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Abstract

A virtual reality system must balance the need for real'stic object interaction,
suck as collision detection, with the need for a fast, interactive display. The more
complex an object’s geometry, the more realistic its appearance. However, performing
interference detection and prediction on such complex objects is time-consuming and
reduces the drawing rate. The drewing rate can be improve: by culling those objects
that cannot be seen given the user’s current position and line of sight.

This thesis focuses on extending the Object Modeling Language to provide colli-
sion detection and prediction, and object culling. The approach we take uses bounding
boxes to approximate an object’s geometry. The box simplification reduces the cost
of calculations both in predicting collisions and determining if an object is visible
and should thus be drawn. Potentially, all pairs of objects in an environment must
be checked for collision. As the number of objects in an environment increases, this
becomes an obstacle to the real-time requirements of a virtual reality system. We
therefore investigate an approach in subdividing the drawing area in order to reduce
the number of cbject pairs that must be tested.
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Chapter 1

Introduction

1.1 Motivation

A common criticism of virtual reality is. ironically. the low degree of reality dis-
played in virtual world applications. Often. interactions between objects are unnat-
ural. if not. in fact. physically impossible. such as the movement of seemingly solid
objects through cach other. The illusion of reality is further hampered by the poor
quality of the images.

While complex objects appear more realistic than simple ones, they are difficult
to manipulate. Much time is spent in mathematical calculations to enable natural-
looking object interaction, such as collision detection and response. This time factor
is critical in allowing realistic interaction between the user and the virtual objects.
Generally. the complexity of objects must be sacrificed to achieve reasonable redraw
and response rates.

Much of the work in collision detection has been concerned with the exact cal-
culation of a collision time and location. Often. this requires motion to be fully
pre-specified, so that the location of an object is known at any point in the fu-
ture.  For virtual reality applications. we cannot always predict the motion of an
object, especially since it can be interactively manipulated by the user. Further-

more, mathematically expensive. though exact, collision detection methods prove too
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time-consuming for real-time response.

Drawing time can be reduced considerably by culling the objects and the parts
of objects that cannot be seen given the viewer's current position and line of sight.
Culling has been explored extensively within the field of ray tracing, using techuiques
that preprocess the objects based on possible viewpoints or on spatial »ositioning,
In ray tracing. the viewpoint is fixed. and objects are generally immobile. Tn virtual
worlds. however. the position of both the viewer and the objects can change, rendering
traditional 1ay tracing techniques inadequate.

The Object Modeling Lariguage (OML) developed by Professor M. Green [10],
allows for the creation of complex hierarchical objects to be used in virtual environ-
ments. The geometry of these objects can be transformed and changed throughout
the execution of an application, allowing the user to create animated objects with in-
teresting behaviours. However. as the complexity of the object increases, more time
is required to redraw the virtual scene. and to calculate interactions between pairs of
objects.

Currently. detecting collisions between objects in the environment is left for the
user to implement. An application in OML can potent 1ally consist of a large number of
objects. As the number and complexity of objects increase. it becomes tedions for {he
designer to manually implement checks for object interference. Fneoding a correct
collision detection algorithm is made more difficult by the geometrical complexity
of OML objects and by the time requirements of an interactive real time virtnal
application.

We propose extending QML with commands to allow collision detection, collision
prediction and culling of objects not visible given the viewer's current line of sight.
To meet the speed requirements of virtual reality, we need to make these methods
as efficient as possible. Using the complex, hierarchical representation of an object
directly to determine collisions would be too time-consuming,.

However. the geometry of an object with a complex hierarchy can be approximated

using a bounding box. that is. the smallest 3-dimensional axis-aligned box that cay



completely contain the object. If two bounding boxes do not intersect. neither do
the objects contained in them. Similarly. if no part of a bounding box is within the
range of vision. neither is the object it represents. Using bounding boxes. determining
the time until a collision between two objects or whether or not an object should be

rendered involve much simpler calculations.

1.2 Goals

Bounding boxes will be used in two manners. First, bounding boxes will be used
to maintain information about the various objects within the environment. We wish
to detect collisions at both the object and sub-object level. We also want to allow
collision avoidance by tracking the time until a collision would occur. This involves
maintaining the velocity of an object through its environment. Collision detection
should require a minimum of effort on the part of the user. Additionally. it should
not slow down the application through excessive computational requirements,

Second. we wish to make rendering as efficient as possible by culling the objects
which are not visible given the viewer's current line of sight. Culling can be done at
a gross or fine level. that is. culling either the entire object or subparts of it. As well,

we do not want to draw objects that are too distant from the viewer to be recognized.

1.3 Overview of Thesis

The thesis begins with an overview of previous work in the area of collision de-
tection. Techniques that attempt to minimize the number of calculations required
for detecting collisions are also described. Next. we give a brief background on the
Object Modeling Language and the creation and manipulation of OML objects. We
then deseribe our implementation of bounding volumes. how they are calculated and
maintained threughout execution of an application. and how they are used to cal-

culate velocity. We describe how these volumes are used for collision detection and



culling at an object level. as well as how these ideas could be extended for use at a
sub-object level. Finally. we evaluate the success of the various culling techniques in

our tests. and describe ideas for future work in collision detection and culling.



Chapter 2

Previous Work

2.1 Collision Detection Techniques

Collision detection has been studied extensively in areas such as motion planning,
robotics, and computer simulation. In virtual worlds, collision detection can be used
to give a stronger sense of reality, by preventing objects from passing through each
other and by signalling responses to contact between virtual objects.

Collision detection is concerned with determining whether objects will collide, and
if so, when and where that collision will occur. Previous work has generally concen-
trated on three types of collision detection: detection between stationary objects only,
which is used. for example, in CAD programs to guarantee that parts of a design do
not interfere; detection between a single object moving among several stationary ones,
which is used in motion planning; and detection between several potentially moving
objects. These last two situations are the ones that are the primary concern in virtual
reality.

Boyse [2] defines a collision as occurring when two objects interpenetrate or when
faces of adjacent objects coincide. He describes a test system which allows users to
move objects within the environment. The system monitors this motion and does not
allow objects to be placed so that they interfere with others. Objects in this world are

represented as polyhedra to simplify the calculations required in detecting collisions.
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Objects consist of faces. in which a face is bounded by edges, and each edge is defined
by two points. Objects may be part of a hierarchy. which can be used to create more
complex objects.

For interference checking between stationary objects, Boyse first tests the bound-
ing spheres or boxes for intersection, followed by a more calculation intensive. precise
intersection test if the bounds appear to intersect. The exact test for intersection is
done by tracing rays from points on the edge and from the vertices of one object and
counting the number of faces crossed in the second object. If there is an odd number
of crossings or if the ray goes from the inside to the outside of the object then the
two objects intersect.

For interference checking between a moving and a stationary object, Boyse defines
a collision as occurring when the face of one object contacts the face of the other
object. He proves that it is sufficient to detect a collision of an edge with a face of the
other object. Again, he does an initial test between a bounding cylinder produced by
the moving object and the sphere containing the statibnary one and does an exact.
check only if these intersect. For a moving and a stationary object, there are two
potential types of collision. In the first, contact occurs between an edge of the moving
object and the interior of a face of the stationary object, in which case one endpoint
of the edge will be the first to collide with the face. As the endpoint moves over time,
it creates a 3-dimensional curve: if this curve intersects any face of the other object,
the two objects will eventually interfere. The second type of collision occurs when
the edge of the moving object contacts the edge boundary of a face. As the edge
moves over time, it creates a surface in space. If this surface intersects the boundary
of a face on the stationary object, the two objects will collide. By calculating all
collisions and remembering the one occurring earliest in time, this technique can
also determine the distance between objects and the time until collision. However,
extending Boyse’s technique to two moving objects proves inadequate, since simply
detecting a collision at some point between the swept out volumes of the moving

objects does not guarantee that they occupy that space at the same time.
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Hahn [11] describes a hierarchical method of defining objects using bounding
hoxes, in which collision detection is done at discrete intervals of time. Extending
the two methods described by Boyse [2], Hahn detects the place and time of collision
by movir.g objects one time interval, seeing if a collision occurs, and then working
backwards in time to determine the first instance of actual interference. One case of
ohject penetration occurs when a vertex of an edge intersects the polygon of another
object. A ray is drawn from the collision point along the negative relative velocity
of the two objects, and the time at which thz objects touch, but do not intersect, is
the start time of the collision. The other case occurs when the edge of one object
penetrates more than one face of the second object. Again, a ray is traced in the
reverse velocity direction to show the path the penetration point took - the earliest
time of all these points is the initial time of intersection. As with Boyse, Hahn makes
the assumption that the time step used in determining intersection is small compared
to the velocity of the polygons. When this is not the case, some collisions may be
missed if the objects “jump” over each other within one time frame.

Cameron (3] discusses two approaches to the clash detection problem with respect
to robotics. The first samples the motion of the two objects at a set number of time
steps. thus potentially using many simpler tests to determine collisions. Cameron
addresses the problem of determining an appropriate time step - choosing too small
a time step may result in many unnecessary tests, but too large a step may result
in missed collisions. He proposes allowing the system to determine the appropriate
time step using a divide and conquer approach. For given start and end times, the
minimum distance between the objects is found. If a collision occurs, this distance
will be less than or equal to 0. If the distance is too far too be reached in these
time steps. no collision occurs. If a collision is possible within this time frame, the
time is subdivided and each half interval is again checked. This continues until the
possibility of a collision is rejected or confirmed. This algorithm performs best if a
collision occurs, or if the objects are far apart, which halts the subdividing process.

