
U n iv e rs ity o f A lb e r ta

R E L A T IN G C O N S T R A IN T P R O P A G A T IO N T E C H N IQ U E S IN
C S P W IT H A N S W E R S E T P R O G R A M M IN G

by

G u iw en H o u ©

A thesis subm itted to the Faculty of G raduate Studies and Research in partial
fulfillment of the requirements for the degree of M a s te r o f Science.

Departm ent of Computing Science

Edmonton, A lberta
Fall 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-95767-5
Our file Notre reference
ISBN: 0-612-95767-5

The author has granted a non
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgem ent s

Thanks to my supervisor Prof. You for providing guidance and advice not
only on technical aspects but also on effective writing.

I am grateful to the members of my examining committee for their valuable
comments, suggestions and time spent reading the thesis. In particular, thanks
to Dr. M artin Muller for reading the details of all chapters, and helping me
to improve the presentation of this thesis.

Special thanks to all my friends for the various forms of help and encourage
ment th a t they have given me.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 I n t r o d u c t io n 1
1.1 M otiva tion ... 2
1.2 C o n tr ib u tio n s .. 4
1.3 Thesis Layout .. 4

2 C o n s tr a in t S a tis fa c tio n P ro b le m 5
2.1 D efin itions... 5
2.2 A rc-C onsistency... 6

2.3 P a th C o n sis te n c y .. 12
2.4 General Search Strategies for C S P s .. 12

3 Logic P ro g ra m m in g w ith S ta b le M o d e l S e m a n tic s 19
3.1 In tro d u c tio n .. 19
3.2 Stable Model for Normal Logic P r o g r a m 20
3.3 An Example P ro g ram ... 22
3.4 Constraint Propagation in S m o d e ls .. 23

4 A rc -C o n s is te n c y V s. L o o k ah ead 31
4.1 Translation from CSPs to Logic P r o g r a m s 31
4.2 A C + Vs. Expand and L o o k a h e a d ... 33

5 A rc -C o n s is te n c y w ith U n it P r o p a g a t io n 36
5.1 D e f in i t io n ... 36
5 .2 An Algorithm for A C U P .. 38
5.3 The Correctness of A C 4 -U P ... 42
5.4 C o m p le x ity .. 46

6 F u r th e r O b se rv a tio n s 47
6.1 ACUP Vs. Arc-Consistency Look A h e a d 47
6.2 ACUP Vs. P a th Consistency and i C o n s is te n c y 51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 S u m m a ry a n d F u tu re W o rk
7.1 S u m m a r y
7.2 Future W o rk

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Algorithm of re v ise ... 7
2 .2 Algorithm of AC-1 ... 8

2.3 Algorithm of A C - 3 ... 9
2.4 Algorithm of A C - 4 ... 10
2.5 A general lookahead algorithm from [2] 14
2.6 SELECT-VALUE subprocedure for fo rw ard -ch eck in g 16
2.7 SELECT-VALUE subprocedure for arc-consistency look ahead 18

3.1 Algorithm of smodels .. 24
3.2 Function expand(P, A) .. 24
3.3 Function lookahead(P, A) ... 29

5.1 An algorithm for ACUP based on AC-4 40
5.2 u n it ..propagate* a lg o r i th m ... 41

6 .1 SVAC+ subprocedure .. 50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

A constraint problem is a problem where a solution to the problem requires
the satisfaction of possibly many constraints (conditions, properties) simul
taneously. In general, constraint problems are NP-complete. T h a t is, it is
unlikely to design an algorithm th a t can scale efficiently with the problem
size, in all the cases.

Constraint programming (CP) is a programming paradigm th a t can be
used to study and solve constraint problems. In this framework, the end user
writes a program for a constraint problem, stating w hat has to be solved in
stead of how it is solved. Constraint programming is one of the most exciting
developments in programming languages in the last decade. It has been suc
cessfully applied for solving many practical problems, such as scheduling and
planning.

There are two frameworks for CP th a t are studied intensively by researchers
in artificial intelligence. One is constraint satisfaction problem (CSP), and the
other boolean satisfiability (SAT).

A CSP can be expressed by a collection of constraints over a finite set of
variables, where each variable has a finite domain. A solution to a CSP is
an assignment to each variable of a value from its domain such th a t all the
constraints are satisfied. A CSP may have one, many, or no solutions.

In SAT, a constraint problem is represented by a set of clauses. To find a
solution for a SAT instance is to find an assignment for the boolean variables
th a t makes all the clauses satisfied.

In solving a constraint problem, it is common to apply some constraint
propagation techniques to prune the search space. Arc-consistency is the most
popular propagation technique in CSP solvers, while lookahead appears to be
its counterpart in SAT solvers.

Although CSP solvers and SAT solvers were developed largely in paral
lel, the relation between arc-consistency and lookahead has been open for
some time. Recently, [28] shows th a t arc-consistency for CSPs is weaker than

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lookahead in SAT in pruning the search space. A new m ethod called A C + is
formalized to enhance arc-consistency to achieve the same pruning power.

In this thesis, we review the work given in [28]. We further design an algo
rithm for A C + and perform some further comparisons with other consistency
techniques in the literature.

1.1 M otivation
A CSP can be solved by a straightforward method called generating and
testing. F irst, it generates a complete instantiation of all variables, and then
tests whether this instantiation satisfies all the constraints. If it does, then
a solution is found, otherwise another instantiation is generated and tested
until a solution is found or all instantiations have been generated and tested.
Obviously, this algorithm is not very efficient.

The most common algorithm for solving CSPs is based on backtracking.
The idea for a backtracking algorithm is to extend a partial solution toward a
complete solution consistently. It assigns a value from its domain to a variable,
and tests whether th is assignment is consistent with the already assigned vari
ables. If it does, then th is process continues, otherwise the algorithm chooses
an alternative value for this variable. If no value can be assigned to this
variable consistently, the algorithm backtracks to the proceeding variable.

A backtracking algorithm can m aintain a certain kind of consistency for the
underlying CSP in order to prune the search space. Consistency techniques
can remove the inconsistent values from the domains in a CSP. As a result, the
search space is reduced. A general notion of consistency is called k-consistency
which requires th a t any partial solution for any k — 1 variables be consistently
extended to a partial solution with any additional variable [6 , 15]. The most
popular case of ^-consistency is arc-consistency (when k — 2). Consistency
techniques can be applied before search, as well as during search.

A SAT instance can also be solved by using a backtracking search al
gorithm. The well known algorithm is Davis-Putnam-Logemann-Lovehand
(DPLL) procedure [1], A common technique for space pruning is lookahead.
Lookahead tentatively assigns a value for each variable, and checks w hether
this assignment leads to a contradiction. If it does, lookahead then assigns the
opposite value for th is variable (cf. [5]). In this way, the variable gets a value
propagated from already assigned variables w ithout going through a search
process. In order to derive a contradiction, constraint propagation techniques
are used. Unit propagation is a widely used constraint propagation technique
in SAT solvers.

Answer set program m ing is a newly developed programming paradigm for
solving constraint problems, where a constraint problem is represented by a
logic program specifying the constraints th a t must be satisfied. A model for

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an answer set program corresponds to a solution to the problem being solved.
A program may have zero, one or more models. Logic programming based
on the stable semantics [9] yields an answer set programming system. Recent
im plementations of the stable model semantics include Smodels [19, 2 0 , 24]
and DLV [4]. Technically, answer set programming can be viewed as a variant
of SAT.

Although arc-consistency and lookahead are both used to prune the search
space in solving constraint problems, the relation between lookahead in SAT
solvers and arc-consistency in CSP solvers remains open for some time. Re
cently, Walsh [27] compared the impact on achieving arc-consistency on CSPs
with unit propagation on SAT problems. Gent [10], in extending an idea
from Kasif [14], shows th a t the “support encoding” of binary CSPs into SAT
instances is able to achieve arc-consistency by unit propagation.

