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ABSTRACT

Today’s electronic systems rely on pattern recognition for a variety of tasks. One of the 

industrial sectors that has broadly explored and used pattern recognition for its 

continuous improvement is the automotive industry, especially in motor vehicle safety.

Air bags systems are the main component of the motor vehicle safety systems included in 

any car. Unfortunately, deaths reportedly have been caused by airbags inflating in low 

severity crashes. To reduce the number of fatalities produced by airbags, car 

manufacturers are urged to create intelligent airbag deployment systems. The main 

intention of this work is to design and implement the pattern recognizer for a prototype of 

a car seat occupancy system using artificial intelligence methods, namely fuzzy clustering, 

self-organizing maps, and neural networks. Experimentation on the final systems is also 

described, and accuracy in recognition, robustness to failures and possible improvements 

are reported.
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Chapter 1.

Introduction
1.1 Preface

Humans are very good at recognizing friendly faces, printed characters, musical melodies 

and most of the environment that surrounds them. The senses process signals such as 

sound or light waves that have been modulated and then map them into some kind of 

recognition space. The blueprint of these signals can be considered a pattern. When it is 

decided that an object from a population P belongs to a known subpopulation S, then 

pattern recognition is being done [16],

Today’s electronic systems rely on pattern recognition for a huge variety of tasks: speech 

control on autonomous environments for people with physical limitations [4], star 

telemetry on space satellite images [3], cost estimation on software development projects 

[13], etc. The list gets longer as scientists explore the unreachable boundaries of pattern 

recognition techniques, and the applications given to them are turning more and more 

interesting every day.

In general, almost any “intelligent” or “smart” device or decision-making system 

contains some kind of pattern recognition module implemented inside it. Industrial 

applications follow this trend and are continuously demanding faster, smarter and more 

robust recognition systems. One of the industrial sectors that has broadly explored and

1
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used pattern recognition for its continuous improvement is the automotive industry. 

From the use of vision guided robots for the assembly of car parts [34] to the traction 

control in formula 1 race cars [35], pattern recognition is employed to the fullest. 

Recently, one of the areas in which the automotive industry is focusing the use of pattern 

recognition is motor vehicle safety.

Motor vehicle safety is one of the main concerns in today’s societies. There are about 

lO’OOO.OOO crashes involving injured people in North America, the European Community 

and Japan each year [21]. In the United States 85,011 people died and 5’959,000 were 

injured in traffic accidents in the years 2001 and 2002 [28]. In the province of Alberta 

768 people died and 54,047 were injured in the years 2000 and 2001 [29][30].

Although alarming, this statistics could be much higher if airbag protection systems were 

not used. These systems are one of the main components in the motor vehicle safety 

features included in any car. Deaths in frontal crashes are reduced about 26% among 

drivers using safety belts and about 32% among drivers without belts by use of airbags 

systems [31].

However, there is a down side to the use of airbag protection systems. Since 1990, 231 

deaths reportedly have been caused by airbags inflating in low severity crashes [31]. This 

is considered a high number for a car feature that is supposed to save lives. To reduce the 

number of fatalities produced by airbags the U.S federal government urged car 

manufacturers to create intelligent airbag deployment systems. These systems should be

2
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capable of distinguishing which type of passenger is sitting in the front seat of a car or 

small truck and should deploy the air bag with a pressure in accordance to the weight or 

other characteristics of the subject in the passenger’s seat.

The development of such system is a demanding task for the use of pattern recognition 

techniques. High dimensionality of the inputs, cross over on the training data and slow 

real time performance could be among the possible bottlenecks in the development of 

such project. Overcoming them represents an ideal challenge for a master’s of science 

thesis project.

The main intention of this work is to design and implement the pattern recognizer for a 

prototype for a car seat occupancy system (CSOS) based on the regulations stated by the 

U.S. federal government through the National Highway Traffic Safety Administration 

(NHTSA). This work was developed in cooperation with Ecotemp International, a local 

producer of automotive related products for Canada and USA

1.2 Background on the problem

In the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA), the U.S. 

congress directed the NHTSA to amend Federal Motor Vehicle Safety Standard 208 

(FMVSS 208) to require all passenger cars and light trucks to provide automatic 

occupant protection by means of air bags. In addition, all the states of the union 

approved the mandatory use of child safety seats. The NHTSA recommended newborn 

children to be secured in a rear facing child restrain system and placed in the back seat of

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the vehicle. NHTSA testing in 1991 showed that placing a rear facing safety seat in the 

front seat of the vehicle equipped with a passenger side airbag was very dangerous for the 

infant. Crash data verified this fact.

Adult occupants, almost all of them drivers, also suffered fatal and nonfatal injuries from 

airbag deployments. Fatalities resulted from the occupants being too close to the airbag 

when it deployed. However, airbags provide significant net benefit to adult occupants in 

preventing fatal and serious nonfatal injuries, and these benefits are greater than the risks 

of not having an airbag system at all.

In order to address this problem the NHTSA published in the Federal Registar, January 6, 

1997, a Notice of Proposed Rulemaking on Airbag Deactivation (Docket 74-14, Notice 

107). This notice proposed to allow dealers and repair businesses to deactivate the 

passenger side airbag, the driver side airbag or both, upon written authorization of the 

vehicle owner. The notice also stipulated dealers and repair businesses to let the owner of 

the vehicle know of the risks of turning the air bag off versus leaving it on in those 

circumstances [19]. This notice was much debated, for leaving the choice of the airbag 

activation to the vehicle owner could not have been the best solution. Thus, the NHTSA 

came with a final rule on occupant crash protection described in Docket NHTSA 00-7013. 

The rule amends occupant crash protection standard to require that future airbags be 

designed to create less risk of serious airbag induced injuries than current airbags, 

particularly for small woman and young children [26], This rule specifically requires the 

airbags to be able to be partially deployed, or not deployed at all, if in doing so any risk

4
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of injury can be prevented to the occupant of the car seat. The rule also requires car 

manufacturers to have a system with the cited characteristics included in their fleet by 

2007.

1.3 Organization of this thesis

The work developed in this thesis was structured on the patter recognition developing 

cycle described by Richard Duda [8], According to this developing cycle data must first 

be collected, both to train and to test the system. Then, the main characteristics of this 

data must be extracted, as they affect both the choice of appropriate discriminating 

features and the choice of models for the different categories. The training process 

follows, using some or all of the data to determine the system parameters. At last, based 

on the evaluation of the results, a call for repetition of one or several steps in the process 

must be ordered to obtain satisfactory results. Figure 1.1. depicts this design cycle.

Start

Collect Data

Choose Features

Prior
Knowledge' Choose Model

Train Classifier

Evaluate Classifier

End

Figure 1.1. Pattern recognizer design cycle 

The rest of this document is organized as follows:

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 lists and explains the design constrains prior to the beginning of the 

development of the system. The main issues considered in this chapter are the partition 

of the observation space into different classes and the description of the transducers used 

to generate the feature vectors to create the observation space.

Chapter 3 describes the process of collecting the training feature vectors. A quantitative 

description of them will be included. This chapter also discusses the choice of the 

features used for the completion of the pattern recognition system.

Chapter 4 reviews the algorithms, methods and techniques initially considered 

appropriate for the successful development of the project. Preliminary results that led to 

the choice of a model used for the final development of the system are exposed as well.

Chapter 5 gives details on the final implementation of the pattern recognizer. Verification 

rates as well as robustness measurements of the system are presented as evaluation 

criteria to make sure the final pattern recognition system is not only accurate but reliable 

as well.

Finally, Chapter 6 presents general conclusions and a discussion on the current state of 

the project and possible directions on future research.

6
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Chapter 2.

Design Considerations
Just as in any other engineering problem this project had some initial design 

considerations. They were related mainly to the class system and the nature of the input 

feature vectors to the pattern recognizer.

The class system refers to the way the occupants in the car seat should be classified 

according to the number of classes specified in that particular system. The FMVSS 208 

specifies three different class systems:

1. A system capable of identifying the occupants of car seats to belong to one of 

three different classes

2. A system capable of identifying the occupants of car seats to belong to one of six 

different classes

3. A system capable identifying the occupants of car seats to belong to one of nine 

different classes

The nature of the input feature vectors of the pattern recognizer deals mainly with the 

transducers used to generate the feature vectors to create the observation space.
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Explanation of these design considerations should help the reader have a clear 

understanding of the initial state of the project. The required classification groups are 

presented in the first part of the chapter, followed by an outline o f the positions used for 

training purposes. Finally, the characterization and final layout of the transducers used to 

generate the input information to the pattern recognizer is presented.

Some technical issues regarding automotive industrial standards are not explained 

thoroughly here as they are not considered to be within the scope of this document.

2.1 Class system

The NHTSA introduced the FMVSS 208 changes regarding airbag regulation in early 

2000 [33], The main intention of the changes to the standard was to set clear rules for 

occupant crash protection, specifically in the case of airbag deployment. The first issue 

specified in this document was the scope of classes or groups in which the occupants of 

car seats were to be separated. Three different recognition systems were schemed, and 

their development was planned to be progressive, beginning with a 3-class system and 

having as final goal a 9-class system.

The 3-class system was an alternative to the on/off airbag switch system proposed in [19]. 

This system would basically decide weather the airbag should deploy or not in case of a 

car crash based on the weight of the occupant in the car seat. The 6 and 9 class systems 

were thought as information sources for a more complex airbag deployment system,

8
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which would not only activate or deactivate the airbag, but also, in case of a car crash and 

if necessary, would deploy the airbag with a safe pressure for the car seat occupant.

Table 2.1. gives detailed descriptions of each class system.

Class system Class # Weight Thresholds Description

1 Em pty Seat

2 Below 103 Lbs Child or small occupant

3
3 A bove 103 lbs

M id-size to large 

occupant

1 1
1 Empty Seat

2

A ny Child Seat Facing 

rearward

W ith up to 

m anufacturers weight 

rating

6
3

A ny Child Seat facing 

forward

W ith up to 

m anufacturers weight 

rating

4 12 to 59 lbs Small to m id-size child

5 60 to 103 lbs
Large child to small 

adult

6 A bove 103 lbs M id-size to large adult

1 Empty Seat

2

A ny Child Seat Facing 

rearward

W ith up to 

m anufacturers w eight 

rating

9 3

A ny Child Seat facing 

forward

W ith up to 

m anufacturers weight 

rating

4 12 to 39 lbs Small child

5 40 to 59 lbs Child

6 60 to 99 lbs Large Child

7 100 to 129 lbs Small adult

8 130 to 179 lbs M id-size adult

9 A bove 180 lbs Large adult

Table 2.1. Description of classes in the different recognition systems

9
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This project has been focused on developing a pattern recognizer for the 3-class system 

listed above.

2.2 Testing Positions

The FMVSS 208 introduced not only the groups in which occupants should be classified 

according to their weight or shape, but it also specified a set of positions that would be 

used to test the accuracy and effectiveness of a CSOS in the rigid barrier frontal crash test. 

The sets of positions were specified for: rear facing infant seats, forward facing infant 

seats, convertible infant seats, car bed infant seats, 3 year old dummy, 6 year old dummy, 

5th percentile female dummy (representing a light female occupant) and 50th percentile 

male dummy (representing a light male occupant). Additionally to this, a list of baby car 

seats suitable for the rigid barrier frontal crash test was also included [27], According to 

the standard any CSOS designed should comply with test regulation on any of these baby 

seats as well as on the set of positions for dummies mentioned earlier.

The NHTSA also encouraged car manufacturers to have their own set of testing positions 

additionally to those specified by the FMVSS 208. This set of positions was referred to as 

the due care positions provision, and their intention was to make CSOS more robust. It 

was believed that if car manufacturers had made a good faith effort in designing their 

vehicles and had had adequate quality control measures, the vehicles would not be 

deemed to be in noncompliance with the FMVSS 208 standard.

10
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For the design of the pattern recognizer of this CSOS testing positions from the FMVSS 

208 and due care positions from two major car manufacturers were used as templates to 

generate the input feature vectors. Table 2.2. shows statistics on the number of positions 

listed for each type of occupant. A complete list of these sets of positions and their 

description is listed in Appendix A.

Measurement
Standard

3 year old 
Dummy

6 year old 
Dummy

5th Percentile 
Female 
Dummy

50,h Percentile 
Male Dummy Baby seats

FMVSS 208 8 4 1 1 364

Car

Manufacturer

A

8 9 8 8 340

Car

Manufacturer

B

14 21 24 N/A N/A

Table 2.2. Number of positions required to be recognized according to different
measurement standards

2.3 System Input

In order to design the pattern recognizer an understanding of the signals used as inputs is 

necessary. For this project a mat of linear Hall-effect sensors distributed along the 

bottom bun of a standard car seat was used. The choice of these sensors was based on 

automotive industry requirements, topic which is outside the scope of this document.

11
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2.3.1 Description of Sensors

For this project hall-effect sensors were used. These are sensitive, temperature-stable 

linear Hall-effect sensors. They provide a voltage output that is proportional to the 

applied magnetic field. In this project 5V were used as supply voltage, and output values 

in the range 0.5 -  4.7 V were expected.

These magnetic sensors were considered ideal for use in linear and rotary position 

sensing systems in harsh environments, especially in automotive and industrial 

applications over extended temperatures to -40° C and +150° C. A brief description of

the electrical characteristics of these sensors is presented in Table 2.3. For more 

information on the sensors refer to [1].

Limits

Characteristic Symbol Test Conditions Min. Typ. Max. Units

Supply Voltage Ac Operating 4.5 5.0 5.5 V

Supply Current 8 = 0, V,.,. = 8 V, I, = 0 7.2 10 mA

Quiescent
Voltage Output

Vvoa B = 0 .10 * 1 mA, Ts = 25 C 2.425 2.500 2.575 V

Output Voltage 8 = +X’, l0 = 1 mA , , 4.7 V

..........At..............
B = -X*. 10 = -1 mA 0.2 V

Output
Source Current Limit

A m B » -X', V0 = 0 -1.0 -1.S - mA

Bandwidth (-3 dB) 8W 30 kHz

Clock Frequency k _ 170 - kHz

Output Resistance i0 < -2 mA 1.0 - u

Wide-Band 
Output Noise firms)

% 8 = 0, BW= 10 Hz to 10 kHz, 
i0 <-1 mA, C0 ” 100 pF

- 400 - pV

Table 2.3. Electrical Characteristics of Hall-effect sensors

12
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2.3.2 Layout and Distribution of Sensors

In order to gather relevant information from occupants of car seats, an array of the 

sensors described in 2.1 was placed in the bottom bun of the car seat.

