
exponential distribution ®o(5) where ®p(z) =1 —-e~*, = > 0. Unfortunate'y.

a few mistakes were made. Here we explain why those mistakes occured and

provide a correct solution to his particular problem.
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CHAPTER I
MINIMAX ASYMPTOTIC VARIANCE M-ESTIMATORS
FOR SCALE OVER e-CONTAMINATION NEIGHBOURHOOD
MODEL G.(G) SATISFYING Sy(F) =1

1.1 Introduction

This thesis is concerned with the asymptotic minimax properties of M-
estimators for scale when the underlying distribution is only approximately known.
It is assumed that the underlying distribution lies within a certain convex and
vaguely compact set P of distributions. Two common types of P which we will
discuss in this thesis are the e-contamination neighbourhood model and the Kol-
mogorov neighbourhood model.

Consider Huber’s (1981) theory of robust M-estimation of a scale parameter.
An M-estimate of scale is defined as S(Fy), where Fy, is the empirical distribution

function based on a sample Xi,...X, ~ F, and the functional S(F) is defined

implicitly by
o T

where x is an arbitrary function. Usually x is an even function. If the distribu-

tion function F is replaced by the empirical distribution function Fy, then (1.1.1)

1 & Ti\ _ :

from which S is calculated. Note that we are concerned only with estimates that

becomes

are functionals of the empirical distribution function. In most cases, this kind

of consideration is enough since many of the most common estimators depend
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on the data only through the empirical distribution function. In particular if
x(z) = 2% — 1, then S(F) is the usual standard deviation if location is zero.

Throughout this thesis, the location is assumed to be known. Without loss
of generality, the location is assumed to be zero. In general when the location
is unknown, under the assumption that the underlying distribution is symmetric,
Huber (1981) points out that the location and scale estimates are asymptotically
independent. If the data is subtracted by any consistent estimate for location,
the resulting data will asymptotically depend on the scale estimate only. Hence
it can be treated as a pure scale problem. However in this case, we have to
restrict ourselves only to considering symmetric distributions.

Under certain regularity conditions, the most important of which are the

continuity of x(z), and the consistency of S(F,) for S(F'), we have that
nd(S(Fa) = S(F)) = N(0,V(x, F)

where

SHF) [2 x* (ﬁ%) dF(z)

[t (o]
(= Ep[IC*(z, F, S))).

(1.1.3)

Vx,F)=

See Theorem 2.2 of Boos and Serfling (1980) or Serfling (1980) Chapter 7 for de-

tails. The notation IC(z, F,S) will be used for the influence function or influence

curve of the estimator S at F [see Hampel (1974)].

Let ¢ be fixed ,0<e <1,
G be a symmetric known distribution function with finite
Fisher information for scale with density g,

H be an arbitrary unknown distribution function with density h.
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Then the e-contamination neighbourhood may be defined as a set G.(G) of dis-

tribution functions containing all F' where F' = (1 —¢)G +¢H. That is
Ge(G)={F: F=(1-¢)G+eH} (1.1.4)

The first problem we try to solve here is to find an estimating function yg such

that
sup V(xo,F) < sup Vix,F) (1.1.5)

for all other x and for all F in G,(G) satisfying So(F') = 1 where Sp is the
M-estimator corresponding to the estimating function xo.

Note that yo is optimal in a minimax sense as it minimizes the maximum
asymptotic variance over a certain neighbourhood of distributions. Furthermeore,
the solution can be achieved by first finding the least informative (also called
least favourable) distribution Fp, that is the distribution which minimizes Fisher
information for scale over G.(G), and then putting xo(z) = —x%(x) — 1 (the
score function) where fo = Fj. The corresponding M-estimator for scale is then
asymptotically efficient at Fp.

Usually, in order to check whether the minimax property (1.1.5) holds, it is

common to investigate the saddlepoint property

V(xo, F) < V(xo, Fo) = T(;—o) < V(x, Fo) (1.1.6)

for all x and F € G.(G) satisfying So(F) = 1, as (1.1.6) is sufficient for (1.1.5) to
hold. The notation I(F) denotes the Fisher information for scale at F' with scale

being equal to 1. The second inequality in (1.1.6) is essentially the Cramér-Rao

Inequality.
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Under the restriction So(F) =1, m is a convex functional of F' accord-
ing to Huber (1981) Lemma 4.4.4. Put Fy = (1 —t)F, +tF;, where F; € G,(G)
with finite Fisher information for scale, and 0 <t < 1.

As [ xo(z)dFo(z) = 0 and [ xo(z)dFi(z) = 0 imply [ xo(z)dFy(z) =0, it
can be seen that the set G, o(G) = {F € G.(G)| So(F) = 1} is convex. Now

_ /oo " Raxh(@) = x3(@)d(F: — Fo)(z)

7 v

t=0

[

0.

t=0

v

The last inequality follows from the fact that I(F;) is a convex function of t.

Note that for any parametric family of densities f(z;8),

2
~ A0
I(f:,6 =/ S
0= | T

is a convex function of ¢ according to Huber (1981) Lemma 4.4.4 where
fe(z,0) = (1 = t)fo(z;0) + tfi(z;60), 0 <t <1, and I(f;0) denotes the Fisher

information for # at f. Consequently we have
V(x0, F) < V(xo, Fo) (1.1.7)

for all other F € G, o(G). This is simply the first inequality in (1.1.6). Hence we
can conclude that the saddlepoint property (1.1.6) holds. This in turn implies
that the minimax property (1.1.5) holds.

In Chapter II, the same kind of minimax problem will be discussed but with
the Kolmogorov neightourhood model K,(G) instead of G.(G). The definition
of K.(G) will be shown at the beginning of Chapter II. As we shall see, the ap-

proach we use for the Kolmogorov neighbourhood model is significantly different
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from the e-contamination neighbourhood model. For the e-contamination neigh-
bourhood model, we shall rely on a log transformation on the data, changing the
scale problem entirely to a location one. But for the Kolmogorov neighbourhood
model, a direct approach will be used.

As we can see from expression (1.1.3), the asymptotic variance V(x, F) de-
pends on the arbitrary standardization of S, hence it does not provide a good
quantity in comparing the performance of the estimators. As in Huber (1981),
So(F) =1 is a rather serious restriction. A better criterion may be the asymp-
totic loss R(x,F) = ZS%FF.? which is the asymptotic variance of /nlog %‘(%)
This quantity R(x,F) was first proposed by Daniel (1920) as a measure of accu-
racy of a scale estimator. Bickel and Lehmann (1976) named it the standardized
asymptotic variance. Note that R(x,F) does not depend on the arbitrary stan-
dardization of S. In Chapter III, we shall discuss the minimax properties of
the M-estimators for scale over G.(G) and K.(G) by using R(x,F) as a crite-
rion in comparing the performance of the estimators and dropping the restriction
So(F)=1.

In the literature, Huber (1964) developed the classical theory of robust M-
estimation of a location parameter. In fact the theory may also be applied to
the problem of robust M-estimation of a scale parameter. This is because the
problem of estimating a scale parameter for a random variable X can be reduced
to that of estimating a location parameter for the random variable Y = log X? or
Y = log|X|. Huber (1964) carried out this approach in estimating the variance
o2 of a normal distribution with zero mean, utilizing the transformation log Xx?

to estimate logo? where o is a scale parameter of X.
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With the same log-transformation technique, Thall (1979) reformulated Hu-
ber’s location parameter results in the scale parameter context with nonnega-
tive random variables being concerned. He also worked out the most robust M-
estimator for the scale parameter of the exponential distribution function where
the underlying distribution is assumed to be within a Kolmogorov exponential
neighbourhood model. Unfortunately the least informative distribution he ob-
tained is wrong. Detailed discussions will be appearing in Chapter II section
7.

In the past two decades, the problem of finding the least informative distri-
bution within a certain convex set of distributions and the problem of checking
whether or not various robust estimators are minimax have undoubtedly received
a fairly large amount of attention. For the location case, Huber (1964) first
obtained the least informative density fo in both the e-contamination neigh-
bourhood model G.(G) where G has a strongly unimodal density g and the
Kolmogorov normal neighbourhood model K,(®) with ® the standard normal
distribution function and ¢ < .0303. He also showed that the riaximum likeli-
hood estimate corresponding to the score function ¥y = —-ﬁl is minimax with
respect to the asymptotic variance criterion.

Collins and Wiens (1985) worked out the form of the minimax solution for
more general e-contamination models for which the known density g is not nec-
essarily strongly unimodal. Sacks and Ylvisaker (1972) obtained further result
for the Kolmogorov normal neighbourhood model for which the minimax solu-
tion was found in the extended range of .0303 < ¢ <.5. Wiens (1986) extended
the result to the general Kolmogorov neighbourhood model K.(G) where G is

not necessarily normal. Collins and Wiens (1989) further extended these results

to Lévy neighbourhood model in which G satisfies conditions similar to those
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imposed in Wiens (1986). In both of the Kolmogorov and Lévy neighbourhood
model cases, all of the work done require an assumption that G is symmetric.

Moreover, research has extended to investigating whether or not the efficient
L- and R-estimators corresponding to the least informative distributions are min-
imax in a certain class of distributions. To do this, it usually involves a checking
of the saddlepoint property. This is because the saddlepoint property implies the
minimax property. Definitions and basic properties of L- and R-estimators can
be seen in Huber (1981), Lehmann (1983). Jaeckel (1971) provided a positive
answer for L- and R-estimators in e-contamination neighbourhood of symmet-
ric distributions. Sacks and Ylvisaker (1972, 1982) showed that the efficient L-
estimator is not minimax in K.(®) in € > .07 and provided a simple convex class
of distributions for which there is neither an L- nor R-estimate that is asymptoti-
cally minimax. Collins (1983) established that R-estimation is minimax in K.(®).
Collins and Wiens (1989) extended the result to Lévy neighbourhood model and
showed that minimax property holds for R-estimates but fails for L-estimates in
Lévy neighbourhood model. Wiens (1990) derived an easily checked necessary
condition for L-estimation to be minimax and a related sufficient condition for
R-estimation to be minimax. Those cases in the literature in which L-estimation
is known not to be minimax and those in which R-estimation is minimax are
derived as consequences of these conditions. Besides, Wiens (1987) showed that
weighted Cramér-von Mises estimation is also minimax in e-contamination neigh-
bourhood of symmetric distributions.

For the scale case, the only reported results are those of Huber (1981), who
explicitly finds out the least informative distribution for the e-contamination nor-
mal neighbourhood G.(®) and verifies (with the aid of some numerical calcula-

tions) that the minimax property using the loss function R(x, F) holds for G.(®)
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and € € .04. In this thesis, we try to extend Huber’s (1981) result and work on
a more general e-contamination neighbourhood model as well as in Kolmogorov
neighbourhood model.

In the next section, we shall also rely on a log transformation of the data,
changing the scale problem entirely to a location one and obtaining results for
the e-contamination neighbourhood model in some more general situations.

It is worthy to note that the M-estimate of scale S(F,) is estimating its own
asymptotic value. As the value of S(F) depends on the choice of the estimating
function x and the distribution function F, it may vary from one to another. In
this thesis, our concern is to make a suitable choice among those M-estimates of
scale rather than to estimate a scale parameter. This same kind of problem has

been raised and discussed, especially by Bickel and Lehmann (1975), in a more

general context.

1.2 Theory and examples
Definition

Define Fy(z) = F(Z%), 0 > 0 and define Fisher information for scale ¢ of a
distribution F on the real line by

[/23, X/ (e)dF(z)]?

I x%(z)dF(z) (1.2.1)

I(F,o0) = % m;p

for fixed ¢ > 0 where the supremum is taken over the set C} of all continuously

differentiable functions with compact support, satisfying ff:o x*(z)dF(z) > 0.

Note that if we restrict the distribution F to be symmetric, the above defi-

nition is equivalent to the following:



Definition

Define F,(z) = F(£), o >0 and define the Fisher information for scale ¢

of a symmetric distribution F on the real line by

2
(s x@ar @)
I(F,0) = Z5 sup = X (z)dF*(z)

(1.2.2)

for fixed o > 0 where F*(z) = 2F(e*) — 1 and the supremum is taken over the
set C}, of all continuously differentiable functions with compact support satisfying
f_°°°° x2(z)dF*(z) > 0.

Definition (1.2.2) is a natural extension of the classical expression

o= [ |5 10g§f(§)]2§f<§>dz
1

=?/_°° [_zT'(z)—lrf(x)dx

o0
where f = F'.

The definition (1.2.2) is motivated by taking the logarithm of the absolute
value of the data, so as to convert to a location problem. Making it clearer, let
X be distributed as F(Z) where F is a symmetric distribution. Then log |.X|
is distributed as F*(logz — logo) and I(F,0) = JsI1(F*logo). The nota-
tion I(F*,logo) denotes the Fisher information for location logo at F* where
F*(z) = 2F(e*) — 1. Thus our definition of the Fisher information for scale o
corresponds to the extended version of the Fisher information for location logao

described as the Huber (1981) Chapter 4.

Theorem 1.1. (A)The following two statements are equivalent:

(i) I(F,0) < o0
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(ii) F has a density, absolutely continuous on R\ {0}, satisfying

/(—m—f—’-(m) - 1) f(z)dr <

In either case,

HFo) =5 [ :(—z%z) 1) f(c)da.

It is worth mentioning that I(F,0) < oo implies zf(z) = 0 as z — 0 or +oc.

(B) There is an Fy € P minimizing I(F, o).
(C) If 0 < I(Fy,0) < 0o and the set where fo = F{ is strictly positive is convez,

then Fy ts unique.

Proof: The proof of part (A) is very similar to that of Huber (1981) Theorem

4.2. The major change is that the linear functional A defined in our case is

Ax = —/mx'(z)dF(a:).

The argument of existence and uniqueness proof of the least informative dis-
tribution Fy in (B) and (C) respectively are similar to Huber (1981) Proposition
4.3 and Propostion 4.5. g

Now if I(Fy) = minreg,() I(F), then with xo(z) = ~z£(z) — 1, the sad-
dlepoint property (1.1.6) holds. This in turn implies that the minimax property
(1.1.5) holds. Therefore in order to solve the above minimax problem, we only
have to find the distribution Fy that minimizes Fisher information for scale under
the class G,(G). This is equivalent to finding the distribution Fj that minimizes

Fisher information for location under the class G?(G) which is defined as

G.(G) = {F*: F*(z) = F(e®) — F(~¢€*),F € G.(G)}.
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Note that G*(G) can also be represented as a form of an e-contamination neigh-

bourhood model. In fact G}(G) can be written as
GHG)={F*: F*=(1-¢€)G" +cH"}

where G*(z) = G(e*) — G(—e*) and H*(z) = H(e™) — H(—€").
According to Huber (1981) example 5.2, a log transformation of the absolute

value of the data gives:

Theorem 1.2. Suppose G* € G2(G) has a twice differentiable density g* such
that —logg*(z) is convex on the convex support of G*, that is g* is strongly
unimodal. Then we have that Fisher information for scale is minimized by that
Fy satisfying:

Case A: For large ¢,

1-k
(1 - €)g(z0)} Z |z] < 2o
fo(z) = ¢ (1 —¢)g(x) e <lz| <2 (1.2.4)
(1-e)g(zn)|2 2] 2 7,
-k lz] < zo
xo(z) =3 —zL(z)-1 @< |z} < 4 (1.2.5)
k |$| 2 T

where 0 < zo < z; are the endpoints of the interval
gI
I—x;(w)—ll <k

and k is related to ¢ through the relationship

Ty
2/ o(z)dz + 21:09(1:0):2:19(.’:71) - 1i5' (1.2.6)
X

0
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Here k is always smaller than 1.