In [28], lookahead is related to arc-consistency under some assumptions.
Firstly, we fix the encoding from CSPs to answer set programs. Secondly, we
choose the lookahead algorithm in Smodels for comparison. Finally, we only
deal w ith binary constraints. Under these assumptions, we showed th a t looka
head is more powerful than arc-consistency in pruning the search space. This
insight enables us to identify what is missing in arc-consistency. Unique value
propagation, or ju st u n it propagation , a terminology borrowed from SAT, is
identified to make up the gap. Unit propagation for CSPs assigns a value for
a variable if there is a unique value in its domain th a t is consistent w ith the
partial instantiation. This process continues until no value can be assigned to
a variable or a conflict occurs. A new m ethod called A C + th a t combines arc-
consistency and node consistency with unit propagation is formalized. A C +
for CSPs prunes the same space as lookahead in Smodels. We give a worst
case time complexity of lookahead for the translated programs from CSPs.
Indirectly, a bound for the tim e complexity of A C + is obtained for CSPs.

In this thesis, we extend the work in [28]. Based on the result given in [28],
lookahead can be viewed as a providing an algorithm for A C + indirectly. As
lookahead is a general algorithm, it is worthwhile to investigate whether there
exists more efficient algorithms for A C +. In this thesis, we design an algo
rithm for a restricted version of A C + called arc-consistency with unit prop
agation (ACUP) for CSPs. In ACUP, node consistency is removed, since it
can be processed separately. We prove the correctness of this algorithm and
give its time complexity. The complexity bound of this algorithm is lower
than the one given in [28]. Therefore, the algorithm provided in this thesis is
more efficient. Furthermore, we compare the pruning power for ACUP with
th a t of arc-consistency look ahead and path consistency [2]. We show th a t
for some CSPs, ACUP is stronger than arc-consistency look ahead, while for
some others, ACUP is weaker. The same conclusion is applied to the relation
between ACUP and path consistency. Although i-consistency is very power-

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ful in pruning search space, and has a high time complexity (0 (2 l(ek)2i) for a
brute-force algorithm [2]), we show th a t for some CSPs it still cannot find the
conflict th a t can be found by ACUP.

1.2 Contributions
The contributions of this thesis are as follows:

1 . We perform a review on the constraint propagation techniques between
CSPs and answer set programming.

2 . An algorithm for ACUP is presented. The correctness of the algorithm
is proved, and the complexity of the algorithm is given. The complexity
result implies th a t our algorithm is more efficient than lookahead.

3. We also compare ACUP with consistency techniques in the literature.
We show th a t the pruning power for arc-consistency with unit propaga
tion overlaps with th a t of arc-consistency look ahead and path consis
tency. A revised version of the arc-consistency look ahead algorithm is
given to achieve the extra pruning power.

1.3 Thesis Layout
This thesis is organized as follows. The next chapter introduces the defini
tions of CSPs, arc-consistency, and path consistency. We also discuss some
general search strategies in the literature. Chapter 3 provides some concepts
in logic programming with the stable model semantics, and the algorithm of
Smodels. Lookahead is also discussed. In C hapter 4, we review some results
in [28]. Firstly, Niemela’s translation is introduced. Under this translation, it
has been shown th a t lookahead is strictly stronger than arc-consistency. Then,
in Chapter 5, we introduce the result in [28], showing th a t arc-consistency plus
node consistency with unit propagation {AC +) prunes exactly the same space
as lookahead. Also in this chapter, we present an algorithm for ACUP, an
alternative version of A C +, which only combines arc-consistency with unit
propagation. Its correctness is proved and complexity is analyzed. Further
more, in Chapter 6 , we compare ACUP with other consistency techniques in
the literature. We show th a t the pruning power of ACUP neither dominate
nor is dominated by path consistency and arc-consistency look ahead (ACLA)
in the literature. ACLP is revised to incorporate the idea in ACUP to prune
more search space. Chapter 7 concludes our work, and gives some comments
on future research.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Constraint Satisfaction Problem

2.1 Definitions
A constraint satisfaction problem or CSP is a triple A (X , D , C) , where C
is a finite set of constrains {ci, c2, . . . , q,} over a finite set of variables X =
{ x i , x 2, • ■ ■, x m} and a domain D = { D Xl, D X2, . . . , D Xm} th a t maps each vari
able Xi G X to a finite set of values, w ritten D Xi.

A constraint q is a relation R4 defined on a subset of variables .S', C X .
Si is called the scope of q . If S', = { x ix, . . . , x im}, then R4 is a subset of the
Cartesian product D Xi x . . . x D Xim.

The arity of a constraint refers to the size of its scope. A unary constraint
is defined on a single variable; a binary constraint is defined on two variables;
an i-ary constraint is defined on i variables.

Instantiation

An instantiation of a set of variables is an assignment of each variable in the set
with a value from its domain. Formally, in a CSP A (X , D, C), an instantiation
of a set of variables {x ix, . . . , x im) is a set of pairs { (xh , ah) , . . . , {xim, a,m)},
where { x ^ , . . . , x im) C X , aik C D Xjfc. We denote by x -4 a or (x, a) th a t
variable x is assigned value a € D x.

Satisfaction of a constraint

A constraint q is satisfied by an instantiation if and only if the instantia
tion to variables in the scope of q yields a tuple in the relation Rj.

Consistent Partial Instantiation

A partial instantiation is consistent w ith constraint q if and only if the assign-

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m ent yields a projection of a tuple in the relation of R^. A partial instantiation
is consistent if and only if it is consistent w ith every constraint. A consistent
partia l instantiation is also called a partia l solution.

Solution

A solution to a CSP A (X , D, C) is an instantiation of all its variables X =
{ x i ,X 2 , ■ ■ •, x m}, where each variable Xj is assigned a value from its domain
D Xi such th a t all the constraints in C ~ {ci, c2, . . . , cn} are satisfied.

E x a m p le 2 .1 . 1 Let a CSP be A (X , D, C), where X = {x, y, z} , D x = D y —
D z = {0,1, 2 }, and cxy = {{0,1), (0 , 2), (1 , 2)}, cyz = {{0,1), (0, 2), (1 ,2)}.

Then {x = 0 , y = 1, z — 2 } is a solution for A . ■

Two CSPs are said to be equivalent if and only if they have the same set
of solutions.

2.2 Arc-Consistency
A general notion of consistency is called k-consistency, which require a partial
solution with an assignment of k — 1 variables to be consistently extended to
a partial solution with an assignment of an additional variable. When k = 1,
it is called node consistency; when k ~ 2 , it is called arc-consistency; when
k = 3, it is called path consistency.

Now we give the formal definition of arc-consistency as follows.

D e fin itio n 2.2.1 Given a CSP A (X , D, C) 7 a constraint c E C over {x , y} ,
where x, y E X , x is arc-consistent with respect to y over c i f and only i f for
every assignment x —»• a E D x, there is a corresponding assignment y —> b,
where b G D y such that x —> a and y b satisfy c.

A binary constraint whose scope is {x, y } is arc-consistent if x is arc-consistent
w ith respect to y and y is arc-consistent with respect to x. A CSP is arc-
consistent if all of its constraints are arc-consistent.

E x a m p le 2 .2 .2 Consider a CSP as described by the constraints {x < y, y <
z, z < 3), where D x — D y = {1, 2,3} and D z = {2,3,4}.