The initial sensor layout was designed based on the principle that the minimal number of 

sensors to be placed in a structure depends on the number of parameters needed to 

retrieve its curvature [24], Thus, simple flexion can be measured with one sensor, and 

composed flexion with two. In a two-dimensional surface a minimum of 4 sensors would 

be required. In theory, this would be the number of sensors necessary for this project. 

However, a 4-sensors arrangement (described as a 2x2 matrix) would not be able to 

capture all the positions described in section 2.2, as they involve spatial displacement 

(shift, turn) of the subject. An expansion of this arrangement of sensors in two 

dimensions in its rows and two dimensions in its columns was necessary. This expansion 

was based on the assumption that more distributed sensors improve the overall spatial 

resolution of the sensor assembly [7], The resulting layout was a 4x4 array of sensors.

The first physical implementation of this sensor layout consisted of two surfaces, A and

B. Surface B was fixed to the bottom of the seat bun, and contained the hall-effect 

sensors. Surface A was fixed to the top of the seat bun and contained activation magnets. 

This implementation proved to output correct voltage readings, but was too difficult to 

assem ble inside the car seat. A second im plem entation was designed consisting o f  only 

one surface. This surface was fixed to the bottom of the seat bun and contained both the 

sensors and activation magnets inside a plastic hollow spring. This implementation

13
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worked properly and was easy to install in the car seat, reasons why it was chosen. 

Corresponding sensor layout is depicted on figure 2.1. Each sensor was given a label for 

easy reference.

Back of Car Seat

►Row 4

►Row 3

►Row 2

►Row 1

Front of the Car Seat

Figure 2.1. Layout of sensors in car seat cushion

2.3.3 Sensor Layout Optimization

The initial implementation of the sensor layout proved to work correctly in representing 

the patterns produced by human and dummy occupants in the car seat. Flowever, the 

measurements on some baby seats were too vague as some of the sensor readings did not 

show any sign of activation at any test. This was due to the shape of the bun of the car 

seat. The middle of it was flat and the outer side had high bolsters to bring comfort to the 

car occupant. It allowed the passenger’s bottom to slide into an oval shape position. This

14
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position exerted pressure to the center of the bun, providing excellent readings from the 

sensor layout. Unfortunately, the rigid structure of the bottom of the baby seats created a 

bridge-like effect between the two bolsters of the seats, avoiding sensors to be activated 

in the middle of the seat.

Industrial pressure measuring software confirmed this assumption. Figure 2.2 shows the 

pressure exerted on the car seat from a Cosco™ Touriva baby seat with a 3 year old 

dummy. As seen, the major amount of pressure is exerted at the back and to the sides of 

the seat, while the center remains untouched.

14'

12

1(

31

;B120-140 
□ 100-120
■  80-100
□  60-80
□  40-60 
■  20-40

□ 0-20

Figure 2.2. Pressure exerted on car seat from a baby seat

15
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The shape of the sensor layout was redesigned to take the facts mentioned above into 

consideration. Sensors 13 and 16, placed in row 4, and sensors 6 and 7, placed in row 2 

were relocated to the outer bolsters. The new sensor configuration was successful in 

providing more meaningful sensor readings when gathering feature vectors from baby 

seats. Therefore, this layout, shown in Figure 2.3., was used through the rest of this 

project.

Back of Car Seat

►

Front of the Car Seat

Figure 2.3. Final Sensor Layout 

Tightening the seat belt over the baby seat created a small amount of pressure over a side 

of the sensor layout reflected on the activation of sensor 16.

16
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Chapter 3.

Data Description
As depicted in figure 1.1., the first step involved in developing a pattern recognition 

system is the collection of data in order to create an observation space. Data collection 

accounts for a large part of the cost of developing a pattern recognition system [8], In our 

case, 60% of the developing effort was spent on collecting and preprocessing data.

3.1 Data values and additional information to be gathered

The recognition of an individual object within a population is called identification. The 

process of grouping objects together into classes (subpopulations) according to their 

perceived likeness or similarities is called classification [16], The idea of having a 

classification process without having a group of objects to distinguish from is simply 

unrealistic. The area of pattern recognition includes both classification and recognition. 

Thus, a population of objects representing the landscape of the observations space must 

be created first in order to design a pattern recognizer. Acquisition software was 

developed for this purpose. A brief description of it is presented in Appendix B. This 

section focuses on describing the data values and additional information gathered for 

each object of the observation space.

The objects in the observations are 16-dimensional vectors:

S = (S, , ..., S l6), -0.1 < S, <2.5

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Each dimension of these objects represents the output voltages from a sensor in the 

layout described in section 2.3.3. The objects represent the pressure landscape generated 

in the seat by an occupant in a certain position. These positions were described in section

2.2 and are listed in Appendix A.

Because the values of the 16 dimensions of the objects in the observation space are raw 

data it is necessary to collect additional information for the purposes of design of the 

recognition system. Thus, besides the 16 sensor values, each object in the observation 

space has labels describing the type of occupant that generated that pattern, its weight, 

height and torso ratio, a description of the position itself and the date the information was 

gathered.

These labels determine the class target of each object in the observation space for 

different recognition systems when using supervised training algorithms. They also 

provide a way to trace objects during training, testing and debugging processes and allow 

easy modifications to the boundaries of classes in the observation space if needed.

3.2 Number of Input Feature Vectors

The first question that arises when gathering data to create an observation space is how 

many objects are necessary to clearly discriminate among the classes? In our case the 

question could be refrained to, how many examples of each position are necessary to 

complete the database? Unfortunately, there is neither concrete nor correct answer to 

these questions. However, there are good estimates on how to deal with this problem.
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3.2.1 Weight Distribution

A consideration when creating the training database for a pattern recognition system 

would be to have examples of all the different objects included in the observation space. 

In this case, it would be required to have feature vectors of the different positions of the 

all car seat occupants.

The FMVSS 208 regulation is targeted towards protecting most vulnerable people when 

air bags are deployed. Consequently, most of the testing positions are specified for 

subjects that lie within the range 0 to 100 Kg (0 to 220 lbs). This range can be divided to 

obtain representative subsets of objects with similar weights, as people with comparable 

weight have comparable physical characteristics, and to make the data gathering process 

faster. A 5 Kg interval division of this weight range has been selected to represent the 

observation space by 20 distinct weight categories.

Several feature vectors of each of the testing position described in Section 2.3 and listed 

in Appendix A should be gathered in order to assure its representation in the observation 

space. Three repetitions of each position should ensure enough information for the 

recognition process.

In conclusion, the necessary number of feature vectors to complete the database would 

be:

Examples in Database = # o f Intervals in weight range * # of Positions * # o f Repetitions o f each position

= 20 * 378 * 3 = 22.680 (1)
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3.2.2 Computational Intelligence Methods

A second approximation to the number of feature vectors necessary to complete the 

recognition system is to assess what amount of information the computational 

intelligence techniques need in order to succeed. These techniques can be classified into 

supervised and unsupervised learning techniques. In supervised learning techniques, a 

category label is provided for each pattern in a training set, and the learning seeks to 

reduce the sum of the costs of these patterns [7], In unsupervised learning or clustering 

there are no explicit labels, and the system forms clusters or “natural grouping” of the 

input patterns. “Natural” is always defined explicitly or implicitly in the clustering 

system itself [8], Thus, there is no minimum number of objects in the observation space 

for unsupervised learning techniques.

The only supervised learning technique used in this project was the Neural Networks, so 

the proper choice of the number of examples required in the observation space was 

bounded to them.

The Vapkin-Chervonenkis Dimension (VCDim)

The VCDim gives a good estimation of the number of input feature vectors needed to 

train a neural network and allows consideration of the items listed above.

For any assignment of values to its internal parameters 9 (weights, thresholds, etc.) a 

neural network N  with binary outputs computes a function x —> N  (9, x) from D  into {9;
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1}, where D  is the domain of the network inputs x. The VCDim of N  is a number which 

may be viewed as a measure of the richness (or diversity) of the collection of all 

functions x —> N  (0, x) that can be computed by N  for different values of its internal 

parameters 9. That is why the VCDim of a neural network is related to the number of 

training examples that are needed in order to train N  to compute (or approximate) a 

specific target function h: D — {0, 1} [5],

Typically the VCDim grows polynomially (in many cases, between linearly and 

quadratically) with the number of adjustable parameters of the neural network. In 

particular, if  the number of training examples is large compared to the VCDim, the 

network's performance on training data is a reliable indication of its future perfonnance 

on subsequent data. The notion of the VCDim, which was introduced in [22], is not 

specific to neural networks. It applies to any parameterized class F  of functions 

x —»/(9, x) from some domain D  into (0, 1}, where 0 ranges over some given parameter 

space [5],

In the general case one defines the VCDim of F  (VCdim(F)) as the size of the largest 

subset D ’ of its domain D  so that D ’ is shattered by F (or more precisely: by the 

restrictions of the function x x) in F  to inputs x C D’). In other words: the VCDim

of F  is the size of the largest subset D  ’ of its domain D for which every dichotomy h over 

i y  can be computed by some function in F  [5],
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For neural networks, the VCDim lies in the following range:

2 , | V *n<  VCDim < 2 * N w* log(eN" ) (2)

Where A/j is the number of hidden nodes, n is the dimension of the input, N  w is the total 

number of weights in the network, N  N is the total number of nodes and e is the base of 

natural logarithm.

The biggest neural network estimated for this project had al6  inputs, 30 hidden neurons, 

3 outputs architecture, resulting in a VCDim of:

VCDim = 2 * 570 * log(e49) = 24259

In conclusion, according to the VCDim the observation space should contain about 24300 

input feature vectors.

3.3 General Statistics

The database was gathered after taking into consideration the estimations described in 

section 3.2. It ensured every position of each car seat occupant to have at least one input 

feature vector, and each class to include approximately the same number of input feature 

vectors. It contained 23625 feature vectors. Figure 3.1. shows its distribution.
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Distribution of Input Feature Vectors in original Observation
Space

50th Percentile Male

5th Percentile 
Female 

24%

B abyseats - RFIS, 
FFIS 
39%

Figure 3.1. Distribution of original Observation space

Unfortunately, not all the feature vectors were valid. Technical and human errors lead to 

the collection of some input feature vectors that are mislabelled or biased. The main 

reasons for the collection of erroneous data are:

1. Electromechanical problems in sensory system, e.g. the wiring between the 

sensor inside the seat bun and the data acquisition hardware. This type of 

problem is typically demonstrated by voltage readings below the voltage 

range threshold.

2. Feature vectors unlabelled or mislabelled due to human error. Such input 

feature vectors could not be used for training purposes as there was no way to 

identify to which type of occupant they belong to.
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These types of problems are only relevant for the data acquisition part of the project. This 

data will be used to train and evaluate the model that performs the pattern recognition. 

The final parameters of this model will be included in the production model. Therefore, 

correcting this errors at an early stage will lead to the proper development of the pattern 

recognizer, but will not play a roll when producing the final product.

Input feature vectors with these types of errors accounted for 6.23% of the initial 

observation space. After the deleting those erroneous feature vectors, 22153 remained. 

Their distribution is showed in figure 3.2.

i...............

io j

C hart Area |

Figure 3.2. Distribution of final Observation Space
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3.4 Feature Selection

The next step in the design cycle of a pattern recognition system, after the collection of 

the data, is to choose the features that best represent the observation space.

Features are attributes that objects in a population possess and that can be sensed or 

measured to distinguish between one or more different subpopulations [16], The main 

goals for mapping the observation space into a reduced feature space are to:

1. Retain as much of the original information as possible

2. Remove as much as possible of the redundant and irrelevant information that 

could cause extraneous noise and degrade the classification performance

3. Render the measurement data to variables that are more suitable for decision 

making.

Although useful, feature selection is not always necessary. An ideal feature selector 

would yield a representation that makes the job of the classifier trivial; however, an 

omnipotent classifier would not need the help of a sophisticated feature selector [8], 

Besides, the feature selection process should start with large sets of attributes and should 

count with some human experience on the perception of the object [16], For this project, 

the number of input sensors was relatively low and no experience on this type of systems 

was at hand, at least from direct sources.
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In this pattern recognition system the sensors output voltages were the only measurable 

attributes in the pattern vectors. The number of sensors was optimized for the size and 

shape of the car seat (Chapter 2), and a reduction in their number could lower the 

accuracy in the measurement of the distribution of the pressure generated by the 

occupants across the car seat.

Therefore, no optimization was performed on the features o f the input vectors in the 

observation space at this phase of the project. A relevance analysis of these features was 

performed, though, after the pattern recognition system was finalized. Results of this 

analysis are presented in section 5.4.2.
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Chapter 4.

Data Analysis

The next step in the design of a pattern recognition system, once the data for the creation of 

the observation space has been collected, is the choice of a proper model or method for the 

recognition itself. Two main questions arise when choosing a model to do pattern 

recognition:

1. How fit is a model for the specified purpose?

2. How does the hypothesized model differ from the true nature of the 

underlying patterns?

The first of these questions is answered throughout this chapter. The second question is 

answered in chapter 5.

For this project a systematic approach to model selection was applied. Different supervised 

and unsupervised algorithms were tested to compare their effectiveness in creating the class 

systems mentioned in Chapter 2. The choice of these models was based on their 

effectiveness according to the literature, previous experience in their development and use, 

and real time performance.

The first type of models used is the cluster-based unsupervised learning algorithms. The 

main goal of a clustering algorithm is to find groups or structures with similar elements in a 

data set; the clustering algorithm receives input data elements and returns clusters or
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classes of data according to their similarity. The clustering algorithm partitions the space 

according to certain prototypes and their distances to the rest of the elements in the data set. 

They are useful when the distribution of the observation space is unknown and an initial 

description is required. In our case, the desired division of the observation space is known. 

However, the clustering methods can be used for verifying whether these required classes 

correspond to the natural clusters, if any, present in the data.

The second type of models used is the supervised learning algorithms. In supervised 

learning, a category label is provided for each pattern in a training set, and the learning 

seeks to reduce the sum of the cost for these patterns. These methods are more robust to 

noise, take less training time and, in general, perform better than the unsupervised 

learning algorithms. However, they behave like black boxes, and do not allow the user to 

have a visualization of the distribution of the observation space.

4.1 Fuzzy Clustering

The fist clustering method used to study the nature of the data and its possible grouping 

into classes is fuzzy c-means. This method is based on the minimization of a performance 

index defined as the sum of all vectors in a cluster domain to the cluster center [6].

In simple terms, the fuzzy c-means algorithm calculates the membership value of a given 

example with respect to the defined number of clusters. Thus, a particular example can 

have a relative high belongingness to more than one cluster. This property allows creating 

an initial representation on the consistency and overlapping of the training data set used in
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any project, it also provides for an easy visualization on the distribution of the observation 

space.