Cameron's second approach is to test for intersections directly in four dimensions,

-1



which is expanded in his later paper [4]. In this work, he concentrates more on the
accuracy of collision detection with respect to a large variety of shapes, rather than
efficiency of the algorithm. Each object consists of a set of points and a location
function, which gives the position of the object for any point in the future. By
extruding objects over time into the fourth dimension, a test for collision consists of
merely checking the two extrusions for intersection. These extrusions are built using
Constructive Solid Geometry, in which simpler shapes are combined using operations
such as union, intersection and difference to produce the desired, more complex,
shape. For simplicity, Cameron combines half-spaces to create the desired shapes,
since the extrusion into 4-D of a half-space is another half-space. Each expression
consisting of a shape and its corresponding motion is converted into a tree, where
the leaf nodes are the half spaces used to approximate the object, and *he branch
nodes are the operations used to co.nhine them. These trees are then extruded into
4-dimensions.

Determining a collision between two extraded trees is done in three stages. First,
an approximation to the subtrees is created using S-bounds, which are used to focus
the attention of the algorithm. S-bounds describe an area of space by combining
subsets of space, such as half-spaces, using intersection and union operators. The
advantage is that these subsets of space are easier to describe and manipulate than
the resulting space. S-bounds are created by organizing the constraints between half-
spaces to allow quick decisions as to which parts of the tree are mutually exclusive.
Often, this bound set is rewritten using a smaller number of rules, and entire subtrees
may be replaced by the null set which then do not need to be explored further. The
second stage uses a divide-and-conquer approach to break the region containing the
object into smaller parts. The region, which is axis-aligned, is divided along the
axes, and a copy of the ohject tree associated with it is copied into all subregions.
This tree is simplified by removing leaves that correspond to half-spaces that do not
pass through this region. The subdivision process continues until the complexity of all

regions is deemed to be simple enough to continue onto the third stage of generate and



test. In this last phase, a “sufficient” number of points in space-time are generated
and cach is checked for intersection in the extruded half-spaces.

Solving the collision detection problem in four dimensions is also the approach
taken by Joseph and Platinga [13]. They distinguish between a point in configuration
space, which is the location and orientation of an object, and a point in space-time,
which is a point in the configuration space at a particular time. Their method is a
generalization of Dobkin and Kirkpatrick’s 1983 algorithm for determining the polyhe-
dron separation for convex 4-prisms. This method finds and minimizes the separation
of every pair of faces in 4-space, and so determines the time of the first collision.

To create the 4-prism, copies of the polyhedron P are made at the starting and the
ending time points. The end vertices of these copies are connected with an edge, the
edges of the copies are connected with a 2-D face, and the faces of the two copies are
connected with a 3-D face. The same is done with the second polyhedron, Q. Next,
hierarchical representations of these 4-prisms are created, P;,..., P, and @Q,,...,Q,,
where each successive approximation contains fewer vertices than the last, and where
Py = the {-prism for P . Each approximation is formed by removing an independent
set of vertices and taking the convex hull of the rest. For example, take level 7 to
be the lesser of the 4-prisms hierarchical levels r and s. The points p and g which
represent the closest points between P, and Q; are calculated. The vertices that make
up this representation are removed, giving level (i — 1), and the process is repeated,
until (7 = 1). The resulting points p and ¢ are the points in the polyhedra P and Q
which produce the minimum separation in 4-dimensions.

Culley and Kempf [6] take the approach that for applications such as path plan-
ning, an exact collision test is not required. It is adequate to find a “safe” time
interval in which no collision can occur, even if that interval is smaller than the exact
one. Thus, a conservative approximation of the objects can be used to simplify tests
for collision. The idea behind their method is that by determining the minimum
distance between two objects, and the maximum speed of both, one can calculate

the earliest time for a collision. For two bounding spheres, this distance is simply



the Euclidean distance between the centres minus the sum of the radii. Once this
conservative time is calculated. the exact time of contact can be found by advancing
the simulation by small time steps, and backing up if object penetration rather than
mere contact occurs.

Moore and Wilhelms [16] conclude that computationally expensive general solu-
tions to collision detection are not required in animation systems: instead, the speed
with which collisions are detected is of greater importance. They present two algo-
rithms, dealing with flexible surfaces and convex polyhedra respectively. Moore and
Wilhelnis model flexible surfaces as a grid of points connected into triangles. In this
representation, collision detection consists of checking if a point penetrates any of the
triangles to which it does not belong. At each step, the position of the point. at the
start is compared to the position of the point at the end, specifically, the perpendic-
ular distance from the point to the triangle is calculated. If the sign of the distance
changes. the point crosses the triangle in this time step, and the exact point can be
found by solving parametric equations.

Their technique for collision detection between convex polyhedra is based on the
Cyrus-Beck clipping algorithm. By taking the dot product of a face’s outward pointing
normal with a vector on the edge, it can be determined on which side of the face the
point lies. If a point lies towards the inside of all six planes represented by the faces
of the polyhedron, the point irtersects the polyhedron.

There are three possible intersection tests :

® a vertex in B intersects a face of A

e an edge of B intersects a face of A

® A and B are identical and moving through each other.

If any peint is found to be inside the other polyhedron, the algorithm can terminate.
First, the vertices of B are checked for inclusion in A using the method described
above. Next, the edges of B are checked for intersection against the faces of A. If the

perpendicular distance from the edge’s endpoints to the face’s plane differ in sign, the
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edge intersects the plane, and the intersection points can be found using the following

equations:

d; = (Ux‘ - Ukl) * Nk
dj = (v; —un) - m4
_ _ ldil
|d:| + |d;]
giving the point : P = v; + t(v; — v;).

where v;v; represents the edge, ux; is a vertex on the face, ny is the normal of the
face, and d; and d; are the distances from the endpoints to the plane. Evaluating
these equations for all plane faces of polyhedra A give a series of ¢ values between
0 and 1, which are kept in sorted order. Each pair of points resulting from these ¢
values, including the endpoints, represents a segment of the edge which crosses one
of the face planes, but which does not necessarily cross it within the polyhedra. The
midpoint of each of these segments is checked for inclusion in polyhedron A, using
the same method as in the first check. Lastly, the centroid of each face is tested for
inclusion in A, in case the faces are perfectly aligned and moving through each other.
The tests are then repeated, checking for the inclusion of points of A4 inside B.

Collision detection using this method is O(n?*m?) for n polyhedra and m ver-
tices/polyhedron. As with other methods, the algorithm will not detect a collision if
the objects move completely through each other in one time step.

Hubbard [12] addresses the fact that virtual reality applications require a collision
detection algorithm that is fast enough for use in an interactive environment. This
method must be real-time, even when applied to several objects, and must be able
to handle objects for which the motion is not pre-defined, since the motion may be
directed interactively by the user. He proposes an approximate collision detection
technique with progressive refinements, in which the level of collision detection is
refined until the process is interrupted by the application. This provides a flexible

system in which the quality of detection can be degraded when speed is crucial.
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In the first phase of testing, bounding boxes of all objects are compared to deter-
mine the earliest possible collision time. No more work is required until that time is
reached, at which point only the objects involved in the collision must be processed.
In this narrow processing phase, Hubbard creates 4-dimensional space-time bounds
to estimate the location of an object in the future. Using the analogy of a point
A moving over time, Hubbard shows that a 3-dimensional bound on the position of
A at a particular time ¢ is a sphere with a radius of (M/2)t2, where M is a scalar
upper bound on the acceleration. This sphere is centred at z(0) + velocity + time.
Applying this over time to four dimensions produces a series of these spheres, where
at any particular time ¢ , the cross-section is a 3-D sphere. This series of spheres
resembles a parabolic horn, in which the radius becomes larger with an increase in
time ¢ . Extending this idea to non-points creates a vnion of such 4-dimensional
parabolic horns. To simplify calculations, each paraboiic horn is bo nded with a
hyper-trapezoid, consisting of six 4-D faces,(one face for each 3-D face of the original
cube). A cross-section of the 4-D face at any time ¢ is an axis-aligned 3-D square, and
these cross sections increase in time with ¢ . Intersection between these space-time
bounds can be reduced to searching for an intersection between faces. These faces are
projected onto a 2-dimensional plane, which produces a line segment. If the two line
segments intersect at a time ¢;, the cross-segments at #; must also be checked using
linear programming techniques. If these intersect, so do the space-time bounds.

These space-time bounds expire when the upper bound on acceleration (which
determines the size of the cross-section) is no longer valid. At this point, the space-
time bounds must be recalculated. This approach is most efficient, if the time hetween
recalculations is large.

For further refinement, the objects themselves are modelled as a hierarchy of
spheres, called sphere-trees, where each deeper level uses a larger set of spheres to
more closely approximate the geometry of the object. It is from these spheres that the
space-time bounds are derived. The quality of collision detection improves with cach

additional level descended. The application can interrupt the detection algorithm at



any level, thus limiting the accuracy of the detection and the time spent on it.
Hubbard claims that these trees must be built only once per object, and that
the spheres can be transformed in the same manner as the object. However. this is
true only if the geometry of the object does not change throughout the application.
otherwise, the tree must be rebuilt. This collision detection scheme will not work
well if many geometry changes occur, requiring the trees to be rebuilt, or if there are
many changes to the type of motion, requiring many recalculations of the space-time

hounds.

2.2 Reducing the Number of Collision Tests

Many of the methods described above would prove cumbersome in an environment
consisting of several moving objects, in which we need to detect collisions between all
possible pairs. In fact, the algorithms presented could require O(N?) object collision
checks. and even more if we wish to find collisions between sub-objects. This is
wasteful in large environments in which some objects will likely never meet. Other
approaches in collision detection have attempted to reduce the number of checks that
are required by first determining a smaller region in which collisions may occur for
an object, and by building a list of highly likely interfering pairs of objects.

Such an approach is presented by Youn and Wohn [17], who are concerned with
finding collisions with sub-objects in a hierarchical representation of an object. They
localize possible collision regions by using a tree structure, called C-trees, to rep-
resent the structure of their objects. Each node of this tree is a bounding shape
enclosing all of the children below it. Each leaf is the actual sub-object shape. These
nodes localize the region that must be checked - if a collision does not occur with the
parent node, it cannot occur with any of the children.