Enforcing node consistency reduces D z to D'z = {2, 3}. Enforcing arc-consistency
reduces Dx to D'x = {1,2}, as for x — 3 there is no value for y such th a t the
constraint is satisfied. Similarly, D y is reduced to D'y — {2, 3}. Working on
the constraint y < z for variable y, D'y is further reduced to 2, which forces

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r e v is e
I n p u t : two variable x,-, Xj in a certain constraint Cy, and their respec

tive domains D Xi, D x .
O u tp u t : D Xi such th a t Xi is arc-consistent with Xj
fo r each a,i E DXi do

i f there is no value aj E D Xj such that (ait af) E Cij th e n
j remove a, from DXi;

e n d
e n d

Figure 2.1: Algorithm of revise

D ’x to become {1} by the first constraint, and D'z to become {3} by the last
constraint. By now, no further reduction is possible. ■

Many specific algorithms th a t enforce arc-consistency for binary constraints
have been developed (cf. [2 , 18]), such as AC-1, AC-3, AC-4. An essential sub
procedure used in arc-consistency is r e v is e [2] (cf. Figure 2.1). r e v i s e (x i , Xj)
tests every value a in D Xi to see if there is a support value in D Xj. If not, then
a is removed from domain D Xi.

Since each value in D Xi is tested with each value in D Xj, revise has the
tim e complexity 0 (k2), where k bounds the domain size.

Algorithm AC-1 given in Figure 2.2 is a brute-force algorithm th a t enforces
arc-consistency of a CSP. It applies revise to all variable pairs th a t are in the
scope of the constraints, until no further domain value can be removed.

Let e be the number of constraints, and k a bound on the domain size.
Since the loop of part 1 in AC-1 takes 0 (e k 2) time, and in the worst case,
one iteration may cause the deletion of just one value from one domain, we
conclude:

P ro p o s it io n 2 .2 .3 [2] The time complexity o f AC-1 is 0 (e 2 k 3).

One can see th a t AC-1 is a naive algorithm which processes all the con
straints even if only a few values are removed in the previous rounds. It can
be improved to check only the affected constraints.

In AC-3 (cf. Figure 2.3), a q u e u e is established initially to store the pairs
of variables in the scopes of all the constraints. In each round, a pair (x i , X j)

is removed from the queue, and the inconsistent values in D Xi are removed by
r e v i s e (x i , X j) . If r e v i s e (x i , x j) causes a removal in D Xi, then all the related

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AC-1

In p u t: a constraint A { X , D, C)
O u tp u t: a consistent CSP equivalent to A
r e p e a t

i fo r each Cij G C do
fo r each (xi, xf) where x^ and Xj in the scope of Cij do

revise(xi, X j) ;

revise(xj , x^;
e n d

e n d
u n ti l no domain is changed;

Figure 2 .2 : Algorithm of AC-1

pairs to x,- are added to the queue. This procedure continues until the queue
becomes empty.

E x a m p le 2 .2 .4 Consider a CSP that includes three variable x, y, z , where the
domains of all variables are D x — D y — D z = {0,1,2}, and the constraints
are cxy = {{0 , 1), (0 , 2), (1 , 2)}, cyz = {{0 , 1), (0 , 2), (1 , 2)}, cM = {(2 , 1), (1 , 2)}

Now we show how AC-3 works on this CSP. Initially, (x,y) , (y, z), and (z , x)
are put into the queue. Then (x, y) is removed from the queue. Applying
revise(x,y) , 2 is removed from D x. Due to {z, x) in the queue already, we
don’t need to add (z, x) to the queue again. Then (y, z) is removed from the
queue. Since 2 is removed from D y, (x, y) is added to the queue again. At
this stage, {z , x) is removed from the queue. As a result, 0 and 1 are removed
from D z, and (y, z) is added to the queue again. In the following round, 2 is
removed from D x, and 1 removed from D y. From now on, no further domain
value can be removed, so no new pair is added to the queue. Therefore, the
algorithm stops. Finally, we get D x = {0}, D y = {1}, D z = {2}. ■

As each tim e when revise causes a change, there is at least one value th a t
is removed from the domain, so the size of queue is at most 0 (ek), where
k bounds the domain size, and e is the number of constraints. We already
know the time complexity of revise is 0 (k2), we therefore have the following
proposition:

P ro p o s it io n 2 .2 .5 [2] The time complexity of AC-3 is 0 {e k z).

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AC-3
In p u t: a constraint A (X , D, C)
O u tp u t: a consistent CSP equivalent to A
fo r each ĉ - G C d o

fo r every pair (aq, xf) with X, and Xj are in the scope of do
| queue -f- queue U { (x i , Xj) , (x j , x j)};

e n d
e n d
w h ile queue ^ 0 do

select and delete { x^x f) from queue-,
r e v i s e (x i , Xj);
i f r e v i s e (x i , X j) causes a change in D Xi th e n

| queue 4— queue U {(x*,, xf) , k ^ i, k =£ }};
en d

e n d

Figure 2.3: Algorithm of AC-3

In the worst case, checking arc-consistency of a general CSP takes 0 (e k 2)
time (checking each constraint takes 0 (k2), and there are e constraints), so
there is no algorithm th a t can have a time complexity lower than 0 (ek2).

AC-4 achieves this optim al tim e complexity by utilizing an efficient struc
ture to store the relations in a CSP. Algorithm AC-4 is given in Figure 2.4.

AC-4 associates each assignment {x^ af) with the am ount of support from
neighboring variable Xj, th a t is, the number of values in the domain of Xj
th a t are consistent w ith the assignment (x j,a ,). If variables x and y are in
the same scope of a certain constraint, then x is the neighboring variable with
respect to y , and y is the neighboring variable with respect to x. A value a* is
then removed from the domain D t- if it has no support from some neighboring
variables. AC-4 uses a counter array, counter (xi, a*, X j) , to store the number
of support values from neighboring variables for the assignment of (x^ af). An
array S(xj , aj) is used to store all the values in the other variables supported
by (Xj, Oj). C is used to store the unsupported values.

In each step, the algorithm picks up an unsupported value from C, and
updates all the affected counters. The counters th a t become zero as a result
are placed in C. This process continues until all the unsupported values are
removed.

E x a m p le 2 .2 . 6 Consider a three variable CSP: x, y, z with D x = {1,2}, D y =

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AC-4
In p u t: a CSP A (X , D, C)
O u tp u t: a consistent CSP equivalent to A
initialize S(xi , af), counter(xi, a*, xf) from all ctj 6 C;
for all counters do

if counter (xi, ai, Xj) = 0 (i f (xi,af) is unsupported by Xj) th e n
add (xi, ai) to £ ;

en d
e n d
w h ile C is not empty do

choose and remove (xi, af) from C, remove at- from D Xi;
fo r each (Xj ,a j) G S(x{, a*) do

decrement counter (x j , aj ,Xi);
if counter (xj, a j ,Xi) = 0 th e n
| add (xj, aj) to £ ;

e n d
en d

e n d

Figure 2.4: Algorithm of AC-4

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{3,4} , D Z = {0,1}. There are two constraints: cxy = {{1,3) (1,4) (2,4)},
^ = {(3,0) (3,1)}.

Initializing the S(x, a) arrays, we have

s(x, 1) = {(s/,3), (a, 4)}
S(i ,2) = {<#,4)}
S(»,3) = {(i,l> (2,0) (2,1)}
S(8I,4) = {(i ,1> (x , 2 »
S(*,0) = {<y, 3)}
S(2,1) = {(k,3)}

For counters, we have

counter {x, 1 , y) - 2

counter (x, 2 , y) = 1 ,
co u n ter(y ,3 ,x) = 1,
counter(y,3 , z) = 2 ,
counter {y, 4, x) = 2 ,
counter(y,A , z) = 0 ,
counter (z, 0 ,y) = 1 ,
counter (Zj l , y) = 1 .