4.1.1 Algorithm

The general fuzzy c-means algorithm is compound of the following steps [6]:

Given a training data set containing M examples and c classes, user defined number of 

intervals m, for feature F,

1. For class Cj do, j = 1, 2, ..., c

2. Choose K = mi as the initial number of cluster centers.

3. Distribute the values of the feature among the K cluster centers “prototypes”, based on 

the minimal distance criterion. As the result, feature values will cluster around the 

updated K cluster centers.

4. Compute K new cluster centers such that for each cluster the sum of the squared 

distance from all points in the same cluster to the new cluster center is minimized.

5. Check if the updated K cluster centers are the same as the previous ones, if yes go to 

step 1, otherwise go to step 3.

As a result, the final boundaries for the feature will be the minimum value the feature takes 

on, mid points betw een any two nearby cluster prototypes found for all clusters, and the 

maximum value the feature takes on.
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It is necessary to know the membership of each element to each of the cluster in order to 

know to which group the element belongs. The partition matrix u specifies these values for 

each element in the data set. In this particular case, it is assumed that the sum of the 

membership of a specific feature is equal to 1, therefore

“ = =1} (3)
/=i

Where c denotes the clusters to find in the data set, and k  is the Mi element in the data set. 

The partition matrix is obtained using the following equation,

1 ; Vfce [1,2,•••,«], Vi G[1,2,-"5c], (4)

I
f  „ „v

K  ~ vi

ii x k ~ v VII  ‘  J \ \ /

Where ||| denotes distance, v;- is the zth cluster center, jq is the Mh element in the data set, n 

is the number of elements in the data set, and c is the number of clusters to be found.

The function to optimize the prototypes is,

ik kY , u 'X
=i_ 

n

z

k = \ _  

i
U

V, = ^ -------  (5)> n  x '

ik 
k = 1

The fuzzy clustering aims to achieve a classification that is closer to the real world, because 

the object itself is usually of ambiguous or fuzzy nature [25], Under this framework the 

following tests were carried out.
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4.1.2 Experimentation and Results

Three different experiments were conducted to measure the effectiveness of fuzzy 

clustering. This method was also used to assess the consistency in the observation space. 

Figures 4.1., 4.2. and 4.3. show the results to these experiments.

In each figure the vertical axis demarks the cluster to which each particular input feature 

vector was assigned. The horizontal axis demarlcs the position of each input feature 

vector in the observation space. The boxes in the grid represent the type of occupant to 

which that part of the observation space belongs to. The numbers in the boxes represent 

the following type of occupant:

1. Empty seat, Seats with weight of less than 10 lbs, empty baby seats

2. Rear facing and forward facing baby seats with all type of occupants

3. 3 year old dummy

4. 6 year old dummy

5. 5 th female dummy

6. 50th male dummy

In an ideal case all the feature vectors belonging to the same type of occupant should be 

grouped in the same cluster. Inconsistencies or overlaps in the observation space can be 

found if feature vectors generated by the same type of occupant are grouped into different 

clusters.
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F u z z y  Cluster ing  for 3 - C la s s  S y s t e m

15000  
Input F e a tu re  V e c to r
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Figure 4.1. Clusters generated by the Fuzzy c-means algorithm for the 3-class system

Figure 4.1. shows the results for the 3-class system clustering. For this class system the 

empty seat feature vectors should belong to one cluster; all baby seats, 3 year old dummy 

and 6 year old dummy feature vectors should belong to another cluster and the rest of the 

observation space should belong to a third cluster. The results show how such 

partitioning of the observation space is not really achieved.

Almost the entire empty seat feature vectors are grouped into cluster A. This shows that 

the data collected for this type of occupant is very consistent. However, feature vectors 

from other types of occupants are included in this cluster as well. This shows that feature 

vectors in the observation space are similar, regardless of the type o f occupant that 

generates them.
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Cluster B grouped most of the 5th percentile female dummy feature vectors, as well as 

some baby seats and some 50th percentile male dummy features vectors. This is not a 

good sign. Feature vectors belonging to baby seats should be the major component of this 

cluster, as they actually are the most frequent feature vectors in this group.

Cluster C grouped most of the 50th percentile male dummies feature vectors, as well as 

some 5th percentile dummies and some baby seats features vectors. This cluster shows 

how occupants exerting high pressure on the car seat tend to form a class of their own. 

Their distance to feature vectors from dummy occupants with lower weight is relatively 

large.

F u z z y  C lustering  for B -c la s s  s y s t e m

o

o

• U M l
1 5 0 0 0

I n pu t  F e a t u r e  V e c t o r s
2 5 0 0 05 0 0 0 10000

Figure 4.2. Clusters generated by the Fuzzy c-means algorithm for the 6-class system
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Figure 4.3. Clusters generated by the Fuzzy c-means algorithm for the 9-class system

Figures 4.2. and 4.3. show the results for the 6-class and 9-class systems clustering 

respectively. These experiments did not lead to any new discoveries from the ones listed 

for the 3-class system clustering. They just reinforced the idea of high similarities in the 

observation space among feature vectors of all kind of occupants.

4.1.3 Conclusions

The fuzzy c-means clustering experiments demonstrated that there is high inconsistency 

in the pressure landscape generated by positions of the same occupant in the car seat.

The only occupant features vectors that proved to be easily classifiable and that showed 

high consistency are the empty seat feature vectors. It probably happens because the 

feature vectors represent no pressure state in the car seat. Thus, to recognize such a
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simple state (a completely flat pressure landscape in our case) is an easy task for any 

classifier.

Feature vectors from heavy occupants tend to group together better than feature vectors 

from other type of occupants. The cause can be related to the conclusion above. Heavy 

occupants generate a highly activated landscape, so they would be exactly at the opposite 

of the observation space from the empty seat feature vectors. They could be considered as 

the inverse o f the empty seat occupants, leading to an easier detection of them from the 

pattern recognizer.

4.2 Self-Organizing Maps

Although the fuzzy c-means provided useful information about the consistency and 

similarities of the input feature vectors, a second clustering algorithm was used in order 

to have a clearer visualization on the feature vectors that were more likely to be grouped 

together. The Kohonen Networks, or Self Organizing Maps (SOM), were chosen for this 

task as they provide representation of the feature space while preferring spatial relations.

The SOM are one of the most common Neural Networks used in the scientific 

community. They can be visualized as a sheet-like neural-network array, Figure 4.4., 

where the cells (or nodes) of which become specifically tuned to various input signal 

patterns or classes of patterns in an orderly fashion [14]. The learning process is 

competitive and unsupervised, just like in the fuzzy c-means algorithm. In the basic 

version, only one map node (winner) at a time is activated corresponding to each input.
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The locations of the responses in the array tend to become ordered in the learning process 

as if some meaningful nonlinear coordinate system for the different input features were 

being created over the network.

Winning
Neuron

Neighbourhood
Neurons

Figure 4.4. Basic Architecture of SOM

Although the SOM can be viewed as model of specific aspects of biological neural nets, 

it can also be used as a powerful tool for statistical analysis and visualization.

The SOM is both a projection method which maps high-dimensional data space into low

dimensional space, and a clustering method so that similar data samples tend to be 

mapped to nearby neurons. From the methodological and computational point of view the 

mathematical and statistical properties of the algorithm can be considered (for instance, 

the time and space complexity, the convergence properties), as well as the nature of the 

input data (signals, continuous statistical indicators, symbol strings) and their
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preprocessing [11]. There exist a number of variants of the SOM in which various 

distance measures can be used, and the structure of the map interconnections is variable 

[14].

4.2.1 Algorithm

The SOM contain M neurons in the neural layer, each with a parametric weight vector 

v {m) of dimension N, which is the same as the dimension of the input feature vector

x (m) = ( x{9), . . x (̂ }), where q =1, ..., Q ( Maximum number of feature vectors).

The basic SOM algorithm is compound to the following steps [16]:

1. Randomize the order of { x (<?)}; Initialize q <— 1;

Initialize parametric weight vectors v (m) with values between 0 and 1

2. Draw exemplar x (9) from the exemplar set.

3. Compute distance of vector exemplar x (<!l to all the parametric weight vectors 

v (m) via:

N

D  = Y U (’ ) - v H  ( 6 )cl m \ n n \ v  7

find v |V"*) with minimum distance Dqm,

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. Update neuron m* via:

y (m*) = v (m*) +r)1 x̂ (9) _y (m*) ) (7)

and update all neurons m ^  m* via

v ( m )
=  V {m) + p 2  ( x (q) - v (m*) ) (8)

5. If stop criterion satisfied then stop. Else q <— q +1; If q > Q then q = q -  Q;

Go to step 2.

4.2.2 SOM results interpretation

There are different ways to visualize the results of the SOM. They can be divided into 

three categories based on the goal of the visualization [23]:

1. The first is the task of getting an idea of the overall shape and possible 

structure of the data

2. The second task comprises the wide field of analyzing the weight vectors v '" '1,

for example to characterize the clusters or the correlation between weight 

vector components.
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3. The third task is the examination of new data samples for classification and 

novelty detection purposes.

The creation of weight maps is necessary to realize the first task mentioned above. 

Because the weight vectors v (m) connect all the neurons of the SOM together and have the

same dimensions as the feature input vectors, it can be thought of them as a cubic weight 

matrix. Thus, the weight maps can be visualized by displaying the weight vectors one 

layer at the time. Figure 4.6. shows an example for a 3x3 SOM with 4 inputs. The weight 

matrices have 4 layers corresponding to the 4 dimensions of the input feature vectors. 

There are 9 weight vectors in the weight matrix, and only 2 connection weight vectors are 

shown in the figure. The most obvious information these weight maps provide is the 

correlation among the input features. If two weight maps are similar then the two input 

features they represent are highly correlated. Otherwise, the two input features are not 

correlated. Correlation of part of the observation space can be known as well. For 

example, two weight maps can be very similar in the upper-right comer but are very 

different in other areas. This means that only the data to the upper-right corner is highly 

correlated.

A clustering map can be created in order to analyze the similarity of the weight vectors 

v " " ’ . This map represents the distance between neighboring weight vectors. Any 3D 

measure can be used to do that. In this experiment the Euclidean distance of two vectors 

was used. For two N  dimensional vectors x  =  ( x , ,  ..., x w), and y  = ( y , , ..., y N) the 

Euclidean distance D is defined as:
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D  = J z
V W=1

(9)

In this project similar weight vectors (the ones with small distance values) are 

represented with bright colors in the clustering map and vice versa.

Input 1

Input 2

Input 3

Input 4

Figure 4.5. A 3x3 SOM weight vector map

A data distribution map can be created to achieve the last task mentioned above. After 

the SOM is trained, the input feature vectors can be mapped back to it. A record of how 

many input feature vectors were assigned to each neuron can be achieved.
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4.2.3 Experimentation and Results

Several SOM were trained using the SOMtool package [2], The two with the most 

valuable information are presented for discussion in this document. For all the 

experiments the following parameters were used:

Number o f Iterations: 200

Step gain tjl: 0.2

Step decline t]2: 0.1

Figure 4.6. shows the results for a 6x6 SOM. Figure 4.6a. shows the weight maps for this 

SOM. These maps have no similarity at all for the different input features. Actually, there 

are almost no regions among the different weight maps that show similarities. According to 

the theory, the input features of this experiment are not correlated. This assumption could 

not be true. The pressure distribution across the seat should be similar among close sensors.

Figure 4.6b shows the clustering map for the 6x6 SOM. This map represents how similar 

the weight vectors are among the different weight maps. In an ideal case, all or most of 

the neurons should end up with a bright color. This would mean that the observation 

space is very consistent and the input feature vectors of similar classes are grouped 

together. Unfortunately that is not the case in this project. Dark colors in the clustering 

map means inconsistency in the observation space. This result agrees with the 

conclusions drew from the Fuzzy c-means clustering experiment.
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Figure 4.6c shows the distribution map for the 6x6 SOM. Brighter color for each neuron 

illustrates low densities of examples assigned to that particular node. Dark colors 

illustrate the contrary. As seen in the map almost 40% of the input feature vectors were 

assigned to one single neuron. Furthermore, only 8 out of 36 neurons were assigned any 

feature vectors at all. This trend just confirms the closeness of the input feature vectors in 

the observation space and the high probability of overlapping among some positions 

generated by different type of occupants.

Figure 4.7. shows the results for a 9x9 SOM. The results of the data distribution map and 

the clustering map concur with the results obtained in the 6x6 SOM. Flowever, the results 

of the weight maps are different. They show certain correlation among different input 

sensors. Sensors 9, 10, 11 and 12 have very similar weight maps, as well as sensors 16 

and 7 and sensors 13 and 6. This means they are contributing with similar information to 

the SOM. This result follows common sense. Close sensors should contribute with 

similar sensor readings. This correlation is not necessarily bad. The sensor layout was 

optimized to measure the places in the car seat with higher pressure. Thus, placing the 

sensors elsewhere could reduce the correlation of the input features, but could end up not 

providing useful information for classification purposes because most of the sensor 

readings could end up being zero. Besides, having sensors nearby helps improve the 

reliability of the system in case of a sensor failure. Readings from the places of the car 

seat exposed to relatively high pressure would still be measured.
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Figure 4.6. 6x6 SOM. (a) Weight Maps, (b) Clustering Map. (c) Distribution Map
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Figure 4.7. 9x9 SOM. (a) Weight Maps, (b) Clustering Map. (c) Distribution Map
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This result also proved that the SOM can be successfully used for visualization of high 

dimensional observation spaces, as long as the structure of the SOM is sufficient 

(contains enough neurons) to cover the observation space.

The independence in the information provided by the sensors was also confirmed by 

calculating the static correlation of the input features over all the observation space:

n is the number of observations in the data set, i is the /'th element of the data set, X  

denotes the input data set, and y  is the output data set.

