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Abstract
SUSY models predict the possibility of observing neutralino,
x°, produétion from bound state toponium systems. In this
thesis‘we examine neutralino production for the two lightest
neutralino states (x° and x°) from a low lying 3,
orthotopnnium, 9, state, for extended N=1 SU(2)®U(1) and
SU(2)@U(1)eU(1) soft SUSY models. |
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1. Introduction to SUSY

A. Introduction

To a large extent the development of the theory of
fundamental forces in nature rested in man's understanding
of its underlying symmetries. This, along with the
development ‘of quantum field theories, led to remarkably
successful field theories of the strong, weak, and
electromagnetic interactions. Tﬁese developments eventually
propagated toward Grand Unified Theories (GUTS), in which
the ‘strong, weak, and electromagnetic interactions were
imbedded. For theorists, GUTS posed a serious problem, or
sickness, referred to - as 'ﬁhe 'Gauge Hierarchy Problem
(GHP)'. Cures were developed such as Technicolour (TECC) and
Supersymmetry (SUSY). The latest experimental evidence seems
to‘févour the SUSY cure — if any.

To get a bit moré of a flavour,Afor these developments,
the rest of this chapter shall be devoted to a brief review
of historical developments, leading toward SUSY theories,

followed by an introduction to SUSY,

B. Some Historical Notes

Einstein's identification of the invariance group of
space'tiﬁe, in 1905 (BIN.05), led to‘his‘formulation of the
theory of grévity; As time passed, new symmetries (such as

isospin, . which goverhs, strong interactions | (HEI.32,



PER.82)),‘ﬁhich~have nothing to do withkSpace and time wefe
diécovered. Thus, it seemed thaf different interactions weré
governed by different internal symmetriés. Alas, there'
seemed to be no hope for a grand unifying scheme.

Initially it was thought that internal symmetries
should be global symmetries. However, it was long known that
electromagnetism possessed a local U(1) charge symmetry; In
fact, in 1954, this motivated Yang, Mills and Shaw to extend
the Abelian U(1) theory to a non-Abelian SU(N) theory. Such.
a generalization led to the prediction that there should
exist new vector bosons, like the photon, which should be
massless. However, this was very much in contradiction with
experiment. Further investigations led to considering
approximate symmetries, w.th massive vector bosons. The idea
was that by 'spontaneous' symmetry breaking, one could keep
the symmetry of the Lagrangian while destroying the symmetry
of the vacuum. So, the symmetry of the physical state need
not manifestly exhibit ‘the underlying symmetry of the
. Lagrangian.

Nambu and Goldstone Showed that, for global symmetries,
spontaneously broken symmetry gives rise to massless spin
zero Nambu-Goldstone Bosons. They found that if one breaks
the SU(2)®SU(2) chiral isospin group, one obtains
Nambu-Goldstone bosons that coﬁld be identified with the
pions. Many successfulkprédiCtions arosékfrom this theory}

for exampleythe Adler-Weisberger result,relating the ratio



gA/gV (the axial vector coﬁplings in B decay (COM.83)) to
the pion-nucleon cross sect@on. This suggested that there
existed some kind of underlying chiral symmetry between the
strong and weak interactions. However, it was not until the
development of gauge theories for the strong and weak
interactions that the nature of these symmetries was fully
understood. 

In the 1960's, Anderson, Higgs, Brout and Englert,
Guralnick, Hagen and Kibble, worked out the role of
spontaneous symmetry breaking in local gauge theories. They
‘showed that, via the so-called 'Higgsv mechanism', the
massless gauge bosons of the Yang-Mills theory and the
massless Nambu-Goldstone bosons could simultaneously be
avoided. Ih this scenario, the vector bosons gain mass by
'eatihg up' the 'would-be-Nambu-Goldstone bosons'. That is
to say, the massless Nambu-Goldstone bosons give an extra
degree of freedom to the massless gauge bosons in such a way
that they manifest themselves as massive vector bosons. A
very desirable, and suspected, property for this theory is
that it be renormalizable. Only in a renormalizable theory
can one make predictions for physical processes in terms of
a finite set of parameters. It was not until 1971 that it
was shown by G.'t Hooft that theories of this ‘kind' were
‘ indeéd renormalizable.
In the late 1960'5 Glashow, Weinberg, and Salam and

Ward ;disco§ered a uﬁified ‘gauge theory of . the



électromagnetic and weak interactions. This discovery was
made by  employing the 'Higgs mechanism' to break‘ the.
SU_(2)®U,(1) group down to a Ug(1) group, thué giving rise
to three massive, wi(81GeV) and Z°(94Gev); intermediate
vector bosons, and one massless phbton, Y. Here the massive
w" bosons come from a ‘symmetry break down of the SU.(2)

part, whereas the massive 70

is the price paid for unifying
Su,(2) with the Uy(1) part. The Higgs mechanism also gives
mass to the charged leptons and automatically produces a
massive scalar Higgs HY field in order to counteract
’divergences caused by the charged fermions acquiring a mass.
One cannot help but be impressed by this. Recent tests at
CERN's UA1 (UA1.83) and UA2 (UA2.83) experiments verified
the validility of the SU,(2)@Uy(1) model by the discovery of

the W* and Z0

intermediate vector bosons. The H? has yet to
be found. It can be shown through perturbative unitarity

constraints that (ELL.85, QUI.83)
=021
mH—O(Vd Jm,. (1.1)

The connection between strong and electroweak
interactions was naturally followed by the inclusién 6f
SU(3) to the SUL(2)®UY(1)‘group. This new model was dubbed
the 'Standard Model', or, the SUC(3)®SUﬁ(2)®UY(1) ~model.

Where the SU.(3) were the non-Abelian‘gauge‘group of QCD

(Quantum ChromoDynamics). Here‘the‘Higgs mechanism is used



to break SU.(3)®SU,(2)®Uy(1) down to SU.(3)®U,,(1). This |
leaves the gauge ahd the massive Higgs sectors unchanged
from that of the previous SU,(2)®Uy(1) model. It also gives
the quarks mass while leaving the massless gluon field of
the SU.(3) sector unchanged. As of this day, this theory
seems to give a fairly good description of all physical

phenomena down to the smallest distance scales yet probed.

C. SU(5) Grand Unification

Although the standard model combines the strong, weak
and electromagnetic interactions, it also carries with it
three apparently unrelated gauge coupling constants from
each of its ~constituent group parts. Therefore, the
SU.(3)®SU,(2)8Uy (1) group in essence is not quite a fully
unified group, since it has no predictive power of the
relative strengths between the various coupling constants.
This problem could be overcome if the underlying gauge group
were simple, for then there is only oﬁe coupling constant.
Thus, to achieve a more complete wunification of the
SU.(3)®SU.(2)8U, (1) gauge group we must embed it in a larger
group, the so-called grand unified group.

This idea was originally suggested by Pati and‘Salam.
GeQrgi and Glashow proposed a simpler version based on the
minimal group SU(5). This group has 24 vector bosons. Upon
‘employment of the Higgs mechanism 9 of these remain'

massless. These are identified with the 8 gluons of the



SU.(3) and the one photon of the U, (1) group. Three of the
massive (0(102)GeV) vector bosons are ideniified with the W*
and 20 vector bosons of the electro-weak theory. The
remaining 12 vector Dbosons are often referred to as
lepto-qﬁarks, since they mediate transitions betwéen quarks
and leptons. |

One of the‘most worrying of these transitions is the
decay of the proton into leptons. Recent tests on protoﬁ‘
decay (L0OS.86) show to quite a high degree of accuracy that
the proton does not decay and therefore one concludes that
these new interactions must be very weak. In fact, in SU(5)
the bosons mediating proton decay must have a masskgreater
than 10'® times that of the proton mass.

Another way of getting an estimate of the scale of
grand unification comes from the fact that since SU(5) has
only one coupling constant, at the scale at which SU(5) is
exact, both the electromagnetic and strong —couplings
(suitaply normalized) are the same. That is, the coupling
constants actually depend on the scale of momentum. The
equality of the strong and electromagnetic couplings occurs
at a superheavy scale M,. By using the logarithmic variation
of the coupling constants predicted by the theory and the
‘experimently determined ratio of the couplings in  the
laboratory, one can find the value of My at which the ratio
is 1. This yields My~10'GeV, which is quite close to the

value obtained from proton decay. Once M; is detefmined, the



ratio of the weak to electromagnetic coupling is predicted.
Remarkably the prediction is in reasonably good agreement
with what is measured in the laboratory. |

Aside from the fact that the SU(5) scheme correctly
predicts the free parameter of the Glashow-Weinberg-Salam
(or SU.(2)®U,(1) ) model, it admittedly has very little
evidence in support of its other predictions associated with
the lepto-quarks, although a great deal of experimental
effort has gone into looking for proton decay. However,
because of the theoretical simplification achieved by grand
unification, theorists feel that its ideas will be relevant
to any extension of the standard model (For example, the
left-handed and right-handed quarks and leptons fit neatly
into the 5*®10 representation of SU(5), thus giving an
explanation for their electric and weak charges
(ROS.85,87).) On the other hand, it appears that grand
unification is not the whole story. In the first place there
doesn't exist a symmetry between the bosons and fermions
(SUSY), not to mention a connection with gravity. However,
there is a more immediate problém with grand unification
wvhich suggests something new must happen long before the

grand unification mass scale.



D. The Gauge Hierarchy Problem

A theory 1is regatded as -technically 'natural' if
corrections to the bare values of physical parameters are no
larger than the physical values they take (ELL.85). In the
standard model, for example, it can be shown that one-loop

radiative corrections for fermions take the form:
- (&
6mf—0(")mfln(A/mf), (1.2)

which are always <m;, even if the cut off A=M, (Plank mass).

Whereas for the scalar Higgs

A

3 |
2_2| d’k 1 Oy .2 :
dm “=qg°| = —.=0(=)A°, (1.3)
: J(Zw)4k2 T

which 1is quadratically divergent. As we can see for
fermions, naturalness is inherent in the theory, but for the
Higgs boson one must impose naturalness by unitary arguments

(1.1) in order to obtain an appropriate cut off:
ASO(1)Tev. | (1.4)

One might say that divergences of this type are perfectly
renormalizable in the usual way, and so why bother with
naturalness. However, when one attempts a more grand scheme

of unification such divergences become symptoms of a more



ser 3 disease. For instance, in the SU(S) GUT theory,
breaking is actually done in two stages: i.e. SU(5) breaks
down to SU(3)®SU,(2)®Uy(1) via large-scale Higgses, ¢,
somewhere above 0(10'%)GeV, followed by a break down to
SU.(3)®U,, (1) via small-scale Higgses, H, at 0(10%)Gev.
Renormalizability of the theory requires the existence of
the coupling AH2¢2,.Thus, when the ¢'s acquire a VEV (vacuum

expectation value) of O(M,), one finds a Higgs mass shift of
sm,2=x<p>2=0(M ?)20(10"°Gev)?. (1.5)

One could attempt to recover the Higgs mass my by choosing
an appropriate bare mass of -0(Mi?) with the appropriate
coefficient to give a cancellation of 0(26) decimal places.
However, one still has to deal with radiative corrections to

A which give a further mass shift of
2_ &y 2 14 2
5mH —O(ﬂ)mx 20(10'°Gev)“, (1.6)

which again leads to further unnatural cancellations. For
those of you that do not 1like GUTS, Hawking and
collaboration assure us that for elementary scalars skipping
around in non-trivial non-perturbative topologies of foamy

guantum vacuums

5mH2=o(Mp2)=o(1o‘9c;ev)2. (1.7)
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Although not conclusive one can see that these arguments do
suggest that small values for the elementary scalar masses
are sick and unstable. This is known as the GHP.