We don’t need to add counters between variables th a t are not directly con
strained, such as between x and z. First C — {(y, 4)} due to counter(y, 4, z) =
0, which means there is no support for the assignment y —»■ 4. In the first iter
ation, (y, 4) is removed from £ , and value 4 is removed from domain Dy. Then
we decrease affected counters, which are counter(x, 1 , y) and counter{x, 2 ,y).
Due to counter(x, 2, y) = 0, (x, 2) is added to £ . In the next iteration, (x, 2) is
removed from £ , and 2 is removed from D x. Then we decrease affected coun
ters again, and set counter (y, 4, x) = 1 . Since no new counter becomes zero,
no new pair is added to £ . Consequently £ remains em pty and the algorithm
stops. Finally, the domains change to D x = {1}, D y = {3}, D z = {0,1}. ■

Note th a t the number of elements in S(xi , aj) is twice the number

of tuples in the constraints, also counter (xj, aj ,Xk) is equal to twice the
ij,k

number of tuples in the constraints, which is 0 (e k 2). So the initialization
step th a t establishes the counters of supports and the pointers to the supports
requires 0 (e k 2) time and space. In the while loop of the algorithm, each
iteration decreases at least one counter by one, so there are a t most 0 (ek2)
iterations. We therefore conclude [2]:

P ro p o s it io n 2 .2 .7 The time complexity and space complexity of AC-4 is 0 (e k 2).

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Path Consistency
D e fin itio n 2.3.1 Given a CSP A (X , D, C), a two variable set (xi ,xf) is path
consistent relative to Xk iff fo r every consistent assignment {(xi, af) {xj, aj)},
there is a value E D Xk such that the assignment {(xi, af) (xk, a*)} is con
sistent and {(xk, ak) {xj, a ff} is consistent [2]. A binary constraint is path
consistent relative to Xk i f and only i f fo r every pair (ai, aff E Cij, there is a
value afc in Xk, which is a neighbor of both Xi and Xj, such that (ai,ak) E
and (a*,, af) E Ckj■ A CSP is path consistent i f and only i f fo r every c ĵ E C,
and fo r every Xk, k ^ i ,k j , where Xk is the neighbored variable to both Xi
and Xj, is path consistent to Xk-

E x a m p le 2 .3 .2 Consider a CSP that has three constraints over three vari
ables x , y, and z with D x — D y ~ D z = {0,1}, cxy = {{0,1} (1,0)}, cxz =
{{0 , 1) (1 , 0 }}, and czy = {(0 , 1) (1 , 0)}.

Obviously, this CSP is arc-consistent. However, consider (0,1} E cxy, there
doesn’t exist a value a for z such th a t (0, a) E cxz and (a, 1) E czy simultane
ously, so the CSP is not path consistent. ■

Enforcing arc-consistency makes a CSP consistent between two variables,
while enforcing path consistency makes a CSP consistent among three vari
ables. A general notation of consistency can be defined based on the consis
tency among i variables.

D e fin itio n 2.3.3 Given a CSP A (X , D , C) , i f fo r any consistent instantia
tion o f any i — 1 distinct variables, there exists an instantiation of any ith vari
able such that the i values taken together satisfy all o f the constraints among
the i variables [2], then A is i-consistent. I f i — 2, it is called arc-consistent.
I f i = 2>, it is called path consistent.

E x a m p le 2 .3 .4 Consider a CSP that has four variables X\, x 2 ,xs, x 4 with
DXl = D X 2 = D X 3 — D xa = {0,1,2}, and four constraints x \ ^ x2,£ i 7 ̂
x$,X2 # £3 , X2 7 ̂ x 4, £3 7 ̂ x 4 , x 4 7 ̂ X\. We can see that this CSP is both arc
and path consistent, but not f-consistent. ■

2.4 General Search Strategies for CSPs
Constraint propagation can reduce the search space in com puting a solution
of a given CSP. But for most CSPs, we are still left w ith choices to reach
a solution by only employing constraint propagation. The only way to pro
ceed is guessing and testing. T ha t is, we must search the space of possible
choices. The naive algorithm for performing system atic search is chronological

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

backtracking. It incrementally a ttem pts to extend a partial solution toward
a complete solution, by repeatedly choosing a value for another variable con
sistent w ith the values in the current partial solution. If all the values in the
domain of a variable have been tried and fail to give a consistent instantiation,
a dead-end occurs. At this point, backtracking takes place, and the preceding
variable in the partial instantiation becomes the current variable. The search
continues until the required number of solutions has been found or no variable
can be instantiated.

Chronological backtracking algorithm is not efficient. In general, it has
three disadvantages.

1 . One is thrash ing [7], i.e., repeated failure due to the same reason.
Thrashing takes place because the chronological backtracking algorithm
does not identify the real reason of the conflict, i.e., the conflicting vari
ables. As a result, search in different parts of the space w ithout identi
fying the real conflict keeps failing for the same reason. Thrashing can
be avoided by look back techniques, by which the algorithm backtracks
directly to the source of failure, instead of backtracking to the preceding
variable in the partial instantiation.

2. Another disadvantage is th a t it always chooses a fixed order of instanti
ating the variables. A CSP may have different search spaces on different
variable orders. W hen a good order is chosen, the conflict can be found
and avoided early by the algorithm. There are several strategies in the
literature to choose an order in which the variables are instantiated.

3. Finally, the chronological backtracking algorithm cannot detect the con
flict before it really occurs. This drawback can be avoided by apply
ing look ahead technique, which can be invoked when the algorithm is
preparing to assign a value to the current variable. It applies consis
tency techniques to forward check the possible conflicts, and chooses a
consistent value for the current variable.

In this thesis, as we compare the difference between look ahead techniques
in the literature and arc-consistency with unit propagation, we only introduce
look ahead strategies based on constraint propagations.

We now present a general look ahead algorithm in Figure 2.5 [2], In this
algorithm, different propagation m ethods can be embedded to form differ
ent algorithms such as forward checking [1 1], arc-consistency look ahead or
maintain-arc-consistency [7]. For this reason, we write a SELECT-VALUE-
XXX subprocedure to indicate the specific propagation m ethod embedded in
the general algorithm by replacing XXX.

Initially, this general algorithm uses a tentative domain D' to store the
original domain, and the first variable is the current variable. The SELECT-

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Backtracking
In p u t : a CSP A { X , D , C)
O u tp u t: either a solution or notification th a t no solution can be found
D ' = D;
i = 1 ;
w h ile 1 < i < n do

instantiate x, -f- SELECT-VALUE-XXX;
i f Xi is null /* no value was re turned*/ th e n

i = i — 1 /*backtrack*/ ;
reset each D'k to D k, k > i, to its value before Xi was last
instantiated;

e lse
| i = i + 1 /* step forward*/;

e n d
e n d
if i= 0 th e n
| return “no solution” ;

else
| return instantiated values of (x i , . . . , x n)\

e n d

Figure 2.5: A general lookahead algorithm from [2]

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VALUE-XXX procedure propagates the partial instantiation to remove incon
sistent values from D '. The idea here is to reduce the domains of the unassigned
variables by maintaining certain level of consistency before com m itting to a
choice. The reduction to an em pty domain causes the algorithm to backtrack.
At this stage, different propagation methods can be applied. Upon backtrack
ing, D ' is reset to its original set in order to give up the modifications th a t are
caused by the current instantiation.

F o rw a rd C h eck in g

In the literature, it is often felt th a t arc-consistency is too expensive to be
beneficial in real applications. As a result, a restricted version, called forward
checking (FC), where values from the domains of future variables are filtered
out if they are inconsistent w ith the current instantiation, is sometimes pre
ferred [28].

The forward checking algorithm is given in Figure 2.6 [2]. It enforces a
partial consistency check in the interm ediate stage of the general look ahead
algorithm. It assigns a tentative value for the current variable, then per
forms arc-consistency check between the partial instantiation and the future
variables. The values th a t are inconsistent with the current partial value as
signment are removed from the domain of each future variable. If the domain
of any future variable becomes empty, it chooses another value for the current
variable, enforces an arc consistency check, and resets the domains for all the
future variables. If all the values in the domain of current variable have been
checked, and no value can be chosen, it resets the domains and backtracks to
the previous instantiated variable.