Case B: For small ¢

(-l o lel<=
= 1.2.7
@)= 1-epen|z| klza (1.2
—:vgi(m) -1 z<Z
@) ={; nsn (1.28)
where 0 < z; is the point satisfying
gl
—z—(z)-1=k
g( )
and the constant k is determined by
o 2z19(z1) _ 1 o
2/0 g(z)dz + P =75 (1.2.9)

Here k is always larger than 1.

Proof: By using the transformation Y = log|X| and applying the result of Huber

(1981) example 5.2, results follow. O

Note that Sp(Fp) =1 follows from the fact that

oo o0
| xo@dRe) = [ (-efi(@) - fe)is
-Q0 —00
= -z fo(2)[° + (~2fo(z))| 0
=0.
In order to apply Theorem 1.2, we have to check whether the transformed

distribution G* is strongly unimodal or not. To do this, the following lemma

plays a role.
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Lemma 1.3. For any twice differentiable function g, put g*(z) = 2¢*g(e*). Then

—log g*(z) is convex if and only if
¢(z) +2('(z) 20

for all z > 0 where

((z) = —L(z).
Proof:
—log g*(y) = —log2 —y — log g(e*)
[—logg*(¥)]' = -1- e”%(e“)
= —1+e¥((e¥)
[~log g (v)]" = e¥[¢(e¥) + e¥('(e¥)]
Therefore

—logg*(y) is convex iff ((z)+2('(z)>0 Yz >0

which is the required result.

a

Example 1.1. Let g(z) be the density of the Student ¢ distribution with r degrees

of freedom. That is

(#)

2 -(=4)
g($)=\/_r-_1rl"—(_§5(7+1) , —00<IT<00

22 -(=1)
= c(-;— + 1) say

Then 4)
2z -
g"(z) = 2e"g(e”) = 2e'c(e—r- + 1)
2z
—logg*(z) = —log2c—z + (:--;—1) log (_eT + 1>
2z
_ . ' -
[-log g*(z)] 1+(r+1)(62: s

. r + 1)2re?®
[_logg (z)]" = g(—ezz)——-*-r—)z—' Z 0 Vze (—m,m)
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It follows that —logg*(z) is convex on (—o0,00).
Example 1.2. Consider the density of the form

g(z) = e~/ oo <z <00

where @ > 0 and A is the normalizing constant. Then
g'(z) = 24¢%e 1%/
[~ logg(z)]' = =1+ ¢
[~logg*(z)])" = ae** >0 Vz € (—o0,)

Thus —log ¢g*(z) is convex on (—00,00).

Example 1.3. Consider the logistic distribution with density

-z

9($)=——e , —oo<zT<o00.
(1+e-%)2

We then have

! - _e—z(l—e-:)
9(z)= (1+e-%)3

g ef -1
{(z) = —;(1‘)= 1
g) = —26
C(‘t)— (e"'+1)2

2z _ z
((z) +2('(z) = 2 (exiffe > 0 on (0,00)

since €2* > 1 on (0,00). According to Lemma 1.3, —logg*(z) is convex on

(-—O0,00).

Example 1.4. (An example in which —log ¢*(z) is not convex).

Consider the distribution G with density

1
9(y) = —00 <z <00

2rlyl(1 + log® Jy|)’
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Note that G(y) = [¥ _ g(y)dy and G(c0) =1 implies g is a density. Then

1

g9*(z) = 2e%g(e”) = 0+

which is the Cauchy density. Hence —logg*(z) is not convex. For details, see
Collins and Wiens (1985).

From above, the first three examples indicate that the distribution of Student
t, logistic and the distribution with density of the form Ae~ =%/ (o > 0)
all satisfy the required condition of Theorem 1.2. Hence their least informative
distributions can be obtained simply by applying Theorem 1.2.

In Example 1.4, since g* is a Cauchy density and the Cauchy density is not
strongly unimodal, Theorem 1.2 is no longer applicable. Further theory will be
developed in order to relax the strongly unimodal requirement of g*.

Note that G7(G) is a convex set and
wE= [~ (fc) W) W)y

is a convex functional of F*. Huber (1981) thus concludes that Fg € G:(G)

minimizes It (F*) if and only if

d
-d_tIL(F:)It=0 2 0 (12.10)

for all ¢ € G*(G) with IL(F}) < oo where Fy' = (1-t)Fg + tF'. Now for

fr=Q0Q-1t)fs +tff, we have

Y 2
%IL(F,‘)I:=0 :lit (f}t ((z))) )=
/ 2 ) ~ RIS = (REPUE - K@),
—oo (fi(=))? =

I RE = IHCROR (%%)2[ff(z)—f5(a:)l}dw
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Define y5(z) = —%—’(z), then I (Fy) attains the minimum value in G}(G) if and

only if
/ {=25(2)[f1(2) = f5 (@) — (¥5(2))*[fi(z) — f5(2))}dz > 0.
Furthermore if 33 is absolutely continuous and bounded, then

/ " _agi(a)fi () - fi(2)da

-0

= 21 () - i@+ [ : 203 ()f2(2) - fi(a)lda
= [ el - S

The quantity —2¢3(z)[fi(z) — f5(z))|Z vanishes to zero since I(F,1) < oo is
equivalent to I (F*) < oo which implies that f*(z) - 0 as z — oo or —cc.

Consequently Ip(Fy) is a minimum in G;(G) if and only if
| e - @) i) - fi@)de 2 0

for all Fy € G7(G) with IL(F}) < oco.
For the sake of the existence and the uniqueness of Fj € G;(G), we impose
some further conditions on G*:
(G1) 0 < I1(G*) < 0.
(G2) ¢g*(= G*) is strictly positive on (—o00,00).
(G3) the function ¢* = —9;7' is absolutely continuous and continuously differen-
tiable.
A slight modification of Theorem 3 part A of Collins and Wiens (1985)
provides a further set of necessary and sufficient conditions which makes the

explicit determination of minimax 3 (hence xo) possible corresponding to a

given G* satisfying (G1)-(G3).
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Theorem 1.4. Suppose the function G* in the model G;(G) satisfies (G1)-(G3).

Then there exists a unique Fy € G*(G) minimizing IL(F*) over G;(G).

In order that F§ minimizes IL(F*), the following are necessary and sufficient
conditions:

(A1) By = {z: hi(z) >0} D 4x = {z: J((*)(z) < =A} for some A > 0 where
J(¢*)(2) = 2" (2) - (¢*(2))* and (*(2) = ~ L= ().

(42) For all z € By, J(¥3)(z) = = where $3(z) = —&c(2)

(43) [, Fi(e)da =1

(A4) i(z) = C*(z) Va € B

(A5) fi(z) and $3(z) are continuous; $g(z) is absolutely continuous and bounded,

piecewise continuous differentiable on (—o0,00).
Proof. Parellel to Theorem 3 part A of Collins and Wiens (1985). m]

Moreover since By is an open set, it can be represented by the union of
nonoverlapping open intervals, ie. Bx = Uﬂ;\) B, ;, then by (A2) and (A4), we

can write

o _ [ C(2) z € Bj
Yole) = {g*(x;z,-,,\) T € B:,.‘i

where £* satisfies J(£*)(z;2;,A) = —A on B, j for any fixed zj; the z; is used
for tracing the solution of £* on each Bj ;. Also we have

(1-¢)g*(v) z € Bj
fo(z)= { 1- e){supau [r‘f—(?‘xx] }k"(:c; zj,A) € By

where each k* satisfies {* = —-’f.—' and supp, . (i—‘-) (z) is attained at each nonzero

finite endpoint on By ;. With some modifications of Theorem 6, Collins and

Wiens (1985) we obtain the following theorem.
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Theorem 1.5. Suppose that for all A > 0, A, is of the form (c»,dx)U(—dn, —c)),
0 < ¢ < dy. Then there exists a unique pair (z,X) where z € [—o0,00] and
0 < X < inf{\| Ay = @} such that the pair (¢g, fg) defined below, satisfies the

conditions (Al)-(A5).
C‘(z) z € (Oa aX] U [bx, oo) U [—a:\" 0) U (—OO, "b'X]
(i) ¥o(z) =

where

E,(z’ z,:\-) T € [ax, bj\-] U [—bx, _aX]
J(E")(z) = =X
ax = sup{z < cxf (6* - ¢*)(z) = 0}

by = inf{z 2 dx| (§* - (*)(2) = 0}

(1-e)g*(zx) @ €(0,a5]U [b5,00) U[ax,0) U (~o0, ~bg]
(ii) £3(z) =

where

(1-e)sk*(z) € [ax, b5] U [—bx, —aj3]

. ktl
S

and

( )(a—) if by =0
s = sup (%;)(1‘)=< (i;)(bx) if ax=0
(

[a;,b;]
%)(a—x)=(%;)(bx) if0<a;\-<bx<oo

(iif) 1= fbf[sk‘(z) — g*(z)]dz < 1 with equality holding when X > 0.
A

We return to consider the situation in example 1.4. As in Collins and Wiens

(1985) example 3.2,
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oo\ 2z
C(m)_1+m2a

— 9g?
ICNe) =

(ex,dra)U(=dr,—cr) A<
Ay =
¢ A>

[XFS

(X118

where ¢ = 4—A—2A3[4j—3 , &= 4-,\12'\354-:33 .
In this case we can apply Theorem 1.5 and the optimal pair is given by

(1-&)sm z ¢ [ax, byl U [b5, —ag]

fo(z) = (1-¢)s cosh[ _ l{i(m —w)] otherwise

where § = SUP(a by (2—:)(2:) = (Z—:)(a-x) = (',Z—:)(bx)

_e 5
L / ok (@)~ (@) = ;
T-%’ z ¢ [ai'a bX] U [—bx, —af\']

Yo(z) = \/Tta.nh[ _ lé(a: - w)] otherwise

and the five constants A, w, s, ax, by are determined by the side conditions that
both %2, f& be continuous at ay and by and that [, fi(z)dz = 1.
Using the relationship f3(z) = 2¢*fo(e?), fo'(z) = 2¢2* fi(e*) + 2€* fo(e®)

and ¥g(z) = —%(3) = —e’-ﬁl(e’) = xo(e®), we have

(1 - &) reprrregT oD y ¢ [e°%, €] U [e7F, e7%%]
U[—e’x, —e®%]
foly) = U[~e~%%, —e %]

(1- c-:)ﬂ}l-ﬂscosh2 [— lé(log ly| = w)|, otherwise;



xo(y) = 9

( 210!!%'
1+log® |y|?

Vitash| - ¥ (og ] - u)|,

y & [e°7,e’7]
Ule?x, e7°7] U [—e®x, —e°7]
U[—e™7, -—e""T]

otherwise .



CHAPTER Il
MINIMAX ASYMPTOTIC VARIANCE M-ESTIMATORS
FOR SCALE OVER KOLMOGOROV NEIGHBOURHOOD
MODEL K. (G) SATISFYING So(F) =1

2.1 Introduction

Let G be a fixed but arbitrary symmetric distribution, £ > 0 being fixed (& <
25). Then the Kolmogorov neighbourhood model, K(G), may be defined as a
set of distribution functions containing all F satisfying sup_ g |F(z)—G(z)| < <.
That is

K.(G) = {F: sup |F(z)-G(z)| <€} (2.1.1)
relR

Again, let the functional S be an M-estimator for scale. The problem we are
interested in he;'e is to find the minimax asymptotic variance M -estimator for
scale over the Kolmogorov neighbourhood model K,(G) satisfying So(F)=1.

To solve this minimax problem, as described in Chapter 1, we just have
to find the least informative distribution which minimizes Fisher information for
scale over the class K(G). In the e-contamination neighbourhood model case
Ge(G), as we have seen, one can rely on the transformation Y = log|X|. It is
found to work in quite general situation as mentioned in Chapter 1.

In the Kolmogorov neighbourhood model case, although it is easily checked
that F € K.(G) if and only if F* € K3,(G*) where

F*(z) = F(e*) - F(=¢%),

K3.(G*) = {F" : sup |F*(z) - G"()| < 2¢},
zelR
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where G*(z) = G(e*) — G(—¢€®), there is no corresponding location theory to
solve the problem. This is because although the distribution function G is as-
sumed to be symmetric, the transformed distribution function G* may not be
and the existing location theory for the Kolmogorov case can only deal with a
symmetric “central” distribution function. This fact is quite different from the
e-contamination neighbourhood model case in which Huber (1981) example 5.2
gives the least informative distributions in ¢-contamination neighbourhood models
even in the asymmetric case.

In this chapter, a direct approach to the problem will be introduced without
using the usual log transformation technique. First of all, we obtain some prop-
erties which are necessary and sufficient conditions for a distribution function Fy

to minimize Fisher information for scale over K.(G).

2.2 Necessary and sufficient properties of Fy in K.(G)

Note that K.(G) is a convex class of distributions. K we define F;, = (1 -
t)Fo + tFy, t € (0,1), then Fy,Fy, € K.(G) implies F; € K.(G). As I(F}) is a
. convex function in ¢, we can conclude that Fy € K.(G) attains the minimum

Fisher information for scale if and only if
iI (Ft)|e=0 2 0
dt l) t=0 =

for all F; € K.(G) satisfying I(F}) < co. Now

1Ry = [ (-adb) - 10 (e)ie

¢
12

- / :(zzﬁ(z)+2zf{(w)+ft(3))dm



d o0 ] (4
SRl = [ RGN - e - (RPEA - e
+20(f] = fo)(@) + (i ~ fo)(&)}ds
= [ oteli@) + 10 - )0 W) - (A - fool

Put xo(z) = —z%(z) — 1 and suppose that xo is absolutely continuous and

bounded. Then

HEmo= [ 2ox(@)fi - fo)e)ee
- [T G e - s, (220)

Consider

/ : — 2axo(a)(f] - fi)(@)d
= ~2ex0(2) = )@ + | " 92(fy - fo)(@)(axh(2) + xo(2))dz

= [ 2exe) + 0@ - o)) (222

Here we use the facts that xo is bounded, zfi(z) — 0 as £ — Fo0 and zfo(z) — 0

as T — o0.
Combining (2.2.1) and (2.2.2), we can conclude that Fy € K.(G) attains the

minimum Fisher information for scale if and only if

o
o
W

HEleo = [ Txo))d(R - F)(@) 20 (2:
for all F} € K.(G) with I(F}) < oo where
xo(z) = —z%(z) -1

and

J(x)(z) = 2zx'(z) — x*(2)
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provided that xo is absolutely continuous and bounded. Extend J by left conti-

nuity where x' is discontinuous.

Assumptions on G:

(A1) G is symmetric and strictly increasing on (—o0,00) with G(oo) = 1.

(A2) G has an absolutely continuous density g which is strictly decreasing on
(0, 00).

(A3) &(z) = —z-"gl(:v)—l is absolutely continuous on (—o0,00), with an absolutely
continuous derivative £'(z); £(0) = —1 and lim;_o z€"(z) = 0.

(A4) 0< I(G) < o0

(A5) For arbitrary a € IR

inf [2€/(2) - €%(2)] < 0

Note that for most of the common cases , (Al) - (A5) are satisfied.

2.3 Motivation of getting the least informative distribution Fp

Partition the support B of f in (0,00) into three parts, say By, Br, By

Where B, = {z : max(0,G(z) —¢) < Fy(z) < min(1,G(z) +¢)}

Br = {z: Fy(z) =G(z) — ¢}
By = {z: Fy(z) =G(z)+¢€}
B=ByUBLUBy
Since By is an open set, it can be represented as a union of countably many
disjoint open intervals, that is By = Uie 1 Bi where the B; = (a;,b;) are disjoint
open intervals and I is at most countable. Recall that J(x)(z) = 2zx'(z)—x%(z).
If x' is absolutely continuous, then define J'(x)(z) = £ J(x)(z). It turns out

that F, satisfies
J(xo0)(z) = constant for each z € By. (2.3.1)
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Note that the constant may not be the same for each B;. In general, if xo(z) =

—m%(z) —1, then
..f’ miﬁldt
e ]
fo(z) = ——

T

where ¢ is a constant determined by

[ fatayia =1

To obtain all the possible forms of xo to the above equation (2.3.1), it is necessary

to split into two cases.