Correlation
Cov(X, y )

(10)

where Cov(X, y ) is the covariance obtained using

Cov(X,y)  = - Y j ( X j - j u x ) - ( y i - Juy), (11)
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Correlation CoefYbisnt Matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 SI 1.00 0.56 0.51 0.43 0.68 0.27 0 38 0 47 025 0.16 0.19 0.21 0.24 0.13 0.10 0 32
2 S2 0.56 1.00 0.75 0.56 0.51 0.35 0 36 0 42 0.22 0.22 0.22 0.20 0.20 0.09 0.06 0 24
3 S3 0.51 0.75 1.00 0.72 0.50 0.38 0 43 0 62 0.19 0.19 0.24 0.23 0.29 0.07 0.09 0 24
4 S4 0.43 0.56 0.72 1.00 0.36 0.38 0.30 0.53 0.08 0.06 0.08 0.12 0.16 -0.05 -0.02 0.11
5 S3 0.68 0,51 0.50 0.36 1.00 0.35 0.47 0.60 0.59 0.46 0.48 0.49 0.46 0.27 0.25 0,52
6 S 6 0.27 0.35 0.38 0.33 0.35 1.00 0.30 0.43 0.31 0.38 0,39 0.44 0.71 0.23 0.29 0.29
7 SI 0,38 0.36 0.43 0.30 0.47 0.30 1.00 0.38 0,43 0.37 0.37 0.34 0.29 0.30 0.17 0.76
8 SS 0,47 0.42 0.62 0.58 0.60 0.43 0.33 1.00 0,36 0,32 0.39 0.47 0.47 0.13 0.16 0,33
9 S 9 0,25 0.22 0.19 0.08 0.59 0.31 0.43 0.36 1,00 0.83 0.77 0.75 0.53 0.62 0.56 0.66
10 S1Q 0.16 0.22 0.19 0.06 0.46 0.38 0.37 0.32 0.83 1.00 0.85 0.74 0.57 0.66 0.61 0.58
11 Sll1 0.19 0.22 0.24 0.08 0.48 0.39 0.37 0 39 0.77 0.85 1.00 0.86 0.67 0.66 0.67 0 57
12 S12 0.21 0.20 0.23 0.12 0.49 0.44 0.34 0.47 0.75 0.74 0.86 1.00 0.70 0.54 0.56 0 52
13 313 0.24 0.2D 0.29 0.16 0.46 0.71 0 29 0 47 053 0.57 0.67 0.70 1.00 0.46 0.57 0 44
14 S14 0.13 0.09 0.07 -0.05 0.27 0.23 0 30 0 13 062 0.66 0.66 0.54 0.46 1.00 0.89 0 53
15 S15 0.10 0.06 0.09 -0.02 0.25 0.29 0.17 0.16 0 56 0.61 0.67 0.56 0.57 0.89 1.00 0 38
16 516 0.32 0.24 0.24 0.11 0.52 0.29 0 76 033 066 0.58 0.57 0.52 0.44 0.53 0.38 1 00

Table 4.1. Correlation among the input features

In the correlation matrix sensors close to each other show relatively considerable mutual 

correlations, e.g. sensors 9, 10, 11 and 12. This is normal, as they are located in the 

middle of the seat and are activated most of the time. Sensors 16 and 7, and 6 and 13, 

have relatively high correlation as well. The first set of sensors (16-7) is located in the 

right bolster and the second set (13-6) in the left bolster. It is just natural for them to be 

depressed for the same positions. There are no cases where sensors located far away from 

one another have high correlation.

4.2.4 Conclusions

The SOM experiments showed how the sensor layout described in chapter 2 proved to be 

useful in acquiring m eaningful feature vectors. Sensors close to one another generate 

similar activation values. Therefore, their correlation is considerable. There are no cases 

were distant sensors generate similar information or, in general, cases of any sensor 

having identical activation values to another sensor.
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The results obtained by the fuzzy c-means clustering algorithm in terms of inconsistency 

and overlapping of the feature vectors in the observation space were confirmed. 

Clustering algorithms are useful in providing a description of the observation space, but 

do not perform well in some recognition tasks. Both the fuzzy c-means and the SOM 

proved futile in partitioning the observation space in all of the considered class systems.

4.3 Neural Networks

Another supervised learning system considered for the development of the pattern 

recognition system is neural network (NN). NNs are parallel systems inspired by the 

architecture of biological neural networks, comprising simple interconnected units 

(artificial neurons or perceptrons) to process information [21]. These units have a 

transformation function that performs on the weighted sum of inputs to produce an output. 

All models of artificial neurons resemble their biological counterparts as much as possible

[6], A biological neuron receives an electrical impulse through its dendrites, sums them up, 

and if the sum exceeds the neuron’s body threshold it triggers an electrical signal along its 

axon. The strength of the incoming signals is determined by the synapse. This phenomenon 

is simulated in the artificial neural networks as a coefficient, or weight, applied to the input 

signal coming from a specific dendrite.

The ability of NNs to generalize, modify their behavior, and tolerance to noise in the input 

domain, account for much of the interest in using them as a modeling tool in this project. 

NN models have some important intrinsic properties, which are advantageous in the 

modeling context [12], The distribution free property, which allows construction of models
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without assumption about the underlying distributions of processes of interest; the learning 

capability, which allows the models to be constructed or adjusted solely based on the 

available data without the intervention of a programmer; and the parallel processing 

capabilities, which permit these models to be transferred to parallel hardware. Many 

different NN architectures exist, each having their strength and limitations. A complete 

description of various NN models is provided, e.g. in [16], [15], [18].

4.3.1 Single Layer Perceptron

A single layer perceptron can be considered a hyperplane separator based on its activation 

function and the change in its inputs, or synaptic weights [16]. Figure 4.8. shows the 

adjustable synaptic weights on the input lines that can excite or inhibit incoming signals of 

a perceptron. An input vector x = (xi ,..., x m ) ,  considered to be a column vector, is linearly 

combined with the weights w = (yv\ ,..., xm) via the dot product to form the sum

M

s = Y Jwmxm = w'x.  (12)
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W m +1

y  =  h (s) ►

INPUTS PROCESSING OUTPUT

Figure 4.8. Single layer perceptron with unipolar sigmoid function

In the previous figure, the activation function y  = h(s) maps the sum s into the proper range 

of output values. This function is typically chosen as continuous differentiable function so 

that gradient descent methods can be used to solve for weights that map an input feature 

vector x  = (x i ,..., x M) into the desired identifier (target) vector y ’ = (y ’\ ,..., y ’p) that 

represents a class.

Figure 4.9. presents the shape of the unipolar sigmoid activation function h(s). This 

function is continuously differentiable and has the form:

where a  is the steepness of the sigmoid function , b is the bias that shifts the function

(13)

center to where e° occurs (at .v = b), where the output is the intermediate value y  = 0.5.

Thus, b is the .v-axis center of asymmetry of h(s).
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Figure 4.9. Sigmoid Activation Function

4.3.2 Multiple Layer Perceptrons

Multiple layer perceptrons (MLP), or NN, are feed-forward networks with one or more 

layers of neurons, or perceptrons, between the input and the output. Their capabilities stem 

from the nonlinearities used within neurons. If neurons were linear elements, then a single

layer network with appropriately chosen weights could exactly duplicate those calculations 

performed by any MLP. Instead, MLP can form any unbounded convex region in the space 

spanned by the inputs [15]. Thus, complex recognition systems can be developed using 

MLP. Figure 4.10. shows a MLP with a single hidden layer of neurons.
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Figure 4.10. Feedforward MLP with one hidden layer

This network has N  inputs branching neurons, M  hidden neurons, and J  output neurons. 

The weights of the input lines of the middle and output neurons are designated by w„m and 

umJ respectively.

In figure 4.10., both of the activation functions at the hidden and output layer are unipolar 

sigmoid functions. The diagram does not show the offset for neurons in the hidden layer to 

prevent the figure to be unclear, but the neurons of the hidden layer have an offset as one of 

their inputs, wm+i = 1.
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There are several algorithms that can be used to adjust, or train, the synaptic weights wnm 

and umj in such networks. The most common learning algorithm is called back

propagation. It is used in this work

4.3.3 Backpropagation Algorithm

The backpropagation algorithmis an iterative gradient algorithm designed to minimize the 

mean square error between the actual output of a feed-forward MLP and the desired output.

The basic backpropagation algorithm consists of the following steps [16]:

1. Define the number of input (N), Hidden (M) and output (J) neurons, the number of 

examples in the training database (Q), the step gain r|, and the steepness and bias of 

the sigmoid function a  and b. The value of N depends on the number of features in 

the input vector x . The value of J depends on the number of patterns to be 

recognized

2. Define the maximum number of iterations I, the maximum error E and the 

minimum error s

3. Initialize the values of the weights in both the hidden and output layers (wmn and 

w ■) random ly betw een -1.0 and 1.0

52

with permission of the copyright owner. Further reproduction prohibited without permission.



4. Calculate the output values for the perceptrons of the hidden and output layer ( y m 

and Zj)

5. Calculate the sum square error (SSE) of the network by the equation 4.4. If the error 

is less than s  stop iterating. Else go to step 6.

E {q) = - z f \ (14)

6. Calculate the derivative error with respect to wnm andw .:

dE
d u .

(15)

dE
dvv ■ =  v (i

M du»v

7. Update the weights:

u =u —77
m i m i /

8E
du„.

(16)

(17)

dE
W„n, = w«m - n - —  dw„m

(18)

If the number of iterations is equal or greater than I then stop. Else go to step 5.

In this project, the total mean square error (TMSE) was used to estimate the inaccuracy 

of the NN instead of the SSE. The TMSE is a normalized version o f the SSE. It allows 

presenting the error in terms of percentages. The TMSE is defined as:

TMSE = SSE / J / Q  (19)
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Where J is the number of outputs of the NN and Q is the number of examples in the 

training database. According to Poh [20] the TMSE can be used to determine if the 

training of the NN was successful. If the verification TMSE is less than twice the training 

TMSE on the last training iteration, then the training is acceptable. This criterion was 

used in the training process of the pattern recognition system.

4.3.4 Experimentation and Results

Training, validation and verification databases are built in order to design the NN. The 

training database contains 65% randomly selected input feature vectors from the 

observation space. Its main purpose is to provide the teaching inputs for the optimization 

of the weights in the NN.

The validation database contains 15% randomly selected input feature vectors from the 

observation space. Its main purpose is to supervise that the NN is not being over trained. 

This validation set is evaluated by the NN after each training iteration. The validation 

TMSE should keep decreasing as the algorithm iterates. Increase of the validation TSME 

indicates specialization or memorization of the training database. This supervision 

process is referred as cross validation in the literature.

The verification database contains the remaining input feature vectors of the observation 

space (20%). Its m ain purpose is to verify if  the training process has been successful.
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The number of inputs of the NN is defined by the number of features in the input vectors. 

Thus, N =  16.

Since it is not possible to know how many neurons in the hidden layer will provide the 

best neural network beforehand an iterative process of experimentation is performed. 

There is a rule of thumb for estimating the size of the hidden layer: the initial number of 

hidden neurons should be twice the number of classes to be recognized (M = 2K, where 

K is the number of classes to recognize) [16]. The training process begins with this 

number of hidden neurons and is increased by one until a NN with 30 hidden neurons is 

built and tested

The number of outputs varies for the different class systems. Because the purpose of this 

phase of the project is to determine which model would be more suitable for the 

recognition process, only NN classifying between a 3-class and a 5-class systems are 

built and tested. The different class systems are listed in table 4.2.

Number of Outputs Class # Weight Threshold

3
l Empty Seat
2 Below 103 Lbs
3 A bove 103 lbs

5

1 Empty Seat
2 A ny Child Seat
3 12 to 59 lbs
4 60 to 103 lbs
5 > 103 lbs

Table 4.2. Class systems
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All NN are trained for 1000 iterations, with a step gain r| = 0.45, using unipolar sigmoid 

activation functions with steepness a  = 1 and bias b = 0 in the neurons of the hidden and 

output layers.

3-Class system

Experiments are performed with NN containing 6 to 30 neurons in the hidden layer. The 

error graphs for NN trained with 20 up to 25 hidden neurons are shown in figure 4.12.

The lines with square points represent the training error. The lines with triangular points 

represent the validation error.

The validation errors always decrease, meaning that there is no overtraining in any of 

these NNs. In general, none of the NNs trained showed any sign of overtraining. This 

figure also shows how the training errors are very low. This means that the NN is able to 

distinguish clearly among the different classes in this class system in particular.
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Figure 4.11. Training and Validation error for NN with 20 to 25 hidden neurons for the
3-class system
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No. of neurons in Final Training Final Validation Verification
hidden layer Error (%) Error (%) Success Rate (%)

6 0.4370 1.3184 97.22
7 4.0518 8.9842 98.28
8 8.2166 18.2086 71.16
9 5.7342 12.716 98.14
10 1.0427 2.6087 98.03
11 0.2213 0.8712 98.10
12 0.6191 1.6769 98.32
13 0.2006 0.7719 98.60
14 0.1908 0.7371 98.46
15 0.2322 0.7724 98.44
16 0.1599 0.6894 98.84
17 0.1710 0.6802 98.66
18 0.1916 0.7125 98.73
19 0.1921 0.7586 98.17
20 0.1658 0.6118 98.96
21 0.1545 0.6570 98.73
22 0.1495 0.6384 98.69
23 0.1336 0.6258 98.73

a N : ; . ^ 0.1311 f.-d; 0.6342 ' 98.87
25 0.1453 0.6262 98.71
26 0.1498 0.6063 98.82
27 0.1418 0.6486 98.71
28 0.1469 0.5670 98.75
29 0.1374 0.6236 98.71
30 0.1733 0.6444 98.44

Table 4.3. Final error values for NN trained for 3-class system

Table 4.3. shows the summary of the final training and validation error values, as well as 

the verification success rate, for all the NNs trained for this class system. This table 

shows that the range of most accurate NN, in terms of training error and verification 

success rate, lies between 20 and 26 hidden neurons. The NN trained with 24 hidden 

neurons provided the low est training error, but the N N  trained w ith 20 hidden neurons 

have better success rate in verification.
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This experiment confirmed that the NN can overcome the problems of noise and 

overlapping in the observation space. NN provides an excellent accuracy of almost 99% 

for the 3-class system specified in chapter 2

5-Class System

Experiments are performed with NN containing 10 to 30 neurons in the hidden layer. The 

error graphs for NN trained with 25 up to 30 hidden neurons are show in figure 4.12. In 

these graphs the lines with square points represent the training error and the lines with 

triangular points represent the validation error just as in the previous experiment. For this 

experiment, the cross validation showed no sign of overtraining or memorization in the 

training of the NNs either.