They propose a two-pass algorithm, in which the first step creates a list of leaf-

node pairs which are highly likely to collide. and the second step determines collisions
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between the pairs in the list. The first pass recursively localizes the region being
checked. If two non-leaf nodes intersect, their children are localized against cach
other. If one node is a leaf and the other a non-leaf. then the children of the non-leaf

~de are localized against the leaf node. Once we are down to a comparison of two
leaves (which represent the shape of the actual sub-object), the pair is inserted into
the list of candidates for collision.

This approach can be extended to subdivide the region on an object-level as well,
where the leaves of the tree would represent one object structure. Thus, only likely
pairs of objects would be checked for intersection on a sub-object basis,

In this approach. much time may be needed to update the C-trees, which must
be modified whenever a segment of the object moves. This becomes an important
issue in virtual environments with continuously moving objects. Additionally, while
it is clear that the configuration of the C-tree determines the efficiency of the collision
checking. the authors do not discuss how best to generate these structures. If left to
the esigner of the virtual world, the optimal configuration cannot be guaranteed.

Dworkin and Zeltzer [7] also use a two-pass system to reduce the number of col-
lision calculations. Recognizing the cost of updating a hierarchical representation
of space at each time step in a dynamic environment, they propose using a sparse
dynamics model to predict the next collision for each object. This model assumes
that the number of collisions is considerably smaller than the number of objects in
the environment. Once we have found the first collision for an object, it must only he
compared to all other objects once the collision takes place, when a new target must
be found. Thus, if few collisions occur, few updates need to he made.

A meeting is predicted by solving the following quadratic formula,

,_ AP AV £V
 AV-AV
where

d= (AP AV  — AV -AV(AP-AP — (It + 1))

where the positions of the objects are given by (P + Vit) and (I’ + Vit), and the

radii of the bounding spheres are R, and R, respectively. This gives the time when



the distance between spheres bounding the objects is less than the sum of their radii.
If the discriminant is negative, the two spheres never meet. The smaller root gives
the time when the objects meet. whereas the larger root indicates the time when they
move apart.

Iiach element keeps track of its next collision. All possible collisions are maintained
in a time-ordered queur:. When the time of the first event is reached, an accurate
collision detection technique is used to determine if an actual collision occurs. If it
docs, both objects involved recalculate their next target and place that information
on the ordered quene. Finding the first target for each object will require O(N?)
comparisons, but can be done in preprocessing. Updating the target for one object
requires QO(/N') comparisons.

Collision predictions for an object may become invalid, either because the target
is hit by something and so is no longer in the object’s path. or because the object
itself is hit by something and so changes its direction. In the first case. the object
must locate a new target and enqueue the collision time. In the second case, the
event on the queue is simply ignored, since the path of the object has changed.

Success of this approach depends on the fact that the direction and speed of objects
do not change until after a collision occurs. If these factors change for an object, the
nearest target and the time of collision have to be recalculated. This would add extra
processing time, and potentially leave many stale events on the queue,

Zyda et.al. [18] achieve great efficiency in their animation system by exploiting
their knowledge of the objects in the environment. The system presented, NPSNET,
displays vehicle movement over ground and through air, which can be controlled either
interactively or via a script file. Collisions are detected among pairs of vehicles and
between vehicles and stationary terrain features. The world is divided into constant
size grids, since the size and the features of the terrain are fixed. Each grid square
contains a list of fixed objects that occur in it - for simplicity, the centre of the object
determines to which grid it belongs (for many applications, however. this is a bad

estimation, since collisions mayv occur with parts of objects overlapping into other
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grids). Whenever an object moves. it is checked for collision against other objects
within that grid. In NPSNET. fixed objects are attached to the ground and have
a limited elevation - thus. collisions are checked only if the moving object is low
enough to the ground to permit interference. Collisions with other moving vehicles
are determined by first calculating whether spheres bounding the vehicles intersect,
and then using ray tracing techniques to find the actual point of collision. which is
needed only for collision response. The assumption made in this technigque is that
vehicles have a “reasonable™ speed, and so will move across only one grid between
tests, thus ensuring that all collisions are found.

Although NPSNET achieves real-time performance, it comes at the expense of
generality. In NPSNET, collisions outside of the viewer's range are not calculated,
since it is assumed that they are of no interest. In a virtual reality system, however,
all collisions must be considered, because the line of sight may change, and we would
expect that part of the world to have changed as well. As well. collisions trigger
responses, and so might change the motion of an object. bringing it back into view.
In virtual environments. we cannot make assumptions about the size of the world.
the number of objects or their behaviour. Thus an application-specific approach such

as NPSNET is inappropriate for our work.

2.3 Applicability to Our Work

Most of the techniques discussed above are concerned with detecting collisions
exactly. This level of precision is unnecessary for most of our applications, and is, in
fact, undesirable as a default collision detection method. Collision detection may not
be required for all applications, so any added geometry overhead that is required to
simplify collision detection (for example, bounding boxes) must be minimal. Similarly,
the time required to detect collisions between two objects cannot be so long as to miss
other collisicns. In order to maintain a realistic feel to the virtual reality application,

the calculations required to determine collisions (or misses) cannot slow down the
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display. Computationally expensive collision detection schemes as described above
would be too slow for most virtual reality applications. especially ones in which many

objects must be checked.



Chapter 3

Background

3.1 Overview of OML and Its Use with MR.

OML (Object Modeling Language) is a procedural programming language used
to specify the geometry and behaviour of three-dimensional objects used in virtual
worlds. The geometry of objects created through OML is defined independently of
specific graphics packages. Interfaces currently exist for the graphics languages G,
and PHIGS.

OML allows objects to be specified in a hierarchical manner, providing a means
of creating complex objects from relatively simple shapes such as spheres, rectangles
and cylinders. An object is the result of a converted (hierarchical) solid, where a
solid can consist of zero or more polygons, as well as zero or more other solids.
Transformations and colour can be applied at all levels within the hierarchy, both
to solids and to polygons. These transformations will be applied to the children of the
solid/polygon as well. Labels and tags can be attached to any part of the hicrarchy
to reference either a certain piece of the geometry or a certain type of sub-object,
respectively.

A virtual envircnment can contain several instances of the same object. OML
objects may be parameterized. allowing each instance to have unique characteristics,

sucl as a distinct geometry, colour or velocity. Different instances may respond to
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different events, which may be generated by either the system (for example, clock
ticks) or the application (such as a hand gesture, or the intersection of objects). The
conditions that generate events are reevaluated every time step. An event may cause
a certain behaviour to be activated for an instance of an object. These behaviours,
specified when defining the object in OML, are used to animate the object. Behaviours
can consist of transforming an object or parts of that object, or of changing aspects of
its geometry, such as its colour or its modeling hierarchy. If no behaviour is specified
for an object, it cannot respond to any events.

The MR (Minimal Reality) Toolkit provides an interface between the viewer
and the virtual world. It maintains both the viewer’s position and their line-of-
sight through use of a Polhemus Isotrak device, thus determining which objects are

currently visible.

3.2 Transformations of OML Objects

Transformations can be applied to either the whole object, or to parts of the object.
Since objects are defined hierarchically, transformations may be applied individually
to a child node. If two objects are combined together into one solid and a rotation is
applied to them. the two objects will rotate about their individual origins, NOT the
origin of the combined object, as shown in Figure 1. This is an important distinction
when calculating bounding volumes. We wish to maintain the smallest bounding
volume possible throughout the application of any transformations. If we apply the
transformation only to the bounding volume at the highest level, it may no longer
provide the closest fit to the transformed objects underneath it (see Figure 2).

Translations. rotations and scaling are not commutative. Thus, the order in which
the transformations are applied must be maintained if we wish to use these transfor-
mations to calculate the new bounding volumes. In OML, the transformations for
each solid and polygon are stored in a linked list, with new transformations added to

the end of the list.
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3.3 Creation of Objects in OML

Several primitives are available to OML users, including rectangles, boxes and
spheres. Each primitive consists of a set of vertices and is initially axis-aligned. The
exception to this is a polygon created from a path. A path allows the user to state
specifically the values of the vertices, thus, axis-alignment is not guaranteed. An
object can be transformed (translated, rotated or scaled) only after being made into

a polygon (the result of calling any of the routines to create a primitive).
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Chapter 4

Calculating the Bounding Boxes

4.1 Determining an Approximating Geometry

There are two main issues to consider when choosing an approximating geome-
try for three-dimensional objects. First, the approximation must be fairly true to
the original form - having objects with approximations that are too generous could
cause collisions to be falsely detected, simply because the approximations collide.
Alternatively, actual collisions might go undetected if the approximation does not
fully contain the object. Second, the approximation must be casily and quickly up-
dated, since objects within virtual worlds can be continuously transformed by their
behaviours throughout execution of the application. Thus, savings gained by manip-
ulating the approximations to the geometry musi outweigh the cost of maintaining
them.

Bounding boxes and bounding spheres are two possibilities for approximating
object geometry. Bounding spheres have the advantage of making some calculations
easier, since every point on the outside of the sphere is an equal distance from the
centre. However, bounding spheres are a poor approximation for objects that are
much larger in one dimension than in another, such as walls or floors. Conversely,
bounding boxes provide a poor approximation to large spherical objects, in which

much empty space will be included in the corners of the box. However, since many
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virtual environments tend to include objects such as floors and walls, bounding boxes
are used as the primary approximation, from which sphere approximations can be
calculated if required.