Two cures have been proposed for stabilizing m . One is

Hl
to use a TECC scheme in which the Higgs is made out of two
tightly bound massless fermions. These fermions, or
techniquarks, undergo QCD -like interactions which become

strong at the scale
AT~O(1)TeV. (1.8)

It is at this scale that they bind tightly together to form

Higgses of composite size
Rp~7=- (1.9)
T

This provides a natural cut-off A~A; for the quadratically
divergent loops given by equation (1.3) and gets rid of
AH2¢2 couplings. The masslessness of the constituent
techniquarks ensures us that we will have massless Goldstone
bosons available to give mass to the W: and 2° bosons in thé

Higgs mechanism:

mw=0(gAT). (1.10)
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In order to give the fermions mass, one must postulate the
existence of massive E vector bosons which couple ordinary
" fermions to technifermions. Unfortunately the E's lead to
flavour changing neutral currents that are too large,
Several aifferent scenerios have bean devised to ovércome
this problem. However, it is not clear which, if any, of
these approaches is relevant.

The other scheme is to notice that the fermionic and
bosonic loop contributions to m, have opposite signs:

~0(2)A? (1.11)

2_ A0y a2
smy, -O(W)A -

bosons fermions

I1f we now postulate a theory in which bosons, B, and
fermions, F, have the same quantum numbers and the same
couplings within some spin factors and similar masses, Wve
get

2 2.2
8m,“=0(2) |m “-m_°| (1.12)

F
Such a symmetry between fermions and bosons is known as
appfoximate SusY (This theory is also unplagued by large GUT
radiative corrections (ROS.85).) By imposing the naturalness

condition we obtain the constraint

A%=|m 2-n_%|50(1Tev)? (1.13)
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which tells us that the supersymmetric partners (spartners)
of conventional particles must weigh less than O(1)Tev. This
gives us good reason to hope that sparticles may be found in

the near future'.

E. SUSY
SUSY is a new type of symmetry which relates fermions
and bosons. That is, a spin % Majorana}operator, Q, is used

to transform fermions into bosons and visa versa:
i.e. Q{F>=|{B> , Q|B>=|Ir> (1.14)
These SUSY operators along with the familiar Lie algebra

elements P, and M,,, of the Poincaré group, form a graded Lie

algebra (JOG.84):

(p,,P,1=0 (1.15.a)
[M,,.P 1=ig [ P, (1.15.b)
(M, M 1==8%0M g 1 (1.15.c)
(g,.p,1=0 (1.15.4)
(o, M,,1=3(0, ) 0, (1.15.e)
{9,,9,}=-(y"C) 4P, (1.15.£)

Equations (1.15.a) through (1.15.c) are of the familiar Lie

algebra associated with the generators of translations, P,,

u
——————————————————

' For refetencés see ELL.83A,85.
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and rotations, M,,, offthé’Poincéré group. Equation (1.15.4)
tells us that the Q' s, or supertranslations, are unaffected'
by uniform translations in space and time. Equation (1. 15 e)
tells us that the Q's transform as sp1nors under the actlon
of the Lorentz group. Finally, equation (1.15.f) tells us
that finite SUSY transformations induce a translation 1in
space and time on the state on which they act.

A theory that obeys such an algebra is referred to as
N=1 (i.e. number of SUSY charges), or simple SUSY. If the
number of SUSY charges is greater than 1 (N>1), then one can
admit an internal symmetry group (SOH.85). Such theories are.
“known as extended SUSY (ELL.83A). N<4 is the realm of
‘possible gauge theories, since helicitiés between *1 are

“tolerable:

)\=H§?”/2Q_;05:-1/26:-1 (1.16)
For N<8 one can have supersymmetric theories which include
gravity (i.e. supergravity or 'SUGRA theories), since

helicities between 12 are tolerable:

5 )\f+2é?+3/2c—2;+1-9-++1/2é-z oQ—+-1/2aZ‘—1Q‘—7>-3/25: 2 (1.17)

In what follows we shéll only be concerned with N=1 SUSY,

~for which the relavant supermultiplets are:
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(1,%) Gauge (1.18.a)

(%2,0) Chiral (1.18.Db)

For N=1 SUSY the charges Q, carry no internal quantum
numbers. This means that no known particle can be the
spartner of any other, resulting in the rich sparticle
sspectroscopy shown in table (1.1) below.

TABLE 1.1. SUSY Particle Spectrum. Multiplet structure for
minimal SU(3)®SU(2)®U(1) SUSY theory.

Gauge(1,%) Chiral(®,0)

(Gluon g, Gluino g)

(w5, Wino WF)

(z°, zino %%)

(photon vy, photino v)

(Quark g, Squark q)
(Lepton 1, Slepton I)
(Higgsino B, Higgs HY)

(Higgsino i, Higgs HO)

Here one introduces two Higgs doublets, H;,, of opposite
hypercharge, in order to cancel triangle anomalies and to
give mass to the leptons and the, charge % and charge —%,
quarks. Unsuccessful searches for charge sparticle pairs in
e*e” machines have put lower mass limits of\O(15)GeV, on the
W, and i* sparticles, and 0(50)GeV on the g gluino; Thése‘
‘limits are somthat'model—dependent, since they are obtained
by makihg‘assumptions about the spérticle decay processes.

As for‘the~uncharged colourless sparticles, there are no

direct experimental limits.
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F. SUSY Lagrangian

In this section we wish to construct a full gauge
~invariant SUSY (N=1) Lagrangian. Here, we shall assume the
 gauge group to vary locally and SUSY to be . :al. ‘
As equation (1.14) suggests, if SUSY were an exact

symmetry we would expect
m_=m | (1.19)

just as the proton and neutron would have identical masses
if isospin were an exact symmetry. To see this more
formally, we consider the following chiral smultiplet

(supermultiplet)
#'=(y, 0", F), (1.20)

where yi is a dim I chiral (Weyl) fermion field and ¢! and F!
are complex scalar fields of dim 1 and 2 respectively. Here
we shall adopt the left-handed convention, where the y;
species are expressed in terms of their conjugate
antiparticle fields C(yo)T(=(¥°),=y§) which are left-handed.

Therefore
= _(,C ¥ % ‘ ‘

represents our conjugate smultiplet. The F's are commonly
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refered to as auxiliary fields, whose meaning shail‘soon'
become obvious.

In order to illustrate relation (1.19), we must first
examine‘ the properties of ¢! under infinitesmal SUSY

transformations:
AQ)=e%?, (1.22)
where ¢ is a infinitesimal anticommuting Majorana spinor

parameter. Using the super Poincaré group algebra relation

(1.15.f), we easily obtain the relation
alT A= Al JH
Or more explicitly
i__a— K i
[61,52]4) =-ie v e,3,2 . (1.24)

It can be shown (PET.87), that in order for the component
fields to obey relation (1.24), they must transform as
89 =cy] (1.24.2)
1 i s w, i ‘

spie-iTAyl. | (1.24.c)
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A renormalizable Lagrangian which manifests this
symmetry was constructed by Wess and Zumino in 1974

(WES.74):

i.e. Lsusy=Fxe" Ppe Lyuk (1.25)
where?
Leg=i0, BUi+|0, 6, |2+|F |2 (1.25.a)
LPE=w(¢{iFi+H.c. | (1.25.b)
Dogk=H(#) ; Swp)Tc yl+mc. (1.25.c)
where we have introduced the superpotential
W(e)=C, ' +m, @ @3+g Brelef (1.26)

to obtain a more esthetic-looking Lagrangian®. The

Lagrangian (1.25) can be further simplified to

L= iV BYi+10,0, |2 (1.27.a)
i 2 S

Log="W(8) .| | (1.27.b)
_ I\Tam 1,5

L UK-W(¢)’i'j(¢L) C 'Y;+H.C. (1.27.c)

——— - —— —— ——— - —— 2

2 Note: W(g¢) ..E)W(<I>)/a‘1>l|,,,,15 and similarily for W(¢) ; .
? Notice that, wia) 1s an analytlc function of &1 (not ;) only
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by eliminating the auxiliary fields F! through their

equations of motion:

rlaw(g) i =0 (1.28.a)

F. 40 () (=0 (1.28.b)
thus eliminating the Fi dependence in our smultiplet &':
i.e.! o eis(vl,eh). (1.29)

One can now make the observation that the algebra
(1.24) necessarily implies that the component fields of
(1.29) manifestly transform into oue another under
successive SUSY transformations. In fact, upon examination
of (1.27.b) and (1.27.c), one can see that the m;; in the
super potential necessarily represénts the smultiplet mass
matrix as a whole, thus shedding light on relation (1.19).