The training error is very low for this set of experiments, similar to the NN trained for the 

3-class system. These results confirm once more the robustness of the NN to noise, and 

its capability to distinguish among overlapping classes.
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Figure 4.12. Training and Validation error for NN with 25 to 30 hidden neurons for the
5-class system

Table 4.4. shows the summary of the final training and validation error values, as well as 

the verification success rate, for all the NN trained for this class system. The NN trained 

with 30 hidden neurons provided the lowest training error, however the NN trained with 

28 hidden neurons had more success over verification.
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No. of neurons in Final Training Final Validation Verification
hidden layer Error (%) Error (%) Success Rate (%)

10 0.4589 1.2394 94.85
11 0.6375 1.6673 95.25
12 0.4061 1.984 96.11
13 0.3639 1.1206 96.13
14 0.4798 1.3508 96.11
15 0.4317 1.2446 96.00
16 0.3416 1.0755 96.23
17 0.3378 1.0560 96.25
18 0.3230 1.0073 96.84
19 0.3913 1.1555 96.68
20 0.2917 0.9235 96.88
21 0.3348 1.002 97.11
22 0.2866 0.9514 97.20
23 0.2427 0.8078 97.20
24 0.2661 0.9207 96.86
25 0.2903 0.9198 96.97
26 0.2324 0.8397 97.22

— 0.2430 0.8111 97.44
...... ..... .......... ........... .... 0.2258 0.8183 97.02

2‘) 0.2523 O.N5S4 9“.I5
30 0.2149 0.7839 97.38

Table 4.4. Final error values for NN trained for 5-class system

Although satisfactory, the results for the 5-class system are not as good as the results for 

the 3-class system. The lowest training error for the 5-class system was 0.08% higher 

than its equivalent in the 3-class system. The best verification success rate is 1.4% lower 

in the 5-class system compared to the 3-class system. These variations might have been 

caused by the inequality in the number of training examples of each class for the 5-class 

system. While the 3-class system observation space contains about 7000 feature vectors 

for each class, the 5-class system has about 6000 feature vectors in three o f  its classes and 

about 800 in the remaining two classes. This unbalance in the observation space could 

have caused the NN to focus on the classes that are represented in major proportion in the
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observation space. However, the NNs deal very well with this unbalance, and are able to 

distinguish among the classes in an acceptable way.

4.3.5 Conclusions

The set of experiments performed confirmed the ability of neural networks to generalize, 

modify their behavior, and tolerate noise in the observation space. The overlap of the 

input feature vectors in the observation space is overcome successfully by the NN alone. 

This is ideal for the final development of this project.

The implementation of the 3-class system, as specified in Chapter 2, has a very good 

outcome. The results are very promising, even though a 100% verification success rate 

was not achieved. A better adjustment of the parameters of the NN and the use of a 

filtering algorithm to take out the overlapping feature vectors in the observation space 

would likely lead to a more accurate classification.

It is unlikely that the 6-class and 9-class classifiers could be implemented using NN. The 

experiment described in this chapter illustrates the importance of balanced training data 

in terms of proportion of training examples belonging to each class.

In general, out of the classification methods described in this chapter, NN provide the 

best and practically acceptable results.
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Chapter 5.

Final Development of Pattern Recognizer

Training and evaluation are the final steps of the development of a pattern classification 

system according to the scheme presented in Chapter 1.

Part of the training stage for this project was implemented, tested, and its results 

presented, in the previous chapter. This chapter focuses on the optimization of the 

training stage in order to achieve the best possible recognition rates.

Several evaluation methods to test the final pattern recognition system’s accuracy and 

robustness are also presented.

5.1 Filtering of Database

The results presented in Chapter 4 show how the NN is the best model to create the 3- 

class pattern recognition system. A Training error of 0.13% and a verification success 

rate of almost 99% show their efficiency discriminating the observation space into three 

different classes. However, the goal for this project is to achieve 100% recognition rate.

The first step in order to achieve this goal is to overcome any critical overlapping of the 

input feature vectors for different classes in the observation space. A filter is designed to 

erase the input features that are similar, but labelled to belong to different classes. This 

filter calculates the Euclidean distance between two different feature vectors in the
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observation space. If this distance is below a specified threshold and the two feature 

vectors are labelled with different targets, both feature vectors are erased from the 

observation space. Otherwise the feature vectors remain untouched.

The algorithm for this filter is compound to the following steps:

1. Normalize each dimension S ̂  of the input feature vectors in the observation space 

using

Snorm™ = (20)w o o *om axm- b r n in m

2. Define the minimum distance threshold s  between two feature vectors belonging to 

different classes.

3. Draw feature vector Snorm(‘7) from the observation space.

4. Compute distance of feature vector Snorm(,?) to all other feature vectors in the 

observation space Snorm (<?,) via:

Dqqt = 'Y}\Snorm{*) -S n o r m 'p | (21)
tn= 1

5. if Dqq* < s  and class label is different erase both feature vectors from 

observation space. Else keep comparing.
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6. If q = Q (number of examples in observation space) stop. Else go to step 3.

The main issue when using this algorithm is to determine the value of the minimum 

distance threshold e for two feature vectors with different labels. At first, s was thought to 

be 5% of the maximum distance in observation space. Because the feature vectors have 

16 dimensions and the filter algorithm requires their values to be normalized between 1 

and 0, the maximum Euclidean distance in a hypercube with this number of dimensions 

between the origin and the farthest point would have a value of 4. Therefore, e = 0.2. 

However, the farthest distance between two feature vectors in the observation space for 

this experiment is 3.01 (25% less than the theoretical maximum). In order to keep some 

proportion in the way the feature vectors are distributed, the value of s is redefined as 

2.0% of the maximum distance. Therefore, s. = 0.06.

The filter erased 0.6% of the observation space. The final distribution of the feature 

vectors in the observation space is presented in figure 5.1.
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Distribution of feature vectors for 3-class system after filtering
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Figure 5.1. Distribution of feature vectors in observation space after filtering process

5.2 Neural Network Design

The final implementation of the recognition system is based on the experiments presented 

in section 4.3.

The results illustrated in Figure 4.12 shows that 1000 iterations are enough to train the 

NN properly without making it memorize the training input feature vectors. Therefore, 

the NN is trained for 1000 iterations for this final implementation, without cross 

validation. The filtered observation space is divided in two: a training database 

containing 66% of the feature vectors, and a verification database containing the 

remaining 33% of the feature vectors.
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The rest of the parameters are kept the same: step gain p = 0.45, unipolar sigmoid 

activation functions with steepness a  = 1 and bias b = 0 in the neurons o f the hidden and 

output layers.

Table 4.3 shows that a NN with 24 hidden neurons had a better training rate, but a NN 

with 20 hidden neurons has a better verification success rate. The 24-hidden-neuron 

architecture is chosen for this final implementation because it has a greater capacity to 

more finely partition the observation space due to its major number of synaptic 

weights [16].

After several runs, the best NN trained has 0.10% training error and 99.67% verification 

success rate. In raw numbers, the trained NN misclassified 24 input feature vectors out of 

7310 in the verification stage.

5.3 Methods used to further improve the neural network performance

Even though the results presented in the previous section show how accurate the trained 

recognition system is, 100% verification success rate remains the desired goal. This 

section explores additional methods to be used in order to achieve this performance.

5.3.1 Normalization of the Observation Space

The observation space of this project can be considered voluminous in feature vectors. 

These types of search spaces usually contain large amount of noise and missing data. The
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results from the fuzzy c-means and the SOM experiments show that at least the first of 

these problems is present in this project.

One way to overcome the problems stated previously could be to provide feature values 

to the pattern recognizer in a limited range. A normalization of the observation space 

would reduce the amount of noise and could bring values of the feature vectors closer, 

making up for missing data.

For this experiment the observation space is normalized using formula (20). NNs 

containing 20 to 24 hidden neurons are trained with the same parameters described in 

section 5.1.

NN Architecture Final Training 
Error (%)

Final Validation 
Error (%)

Verification 
Success Rate (%)

16-20-3 0.2329 0.7672 98.33
16-21-3 0.2087 0.7970 98.28
16-22-3 0.2134 0.7552 98.48
16-23-3 0.2016 0.7410 98.48
16-24-3 0.2060 0.7552 98.51

Table 5.1. Final error values for NN trained for 3-class system with normalized
observation space

Table 5.1. summarizes the results of this experiment. The NN with 23 hidden neurons 

shows the lowest training error. However, this training error is 0.1% higher than the one 

for the non-normalized observation space. The NN with 24 hidden neurons has the best 

verification success rate. However it is 1.06% lower than the one for the non-normalized 

observation space.
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This experiment leads to the conclusion that besides adding computation time, 

normalizing the observation space does not improve the recognition rate of the pattern 

recognition system.

5.3.2 Addition of hidden layers

There is no need for multiple hidden layers in a NN structure, as a single layer is 

sufficient to form an arbitrarily close approximation to any nonlinear decision boundary 

provided that there are enough neurons in the hidden layer [18]. However, extra multiple 

hidden layers can be more efficient in training and modeling highly nonlinear mapping 

with a large number of nonlinearly separable classes [16], as in this case.

OUTPUTS

xN

DESIRED
OUTPUTS

OUTPUT
LAYER

INPUT LAYER HIDDEN LAYERS

Figure 5.2. Feedforward neural network with multiple hidden layers
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A MLP with two hidden layer is presented in Figure 5.2. It has N  inputs branching nodes, L 

neurons in the first hidden layer, M  neurons in the second hidden layer, and J  output 

neurons. The weights of the input lines of the middle and output neurons are designated by 

v,,/, win and u„v respectively

The backpropagation algorithm is also used to train this type of networks. It is identical to 

the one described in section 4.3.3, only the updating of the weights in step 6, in the first 

hidden layer is different:

dE M
%  =  %  ~  V j   ------£  U ny-ym C1 “  Tm ) W lm ]« / C1 "  a i K  (2 2 )

d“mj m=l

Just as in the case of the single hidden layer NN, the number of nodes in the multiple 

hidden layers NN can not be calculated in advance. The best architecture can be reached 

by experimentation only. In our experiment, the number of neurons in the first hidden 

layer is around 24, and the number of neurons in the second hidden layer is always less 

than the number of neurons in the first hidden layer.

These NN are trained for 1000 iterations using 66% of the filtered observation space as 

training data and 33% as verification data. The step gain remained q = 0.45, and unipolar 

sigmoid activation functions with steepness a  = 1 and bias b = 0 are used in the neurons 

of both hidden layers and the output layer.
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Table 5.2. summarizes the results of the architectures tested in this experiment.

NN Architecture Final Training Error (%) Verification Success Rate 
(%)

16-18-8-3 0.485 97.14
16-18-12-3 0.476 97.14
16-20-12-3 0.478 97.14
16-22-14-3 0.568 97.46
16-24-16-3 0.465 97.65
16-25-16-3 0.432 97.40
16-26-18-3 0.455 97.63
16-28-18-3 0.402 98.07
16-30-20-3 0.476 97.75
16-35-25-3 0.413 98.43

Table 5.2. Final values for multiple hidden layer NN trained for 3-class system

Adding more hidden layers to the NN neither improves the training rates nor improves 

the verification success percentage with respect to the single hidden NN. It seems that 

attempting to solve a relatively simple problem with a more complicated solution does 

not bring any benefits, at least in this case.

5.4 Robustness of the Neural Network

The last set of experiments measures how robust the NN is to decrements in the 

resolution of the values generated by sensor layout and to failures in any of the sensors. 

Testing of how much the recognition rate decreased in these cases is also conducted.

5.4.1 Rounding of values of input feature vectors

The dimensions of the input feature vectors are floating point numbers with four decimal 

places. This is a large number of decimal places if processed by hardware. In order to test
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how robust the NN is, a rounding of the values of the feature vectors from four to two- 

and-a-half decimal places is conducted. Two-and-a-half decimal places rounding 

connotes assigning a value of either five or zero to the third decimal place of each 

dimension of the feature vectors.

For a number with four decimal places denoted as D.did2 d3d4 (i.e. 1.2345) the rounding 

criterion was:

1. If d3 d4  <30,  then d3 = 0

2. Else If 30 <= d3 cLt< 80, then d3 = 5

3. Else if  d3 d4  > 80, then d2 was incremented one unit and d3 = 0.

After rounding the values of the feature vectors of the observation space, a NN is trained 

using the 16-24-3 architecture. The success rate over verification is 99.7% on a 

verification database of 7335 examples. That is an increase of 0.03% over the non 

rounded observation space. The small improvement of the verification success rate is 

likely due to observation error. However, it demonstrates that using lower precision 

representation of sensor values would not affect the overall performance of the system. 

This is important for eventual hardware implementation of the system using an 8-bit 

microprocessor architecture.

Real life verification has been conducted using two baby seats, two male adults weighting 

over 180 Lbs and the empty seat. The system has proven to work correctly for all the
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testing positions of all the testing subjects. Further testing on all types of occupants is 

required in order to reach a final and definitive conclusion. However, for this first set of 

experiments the performance of the system is acceptable.

The rounding of the examples in the training database from four to two and a half 

decimal places does not affect the performance of the NN for the 3-class system. Further 

analysis will have to be made for NN involving the recognition of more than 3 classes.

5.4.2 Sensor relevance

The objectives of this experiment is to determine which sensor, if any, can be discarded 

from the sensor layout described in Chapter 2, and to establish which sensors provide 

most valuable information to the NN.

Different NNs with the 16-24-3 architecture are trained using the same training database 

and parameters described in section 5.2. The number of NNs trained is determined by:

NNs trained = 2* Number of Inputs (22)

Thus, the relevance of each sensor is measured several times on NNs that were trained 

with the same information, but that started their training in different places of the 

observation space due to the use of random initial weights. This measure allows an 

overall visualization of the relevance of each sensor.
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Figure 5.3. Sensor relevance Histograms
Value 1 of the histograms represents how many times a particular 
sensor was the most relevant one. Value 16 of the histograms 
represents how many times that sensor was the least relevant. 
Values in between 1 and 16 represent other relevance levels in 
descending order, i.e. if a particular sensor has value 5 at position 8 
of its histogram, it means that out of the 32 NN trained this 
particular sensor was the eighth most relevant in five of the NN.
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The sum square of the weights (SSW) from the input to the hidden layer is chosen as 

criterion of relevance. The most relevant features should have high SSW, because these 

inputs should stimulate the NN in greater proportion by presenting information of higher 

relevance.

The SSW for each input is defined as:

M

S S W „ = 2 ^ L  (23)
m=1

Where M is the number of hidden neurons and wnm is the matrix containing the weights 

from the input layer to the hidden layer of the NN.

Figure 5.3. presents the histograms with the relevance tendency for each sensor. Sensors 

2, 3, 7 and 16 appear among the 4 most relevant sensors in more occasions. Their 

relevancy can be considered high. Sensors 1,5,6,  and particularly, 12 appear to be least 

relevant to the NN in most of the cases.

Figure 5.4. shows the averaged SSW of each sensor over all the NN trained. The figure 

shows that sensors 2, 3, 7 and 16 tend to be the most relevant and sensors 12, 6, 5 and 1 

tend to be the most irrelevant, just as in the results discussed above.
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Averaged Sensor Releavance
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Figure 5.4. Averaged relevance of each input feature

According to the results of this experiment, sensor 12 seems to have little relevance for 

the system. It could be discarded without compromising the performance of the NN. 

However, it could not be wise to do so, as the analysis shows how sensors 7 and 16 (right 

bolster of the car seat) are very relevant. This might be due to the pressure exercised on 

the seatbelt with the device used to secure the baby seats to the car seat. This form of 

securing the baby seats might be causing them to lift from the left side of the car seat. 