E x a m p le 2.4.1 Consider the following CSP with four variables X \ , x 2 , 2:3 , and
x \, and respective domains D Xl — {0,1}, D X 2 — {0,1,2}, D Xi = { 0 ,1}; D Xi —
{0,1}. Suppose there are six constraints :

c Xl ,x2 — {{1, 2), (0 , 0), (0 , 1), (0 , 2)}
c*1)I3 = {(0,0)}
C X l , X 4 {(0, 1) }
C X 2 , X 3 = {(1,0), (0, 0)}
cX2,x4 = {(1,0), (0,1)}
cX4,X3 = {(0,0)}

Suppose the order of instantiating variables is x i , x 2 , x 3 , x 4. Initially, le t’s
s ta rt at X\ —> 0. By applying arc-consistency on the future variables x 2, x 3,
and x 4, the value 1 is removed from D X3, and the value 0 from D X4. No value
is removed from D X2. Now suppose x 2 —» 0. At this stage, arc-consistency
is again applied to the future variables x 3, x 4, but no value can be reduced
from D Xi, DX4. Suppose 0 is chosen as the instantiated value for variable x 3.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SELECT-VALUE-FORWARD-CHECKING
In p u t: a CSP A (X , D', C), current variable Xi
O u tp u t: a value for the current variable, or a null if no consistent value
w h ile D[is not empty do

select an a G D ', and remove a from D\\
fo r each k, i < k < n do

fo r each value b G D'k do
if not consistent(aiJx, Xi = a, Xk = b) th e n
| remove b from D 'k;

e n d
e n d
if D'k is empty th e n
| reset each D'k, i < k < n to value before a was selected;

e n d
return a;

e n d
e n d
return null;

Figure 2.6: SELECT-VALUE subprocedure for forward-checking

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

At this stage, consider the propagation on future variable X4 . All the values
are removed from D X 4 because they are inconsistent w ith the instantiation
{xi -> 0, £2 —> 0 ,x 3 -» 0}. Because D X 4 is empty, backtracking happens. The
algorithm will backtrack to the previous variable x 2, and consider the next
value 1 in D X 2 for x 2, and the domain D X 4 is reset to {1}. Now x 2 —> 1 is
then propagated to the future variables x 3 and x4 again. We can see th a t 1 in
D X 4 is inconsistent w ith the current partial instantiation X\ —v 0, x 2 —y 1. The
fact th a t 1 is removed from D X 4 causes D X 4 to become empty. So backtracking
tries value 3 for x 2. Upon propagating this instantiation to x 3, and £ 4 , D Xz
is annihilated. Hence the algorithm will backtrack to the next value 1 for xi,
and all the propagation effects caused by x —¥ 0 are undone. At this stage, all
the domains are thus back to their original form. Now the instantiation x -» 1

is propagated to the future variables x 2 , x 3 and x±. 0 and 1 are removed from
D X 2 and all the values in D Xz are removed due to inconsistency. Therefore,
backtrack happens again, and no solution can be found. ■

A rc-C onsistency Look Ahead

Experiments show th a t for problems with relatively tight constraints and rela
tively sparse constraint graphs, algorithms where future variables are checked
against each other could substantially outperform forward checking [6]. This
approach is called arc-consistency look ahead. In contrast to FC, arc-consistency
look ahead performs full arc-consistency check between the current variable
and future variables, and among all future variables. Clearly, arc-consistency
look ahead does more work than FC. In an arc-consistency look ahead algo
rithm , full arc-consistency on all uninstantiated variables is enforced following
each tentative value assignment to the current variable. If a variable’s do
main becomes annihilated during this process, the current candidate value is
rejected, then it chooses another value for the current variable. If it is consis
tent (no domain becomes empty), the algorithm chooses the current candidate
value for the current variable. If all the values in the domain of current variable
are checked and no value can be chosen, it backtracks to the most recent in
stantiated variable. An algorithm of choosing a candidate value for the current
variable is given in [2] (cf. Figure 2.7). it is called SELECT-VALUE-ARC-
CONSISTENCY (SVAC).

W hen the current variable is instantiated to a value, SVAC discovers in
consistent values due to the instantiation using arc-consistency, and removes
them. If the instantiation causes an empty domain, it chooses another value
for the current variable, and all the removed values are undone. Otherwise,
the current value is assigned to the current variable.

A popular variant of arc consistency look ahead is m ain ta in ing arc-consistency,
which performs arc-consistency after each domain value is rejected. For exam
ple, suppose the current variable x has five values {1, 2, 3, 4, 5}. First, tenta-

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SELECT-VALUE-ARC-CONSISTENCY
In p u t: a CSP A (X , D ' , C), current variable
O u tp u t : a value for the current variable, or null if no consistent value
w h ile D\ is not empty do

select an arb itrary element a G D ', and remove a from D\\
make A arc-consistent with the partial instantiation.
if any future domain is empty (don’t select a) th e n

reset each D p i < j < n, to its value before a was selected;
else

return a;
e n d

e n d
return null;

Figure 2.7: SELECT-VALUE subprocedure for arc-consistency look ahead

tively assign 1 to x, and apply a full arc-consistency check. If an empty domain
occurs, then x — 1 is reject, and 1 is removed from domains D x — {1 ,2 ,3 ,4 ,5 } .
Now we have D x = {2 ,3 ,4 ,5} , and apply full arc-consistency again with this
reduced domain.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Logic Program m ing w ith Stable
M odel Sem antics

3.1 Introduction
Logic program m ing with stable model semantics has been developed as a vi
able constraint programming paradigm [16], where a constraint problem is
expressed by a logic program, and the stable models for the program are the
solutions to the constraint problem.

Norm al logic program

A normal logic program is a set of rules of the form

h 4— o, \ ,..., an , not ..., not bm .

where h, a i ,..., an, bi , ..., bm are function-free atoms. In the above rule, atom
h is called the head of the rule and the other literals make up the body. An
expression such as not b is called a not-atom. Atoms and not-atom s are re
ferred to as literals. Not-atoms are also called negative literals and atoms are
called positive literals.

Positive logic progam

A logic program without not-atom s is called a positive program or a negation
fr ee program. A model of a logic program is an interpretation th a t satisfies
all the rules in the logic program. A model is minimal if no proper subset is
also a model. It is well-known th a t a positive program always has a unique
minimal model [3]. The minimal model of a positive program can be computed
by a fixpoint operator Tp defined as follows [13]:

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tp(M) — M U {/i | h i— a,i,..., an G P, { c t i , anJ C M y

where M is a set of atoms and P is a positive program. The function TP is
monotonic since given sets of atoms Si and S 2, if Si C S2 then Tp(Si) C TP(S2).
The unique minimal model can be constructed by starting with an empty set
and applying the TP operator until a fixpoint is achieved as follows [13]:

t ;° = 0
T t(i+1) = Tp) w h e n i > 0

W hen S is a fixpoint, S - Tp(T f) = Tpt(i).

3.2 Stable M odel for Normal Logic Program
The definition of a stable model for a norm al logic program is based on the
idea th a t one guesses a set of atoms in the program, and then tests w hether
it is a stable model.

Before giving the definition, we introduce reduct first.
Given a program P and a set of atoms M , the reduct P M of P can be

derived as follows [25]:

1. delete each rule in P th a t has a not-atom not x in its body such th a t
x G M , and

2 . delete all not-atom s in the remaining rules.

Clearly, P M is a positive program. Therefore P M must have a unique minimal
model.