Now that we have the N=1 SUSY Lagrangian for scalars
and spinors, we are ready to introduce the gauge group, G.
Therefore, considef an infinitesimal gauge transformation
given by

L

A(L)=el? (1.30)

where the 6@ are parameters of the Hermitian generators

— - — - " - ——— o - — o

4 cf 1.18.b
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Lai,

j» of the Lie group, G,

. _:¢C
i.e. [La,Lb]—lf abPe

(1.31)

where fcab are the group structure constants. Taking the

action (1.30) on the smultiplet (1.20) we obtain®
§9=19-Lé. (1.32)

As expected, since the component fields necessarily

transform as

5¢=16-L¢ (1.33.a)
5wL=i§-E¢L (1.33.b)
§F=1i6-LF. (1.33.c)

Also a similar relation holds for smultiplet (1.21)
5%=-1§ -T7®. (1.34)

At this point we mention, without proof (CAM.82), that
in order for Lﬁ and Lum‘té be invariant under G, we require
that the coefficients C;, my; ‘and gisx in W(®) should
‘transform as symmetric covariant tensors (# C,=0 except for

e G o — . o ——

3? Where we have suppressed the smultiplet index.
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gauge singlets.) To see what becomes of Ly, we must first

introduce vector smultiplets
v@=(x?,B;,D%) (1.35)
where x® is a dim % Majorana spinor, B2 a dim 1 vector and D?

a dim 2 scalar field. The component fields of V? transform

under the adjoint representation of G as

a_ ‘-1 a
a_ga b,c
§x"=£", x"6 (1.36.b)
sp°=£2_ D°6° (1.36.4)
Cc
where
a_ a a b,c
(Due) -3u6 +gf® B 6. (1.37)
Since we are imposing local gauge invariance for the

smultiplets, one might wonder what becomes of the algebra
(1.7%), or in particular, algebra (1.24). It turns out that
the ¢ assumption

_iT M
[51,62]—1617 e,D, (1.38)

does the job. Equation (1.38) acts on both of the components
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of & and V. The action of Du, on these components is given

by (DEW.75)

(Dux)a=auxa+gfach2xC (1.39.a)
(Dqu)a=-F2v (1.39.b)
(DuD)a=auDa+gfach2DC (1.39.c)
D &=(3,-igL-B )@ (1.39.4)
Du5=(au+ing-§u)§. (1.39.e)

where

b g, (1.40)

a. _ a a
Fuu_a[uBV]+gf chu v

In order for the component fields to satisfy algebra (1.38),

we must have

6§u=——§eyu75x (1.41.a)
5§='£3(%fuyy“yvy5+iﬁ)e (1.41.b)
$D=-ewx (1.41.¢)
s9=ev, | (1.41.d)
sy, =(F-iPg) e (1.41.¢)
5F=—i?¢wL+¢§g?Li-§¢. (1.41.f)

The Lagrangian which obeys this symmetry requires some.
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modifications to (1.25). It suffices to say that we must

replace Lyz; by Lg, Ly and Ly, where

s w17 ool 1505
L= ZFuy F +21x ¢x+2D D (1.42.a)
Ly=1(D,6) [2+iF,, (B0,) +|F, | 2-v2aX -0} (Ey, )’
-V?gWiL(E¢)i-§+g(¢+ﬁ)i-¢iﬁ (1.42.Db)
Lp=?-5. (1.42.c)

The last term L, is only permitted when the constants §a

satisfy the condition

£9,.8%=0 (1.43)
for all b and c. This ensures that L, is invariant under
G®(N=1 SUSY) by selecting components D? in invariant Abelian
subgroups of the internal symmetry group.

Just as the F's satisfy equations (1.28) the D's
satisfy

+

D=-g¢ Le¢-3. (1.44)

Thus eliminating the D and F fields through their equations
of motion we finally obtain the full on shell (RAM.81)

G®(N=1 SUSY) Lagrangian:
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Lsusv=Leauce  Imarrer Lyukawa FlscaLar (1.45)
where
s e 1T g
Lg= 4Fuv F r2ix Bx (1.45.a)
- 2.:7 giio . TEi i s =i |
Ly=| (D) | "*+iv, Boy;-V2Zax ¢, Ly V2gy, L ¢°x (1.45.b)
_ iNTA=1,5. toj o 7iy T
LY—W(¢{i'j(¢L) C wL W(¢{i,j wLC(WL) (1.45.c)
L.=-|W(¢) , | 2-3( sTTig3-7)2 (1.45.4)
s LA LS . &9

One can also impose a local SUSY structure, which
further modifies the algebra (1.15) (MOH.86). Such
modifications lead to the inclusion of a spin 2 graviton and
its spartner the spin i gravitino. We shall not go into the
explicit construction here, nor state the full local SUSY
Lagrangian (BAG.85), since it shall not be of any useful

value to us in what lies ahead.

G. Remarks

‘The particle-sparticle spectrum predicted by equation
(1.45), as suggested by relation (1.19), gives particles
degenerate in mass with their spartners. However, . as
suggested in section (E), SUSY must be broken. Ffomyrelétion‘
(1.13), we see that, naturalness constraints tell us

sparticle masses can be no larger that O(1)TeV.
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While searches for supersymmetry A are underwvay
(ELL.83B), theorists are busy caléulating experimental
consequences of the large phenomenological spectrum of
reactions predicted by SUSY (HAB.85). One such place that is
of interest, is toponium decay. Although some work has been
done on toponium decay (DOB.88, ELL.83C, SCO.85,-:-), there
still remain other possibilities to explore. Before delving
into the various facets of toponium decay (chap. 3), it

shall be necessary to take a brief look at broken SUSY

phenomenology.



11, Broken SUSY

A, Introduction

As previously mentioned SUSY must be broken. The
breaking should be at least enough to put the sparticles
above experimental limits. Breaking can occur spontaneously,
dynamically or by the inclusion of explicit 'soft' breaking
terms. The various scenarios associated with these types of
breaking represents a study in themselves, and therefore we
refer you to various paraphernalia on the subject: ELL.85,
ROS.85, MOH.86, ZUM.84,:--.

In what follows we shall be interested in low energy
phenomenology (0(10%GevV)). Here, phenomenologically
acceptable models have SUSY Lagrangians that contain
spontaneously broken supergravity remnants (so to speak)
which manifest themselves as explicit soft SUSY breaking

terms,

B. Squark and Slepton Mass Matrices
In addition to mass terms m;;, of the superpotential,
one can obtain further contributions from its Yukawa terms.

For example

W(E)~ge o @ 8, (2.1)

where

25
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hgq"V 29"/ My
In particular,
| 2,15 12, ~Cpy 2 2
Ls2 |9y | 201811 2+ 1G8H| 2+ |a,q8 )

leads to the following contribution to the

matrix elements, for each flavour:

2

T % m_ 0 é
(@, ax)| ¢ , _“],
0 mZ)lg
q R
where
Mq=9ugq”
and

v=<H>=<0|H|0>.
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(2.2)

(2.3)

(q.,d;) mass

(2.4)

(2.5)

(2.6)

Clearly matrix (2.4) can be simultaneously diagonalized in

flavour space, and we find, as expected from (1.19), that

=M~

m .
q  di,r

(2.7)

A similar result also holds for the leptons. In general

; thefe are also extra contributions from the gauge
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interaction terms

12-1g2(¢TEe-T)2. (2.8)
However, these terms do not affect the problem at hand
(E11.83a).

Since such degeneracies, as (2.7), are unacceptable
experimentally, we must break SUSY. To do this, we add

explicit soft SUSY breaking terms of the general form:
2 ~12,.2y542, 27172
malql +mi|l| +m;|v| . (2.9)

Phenomenological considerations (E11.83A) severely constrain
the form of the mass matrices (2.9). Ellis (E11.83A) assures
us that such constraint problems can be avoided if we adopt

the following ansatz:

2_~2 2

~=m“1+C_m_+C.m 2.10
ms=m c, a Cymy ( )
‘where 1 is the unit matrix in flavour space, while m? and C,
may differ between g, and gz and the C, term mixes L and R

'helicities'. If we now assume that we can write the squark

matrix in flavour-diagonalized form, we obtain
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~

~ 2 s
= = mL+C%fh C1mq qy, Y.
(q; ap) o S ‘ (2.11)
C1mq mR+C2qu dp

Terms such as (2.10) arise naturally from spontaneously

broken supergravity models. In many of these models

m2=1%m?, r“n§=R2512, C.=Am, C, =1 (2.12)

where m=0(20-103%)GeV, 1.2#R? in general and A=0(1). Upon

substitution of this into equation (2.11) we obtain

_ - (LPR%+m®  Amm q
0 ) e I P (2.13)

Amm_ R"m™+m q

q q R

This is the most general form of the squark mass matrix,
since contributions such as (2.8) can be subsumed into a
redefinition of the parmeters L, R and A.

The squark mass eigenstates

2.2y ~2 2 .2,2~4 2.2~2
+ + - +
mg - 2+ (L+R°)m _//(L RE)“m~+4A mqm

(2.14)

are simply obtained by a 'helicity' diagonalization of mass

‘matrix (2.13) through a (qg,,qy) rotation angle 6.

--2Amq :
Tan26. =—F7r—7"— (2.15)

IR (L2-R%)m
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The SUSY breaking mass scale m>20GeV is so large the L-R
mixing (2.15) may be negligable with the exception being

that of the héavy t quark.

C. Gaugino and Higgsinc¢ Mass Matrices

As mentioned before (§1.E), in order to give masses to
all the quarks and leptons and to cancel out triangle
anomalies, we need two Higgs chiral smultiplets which are

weak isodoublets of equal and opposite hypercharge:

. (2.16)

This can be seen as a direct conseguence of the fact that
W(®) is an analytic function of & only, and not &.

The Gaugino and Higgsino mass mixing matrices are
determined by the Lagrangian terms

050, (2.17)

ot ~a~a ~aca =
HH,)+M,(g7g )M WOW+M B
where g°, W* and B® (denote SU.(3), SU.(2) and U,(1) gaugino
fields respectively. If the standard SUC(3)®SUL(2)€UY(1),
model is to eventually be embedded in a ‘grand unifying

. group, one would expect (ELL.83A):
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(2.18)

wjo

M3:M2:M1=a3:a2: a,
where a; are the gauge coupling constants: g%/4wm for
i=1,2,3. In most models e and M, are expected to be of
0(M,). Using (2.17) along with the appropriate

gaugino-Higgsino couplings,

_ —a ai j cC

v2gx“¢.L j\[/L+H.C._LM (2.19)
obtained from (1.45), one can construct general

gaugino-Higgsino mass mixing matrices.

For the charged fields we have (NAN.84)

. . M g,V W
(@, B 2 TR ] (2.20)
9,7y ~e JH,
where
0 -
<H1'2>_1)1’2 (2.21)
such that »,, satisfies
2_1.2(,2,.2

Matrix (2.20) can be diagonalized by rotations through
‘anglesA 6, among positively and .negatively charged fields

respectively, where
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ROt (2.23)

- 2a,
with
a(:)=M292”(;)'692V(%) , (2.23.a)
2 2.2, 2 2
b,y=My~e xg5(vo-v7) . (2.23.b)

The mass eigenstates of the newly formed x;, states are
m,=M,C,C_-g,»,C,S_~g,»,S,C_-€S,S_ (2.24.2)
and -
m,=M,S.S_+g,»,S,C_+g,»,C,8_~eC.C_, (2.24.b)
where C, and S, represent cosf, and siné, respectively.