Case (i) Suppose that J(xo)(z) = A%, A >0, then
2axo(2) — x§(z) = X*
which implies
xo(x) = Atan (-g—log:z: +¢)

and the corresponding fy is of the form

cicos?(3logz + c)

fo(z) = .

T

for some constants ¢ and ¢;.

Case (ii) Suppose J(xo)(z) = —A%, A >0 then

M1+ c2a?)

Xxo(z) = A, —Aor ey

and the corresponding fo are of the forms
(1 - cez?)?

fo(.’t) = C3.’B—('\+l), 6432'\-1 or Cs-—xm——.

for some constants cz,c3,c4 and cs.



2.4 General result

Theorem 2.1. If F, possesses the following properties, then it is the unique

member of K.(G) minimizing I(F) over K.(G), where K.(G) = {F € K.(G) :

I(F) < o0}.

(S1) Fy € K.(G), Fy symmetric, Fy(o0) =1

(S2) Fy has an absolutely continuous density fo and xo(z) = —x%(a:) -1 s
absolutely continuous on (—o00,00)

(S3) There exists a sequence 0 < by < a2 < b < ... < @p—) < bp—y < @, and
constants Ay, Ag,...,An, such that

(i) Bu U By = {U; [bi, i)} U {UL] [~ i1, —bi, 1}

(/\1, 0S$<b1

i, a;<z<b i1=2,...,n-1
(ii) I(xo)(x) = {

An <0, ap <2

L J(€)(z), bi<z<aiyy i=1,...n~1

where

J(€)(z) = 22€'(z) - £*(2)

and

= 2L (s)-
(z) = —a7-() - 1

(iii) If a; € By, then J(xo)(ai) = Ai £ J(x0)(a])
If a; € By, then J(xo)(al) = Xi > J(x0)(a])
If b; € By, then J(xo)(b7) = A 2 J(x0)(57)
If b € By, then J(xo)(57) = i < J(xo)(57)



27

(iv) If (bi,ai41) is nonempty and contained in Bi[By], then J({)(z) is weakly

decreasing [increasing] there.

Proof. (The proof is a modification of Wiens (1986) Theorem 1). We first
show that if (S1) (S2), (S3) hold, then xo is a bounded function. We then
establish the inequality in (2.2.3) and show that 0 < I(Fp) < oco.

For J(xo)(z) = =A% (A > 0) on (a,00), the only form of xo is xo(z) = A, the
corresponding fo(z) = |2|'**fo(a). If we take xo(z) = —A, the corresponding

fo(z) = c4z*~! on (a,00). Integrating frem a to oo leads to a contradiction

M14e2z?)
1—ca2z

fo(z) = csg}céf;ﬁ. When A > 1, limz e fo(z) # 0 which leads to contradiction.

as fo should be a density. If we take xo(z) = , the corresponding
When 0 < ) < 1, integrating fo from a to oo gives a contradiction as fq should be
a density. Since xo is absolutely continuous on (—00,00) and equals a constant
on (a,00) U (—o0, —a) for some a, xo is bounded.

On the interval By U By, fo(z) = g(z) > 0. On the set By, fo > 0 since
no fo corresponding to a solution to J(xo)(z) = constant can be zero while xo
remains bounded. Thus fo > 0 on (—00,00), so that the support of the density
fo is convex.

If 0 < I(Fy) < oo and Fy € K.(G) minimizes I(F) in K,(G), then by (c)
of Theorem 1.1, Fy is the unique member of K.(G) minimizing I(F) in K.(G).
This is because the set where the density fo is strictly positive is convex. To
show Fy € K.(G) minimizes I(F) in K.(G), it suffices to verify
() [ J(xo)(z)d(Fi(z) — Fo(z)) 20 VFi € Ke(G), I(F1) <0
(ii) xo is absolutely continuous and bounded.

Recall that, as at (2.2.2), (ii) is necessary in order to justify the integration

by parts which leads to (i). To check (i), it is enough to check for symmetric
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Fy € K (G) with I(F}) < co. This is because, since I(F') is a convex functional
of F, we have

I(F) < I(F) for all F e K,(G).
Here, F is the symmetrization of F, that is F' = }(F + F) where F(z) = 1 —
F(—z). Thus F € K,(G) for G is symmetric.
Put H(z) = Fi(z) — Fo(z), then

/ : Toa)H(Fi(z) - Fe) =2 [ Ju)e)d(z).
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With integration by parts on those nondegenerate intervals in By U By, we have

oo b n-1 ai41
[ oo =x [Cam@+ Y [T e

=1

bi<aiyr
n-1 b; oo
PILY / dH(z) + An / dH(z)
i=2 ai Gn
n—1 n—-1
=Y MH®G) - ) A H(ain)
i=1 =1

n-—1 aip1
b X [ e + 2 ()

i=1

bi<aizr
n-1
= Z {AH (b)) = Aig1H(aigr)
b."<_—a.§+1
+ J(€)(ai+1)H(ait1) — J(E)(bi)H(bi)
- [ ey
+ ni: (Xi = Xig1)H(bi) + AnH (o)
bi;:;}-q-l
n—1
= Y A= TOCINEEG) + T (E)an)
b+i'2_.¢}i+1
~ Mipa]H(ai41) / " 7€) (2)dH ()
b
n—-1
Y {T(xo)(b7) = T(x0)(B )} H(bi) + AnH(0).
i=1
bi=aiq1

By (S1) and (S3), all the above terms are nonnegative. Obviously

I(FRy) = /oo x2(z)dFo(z) > 0.

—00
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Point (ii) follows from the assumption (S2) and the above proof. Also

&)= [ JGa)e)dFs(e)

< sup J(xo0)(2)
z€

< o0

Therefore 0 < I(Fp) < oo. 0

Theorem 2.2. If Fy is the unique member of K,(G) that minimizes I(F') over
K.(G), then it is necessary for Fy to possess the following properties.
(N1) xo(z) = —x%(z) — 1 is absolutely continuous and bounded on (—o0, ).

(N2) There exists a sequence {)\;}ier of constants such that

Ai on B;,iel
J(xo)(z) = {

J(€)(z)  on each non-degenerate interval in B\ By

(N3) 2o J(xo)(z)d(F(z) - Fo(z)) 2 0 for all F € K(G)

(N4) (i) If zo € BL U By, fo(zo) = 9(%0)
(ii) If zo € BL[Bu], xo(%o) < &(z0)[X0(20) 2 &(z0)]

(N5) Every “regular” point of By is a point of decrease of J(xo)(z), and every
such point of By is a point of increase of J(xo)(z).
More precisely put B; = (a;,b;), : € I.
(i) If a; is not an accumulation point of {a; : a; < a;}, and if a; € By, then
J(xo0)(a7) = J(xo)(aT). The inequality is reversed if a; € By
(ii) If b; is not an accumulation point of {b; : b; > b;}, and if b; € By, then
J(x0)(b7) = J(x0)(dF). The inequality is reversed if b; € By.
(iii) If zo is an interior point of Br[By], then J(xo)(z) = J({)(z) is decreas-

ing [increasing] in a neighbourhood of x,.
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(N6) There exists ¢ >0 such that
xo(z) = AT >0 for |z] 2 ¢

(N7) Fo(oo) = 1
(N8) By U By # 0, hence by symmetry of Fy,

Br #0, By #0.

Proof. (The proof is a modification of an unpublished manuscript of Wiens
in the location case).
(i) The first step of the proof is to show that xo is absolutely continuous on
each open interval B; = (a;,b;), 1 € I, and satisfies J(xo)(z) = Ai there. For

his, let [a,b] C (ai,b;) be arbitrary, and set

6(6) = 2txa(6) = [ xofa) + X t € o8]

It suffices to show that ¢ is linear, since then it is absolutely continuous
with ¢'(t) = J(xo)(t) = const.

Let K{4,4 be the set of distributions F € K!(G) which agree with Fp off of
(a,b). Note that then f agrees with fo off of (a,b). An integration by part
then gives

b b
/ o(t)(fo — fY (B)dt = - / (o = FOREGE) - xE(B)]dt
a a (2.4.1)

b
- / J(xo)(t)d(F — Fo)(t) 2 0

for any F € Kja )

Suppose that for some Fy € Koy, the above inequality is strict. Since
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[a,b] C By, we can find a > 0 such that Fo = (14 a)Fp —aFy € Kjp ), fo =

(1 4 a)fo — afl' Then
b
/ S(t)(fo — fa)'(t)dt
b
- —a / 3()(fo — f1)'(t)dt

<0
a contradiction to (2.4.1). Thus equality holds in (2.4.1).
Now define ¢;(t) to be a linear function joining (a, #(a)) to (b, (b)) and set
¢2 = ¢ — ¢1. The linearity of ¢; ensures that fab 61(t)(fo — f)'(t)dt = 0 for
F € Kjay), so that equality in (2.4.1) implies [’ ¢5(t)(fo — f)'(t)dt = 0 for
all F € K(q). This together with ¢2(a) = ¢2(b) = 0 implies ¢, =0 on [a, )]
and so ¢ = ¢, on [a,b]. Hence ¢ is linear.

By definition, on B\ By we have fy > 0 and |Fy — G| = ¢, so that
fo=g, xo =¢ and J(xo)(z) = J(£)(z)

on each non-degenerate interval in B\ By. Thus xo is piecewise absolutely
continuous on B and hence on all of the whole real line. If xo is discontin-
uous at some point, (2.4.1) could be violated by choosing [a,b] to contain a
discontinuity. If xo is unbounded, & I{(F:)]jt=0 > 0 could be violated. Thus
Xo is continuous and bounded on the whole real line, hence everywhere ab-
solutely continuous and bounded. As in Theorem 2.1, (N3) is easily seen.

To establish (N4). For (N4) (i) suppose zo € Br but that fo(z¢) > g(zo).
Then there exists 6 > 0 such that fo(z) > g(z) on [z¢ — §,z¢]. Integrating
this relationship and using the fact that Fo(ze) = G(z¢)—~¢ gives Fo(zo—96) <
G(zo — 6) — ¢, which implies Fy ¢ K.(G), a contradiction. The same kind of

contradiction would occur if we assume fo(ro) < g(zo). The proof for By
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is identical.
For (N4)(ii), suppose that zo € BL but that xo(z¢) > &(x¢), then there

exists 6§ > 0 such that xo(z) > §(z) on [z¢, o + 6] which implies

i@ . _d@
folx) ~ @)

on [zg,zo + &]. Integrating this relationship over [z¢,z], z < 7o + ¢ yields

fo(za) _,  g(z0)
log @) > log @)’

so that g(z) > fo(z) on (zo,zo + 6). Integrating this last relationship and
using Fy(zo) = G(z9) — € gives G(zo + 6) — € > Fo(zo + 6), a contradiction.
The proof for By is identical.

We prove (N5)(i) and (iii), the proof of (N5)(ii) being essentially identical to
that for (N5)(i). The assumptions of (N5)(i) imply that for some § € (0,b; -
a;), J(xo0)(z) is absolutely continuous on (a; —§,a;), and that J(xo)(z) = A
on (a;,a; +8). Let F' € K{g;—5q,+45 have

sup |F - Fy|(z) = |F - Fol(ai) > 0.
[ai—8,ai+6)

Then (N3) becomes

a;+6

05 [ Jxe)@iF(e) - Fell + [ st - R

@i

= )a7) = M(F = Fo)ai) ~ [ (F = F)a) (xa)(e)de

using an integration by parts. If a; € By,

- Jui—s(F — Fo)(@)'(x0)(z)dz
Too)er) =X 2 == p
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for any such F. The inequality is reversed if a; € By. In absolute value,
the right hand term above cannot exceed

65up[a.~-—6,a.~] IF - FOI(‘T) sup[a.'—ﬁ,a.'] IJ'(XO)(:E)I
(F — Fo)(a:)

=6 sup [J'(xo0)(z)|

a;—b,a;

which may be made arbitrarily small. This proves (N5)(i). For (N&)(iii), we
give the proof for Br. Let 6§ > 0 be small enough that (2o —6,z0+6) C By.
Let F € K([zy-6,z0+8 and choose ¢ € (zo — 6,79 + 6). Let F. € K, (G) agrees
with Fy off of [c, zo+6) and have point mass of Fo([c,z0+6)) at c¢. Although
Fy € K{zo—6,z0+6) since I(F.) = oo, it is the pointwise limit of a sequence
Fy € Kizo—5,z0+6)- For these, (N3) gives

zo+6

zo+46
0< / JE)(@)d(Fa = Fa)2) =% [ J(E)2)d(F. - Fo)(x)

0—6 zo—6

zo+6
= J(E)(©)Fo(lc 7o +8]) — / J(€)(z)dFo(x)

Thus
JZ* J(€)(=)dFo(2)
J(E)e) 2 g o

> min J(E)@)

as Fy([c,zo + 8]) = 1, and this last inequality is strict unless J(£)(z) is
constant on [¢,zg + 6). But this can only be the case for all ¢ if J(£)(z) is
decreasing on (z¢ — 6,9 + 6).

(v) To get (N6), we first note that By cannot contain a half-infinite interval
[b,00). Suppose for contradiction that it did. Let F' be a symmetric distri-

bution and equal to Fy on [—b,b] so that by (N3),

0< /boo J(&)(z)d(F — Fy).
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By assumption (A5), J(§)(z) must assume negative values of (b,00). Take
an interval (zq, ;) C (b1,00) on which J(£)(z) < 0, and impose the following
further conditions on F

(a) Fo(z) = F(z), |2| < o,

(b) f(z) > fo(2), = € (20, 71),

(c) f(z) = fo(z), = € (z1,00).

These imply Fj is substochastic and this may be possible. But then

/O " JE)@)d(F - Fo)(z) = / " 1e)(@)(f(z) - fola))dz <0

which leads to contradiction.

Now consider the behaviour of Fy on [G~1(1 — €),00), on which interval
the upper boundary of the Kolmogorov strip is unity. If Fy attains this
upper boundary at a finite point z¢, then fo has finite support and is then
discontinuous. This follows upon noting that g(z) > 0 for all z, and that no
fo corresponding to a solution to J(xo)(z) = constant can descend to zero
while xo remains bounded. This argument also shows that fy is everywhere
positive, so that Fp is unique.

Thus F, cannot attain the upper boundary on [G~!(1 — ¢),00), and cannot
remain on the lower boundary on this interval. There then either exists a

point ¢ such that
G(z)—e< Fy(z)<1Vz >¢,

or Fy returns infinitely often to the lower boundary. In the first case,
J(x0)(z) = X for = > ¢, so that either A < 0 or xo = 0 on [c,00) by

assumption (A5). If A < 0, then xo = (=A)* > 0 on [c,00) which is the
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desired conclusion. If xo =0, then —%é(a:) = L which implies fo(z) = é for

some constant k. Integrating fo from c¢ to oo gives the contradiction as

/coofo(a:)dm=/;°°§dz=oo-k

which is impossible.

We then need only rule out the possibility of infinitely many returns to the
lower boundary. Suppose this is the case on (¢,00) for some c¢. At each
point in (c,00), either J(xo)(z) = A; for some A; or J(xo)(z) = J(€)(z)
and J'(€)(z) < 0 as at (N5). Any interval on which J(xo)(z) = J(§)(z)
is bordered by points at which J(xo)(z) = Ai, and the values of J(¢)(z)
lies between these A;’s. We claim that each A; is nonnegative. This implies
J(xo0)(z) 2 0 on (c¢,00), contradicting (AS5).