Because of this lifting sensor 12 is not being activated fully, making it irrelevant to the 

NN. This type of securing the baby seats should be reconsidered, as it is causing the 

relevance of the sensors to be very asymmetrical from the center of the car seat, 

subsequently it is making the NN to rely on sensors that might not be activated fully in 

other circumstances. Sensor 13 has high relevance. This is possibly due to the pressure 

the buckle of the seatbelt exerts on this particular sensor.
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5.4.2 Sensitivity to sensor failure

The objective of this experiment is to determine the worst-case success percentages if any 

one, two or three sensors in the car seat fail at the same time.

Voltage of OV is outputted by a sensor when it fails. This experiment runs all the input 

feature vectors through the NN for evaluation, making one sensor fail at the time. Then, 

the impact of a combination of two and three sensor failing is studied.

The current observation space is used as input data. This database has a considerable 

number of positions the sensor layout in the car seat could generate, so it covers a 

substantial amount o f the input patterns the NN could receive at any time while a sensor 

or a number of sensors fail. The success percentages shown here are calculated over all 

22118 feature vectors of the observation space.

Recognition Rate after Sensor Failure

0.9B

□ .96

0 .94

0.92

0.86

S en so r  tha t fails

Figure 5.5. Recognition rates after one sensor failure
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The results of making one sensor fail at the time shows the NN to be very robust. As long 

as the sensor that failed is not very relevant to the NN, the recognition rates remain high 

(Figure 5.5). In some cases, if the least relevant sensor fails (sensor 12) the success rate 

would still be very high (over 99%). If a relevant sensor failed the success percentage can 

drop dramatically. The system proved especially sensible to failure of sensor 14. This 

sensor is highly activated by all occupants in the car seat, bringing very relevant 

information to the system. After three experiments, given the worst-case scenario, the 

success rates for the NN range from 90.04% to 91.5%. Considering the lowest possible 

rates it can be concluded that if any given sensor of the NN fails the success percentage 

rate would drop to 90%.

Experiments having two and three sensor fail at the same time show the same tendency. 

Because of large number of cases in these experiments, the results are presented in 

Appendix C. The worst-case scenarios success rates when two sensors fail range from 

81.22% to 83.66%. It can be concluded then that if any two sensors fail at the same time, 

given the worst case scenario, the success rate would drop to 80%. The worst-case 

scenarios success rates when any three sensors fail at the same time range from 71.95% 

to 78.12%. It can be concluded then that if any three sensors fail at the same time, given 

the worst case scenario, the success rate will drop to 70%.

The NN looses too many features if more than three sensors fail at the same time. It is no 

longer able to perform proper recognition of the different classes.
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Chapter 6

General Conclusions and Discussion

The objective of this thesis is design a pattern recognizer for a car seat occupancy system 

based on rigorous study of data and using methods of computational intelligence. This 

work focuses on finding a model or a set of models able to properly distinguish among 

different classes of occupants in car seats specified by the FMVSS 208 standard. The 

project’s design cycle consists of three main phases: collection of data, choosing of 

recognition model, and training and evaluation of classifier.

One of the main problems in the initial phase of the project is to quantify the number of 

objects necessary in the observation space in order to have enough information to create the 

pattern recognizer. This is a critical issue, as the rest of the system is based on the 

completion of this observation space. In addition, the process of data gathering is time 

consuming and relies on help of volunteers, making the preparation and scheduling of the 

data acquisition sessions essential to meet the development time constrains. According to 

estimations between 22000 and 24000 examples are needed to successfully train and 

evaluate a recognition system for this purpose. The final number of objects in the 

observation space lies within that range and leads to the design of a system that works 

correctly both in simulation and real life, showing the effectiveness of the estimation 

methods.
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Several recognition methods have been tested once the observation space was completely 

populated. Some of these algorithms provide a way to visualize the data. They are useful 

when the distribution of the observation space is unknown and an initial description is 

required. In our case, the desired division of the observation space is known. However, 

the clustering methods can be used for verifying whether these required classes 

correspond to the natural clusters, if any, present in the data. Fuzzy c-means and SOM are 

used for this purpose. Both methods show that feature vectors representing different 

positions belonging to different occupants are similar to each other, creating big overlaps 

among the classes. The only feature vectors that proved to be consistent belong to the 

empty seat class. This problem can be partly overcome by creating more defined 

boundaries among the classes by removing those feature vectors that cause the major 

overlaps. The generalization property of the NN helps to resolve this problem completely.

The results obtained with clustering algorithms also show high correlation in the outputs 

from sensors that are placed close in the mat. That means that several sensors could be 

providing the same information to the recognition system and some of them could be 

eliminated. This could lead to a sensor layout that gives the same information to the NN 

with fewer sensors, thus decrementing hardware, processing time and NN complexity. The 

results on NN robustness and sensor failure confirm this assumption. However, they also 

show how this redundancy in the input features helps the robustness of the NN in case of 

sensor failure. The m ain issue o f  designing this system is to increase vehicle protection in 

case of an accident. Therefore, it would be safer to leave the configuration the way it is and
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assume the extra processing cost. This is probably one possible topic to research in future 

projects.

After evaluating the results of clustering methods, single hidden layer NN are used as the 

main model to perform recognition in the system. They show to be very effective, 

especially because they overcome the problem of overlapping of the feature vectors in the 

observation space and generalize the information given to create the desired classes in the 

system. Not only were they very accurate for recognition, but also very robust to failures in 

the system. They proved to work correctly with less accuracy in the input values and even 

with failure in some of the sensors. Multiple hidden layer NN did not improve recognition 

rates with respect to single layer hidden NN. Neither did normalizing the input feature 

vectors to try to overcome the overlapping of the input feature vectors. Single hidden layer 

NN’s recognition efficiency remained high in both simulation and real situations, driving to 

the conclusion that they were the proper choice for the development of the system.

The objectives of the project are met. The pattern recognition system has been successfully 

developed. The recognition rate on simulation is 99.6%, and on real life testing is 100%. 

This difference in recognition rates is due to the addition of positions not specified in the 

FMVSS 208 standard used in the training and verification processes to add reliability and 

robustness to strange inputs to the system.

This project focused on the 3-class system described in section 2.1. For the development of 

the 6 and 9-class systems a combination of recognition techniques might be necessary. The

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



experimentation with fuzzy c-means shows how the overlapping among classes increases 

with increasing number of classes to recognize. The experimentation with NN in order to 

classify 5 classes gives satisfactory, although not accurate enough results. The verification 

success rates on simulation should remain above 99% and the training error below 0.1%. 

Recognition at two levels may be necessary to develop an accurate pattern recognizer: one 

model to distinguish the general features at a high level, possibly based on the 3-class 

system already built, and a model to recognize the finite differences among classes at a low 

level, one that specializes and distinguishes among classes that are very similar. The goal 

in mind for future projects will be to achieve 100% recognition rates on real life testing for 

positions specified by the FMVSS 208 standard and Car Manufacturers due care positions 

provisions.
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APPENDIX A

Appendix A lists all the positions used for training in the development of this project.

A .l FMVSS 208 Training Positions 

3 year old dummy:

1-) Normal back against seat
2-) Back against reclined seat
3-) Back not against seat back
4-) Sitting on seat edge
5-) Standing on seat facing forward
6-) Kneeling on seat facing forward
7-) Kneeling on seat facing rearward
8-) Lying on seat.

6 year old dummy

1-) Normal back against seat
2-) Back against reclined seat
3-) Sitting on seat edge
4-) Leaning on door

5th Percentile Female Dummy

1-) Normal, Back against seat 

50th Percentile Male Dummy

1-) Normal, Back against seat 

Infant Seats

Britax ™ Handle With Care, Century ™ Assura, Cosco ™ Arriva, Evenflo ™ First 
Choice:

1-) With Crabi, No Base, No Blanket, Facing Forward, Handle Up
2-) With Crabi, No Base, No Blanket, Facing Forward, Handle Down
3-) With Crabi, No Base, No Blanket, Facing Rearward, Handle Up
4-) With Crabi, No Base, No Blanket, Facing Rearward, Handle Down
5-) With Crabi, No Base, No Blanket, Facing Rearward, Handle Up with 30 lbs seat belt 
Tension
6-)With Crabi, No Base, No Blanket, Facing Rearward, Handle Down with 30 lbs seat 
belt tension
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7-)With Crabi, No Base, With Blanket, Facing Forward, Handle Up
8-)With Crabi, No Base, With Blanket, Facing Forward, Handle Down
9-)With Crabi, No Base, With Blanket, Facing Rearward, Handle Up
10-)With Crabi, No Base, With Blanket, Facing Rearward, Handle Down
1 l-)With Crabi, No Base, With Blanket, Facing Rearward, Handle Up with 30 lbs seat 
belt tension
12-)With Crabi, No Base, With Blanket, Facing Rearward, Handle Down with 30 lbs seat 
belt tension

Britax ™ Roadstar, Evenflo™ Right Fit:

1-) With 3yr old, Facing Forward
2-) With 3yr old, Facing Forward, with Belt Over Lap (4 lbs tension)
3-) With 6yr old, Facing Forward
4-) With 6yr old, Facing Forward, with Belt Over Lap (4 lbs tension)

Britax™ Round About, Century™ Encore, Century ™ Ste 1000, Cosco™ Olympian, 
Cosco™ Touriva, Evenflo™ Horizon, Evenflo™ Medallion, Fisher Price™ Safe 
Embrace:

1-) With Crabi, No Blanket, Facing Forward
2-) With Crabi, No Blanket, Facing Forward with 30 lbs seat belt tension
3-) With 3yr Old, No Blanket, Facing Rearward
4-) With 3yr Old, No Blanket, Facing Rearward with 30 lbs seat belt tension
5-) With Crabi, With Blanket, Facing Forward
6-) With Crabi, With Blanket, Facing Forward with 30 lbs seat belt tension
7-) With Crabi, With Blanket, Facing Rearward
8-) With Crabi, With Blanket, Facing Rearward with 30 lbs seat belt tension
9-) With Crabi, No Blanket, Facing Rearward
10-) With Crabi, No Blanket, Facing Rearward with 30 lbs seat belt tension
11-) With 3yr Old, No Blanket, Facing Forward
12-) With 3yr Old, No Blanket, Facing Forward with 30 lbs seat belt tension
13-) With 3yr Old, With Blanket, Facing Forward
14-) With 3yr Old, With Blanket, Facing Forward with 30 lbs seat belt tension
15-) With 3yr Old, With Blanket, Facing Rearward
16-) With 3yr Old, With Blanket, Facing Rearward with 30 lbs seat belt tension

Graco™ Snug Ride, Century™ Avanta, Cosco Opus, Century™ Smart Fit, Cosco™ 
Dream Ride, Evenflo™ Discovery, Evenflo™ On my Way:

1-) With Crabi, With Base, No Blanket, Facing Forward, Handle Up
2-) With Crabi, With Base, No blanket, Facing Forward, Handle Down
3-) With Crabi, With Base, No Blanket, Facing Rearward, Handle Up
4-) With Crabi, With Base, No blanket, Facing Rearward, Handle Down
5-) With Crabi, With Base, No Blanket, Facing Rearward, Handle Up with 30 lbs seat 
belt tension
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6-) With Crabi, With Base, No blanket. Facing Rearward, Handle Down with 30 lbs seat 
belt tension
7-) With Crabi, With Base, With Blanket, Facing Forward, Handle Up
8-) With Crabi, With Base, With Blanket, Facing Forward, Handle Down
9-) With Crabi, With Base, With Blanket, Facing Rearward, Handle Up
10-) With Crabi, With Base, With Blanket, Facing Rearward, Handle Down
11-) With Crabi, With Base, With Blanket, Facing Rearward, Handle Up with 30 lbs seat 
belt tension
12-) With Crabi, With Base, With Blanket, Facing Rearward, Handle Down with 30 lbs 
seat belt tension
13-) With Crabi, No Base, With Blanket, Facing Rearward, Handle Up
14-) With Crabi, No Base, With Blanket, Facing Rearward, Handle Down
15-) With Crabi, No Base, With Blanket, Facing Rearward, Handle Up with 30 lbs seat 
belt tension
16-) With Crabi, No Base, With Blanket, Facing Rearward, Handle Down with 30 lbs 
seat belt tension
17-) With Crabi, No Base, With Blanket, Facing Forward, Handle Up
18-) With Crabi, No Base, With Blanket, Facing Forward, Handle Down
19-) With Crabi, No Base, No Blanket, Facing Rearward, Handle Up
20-) With Crabi, No Base, No Blanket, Facing Rearward, Handle Down
21-) With Crabi, No Base, No Blanket, Facing Rearward, Handle Up with 30 lbs seat belt 
tension
22-) With Crabi, No Base, No Blanket, Facing Rearward, Handle Down with 30 lbs seat 
belt tension
23-) With Crabi, No Base, No Blanket, Facing Forward, Handle Up
24-) With Crabi, No Base, No Blanket, Facing Forward, Handle Down

Century™ Next Step, Cosco™ High Back:

1-) With 3yr old, Facing Forward
2-) With 3yr old, Facing Forward with Belt Over Lap (4 lbs)
3-) With 3yr old, Facing Forward with 30 lbs seat belt tension
4-) With 6yr old, Facing Forward
5-) With 6yr old, Facing Forward with Belt Over Lap (4 lbs)
6-) With 6yr old, Facing Forward with 30 lbs seat belt tension

A.2 Car Manufacturer A due Care Training Positions 

3 year old Dummy

1-) N orm al, B ack A gainst Seat
2-) Back Against Reclined Seat
3-) Back Not Against Seat Back
4-) Sitting on Seat Edge
5-) Lying across on Seat
6-) Kneeling on Seat Facing Forward
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7-) Kneeling on Seat Facing Rearward
8-) Standing on Seat Facing Forward

6 year old Dummy

1-) Normal, Back Against Seat with 4 lbs seat belt tension
2-) Back Against Reclined Seat, 25 degrees
3-) Sitting on Seat Edge
4-) Rotate 30 degrees Clockwise with 4 lbs seat belt tension
5-) Rotate 30 degrees Counter Clockwise with 4 lbs seat belt tension
6-) Facing Inboard with 4 lbs seat belt tension
7-) Facing Outboard with 4 lbs seat belt tension
8-) Leaning on Door with 4 lbs seat belt tension
9-) Sitting on 1" Blanket with 4 lbs seat belt tension