In the neutral sector we obtain the following

(W3,B9,09,49) mass mixing matrix (ELL.84):

dav1 9272 313
Mg o -7 vz ||"
0 5a givy - 9122 50
o~ e e 3a; 2 V2 V2
3 R0 10 0 . 2
(w3, B, KO HD| g, gyv, A o (2.25)
‘ V2 V2 1
Gav2 - G1¥3 %0
V2 V2 ¢ 0N

To ‘diagonalize (2.25) we must use numerical methods. Since
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H, gives mass to the charge £ and m>>m;, my>>m,, it seems
reasonable to assume »;2r,. This allows us to explore a more
plausable region of the e, M, »,, v, parameter space. In
figures (2.1) through (2.8), we examine this parameter
space, for values ~f e¢ and M, near m, and ratios of »,/v,=1,
4, for the two lightest neutralino eigenstates, x? , (such

that m,<m,, xP=x° and x§=x°".)
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Fig. 2.1: Neutralino mass plots. 3D plot (top) and mass
(GeV) contour plot (bottom) for the lightest io state as a

function of |e| and M,, for » /v,=1 and >0.
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Fig, 2.2: Neutralino mass plots. 3D plot (top) and mass
(GeV) contour plot (bottom) for the second lightest X0 state

as a function of |e| and M,, for »,/»,=1 and e>0.
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(GeV) contour plot (bottom) for the lightest X% state as a

function of |e| and M,, for »,/v,=1 and e<0.
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as a function of |e| and M,, for v, /v,=4 and e>0.
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‘as a function of |e| and M,, for v,/v,=4 and <0.
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From careful obcervation of these figures we see that
typically there are two mass eigenstates (x° and Xx°') with
mass < 30GeV when both M, and e <0O(m,).

In the limit e — 0 mass matrix (25) gives us a light §o

state

S (2.26)

with mass equal to 2»,v,¢/v?, where v2=p%+p%. In the limit

M, — 0 we obtain a light photino eigenstate
=3 =0
g,W"+g,B

Y= (2.27)
V gtras

with mass
(2.28)

Finally, if we take both M, and e to be small we obtain two

. mass eigenstates,

o 8P-a o/ T i

= | (2.29)
V2(g}+g3)

0
*

with mass O(M;), and
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0.1 22 (2.30)

D. An Extra U(1)

So far we have only considered the ‘minimal
SU.(3)®sU,(2)®U,(1) standard model, but there also ‘exist
models with an extra U(1), In particular, models which give
further support for supersymmetry, are superstrings. This is
.due‘to fact’that many of the superstring theories predict
the existence of supersymmetfy at accelerator energies.

In short, some approaches to superstrings predict as a
minimal possible gauge group SU.(3)®SU,(2)8U,(1)®U(1)
(cAM.86). Here, the new particles of interest are the N
‘Higgsino and B; gaugino which are a direct conseguence of
superstrings tagging on an extra Ug(1). The inclusion of
these new particles extends our previous neutral sector to a
(W;,B°,H9,HY,B;,N) basis. The mass mixing matrix ‘(2.25) now

becomes

013

M, 0 = = 0 0 \(w

521 Sivy _Siv2 30

0 32 V2 T2 0 C 1B

9271 ALA 49171 5 -

~3 "'o ~0 "'0 ~ ~ ‘/2 ‘/2 0 >\x _-3_-;/'5.-' /\pz H?
(w?,B%,HY, HY, B, N)| g, 91w RERRNEL- TP | PP

V2 V2 A X 32 | M2

49wy 19172 504 594X ||~

0 0 3V2 372 3azz 3y2 || Be

g.x. -

o 0 S VT - | B

(2.31)
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In. this model the values of the parameters »,, », and A (the
HAN superpotential coupling) are believed‘.to lie in the

ranges
1,7¢—<5 | (2.32)
and
0.10<A<0.25. (2.33)
Figures (2.9) through (2.14) show graphs for the two

lightest X° states, of mass matrix (2.31), for M, and Ax

(where x=<0|N|0>) of O(m,). »=C.1,0.18,0.25, and »,/»,=3.4.
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Fig. 2.9: Neutralino mass plots with an extra U(1), 3D

plot (top) and mass (GeV) contour plot (bottom) for the

0

lightest X~ state as a function of x and M,, for v1/u2=3.4

and A=9.10.
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Fig. 2.10: Neutralino mass plots with an extra U(1). 3D
plot (top) and mass (GeV) contour plot (bottom) for the
second lightest io state as a function of x and Mz,‘for

v1/v2=3.4 and A=0,10.
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Fig. 2.11: Neutralino mass plots with an extra U(1). 3D
plot (top) and mass (GeV) contour plot (bottom) for the
lightest io state as a function of x and M,, for v1/vz=3.4

‘and A=0.18.
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Fig. 2.12: Neutralino mass plots with an extra U(1). 3D
plot (top) and mass (GeV) contour plst (bottom) for the
second lightest x° state as a function of x and M,, for

v,/v,=3.4 and A=0.18.
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Fig. 2.13: Neutralino mass plots with an extra u(1). 3D
plot (top) and mass (GeV) contour plot (bottom) for the
lightest io state as a function of x and M,, for v1/v2=3.4

and A=G.25.
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Fig. 2.14: Neutralino mass plots with an extra U(1). 3D
plot (top) and mass (GeV) contour plot (bottom) for the
second lightest x° state as a function of x and M,, for

v1/v2=3.4 and A=0.25.
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Similar observations, that where made for figures (2.1)
through (2.8), can also be made for figures (2.9) through
(2.14). In addition to these observations, if one were to
overlay figures (2.1), (2.2), (2.5) and (2.6) on top of
figures (2.9) through (2.14), one would observe striking
similarities between plots with the same mass states. This
of course is not too suprising, since one would expect only
a slight enhancement to mass matrix (2.25), upon extension

of the neutral sector.

E. Remarks

In section (B) we mentioned that L-R mixing (2.15)
should be negligible with the exception of the heavy quark,
Although the t quark has not yet been found, various
experimental and theoretical findings seem to suggest that
it shéuld lie somewhere between 44Gev and 200GeV'. With such
a large top mass one can now see how it contributes to large
L-R mixing.

The decay mode of toponium, in which we are intergsted,
is to two light x° states, hence the introduction of the
various mass plots in section (C) and (D), which shall be
‘used for later comparison with decay plots of chapter 3.
With this at hand, we are now ready to turn to toponium

decay.

— . ——— —— —————————

'See ALT.87, CUD.87A,B , HE.87, ...



I11. Toponium Decay

A. Introduction
It is thought that gquarkonia might be a possible
hunting ground for SUSY. Why? Consider, for example the

standard model decay of figure 3.1.

Q|
!
i
!
]

FiG. 3.1. Quarkonia to photon, Higgs.

Here, the Hgq vertex goes as the quark mass mg (cf
2.5). It follows, from such simple arguments, that the Higgs
should couple quite well to heavy quarkohia and so under
exact SUSY, such reactions should also hold equally well for

the corresponding spartner diagrams in figure 3.2.

Y
q =M
l~
'q
= !\~
H

FIG. 3.2. Quarkonia to photino, Higgsino.

4

However, as previously suggested, SUSY must be broken. In
general, this means that the Y and E states will mix as

‘shown in figure 3.3.

51
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q

/

x0'

FIG. 3.3. Quarkonia to neutralino, neutralino'.

The amount of mixing is determined by the various free
parameters of mass matrix (2.25) or (2.31), depending on
your preference. So as one can see, broken SUSY washes away
the dominant Hqg coupling. This at first may seem a bit
disappointing. However, the amount of erosion occurring to
the Hgq coupling depends on where it lies in the e (or Ax),
M, parameter space. So, as suggested by (2.26) and (2.27),
ther ~iould exist regions in this parameter space in which
one cai. recover y and H-like interactions., In fact, there
may even exist regions which enhance the Hqq coupling.

At present we have not found any scalar Higgs‘
phenomenology associated with quarkonia, although many
believe it should occur upon discovery of toponium. Taking
this on faith leads one to believe the aforementioned SUSY
phenomenology should also occur.

Here, we wish to examine neutralino production (fig
3.3). Since this is effectively a local interaction, one
expects the radial excitations (P-states) to be‘suppreséed‘
(sC0.85). This leaves us to consider the 'S, and 35, states.

Computation of 'S, can be dispensed with, since quatkonia
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production processes occur dominantly via  S-channel
intermediate vector bosons.

For 3§, processes one also picks up, in addition to
figure 3.3, a Z-pole contribution from the diagram of figure

3.4.

b &

iv

FIG. 3.4. Toponium via 2 to neutralino pairs.

The 2° couples only to the Higgsino content of the
neutralinos. Therefore the strength of the coupling depehds
on where the x° lies in the e(or Ax)-M,, »,/v, parameter
space. For instance if »,/v,=1, then for identical
neutralinos the Zxx coupling (i.e. proportional to equation
3.55, such that y; and §; are defined by equation 3,5) goes

Lo zZero.

B. Toponium Decay Calculation
In order to calculate tE-*iiij via the SUSY SU,(2)®U,(1)
Model, we consider the following SUSY Lagrangian mass term,

L~ ME, (3.1)

M

where



and M is our { mass mixing matrix (2.25).

54

{3.2)

Since M is a real symmetric matrix, one can diagonalize

it by using an orthogonal similarity transformation. Under

such a transformation the Lagrangian becomes
Lo~ (UE) T (umMu™) (0F) =X"MPx

where the matrix U is defined by

Upr=egr Uip=Bir Uia=vye Uyp=9y
which implies
> 3.0 30, 0.5 70
X, Ea. W +BiB +71H1+6iH2.
Therefore, given
xi=Uij£jl

we find our fields are shifted by
~ _ T ~

' Or more explicitly

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
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(3.8.a)

~3 ~
W —aixl
80=p. %, (3.8.b)
~0_ ~
..0_ ~

Stop squark exchange amplitude
Using egquations (3.8) along with our SUSY Lagrahgian

(1.45), we find for gaugino interactions

s =3 T .3 \z0.T 3
Line~ V2 LW ¢ELTLL¢t+g B ¢€L(Qt TV, ]
[ 1 e R A ( 3

vZ2[gw ¢ERTRR¢t g'B ¢ER(Qt TR)th]

+H.C. (3.9)

5zl 1p anyeit-20 grmit
= /fxi[z(aig+3ﬁig )Lt 3519 RtR]t+H.C. (3.10)

where

}, ~¢t=$gs[ ]. (3.11)

The Higgsino interactioh terms are obtained through the

~use of the,superpotential'term



W~ ® & P
9t t ¥, “es Hl,

where
® =(t,f)., @ .=(t5,E% , &, =(i% 1%
ty, RS Pt 4 e CHY, 1L
and
1/2
9,05 =J‘9TL 14 —1 1
Hitt V2 m, (v, /v )

Inserting this into eqguation (1.45.c) yields '

LY ~g oo (E5t7C H1L t[‘HD+Ct +i H c e S+t tc+

0 0 )

;Uﬂ

-4
2

- o 50
Ly nt~ " 9m0g Er, Lt PR, L TH-C
Using equation (3.8) gives
L ~=g ty P. _t i +H.C
int “H{tt L,RR,L o

'Where $°=¢6F;0.