To establish the claim, let (a,b) be one of the intervals with

(i) Fo(a) = G(a) - ¢,

(ii) Fo(b) = G(b) — e,

(iii) Fo(z) > G(z) on (a,b). Let F € K(G) be symmetric, agrees with Fj
on [—a,a] and with G on [b,00). Then by (N3),

os [ " Jxo)(@)d(F - Fo)(z)
b o0
= [ 100)@dF - F)e) + [ TG - o)

The integral over [a,d] is €); for some A;, and the second term is zero by
(N4)(i) and the assumption that Fy returns infinitely often to the lower
boundary. Thus X; 2 0 and (N6) is proved.

(iv) (NT7) follows easily as if Fy is substochastic, (N3) would be violated by any

fully stochastic F' agreeing with Fy on [—¢,c].
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For (N8), if BL U By = @, Fy would remain strictly between the Kolo-
mogorov strips on (—00,00). Hence by (N2) and (A5), J(xo)(z) =A <0 on

(—o0,00). But then
1E) = [ " J(xo)(@)dFo() < 0

which is a contradiction. O

2.5. Some graphs of J(§)(z)

In section 2.6, we shall try to characterize the pair (xo, Fo) completely when
J(£)(z) is of a certain shape. At present, we look at the graphs of J({)(z) for
some given underlying distributions G.

Recall that J(€)(z) = 22€'(c)—€%(z), £(z) = —zL(z)—1 and g is the density
of G.

Example 2.1

Consider the distribution G(z) with density of the form

where A is a normalizing constant. For z > 0,
§(z)=2%-1
£'(z) = az*”!
J(£)(z) = 22€'(z) - (=)
= -z +2(1+a)z® -1
J(€)(0) = -1,
J(€)(00) = —oo-and

J(€)(z) = J(§)(~2).
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Figure 1 shows the graph of J(§)(z) vs. z for normal case (ie. a=2).

Example 2.2

Consider the Student’s t distribution with k degree of freedom where the

p-df. is given by

9(z) = ——\/Hr (%)

2
1+ %)“(k‘#), ~00 < <00

then Ka? 1)
(z) = o
) = (b + Dy
H(€)(z) = = e i*,;;k)xz s
JO)©) = -1,

J(€)(£o0) = —k? and

J()(z) = J(§)(~=).
Figure 2 shows the graph of J(£)(z) vs. z for Cauchy case (ie. k=1).

Example 2.3.

Consider the logistic distribution where the p.d.f. is given by

=7
g(z):m, —0<zT< 0

(o) =2(557) -1

€)= (ef T;)t* + : :
HEe) = roglee” - (e -1+ a2 ( 557 -1
JOO =1,
J()(eko0) = o0 and

J(€)(z) = J(E)(—=)-

Then
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Fig. 1. Graph of J(€)(x) vs. x for normal case

10

9

J(&)(x)




J(E)(x)
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Fig. 2. Graph of J(¢)(x) vs. x for Cauchy case

/ A‘\ / \
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Fig. 3. Graph of J(¢)(x) vs. x for logistic case

J(&)(x)




Figure 3 shows the graph of J(£)(z) vs. z for logistic case.

2.6 Determination of (xo,Fo) for a type of J(¢)(z)

Theorem 2.3 (Small ¢ case). Suppose G is a distribution satisfying (A1) -

(A5) with J(£)(z) = 2z€'(z) — £*(z) satisfying the following:

(J1) J(€)(=) = J(§)(-=)

(92) J(E)(0) = =1, = J(E)(@)lem0 > 0
(J3) J(€)(z) — —k as z — *oo where k may take any value in the interval 1, 00].

(J4) There exists exactly one local maximum point, say (m, J(£)(m)), m € (0, o),

with J(€)(m) > 0.

(J5) J(§)(z) is strictly increasing on (0,m) and strictly decreasing on (m, ).

Then for sufficiently small ¢ and subject to inequalities (ii), (iii), on p. 52,

the Fisher information for scale I(F') is minimized over K.(G) by F, with

Xo(z) =

fo(z) = ¢

(,\

¢(z)

£(z)
~\;

\ Xo(—m)
( klz_(l'*"x)

g9(z)

Artan(3t log z +w)

coa’('\ log z+4w)
ks -}x g

g9(z)

k3$'\’_1

\ fO(—z)

z € [d, 00)

z € [, d)
T € [bc)
z € [a,b)
z € [0,a)
<0

z € [d,0)

T € [c,d)

z €[bc)

z € [a, b)

z € [0,a)

z<0
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where A, A1, A2, k1, ka2, k3,w,a,b,c,d are constants determined by the continu-
ity of xo (Bl - B4 below), the continuity of fo (C1 - C3 below) and by
(D1)-(D3) bclow.

Moreover

I(Fy) = 2-2(G(a) - 5 +e)
+ 23(G(0) = G(b) — 2e) — A}(1 - G(d) +¢)

b d
+ / J(€)(2)dG(z) + / J(€)(2)dG(z). (2.6.3)

Note that the density of the form g(z) = Ael#l®/a o ¢ [1,2], the Student’s
t, and the logistic distribution all have J(€)(z) satisfying (Al) - (A5) and
(J1) - (J5).

To ensure the continuity of xo, we require

(B1) A =¢(d)
(B2) Aitan(3tlogc+w) = €(c)
(B3) Artan(3tlogb+w) = £(b)
(B4) £(a) = =Xz
To ensure the continuity of fo on (0,00), we require
(C1) ky = d**g(d)
(C2) ky = cg(c) — bg(b)

cos?( %L log c+w) T cos?( %‘L log b+w)

(C3) k3 = a'~*2g(a)

Also we require
(D1) fy fo=G(a)—3 +¢
(D2) fbc fo =G(c)— G(b) — 2¢
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(D3) [°fo=1-G(d)+e¢
Using (B1)-(B4), (C1)-(C4), (D1)-(D3), the constants A, Ay, Az, k1, ks, k3,a,b,¢,d,w

can be determined.

Proof of Theorem 2.3. (The proof of this theorem is lengthy and rather
technical.) To prove the above theorem we employ the following prucedures.
First assume that those eleven constants exist, then show that (recall Theorem
2.1)

(i) Fo € K.(G)
(i1) xo is absolutely continuous and bounded
(i) [2° J(xo)(z)d(Fi — Fy) >0, Y Fi € K.(G) with I(F}) < oo where

(]

xo(z) = —z%(m) -1 and
J(xo)(z) = 22xp(2) — x3(2)-
After showing these, we verify that those eleven constants really exist for suffi-
cently small e.
Before the proof, we first prove two useful lemmas.
Lemma 2.4. Suppose G satisfies (A1)-(A5) and J(€)(z) = 2z€'(z) — £%(z) satis-
fies (J1)-(J5) where &(z) = ~z<(z) = 1. Then £(x) is increasing on (0, o).
Proof. Let t; < t; be the two positive roots of J(£)(z) =0. First we claim
that there exists a root k to the equation £(z) = 0 where k¥ € (0,00). Let
T =sup{z >0: £(z) <0}. fT < oo, we have {(T') = 0 and we are through.

Now assume 0 <t < s < T, then

€(z) = —:rg;'(x) —-1<0 on (t,s)



which implies

g 1

EA —-= t.s).
L(s) >~ on (49)
Integrating both side from ¢ to s gives

g(s)

t
log == > log |-
3o gISI

This in turn implies sg(s) > tg(t). If T = oo, we let s — T. Then 0 > tg(t)
which is a contradiction. Therefore there exists a k € (0,00) such that (k) = 0.

Let a > 0 be the smallest number such that {(a) =0. Then
£'(a) >0, J(€)a)=12a(a)20

Thus a € [t1,t2]. Suppose Zo > 0 is the smallest number such that £'(z) = 0.

Then

J(€)(zo) = —€*(z0) £ 0,
and

J'(€)(z0) = 2z0€" (o) + 2€'(20) — 2(20)€'(20) = 200" (20) < 0

since o must be a local maximum.

With J(£)(zo) £ 0 and J'(§)(z0) < 0, we can conclude that
£(z0) 20, E&(z0)=0, £"(z0)<0
and £ is increasing on (0, z0]. By assumption, ¢'(z) < 0 on (0,00), then

&(z) = —z‘%’(z) —1> -1 for all z € (0, 0).
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Since ¢ has a lower bound —1 and ¢ has a local maximum zo, there must exist
at least one local minimum, say, z; > z¢ or if not there must exist a point say

zo > x¢ such that
§(z2) < &(z0), €'(z2) <0, §"(z2)=0.
If such z; exists, then £'(z1) =0, £"(z;) > 0 which implies
J'(€)(z1) = 22.1€" (z1) + 2 (31)[1 = €(21)] = 222" (1) 2 0.

This is a contradiction as J'(§)(z) < 0 for all z > zo.
If such z, exists, then there must exist another point z3 > z, such that
£'(z3) =0, £"(z3) > 0. If no such z3 exists, then lim;— &(z) = ¢ where c is

a finite constant greater than —1. If ¢ = -1, then lim; . §(z) = —1 which is

equivalent to lim; .o z-"g—l(z) = (0. Then

Ve >0, AN > 0 s.t.

!
T
whenever z > N, Izg—(——)-l <€

9(z)

so —eg(z) < zg'(z) whenever z > N

(1- 6)/ g(z)dz < ~Ng(N) whenever z > N
N

which is impossible.

Now since

lim {(z)=c> -1

T—+0

we have

lim z€'(z) = 0.

=00
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I not, put lim;—.co z€'(z) = s # 0. Then
Ve >0, 3N > 0 s.t.
whenever z > N,
|z¢'(z) —s| <€

E+s ' E+s
- <€(z)< -

(—6+3)[vwi::-<[vm£'(z)dx<(€+s)ﬁlw%{

(=€ + s)[logoo ~ log N] < ¢ —log N < (¢ + s)(log oo — log V)

which is impossible for a suitably chosen e. But then
Jim J(O)@) = Jim (20€() ~ (@) - ¢* > -1
which is again impossible. However if such z3 exists, we have
J(€)(z3) = 223€" (z3) + 26'(23)[1 — §(3)] = 223" (z3) > 0

which is a contradiction as J(£)(z) < 0 for all £ > zo. Thus we conclude that

no such zg exists. Hence £ is increasing on (0,00). O

Lemm 2.5. Put £(z) = ~z&(z) - 1 and xo(z) = —z8(z) — 1. Suppose on an
interval (a,b), 0 < a < b, we have xo(z) < £(z). Then £ is non-increasing on
(a,b). In particular

If g(a) = fo(a), then g(z) < fo(z) on (a,b).

If g(b) = fo(b), then g(z) > fo(z) on (a,bd).

Proof. X xo(z) < €(z) on (a,b), 0 < a < b, then

0 < &(z) = xo(z)
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0> [—‘ﬁ(z) - &

g(w)
7 8,

therefore log[Z}] is non-increasing on (a,b). Thus 425 is non-increasing on
(a,b). a
Now returning to the proof of (i) Fy € K.(G) in Theorem 2.3. In order to
prove Fy € K.(G), we separate (0,00) into five regions (0, a, (0, b], (b, ¢], (¢, d], (d, 00).
In each region, it suffices to show that |Fy(z) — G(z)| < e. Note that in the re-
gions (a,b] and (c,d], we have Fy(z) = G(z)+¢ and Fy(z) = G(z)—¢ respectively.
So it is enough to prove that
I° foa)29() <€,
2° folz) 29(z) z€(d,od]
3 fo(z)<g(z) zE(be)
1° On (0,q):
Put n(z) = £(z) — xo(z). First we show that n(0%) < 0 which is equivalent
to showing —A2 > —1. This is because
-\ > -1
& J(xo)(0F) > J(£)(0%)
& —x5(07) > ~€%(0%)
& [6(07) + xo(0F)][E(0%) ~ xo(07)] > 0
& £(0F) - xo(0F) <0
as £(0%) + xo(0*) = —1 — A\; < 0 which is then equivalent to n(0%) < 0. Note
that —A3 > —1 is equivalent to J(xo)(0) > J(£)(0). Since J(xo)(z) = =)} is in

a neighbourhood of 0 and J(£)(z) is a continuous function in z, —A2 > -1 is
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further equivalent to J(xo)(z) > J(€)(z) on (—a,a) for some a > 0. Now suppose
by contradiction —A2 < —1, then J(xo)(z) < J(§)(z) on (—a,a).

For 0 <6 < a,
)
0< / U(E)() - T(xo) (@ fol@)de
-5
6 5
- /_ 24[¢(2) - Xo(@fofe)de - / (€0 - (@)
)
= 22 fo(2)[E(z) — xo(2)]I%5 — /_ 2e(e) - xo(@NeFile) + ol
[}
- / (€)Xl
[}
= 22 fo(@)[E(2) — x0(2)]Is + / 26(o) - Xo(@ (= xol@)ds
]
- / [€() - (@ folz)de
s
= 22 fo(2)[E(z) = xo(@)]I%s — / (606 = (@ fo(=)d
Therefore
)
j;[é(m) — (@) folz)dz < 22 fol@)E() = Xo(@)]se

When 6§ — a, RHS =0 as £(a) = xo(a). It follows that {(z) = xo(z) on (—a,a)
which leads to a contradiction since o is constant on (—a,a). Hence -A2> -1
which is equivalent to n(0%) < 0.

Note that we also have n(a) =0 and J(xo)(z) = ~)2 on (0,a).

Next we prove that n(z) < 0 on the whole region (0,a), since then we can

apply Lemma 2.5 to conclude g(z) < fo(z) on (0,a). Note that

221 (z) = [(J(€)(2) + €(2)) = (xB((2) + 22)]



Differentiating with respect to z, we have

2[zn"(z) + n'()] = J'(€)(=) + 2€'(2)&(<) — 2x0(z)X0(2)
= J'(6)(x) + 2£(2)[¢'(z) — xo(2)] + 2x0(=)[(=) ~ x0(2)]

= J'(€)(z) + 2£(z)n'(z) + 2xp (z)n(z) (2.6.4)
If there exists zo € (0,a) such that
n(ze) >0, 7'(z0) =0, 75"(z0) 0,

then (2.6.4) implies
220" (z0) = J'(£)(<0) + 2x0(<o)n(z0).

As
Xo(z0) =0, J'(€)(z0) = 2z0n"(z0) <0

which is a contradiction. Thus n(z) < 0 on (0, a).

Remark: In the above proof, it also follows that
7'(a+) >0
which is equivalent to
Xo(a+) < £'(a).

2° On (d,00):
Note that
xo(d) = §(d), xo(z)=A on (d,o0)

and by Lemma 2.4, £ is increasing on (0,00). Hence we have

xo(z) € €(z) on (d,00).



Together with the property g(d) = fo(d), we conclude
g(z) < fo(z) on (d, o)

by Lemma 2.5.
3° On (b,¢c):

It suffices to prove that there exists a unique g € (b,¢) such that
Xo(2) 2 &(z) on (b, bo);
xo(z) € &(z) on (bo,c).

If this is true, then with the fact that
fo(b) = g(b), fo(c) = 9(c)
and the result of Lemma 2.5 we can conclude that
g(z) 2 fo(z) on (b, bo)

and g(z) 2 fo(x) on (bo,c).
This implies

g(z) > fo(z) on (b,¢)

as by is a continuity point of both ¢ and fo. Since
X3(b) = €%(b) and xj(c) = £*(c),

we have

(xo — £)'(b+) > 0 provided that J(xo)(b+) > J(€)(b)

(xo — £)'(c=) > 0 provided that J(xo)(c—) > J(£)(c)
Hence if

J(xo)(c=) > J(E)(z) (ieA] > J(§)(e)
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and
J(xo)(b+) > J(E)(B) (i-e.A > J(£)(b)),

then there exists by € (b,c) such that (xo —&)(bo) = 0.
To prove by is unique, it is enough to prove that if there exists x € (b,c)

such that (xo — €)(z) =0 then (xo — §)'(z) < 0. Now if (xo —£)(2) =0, then

(10 - 1) = 2O

Again suppose A2 > J(£)(b) and A} > J(£)(c). Let 0 <p < g be such that

J(€)p) = J(€)(g) = AL.