Bounding boxes can be either axis-aligned or non-aligned. Axis-aligned boxes al-
low for quick intersection testing, since all that is required is checking the minimum
and maximum values in each dimension, resulting in at most six comparisons. Un-
fortunately, an axis-aligned bounding box is not the best choice for all objects. For
instance, an approximation of a line from (0,0,0) to (1,1,1) will have much wasted
space in the axis-aligned bounding box representation, as shown in Figure 3. Thus,
non-aligned boxes may provide a better fit to the actual object, however, determin-
ing and maintaining bounding box information and testing for intersections are more
difficult and time consuming than for axis-aligned bounding boxes. As noted in Sec-
tion 3.3, most objects in OML are created in an axis-aligned manner, making the

stored bounding box (the one used in future calculations) a fairly good approxima-
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tion.

The information required for each bounding box is added to the structure for
both polygons and solids. Thus, bounding boxes themselves are hierarchical, with
the bounding box for a solid being the box that contains the transformed bounding
boxes underneath it in the hierarchy. A bounding box consists of two OML_vectors (,
Y, and z values) representing the maximum and minimum corners of the bounding
box. The transformations are stored in a 4x4 matrix, again at each level in the
hierarchy. Thus, determining the transformed bounding box requires a multiplication
between a 4X4 matrix and the minimum and maximum corner coordinates to find the
new minimum and maximum values. This could be done interactively each time the
transformed bounding box values are required, however, determining the transformed
box once and storing it in the structure allows it to be quickly referenced in several
different instances. A direction vector is also stored for each solid, indicating the

change in the x, y, and z positions from the last time step.

4.2 Calculating the Bounding Box

When a new polygon is created its list of vertices is searched to determine the
minimum and maximum values in each dimension. These values are stored in the
polygon’s structure. If a new polygon is added to an existing one the bounding box
values are compared to determine the maxima and minima of the entire group of poly-
gons. Calculating the bound for a solid requires the comparison of the transformed
bounds of the solids and polygons underneath it.

The change of bounding box values at any level in the hierarchy must be reflected
in the levels above it (bounding boxes could change through the addition of new sub-
objects, or through the transformation of existing sub-objects). Transformations at
any level must also be propagated throughout lower levels in the hierarchy, resulting
in recalculations of the bounding boxes both beneath and above the transformed

level. It was initially thought that some recalculations could bhe saved by applying
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the transformation only at the transformed solid’s level, however this proved to be
a naive assumption. For example, consider the case of a rotation applied to a solid
which consists of several sub-objects. When actually drawing the solid, the rotation
is applied to each of the sub-objects individually; that is, the sub-objects rotate
around their individual centres, not the centre of the solid into which they have been
combined. Thus, the new bounding box could actually be smaller than the original
- however, by applving the transformation at the parent’s level, the new axis-aligned
bounding box is even larger than the original, as in Figure 4. A transformation to only
the top level bounding box of a hierarchical object could even produce an incorrect,

that is. too small, bounding box, as shown in Figure 5.

4.3 Determining Object Velocity

First, we must consider which motion generates a velocity value - obviously, trans-
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lation does. but what about rotation or scaling? The object may not actually “move”
but the points that make up the object do move.

Each time the bounding box values change, a new velocity vector must be calen-
lated. Currently, we estimate velocity using the changed position of the centre of the
bounding pox. This. however, may not be an accurate reflection of an object’s average
velocity. Consider an object in which the base remains stationary, but the top grows
and shrinks 1n one-dimension. Its velocity could be considered 0 - it is not actually
moving. The current method, however, calculates first a positive velocity (in the
direction of growth) and then a negative one, since the centroid of the object moves.
However. an object that grows equally in both a positive and negative direction,
would have a 0 velocity, since the centroid would remain fixed. As a second example,
consider a bird flying, in which the wings flap up and down, but the main motion js
forward. The velocity, as calculated using the current method, maps a jagged path

instead of a straight one, as the centroid of the bird moves up and down along with
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the rise and fall of its wings. In this particular case, calculating the velocity over
two time steps instead of one would remedy this problem. But this too would prove
inadequate when the bird turns suddenly. It seems any velocity we determine using
the bounding box would provide a rough approximation at best. Perhaps allowing
advanced users to specify the number of time steps used in determining the velocity
would provide more flexibility, meeting the needs of a larger set of applications.

We choose to calculate velocity only at the highest object level. However, each
sub-object in the hierarchy could potentially calculate its own velocity in a manner

similar to that used for the whole object, if a need for this arises.
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Chapter 5

Collision Detection

5.1 Checking for Collisions

A collision may be detected at either a gross (object) or detailed (object subparts)
level. The user can request an event to be signalled whenever a collision occurs
between two specified items, whether these items are objects, object subparts or a
mixture. Each such user request causes a new record to be added to an OML internal
list which maintains the pairs of items to check for collision. The stored record consists
of the addresses of the object instances and the desired subparts (if required) and the
event to be triggered upon collision. To allow collision prediction, a time value is also
stored indicating the number of ticks /it in advance /rm of a collision that the event
should be triggered. The velocity maintained for each object allows the time until a
collision to be estimated.

At the end of each time step this internally maintained list is traversed. The trans-
formed bounding boxes corresponding to each item in a collision-pair are checked for
intersection. Since the bounding boxes are axis-aligned, intersection testing requires
a maximum of six floating point comparisons to see if an overlap exists in all three
dimensions. If an intersection occurs, the event registered with that collision-pair is

triggered.
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5.2 Improving Collision Detection

‘The collision detection scheme, as described, depends on the fact that the number
of pairs we need to check is quite small. If, however, we want to check for any
collisions in the environment, it would become tedious to specify all possible pairs,
and time-consuming to check all of them at every time step - we may require as many

as O(N?) collision checks.

5.3 Spatial Subdivision

To remedy this, a three-dimensional stationary grid is calculated at the start of
the application, which subdivides the entire world drawing space into smaller boxes.
Each instance maintains a bit-flag (a 32-bit unsigned long int) which maps to the
drawing area. One individual bit indicates whether or not the instance occupies
that 3-D space. Obviously, pairs that are physically nowhere near each other cannot
intersect.

Choosing a subdivision scheme is more complicated than it would appear, simply
because any assumptions made to choose a method can be shown to be inadequate
for some hypothetical virtual world that might be designed. This is demonstrated in

the following subsections.

5.3.1 Subdividing into Fixed Size Boxes

We could choose to make the subdivisions of a fixed size - for instance, 1 cubic
metre. This would produce a linked list of flags, giving a total of (#subdivisions/32)
flags. Collision detection would then consist of looping through all the flags, ANDing
them until a hit (a nonzero AND value) is made. This could fail in two ways: there
may not be enough memory available for a linked list of flags for all instances, or the
division size chosen may not be appropriate for all worlds. As an example, suppose

someone created a virtual world consisting of the unjverse - using 1 cubic metre



divisions would surely cause memory allocation to fail. However. increasing the size
of the divisions is an inadequate solution. Consider a world consisting of a bee
hive...many collisions may occur inside the hive. but all of these would fall within
the 1 cubic metre subdivision. thus there would be no savings on the O(.V?) required

collision checks.

5.3.2 Subdividing into a Fixed Number of Boxes

Instead of subdividing into a standard grid size, we could choose to subdivide into
a standard number of boxes. Thus. the size of the grids would be flexible for each
application. but fixed within one application. However. this might not improve the
number of required collision checks, if most of the objects fall within the same grid

location.

5.3.3 Subdividing into Increasingly Smaller Volumes

The method we chose to implement repeatedly subdivides ai: area in which a
collision has been detected into 32-piece grids (the number that can be represented
by one unsigned long integer). If the AND of the objects” bit-flags is 0. we can assume
that no collision occurred. Similarly. if the objects intersect in ALL sub-arcas, we
can assume that a collision is quite likely, and proceed to the exact intersection
test (discussed in the previous section). Otherwise, we subdivide further only those
sections in which the objects may overlap (those which produced a “17 from ANDing
the flags).

The problem with this method arises in knowing when to stop subdividing. It
may not prove to be efficient to stop only when the objects intersect in all or none of
the grid sections. This leads to a similar discussion as to which grid size to choose:
any fixed size, or fixed number of subdivisions, may be inadequate given a world in
which all objects are very small or very large.

Currently. to choose the depth of subdivisions, we calculate the average bounding

box size (in x. v and z dimensions) over all object instances. The subdivision depth
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in each of the x. v and z dimensions is the number of times we need to divide a grid
block by 4 (or 2. in the z-dimension) to obtain a block that is no larger than the
average bounding box length in that dimension. We then take the largest of these
three depths as our overall subdivision depth. This is demonstrated in the following
section. Since we want to maintain integer values for the number and size of grid

sections. we do not allow a block size of less than 1. The depth is calculated only

once in preprocessing.

5.3.4 Mapping Bounding Boxes to the Spatial Grid

Before beginning the simulation. we traverse all instances and compare their
bounds to find the current world size (the minimum and maximum in each dimen-
sion. over all bounding boxes). To get 32 grid divisions (to allow storage in a 32
bit integer). we choose to divide the x and v dimensions into 4 pieces each. and the
z-dimension into 2 pieces. These pieces will have different lengths. depending on the
dimensions of the entire world area. To find the required number of subdivisions
along x. we recursively divide a grid box's x-length into 4 pieces until the result-
Ing size is less than the average x-dimension over all bounding boxes. For example.
consider a grid size along x of 32 1netres. with the average bounding box having an
x-dimension of 2 metres. Since the x dimension gets split into 4 pieces. we would need

a subdivision depth of 2:
32 metres/{ pieces = & metres/piece
& metres/{ pieces = 2 metres/picce

Every grid division that is intersected by a bounding box is marked in the bit
flag. The starting and ending blocks in x. v and z are determined by dividing the
bounding box by the grid step size in each dimension. For example. the vilues in the

x-dimension would be:
start->r = (bound->min.r - drawarea.min.r) / step.r
end->r = (bound->mar.r - drawarca.min.r) / step.r

If a boundary value is less than 0. it is mapped to 0. Similarly. the upper limit on
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Figure 6: Subdividing the Drawing Area into Grid Blocks

the boundary value is the maximum number of divisions in the given dimension,
Once these x. v and z boundaries are found. they are combined to give a unique

grid block. Specifically. blocks are incremented first in the z-dimension. followed by

v and then x. This is illustrated in Figure 6 for 1 divisions along the x-dimension.

and 2 divisions along the v and z-dimensions.