*Using the label sum convention; A, . Bj

£.5,. . FABYALB YL

56} ‘y

(3.12)

(3.13)

(3.14)

0#
LH1LX3.15)

(3.16)

(3.17)

(3.18)
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‘Thus, using equations (3.10) and (3.18), we obtain the

stop squark contribution to the interaction Lagrangian

L™ V2t tla R+b.Llx, V2t x,la,L+bRIt
i - itE ‘
/7th[ciL+biR]xi V?tin[ciR+biL]t (3.19)
where
1 1 '
i"E(aig+3Big ) (3.20.a)
bi=gH?Etyi//f (3.20.b)
c.=-2g'B.. (3.20.c)
i 3 i * ‘

The Feynman rules, which we now list in table (3.1)

below, can be readily obtained from equation (3.19).



TABLE 3.1. Stop Squark exchange Feynman Rules.
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t-Channel u-Channel
xi ﬁi

t ;444”‘4437 t

U=, o U™,
o) £

- P o -
Vet o2

t 3 =32 t

i-Vertex: —i/?ii[aiL+biR]t

i-Vertex: -i/?f[aiR+biL]ii

j-Vertex: -i/?f[ajR+bjL]ij j-Vertex: -iyiij[ajL+bjR1t
Prop: iAP =—=* Prop: iad=—2
L 2__ 2 L. 2 _ 2
P mL a mL
§1 -ﬁl
t i o t
U > U
D4 P_—-| P1
o b
~ 7P o -
2 P —
t j =~ J2 t
Xj Vj

i-Vertex: -i/fii[ciR+biL]t

j-Vertex: —i/?f[ch+bjR]ij

i

p -m.

. 2 p —
Prop: 1AR-

i-Vertex: —i/?f[ciL+biR]ii

j-Vertex: “i/?ij[c5R+bjL]t

Prop:
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Using the Feynman rules given in table (3.1), we get

the following amplitude?

MEjEM(tE—*iiij: via t)

=—2i{ﬁi(q1)[aiL+biR]U(p1)AEV(pZ)[ajR+bjL]Vj(q2)
—ﬁj(qz)[ajL+bjR]U(p1)AEV(pz)[aiR+biL]Vi(q1)

4T, (q,)[c,R*b,L1U(p,) AT (p,) [c L4b RIV, (q,)

—ﬁj (q,)[c R+b,L]U(p, AN (p,) [c,L+b RIV, (q,)} (3.21)
=-2i{ [aiajAE+bibjAg]ﬁi (q,)LU(p, )\"z(pz)Rvj (g,)
+[ailojAE+loich§]ﬁi (g,)LU(p, )V(pz)ij (g,)
+[biajAE+cibjAS]ﬁi(q1)RU(p1)V(p2)Rvj(q2)
+[bibjAE+cich§]ﬁi(q1)RU(p1)§(p2)ij(q2)
-[aiajAg+bibjAg]ﬁj(qz)LU(p1)V(p2)Rvi(q1)

- q a5 ‘ T
[biajAL+cibjAR]Uj(qz)LU(p1)V(p2)Lvi(q1)

3 The relative minus signs in equation (3.21) can be obtained by a
simple Wick expansion.
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f q a5 T
[aibjAL+bichR3Uj(qz)RU(p1)V(pz)RVi(q1)

- q G ¢ =
[bibjAL+cichH}Uj(qz)RU(p1)V(p2)LVi(q1)}. (3.22)

Applying Fierz transformations (C.14) through (C.17),

we get

Mt =-i{la,a aP+b b APIT, (q,) v, RV, (q,)¥(p,)v*LU(p,)
+[aibjAE+bich§][ﬁi(q1)ij(qz)V(pz)LU(p1)
+30, (a, Lo, V. (q,)T(py) 0" Ulp,) ]
+[biajAE+cibjA§][ﬁi(q1)RVj(q2)V(p2)RU(p1)
+30; (a))Ro, V. (q,)V(p,) 0" Ulp,) ]
+[b.1bjA€+cichg]l-Ji (q, )yuLVj (qz)\_l(pz)yuRU(p1)
—[aiajAg+bibjAg]ﬁj(qz)yuRVi(q1)V(pz)y“LU(p1)
-[biajAg+cibjAg][ﬁj(qz)LVi(q1)V(p2)LU(p1)
+30, (ay)Lo v, (@) T(p,) 0" U(p,) ]

- q a1 =
[aibjAL+bichR][Uj(qz)Rvi(q1)V(pZ)RU(pl)



+%6j(q2)RauyVi(qz)V(pz)a“”U(p1)]

- a 117 7 u
[bibjAL+cichR]Uj(qz)yuLVi(q1)V(pz)y RU(p1)}.

Using equation (B.7) and properties

(A.20) we note that for an arbitrary 4x4 matrix O,

~ e S
0, (q,)0,V,(q,)=CV, (q,)70,cT, (q,

TA~~1 e
==V, (q,)°C okcuj(q2
= | -1 T T
=-(Uj(q2)(C 0,€) v, (q,))

= TA-1
= Uj(qz)cokc v, (q,)

where our COJC™' terms are given by

TA=1_
C(PR,L) C_ ‘pR,L

T-1__
Cly,Pg,p) C ="Pg 7,

c(p yTe T=-p

R,Lauv R,Louv’

Therefore our amplitude now becomes

-~

t oLy p Pt g u
Mij" l‘“aiajAL+bibjAR]Uj(q2)YuLVi(q1)V(p2)Y LU(p1)
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(3.23)

through

(3.24)

(3.25)

(3.26)

(3.27)
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—[aiajA§+bibjAg]ﬁj(qz)yunvi(q1)V(q2)y“LU(p1)
—[(aibjAg+bichg)+(biajAg+cibjAg)]ﬁj(qz)Lvi(q1)V(p2)Lu(p,)
+11(a;b 8P+ . 88) - (b,a al+e b a) ]
°5j(q2)Lathi(ql)V(pz)o“VU(p})

-{ (biajAE+cibjA§)+(aibjAE+bichqR) ]ﬁj (q,)RV, (g,)V(p,)RU(p,)
+1[(b,a,80+c b.aP) - (a;badvb c A3) ]

o[_Jj (q,)Ro V. (q, )V(pz)a”VU(p1 )
+[bibjAE+cichg]5j(qz)yuRVi(q1)V(pz)y“RU(p1)
-[bibjAg+cichg]ﬁj(qz)yuLVi(q1)V(pz)y“RU(p1)}. (3.28)

Since the top quark is very massive, we find for low

energy toponium

A ~pd ~em TR | (3.29)

Therefore, using N.R. approximations (B.17) through (B.21),

we have



t i = t i
M.~ Z{AijUj(qz)yuRVi(q1)(¢ o
3 2m
RL
= + 1. cH_ +
—BijUj(qz)y“RVi(q1)(¢ 0 x6.-¢

= t
-(Cij+Dij)Uj(q2)LVi(q1)¢ X

Jr

. - 0i
"1(Cij—Dij)Uj(q2)Lo Vi(q1)¢ ;X

+(Dij+cij)ﬁj(q2)RVi(q1)¢+x

.l.

. -~ 0i
-1(Dij—cij)Uj(q2)Ro V. (q;)¢ o, x

= + 1 eu_ +
+BijUj(q2)yuLVi(q1)(¢ 0°x8.-¢

= + i s +
-AijUj(qz)yuLVi(q1)(¢ 0" x5, +¢

where

2 2
= +
Aij bibij Cicij

1]

13

2

2
= +
Dij~biaij cibij

and

u
x8i+¢

u
xﬁo)

xsg)},

B..=a.a.m2+b.b.m
i73J7R 173

2
= -+
C.. aibij bicjm
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(3.30)

(3.31.a)

(3.31.Db)

(3.31.c)

(3.31.4)
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M, Smem . (3.32)

Using table (B.1) we find for a 3§, toponium (or

orthotoponium, 6) state

3S| E -1 T - : i : - 01,
Mij ZUJ.(CJZ)[(A.ij Bij)(y1+1yz)R+1(Cij Dij)L(a +io

2mRL

02)

+1(D;-C, IR0 +10%2) + (B, -2, ) (v, +i7,)L1V; (q)) (3.33)

i = N 01,: .02
= 2Uj(qz)[xij(71+172) lYij(a +ig )]sti(q1) (3.34)
Mar

where

X..=A..-B.. (3.35.a)

Y..=C..-D,.. (3.35.b)

Using the definition of 0%, (A.12), and the algebra (A.8),

we find

o0i=iy y! (3.36)
which reduces (3.34) to

i

35t = _.0 1,:.2 |
‘Mij~ 2Uj(qz)(Xij y Yij)(y +iy )ysvi(q1). (3.37)
2,
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Z-exchange amplitude

Consider the following diagram,

~d;

3s, PROP:

P=p+P,y=q,1Q;

i o) Q2

FIG. 3.5. Z exchange Feynman diagram.
To find the appropriate vertex couplings for this
contribution to the amplitude we consider the following S$USY

Lagrangian (see equation 1.45) term

L 2iy, glyd. | (3.38)

For an SU(2)®U(1) model, our covariant derivative 1is

given by
- _i ' R
Du\b—(au 59'B, ¥-igT wu)\// (3.39)
where
T:%?. | ‘ (3.40)

Therefore the interaction Lagrangian that will give us the 2

couplings, is

A7 g0 33,13
Lyge~39s, (9 B YO ) 07, (3.41)
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For the 2tt couplings we have

~1— v 40 3.3 1 7cglyc (o]
Lyge~5¥ (9 B Y g, r VLW +og W BTY LY (3.42)

where Yf=-Y, (¥=2(Q-T?)). The other terms are defined in

equations (3,11) and (3.40). Noting that

TC U C__7 K
VY PR,LWZ" 2% PL'RW1, (3.43)

we obtain

e w0, 3y 44, %O ‘
Lyt Et[(gg B~ +gW )L+3g E'Rlt. (3.44)

Using the change of basis

BY=4K-§" 7 (3.45.a)
W=q'A+a7 (3.45.b)
where
- g
g = gz+g'2 =cos€w (3.46.a)
AV o g' .
g = gz+g'2 =sinf (3.46.b)

and discarding the photon couplings, we get
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‘ ‘,,_1';: a1l A |
L,z ~5EA0(98-39'§")L-39"§'R]t (3.47)
-——3 7 TyA[3L-4x ]t (3.48)
6cosf “u Y Wi )

Therefore vertex 'a' is given by

_ig o
6c059w

For the Zxx' coupling we have

ty“[3L—4xw]t. (3.49)

e, ~d T- 0 33 Ly - ‘
Loz 2iﬂ’2vH?(g'ﬁ v +gr W )L¢H? (3.50)
where
(o], R
YL,—_-_—-TL' ‘llﬁ?= I:i? ' ll}i:l(2)= O - (3051)
Plugging this in, we find
L1500 163y 50 _150 ¢ o1 w0 g3 ) L0 )
Lysg! 2H1(g B -gW”)LH] 2H2(g B -g¥”)LH,. (3.52)