If z € (p,q), then J(xo)(z) < J(£)(z) which implies (xo — £)'(z) < 0. We now
claim that there is no root on (b,p] or [g,c) of the equation (xo — &)(2) = 0.
On (b,p], suppose there exists at least one solution of the equation (xo —

£€)(z) =0. Let z; € (b,p] be the smallest root then
(xo — €)(21) =0 and (xo0 —£)'(z1) <0

which implies

0> (xo—£)(21) = J(XO)(ZI;; J()(z1) >0

which is also a contradiction. Hence there is no solution in [b,p) to the equation
(xo —€)(2) =0.
Similarly on [g,c), suppose z2 is the greatest number in [g,c) such that

(xo — €)(22) = 0. Then

J(x0)(22) = J(£)(22) >0
229 -

0> (x0—¢) ()=
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which is also a contradiction. Hence there is no solution in [g,c) to the equation

(x0 = &)(2) =0.

(ii) of Theorem 2.3 follows immediately once fp is determined.

To prove (iii) of Theorem 2.3, put H = F} — Fo, then H(0) =0 and H(o0) <

%) a b c
| / I(xo)(z)dH(z) = / (~A3)dH(z) + / J(€)(2)dH (z) + ﬁ \2dH (z)
d oo
+/; J(f)(:c)dH(z)+/d (—/\2)dH(:r)
— _\2H(a) + N[H(c) ~ H(d)] - N[H(c0) ~ H(d)]
b d
+ / J(€)(z)dH (z) + / J(€)(z)dH (z)
— _ZH(a) + N[H(c) - H(b)] — X2[H(c0) — H(d)]

b
1 J(E)@)H(E) - / H(z)dJ(€)(2)

d
+IO@HEL - [ H@IEE
= [-X2 - J(€)(@)| H(a) + [ (E)() — NIH(b)
+ 12 = JEH(Q) + P2 + JEDIH(E)

b d
- / H(z)dJ(€)() - / H(z)dJ(£)(z)

On (a,b).
J'(€)(z) >0, H(z) <0
therefore [; H(z)dJ(€)(z) < 0.
On (c,d),
J'(€)(z) <0, H(z) >0
therefore [ H(z)dJ(£)(z) <0
Hence if
(i) =2 < J(E)(a)
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(i) M > J(E)(b)
(i) A2 > J(E)(©)
(iv) 2 > J(E)(d)
then
| It 2 0

H(a)<0, H(b)<0, H(c)>0, H(d)>0.

To prove (i), note from the remark on p. 50 that
xo(at) > €'(a).

As £(a) = xo(a), we have
J(€)(a) = 2a¢'(a) - €*(a)
> 2axp(a—) - x3(a)
= J(xo)(a—)
= -2
which is (i).
Since ¢ is increasing on (0,00), in particular on (d, o),
J(€)(d) = 2d¢'(d) - €*(d)
> —¢£%(d)
= —x3(d) ~ J(xo)(d+)
= -,
Now (iv) follows. This leaves (ii) and (iii), which we check numerically in each

individual case.
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To prove the existence of the eleven constants, as k1,ko, ks are explicitly
determined by (C1)-(C3) and A,A;,Az,w can be determined once a, b,c,d are
known, it is enough to show the existence of a,b,c,d with 0 <a<b<c<d< o

for sufficiently small . Rewrite xo(z), fo(z) as

( £(d) z € [d, )
€(z) T € [c,d)
)\ltan(%l- logz+w) ze€lbc)
Xo(%) = § (2.6.5)
£(z) z € [a,b)
é(a) z € [0, a)
\ Xo(—z) z<0
((g(d)(£) z € [d,0)
g9(z) z € [c,d)
coaz(g(lz)g c+w) °°"2(35"::os zte) TE€ [ba C)
bg(b) coa’(iaL log z+w)
fey= | T ) (2.6.6)
g9(z) z € [a,b)
gla)( &)= z €[0,a)
00 z=0
 fo(—7) z <0
From (D3) -
/d fo=1+¢-G(d)
& dg(d) = {(d)(1 + ¢ — G(d)).
Put

o(d) = dg(d) - §(d)[1 +¢ — G(d)]
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Then
o (d) = [dg'(d) + g(d)] = £'(d)[1 + & — G(d)] +&(d)g(d)

=—¢'(d)[1+e-G(d)] <0as £(d)>0
Let zo be the number such that £(zo) =0, then

a(zo) — z0g(z0) > 0,

&(00) = = lim €'(d)1 +¢ - G(d)] < 0.

Hence there exists dy € (zg,00) such that a(dg) = 0. As a'(d) <0, dp is unique.

Thus for each € > 0 (0 < € < 0.25), there exists a unique dy € (20,00) such that

a(dy) = 0.
From (D1)
/oafo=G(a)—%+e
& ag(a) = ~E(a)[G(e) - 5 + el
Put
B(a) = ag(a) + E(@)[G(a) - 5 +¢]
Then

B(0) = - <0,

B(zo) = zog(zo) > 0.

Hence there exists ag € (0,zq) such that B(ag) =0. Also

B(a) = ag'(a) + o(a) +€'(a)[G(a) = 5 +¢] + E(a)o(e)
= ~[t(a) + 11g(a) + 9(a) + €(@)G(a) ~ 5 +€] + E(a)g(a)

= ¢'(a)[G(a) - -;- +¢] > 0.
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Therefore ag is unique. Thus for each € > 0 (0 < € < .25), there exists a unique
ap € (0,z0) such that B(ag) = 0.

From (C2) and (C3)

cgle)y _ _ bg(b)
cosz(%kc +w) cosz(%b +w)
From (B2)
secz(%logc +w)= (%?—)2 +1
From (B3)
sec (/\21 logh+w) = (6( ))2
therefore
_ bg(b)€*(b) — cg(c)€’(c) 5 a
A2 = o) —haD) (2.6.7)
From (D2)
/b fo = G(c) - G(b) — 2.
Also

A
,/cfo = ke /° cos (3 log +w)dz
b )

z

1 c 1 . .2 c
= kol log(p) + gy sin2(y logz + )]

bg(b
= Lioge— ) L ogs—2ol®)
2 cos?(logc+w) 2 cos?( - log b +w)
+ —l—cg(c)tan(i\-l- loge +w) — —l-bg(b)tan(:\—l- logb+w)
A 2 A1 2

therefore

G(c) - G(b)—2e = -cg(c)[l + (E( )> Jloge ~ —bg(b)[l + (E—i-z) ]log b

+ :\?cg(c)ﬁ(c) — bg(b)E(b)] (2.6.8)
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Eliminating w from (B2) and (B3), we have

" _I<£(T)) ta —1(6(?))=1\§-log

Before showing that for sufficiently small ¢ > 0, there exists a unique pair (b,c¢)

(2.6.9)

=21 I+

with 0 < b < ¢ < oo which satisfies (2.6.7), (2.6.8) and (2.6.9), we state a useful

lemma.

Lemma 2.6 (Implicit Function Theorem) [ see e.g. O’Neil (1975)]. Suppose

that F, g:: , g:; . -%L; are continuous in some é neighbourhood of (a,,....a,).

Suppose also that F(a;,...,a,) =0, but ﬂ'é‘-;;—gl)- # 0. Then there exists a

positive number n and a function g denned for .| -a1| < n,...,|zn —an| <7
such that a, = g(a;,...,an—1) and

(i) F{ry,. . Zp=1,9{Z1y...,Tn-1)) =0 for |z; —a1l < 5,...,|zn —an-1| <7
(ii) g is continuous on |z —a1| < 7,...,|Ta — @n-1| < 7
(iii) For |z; —a;| <7m,...,|Tn — Gyl <nand 1<j<n-1

6F(zl ..... In_x.g(xl ..... Tp—1))

ag(a:l,...:c,,_l) — oz;
al'j - aF(:l 1111 1n—l-g(31v--ln-\))
oz,

Returning to the proof of the existence and uniqueness of such a pair (b.c)

for sufficiently small € > 0. Put

P(b,c,c) = G(c) - G(b) — 2¢ — -cg(c)[l + (6( )) Jlogec

+ La(b)1 + (éﬁ?) Jlog— zlea(c(e) — ba(BE(B] (2610

Q(b,c,€) = tan™? (%‘:—)) —tan™! (%—2) - ﬁ1 g(= ) (2.6.11)

where A; > 0 and A? satisfies (2.6.7).



Suppose m > 0 is the maximum point of J(£)(z), > 0. Put

h(z) = k(z)E¥(z)

where

k(z) = zg(z), €(z) = —2 () = 1,
then

R'(z) = 2k(z)é(z)E'(x) + £2(z)k(z)

K'(z) = zg'(z) + 9(z) = —g(z)é(z)
therefore

) 2
h'(.‘L‘) = 2$g($)€($)‘](£)( é:e (2) + 62(:!:)[-9(:1:)6(1:)]

= J(§)(z)g(z)¢(2)

From (2.6.7), —h(b)~h(c)
32— h(d) = h(c) —3=

= k) —R(b) HEZED)

When ¢,b — m,

A2 _R(m) _ _[K(m)E¥(m) + 2k(m)é(m)E'(m)

k'(m) k'(m)

_ 2(m)¢'(m)
= ~€(m™) = Jogk(m)y

[log k(z))' = [log z + log g(z)]’

_1.d
=2+
__%=)
, Tz
therefore
[log k(m)]' = -—(7?
so
b,c—m 2m€(m)fl(m)
A3(b,c) — —fz(m)-——_—g(';g—‘

= J(E)(m) (> 0). (2.5.12
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Obviously
P(m,m,0)=0, Q(m,m,0)=0

and P, -%—f, %%, %g are continuous in some neighbourhood about (m,m,0). Also

8P(m,m,0)
—_—a =-2#0.
O #0
Applying Lemma 2.6, the Implicit Function Theorem, we can then solve P(b,c,c) =
0 for € = f(b,c) in some region |b —m| < é, |c — m| < é for some 6. Substitute

this into @ to obtain

Q(b,c,€) = Q(b,c, f(b,c)) = H(b,c)

says. Note that f(m,m) =0, so H(m,m) = 0. Again observe that H, aH‘ ‘?,il

are continuous about (m,m). Now we try to verify that -"’—}ﬂgz—'—"ﬁ # 0 so that
we can then solve ¢ = g(b) such that Q(b,g(b), f(b,g(b)) = 0 in some interval

b —m| < 61, for some 6y, € = f(b,g(b)), ¢ = g(b).

To verify ——5—— aH(m m) 4,
OH(b,c) _ -1 (g(b)) A logh (a,\1 )
dc [1 . (%@)2] At ) dc 2 \ Oc
1 ME(c)—EFE A | loged)
—_ ; + — 4 —
[ )’ A2 2 2 0c
(%) ]
A, | LEI+E% ()
_ c’?Al _ f(b) + f(c) +110 S] ~ 1 2¢
T8 | T Nt T Mo % N E(c)

When b,¢ = m,
oHe) , _ [TEm)
dc

From the above, we have shown that for sufficiently small ¢, there exists a pair

£0.

(b,¢c) satisfying (2.6.7), (2.6.8) and (2.6.9), with 0 < b < ¢ < 00. Moreover, since
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K.(G) is convex and vaguely compact, the Fy € A (G) that minimizes I(F) is
unique, and hence the pair (b,¢) is unique.

Figure 4 shows the least informative distribution Fy in K(G) for small ¢

when G satisfies (A1)-(A5) and J(£)(x) satifies (J1)-(J5).

Fig. 4: The least informative distribution Fy in K,(G) for small ¢ when G
satisfies (A1)-(A5) and J()(z) satisfies (J1)-(J5).

tal—-
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Theorem 2.7 (Large ¢ case). Suppose G is a distribution satisfying (Al)-(45)
with J(€)(z) satisfying (J1)-(J5) and subject to the inequalities (*) on p. 63.
Then for sufficiently large € (¢ < .25), the Fisher information for scale I(F) is
minimized over K, by Fy with
[ Mitan(3logd +w)  z € [d, )
Mtan(3tlogr +w) 7 € [a,d)

Xo(z) = (2.6.13)
/\ltan(i\zlloga + w) z € [0,a)

[ Xo(—7) z<0
f g(d)(_:_)xl tan(i\,Llog d4w)+1 TE [d,oo)
dg(d) cos? (3t log z4w)
coa’(%‘log d+w) z TE [aad)
or ag(a) coa’(-?- log 4+w)
foz) = { \7 cos?(R10gatw) z (2.6.14)
gla)(g e oper z €(0,0)
00 z=90
\ fO(""r) z<0

where a,d, M\;,w are determined by

/oafo=la9+€
/;oofo=/:°9+€
/adfo=/adg—2e

dg(d) _ cos*(3logd +w)
ag(a) ~ cos2(52!-loga+w).

Minimum information is
I(Fp) = 2[—/\ftan2(-'\2—l- loga +w)(G(a) - % +€) + A3(G(d) - G(a) - 2)

- ,\ftanz(%l- logd + w)(1 ~ G(d) + ¢€))
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The existence proof of the constant a,d,A and w is not provided but nu-
merical checking has been done for the cases where G is normal, Cauchy, logistic
and some t-distributions with different degrees of freedom. That Fy minimizes

I(F) over K.(G) follows from the fact that

oo a A d
/0 J(xo)(:r)dH(:z:)=/0 —z\ftanz(—gl-loga +w)dH(z)+/ A dH ()
+/ —z\ftanz(:}-)llogd+w)dH(x)
d 4
A
= —/\f.‘sec"’(—zl loga +w)H(a) + )\?secz(%l fogd + w)H (d)

- /\ftanz(% logd + w)H(oc)

v
o

since

H(a) <0, H(d) >0 and H(c0) <0
where H = F — Fy and F € K.(G). Moreover if we have checked
(*)  xo(a) >¢(a) and xo(d) <§(d),
then we can conclude that Fy € K.(G). The reason is:
xo(a) > £(e) implies xo(z) > {(z)

for z € (0,a) since xp is constant on (0,a) and £ is increasing. With the property
that fo(a) = ¢(a), we can get fo(z) > g(z) for all z € (0,a) by applying Lemma
2.5. Similarly

xo(d) < &(d) implies xo(z) < §(z)

for 2 € (d,00). As fo(d) = g(d), we get

fo(z) 2 g(z) for all z € (d, )
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by applying Lemma 2.5 again.

Furthermore since
xo(a) > £(a) and xo(d) < €(d),

there must exist at least one 2 € (a,d) such that xo(z) = £(z) because xq is
continuous. To prove such a z is unique, it suffices to prove (yo — £){z) = 0

implies (xo — £)'(z) < 0. Note that
J(x0)(z) = 2zx0(2) = x5(2)

and

J(€)(2) = 22€'(2) — €3(2).

Hence
I()(2) = J(E)z)

2z

Xo(z) = €'(2) =
If J(xo0)(z) < J(€)(z), result follows.
If J(xo)(z) > J(€)(2), then we let p and ¢ where 0 < p < g be the two points

such that
J(x0)(2) = J(&)(p) = J(£)(q)-

Certainly z € (a,p] U [q,d). Note that one of the intervals (a,p] or [¢,d) may
be an empty set. Now we try to show that there is no solution to the equation
(xo —€)(2z) = 0 in the region (a,p]U [g,d).

On (a, p], suppose there exists at least one solution to the equation (xo—£€)(z) = 0.

Then there must exist an z; € (a,p] such that

(xo —€)(z1) =0 and (x0 — €)'(z21) <0



which implies
0> (xo —§)'(21)

_ J0)(z1) = J(E)(=)
221

>0
which is a contradiction.