5.4 Predicting Collisions

In many applications. simply noting a collision once it has occurred is inadequate;
often. we want to be able to predict collisions in advance in order to avoid them. For
prediction. the user can specify that an event should be signalled a certain number of
seconds or system time ticks before the collision. If a time of 0 is specified. the event
will be signalled only upon actual collision.

The current implementation checks for a direct collision before checking for a

collision within the specified prediction time. This reduces the number of calculations



required, since the intersection of bounding boxes is considerably cheaper than any
of the prediction methods. It also has the added advantage that different behaviours
could be applied to an object when a collision is predicted than when it actually
occurs.

As noted in many of the papers described in Chapter 2, collision prediction is
difficult. We have implemented three methods of varying complexity and accuracy to

address this issue.

5.4.1 Checking at Each Time Step

If prediction is required for a small number of time units, and if the objects do
not move quickly, checking at discrete time intervals can be an effective and low cost
method. We simply calculate new bounding box values at each of the time steps until
a collision occurs, or until the time increment exceeds the required prediction time.

This technique could miss collisions, however, if the objects move quickly in rela-

tion to each other, or if one of the objects is quite thin.

5.4.2 An Approximation using Distance

We estimate the likelihood of a collision between two objects by calculating the
closest distance between the 3-dimensional vectors representing their respective veloc-
ities, where the base of the vector is the current centre of the object. If this distance
is less than the distance between the objects, and if the objects reach this point at
approximately the same time, then a collision will occur.

Taking the approach of Dworkin and Zeltzer 7], the distance between two spheres
is simply the distance between their centres, minus the sum of their radii. In our
application, we can create bounding spheres by using the diagonal distance from the
minimum to the maximum points of the bounding box as the sphere’s diameter. From
these, we can calculate the time at which the spheres first intersect and the time at
which they move apart. While this is simple to calculate, it suffers from inaccuracy

when modeling objects such as walls, as discussed earlier in Section 4.1, which will
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Figure 7: Sweeping a Bounding Box Out Over Time

have a spherical volume much larger than that of the actual object. This causes
collisions to be falsely detected, because an object may intersect with the bounding

sphere at some point in the future but not with the actual object.

5.4.3 A Bisection Sweeping Approach

By sweeping out both Lounding boxes along the direction of motion (as shown in
Figure 7) for the desired time interval, we create two new polyhedra. The shape of
each swept polyhedron is dependent on the type of motion, both in the number of
dimensions and in the direction taken in each dimension. If a bounding hox is not
moving or is moving only in 1 dimension, the result is another axis-aligned hounding
box with 8 vertices and 6 faces, shown in Figure 8. If it is moving in 2-dimensions,
the resulting polyhedron will consist of 12 vertices and 8 faces, 2 of which will he
bounded by 6 vertices and the rest by 4 vertices, as in Figure 9. If the bounding box

is moving in all 3-dimensions, the swept polyhedron will consist of 14 vertices and
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Figure 8: Sweeping a Box In The Positive X-Direction Only (as seen from above)
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Figure 9: Sweeping a Box In Both Positive X and Y-Direction (as seen from above)
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Figure 10: Sweeping a Box In Positive X.Y and Z-Direction (as seen from above)

12 faces, with each face bound by 4 vertices, as shown in Figure 10. The values of
the vertices are chosen from the 8 vertices of the original bounding hox, and the 8
vertices of the moved bounding box at the end of the time period. The direction of the
motion determines which of these vertices are used. For instance. different vertices
are used when x and y are both increasing (Figure 9) than when x is increasing and
y is decreasing (Figure 11).

For calculating an intersection we use the algorithm presented by Moore and
Wilhelms [16], which is applicable to convex polyhedra regardless of the number of
vertices or faces. We determine whether polyhedra A and B intersect by: (1) finding
if a vertex of B falls within object A; (2) finding if an edge of I3 intersects with a
face of A; (3) finding if any of the faces of B are moving through A, by testing if
the centroid of each face of B falls within A; (4) repeating the above steps with A
and B reversed. To reduce the number of calculations, we first calculate whether the

axis-aligned bounding boxes for these swept volumes intersect before doing the more
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Figure 11: Sweeping a Box In Positive X and Negative Y

expensive polyhedra intersection test. If there is no intersection over the entire swept
volume, the two objects do not intersect within that time frame.

The above calculations tell us if the two objects occupy the same space at some
point in the future, but not if they occupy it at the same moment. Thus, we use a
bisection technique to converge to the actual time of intersection. The time interval
is split in two, and the two pairs of polyhedra (those created for the first half time
interval versus those created for the second interval) are again tested for intersection.
As soon as both tests fail, we can conclude that there is no intersection and stop sub-
dividing. Otherwise, the subdivision continues with progressively smaller candidate
polyhedra until the intersection occurs within a time interval of one second. If one of
the objects is stationary, no subdivision is required unless we need to determine the
exact time of collision - it is enough to know that the collision occurs at some point
within the given time frame.

This technique will find non-intersections much more quickly than actual inter-
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sections. Thus. it is appropriate in an environment in which many pairs of objects
are checked for collision. but few collisions actually occur. This technique is highly
accurate, and will detect collisions even if only the corners of boxes intersect.

The above intersection method works only on polyhedra which have a discernable
inside and outside, that is, they must be closed. To ensure that this holds for all
objects. the three dimensions of an object’s bounding box are created with a minimum
width. This is merely a change to the internal representation, which does not affect
how the object appears when drawn. It is a reasonable assumption, since all objects
in the natural world have three dimensions, even though the width in a dimension

may be very thin.

5.4.4 Combining a Sphere Approximation with Sweeping

While spheres may be too large to be useful for collision prediction, they provide
a fast initial test for collision, as well as a smaller time frame in which the collision
could occur. The sphere approximation and the sweeping methods can be combined
to produce a method as accurate as the sweeping method alone, but not as time
consuming.

For example, say we want to predict a collision ¢ steps in advance. Using the
equations given by Dworkin [7] and detailed in Section 2.2, the starting and ending
time of the sphere collisions are found. If these times are both negative, the collision
has already occurred. If the starting time is greater than ¢, a collision will not occur
in the time of interest. If the starting time is negative, but the ending time is not,
then the spheres are currently intersecting. Thus, we use the more accurate sweeping
method to check for a collision in the time range [0 to t]. If the starting time falls
within [0 to t]. we can calculate where the bounding box would be at the starting time,

and then only check for a collision from that point to the time (¢ — starting_timne).
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5.5 Extensions for Sub-object Collision Detection

Collision detection at an object level can prohibit natural grouping of objects in
an environment. For instance, we would logically create a table object as having
four legs and a flat surface. If we want to permit objects to move between the legs,
but not through the legs, the current object-level collision detection scheme would be
inadequate. Detecting a collision with the bounding box of the table would not allow
movement between the table legs, since they fall within the box. Currently, the user
would be forced to split up the table into five separate objects and detect collision
with each leg separately. Alternatively, the user may wish to trigger different events
depending on the part of the object involved in the collision. For these reasons, we
need to be able to reference object subparts for collision detection.

Since bounding boxes exist at all levels in the hierarchy, we can use the same
approach as used for detecting collisions at an object level to detect collisions at a
sub-object level. The user can already apply tags and labels to reference a specific part
of an object’s geometry. However, we need to allow the user to reference these parts
outside of OML code as well, to specify them for collision detection. One approach
would be to maintain a list in each object instance containing its labels and pointers
to the sub-objects they reference. This list would have to be resolved by the OML
interpreter when a new object instance is created.

The OMI _collision command could then be modified to include not only the two
instances, but also the label of the subpart that should be checked for interference.

This command would then be:

event = OM L_collision(instancel, subpartl, instance2, subpart2, time).

If no subpart was specified, then the entire instance would be used for detecting a

collision.
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Chapter 6

Culling

6.1 Introduction

Drawing complex objects is very time consuming and hinders the performance of
virtual reality applications. Since real-time response is required to give an accurate
feel to the application, object complexity, and thus object realism, is usually sacrificed
to gain speed. Much effort is wasted drawing objects that cannot he seen given the
viewer’s current position and line of sight. Culling these invisible objects before
drawing could improve the speed of virtual worlds, allowing more complex and thus,
more realistic, objects to be used. However, determining which objects are visible can
also be expensive, thus, a successful culling method must determine visible objects
at a lesser cost than that of actually drawing the objects.

In order to be able to cull at the object level, a new OML drawing command is
added which supersedes the GL and PHIGS specific draw commands. Using this OML
command, we can first determine whether an object is viewable before the language
specific command is called. Four different culling techniques have been implemented,
with varying degrees of accuracy and computational complexity. These methods
could be used individually or applied in succession, using less costly techniques to
remove many of the objects before relying on more expensive tests. The methods are

described here, and a discussion of their accuracy follows in Section 7.2.
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6.1.1 Calculating the View Volume

The view volume is calculated once for each iteration of the drawing commands.
To signal the start of a new drawing round, the user must first call OML_Init_Draw,
then call OML_Draw for each instance to be drawn.

The view volume is approximated as a pyramid, with the narrow end at the current
eye-position. The visible range is calculated as 75 degrees in all directions from the
line of sight. which is a cautious estimation. Generally, a user would prefer that some
time is wasted drawing objects unnecessarily rather than not drawing objects that
are actually visible. |- experiments, a view volume of 75 degrees captured all visible
objects and still culled enough objects to prcvide an improvement in the polygon
drawing rate, as will be seen in Section 7.2. Unfortunately, we do not know how
far to extend the view volume along the line of sight, since technically, the user
can see for an infinite distance. The extension of the view volume is approximated
using ten times the distance from the first object to the eye position - should any of
the following objects prove to be further away, the volume is recalculated and this
new distance stored for further comparisons. The view volume coordinates are then
rotated according to the quaternion associated with the current eye position.