Performing the change of bases (3.46) and (3.8), we find

1= P U L -
aiq ~7X:8509" (§K-§'2) -9 (g" K+qZ) JLx, (3.53)

__1 T e |
= 2(g/cosew)zijxiZij 3 (3.54)
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wvhere

Zij'—'yiyj_&iaj' (3.55)

Using equaticn (3.43) along with the property x°=x, we find

Lyzs " ~-~(g/c056 )2, x Z(L- R)x (3.56)

——(g/cose )Z 1Y ysx.. (3.57)
Therefore vertex 'b' is given by

ig .
4COSG 13x17 Y5Xj° (3.88)

Using Feynman rules (3.49) and (3.58) along with the

propagator given in figure (3.5), we find our Z-exchange

amplitude is given by

. 2
A 1g = u
MY~ V(p,)y" (3L-4x_)U(p,)
3 120082 (5-m,2+ir,m,) 2 LA
°Uj(q2)yu75Vi(q1). (3.59),

Using N.R. approximations (B.18) and (B.19) we find that

+u3+1 T3

V(pz)y (3L-4x )U(p1)~-~¢ X5g*5¢ 0 x5“—4¢ 0 xa“xw. ‘ (3.60)*
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For a 38, state we find, via table (B.1), that (3.60)
simplifies to
i B sl
2(3 8xw)(61+152) (3.61)
and so
. 204
ls, 7 ig°(3 8xw)Zij

— 1. 2
M2 ~ U.(q,) (y ' +iy“)yV.{(q,). (3.62)
13 24c0529W(S~m22+iFZmZ) i 72 51

Total amplitude

Adding (:.37) and (3.62) together we obtain our total

amplitude
3g ‘== _.0 1,:.2
1Mij~1Uj(q2)(R+ vy C)(y +iy )75Vi(q1) (3.63)
where
_ B
8=s-m2 (3.64.b)
e=I‘ZmZ ‘ | (3.64.c)
A=—2 0 (3.64.4)
2m
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2
a (3—8xw)zij

B= 20T, ) (3.64.e)
Yij

C= 2- (3.64.f)
ZmRL

Noting that

1

31T, (9,)0,V, (q,) | *=gn—Tr0, (d,-m )T, (d,*m))  (3.65)

4mkl
where
m, , =m, m, (3.66)
we find, via (a.22) and (A.25),
(1-%6..)
35 2 ij _.0 1,:.2
| =1 ij| ~—*Za;;—~Tr(R+ y C)(y +iy )(q1+mi)
0 1_..2 Con
°o(R_+y C)(y ~iy%) (d,+m,) (3.67)
wnce# the (1-%8;;) is to take care of identical particles.

Using algebra (A.8) our trace term in (3.67) can be arranged

as
Tr (R,~7%C) (y'+1v2) [(d,+m)) (v"-1y2) I(R_~y°C) (drm,) . (3.68)

Observing that



7

dyV=2af-y"d : (3.69)

allows us to reduce the term in the sguare brackets, '[]',

of (3.68), to
2(q)-ig?) - (v'-1v%) (4,-m,) . (3.70)

Putting (3.70) back into (3.68), we find that the first term

of (3.70), gives
1.2 0 21, 1,:.2 A
2(q1'1q1)Tr[R+_fy C(R,-R_)-C 1 (y +iy )(gj2+mj) K3si1)

where

= 2, (B+25A)B
R,_SR,R_sA"+-=5"20, (3.72)
. 6%+e

Using trace theorem (A.32), (3.71) becomes

1_..2 1,..2 0n(n
2(q,-ig))Tr(y +iy YA d,-y C(R,-R_)m,] (3.73)

where
- 2

A =R, _-+CT7, (3.74)

The final result for (3.73) is obtained by an application of

trace theorem (A,30):
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8(q:-iq$)(q;+iq§)A_. (3.75)

The second term in (3.70) gives rise, in equation (3.68), to

the term
2Tr (1+iv'y2) [(R,=y%C) (d,-m,) (R_=v°C) (d#m) 1. (3.76)

Using theorem (A.32), the term in the square brackets, '[]',

of (3.76) becomes
R, d.d.-m.C(d,v"R +y°4.R_)-m, .A
L Ler R DR R =7 0
+miCyoq2(R++R_)+C2~/oq]yoszj2. (3.77)

Since this is part of (3.76) we are permitted to make the

following transformation

0, 0 0
-ij(q” R, ty d1R_) - -mjy Qj12+_ (3.78)
where
. ., 6B ‘
7—-+_=C(R++R_)=2C[A+—2——2-]. (3.79)
6 +e

Using this transformation, along with (3.69), (3.77)

simplifies to
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0 o
Ad 4T,y (miqz-qu1)-mijA++2E1czy°q2 (3.80)

where g%=E, and q}=E,. Throwing (3.80) back into (3.79) we

obtain
8lq, a,A_*(mE,~mE )E, ~m A, +2B E,C”]
. 12 3 2
+2Tr{iy y°d dA _~vgy [(miqz-qu1)2+_+2E1C 4,1} (3.81)

where we used theorems (A.29) and (A.30). 1sing theorems
(A.31) and (A.35), the trace term of (3.80) becomes

8ilqja’-qjallA_. (3.82)

Firally, plecing (3.82) back into (3.81), and then adding
(3.81) and (3.75), gives us the final form of (3.67):

2(1—1/26:1]')

m, .
1]

3s, 2 . _ _ 3.3 ;
| Mijl [(E.E, mij)A++(miE2 ij1)z+_ q1q2A_] (3.83)

Consider the following centre of mass diagram:
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Dy a; where

9 p?=p§=mi
aj=m;

4 q§=m§

Py="P, & m =My 3 E =B

—

a, 7] q1=—q2

Fig. 3.6. Toponium decay in C of M system.

Using C of M coordinates our decay amplitude (3.83) now

becomes,

2(1-%8, .)

3

781 2 13 - )
LM e [(B E,~m; A,

+(mE,~m % )Z+_+|§1|2A_c0529], (3.84)

1
where we used the fact that

q?=|§1|c059 (3.85)
qg=—q?. (3.86)

Here, we also note that

E_,=VS=E *+E,=E +E_~2m (3.87)
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where

B =(.2+g2) /2 | (3.88)
2. =2\1/2_, 2,=2\1/2 '
Ez—(mj+q2) —(mj+q1) (3.89)

which implies

_ . [s=(m+m)2[s-(m;=m ) ?)
1a,1%= s . (3.90)

Decay width
Using the Van-Royen-Weisskopf formula 'ROY.67) the

partial decay width, for 3S, state, is

a
M

5’V_J~;2w)3lA|2|w(0)|2 (3.91)

where

|aj?=r(p)=—t—0,.. . (3.92)

(27)
vy is the relative velocity between the quarks and ¢(0) a
non-relativistic wave function of the gg system at the

ofigin.‘Using standard techniques, found in practically any
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particle physics text book (BJO.64, QUI.83, WIL.71,--:), we
obtain |
1
2
2m, .m
35, i3t = 2 35 2
Iy 3z Iq1llw(o)|J | M 1%a(cos8)  (3.93)
-1
So
3(1-%6. .)
sip e i3 = 2 -
Fij oy |q1||¢(0)| [(EE, mij)A+
— 2 .
+(miE2»ij1)Z+_+|q1i A_/31] (3.94)

where we have also multiplied by a factor of 3 to take into

account colour,

: - s Aot [T
i.e. |tt>colour‘;?'§‘ | RR>+ [ GG>+ | BB>) (3.95)

is a colour singlet.

C. Results

The next problem is to decide for what parameters this
decay has a chance of showing up as a bump in some
experiment., |

To avoid getting lost .. any SUSY background our stop
mass must be greater than the top mass. If mE<m , then

t
dominant decay modes such as 6 — tt
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ot
1
1

!

FIG,., 3.7. Toponium to stop pairs.

and open top decays into E£+(y or g), could drown out any
chance of seeing neutralino production,
Aside from this, we have to worry about standard model

decays. Here, the most dominant decay modes being 6 — Tf

. ue,e,...,u,d,...

Y. 2

T N T e 5.3

Ver€,000,U,d, 00

FIG. 3.8. Toponium to fermion-antifermion pairs.

and toponium B-decay.
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Ver€,eae,u,d,.e.
t - /

W

‘*bf”hfvﬁf

)

ot

\ve,e,...,u,d,...
B

F1G. 3.9. Toponium beta decay.

For a toponium mass, m,, around the Z, 8 — Tf dominates
(r~0(55)Gev) the pB-decay modes. Around 110GeV these two
decays become of the same order (I'~0(10°'Gev)). In short, a
peak occurs around the Z-mass (fig. 3.10 below) leaving us a
useful range of toponium masses at least 10Gev above or

below the Z.
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Fig. 3.10. Toponium width. Total 6 width (——) and partial

widths, for 8§ — Ff (---) and 6 B-decay {(—-), as a function

of m,.
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Applying experimental constraints leads us to pick a
toponium mass ~10GeV above the 2. Hefe, we consider our
toponium mass to be 105GeV giving us a top mass of 52.5GeV.
Picking L®~1, R?*~.5 and m=80GeV in equation (2.14), gives us
respective left and right stop masses (my, my) of 55GeV and
110GeV.

In figures (3.11) through (3.22) we have plotted
BR(?S,|Tt — x;X;)'s over the same parameter space as our
neutralino mass plots of section 2.C., Our BR's being
obtained by dividing (3.94) by the width for leading order
6 — Tf and 6 — t+b+ff decays (LEP.85)

2 2
c e e.v.v v. “(v._+1)
B DIV I A M Ve VY 2
Pge= Z{etef+2 2 Rex, 3 |,
e, y y
v (1-v.) e, e ]1
£ £ t-f 1 2
+6 —————x Rex,- Xt X il (3.96)
f,b[ 3xy2 W 2 5, W o1gy2 WJJ 0
Here*
2 s
x=4sin“0 , y=4sing cosé, (3.97.a)
me2 “%2 mw2+(m92/8)
Xp= 55, P XS T3 T > (3.97.b)
m,“-m, +1I‘zmZ m," m, +(me /4)
3 , quarks 1, £=b
c = P (3.97.c)
1 , leptons 2l , f#b
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= = -2.. = = =-J-
e me =e =%, eg=e =e ==z (3.97.4)
eve=euu=epr=0, ee=eu=er=—1 (3.97.e)
my =y =1-2 =y =y ==1+l
v, =V =V = $xy V=V =Yy 1+3x (3.97.f)
Vue=vvu=vv,=1' M ==1+x (3.97.9)
and
m, S mt2 mb2
Fﬁ~8.4 Z0GeV f 2,m > FO' (3.98)
W t
The function f is
2 _ 2 3
f(P,u)~—4‘{6[p+(1—p)ln(1 p)1-3p°-p} (3.99)
p
with
2
64ma
em 16 2
FO(G)- om 2 [1 37ras(me)]I\!/(O)l (3.100)
8
where
127

231n[m9/(0.1Gev)]2.