Similarly on [g,d), suppose there exists at least one solution to the equation

(xo — €)(z) = 0. Then there must exist an 2; € [g,p) such that
(xo0 = €)(z2) =0 and (x0 —€)'(22) <0

which implies
0> (xo —€)'(z2)

_ J(x0)(z2) = J()(=)

222

>0

which again is a contradiction. Hence it is not possible to have a solution to the
equation /xo — £)(z) =0 in the region (a,p) U [g,d).
Now let k be the unique solution to (xo — £)(z) = 0. On (a,k), we have

Xo(z) = &(z) which implies % is decreasing. As fo(a) = g(a), we have
fo(z) € g(z) on (a,k).

On (k,d), we have xo(z) < &(z) which implies f;l is increasing. As fo(d) = g(d).
we have

fo(z) < g(z) on (k,d).

Consequently, we have

fO 2 g on (O’G)U(d’oo)

and

fo < g on (a,d)



which implies Fy € K,.(G).
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Now since K,(G) is convex and vaguely compact, we conclude that Fj is

unique.

Finally, we state the two possible “medium €” forms of (xo, Fp).

Form 1.
(,\1 tan(%llogd+w) z € [d,00)
Aitan( 3 logz + w) z € [b,d)
z) =
=1 gq) s€fad)
{(a) z €[0,a)
( g(d)(%)kltan(éf-log dtw)+1 :l: € [d, OO)
dg(d) cos?(34 log z+w)
co.s’(j-gL log d+w) z TE [bv d)
bg(b) coaz(i} log z+w)
J (07‘ coa’(%’-log b4w) € )
fo(z) = g9(z) z € [a,d)
g(a)(& )@+ z € (0,a)
00 z=0
L fo(—2) z<0

where a,b,d, A\;,w are determined by

Aafo=/oag+e
/doofo=/:og+€
/adfo=/:‘g—2€

dg(d) _ cos’(3logd +w)
bg(d) cosz(%logb+w)

A
At tan(-2110gb+w) = £(b)

(2.6.16)
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Minimum information is
I(Fy) = 2(~£(a)(G(a) — 5 +¢) + X(G(d) - G(b) — 22)

2, 2, M '
- Aftan (—2— logd +w)(1 - G(d) +¢) + / J(€)(z)dG(x))

Form 2

( €(d) z € [d, 0)
§(z) z € [c,d)
Xo(z) = (2.6.17)
Mtan(¥logz +w) T € [a,c)
{ /\ltan(ﬁ\illoga +w) z€[0,a)
( g(d)($)8+! T € [d, o)
g(z) z € [c,d)
cosz(x log z4w)
cos’(;;(lz)g c+w) -t‘ : z€ [a’c)
z) = ag(a) _ cos’(5log z+w) 2.6.18
fO( ) ﬁ (07‘ cos’(z}log a+w) z ) ( )
gla)( @) htenH logatur z € (0,a)
00 z=0
\ fo(—z) r<0

where a,c,d, \;,w are determined by

Lafo=[;ag+€
/doofo=/:°g+5
[ o= [a-2

cg(c) _ cos’(3logc+w)
20(@) ~ cost(§ loga + )

A1 tan(-’;—l loge+w) = €(c)
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Minimum information is
I(Fy) = 2[—/\ftan2(% log(%l- log a +w))(G(a) — % +é)
+ X2(G(c) - G(a) — 2)
- €4(d)(1 - G(d) +¢) + /cd J(§)(z)dG(z)]

For the Kolmogorov normal or logistic distributions the explicit form of
(xo0, Fo) corresponds to the type of Form 1. For the Kolmogorov Cauchy dis-
tributions, the explicit form of (xo,Fp) corresponds to the type of Form 2. In
general, the form of (xo,Fo) depends on that of G. And in particular it depends
on the degree of freedom when G is a ¢-distribution. This phenomenon was noted
as well-again numerically - in the study of minimum information distributions for
location in Kolmogorov neighbourhood models, Wiens (1986).

Table I, II and III provide some numerical results for the least informative
distribution Fp when G is normal, Cauchy and logistic respectively. All the
numerical calculations were done using the IMSL library. Figures 5, 6 and T
show the graphs of xo(r) against z for small, medium and large c-normal cases
respectively. Figures 8, 9 and 10 show the graphs of xo(z) against z for small,

medium and large e-Cauchy cases respectively.

2.7. A note on Thall’s (1979) paper.

Thall (1979) developed a theory of robust estimation of a scale parame-
ter by reformulating Huber’s (1964) location parameter results in the scale pa-
rameter context. The results were then applied to a particular problem of ro-
bust estimation of the parameter 8 of the exponential distribution ®o(%) where

®o(z) =1—~e~%, z > 0. Unfortunately, a few mistakes were made.
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Table 1. The Kolmogorov normal distributions that are least informative for

scale
[
104
.0005
.0008
.001
.0018
.00205
.004
.01
.02
.025
0267

-.0720
1228
1434
1544
1871
1952
2424
.3240
.4003
4276
4359
4159
.3645
.1933
.0458

.0152
GD0s

1.320
1.168
1.114
1.090
1.009
9911
8794
6819
5103
4529
4359

2.152
2.314
2373
2.399
2.489
2.511

3.278
2.887
2.760
2.702
2.546
2.511
2.407
2.274
2.197
2.180
2.176
2.170
2.166
2.305
2.583
3.278
4.257

A
2.710
2.610
2.568
2.549
2.478
2.461
2.341
2.071
1.787
1.683
1.651
1.593
1.441
8567
2847
1384
0187

-.1098
-.0639
-.0450
-.0362
-.0039
-.0038
.0539
.1436
.2087
2251
.2293
2361
.2490
.2406
1534
1057
.0288

J(E)B)
6.419
5.321
4,904
4.719
4.079
3.929
3.042
1.574
4964
.1888
1042
.0070
-.2200
-7770
-.9874
-.9986
-1.000

J(E)®)
5.338
2.456
1.017
4150
-2.213
-2.910
.2058
3.290
4,667
4931
4.990
5.075
5.142
2.659
-20.19
-52.01
-220.5

I(Fo)
1.971
1.905
1.867
1.845
1.769
1.748
1.609
1.318
1.009
.8947
.8600
7927
6387
1721
.0067
.0007
6 x 1077



70

Table II. The Kolmogorov logistic distributions that are least informative for

scale
c a b c d A w | JE)E) | J(E)e) | I(Fo)

10~* |.1061 | 1.748 | 3.184 | 7.365 | 2.110 | -.481 | 3.95 3.681 | 1.417
10~° | .2257 | 1.413 | 3.731 | 5.445 | 2.008 | -.471 | 2.958 1.851 | 1.355
.002 | .2857 | 1.286 | 3.975 | 4.900 | 1.956 | -.384 | 2.507 799 | 1.304
.003 |.3260 | 1.205 | 4.144 | 4.592 | 1.919 | -.360 [ 2.206 -.002 | 1.261
.0043 | .3663 | 1.129 | 4.321 | 4.321 | 1.880 | -.335 | 1.916 | -.906 | 1.210

.0005 | .3845 | 1.095 4.270 | 1.863 | -.324 | 1.786 -.641 | 1.186
01 | .4794 | .9092 4.054 | 1.743 | -.255 | 1.075 403 | 1.036
.02 | .5939 | .6886 3.802 | 1.556 | -.170 | .2825 | 1.174 | .8171

.0023 | .6194 | .6410 3.869 | 1.509 | -.153 | .1268 | 1.272 | .7638

.00239 | .6272 | .6272 3.864 | 1.495 | -.147 | .0827 | 1.296 | .7478
025 | .6184 3.858 | 1.480 | -.142 [ .0550 | 1.319 | .7309
.04 | .5145 3.841 | 1.292 | -.083 | -.2507 | 1.396 | .5316
.01 | .2830 4213 | .789 | .023 | -.7640 | - .347 | .4515
15 1.1623 4.814 | .502 | .057 | -.9215 | -3.748 | .0406
.20 | .0681 5.841 [ .265 | .069 | -.9861 | -11.10 | .0058

.24 |.0101 8.062 | .079 | .050 [ -.9997 | -33.61 | .0002



for

10~4
.0007
.001

.005

.0096
.0100
.0110
0118
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Table III. The Kolmogorov Cauchy distributions that are least informative

scale

a
1954
.2106
2172
2758
.3055
.3040
.3005
2979
2745
.1420
.0344
.0183
.0004

.6689
.5435
0168
3811
.3055

1.495
1.840
1.935
2.629
3.14
3.180
3.278
3.359

16.20
8.490
7.540
4.440
3.600
3.550
3.440
3.360
3.643
7.041
29.07
54.50
28.53

A1
1.361
1.300
1.283
1.174
1.109
1.104
1.904
1.085
1.010
5334
1729
1128
.0110

W
.14 x 1073
-.6458
-.8255
-2x10°¢
2x1073
9 x10™4
-1x10™*
-6 x 1078
-.964 x 10~3
-412 x 1078
-82x107°
-12x 1074
-.52 x 1076

1(E)®)
1.563
1.126
996
.329
-.063
-.070
-.088
-.102
-218
- 767
-.986
-.996
-.100

J(€)(e)
1.563
1.113

.996
329
.003
-.017
-.007
-.102
-.218
-.767
-.986
-.996
-1.00

I(Fo)
4986
4919
4888
4315
4356
4285
4108
3970
3392
L0654
0025
.0005
2x10°"



Fig. 5. Graph of x (x) vs. x
for small e —normal case (¢=.001)

-3

%]

- e = -~



Fig. 6. Graph of x (x) vs. x
for medium ¢ —normal case (¢=.01)
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Fig. 7. Graph of X,(x) vs. x
for large € —normal case (e=.1)




Fig. 8. Graph of x (x) vs. x
for small e =Cauchy case (¢=.005)




Fig. 9. Graph of x (x) vs. x
for medium e —Cauchy case (e=.01)

X Gt
a



Fig. 10. Graph of x (x) vs. x
for large ¢ —Cauchy case (¢=.02)

-]

-]
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Thall stated that the maximum likelihood estimate for scale based on the

least informative distribution is minimax in the sense that
sup V(xo,F) = inf sup V(x. ) (2.7.1)
FeC X FeC

where C = C(c) = {F : sup,5q |F(z)— ®o(z)| < €}, x is taken over the set of all
continuous and nondecreasing functions on (0,00), xo(z) = —z%(z) -1, fo=F}
and Fy minimizes Fisher information for scale over C.

S*(F) [, X*(zrydF ()
(fo~ X' (s (xey)dF (2))?

V(x,F)=

and S(F) is defined by
e T
/O x(gm)df'(z) =0

In fact, as mentioned in Huber’s (1981) page 122 or the introduction of chapter

1 in this thesis, the result of (2.7.1) 1s far more than what we can say. In fact,

we can at most conclude that

[SV]
-1
N
S

sup V(xo,F) =1inf sup V(x,F) (2.7.
FecC* X FecCe

where C* = {F € C: [[° xo(z)dF(z) = 0}.

In the same paper, Thall also wrote down the form of (xo,Fy) where Fy
minimizes Fisher information for scale over C. Although he could show that the
form of Fy he obtained really minimizes Fisher infornm.>tion for scale over C, F
itself is not in C. This fact is easily seen if we look at the side conditiun (3.3)
in his paper which is

/{;a fo(z)dz = /Oa e *dz +e. (2.7.3)

(2.7.3) indicates that Fy(a) = ®9(a) + €. This implies that

fo{a) =e™*
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if Fy is required to remain in C. The form of Fy obtained by ‘’hall does not
satisfy this condition. One can easily check this by using his numerical results.

At the end of section 3 of Thall’s paper, Thall mentioned that extending his
solution to larger values of ¢ was impossible since there were too few parameters
to simultaneously satisfy the resulting set of constraints on fo. According to his
obtained solution, this probably involves overlooking the general solution of \o

to the differential equation
2zx5(z) — Xa(z) = A%, A >0.
The general solution of xo to this differential equation should be
A
xo{z) = /\tan(E logz +w)

rather than

xo(z) = /\tan(% log 7),

the one obtained by Thall.

Moreover, there should be totally three cases (small €, miediws - Jarge <}
for the form of (xo, Fo) instead of only two cases (small ¢, large ¢} me=ntioned by
Thall. The correct form of (xo,Fo), for all possible range of &, can ' obtained
in a similar way as described in section 2.6. It is worthy to note that the form
of J(£)(z) in this case looks just like the right half of our earlier onvs and the
theory is analogous. Figure 11 shows the graph of J (€)(z) vs. x for exponential

cases.

Case (i). For small e:



&0

Fig. 1. Graph of J(¢)(x) vs. x for exponentidl case

~~
x
S’
~
A4
S’
v
14




(d—-1

z—-1

xo(z) = \ A1 ta.n(%’-log:v +w)

fo(z) =< (

z—-1

\a_l

re—d(%)d
e—t

ce™¢ cos’(-*} log z+w)
r coa’(%l- log c+w)
be=® coa’(%‘- log z4w)

or
z coa’(i\} log b+w)

e—:

e=2(2)"

\ 00

where a,b,¢,d,w,\; are determined by

Minimum information is

/ fo =/ e *T+e¢
0 0
¢ c
/ fo =/ e -2
b b
o o0
/ fo= / e +e
d 4

z € [d, 00)
z € [c,d)
z € (b,¢)
z € {0,b)

z €[0,a)
z € [d, 00)

z € [c,d)

z € [a,c)

c—-1= Altan(-/\gl- logc+w)

b—1=Xx ta.n(%!-logb+w)

ce™® cos?(&+ log ¢ +w)

be=b cos?(3t log b+ w)

IF)=[-(a=-12(1—-e®+c;+ (e’ —e™ ~ 2)

~(d-1)%e"%+¢) +/
[a,5)0fc,d]

(—z® + 40 - 1)e”dz
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Case (ii) For medium e&:

(Mtan(3logd+w)  z € [d,00)

J Altan(izl-logz +w) z€lcd)

vo(2) = (2.7.12)
o | TE [a, C)
la-1 z €[0,a)
A
(i(gpundiosdan 2 eld o
ce™¢ co,’(%llog z+w)
z coaz(%"los ctw) TE€ [c, d)
de—4 co;z(-i;klog z+w) ird
fo(z) = 3 (o Z  cos?(~log d+w) 2713)
e~ 2 TE [aac)
e-a(%)a z € (0,a)
| o z=0

where a,c,d,w, A; are determiried by (2.7.6), (2.7.7), (2.7.8), (2.7.9) and (2.7.11)
with a = b.

Minimum information is
I(Fo)=[~(a=1*(1=e™* +&) + M(e™* e — 2)

- /\'ftan"’(i\zl logd + w)(e™® +¢) +/ (2% + 4z — 1)e™dz]

Case (iii’ ¥or large e:
A1 tan(%klogd-f-w) z € [d,00)
xo(Z)=¢ A\ tan(%l-logm +w) T € [a,d) (2.7.14)

Artan(3tloga+w)  z€(0,a)

¢ e_d(%)xl tan(%‘-log d4w) € [d, OO)
ae”® 3082(:\5‘103 z4w)
z coa"‘(-‘flog a+w) z€ [a’d) 5
fo(z) = e o0 log o) (2.7.15)

® co.s"’(j-;L log d+w)}

e"a(%)'\”tm%“c’g a+wj z € (0,a)
\ 00 z=0
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where a,c,d,w,)\; are determined by (2.7.6), (2.7.7), (2.7.8), and (2.7.11) with
a=0band c=d.