Definition 3.2.1 [25] Give a set o f atoms M in program P, M is a stable
model of P iif M is the least fixpoint o f P M, where P M is the reduct of the
normal logic program P with respect to the set of atoms M.

We have defined the stable model semantics for normal logic programs
based on guessing and testing. A naive algorithm th a t computes the stable
models can be based on the definition. First, a set of atoms is guessed, then
this set is tested whether it is a stable model or not by the definition. By
using this naive approach, we can find all the stable models by enumerating
all subsets of the atoms in a program and testing whether each subset is a
stable model. There are 2" subsets of atoms, where n is the number of atoms
in a program.

The problem of determining whether a normal logic program has a stable
model is NP-complete [17].

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E x a m p le 3 .2 .2 Consider the following program P:

a <— c, not b.
b <— not c.
c <— a, not b.

One can check th a t M — {b} is the only stable model for program P. The
reduct of P M, for example, is obtained as follows:

1 . deleting the first and th ird rules from P to get {6 <— not c. }, and

2. deleting the not c from the second rule.

We then get P M = {b «—}. As there is only one rule w ith an empty body in
the program, the minimal model is {b}, which is the same as M . So M = {b}
is a stable model of program P.

However, M \ = {a} is not a stable model, since P Ml — {a <— c. b. c <—
a.}, the minimal model of P Ml is {6}, which does not coincide with M i.
Similarly, one can verify th a t all the other sets of atoms are not stable models.
■

All stable models are justified in the sense th a t every atom in a stable
model has to have some reason to be there. T hat is, if an atom is in a stable
model, there must be a rule w ith the atom as the head where all the body
literals are satisfied.

A program may have no stable model. For example, let program P be

a t— not a.

There is no stable model for P. There are only two possible models: {a} and
0. If {a} is a model, then the body of the only rule in program P , not a, is
fa lse , which does not support a. 0 is not a model either, since the minimal
model for the reduct P 0 is a.

A constraint in logic programs is of the following form:

—̂ r q ,..., an , not b\ ,..., not bm.

A model M satisfies the constraint if the body of the constraint is fa lse in M .
If M is a stable model of a program, then M must satisfy all the constraints
in the program.

Under the stable model semantics, the above constraint can be translated to
the following rule:

/ <— not f , ai, ..., an, not b\ , ..., not bm .

where / is a new unique atom in the program.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 An Example Program
In this section, we will use a well-known problem, namely the colorability
problem, to illustrate logic program m ing based on the stable model semantics.

The problem is, given facts about vertices, arcs and available colors, to find
an assignment of colors to vertices such th a t each vertex has a color and any
two vertices connected with an arc do not share the same color. The following
is a logic program th a t solves the colorability problem based on Smodels [12],

Note, in general, we write function-free programs with variables. The stable
models for a program with variables are the stable models for its instantiated,
ground program.

Colorability

“/„ r u l e s t o g e n e r a t e a n s w e r s e t s

c o l o r (V , C) 4 - v e r t e x (V) , c o l (C) , n o t o t h e r C o l o r (V , C) .
o t h e r C o l o r (V , C) 4— v e r t e x (V) , c o l (C) , n o t c o l o r (V , C) .

“/ . u t i l i t y r u l e

h a s C o l o r (V) - * — v e r t e x (V) , c o l (C) , c o l o r (V , C) .

“/ . C o n s t r a i n t s

4- e d g e (V , V I) , c o l o r (V , C) , c o l o r (V l , C) , V ^ V I ,
v e r t e x (V) , v e r t e x (V l) , c o l (C) .

4— n o t h a s C o l o r (V) , v e r t e x (V) .

4 - c o l o r (V , C) , c o l o r (V , C l) , c o l (C) , c o l (C l) , v e r t e x (V) .

In the above program, col, ver tex and edge are domain predicates. A do
main predicate restricts the range over which a variable can obtain values.
The values a variable can obtain are the values th a t make domain predicates
true. A domain predicate also restricts the instantiation of a rule w ith the
predicate. In this program, rule

color(V, C) 4- ver tex iV), col(C), not other Color{V,C).

can be instantiated to the following equivalent ground rules:

color{1, red) 4- ver tex(l) , col(red), not other Color (I, red).
color (1, green) 4- ver tex(l) , col(green), not ot her Col or (1 , green).
color{1, blue) 4- vertex(1), col(blue), not otherColor(l, blue).

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

color(5, red) 4— vertex(5), col(red), not other Color (5, red),
color(5, green) <— vertex{5), col(green), not otherColor(5, green).
color(5, blue) 4— vertexr(5), col(blue), not otherColor(5,blue).

color (V, C) means th a t vertex V gets color C. The first two rules in this
program are used to generate all possible assignments of colors to vertices. If
color{V, C) is in a stable model, the second rule specifies th a t otherColor(V, C)
can not be in the same stable model. On the other hand, if otherColor(V, C)
is in a stable model, the first rule determines th a t color(V, C) can not be in
the same model. The auxiliary predicate otherColor(V, C) is used to provide
all assignments where color(V, C) gets value fa lse .

The fourth rule says th a t two vertices connected w ith an arc do not share
the same color. The fifth rule specifies th a t every vertex m ust get a t least one
color. The last rule states th a t a vertex can only get one color.

3.4 Constraint Propagation in Smodels
In this thesis, we focus on the constraint propagation technique used in Smod
els, as we want to compare it w ith arc-consistency for CSPs.

First, we give the following notations.
A set of literals is consistent if there is no atom a such th a t a and not a are

both in the set, otherwise there is a conflic t in the set. Given a set of literals
A, A + = {a | a G A, a is an atom} and A~ = {a | not a G A , a is an atom}.
Let B be a set of atoms. not(B) = {not b \b G P , b is atom}. For a program
P , atom s(P) denotes the set of all atom s x such th a t either x or not x appears
in P. An atom set A agrees with B if B + C A and B~ n not (A) =0. The
negation of literal x is defined as not(x) where if x is an atom , not{x) = not x,
not(not x) — x. B covers A if A C {x \ x G B, or (not x) G B }.

The algorithm for Smodels is given in Figure 3.1, where P is a ground
program, and A is a set of literals. The function smodels(P, A) returns true
if there is a stable model of P th a t agrees with A. Given a set of literals,
the algorithm first performs constraint propagation, which consists of two
functions: expand(P, A) and lookahead(P, A). A superset of A, called A',
is returned. It is shown th a t any stable model th a t agrees with A also agrees
with A'. Then it checks w hether a conflict happens in A'. If so, it returns false,
causing backtracking. If A' is consistent and covers all the atom s in program
P, then the atom set A '+ is a stable model, and therefore the algorithm stops.
If A' does not cover all the atoms in P , then the algorithm chooses a literal x
outside of A' computed by the procedure heuristic(P, A 1) , and adds it to A ' .
If the chosen literal along w ith A' can be extended to a stable model, true is

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Function smodels (P , A)

A := ex p an d (P , A)
A : = l o o k a h e a d (P , A)

I f c o n f l i c t (P , A) t h e n
R e t u r n fa lse

E l s e i f A c o v e r s Atoms (P) t h e n
R e t u r n true { A + i s s t a b l e m o d e l }

E l s e
x := h e u r i s t i c (P , A)
I f s m o d e l s (P , A \ j { x }) t h e n

R e t u r n true
E l s e

R e t u r n s m o d e l s (P , A U {not r})
End i f

End i f

Figure 3.1: Algorithm of smodels

returned. Otherwise, the function tests whether not x U A' can be extended
to a stable model.

Function Expand(P, A)

Figure 3.2 shows the details of the function expand(P, A). The function
expand(P, A) expands atom set A by using two functions: atleast(P, A) and
atmost(P, A). Function atleast(P, A) returns a super set A ' of A by applying
four propagation rules. Any stable model th a t agrees w ith A must agree with

F u n c t i o n e x p a n d (P , A)

r e p e a t
A' := A
A : = a t l e a s t (P ,A)
A := A U { not y | x G A tom s(P)

and x 4- utmost(P, A) }
u n t i l A — A'
r e t u r n A .