It should be noted that for F?f, with the exception of

the bb final state, we have neglected the charged-current

contributions which are Cabibbo suppressed.
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Fig. 3.11: Toponium BR plots. 3D plot (top) and contour
plot (bottom) for BR(3S1|tE—->§<Oi0) as a function of |e| and

MZ,‘for V1/V2=1, e>0 and mt=52.5.
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Incomplete contour lines (such as in figure 3.16; top
middle of contour plot) correrpond to insufficient data or

not enough room to put in a contour label.

D. Toponium Decay Revisited
In this section, we consider toponium decay in the
SU,(2)®U,(1)8U,(1) scenario. Here the f of equation (3.1) are

simply extended to

A

oevl
-3
H
e
w0

°,R),8_, ) (3.102)

and the M matrix replaced by (2.31). This new M matrix is
also real and symmetric, and so can be diagonalized under
the same scheme as in equation (3.3). Therefore replacing
the U matrix of (3.3), with the corresponding one for
(3.102), we obtain definition (3.4) along with the

additional elements
=x,, U,_ =X, (3.103)

where i now runs from 1 to 6.

So, our new eigenstates are simply of the form
+A;N. -~ (3.104)

From this and equation (3.7) we find that our shifted fields
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are now those of (3.8) elong with the additional terms

-~

BEaxixi (308.&)
Nﬂkixi (3,8.£)

Stop squark exchange amplitude

In the gaugino sector the interaction Lagrangian is

that of (3.10) plus the term

- Tty t Y ‘
LyE ~ V2 gBBEqbt ___L\!/ -2 gEBEqs 2B R\!/ +H.C. (3.105)
==y2Z gq'k, x [Lt++REi]t/3+H.c. (3.106)
where (CAM.86)
9,=9" , Y = (3.107)

In the Higgsino sector the N field has zero hypercharge
(cAM.86) and so does not contribute to the quarszquark
vertices., The only Higgsino contribution is that of équation
(3.18). ‘

Using equation (3.10), (3.18) and (3.106), we simply

get equation (3.19), where the terms (3.20) are replaced by



‘H:196‘  "‘

‘ai=%(a'ig+-§ﬁig")+—;-g'lci (3.108.a)

bi=gH?Et7i/V7‘ (3.108.b)

c =—gg'B +lg':c (3.108.c) -
i 37 7i R i* * :

Therefore, our squark‘contribution to the amplitude is

that of (3.37), with definitions (3.20) replaced by (3.108).

Z—-exchange amplitude

Since the Higgsino has zero hypercharge, it does not
contribute to the 2Tt coupling. However, in this model,
‘there exists an extra Z; the ZE, which is‘ pure BE in
content. So, in addition to the Z, we have a 2z contribution
(i.e. figure 3.5, with 2 replaced by Z_..) Fortunately, due

to phenomenological contraints (CAM.86)

mZE>>mZ ' (3,109)

and so to first order we can neglect the Zg contribution.

" Total amplitude :
It follows that our result for I' is that of (3.94),

with definitions (3.20) replaced by (3.108).



'E; ﬁesults‘

In figures (3.23) through (3.31) we have plotted
: BR(BS1|ft-—*ii§j) over the same parameter space- as our
neutralino mass plots of section 2.D. Our BR's being

obtained in the same manner as in section C.
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Fig. 3.23: Toponium BR plots with an extra U(1). 3D plot

(top) ~and contour plot (bottom) for BR(3S1|tE¥—*x0x0) as a

function of x and M,, for v,/v,=3.4, A=0.10 and mt=52.5.
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~function of x and Mz' for D1/V2=3.4, A=0.10 and mt=52.5. 
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function of x and M,, for v1/v2=3.4, A=0.18 and mt=52.5.
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F. Observations

From the complexity of the surface topologies of our
decay plots, one can see that the combination of 3~D and
contour plots are invaluable interpretative tools,

One thing that becomes immediately noticeable is that
some plots seem to have a discontinuity; £for instance, in
plot 3.11. After some careful examination of mass contour
plots 2.1 and 2.2, one can see that there is a mass flip
between plots 2.1 and 2.2 along a line corresponding to the
discontinuity observed in plot 3.11. So, since we are
considering 6 decaying to two light Xx°'s (fig. 3.11), we see
a discontinuity corresponding to a change of eigenstates.
Since there is a flip between heavy and light states along
this line, we also expect a corresponding discontinuity for
9 to two heavy X° states. This corresponds to fiqure 3.13.
For a mixing of states (i.e. 6 — X°'Xx°) we expect to see no
discontinuities, since the amplitude should be invariant
under an interchange of eigenstates, x° and X°. As expected,
ve see no discontinuties in the corresponding figure, figure
3.12,

Another interesting, but not so obvious point, is that
all deéays are zero in the upper right hand corner (i.e.
e (or Ax) and M, large) of our e (or Ax) M, parameter space.
These correspond to kinematically inaccessible regions (i.e.
YS<m+m.). Upon observation of mass plots 2.1 thrbqgh 2;14,

one can see why: In the regions of large e (or Ax) and M,,
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the neutralino masses rapidly exceed ¢5. So, as the
nevtralino mass gets large the decay approaches zero.

This, also explains the apparent discontinuity in
figure 3,12, which I conveniently forgot to mention while
dicussing mass flips. Here, the decay approaches zero
(valley region of 3-D plot 3.12, where ¢ and M, — O(m,)) as
the neutralino mass goes up (ridge region of 3-D plot 2.2,‘
where ¢ and M, — 0(m,)). However, in this region, the
neutralino mass doesn't quite get high enough, and so the
decay never quite goes to zero.

This line of reasoning, explains many of the bizarre
surface topologies encountered throughtout figures 3.11 to
3.31,

I should also mention, that spikey figures such as
3.16, require no further reasoning, since these spikes are
due to insufficent plotting data.

As a final note, one can see that decay plots, with an
extra U(1) content, seem to give generally smoother surface
topologies, than the plots without. Careful observation,
shows that there are many similarities between these plots,
even ﬁhough the surface topologies may at first glance look

drastically different,
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G, Varyihg the Top Mass

In figures 3.11 through 3.31, we have only considered a
toponium mass of 52.5 GeV. The grounds for choosing this
mass was based on recent UAl1l results, However, these results
are held under close scutiny by some theorists who would
rather trust the more solid TRISTAN results, If we use
TRISTAN'S results, then we could consider top masses as low
as 0(28)GeV. |

In figures 3.32 through 3,38 we have plotted neutralino
BR's as a function of m,, for 55 GeV < m, $ 110 GeV, and
(le] Mz, Ax)/my~0(1/3).
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The 0(1/3) value, for the parameters (|e]|,M;,Ax)/my,
turns out to be a good rule of thumb when donsidering
kinematically inaccessible (as per previous section) and
cosmologically disallowed regions (ELL.83B, CAM.B86), of the
e (or Ax), M, plain, when varying over the parameters, e,
M,, v,/v,, Ax and m,.

The topological properties of figures 3.11 through 3.31
change very little as one varies m, ®, So, these figures
along with figures 3.32 through 3.38, give an overall

picture of neutralino production.

ﬁ. Experimental Consequences

Now that we have looked at neutralino production for
orthotoponium, the final question remains whether or not
this phenomenon can be observed at any of the present day
accelerators.

Here we concentrate on e'e” machines only; since the
production of ag states entails just electroweak
interactions. Hadronic machines, on the other hand, involve
more complicated processes which lead to predictions of low
production cross sections for heavy qd bound states (e.g,

pp — tt+X (HAB.85)).

% 14 shonly be noted that, as one makes m, small, more regions, .of
TR 1), M, plain, become kinematically inaccessible. There
v alse s it of topological deformation near the Z-pole,: however

t . s-ig is of no value to us (see section H),
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To try and narrow down which of the present day e‘e
machines are capable of neutralino production, we givé a
brief summary, of the 6 BR predictions, of figures 3.32

through 3.38, in table 3.2 below.

TABLE 3.2. A list of some typical 6 BR's.

Masses (GeV) ~6 BR's
m, m, m XX XX’ X' X'
55 91 53 1973 107%-107% | 10>-1073
70 96 54 1072 1073 107%-1073
105 109 55 1072 1073 107%-1073

In picking these values, we have ignored contributions near
the region m,-2I',<m,<m,+2T',; since, in this region, 6
production is expected to be suppressed, due to ‘fot
interferences (KUH.85). Scanning the table, we find BR's
range typically from 0(107¢) to 0(1072). |

For e*e- machines, predictions for tt production
cross-sections range anywhere from O(10') to 0(10%) pb;
depending on the production kenergy, W, and the machines
design . energy spread, ©6W. This ~means our neutralino

production cross-sections would be of order 0(107%)-0(10°)pb.

So, one would require integrated luminosities, <« (=/Ldt),
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of at least 0(102)pb-', before standing a good chance of
observing neutralino productibn.

Todays high energy accelerators have

typical
experimental runs of about 0(107)s, Therefore, our candidate
e*e- machines, should have luminosities, L, of at least
0(10%¥)cm™2%s™! and work above a yS20(55)GeV energy regime.
These contraints quickly narrow us down to one machine: LEP
(V§~100-170 GeV, L~103'-,5x10%2 cm'?s™'; CHE.88) with TRISTAN

(V§~56-70 GeV, L~3x1029-1x103'(peak) cm2s™'; VEN.88) and SLC

(VS~100GeV, L~1028-1030 cm'2s"'; CHE.88) trailing slightly
behind.
Table 3.3, below, compares the predicted number of

neutralino events, associated with typical BR's given in

table 3.2, to the number of predicted hadronic events,
observed in a typical experimental year
(0(107)s — £~111pb), at LEP.
TABLE 3.3. Some typical Neutralino Events at LEP.
W oW Number of events
iy v | 6 Y.2
(GeVv) (MeV) XX XX X'X Nyog Niaa
55 14 319 32-319 0-319 | 319 000 160 000
70 23 177 18 2-18 17 700 | 17 700
105 67 79 8 1-8 7 890 87 690
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Nfaa  and Np ‘represent the number of hadronic events,
produced from, ete” — 6 — had, and the continuum
(e*e” — y,2 — had), respectively. The number of neutralino
and 6 related hadronic events can vary by a factor of about
two due to theoretical uncertainties in ¢(0) ¢,

Essentially the results of table 3.3 speak for
themselves. Empirically, they imply a good chance of seeing
at least the 1lightest species of neutralinos over our
55<yYS<105GeV energy regime. Or do they?