At this point, we also determine the rectangular, axis-aligned bounding box that
corresponds to the view volume and the bit flag mapping to the drawing area, using

the same techniques used for mapping objects for collision detection in Section 5.3.4.

6.2 Culling Techniques Implemented

6.2.1 A Sphere Approximation

Although axis-aligned bounding boxes allow fast intersection tests with other
objects. it is more difficult to correctly detect intersections between a box and a
prism/pyramid (the view volume) which is not necessarily axis-aligned. When using

a box for culling, it is difficult to know which points to check for intersection. With
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Figure 12: Difficulty in Choosing Test Points for Culling A Bounding Box

a large box. many possible locations for the view volume are possible, as shown in
Figure 12.

However. only simple calculations are required to determine if an intersection
exists between a cone and a sphere. We can use the values stored for the object’s
bounding box to create an approximate bounding sphere - the diagonal distance from
the minimum coordinates of the box to the maximum coordinates of the box becomes
the diameter of the bounding sphere.

We can reject objects that are too small or too far away to be seen by caleulating
the ratio of the object’s diameter to the distance between the viewer and the object,
Conversely, objects that surround the viewer can be trivially accepted as being visible.
This is the case when the distance from the object’s centre to the viewer is less than
the radius of the sphere, as shown in Figure 13.

Next, we test for intersection between the object sphere and the viewing cone. An
intersection occurs if the angles of the viewing cone overlap with the angles from the
line of sight to the outside of the sphere. There are three cases of overlap to consider.
In the first, most of the object lies within the view volume, in which case we check if
the angle from the line of sight to the object’s centre overlaps with the angles of the

viewing cone (see Figure 14). In the second case, part of the object, not including the
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centre. falls within the view volume, as shown in Figure 15. Here, we check to see if
the angles to the outside of the sphere fall within with those of the viewing cone. I
the last case. shown in Figure 16. the view volume falls within the sphere, so we test
if the angles of the viewing cone fall within the angles to the outside of the sphere,
If none of these cases hold, the object is not visible.

Figure 17 will be used to show how these angles are calculated. In this figure, P’
is the centre of the sphere and r is the radius of the sphere. Q, which lies on the line
OT, is the point on the sphere closest to the line of sight, whereas the furthest point
lies on the line OS. The angle £PQO is 90 degrees. The viewing cone angles are
given by LAOX and (X OB, which in our case are each 75 degrees.

We wish to calculate the angle between the line of sight and the points on the
sphere closest to and furthest from this line. To do this we use the fact that every
point on the outside of the sphere is an equal distance from the centre. and that we
can calculate the distance from the eye to the centre of the sphere.

The angle between the centre of the sphere and the point on the sphere elosest 1o
the line of sight is calculated as follows:

r

LPOQ = arc.sino_—:.[).

Because of the properties of a sphere, this is also equal to the angle between the
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centre of the sphere and the point on the sphere furthest from the line of sight. Next,

the angle between the centre of the sphere and the line of sight is calculated as:

PO-0OX
lOP|

Thus. the angles between the line of sight and the points on the sphere are:

(POX = arccos

(TOX = (POX — LPOQ (near point)
LSOX = (POX + (POQ (far point)

The angle range for the view volume is from (XOB to LAOX . whereas the angle
range for the sphere is from (TOX to £SOX. The sphere and the view volume
intersect if these angle ranges overlap.

If only this culling method is used. we do not need to calculate the view volume,
or the bounding box or bitmap flag associated with it. This saves several calculations

each drawing iteration.

6.2.2 An Approximate Object/View Volume Intersection

Determining the visibility of an object can he seen as a test for intersection he-
tween the view volume and the object space. This can be quickly checked using the

same method of comparing bit flags indicating spatial location as done for collision

detection. that is. we AND the object’s flag with that calculated for the view volume.

However. instead of further subdividing the space, we simply reject those objects that
do not intersect with the view volume at all, indicated by an AND-value of 0.
Similarly. we can use the bounding box collision technique check for overlap he-
tween . axis-aligned approximations for the view volume and the object. This will
remove more objects than checking the bit flags. but requires at most six floating

point comparisons. whereas checking the bit flags is one ANI) operation.

6.2.3 An Exact Object/View Volume Intersection

The view volume is a five-sided prism. so we can do an exact object and vol-
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ume intersection test by using the polyhedra intersection test implemented to test
whether objects will collide at some future point, described in Section 5.4. However,
this is a computationally expensive method, and is inappropriate for culling in most

applications (unless extremely complex objects are used).

6.3 Extensions for Culling Sub-Objects

The ahove techniques all cull at the object level. However, for large and complex
objects. it might be advantageous to more finely determine which parts are visible.

First, we would need to find a fast heuristic to decide the appropriateness of
finer culling for any given object. This might be the number of sub-objects involved,
the size of the object, the percentage of the object within the viewing volume or a
combination of these factors.

Currently, the language-specific drawing structure of OML objects is stored and
updated only when that object changes. If we are to cull sub-objects, we would need
to traverse the object each time and flag the parts that are visible, instead of merely
drawing the existing structure. As well, we would have to apply all transformations
along the hicrarchy whether or not that part of the object is drawn. This may be

more time-consuming than just using the existing structure.

6.4 Limitations of Thes+ Techniques

These methods remove objects that are behind the user or at too sharp an angle
or too distant to be seen. however, they do not identify objects that are obstructed
by other objects. Intuitively, we feel removing hidden objects might be too compu-
tationally expensive to meet the real-time objectives of our virtual reality system,

however. no work in this area has been attempted.



Chapter 7

Testing

A common measurement of virtual reality systems is the number of polygons
drawn per second. The higher this rate, the more realistic the motion in the ap-
plication. Although items are culled on an object level, we calculate the polygon
rate using the number of polygons contained in the object. A complex object will
contain many more polygons than a simple one, thus culling a complex object will
improve the polygon rate more than removing a simple one. When calculating the
polygon rate, we can use either the total real time, which includes the time spent in
I/O and swapping, or the total time spent executing ouly our process, taken from
rusage “user’ statistics. The real time rate reflects what is seen by the viewer as
the application is running. including slow downs caused by other users or processes.
The user time rate does not measure time spent outside our process, and so better
mndicates the success or weakness of our various algorithms and implementations. In
several of the tables used in this chapter, both statistics will e given. All tests were

run on a Silicon Graphics 4D/310VGX.

7.1 Evaluating Subdivision in Collision Detection

A major concern in collision detection is that potentially all pairs of objects will

need to be checked for interference. In Section 5.2, we propose a subdivision technique
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Time Used | # Objects | No Spatial Division | One-Level Grid | Deeper Subdivision
(polygons/sec) (polygons/sec) (polygons/sec)
Real 10 13650 13636 13754
Real 20 13426 13867 13564
Real 30 11548 11714 10931
Real 40 10186 10531 10108
User 10 20825 19310 18708
User 20 17634 17500 17608
User 30 16615 16999 16448
User 40 16013 15950 15561

Table 7.1: Polygon Rates - Several MMoving, Few Stationary Objects

that maps the object’s bounding box to grid locations in the drawing area, giving a
position flag that can be ANDed with that of other objects to quickly reject non-
coiliding pairs.

To test the efficiency of such an approach, we looked at two cases. In the first, a
room was created that contained few static objects, and various numbers of moving
objects. Each time an object moves, its bit flag, indicating the grid locations inter-
sected, must be updated. However, only a small number of tests for collision must
be carried out for each moving object. In the second test, a maze consisting of many
static objects and very few moving ones was created. Here, little work is spent in

updating the bit flags. however, many more collision tests are required.

7.1.1 Case of Several Moving Objects, Few Static Objects

Table 7.1 and Graphs 18 and 19 show the polygon rate in tests with various
numbers of moving objects. Each moving object checks for collision with four static
objects. We tested three variations: using no spatial division, so no time is spent up-
dating the grid; using one level of division, so the grid is updated but no further sub-
division occurs; and using the deeper subdivision technique described in Section 5.3.3.
These rates were obtained using no culling techniques.

As is to be expected. the overall performance decreased as the number of moving

objects increased. regardless of the spatial division technique used. This is due to the
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Time Used | # Objects || No Spatial Division | One-Level Grid | Deeper Subdivision
(polygons/sec) (polygons/sec) (polygons/sec)
Real ] 19977 20123 18374
Real 3 16182 16192 13896
Real 10 12638 12865 10531
User I 30882 33244 29342
User 5 23851 24428 19196
User 10 18845 19655 14694

Table 7.2: Polygon Rate - Many Stationary, Few Moving Objects

greater amount of time required for collision detection and for processing behaviours.
It can be seen that neither of the division techniques provided a clear advantage for
detecting collisions in this environment. Apparently, the time needed to constantly
update the bit flag for the moving objects exceeded any time gained by quickly re-

Jjecting non-collisions.

7.1.2 Case of Few Moving Objects, Several Static Objects

Table 7.2 shows the polygon rate for tests with 600 stationary objects, and small
numbers of moving objects. Each moving object must check for collision with all 600
static objects. The timings are for 1000 redraws of the scene, with no culling. These
results are also presented in Graphs 20 and 21.

The polygon rates in this set of tests are generally higher than those of the previous
section. Even though more objects are drawn, fewer objects are moving, thus fewer
behaviours need to be updated. Processing behaviours can be quite expensive, causing
the application to be slower.