5th Percentile Female Dummy

1-) Normal with Back Against Seat
2-) Normal with Back Against Seat with 4 lbs seat belt tension
3-) Rotate 30 degrees Clockwise with 4 lbs seat belt tension
4-) Rotate 30 degrees Counter Clockwise with 4 lbs seat belt tension
5-) Facing Inboard with 4 lbs seat belt tension
6-) Facing Outboard with 4 lbs seat belt tension
7-) Normal with Legs In with 4 lbs seat belt tension
8-) Sitting on 1" Blanket with 4 lbs seat belt tension

50th Percentile Male Dummy

1-) Normal with Back against Seat
2-) Normal with Back against Seat with 4 lbs seat belt tension
3-) Rotate 30 deg Clockwise with 4 lbs seat belt tension
4-) Rotate 30 deg Counter Clockwise with 4 lbs seat belt tension
5-) Facing Inboard with 4 lbs seat belt tension
6-) Facing Outboard with 4 lbs seat belt tension
7-) Normal with Legs In with 4 lbs seat belt tension
8-) Sitting on 1" Blanket with 4 lbs seat belt tension

Infant Seats

Britax™ Handle With Care, Century™ Assura, Cosco™ Arriva, Evenflo™ First Choice:

1-) With Crabi, No base, No Blanket, With 4" Foam Roll, Facing Rearward with 10 lbs 
seat belt tension
2-) With Crabi, No base, No Blanket, With 4" Foam Roll, Facing Rearward with 20 lbs 
seat belt tension
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3-) With Crabi, No base, No Blanket, With 4" Foam Roll, Facing Rearward with 32 lbs 
seat belt tension
4-) With Crabi, With base, No Blanket, With 4" Foam Roll, Facing Rearward with 10 lbs 
seat belt tension
5-) With Crabi, With base, No Blanket, With 4" Foam Roll, Facing Rearward with 20 lbs 
seat belt tension
6-) With Crabi, With base, No Blanket, With 4" Foam Roll, Facing Rearward with 32 lbs 
seat belt tension
7-) With Crabi, With base, With Blanket, Without Foam Roll, Facing Rearward with 10 
lbs seat belt tension
8-) With Crabi, With base, With Blanket, Without Foam Roll, Facing Rearward with 20 
lbs seat belt tension
9-) With Crabi, With base, With Blanket, Without Foam Roll, Facing Rearward with 32 
lbs seat belt tension
10-) With Crabi, No base, With Blanket, Without Foam Roll, Facing Rearward with 10 
lbs seat belt tension
11-) With Crabi, No base, With Blanket, Without Foam Roll, Facing Rearward with 20 
lbs seat belt tension
12-) With Crabi, No base, With Blanket, Without Foam Roll, Facing Rearward with 32 
lbs seat belt tension

Britax™ Roadstar, Evenflo™ Right Fit:

1-) With 3yr Old, With Blanket and Lap Belt (41bs)
2-) With 6yr Old, With Blanket, Facing Forward with Lap Belt (41bs)

Britax™ Round About, Century™ Encore, Century™ Ste 1000, Cosco™ Olympian, 
Cosco™ Touriva, Evenflo™ Horizon, Evenflo™ Medallion, Fisher Price™ Safe 
Embrace:

1-) With Crabi, with Blanket, Facing Rearward with 10 lbs seat belt tension
2-) With Crabi, with Blanket, Facing Rearward with 20 lbs seat belt tension
3-) With Crabi, with Blanket, Facing Rearward with 32 lbs seat belt tension
4-) With 3yr old, with Blanket, Facing Forward with 10 lbs seat belt tension
5-) With 3yr old, with Blanket, Facing Forward with 20 lbs seat belt tension
6-) With 3yr old, with Blanket, Facing Forward with 32 lbs seat belt tension

Graco Snug Ride, Century Avanta, Cosco Opus, Century Smart Fit, Cosco Dream Ride 
Evenflo Discovery, Evenflo On my Way:

1-) With Crabi, No base, No Blanket, With 4" Foam Roll, Facing Rearward with 10 lbs 
seat belt tension
2-) With Crabi, No base, No Blanket, With 4" Foam Roll, Facing Rearward with 20 lbs 
seat belt tension
3-) With Crabi, No base, No Blanket, With 4" Foam Roll, Facing Rearward with 32 lbs 
seat belt tension
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4-) With Crabi, No base, With Blanket, Without Foam Roll, Facing Rearward with 10 lbs 
seat belt tension
5-) With Crabi, No base, With Blanket, Without Foam Roll, Facing Rearward with 20 lbs 
seat belt tension
6-) With Crabi, No base, With Blanket, Without Foam Roll, Facing Rearward with 32 lbs 
seat belt tension

Century™ Next Step, Cosco™ High Back:

1-) With Crabi, with Blanket, Facing Rearward with 10 lbs seat belt tension
2-) With Crabi, with Blanket, Facing Rearward with 20 lbs seat belt tension
3-) With Crabi, with Blanket, Facing Rearward with 32 lbs seat belt tension
4-) With 3yr old, with Blanket, Facing Forward with 10 lbs seat belt tension
5-) With 3yr old, with Blanket, Facing Forward with 20 lbs seat belt tension
6-) With 3yr old, with Blanket, Facing Forward with 32 lbs seat belt tension

A.3 Car Manufacturer 2 due Care Testing Positions 

3 year old Dummy

1-) Normal, Back Against Seat
2-) Sitting on Seat Edge
3-) Leaning on Door
4-) 25 degrees reclined back seat
5-) Sitting back not against seat back
6-) Kneeling on Seat Facing Forward
7-) Kneeling on Seat Facing Rearward
8-) Standing Facing Forward
9-) Lying on Seat Facing Forward
10-) Kneeling Outboard facing Rearward
11-) Standing Facing Rearward
12-) Standing Outboard Facing Rearward
13-) Lying on seat Face up and Head out
14-) Lying on seat Head on Door Armrest

6 year old Dummy

1-) Normally seated
2-) Sitting on Seat Edge
3-) Leaning on Door
4-) 25 degrees reclined Back Seat
5-) Ankles Crossed and Knees Apart
6-) Left Foot Under with Shoes on
7-) Left Foot Under with Shoes off
8-) Pretzel with Shoes Off
9-) Holding Knees with Shoes Off
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10-) Relaxed (slouch) with Head on Seat Back and Shoes off
11-) Relaxed (slouch) with Head on Seat Back and Shoes on
12-) Leaning on Center Console with Left ankle under thigh, chin on Head and shoes on
13-) Leaning on Center Console with Left ankle under thigh, chin on Head and shoes off
14-) Leaning back towards Window with left ankle under thigh, hands clasped and shoes 
off
15-) Leaning back towards Window with left ankle under thigh, hands clasped and shoes 
on
16-) Kneeling Outboard facing Rearward
17-) Standing Facing Rearward
18-) Standing outboard Facing Rearward
19-) Lying on Seat with Face Up and Head out
20-) Lying on seat with Head on Armrest
21-) Seating with Bookbag on lap

5th Percentile Female Dummy

1-) Normal Back against seat
2-) Legs Rearward
3-) Ankles Crossed and Knees Apart
4-) Left Foot Under with Shoes on
5-) Left Foot Under with Shoes off
6-) Pretzel with Shoes Off
7-) Holding Knees with Shoes Off
8-) Relaxed (slouch) with Head on Seat Back and Shoes off
9-) Relaxed (slouch) with Head on Seat Back and Shoes on
10-) Leaning on Center Console with Right leg over and Hands clasped
11-) Leaning on Center Console with Left leg over,Chin on Hand and Shoes on
12-) Leaning on Center Console with Left leg over,Chin on Hand and Shoes off
13-) Leaning on Center Console with Left ankle under thigh, chin on Head and shoes off
14-) Leaning on Center Console with Left ankle under thigh, chin on Head and shoes on
15-) Leaning on Center Console with Left ankle over thigh,Hands clasped and shoes off
16-) Leaning on Center Console with Left ankle over thigh, Hands clasped and shoes on
17-) Leaning back towards Window with left ankle under thigh, hands clasped and shoes 
off
18-) Leaning back towards Window with left ankle under thigh, hands clasped and shoes 
on
19-) Leaning back towards window with left ankle under thigh, hands clasped and shoes 
on
20-) Leaning back towards window with right leg over and hands clasped
21-) Touching IP
22-) Adjusting Radio
23-) Tie Shoes
24-) Holding Grab Handle
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Appendix B

Appendix B gives a brief description of the development and use of the data acquisition 

software

Platform

The two most frequently developing platforms used are MS Windows and Unix. MS 

Windows has friendlier graphical user interface and is more popular for end users. Unix 

is more robust for large business servers and complex processes but has a less friendly 

graphical user interface. Because this tool was to be designed for ordinary users, the MS 

Windows 2000 platform was chosen.

Programming Language

For the development of friendly graphical interfaces several programming languages 

could be used. The most popular ones are Visual Basic, C++ and Java. They all support 

GUI programming in a MS Windows platform. Of these, Visual Basic presents the fastest 

development time. It is like component glue. It can integrate the forms, menus dialog 

boxes together, making the design easier. The downside of this high level design 

language is the overhead produced in computations. However, the acquisition software 

did not require complex algorithms to run, so the performance time of Visual Basic was 

fine for this piece of software

The actual implementation of the acquisition software was divided in two: a verification 

parameters module and the data acquisition module.
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Verification Parameters Module

This is the first window that pops up when the acquisition software starts. The main 

objective of it is to let the user choose the parameters for the data acquisition session. The 

user has to specify the set of positions of a measurement standard (either FMVSS or one 

of the car manufacturers due care), the track position of the car seat during the session, 

and the type of occupant in the seat. It is possible to choose more than one measurement 

standard, track position or occupant for the same session. A screenshot of this first

module is shown in figure B.l

Measurement Standard
1 FMVSS20ff 

. A r.AbsplUtejy Empty 

r  Manual

:" :r  .CMP Due Care 

; :::r  CM:2:DueCare,
P , . r  Evenflb DiScbyery r  Evenflo On My Way 

: ! Evenib Fire: Choice F'Britax Handle with Care

t 1‘ Century Avanta F  Century Smart Fit 

FI ] F  Century Assura : : F  Graco Snug Ride

-r'-.AlCJiasS:: 4 hT": ;4::'G5)aj5s; ;| it,! r  C oseoM va. r  Cosco Opus 

1 1  r  All; RFIS Baby Seats .

Forvward : : : r, i : r  Evenflo eight .Fit -v  r  Century Next Step

n  Rear ; " r r :AIWfddks;:N"H H i ,  n  Cosco HrghBacky F  r  nfltsx Roadster 

J ] F 1 Alt Booster; Baby Seats :

r  3 Year Old f  6Y sarC c 

j .; .-f* 50th Ma e 'Vf'■ 

IVtStjJ

F : Ail Occupant Positions •

4 f!:If i i ILJ n i 14 VI11: r i ... ' j : ;
: i | : f F :r :BritaxRound About, . r  CenturySte 1000 4  I 

j hi i p  COscqTourlva : p  Cosco Olympian 

;  j F  Evenflp Medallion T  Evenflo Horizon I 

4  s : : : F ; Century Encore |

j : F  AJI Convertible BaPy SeatsI ’V ’
______ ________ Apply_____________________ 4 '■■■. r-;Coscp:Dream Ride. .. IF All Car Bed Seats

0 r  All C h ild  S e a t s
Reset Cancel

Figure B .l. Verification Parameters Screenshot

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Data Acquisition Module

Once the user has chosen the parameters for the data acquisition session the data 

acquisition window pops up. This module reads the data from the sensors and stores it to 

file. In this module the user can specify the name and location of the output files, an 

additional description of the occupant of the seat and weight, height and torso ratio 

measurements if available. The description of the position for which data is going to be 

gathered is displayed in the position description frame. Once the Play button is press the 

data from that position is stored to file and the next position is displayed. The user can 

end the session at any minute by pressing the reset button. The close button will close the 

whole application. A screenshot of this module is shown in figure B.2.
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"Display;Sihsor Mati': In p u t fieVlce Welp ’About
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■W

V erification  P a ra m e te rs ::
m

S k ip  P o s itio n

T e s t  In form ation
Location of output files: S m v s e

C :\EO S\

O u tp u t D ata File
|  Verify_2OO3_0_2B F ile 31

Additional D escription  of T est su b jec t:

'Weight:

N O N E

■tieigpt:::
p _ _ _

Torso Ratio

Activity Log

Print j  Clear |
R e s t i n g
The File con ta in ing  P o s itions  fo r  : 0 3  Y

O
M pM

Lgg: Output File (t without Extension):

L o g _ V S

Figure B.2. Data Acquisition Software

Labelling of the data is done automatically by the acquisition software. The output 

voltages and a brief description of the occupant and position are stored to file. Based on 

this information the data will later be assigned a group class label in order to use the 

computational intelligence techniques to develop the pattern recognizer.
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APPENDIX C

Appendix C lists the results of multiple sensor failure 

C.l Two Sensor Failure

The table below shows which pair of sensors was unavailable simultaneously and the 
success percentage achieved by the NN with those sensors off.

Sensor2 Success Percentage (%)
14 15 83.67
13 14 83.69
11 14 84.28
15 16 85.67
10 15 86.26
14 16 86.46
7 15 86.47
13 15 87.18
7 14 87.37
12 15 87.67
9 15 87.75
9 14 87.96
13 16 88.01
3 15 88.16
2 15 88.26
6 14 88.34
9 13 88.52
2 14 88.6
10 14 88.88
4 15 88.98
3 14 90.09
6 15 90.18
8 15 90.19
4 14 90.4
5 15 90.56
1 15 90.56
5 14 90.89
8 14 91.08
7 13 91.37
2 13 91.52
1 14 91.75
11 15 91.93
12 14 92.02
9 10 92.42
10 11 92.64
9 16 92.71
3 13 92.73
4 13 93.01
7 16 93.47
11 13 93.58
12 13 93.6

5 13 93.62
6 13 93.86
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Sensor2 Success Percentage (%)
2 16 94.03
8 13 94.15
10 13 94.16
1 13 94.49
2 7 94.54
4 16 94.82
9 11 94.89

7 9 95
3 16 95.35
6 7 95.37
11 16 95.42
6 16 95.45
4 7 95.48
2 3 95.64
2 9 95.8
10 16 95.83
7 11 95.99
3 7 96.02
8 16 96.11
7 10 96.15
5 16 96.27
2 5 96.31
4 9 96.31
7 8 96.35
5 7 96.56
2 6 96.58
4 11 96.58
2 11 96.58
6 11 96.59
2 4 96.75
4 10 96.84
1 7 96.89
2 8 96.9

7 12 96.93
1 16 97

2 10 97.05
3 11 97.06
9 12 97.12
12 16 97.12
4 6 97.14
11 12 97.26
3 6 97.31
6 10 97.45
1 2 97.55
5 11 97.57
3 4 97.6

3 9 97.61
6 9 97.64
8 11 97.66
3 10 97.67
4 8 97.74
5 9 97.77
1 11 97.9

3 8 97.92
3 5 97.97
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Sensor2 Success Percentage (%)
8 9 98.03
5 6 98.04
6 8 98.06
1 6 98.07
4 5 98.12
1 9 98.19
2 12 98.2
10 12 98.24
1 4 98.26
4 12 98.26
5 8 98.31
1 3 98.37
5 10 98.53
6 12 98.54
8 10 98.55
3 12 98.61
1 10 98.71
1 5 99.04
1 8 99.09
5 12 99.25
8 12 99.37
1 12 99.51

Table C .l. Success rate after two sensors fail simultaneously 

C.2 Three Sensor Failure

The table below shows which triplet of sensor was unavailable simultaneously, and the 
success percentage achieved by the NN with those sensors off.