Figure 3.2: Function expand(P, A)

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

atom set A'. The function atmost(P, A) computes another atom set A", which
contains all the possible consequences of A. Any literal x th a t is not in A"
must not be in any stable model th a t agrees with A, so not x must be in the
stable model th a t agrees with A.

atleast(P, A) can be computed according to the properties of stable model
semantics. Given a rule r in program P:

h 4— o*i, CLn , n o t &i,...., n ot bm .

Define m in r(A) to be the inevitable consequences of A w ith respect to rule
r as

m in r(A) = {h | {oq, ...,an} C A +, {b u ..., bm} C AT}

Let S be the stable model th a t agrees w ith A. It means th a t if S agrees with
the body of a rule, it also agrees with the head of the rule.

Define m a xr (A) to be the possible consequences of atom set A w .r.t rule r
as

m a xr (A) = {h | {cq, ...,a n} n d - = 0, {61 ,..., bm} D i + = 0}

If there exists an atom a such th a t for all r G P, a ^ m a x r (A) , then S
agrees with not a.

There are four propagation rules in atleast(P, A) [25]:

1 . If r G P , then A := A U m in r (A).

2. If there is an atom a such th a t for all r G P, a £ m a xr (A), then A :=
A U {not a}.

3. If for an atom a G A, there is only one r G P for which a G m axr (A),
and there exists a literal x such th a t a ^ m a xr(A U {2;}), then A :=
A U {not x} .

4. If not a £ A, and there exists a literal x such th a t for some r G P,
a G m in r (A U {rr}), then A := A U {not x}.

Rule 1 adds the head of a rule to A if the body is true in A. Rule 2 says
th a t if there is no rule with a as the head whose body is not false w.r.t. A,
then a cannot be derived by any consistent extension of A, and thus cannot
be in any stable model agreeing with A. Therefore, not a is added to A. Rule
3 says that if a G A, the only rule r with a as the head must have its body
true in A, so the body of r is added to A. Rule 4 forces the body of a rule to
be false if the head is false in A.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The four rules can help derive new literals th a t the stable model agrees
with. A fixpoint of operator /a (P) [25] can be defined to compute the
atleast(P, A) which returns the smallest set of literals th a t can not be
enlarged by using rules 1-4 above further.

f A(B) = A u B
U {a | a G Atom s (P) and a G m inr (B) and r G P }
U {not a | a G atom(P) and for all r G P, a ^ m a x r (B)}
U {not(x) | there exists a G P such th a t a G m a xr (B)

for only one r G P and a m a x r (B U r)}
U {not(rr) | there exists not a G B and r G P such th a t

a G m in r (B U x)}

E x a m p le 3 .4 .1 Let P be the following program:

a <— c, not e. (r l)
b 4— not a. (r2)
c 4— a, not b. (r3)
f 4 - b, not c. (r4)

Given A = {5}, we compute atleast(P ,A) as follows:

1 . Because e does not appear in the head of any rule in P , by applying rule
2, we get A = {b, not e};

2. Applying rule 3, since 5 G A, and r 2 is the only rule w ith b as head, not a
will be added to A. Now we get A =• {6 , not a, not e};

3. Since not a £ A, and a is the head of r x, a G minn (A U c), so not c is
added to A by applying rule 4. Now we get A = {6 , not a, not e, not c};

4. Applying rule 1, / G minTi (A), so / is added to A, then we get A =
{b, not a, not e, not c, /} ;

5. Since no new literals could be deduced, stop. ■

Function atmost(P, A) can be computed by the another fixpoint operator
based on the following definition [25].

f r (S, C) = {h\ h 4- ax, ..., an, not bx, ..., not bm G P,
ai G C for 1 < t < n and ^ S for 1 < j < m }

where S and C are sets of atoms.

Define atmost(P, A) [25] as the least fixpoint of

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where B is a set of atoms.
f ' { B) contains h if a ,’ s are already in B but not in A~, and none of the 6/ s

is in A +. By including not a if a ^ almost(P, A), atm ost generates unfounded
atoms in the same way as in computing the well-founded model [8].

E x a m p le 3 .4 .2 Let P be the program:

a <— not b. (ri)
c <— a, not c. (r2)
b 4— c, not a. (r3)

Given A = 0, atm ost(P , 0) = {a , c} is computed as follows:
S tarting with B = 0:

/ r,(0,B) = {a},

B = / '(B) = / . , (0. B) U /„ (0, B) U /„ (0. B) - A - = {a},
/n (0. B) = {a},
/„ (0 ,B) = {c},
/ r,(0 ,B)= 0 ,
B = f ' (B) = / r i(0, B) U / „ (• , B) U / r,(0, B) - A ~ = {a,c},
/n (0. B) = { a } ,
/r,(0 ,B) = {c},
/„ (0 ,B) = {6},
B = /'(B) = / ri (0, B) U / „ (0. B) U / , , (0, B) - A~ = {a. c, b},
/r,(0 ,B) = {o},
/r.(0 ,B) = {c},
/r.(0 ,B) = {6},
B = /'(B) = / ,, (0, B) U U , (0, B) U / , , (0, B) - /T = {a, c, 6}.

Because the result of f ' { B) cannot be enlarged, so the iteration stops. Conse
quently expand(P, A) derives not b due to b ^ atmost (P, A). ■

L e m m a 3.4.3 [25] The function expand(P, A) is monotonic in the parameter

Because both ^ ^ p m a xr(P, A) and atmost(P, A) compute the inevitable

consequences of A, a question arises. Are they the same? If not the same,

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

what is the difference between them ? In the following, we will answer this
question.

Given a logic program, it is convenient to construct a dependency graph:
for each rule a -f- ..., bn, not c i , ..., not cm in the program, there is a positive
edge from a to each &*, 1 < i < n, and a negative edge from a to each cj,
1 < j < m. A program has a positive loop if there is a path from an atom to
itself which only contains positive edges.

Lem m a 3.4.4 [28] I f a program P has no positive loops, then for any a ^
atmost(P, A), not a € atleast(P, A).

If there is no positive loop in the program, atleast(P, A) can expand the literals
w ithout using atmost(P, A).

Exam ple 3.4.5 Let P be the program:

a •*— c, not b. (rx)
b <— not a. (r2)
c <- c. (r3)

We can see that this program has only one stable model {6}. atleast(P, 0) =
0, and atmost(P, 0) = {&}. As a result, not a and not c are derived by
expand(P, 0). Due to the loop c c in the program P, atleast(P, 0) can
not derive not a, neither not c. But they can be computed by the result of
atmost (P, 0). ■

Function Lookahead(P, A)

The expand function uses some properties of stable semantics to refine a par
tially computed model, thus reducing the search space. After applying the
expand function, we reach a point th a t no further literals can be deduced
by expand. We then can further expand the partial model by the function
lookahead, which tests every possible choice before com m itting to one. Con
sider a program P and a set of literals A. We choose an additional literal x
outside of A, then set A' = expand(P, A U {a;}). If there is a conflict in A',
then not x is added to the partial model.

This is based on the following propagation rule:

If the stable model M agrees w ith the set of literals B but does not agree
with B U {a;}, it holds th a t M must agree with B U {not a;}.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F unction lookahead(P , A)
re p e a t

A' := A
A : = lookahead_once (P , A)

u n t i l A — A'
r e tu r n A .

F unction lookahead_once(P , A)
B := Atoms (P) - Atoms {A)
B : = B U not (B)
w hile B 7^ 0 do

ta k e any l i t e r a l x ^ B
A' - expand(P , A U { x })
B := B - A 1

i f c o n f l i c t (P , A') th en
r e tu r n expand(P , A U {not (x)})

end i f
end w hile

r e tu r n A .