Minimum information is
A 2
I(Fy)=[- ,\ftanz(—zl loga+w)(1—e™®+¢e)+ A} (e ® —e~? - 2)
A
- /\ftanz(-z—l logd +w)(e™? +¢)
Some numerical results for the least informative distribution Fy when G is

exponential are provided in Table IV. Figures 12, 13 and 14 show the graphs of

Xo(z) against z for small, medium and large e-exponential cases respectively.
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Table IV. The Kolmogorov exponential distributions that are least informa-

tive fo
€

10~
10~3
.003
.005
.006
.0065
.0683
.008
.01
.02

r scale

a
0141
.0440

154

.0966

.1054

.1096
1122
1210
1345
.1860
2807
.2916
2213
1330
.0751
0312
.0136
.0021

1.391
1.100
9111

8207
1875
1725
7635
7331
.6868
5279
3116
.2920

2.729
3.216
3.570
3.775
3.856
3.893

7.360
5.421
4.544
4.151
4.013
3.953
3.916
3.852
3.763
3.504
3.252
3.237
3.220
3.535
4.123
5.145
6.127
8.269

A1
1.690
1.629
1.577
1.545
1.532
1.525
1.522
1.509
1.486
1.389
1.191
1.168
9742
.6448
4315

2341 !
1374 .
0456 |

w
-.052
-.015
0171
037
.045
.649
.051

.0591
0715
1163
1703
1736
1870
1754
.1495
1141
0877
1463

J(£)(d)

2.630
2,177
1.81
1.60
1.530
1.493
1.471
1.395
1.276
8329
.1493
.0829
-.1638
-.4856
-.7053
-.8761
-.9458
-.9915

J(€)(e)
?.469

1

)
N - 1bing
-.4433
-.5842
-.6731
-.4299
-.1072
7392
1.432
1.470
1.513
.6449
-1.508
-6.899
-14.03
-36.31

I(Fy)
.9940
.9631
.9227
.8896
8746
.8662
8625
8323
.7983
7309
5131
.4893
.3092
.1090
.0309
.0016

8 x 1074

1.9 x 10~
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Fig. 12. Graph of x (x) vs. x
for small e —exponential case (£=.005)

§ -




Fig. 13. Graph of x (x) vs. x
for medium e —exponential case (e=.01)

S5 -




Fig. 14. Graph of x (x) vs. x
for large € —exponential case (e=.1)




CHAPTER (Il
MINIMAX ASYMPTOTIC PROPERTIES
OF M-ESTIMATORS FOR SCALE

3.1 Introduction

The results obtained in the previous two chapters show that the M-estimator
xo(z) = —x%(z) — 1, where fo = Fj and Fp minimizes Fisher information for
scale over an e-contamination neighbourhood model G.(G), [resp. a Kolmogorov
neighbourhood model K.(G)], is minimax with regard to the asymptotic vari-
ance V(x, F) over those members of Ge(G) [resp. K.(G)] satisfying So(F) = 1.
We note that the condition So(F) = 1 is a rather serious restriction. Also the
asymptotic variance V(x, F) is not a good quantity to use in comparing the per-
formance of the estimators since V(x, F) is a quantity depending on the arbitrary
standardization of S.

We thus define the asymptotic loss

Vix,F
R(x,F) = -%’%f)—)

As R(x,F) is the asymptotic variance of N logs?((%‘j)- and does not depend on

the arbitrary standardization of S, it provides a good quantity for comparing the

performance of the estimators.

3.2 Minimax asymptotic properties of M-estimators for scale over

¢-contamination normal neighbourhood model G, (%) for small ¢ (0 <¢ <

2.051)
Huber (1981, chapter 5) shows that when € < .04,

R(x0, Fo) 2 R(xo, F) (3.2.1)

88



among all the distributions F' in G,(®) where & is the standard normal distri-
bution. xu(z) = —z%(z) ~1, fo = Fj and F, minimizes Fisher information for

scale over G.(®). It follows that the minimax property

~—

sup R(xo,F)=inf sup R(x,F), (3.2.2
FEG:(®) X FEG(®)

holds for at least this range of ¢.

In this section, we shall show that (3.2.1) fails for the range of ¢ between

.0997 and .2051. Note that ¢ = .2051 is the boundary case between the large

and small ¢. By definition,

1 _ S2(F)
R(XOaF) - V(XOrF)
[ xo( 5y sty )dF ()]
= T Txi(s)dF ) (3.23)
and S satisfies the condition
/ ol )4 () = 0 (3.2.4)

For each k € [0,1], define
Gr ={F €G.(®):S(F)=k}.

Note that Gi is convex, |J,Gr = G.(®) and by Huber (1981) Lemma 4.4.4,
Ty is @ convex functional of F. Furthermore, Ty is minimized by a
conftamination ¢H putting all its mass on {0} U [-kz,,kz;]°>. Note that Huber
(1981) page 123 states that gty is minimized by a contamination ¢H putting
all its mass on {0} U[-z,,z,]¢ which is sufficient but not necessary. The reason

is as follows: Define

l(z\z )12 z
or(t, ) = U ’}°i§();';jj§‘i)” + [ xi(3)Rez) (3:2.4)



for 0-<t <1 where
Fo=(1—t)F. +tF,, Fy € Gy with I(F) < oo,
F. minimizes przoy among all the distributions F° in G and
A is a Lagrange multiplier.
Note that F, minimizes grze—py in G if and only if pi(t,A) is minimized at

t =0 for some A. Put

N, = / Xb(2NF)AFi(2) (3.25)
and
D= / xo(%)dFt(x). (3.2.6)
Then (3.2.4) becomes
2
) = T+ [ x(PHaFe) (3:2.7)

Differentiating (3.2.7) with respect to ¢, we have
' 0 Nt ' ! z
A 0) = 2 pu(t,3) = DEENID = NeDlJ+ [ xa()d(Fs = Fu)(e)
t
Set t =0 and put
ot 3y [ E)ar) - 25 [
ar2) =253 [ D) - 8D [EXEUEE)

then
40N = [I5E4r () + Mo(IE - F)e)

Hence we have
' Ny T
0<p(0,A) &0 [B;AF.(‘”) + Axo(pld(F1 - Fu)(=)
Thus F, must put all its available mass on the place where

No x
-D-OAF.(’J) + /\Xo(‘,;)



is a minimum. Put
z
a = [ B(QHE()

and
b= [(EX(PP(2),
then
M {du(3) - (B NEF -1} el <ok

~ 548 = N[z} - 1] |z| > z:k

T A (2) + dxo(p) = {

When 8* > A,

%'—gAF,(m) + ,\xg(%) attains minimum at |z| > z: k.
0

When 8* < A,

%Ag(z) + '\Xo(%) attains minimum at z = 0.
0

From here it is clear that RTxlT."T is minimized in G, by a contamination
eH putting all its mass on {0} U [—kz,, kz;]. Note that G is a nonempty set
only if there exists an F € G.(®) satisfying [ xo(§)dF(z) = 0. Obviously G; is
nonempty since So(Fy) = 1. Moreover, if F is a distribution in Ge(®) = [J, Gk
that minimizes m, it follows from the above arguments that it should place

all its contaminating mass on {0} U[~S(F)z,,S(F)z;]° and satisfy

/ Xo(g (‘”F) \dF(z) = 0. (3.2.8)
Now we view R(xo,F) as a function of S and define
e — L _ UGG 529)

R(xo,F)  [x§(§)dF ()



Using the relationship xo(z) = $§(z) —1 where o(z) = min[z, maz(—z1,z)] and
assuming that e puts mass € —¢; on {0} and mass ¢, on [~2,85,2,5]%, (3.2.9)
and (3.2.8) then reduce to

(5 = A= L0 (8 a2
T=0) [ X(3)d8(z) +eref -1

(3.2.10)

and

(1- e)/tl’g(%)d@(m) +ezi=1 (3.2.11)

Note that (3.2.10) and (3.2.11) are equivalent tc (7.7) and (7.8) in Huber (1981).
However, Huber treats (3.2.10) as a function of ¢; whereas we treat (3.2.10) as

a function of S.
Now define

nS

7(S) = / ¢§(%)d¢(z)= / s(-g)zdé(z)+zz§(1-q>(mls>) (3.2.12)

-Zy

Notice that 4(S) has the following properties:
(i) 7(0) = 2% >2
(i) 7(1) = 22,0 < (1) <11
(iii) 7(S) =~ i 2?d¥(z) <0
(v) £ <vS) <
(i), (i) and (iii) follow directly from the definition as in (3.2.12). From (3.2.11),
letting €; be zero and ¢ respectively, (iv) follows.
Define Spin to be the smallest possible value of S such that (3.2.8) satisfied.
Note that (3.2.8) and (3.2.11) are equivalent. By the above properties (iii) and

(iv), we can see that Smin is a function of €. In fact, Smin and ¢ are related by

1
'y(Sm.'n) = T:E (3.2.13)



It is worthy to note that

S = Smin is equivalent to ey =0

and
S =1 is equivalent to ¢; = ¢.

Moreover ¢ and z; are related by the equation

23:1¢(:x:1)_ 1 0
1~ T2 (3.2.14)

208(z) - 3] +

where ¢ = ®'. Thus z; can also be viewed as a function of €. After some

calculations, we have

xSy = PO 50, (s PR
m T T 1 =) [$(5E;)d%(z) - 1

4{1 = 2(1 — &)z}l — ®(215min)]}* o 1=
= P —— " (3.2.15)
(A-e){/ s 50 (5E=)1d®(z) + 271[1 — B(215min)]} — 1

and

[2(1-¢) [Z;, 2%d®(z)]?

(1) = T THBE Tt -1 (3.2.16)

(3.2.15) and (3.2.16) show that both 7(Smin) and m(1) are functions of ¢. For
€ = .2051, we find numerically that Sp;, = .5194, 7(1) = .6796 and 7(Snin) =
.3604. For this Syuin, We can always find a corresponding distribution in G.(®),

say Fpin, such that

and Fpin places all its contamination mass on {0}.
This shows that (3.2.1) fails when ¢ = .2051 in the e-contamination nor-
mal neighbourhood since #(Smin) < m(1) which is equivalent to R(xo, Fmin) >

R(xo0,Fo). Note that (3.2.1) holds if and only if 7(S) = m(1) for all possible S.



Moreover, since T(Smin)— (1) is a continuous function of ¢, there must exist an
¢, such that (3.2.1) fails on the range of €, < e < .2051.

Table V provides some numerical calculations for the quantities zj, Smin,
7(1) and 7(Smin) for some given . Note that it is much easier to determine
z1(> 1.414) first , then ¢ and the rest of the other quantities. Numerical calcu-
lations show that for .0997 < ¢ < .2051, we can find an Frin € G:(®) such that

R(xo0,Fo) < R(x0, Finin) since 7(Smin) < ®(1) in this range of ¢.

3.3 Minimax asymptotic properties of M-estimators for scale over ¢-
contamination neighbourhood model G.(G) for large .

In this section, our goal is to show that in the e-contamination neighbour-
hood model G.(G) = {F| F = (1 - €)G + eH}, large ¢ case, there exists an
F, € G.(G) such that R(xo0, Fo) < R(xo, F)- Here the distribution G is assumed
to satisfy the property that the derivative of G*(z) = 2G(e*) — 1 is strongly
unimodal. Note that G.(®) is only a special case of Ge(G).

The strategy of tackling the problem is as follow: Define

1 N

where
F,=(1-t)F +tF, 0<t <1, Fi €G(G) with I(F}) < o0,
Fy minimizes Fisher information for scale over G.(G),
N, = J sy Xl AF(2),
and
Dy = [ X} sty dFi(e)-
We then show that

(i) 4'(0) > 0 for any F; € G.(G) with I(F1) <



Table V To provide some numerical calculations for the quantities z;, Smin,

7(1), ®(Smin) for some given &.

Ty e Smin ™1) 7(Smin)
1.414 .2051 .5194 .6796  .3604
145 .1801 .5831 .7356  .4804
146 .1738 .5988 .7510  .5136
1.47 .1672 .6138 .7663  .5466
148 .1617 .6281 .7816  .5793
1.49 .1560 .6417 .7967  .6117
1.50 .1505 .6547 .8118  .6438
1.51 .1453 .6672 .8268  .6754
1.52 .1402 .6791 .8418  .7065
1.53 .1353 .6905 .8566  .7373
1.54 1305 .7013 .8713  .7675
1.55 .1260 .7118 .8860  .7972
1.56 .1216 .7218 .9006  .8263
1.57 1173 .7314 9150  .8550
1.58 .1132 .7406 .9294  .8831
1.59 .1093 .7494 .9437  .9106
1.60 .1055 .7579 .9579  .9376
1.61 .1018 .7661 .9720  .9640
1.615 .1000 .7700 .9760  .9718
1.616 .0997 .7707 .9804  .9794
1.617 .0993 .7716 .98189 .98191
1.62 .0983 .7739 .9861  .9898




(i1) there exists a subset G/ (&) O Ye(F) such that
u'(0) = 0 and u"(0) < 0 for any F; € G;(G).
By Taylor series expansion,
2
u(t) = u(0) + tu'(0) + Eu"(O) + o(t?)
2

= u(0) + fz-u"(O) + o(t?) for Fi € G*(G)

< u(0) for F} € G;(G) and sufficiently small ¢

Since G.(G) is convex, Fy = (1 - t)Fp +tF; € Ge(G), 0 £t < 1. Put F, = F,

where ¢ satisfies u(t) < u(0). By definiton of u(t), we conclude that

R(xo0, Fo) < R(xo, F.)

which is what we would like to prove.
To prove (i) and (ii), first note that
(a) Dy = [ x}dFy = [zxedFo = No = I(Fo)
(b) S(F) is defined by [ xo(5fF)dF(z) =10
By (a), we have
u'(t)]e=0 = (2Nt — Di)le=0

and
n . u n Nt lt—O It-o
Put
d?
S(Fg)lg_o and § = dt25'(Fz)|t_o

From (b), we have
fXO(x)d(Fl — Fp)(z)

S = T o9V dFa()

Using (a), it becomes



« _ J xo(z)dFi(z)
S=SSrE (3.3.4)

Note that xo is even, xj has a finite number of jump points, say —dm—1, —dm-2,...
—dy,d,...,dm-1 and xg is continous and at least twice differentiable on the in-

tervals (—dm, =dm—=1);--+, (—=diy =dig1),...,(—=d1,d1),...,(dm-1,dm) where dp, =

oo. Then xp(g7fy) is continuous and at least twice differentiable on the intervals

(=dmS(F1), =dm-18(F1)),- - - (~diS(Fr), ~di1 S(Ft)), -,

(—d1 S(Ft),d1 S(FY)), . .- (dm, S(F), dmS(Ft)). Write

dv S(Ft)

—dx-1S(Ft) -
e I;/dks(ﬂ) S(F) O(S(F))dﬂ(z)+/dk 1s(F.)5(F¢)x (S(F))dFt(-’L')]
A S(F) o P —
+/d,5(p,)S(Fz) 0(S(F)) (z) (3.3.5)
"ot SR 4S(R) z
D= kZz/ —~di S(Fy) Xo(s(F))sz(a:)+ / i lSm)xf,( S.(F))dFt(z)]
diS(F.)