In these tests, it can be seen that using deeper subdivision does not provide any
gain in the polygon rate. There is a very slight improvement in comparing the bit flags
over using the collision method with no spatial division. Generally, interesting virtual
environments will contain many more moving objects than we have used here, which,
as shown in the previous set of tests, will reduce the efficiency of our subdivision

methods.




52

21000 T Y
. 1\"'cb1)ivlz‘}cionl e
ne Level o
19000 < ceper o—
17000 ]
Rea{ Time
Polygon
Rate 15000 -
(polys/sec)

13000

11000 F ~e -
9000 4 A
1 5 10

# of Moving Objects

Figure 20: Graph of Real Time Polygon Rates for Several Stationary Objects

34000 . r Y
32000 |- No Dip =—
¥ One Level o--
30000 ceper -e— =
28000 i
User Time 26000 -
Polygon

oo 24000
(polys/sec) 22000
20000

18000

16000

14000

# of Moving Objects

Figure 21: Graph of User Time Polygon Rates for Several Stationary Objects



7.1.3 Analysis

The subdivision technique used to reduce the number of checks f.r collision does
not appear successful in its current implementation, unless extremely large numbers
of objects are involved. For environments in which several objects are moving, too
much time is spent updating the bit flags. Even ignoring the update time, we must
still traverse all possible pairs of collisions, and there does not appear to be enough
time savings in comparing two flags over comparing the (at most) six floating point
numbers which represent the bounding boxes. A more successful method would be
one that actually reduces the number of pairs to be tested instead of simply changing

the accuracy and speed of the testing method.

7.2 Comparison of Culling Techniques

7.2.1 The First Test Environment

To test the effect of culling, we can compare the number of polygons drawn and
the time required to traverse a given pith through an environment with and without
culling. Both the motion and the line of sight must be the same for the two tests,
since it is the line of sight that determines which objects are visible.

A maze consisting of a square floor and 81 separate boxed wall segments was
created using JDCAD ! to test our four culling techniques. Each wall piece is a
separate object to allow culling at the object level. The floor is 36.6 metres square,
and 0.3 metres thick. Each wall segment is a box of dimensions 4.5 X 4.5 X 0.3
metres, thus each object consists of 6 polygons.

The eye position of the user begins at a corner of the maze, and travels towards
the centre of the maze in a spiral manner. Each turn is made in increments of 6

degrees. The eye travels along the x and y axes in steps of 0.5 metres per time step,

YIDCAD is a Computer Aided Design tool developed at the University of Alberta by Jiandong
Liang. which allows the user to design hierarchical objects using a six-dimensional input device.
This model is then converted into OML code.

[y
CQ
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Max. # Objects Average # Average Y%age
Any One Iteration | Over All Iterations | Over All Iterations
Culled by Sphere Test 70 40 48
Culled by Bitmap Test 60 2] 25
Culled by Bounds Test 71 28 34
Culled by Volume Test 75 43 52
Actually Drawn 65 39 18

Table 7.3: Axis-Aligned Culling Test For 82 Objects

at a height of 2 metres. At this speed, 686 redraws of the scene are required, giving a
total of 3380040 polygons drawn. Slight variations in the path length. causing more
redraws, did not greatly vary the results. At no point in the test does the eye position
travel outside the maze. (Having the eye outside the maze, that is, looking into blank
space, would increase the number of objects culled, but this does not occur in typical

applications).

7.2.2 Calculating the Number of Objects Culled

In the first set of tests, the maze pieces were axis-aligned, thus simulating the
bounding boxes of OML objects. More substantial time savings would bhe seen if
each wall piece was actually a complex, hierarchical object, which is more expensive
to draw than a box. Table 7.3 shows the maximum and average number of the 82
objects culled by each of the four methods, as well as the number actually drawn.

These tests show the view volume/object intersection to be the most accurate,
followed by the sphere/cone test, the intersection of the bounding boxes, and the
intersection of the bit flags. The objects identified for culling by the exact view
volume/object intersection method is a superset of those identified by the other tech-
niques. The sphere/cone intersection method culls all of the same objects that are
identified by the bit tests, and misses only a few that are culled by the bounding box
intersection test. In this experiment, at most 7 objects of the 82 that were culled
by the bounding box test were missed by the sphere test. (These misses would most

likely occur because a bounding sphere is a larger approximation of the object, and
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Max. # Objects Average # Average %age
Any One Iteration | Over All Iterations | Over All [terations
Culled by Bitmap Test 60 21 25
" Culled by Bounds Test 24 7 9
Culled by Sphere Test 62 12 15
Culled by Volume Test 6 2 3
Actually Drawn 65 39 48

Table 7.4: Culling Tests Applied in Order of Complexity For 82 Axis-Aligned Objects

so is more likely to be within the visible range). Similarly, the bounding box test
identifies the same objects as the bitmap test, but misses several of those identified
for culling by the sphere test. The bounding box test basically removes the objects
behind the viewer. but not those at too sharp an angle to be seen, which can be
culled by the sphere test. The bitmap test is the least accurate, but it is the fastest
to apply, and can be used to quickly reduce the number of objects to be tested.

The accuracy of these culling techniques corresponds to the computational com-
plexity required to implement them. We next applied the culling techniques in terms
of increasing accuracy (and increasing complexity). If an object was identified for
culling by one method, it was not checked by the other methods. Thus, objects that
are far from the view volume can be quickly and inexpensively culled. However, ob-
jects that are in or near the view volume must go through all four culling tests. As
shown in Table 7.4, few polygons were culled by the most time-consuming method,
the view volume/object intersection test. We must thus consider whether the gains
made by culling these few objects outweighs the cost of applying this test (the answer
will become obvious in Section 7.2.3).

In the second set of tests, the maze and all its pieces were rotated by 45 degrees,
thus making them non-aligned with the x and y axes. This resulted in a less tight fit
by the bounding boxes. with the bounding volume larger than the original object. It
is thus more likely to intersect with the view volume causing the object to be drawn
even though it may not actually be visible. The culling values obtained from the

rotated maze. given in Table 7.5. show that the intersection tests using the bit flag
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Max.# Objects Average # Average Y%age
L Any One lteration | Over All Iterations | Over All [terations
Culled by Sphere Test 70 39 18
Culled by Bitmap Test 32 2 2
Culled by Bounds Test 37 4 5
Culled by Volume Test 73 42 51
Actually Drawn 66 40 19

Table 7.5: Unaligned Culling Test For 82 Objects

Max# Objects Average # Average Yage
Any One lteration | Over All Iterations | Over All Iterations
Culled by Bitmap Test 32 2 2
Culled by Bounds Test 29 2 3
Culled by Sphere Test 70 35 13
Culled by Volume Test 5 2 3
Actually Drawn 66 40 49

Table 7.6: Cuiling Tests Applied in Order of Complexity For 82 Unaligned Objects

and the bounding box are far less useful in culling objects than in the aligned object
tests. However, the sphere/cone method is still quite successful in detecting objects
to cull. When the tests are applied in succession, as shown in Table 7.6, many more
objects are removed by the sphere test than when the objects were axis-aligned, since
fewer were culled by the carlier bit flag and bounding box tests.

In the rotated maze. the bounding boxes of objects are a less accurate represen-
tation of the underlying geometry. The bounding box and bit flag representing the
eye will also be less accurate. The eye will be moving at an angle, so the axis-aligned
bounding box representation of the view volume will contain much maore area, includ-
ing area potentially behind the viewer. Moving at an angle does not affect the cone
represen.ation of the view volume, however, thus the number of objects culled by the
sphere/cone method in the rotated maze is similar to that of the axis-aligned maze.

Next, we created a maze consisting of three axis-aligned floors, each floor having
the same configuration as in the tests described previously. The separation distanee

between these floors had a great effect on the number of objects culled. Since no
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Max. # Objects Average # Average %age
Any One Iteration | Over All Iterations | Over All Iterations
Culled by Bitmap Test 180 62 25
Culled by Bounds Test 72 21 9
Culled by Sphere Test 226 109 44
Culled by Volume Test 22 5 2
Actually Drawn 129 48 20

Table 7.7: Culling Tests Ordered by Complexity For a Maze of 3 Separated Floors

hidden surface removal is attempted, having three floors directly on top of each other
produces numbers similar to those for one floor, as all floors are within the visible
range (75 degrees in all directions). However, separating the floors by a large amount
so that not all floors are visible shows that the culling methods remove a large per-
centage of the objects in the environment. (For our test, a separation distance of 80
metres was used.) This test corresponds to large environments in which only a small
number of objects can actually be seen. Table 7.7 shows the percentage of the 246
objects removed by the series of culling techniques. Again, the greatest gain in the
number of objects culled is shown by the sphere/cone intersection method.

When using the bounding box and/or the bit flag intersection techniques, little
difference in the polygon rate was seen between the one and three floor models. Both
these techniques basically remove half the drawing area, the part that is behind
the current eye-position, since the bounding distance in front of the eyve extends
mfinitely. Therefore, whether the maze consists of only one floor, or of several floors,
the corresponding objects on each level will be culled and will be drawn (assuming
that the floors are identical and are aligned, as in our test).

Approximating the view-volume as a cone, however, will cull many more objects
on other floors. Not only will the objects behind the eye be removed. but many
objects close to the eve-position in the x and y dimensions, but on different floors,
will be culled as well, since they are outside the 75 degree range of the eve. Thus. if
the eve is on the first floor, more objects on the second floor will be outside of the

angle, and even more on the third floor.