Sensor2 Sensor3 Success Percentage (%)
13 14 15 75.86
9 10 11 75.94
13 14 16 76.23
10 11 14 77.13
14 15 16 77.97
11 13 14 78.18
13 15 16 78.33
9 13 16 78.6

7 14 15 78.75
9 13 14 79.49
2 14 15 79.78
2 13 14 79.85
11 14 15 79.94
9 11 14 80.07
11 14 16 80.17
9 10 15 80.22
10 11 15 80.58
3 13 14 80.6
10 12 15 80.66
10 15 16 80.66
2 14 16 80.75
7 11 14 80.83
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3 14 15 80.83
7 13 14 80.88
10 14 15 80.88
7 15 16 80.91
2 15 16 81.02
2 11 14 81.18
2 13 16 81.28
3 15 16 81.32
7 10 15 81.46
4 13 14 81.65
6 14 15 81.68
4 14 15 81.8

6 11 14 81.81
7 14 16 82.03
6 13 14 82.04
9 14 15 82.2

5 13 14 82.34
5 14 15 82.39
3 11 14 82.44
7 13 16 82.55
9 15 16 82.56
8 14 15 82.61
6 14 16 82.63
3 14 16 82.65
4 15 16 82.65
2 7 15 82.69
2 9 13 82.7
8 13 14 82.78
4 14 16 82.78
7 9 13 82.93
9 14 16 82.97

7 13 15 83
12 14 15 83.05
10 13 14 83.1

4 11 14 83.11
12 15 16 83.16
2 7 14 83.29
9 10 13 83.31
1 14 15 83.33
10 14 16 83.38
9 13 15 83.46
5 11 14 83.64
12 13 14 83.66
1 13 14 83.68
8 11 14 83.71
7 9 15 83.72
7 12 15 83.72
3 7 15 83.81
4 7 15 83.81
2 13 15 83.84
6 15 16 83.84
10 13 15 83.86
8 15 16 83.87
11 12 14 83.92
3 13 15 83.92
4 13 16 83.95
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3 10 15 83.98
4 10 15 83.99
9 10 14 84.05
2 3 15 84.15
3 13 16 84.15
2 10 15 84.28
8 14 16 84.32
6 7 15 84.33
6 10 14 84.36
2 6 14 84.37
1 11 14 84.39
5 14 16 84.46
5 15 16 84.51
2 9 14 84.54
9 12 15 84.54
6 7 14 84.62
3 9 15 84.62
2 3 14 84.66
6 9 14 84.82
12 13 15 84.84
3 7 14 84.85
2 9 15 84.85
7 9 14 84.86
3 12 15 84.86
6 10 15 84.94
4 9 13 85.06
4 9 15 85.22
7 8 15 85.27
7 10 14 85.3

4 7 14 85.32
2 5 14 85.33
1 15 16 85.35
5 13 16 85.4
8 13 16 85.4

2 12 15 85.51
3 9 13 85.77
5 7 14 85.79
3 9 14 85.82
2 10 14 85.82
8 10 15 85.83
9 12 13 85.86
2 7 13 85.93
4 12 15 85.93
5 7 15 85.95
6 13 16 85.95
1 14 16 85.95
8 13 15 86.05
9 11 13 86.06
7 8 14 86.09
4 13 15 86.09
1 7 15 86.1

2 8 14 86.16
4 6 14 86.18
5 13 15 86.2
12 13 16 86.22
3 6 14 86.24
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11 15 16 86.24
2 8 15 86.25
10 13 16 86.27
2 4 15 86.33
1 10 15 86.4

2 4 14 86.45
5 10 15 86.52
4 9 14 86.56
3 4 15 86.61
2 5 15 86.63
6 9 15 86.76
6 13 15 86.87
1 7 14 86.94
9 10 16 86.95

5 9 13 87
3 8 15 87

1 13 15 87.01
2 3 13 87.03
8 9 15 87.09
12 14 16 87.09
2 6 15 87.15
5 9 15 87.17
8 12 15 87.18
7 11 15 87.25
11 13 16 87.25
5 9 14 87.26
1 13 16 87.29
1 9 15 87.46
3 6 15 87.47
7 12 14 87.49
1 12 15 87.5

6 8 14 87.52
8 9 14 87.52
3 10 14 87.52
5 6 14 87.53
1 2 14 87.54
1 2 15 87.54
3 5 15 87.57
8 9 13 87.62
6 12 15 87.64
4 10 14 87.69
9 11 16 87.7
1 3 15 87.71
1 9 13 87.77
5 12 15 87.77
6 9 13 87.91
4 8 15 87.95
1 9 14 88.08
5 10 14 88.09
2 5 13 88.14
2 9 16 88.14
3 4 14 88.27
1 6 14 88.37
8 10 14 88.4

4 6 15 88.47
4 9 10 88.48
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4 7 13 88.7
10 11 12 88.72
3 5 14 88.72
3 8 14 88.72
6 12 14 88.72
1 4 15 88.8

9 12 14 88.81
4 9 16 88.82
2 12 14 88.83
3 11 15 88.88
2 8 13 88.93
2 4 13 88.96
10 12 14 88.97

2 7 16 89
11 12 15 89.01
3 7 13 89.02
7 9 16 89.02
6 8 15 89.06
4 8 14 89.07
5 8 15 89.1

2 3 16 89.11
10 11 16 89.11
5 8 14 89.17
4 10 11 89.18
1 10 14 89.18
4 5 15 89.18
6 7 13 89.4
7 12 13 89.4

7 8 13 89.59
4 5 14 89.62
1 6 15 89.62
5 7 13 89.63
1 8 15 89.74
2 11 15 89.77
7 10 13 89.78
2 6 13 89.8
1 3 14 89.9

5 6 15 89.97
1 5 15 90.05
9 11 15 90.16
2 12 13 90.2
1 2 13 90.21
2 4 16 90.24
7 10 11 90.27
2 11 13 90.29
7 11 13 90.3

3 12 14 90.34
4 7 16 90.37
9 10 12 90.39
1 4 14 90.4

2 5 16 90.42
4 11 15 90.51
2 10 13 90.54
9 11 12 90.56
2 9 10 90.57
1 5 14 90.58
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1 7 13 90.6
6 7 16 90.65
11 13 15 90.79
2 7 9 90.86
1 8 14 90.98

3 5 13 91
2 10 11 91.05
4 12 14 91.08
3 6 13 91.11
3 8 13 91.11
2 8 16 91.15
5 9 16 91.15
5 12 14 91.17
3 9 16 91.17
6 11 15 91.23
7 9 10 91.25
2 3 7 91.28
3 4 13 91.31
8 9 16 91.32
7 8 16 91.36
8 11 15 91.38
2 6 16 91.41
5 9 10 91.44
4 8 13 91.45
8 12 14 91.47
3 12 13 91.5

5 7 16 91.53
5 8 13 91.57
4 12 13 91.61
3 7 16 91.61
2 9 11 91.64
4 6 13 91.64
10 11 13 91.65
4 5 13 91.67
9 12 16 91.69
2 5 7 91.83
4 10 13 91.83
4 11 13 91.85
1 11 15 91.91
3 11 13 91.94
7 11 16 91.94
7 9 11 91.99
6 10 11 92.01
4 8 16 92.02
1 3 13 92.03
1 12 14 92.06
2 11 16 92.07
8 9 10 92.09
1 9 16 92.13
3 10 11 92.14
5 11 13 92.15
2 7 8 92.18
5 11 15 92.18
4 9 11 92.22
6 9 16 92.22
11 12 13 92.24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 6 7 92.26
6 11 13 92.34
4 7 9 92.35
5 12 13 92.37
6 9 10 92.38
5 6 13 92.39
7 10 16 92.4

3 4 16 92.47
2 4 7 92.48
6 8 13 92.49
4 10 16 92.49
4 11 16 92.5
10 12 13 92.55
1 4 13 92.58
8 10 11 92.6
2 10 16 92.6

4 6 16 92.62
1 9 10 92.73
1 2 16 92.75
8 12 13 92.77
1 5 13 92.81
3 10 13 92.83
1 7 16 92.84
3 6 16 92.86
8 11 13 92.87
2 3 5 92.88
6 12 13 92.89
2 4 9 92.9

5 10 13 92.96
6 10 13 92.97
5 10 11 92.99
3 5 16 93.03
1 12 13 93.06
1 10 11 93.1

4 5 16 93.12
7 12 16 93.15
1 11 13 93.22
2 7 11 93.24
1 6 13 93.25
1 2 7 93.33
3 9 10 93.34
1 8 13 93.34
2 3 6 93.36
2 5 9 93.38
4 6 7 93.39
8 10 13 93.39
2 5 8 93.41
2 3 8 93.42
3 8 16 93.45
6 11 16 93.45
2 3 4 93.55
6 7 9 93.56
2 7 10 93.58
5 8 16 93.58
3 11 16 93.64
2 12 16 93.73
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1 10 13 93.74
3 6 7 93.76
7 9 12 93.76
6 10 16 93.77
3 7 9 93.82
4 7 10 93.82
6 7 11 93.85
6 8 16 93.85
4 7 11 93.89
5 9 11 93.89
2 3 9 93.9

7 8 9 93.93
4 7 8 93.98
5 7 9 94.01
2 4 5 94.04
5 6 16 94.04
6 7 8 94.12
6 7 10 94.15
3 10 16 94.15
2 4 8 94.21
2 8 9 94.22
2 7 12 94.23
2 5 6 94.24
3 4 7 94.25
8 11 16 94.27
2 9 12 94.35
1 4 16 94.35
4 12 16 94.35
11 12 16 94.37
2 3 11 94.4
1 7 9 94.43
5 11 16 94.47
8 9 11 94.48
2 6 11 94.5

2 5 11 94.51
2 4 6 94.52
5 6 7 94.52
1 2 5 94.53
3 9 11 94.54
3 7 8 94.61
4 9 12 94.61
6 9 11 94.62
2 4 11 94.7

5 7 8 94.73
8 10 16 94.73
2 6 8 94.75
1 2 3 94.77
1 2 9 94.77
1 3 16 94 .78
5 10 16 94.8

3 5 7 94.83
2 3 10 94.89
1 6 7 94.9
1 9 11 94.9

2 4 10 94.91
4 5 7 94.93
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1 6 16 94.93
3 7 10 94.96
4 6 11 94.96
3 7 11 94.99
2 6 9 95.02
2 6 10 95.06
3 12 16 95.07
4 7 12 95.13
10 12 16 95.13
7 8 11 95.18
2 5 10 95.19
4 6 10 95.22
6 7 12 95.23
7 11 12 95.23
1 4 7 95.25
7 8 10 95.27
2 8 11 95.28
1 5 16 95.3

5 7 11 95.33
4 8 9 95.36
1 8 16 95.36
1 11 16 95.39
3 6 11 95.41
1 3 7 95.45
4 5 9 95.47
3 4 11 95.5

5 7 10 95.59
6 12 16 95.59
2 3 12 95.6

3 7 12 95.61
4 11 12 95.63
1 2 6 95.65
7 10 12 95.65
1 7 8 95.66
4 6 9 95.68
2 8 10 95.71
2 12 12 95.71
1 10 16 95.73
1 5 7 95.75
1 2 8 95.79
8 12 16 95.79
4 8 11 95.8
1 7 11 95.84
3 4 9 95.88
3 4 10 95.9

4 10 12 95.93
1 7 10 95.94
1 4 9 95.95
5 12 16 95.95
3 4 6 95.97
3 4 8 95.98
1 2 4 95.99

4 6 8 96
4 5 8 96.01
1 2 11 96.04
4 8 10 96.06
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6 8 11 96.08
7 8 12 96.14
3 5 8 96.15
3 11 12 96.18
6 11 12 96.21
5 6 11 96.22
2 5 12 96.22
3 9 12 96.28
5 9 12 96.28
4 5 11 96.3

3 6 8 96.32
1 6 11 96.35
3 8 11 96.38
2 4 12 96.38
5 7 12 96.4

3 5 6 96.44
4 5 10 96.46
1 4 11 96.47
2 10 12 96.49
1 2 10 96.52
3 6 10 96.52
5 8 11 96.56
5 6 8 96.58
2 6 12 96.58
1 7 12 96.59
3 5 11 96.65
1 4 10 96.66
3 4 5 96.68
5 8 9 96.68
8 9 12 96.69
4 5 6 96.7
1 4 6 96.72
1 12 16 96.73
1 3 6 96.75
3 6 9 96.77
1 9 12 96.77
2 8 12 96.79
3 8 9 96.8

3 5 9 96.82
5 11 12 96.93
6 9 12 96.97
4 6 12 97.01
6 8 10 97.05
3 8 10 97.07
1 3 11 97.08
1 6 10 97.09
3 5 10 97.11
5 6 9 97.12
8 11 12 97.12
5 6 10 97.14
6 8 9 97.17
6 10 12 97.19
1 3 9 97.21
3 4 12 97.25
1 6 9 97.26
1 5 9 97.28
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1 4 8 97.29
1 3 8 97.31
1 6 8 97.33
1 5 6 97.34
1 5 11 97.34
3 6 12 97.34
1 3 4 97.4

3 10 12 97.41
1 11 12 97.42
1 3 5 97.44
1 5 8 97.44
1 4 5 97.45
1 2 12 97.47
1 8 9 97.55
5 8 10 97.55
1 8 11 97.55
4 8 12 97.55
1 3 10 97.58
3 5 12 97.72
3 8 12 97.83
4 5 12 97.85
1 4 12 98.03
5 10 12 98.03
8 10 12 98.06
1 5 10 98.09
6 8 12 98.12
1 6 12 98.14
5 6 12 98.19
1 8 10 98.25
1 3 12 98.26
1 10 12 98.26
5 8 12 98.27
1 5 12 98.96
1 8 12 99.01

Table C.2. Success rate after three sensors fail simultaneously
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