+/dls F) XO(S(F))dF‘(z)' (3.3.6)

Differentiate (3.3.5) and (3.3.6) with respect to t and set ¢t = 0. We then have

N{t=0 = - S[/ zxp(z)dFo(z) + /:1:2 o(z)dFo(z)]
+ / 2x4()d(Fi - Fo)(c)

m-1

=25 )" di fo(di)8(dk) (3.3.7)
k=1

Dljico = — 2§ / zx0(2)x5(2)dFo (<)

n / Xe(2)d(F, — Fy)(a) (3.3.8)



where 6(dx) = xo(dg ) — xo(dy ) which is the jump point of x; at di.
Note that

[2xo(@i(e)iFu(e) - [axi(e)dRuio) - [ axit=)dRice)

M-1
=2 difo(de)6(dk). (3:3.9)

k=1
Using the relationship (3.3.9) and putting (3.3.7), (3.3.8) into (3.3.2), we then

have

w0 = [l2x6(e) - XN - Fo)e)

- / J(xo)(@)(F; - Fo)(z). (3.3.10)

As we know that F, minimizes Fisher information for scale over G.(G), we con-
clude u'(0) = [ J(xo)(z)d(F1 ~ Fo)(z) > 0 which is (i).
Now assume (a,b) to be one of the intervals (—dm,—dm-1), cooy(=dr, dy),

..+y(dm-1,dm). Then



d2 bS(F:) z
dt2 /S(Fg) S(Ft) O(S(F))dFt(z)

-, :(:)) S )X (s(;z))f‘(“’)“S;F)a a7 g )
sff;)(asa(f' i S~ 5 F)aséf T 5 i = o)
+ oo (P (s ) + g s e )
- S S o) = ey g s = e
- szfp)asg') (g s = o)
z OS(F)

Sz(F) °(S(F)) 5 1~ fo)(2)}de

0.5'(F¢ b OS(F) , ® 3S(F,
) (- sty ot D BAOS(R) — 5B e )
+ bxo(0)(fr — fo)(bS(Fr))}
BS(Ft) a OS(F) , a? OS(Fy)
—a—— {~ SR o0 Xo(a)fi(aS(F})) — === S(F) Xo(a)—%— N fi(aS(Fy))

+axo(a)(f1 — fo)(aS(F:))}

+ b2a S(Ft) Xo(b) fe(bS(F2))

+ "’S(F‘) Xo(BCF ~ ) BSCR)) + 82 bS]
23 S(Ft) Xh(a) fu(aS(FL))
265<Ft) , 2y,

fi(aS(F))]

Xo(a)[(fr — fo)(aS(Ft)) +a

Therefore

42 Ys(F) T
F/aS(F.) S(Fy) (S(F))dﬂ(z)lt_

= Al + A2 + A3 (3311)




where
.. b -~ b
A = S/ [zx0(2) fo(z) + 22 xo(2) fo(2))dz = —S/ zxo0(z)Xo(2)fo(z)dz
) b
4y = —(3)? / {2x4(2)x0(@) + 1fa() + 22(xb(2))2fol(2) + 22 (xo(2) + 2 fH(2)¥s(2)}da
b
4 = 28{— / [exh(z) + 22X (@)1 ~ fo)(@)de + 22xa(@)( 2 — fo)(=)I8)
Also
(Ft)
d? bS(F, z )dFt(z)

— 2—_—
di? Jas(F,) XO(S( Fy)

[T 85(Fy)
B /S(F,) {Sa(F)Xo(S(F))X"(S(F))( ot )2ft(1‘)

65(F¢))2

272 2
54(F)( o(S(F)))(
472 0S(F;
54(F)X°(S(F)) °(S(F))( gt
2z " T GS(Ft
43: Yo ( 1 T )BS(Fg
D) S(F) Xo\S(Fy' ™ ot

+ 625 o 0 Y 2 FOSCF) + XA ~ o) OSCF)
- aS(F‘)[ 2axo(@xh(@) 2T £ (aS(F)) + XE(a)(fy ~ fo)aS(F)
il "asi O8E) 4 (f1 - fo)aS(F)

£i(z)
)y £,(z)

) f,(2)

)(f, - fo)e)}dz

AL bs(F)) + S fbS (RO

i@ s B 1 as(r)) + M(ﬂ( S(F))a2EY 65(F ) 4 (f, - fo)aS(F)

Therefore

£ P5(F)
T e, BN
=B, +B,+B; (3.3.12)



where
. b
B, =§ / —2uxo(2)xh() fol2)dz + 2X3(2)fo(2)[E)

b
B, = (5)2{/ [z xo(z)Xa(2) fo(z) + 22%(x6(2))* fo(2) + 22" xo(2)x0 (2) fo(2)}d=
— 2a%xo(2)X (2)fo(@)s + 2 x0(2)fo(2)a}

b
By = 5{—/ taxo(z)(f1 = fo)(@)dz + 2*xE(2)(fi = fo)(@)la}-

After some calculations,

%(A; + Az + As) — (B1 + B2 + Bs)
— —Sex @)k
- b
- O [ + xitale)ie + 2@k

] b
_ 4 / 220" (x0)(=)(fy = fo)(z)ds
— 22J(x0)(z)(f1 = fo)(@)I5} (3.3.13)

Recall from the result of Theorem 1.2 on page 14 that for large €, Xo is of

the form
—k |z| < To

xo(z) =3 é(z) TS|z m
k lz| > 2
for 0 < 2o < 71 < 0o where {(z) = —zggi(a:) —1. Thus
—k? |z| < zo
o)) = 22x3(2) — (@) = { 2e6(a) —€3(z) @ < Je| S o
1 k? lz| > z1.
Define
GY(G) = {F, € G.(G)|Fi(z0) = (1 — €)G(o) + €, Fy symmetric ,I(F1) < o0,

fi = F] exists and /Xo(x)dFl(m) # 0}.



Note that each element Fy in G}(G) satisfies

(i) filz) = (1= £)g(2) = fole) on (20,21)

(ii) Fi(z) = (1 - €)G(z) +¢ on (z1,00)
(iii) Fi(zo) — Fo(zo) = Fi(21) + Fo(z1) = 0
(iv) J2 JEN)(F - Fo)(z) =0
and G!(G) is nonempty.
Thus for each F; € G1(G),

£ =2 [ Ju)eA - B)e)

\ —2 [ J(xo)(@)d(F: - o))

To

= 2k2[F1(.'1:1) - Fo(:vl) - Fl(mo) + Fo(zo)] = 0.
Furthermore if F; € G}(G), from (3.3.13), (3.3.7) and (3.3.8), we have

c0 b
(2N = Di)le=o = —Qszl / [72(x0)() + Xo(@)] fo(=)dz (33.14)
and
Ntllt=0 = %"t:o

=5 [ex(@ni(e) ()
=5 [ xi@)ole)ds (3:3.15)

By substituting (3.3.14) and (3.3.15) into (3.3.3), if F € G!(G), we have

5)? 3(z) fo(z)dz)?
10) ==L [ tx0)e) + doa(arae - LEGEEIEE

)2 4 dr — 3z Vdz)?
= -2 o) fe + N A e[ Gl
By Cauchy Schwarz inequality,
1) [ xi(e)fa(e)iz = / (2 fo(z)dz / (2 fol2)dz

> / x3(2) folz)da)?




Hence

w0 < -EX [ e
<0
since Fy € G}(G) This completes the proof of (i) by setting G*(G) = GL(G).
Note that if we define
GX(G) = {Fy € G(G)| Fi(~21) = (1 - €)G(~=1) + 5, Fy symmetric ,

I(Fy) < o0, fi = FY exists and /XO(z}dFl(m) # 0}

we can prove, in a similar way, that for each F; € G2(G), u'(0) = 0 and u"(0) < 0.
Thus in general we can let G(G) = G}(G) U G2(G). Roughly speaking, G1(G)
contains all the distributions in G,(G) which put all their contaminating mass
in [~zo,20] and G(G) contains all the distributions G.(G) which put all their

contamination mass in [—z;,z,]°.

3.4 Minimax asymptotic properties of M-estimators for scale over Kol-
mogorov neighbourhood model X,(G)

The problem we try to solve in this section is to show that there exists an
F. € K.(G) such that R(xo, Fo) < R(xo, F.) where K(G) = {F : sup g |F(z)-
G(z)| £ €}, the Kolmogorov neighbourhood model and G satisfies the conditions
(A1)-(A5) and (J1)-(J5) as in Theorem 2.3 Chapter II.

The way to prove the existence of such an F, is quite similar to that de-

scribed as in the last section. Define

1 N7

-IZ_(-FJ = D, (3.4.1)

w(t) =



where
F = (1 —t)Fo +tF,0<t< 1,Fy € KG(G) with I(Fl) < 00,

F, minimizes Fisher information for scale over K,(G)

D, = / xg(s—(?’m)dp,(z).

With similar arguments as in section 3.3, we have

W)= [I))dF - Fo)e) (342)
(a) For the Kolmogorov neighbourhood model (large € case ):
Put
K.1(G) = {Fi €K(G): (F1 — Fo)(a) =0, (Fi — Fo)(d) =0,
F, symmetric ,F] = f; exists ,I(F1) < oo
[xot=)am@) # 0.
Note that

(i) Kea(G) # 0

(i) w'(0) =0 if F} € K.1(G)
(iii) w"(0) <0 if F; € K.1(G)-
To prove (i), take a symmetric Fy with density f1 such that I(F}) < o0, Fi(a) =
Fo(a), Fy(d) = Fo(d) and Fi(z) < Fo(z) on (a,d). Then F € Ke1(G) which
implies K, 1(G) #0 . For £ € K.1(G),

w©)=2 [ ” Joo)@)d(F: - Fo)(@)

a d <5<}
=2 / (=MB)d(F; - Fo)() + / Xed(Fy — Fo)(z) + /d (~N)d(F; — Fo)(z)

=0.



which is (ii). (iii) follows exactly from the same argument in proving u"(t) < 0
as in section 3.3. Now using Taylor series expansion,
t2
w(t) = w(0) + tw'(0) + -:?-w"(O) + o(t?)
2
= w(0) + %—w"(O) +o(t?) for Fy € Ke1(G).
Thus we can conclude that w(t) < w(0) for all sufficient small ¢ if F} € K. 1(G)
and F; = (1 —1)Fy +tF). Because w(t) = WIF_J’ we have R(F,) > R(F,) which is
what we desire. This is because if we put F, = (1—t)Fp+tF, where F} € K, 1(G)

for sufficient small ¢, we have

R(xo, F\) = R(F,) > R(Fv) = R(xo, Fo).

Note that the condition
/XO(:c)dFl(z) #0

implies
d d
| 0@dRE # [ xo(@)iFi(o)
Since xo is nonconstant only in the region (—d,—a) U (a,d), we require F} # F,

for at least a subinterval of (a,d).

(b) For the Kolmogorov neighourhood model (small € case):

Put
Ke2(G) = {F1 € K(G): Fi(z) = Fy(z) on [a,b]U [c,d],

F, symmetric ,F] = f) exists ,I(F}) < 00
and / xo(2)dFi(z) # 0}
Here a = b or ¢ =d. By the same argument as in case (a), since

(i) Ke2(G) #0



(i) w'(0) =0 if F1 € K¢.2(G)

(iii) w"(0) <0 if Fy € K,,2(G)

there exists a F, € K.(G) such that R(xo,Fo) < R(xo,Fe.).

(c) For the Kolmogorov neighourhood model (medium ¢ case):

Pu
‘ K.3(G) = {Fi1 €K.(G): F(z) = Fo(z) on z € [a,b] U c,d],

F, symmetric ,Fj = f exists ,I(F}) < o0
ad [ xo(a)dR(@) #0)

Here a = b or ¢ = d. By the same argument as in case (a) or case (b) there

exists an F, € K.(G) such that R(xo,Fo) < R(xo, Fs).



CHAPTER IV
CONCLUSION

4.1 Summary

In this thesis, we have considered the problem of minimax, robust M-
estimation of scale, when the distribution generating the observations is assumed
to be approximately known. It is assumed that the underlying distribution lies
within a certain convex class P of distributions. Two common classes of distri-
butions which we have studied are e-contamination neighbourhood model G, (G)
and Kolmogorov neighbourhood model K.(G).

In chapter I, an M-estimate S of scale is defined. It corresponds to the
choice of an estimating function x. We denote I(F) to be the Fisher information
for scale at F* with scale equal to 1 and Fj to be the distribution which minimizes
I(F) over P. We put yo(z) = —z%(:v) — 1 where fo = Fj. Then we note that
Yo 1s minimax in the sense that it minimizes the maximum asymptotic variance
over the distributions ¥ € P satisfying So(F') =1 where Sy is the M-estimators
corresponding to the estimating function xo.

We first obtained the least informative distribution Fy and the corresponding
Xo in the e-contamination neighbourhood model G.(G) where G is symmetric
with finite Fisher information for scale and that the density g*(z) = 2e%g(c*) is
strongly unimodal, g = G'. We derived an easily checked necessary and sufficient
condition for g* to be strongly unimodal. We found that typical distributions
G satisfying these conditions are the normal, logistic, Student’s ¢ and Laplace.
We also provided a result for the case when g* is not strongly unimodal. All of
the obtained results for the lcast informative distribution in the e-contamination
neighbourhood model rely on a log transformation of the absolute value of the

data, changing the scale problem cntirely to a location one.
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In Chapter II, we first pointed out that although the Kolmogorov neigh-
bourhood structure is maintained under the log transformation of the absolute
value of the data, there is no corresponding location theory to obtain the least
informative distribution in K.(G). This is because although we assume the dis-
tribution function G to be symmetric, the transformed distribution function G*
defined by G*(z) = G(e*) — G(—e”) may not be and the existing location theory
for Kolmogorov case can only deal with symmetric G*. A direct approach to the
problem was then introduced.

Under certain mild assumptions on the distribution function G, we obtained
some conditions which are necessary and sufficient in order that Fy have minimum
Fisher information for scale in K.(G). We note that the above mentioned results
are not sufficient to characterize the forms of Fy and the corresponding xo since
the form of (xo, Fo) depends on the shape of the graph J(£)(z) = 2z€'(z) - £*(x)
versus = where §(z) = —a:-qgi(z) -1 and ¢ = G'. By imposing some further re-
strictions on the graph of J(£)(z), the explicit forms of {xo,Fo) were obtained.
These results are general enough to include the cases where G are normal, logis-
tic, Student’s ¢ and Laplace. Besides, our results are not restricted to random
variables on the whole real line - the real line may be replaced by its non-negative
half throughout, with no essential changes in the theory.

In the last section of Chapter II; we made some corrections on Thall’s (1979)
paper and providec, a correct solution to his particular problem which is essen-
tially to find (xo,Fo) when the Kolmogorov exponential neighbourhood model
(ie. K(G),G(z)=1—e"%,220)is concerned.

In Chapter III, we define the asymptotic loss R(x, F) and use it as a quantity

in comparing the performance of the scale estimators. We ask whether or not



the saddlepoint property

1

R(xo, F) < R(xo0,Fo) = D) < R(x, Fo)

holds in e-contamination neighbourhood model G.(G) and Kolmogorov neighbour-

hood model K.(G) with G satisfying certain conditions. If it does, the minimax

properties holds. We showed that the above saddlepoint property fails in

(i) G.(G), large € case where G is assumed to be symmetric and satisfy the
property that the derivative of G*(z) = 2G(e®) — 1 is strongly unimodal.

(i1) Ge(®),.0997 < e £.2051 (= the boundary between the “small €” and “large
e” form, if G = @).

(iii) K.(G), all € where G satisfies certain mild conditions.

4.2 Future Research

One question that arises in this thesis is that if the saddlepoint property
fails, does the minimax property still hold? Is it possible to find an M-estimator
of scale which is minimax within a given convex class of distributions? This same
question may also be asked in location case.

Throughout this thesis, we use the asymptotic variance or asymptotic loss
as the criterion in comparing the performance of M-estimators for scale. But if
our interest is not merely to find a ‘best’ estimator among all the M-estimator of
scale but to estimate a scale parameter for a random variable X, other possible
criterion that serve may be the asymptotic bias or mean square error. Martin
and Zamar (1989) discussed the asymtotically min-max bias robust M-estimates
of scale for positive random variables. Another interesting problem may be to
find the M-estimator of scale that minimizes the maximum mean square error in

a given convex class of distributions.



Moreover, it might be possible to extend the research to investigating whether
or not the efficient L-estimators for scale corresponding to the least informative
distributions satisfy the saddlepoint property. Indeed, we conjecture that the

answer is negative.
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