Time Polygon Rate | Speedup Factor
(sec) (polygons/sec)
No Culling Technique 351 (real) 9624 -
All 4 Culling Methods 464 (real) 7286 0.76
Bitmap. Bounds. Sphere I 294 (real) 11480 1.19
Bitmap. Bounds 308 (real) 10968 1.1
Sphere 283 (real) 11949 1.24
[No Culling Technique 94 (user) 35824
Al 4 Culling Methods || 351 (user) 9613 0.27
Bitmap. Bounds. Sphere || T4 (user) 45987 1.28
Bitmap. Bounds 80 (user) 42093 118
Sphere 70 (user) 48101 1.3

Table 7.8: Timings of Culling For 10 iterations of a 1-Floor Maze

7.2.3 Calculating the Improvement in Speed

Although the techniques can all be shown to allow some culling of objeets, we must
also show that there is a time benefit to do so over all applications. For instance, even
though it might be appropriate to cull very complex objects using a computationally
expensive method. this would be inefficient in most applications when users create
only simple objects.

In Table 7.8. we compare the time required for 10 runs through the one-floor
maze applying various combinations of the culling methods, As suspected, applving
the expensive but accurate view volume/object intersection test proved inadequaie as
a general culling technique, in fact slowing down the application. as indicated in the
Graphs 22 and 23. The sphere/cone method. however, seeins to he quite promising,
giving slight speedups on the one-floor maze. and larger speednps on the three-floor
maze (see Table 7.9 and Graphs 24 and 25). Adding the tests for intersection of hit

flags and bounding boxes further increased the polygon rate, but not considerably.

7.2.4 The Second Test Environment

The objects in the first environment are static and fairly simple. To further test

our culling techniques, we wanted an environment which contained more complex
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Time (sec) | Polygon Rate Speedup Factor
(sec) (polygons/sec)

No Culling Techniques 903 (real) 16852 -

All 4 Culling Methods 925 (real) 16435 0.98
Bitmap. Bounds, Sphere || 516 (real) 29456 1.75
Bitmap. Bounds 712 (real) 21373 1.27
Sphere 309 (real) 29879 1.77
No Culling Techniques 401 (user) 37944 -

All 4 Culling Methods 754 (user) 20165 0.53
Bitmap. Bounds, Sphere || 207 (user) 73497 1.94
Bitmap. Bounds 338 (user) 44941 1.18
Sphere 213 (user) 71342 1.88

Table 7.9: Timings of Culling For 5 iterations of a 3-Floor Maze
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objects. We created a room, consisting of some static objects, with several smaller
objects constantly moving throughout it. Each such moving object consists of 100
polygons. The eye position is fixed in the centre of the room, and rotates around
the room. 6 degrees at a time. At this speed, 60 redraws are required per complete
rotation.

The first column in Table 7.10 shows the average percentage of the 2380 polygons
culled per redraw by each method applied individually, whereas the second column

shows the average percentage culled when the methods are applied sequentially. As

il Il Applied Individually | Applied Successively ||
Culled by Bitmap Test 9% 9%
Culled by Bounds Test 15% 6%
Culled by Sphere Test 50% 35%
Culled by Volume Test 52% 2%
Actually Drawn 48% 48%

Table 7.10: Percentage of Polygons Culled
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Figure 26: Graph of Real Time Polygon Rates for Culling Techniques

with the first test environment, only a small percentage of polygons that can be culled
by the view volume test are missed by the sphere/cone method.

Tables 7.11 and 7.12 list the polygon rate for various combinations of the culling
techniques, using real-time and process-time respectively. These values are also pre-
sented graphically in Figures 26 and 27. The left-most column in each table in-
dicates the number of moving objects used in the test. The larger the number of
moving objects, the slower the polygon rate, becanse many more objects must have
their behaviours updated, and must be checked for collision.

It can be seen that the tests combining bitmap flag, bounding hox and sphere/cone
culling methods showed the most improvement in polygon rate. Adding the view
volume test produced rates higher than those in the maze environment, but they
were still lower than the combination of bitmap/bounding box/sphere, or the sphere

test alone.
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# Moving || No Culling | All Methods | All Except Vol. | Bitmap, Bounds Sphere
Objects (polys/sec) | (polys/sec) (polys/sec) (polys/sec) (polys/sec)
10 13636 14542 15729 14380 15500
20 13867 14358 15438 14480 14844
30 11714 12343 12878 12058 12819
40 10531 10641 10962 10499 11746
Table 7.11: Real-Time Polygon Rate With Various Numbers of Moving Objects

# Moving i No Culling { All Methods | All Except Vol. | Bitmap, Bounds Sphere
Objects (polys/sec) | (polys/sec) (polys/sec) (polys/sec) (polys/sec)
10 19310 19501 22080 20254 21963

20 17500 17726 19994 18224 18874

30 16999 16835 18757 17453 18036
40 15950 15385 18242 16030 17702

Table 7.12: User-Time Polygon Rate With Various Numbers of Moving Objects
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Figure 27: Graph of User Time Polygon Rates for Culling Techniques




Chapter 8

Conclusions and Future Work

8.1 Conclusions

Bounding boxes provide a reasonable approximation to the underlying geometry
of an object for most applications. Their use allows collision detection calculations
to be greatly simplified, adequately meeting the constraints of a real-time virtual
reality system. The hierarchical method of building the bounding box facilitates the
future extension to providing collision detection between sub-objects, and the culling
of subparts.

The subdivision technique used to reduce the number of checks for collision does
not appear successful in its current implementation, unless a large number of objects
(more than the 800 we used) are involved. New methods should be investigated that
reduce the number of object pairs tested.

The sphere-cone culling method proved the most successful. In some cases, the
bit flag and bounding box culling methods caused some further improvement. Often,
however, the cost of constantly recalculating the view volume to allow these tests
negated these benefits. If the view volume were to rarely change, reducing the number
of recalculations, the bounding box method could be useful. Since the use of bit flags
does not provide a clear improvement to collision detection, it is not worthwhile to

implement it simply for culling purposes.
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The accuracy required of the intersection test and collision prediction varies with
the needs of the user. As well, some applications might benefit from a slow but
accurate culling technique such as the exact view volume/object intersection method,
whercas most would not. We do not want to impose a method that would potentially
hinder any application, however, we do not want to force the user to write excessive
amounts of code to reimplement features OML claims to have.

This leads us to conclude that the user should have greater control over the internal
OML methods used for collision detection and culling. As well, work should be done
to categorize the characteristics of environments, and to match the different OML
methods with these characteristics. This could be provided as a guide to the user to

help in maximizing the efficiency of OML applications.

8.2 Future Work

8.2.1 Extensions to OML for Collision Detection

Currently, the user must explicitly specify all pairs between which collisions should
be monitored. This will become tedious in complex environments consisting of many
objects. Commands should be added to allow an event to be signalled on a collision
with any object, and for the negation, a collision with no object.

The appropriateness of a collision prediction method is dependent on the partic-
ular virtual reality application, both in terms of the required accuracy and the effort
spent in calculation. In the current implementation, the user can simply choose to
not use the existing collision detection scheme. Thus, if accuracy is a requirement
for an application, the user can implement this themselves. More control could be
given to the user to choose the method used for collision prediction from a given set
of methods, instead of merely allowing them to add their own code to override the
default we choose. Additionally, different methods could be used for different pairs
of objects, allowing the user to prioritize where the time for calculations should be

spent,



In some test cases, the speed of the moving objects caused collisions to be missed,
since the object was in front of the boundary at one time step. and on the other side
the next. We countered this simply by making the boundaries thicker. The problem
could be addressed more generally by adding a new detection method that would
sweep the object by one time step, forming a new polyhedron in the same manner used
for collision prediction. These swept volumes representing the two objects could then
be compared for intersection using the already ¢ncoded polyhedra collision detection
method.

As well, an even more exact collision detection technique could be implemented
using the objects’ underlying vertices once the bounding boxes intersect. Again, this
could be done using the current polyhedra intersection technique. The user would be
spared implementing this themselves.

The code permitting collision detection between sub-objects should also be added.
Currently, the user must split an object into smaller pieces if collision detection is
needed for any of the individual subparts. Being able to access subparts for collision

detection would greatly enhance OML’s flexibility.

8.2.2 Improvements to Collision Detection

It is wasteful to check for a collision between two objects at cach time step. An
alternative to using a spatial grid would be to determine the time until a collision
is first possible using the objects’ velacities and the distance between the bounding
spheres, and then to check for a closer intersection at each time step from then on.
We would only need to recalculate the time until an initial collision if the velocity
of either object changes. When recalculating an object’s velocity, the old velocity
could be stored along with the new one, which could be compared when processing
the collision list to see if the earliest collision time must be recalculated.

The current attempt to reduce the all-pairs problem in collision detection by
subdividing the drawing area appears unsuccessful for most applications. Perhaps an

alternative approach could be used when many pairs must be checked. Specifically,
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the drawing area could be divided in the current manner, but each grid section would
maintain a list of all objects that occur in it. Then collisions would only have to be
checked with other objects within that grid location. The current method of having
a linked list of pairs of objects to check would have to be changed to accommodate
this. Additionally, we need a method of determining that object A is within the
same grid section as object B , and that A4 is also within B’s list of objects with
which to detect interference. The subdivision technique will only be successful if this
searching method is very fast and efficient - a naive search through a linked list will be
inadequate. It must also be ensured that an event is not signalled twice just because

a pair of ohjects intersects in more than one grid section.

8.2.3 Improvements to Culling

Currently, the view volume, and its corresponding bounding box and bitmap flag,
Is recalculated each drawing iteration. This is wasteful if the view volume has not
changed, or if the change is minimal. Instead, only a significant change in the view
volume (one that could bring new items into view) should cause the view volume to
be recalculated.

Culling is done only at an object level. Success of this approach is dependent
on the user’s choice of objects. A bad choice, such as combining all the walls in a
multi-floored maze into one object, would get no benefit from our culling techniques,
since some section of all walls would be visible at all times. The decision of when to
attempt partial culling could be made by either the user or the system. The user,
having designed the objects, may be the best judge of whether subpart culling would
be worthwhile. However, if we wish to free the user from such decisions, a heuristic
must be found which can make these choices based on known characteristics of the
object. These characteristics may include the size of the object, or the number of

polvgons within it.
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