If one carefully examines egquation (1.45), for the
appropriate particle-sparticle spectrum as described in
chapters 1 and 2, one will notice a discrete symmetry which
basically says: that for each standard model vertex one must
replace partners by their spartners, in pairs. This symmetry
is called R?parity, and is +1 for standard model particles
and -1 for their spartners. The main consequence of ;his
symmetry of interest here is that it predicts that there
should exist at least one stable lightest supersymmetric
particle (LSP)’. '

it is believed that the LSP candidate, is either a
light X° (i.e. the y) or » state. Either way, it doesn't
matter, since the net result of light x? production is

6 — nothing. This would, of course, be experimentally

- —— o - n —— o N i S

¢ See LEP.85 for further details regarding table 3.3.
7. Here, we have assumed R-parity 'is an exact symmetry. If this were
~ not the case, then the LSP would decay, which would, typically,

~

lead to lepton number violaticn (e.g. v — 7v+»).
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difficult to detect, since one would have to employ »
counting techniques (i.e. e‘e” — yvp).

The signature associated with mixed neutralino
production (6 — xx'), however, leads to more striking one
sided events; 6 -— Tf+x° (HAB.85), which are virtually
uncontaminated by standard model backgrounds.

For heavy neutralino production, the signatures are
also expected to be good; although not as striking as mixed
neutralino events.

In closing, we conclude that it should be possible to
observe neutralino production at LEP (and perhaps TRISTAN),
or at least rule out some of the cosmologically allowéd

regions of the neutralino sector.



IV. Summary and Conclusioné;

In this thesis, we gave a brief introduction to SUSY
(chap. 1). We followed this up by considering some softly
broken N=1 SUSY models (chap. 2), namely, SU(2)®U(1) and
su(2)eu(1)®U(1), Particular attention was paid, when taking
into account the i?g mass spectrum. Finally, this
information was implemented in chap 3, where we looked at
the various 6 BR's associated with X}, production.

Here, we scanned the m, mass over a 55 to 110 Gev
energy regime, while fixing the soft breaking SUSY
parameters e, M, and Ax at‘% the W mass. We found that 6
BR's typically ranged anywhere from O(10-%) to 0(10-2).

Essentially, we found that such events, if observablev

at all, should appear at LEP (or perhaps TRISTAN).
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APPENDIX A—-Notation

The notation that I am using is basically that of
Bjorken and Drell. However, for completeness sake, I shall

list the notation which is implemented in my thesis.

Minkowski Space

The usual Minkowski space-time coordinates (t,x) (where
we assume c=1 and HK=1) are denoted by a contravariant
four-vector x". Lower case Greek letters are assumed to sum
from zero to three over the space-time coordinates and lower
case Roman letters from one to three over the space
coordinates. Cgvariant four-vectors x, are obtained by the

use of the metric tensor gup=dlag(+,-,~,-).

i.e. X =g X ‘ (A.1)
where we assume Einstein's I convention, unless otherwise

specified(¥%).

Momentum four-vectors may also be similarly defined.
p*=(E,5). | (a.2)
The four-vector potential is given by
A“=(¢,X): § T 3 (AfB)’
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 whose field strengths are definedkby

phYopli ¥ lzgua? g7k (a.4)
where

M 0 _ S —n0

) _Bxu—(at’V)' 0,=d | (A.5)

a4y =2 2, -32-F2=n, (A.6)

A four-vector product between any two four-vectors A

and B is defined as

-

0g0_3%.

to

a-B=A B“=g A”B"=A (A.7)

where the three-vector product A-B is defined by akBk.

Dirac Matrices

The Dirac gamma matrices sétisfy the Clifford algebra
Yyt =y ey ytaagh?, (A.8)

Here
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-0 0

6 10] _ . [o% | |
Y = , r={v'}=] _ (A.9)

are the Dirac gamma matrices whose elements in the Bjorken

and Drell representation, are the usual Pauli spin matrices

1.0 01 0 -i 10
A

0 1 1.0 i 0 0 -1
The Pauli matrices obey the Lie algebra
[ai,aj]=2ieijkak (A.11)

and anti-commute (note o;=-0! & 0,=0°.)

Some useful combinations of gamma matrices are:

(i) 0“”=%[y“,y”]=(i§ﬁgys—enuvk1)®0k
E(iﬁﬁgys-eoupk)ok‘ | (a.12)
where
5%55‘@8—533 (A.13)
and

0 1
Y 575=i70717273= . S (A.14)
5 ; 11 0 | |



(i1)

(1i1)

- where I'y is the set of all the linearly
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The left and right chiral projection operators are

respectively given by

2 11
and
]
11
The charge conjugation operator is

C=iyzyo.

It has the properties

and

which imply

T o
CT,C =1, v5, 77, 17,75:0,,)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

independent
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combinations of gamma matrices given by equation

(C.1).

(iv) The conjugate O; of an arbitrary 4x4 matrix O; is

defined by
6i=YOOTYO. (a.21)
eg: FA=YOI‘IYO=(1,-ys,yu,iyuys,ow). (a.22)

(v) Commutator relations

[v,r0,,1=219,[,7,; (A,23)
lvg:0,,1=0 (a.24)
{vg,v"}=0 (A.25)
[Pp 110,,1=0 (A.26)
[vg, Py 510 (A.27)

One can also take the Feynman dagger, or slash, of a

foUroector by contracting it with the gamma‘matrices

0,0

K=y, ak=ya0-y K. . (a.28)



Trace Theorems

Some useful trace theorems are:
Tri1=4
Trdp=4a b
Trd # &, d,=4[a; a,a;78,%a,8,3,"3,78, 7233, 3,
Trd1d2...d2n_1=0
Trd1dz...d2n=a1'a2Tr#3...d2n—a1-a3Tr¢2d4...d2n
+...+a1-a2nTrﬁ(2...a{2n_1
Tr75=0
Tryg #B=0

Trysdﬁ¢¢=4ieaﬁ75a“bﬁcyda.
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(a.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

Proof of these theorems can be found in Bjorken and Drell

 (BJo.64).



APPENDIX B--Spinorology

Dirac Spinors
For a free Dirac particle boosted from its rest frame

one obtains, for positive-energy states, the free Dirac

spinor

u(P)=N|- 3 (B.1)

where N is a normalization factor and x a two component
spinor with spin up and spin down degrees of freedom, which

we will respectively denote by
X,= spin up particle (B.2)

X,= 1 spin down particle. (B.3)

The normalization factor N can be obtained by imposing

the normalization
U(p)u(p)=1 (B.4)

whgre the 'bar' over the Dirac spinor is the Pauli adjoint

fyo'

T(p)=U(p) (B.5)
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Therefore, imposing condition (B.4) we have

E+m)1/2.

N=(7§T (B.6)

Negative-energy states are just, to within a phase, the

charge-conjugate of positive-energy states;
i.e. v(p)=-CT" (p) (B.7)

which implies

9Py
v(p)=n|E*M (B.8)
¢
where
d=1i0°x | (B.9)

and has respectively the spin up and spin down degrees of

freedom
1 .

¢,.= spin down antiparticle (B.10).
0 : ‘

¢;= ] spin up antiparticle. (B.11)
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Either by equation (B.7) or by (B.8) one can show. that

the negative-energy

states satisfy the normalization
condition ‘

Vip)v(p)=- (B.12)

By taking tensor products of spinors with their Pauli

adjoints and summing over their spin degrees of freedom we
find the useful conditions

zu(p)U p)=E0

(B.13)
and
zv(p)‘\?(p)=%’mﬂ. (B.14)
o)
N.R. Approx.
In the limit v<<1 we find
N= (B /2, (L, 172, (B.15)
which implies
X 0P
: —E_¢ |
uE)~i-5 | & V(P)~ , (B.16)
m X S



Using these approximations we find, with

effort, the following useful approximationss:

T(p,)p, U(p,)~F9
g 7 T ien B
T(p,)y*ulp,) ~¢ o x8} +0(3)
T(p,)y"P, Ulp )~21¢

V(pz)UOiU(p1)~—i¢

.1..

..l.

+

F(p,)o, ,0(p)~0(E).

The

in approximations

x+o(§)

xéo

aix+0(§)

Ko (B
x51+0(m)

(B.17)
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very little

(B.17)
(B.18)
(B.19)
(B.20)

(B.21)

through (B.21"

contain various spin degrees of freedom, which we now

summarize in table (B.1) below:

TABLE B.1. N.R. Approx. Expectation Values.

Term Spin degrees of freedom
| x¢> | +4> | 11> | 4> | ¢4>
¢+x 1 0 0 -1
oo 'x 0 -1 1 0.
¢+02x 0 -1 -1 0
810 1 0 0 1

NOTE: |x,>=|t>, [x,>=[v>, [¢,>=]|+>, |¢ >=[*>




APPENDIX C--Fierz ldentities

In order to obtain the Fierz transformations, used in our
decay calculation, we consider the fact that any 4x4 matrix
can be expressed by a linear combination of the 16 linearily

independent matrices
FA=(1'Y5'Yu'i‘Yu'YS'OuD) (c.1)
with, in particular, the property that
An \_psA
Therefore, if we desire to express a direct produst of two
arbitrary 4x4 matrices in terms of direct producis of the
complete set of matrices given above, we conu’ddat
A
BB,y =ZC (L) 5 (c.3)

af “po A ao

If we now contract the left hand side of this relation with

B
(r )ﬁp (C.4)
we obtain, via relation (c.2),
(B A Bk_ B ‘ o
(r )5pAaﬁBpo—§CaaTr(FAF )=4C__ \(cfs)‘
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which implies

A _ A
Caa—%(AF BLU. (C.6)

Thus we obtain the desired result

_ A
AaﬁBpa—%i(AFAB)aa(F )pﬁ. (c.7)
or, in shorthand notation, we have
A®B=%(AFAB)®(FA). (c.8)

More explicitly
~ 5 u u 5 uy
A®B=1: {AB®1+Ay B®y +Ay BRY"-Ay v B8Y"y +%A0, BO "} (C.9)

where the extra factor of a half in the last term is to take
care of ‘double counting.
- Thus, wusing equation (C.9), we obtain the Fierz

identities

ROR=1;[RER+%Ro ,@0""] (c.10)
R®L=kyuL®y“R L | (C.11)
L®L=%[L®L+%Lauy®ouv] o (c.12)

‘L®R¥ky“R®y“L | o (C.13)



which gives us the following Fierz transformations

- — i - = ~  up
UARUBVCRVD—%[UARVDVCRVB+%UARauVVDVCa UB]
- - e Ty
UARUﬁVCLVD—%UAyuLVﬁVCy RV,
. = TR — up
UALUBVCLVD—%[UALVﬁVCLVB+%UALaquDVCa UB]

- = =—‘ e T
0,LU,V RV =0,y RV V y"LV .
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(C.14)
(c.15)
(C.16)
(C.17)