Figure 3.3: Function lookahead(P, A)

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lookahead has been shown to be the most effective cost-saving m ethod used
in Smodels [23]. The function lookahead(P, A) is given in Figure 3.3.

Lookahead(P, A) calls function Iookahead-once (P , A) repeatedly until no
further literal can be added. Lookahead^once(P, A) picks up a literal from
outside of A, say x, and expands A with x. Let A' = expand(P,A U {a;}). If
there is a conflict in A', then it returns expand(P, A U {not x }) , otherwise,
the function lookahead„once{P, A) tries all the literals outside of A, until a
conflict happens or all the literals outside of A have been tried. In this case,
it ju st returns A.

L e m m a 3.4 .6 [28] The function lookahead(P, A) returns the same set, inde
pendent o f any order in which literals are chosen from B in the while loop of
the function lookahead-once(P, A) .

E x a m p le 3 .4 .7 Consider the following program.

a not b.
b t— not a.
a <— b.

The stable model for this program is {a}.
If lookahead checks not a first, a conflict occurs. Consequently, a is added

to the resulting set. Suppose it then checks b, another conflicts happens. As
a result, {a, not b} is added to the result.

It can be shown th a t lookahead returns the same result regardless of the
orders in which literals are checked. ■

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

A rc-C onsistency Vs. Lookahead

In this chapter, we first introduce a standard encoding from CSPs to answer
set programs, then show th a t arc-consistency is weaker than lookahead and
stronger than expand in Smodels under this translation.

4.1 Translation from CSPs to Logic Programs
There are different encodings of CSPs into SAT instances. To perform the
comparison between arc-consistency for CSPs and lookahead in Smodels, we
use a “standard translation” first given by Niemela [21] from CSPs to logic
programs. It is called “standard” because arguably it is the most direct and
straightforward way to represent a CSP as a ground logic program. O ther
translations to function-free logic programs can be found in [16, 2 1],

Let A { X , D, C) be a CSP. We denote by P 4 the logic program translated
from it. The translation of Niemela [21] consists of three parts. The first part
specifies the uniqueness property - a variable in CSP can only be assigned with
one value. For each variable Xi G X and its domain D Xi — { a i , ..., a j , we use
an atom, Xi(aj), to represent whether or not Xi gets the value aj. Thus, for
each 1 < j < I, we add a rule

Xi(aj) 4- not Xi(ai) , ..., not Xi(aj),not Xi(aj+i) , ..., not Xi(ai). (4.1)

In the second part, constraints are expressed. For each constraint ..., x n)
where q G C, and each tuple (a1;..., an) G C;, we add

sat(ci) 4— Xi(ai), ...,xn(an).

Finally, we express that every constraint in C must be satisfied by

(4.2)

sat <— sat(ci),..., sat(cm).
f 4- not / , not sat.

(4.3)
(4.4)

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where / is a new symbol.
The rules in 4.3 and 4.4 can be om itted if we ask Smodels to compute the

stable models containing sat(ci) , ..., sat{cm). This is w hat we assume in this
thesis. We denote this set by sa t(C) = (s a t(c i) , ..., sat(cm)}.

Under this assumption, it can be shown th a t given a CSP A (X , D, C) and
a set of literals M such th a t sat(cj) G M for any c, G C, M is a stable model
of Pa iff {% —> & I x G X , a G D x, x(a) G M } is a solution to the given CSP.

P r o p o s i t io n 4 .1 .1 A CSP A has a solution iff Pa has a stable model.

P r o o f Suppose A (X , D, C) has a solution with {x i = vx, . . . , x n = vn} where
n is the number of variables in A (X , D, C). Then for every assignment x f = Vi
in the solution, we define a set B th a t contains Xi(vi). Obviously, B is a stable
model of Pa , because it satisfies all translated rules in PA , and cannot be
reduced to a smaller set.

According to the translation, every constraint m ust be satisfied, and ev
ery variable has only one assignment. If Pa has a stable model, it must
include { sa t(c i) , . . . , sat(cm) , x i(i>i),. . . ,arn(t>„)}, Hence the assignment x \ —>
, . . . , x n —>■ Vi for the variables satisfies all the constraints, and is ju s t a solution
for A (X ,D ,C) . M

The size of Pa is calculated as follows. For each variable the uniqueness
property is expressed by a t most k rules, and each rule with a t most k literals,
where k bounds the domain size. The number of tuples in a constraint is at
most k2. We have e constraints, therefore

P ro p o s it io n 4 .1 .2 [28] For any binary CSP A (X , D, C), Pa can be con
structed in 0 (e k 2) time. The size of Pa is also bounded by 0 (e k 2). The
number of literals is bounded by 0 (ek). ■

E x a m p le 4 .1 .3 Consider the CSP A (X , D, C) in Example 2.2.2 again: C =
x < y A y < z A z < 3 , with D x = D y —{1, 2, 5} and D z = (2, 3, 4}- Fs
translation Pa consists of the following rules:

x (l) <— not x(2), not x(3).
x(2) -f- not x (l) ,n o t a;(3).
x(3) <— not x (l) ,n o t x{2).
y(1) G- not y(2), not y (3).
y (2) <— not y (l) ,n o t y (3).
y(3) -f— not y (l) ,n o t y (2).
z (2) <— not z(3) ,no t z (4).
2 (3) <— not z (2) ,no t z (4).
z (4) <— not z (2) ,n o t z (3).
sat{ci) <— 37(1), 2/(2).

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sa t(c i) « - x (l) ,y (3) .
sat(ci) 4- x(2),y(3).
sat{pz) <- y (l) , z (2).
sat(c2) y{ l) ,z (3) .
sat(c2) y (l) ,z (4) .
sat(c2) <- y(2),z(3).
sat(c2) <- y(2), z(4).
sat(c2) y(3),z(4).
sat(c3) <— z (2).
sat(c3) 2 (3).
sat sat(ci), saf(c2), saf(c3).
/ •<— not / , sat.

One can verify th a t lookahead(Pj1, sat(C)) returns the following set of
literals

{not a:(2), not x (3),no t y{ 1), not y (3),no t z (2) ,no t z (4), a;(l), y(2), 2 (3), sat(c)}.
The reader may want to examine this construction against domain reduc

tion by arc-consistency as given in Example 2.2.2. We can see th a t 2 and 3
are removed from D x, 1 and 3 from D y, 2 and 4 from dz . ■

4.2 A C + Vs. Expand and Lookahead
Under the above translation, one question arises in the equivalence between
arc-consistency and lookahead: Is the propagation by the expand function
powerful enough to enforce arc-consistency? The answer is NO, as shown by
the following example.

Exam ple 4.2.1 Consider a CSP A (X ,D ,C) , X = x, y, with one constraint
Cx,y = {(0,0), (1,1)}, where D x = {0,1,2} and D y = {0,1}. Under Niemela’s
translation, we have the following rules that ensure every variable can only be
assigned one value:

a;(0) -f- not x (l) , not x (2).
x (l) <— not x (0), not x (2).
x (2) <- not x (0) ,n o t x (l) .
y (0) «- not y(1).
y(1) <- not y{0).
and two rules with sat(c) as the head:

sat(c) <— #(0), y (0).
sat(c) t - a :(l),r/(l).

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Enforcing arc-consistency removes 2 from D x. not x(2) cannot be de
rived by expand(Pji, sat(c)) because no propagation rule can be applied in
expand(PA,sat(c)). However, if we perform lookahead, by picking up x(2)
in look ahead-once(P^ sat(C)), expand(P„4 , sat(C) U x(2)) derives not sat(c),
resulting in a conflict with sat(c). ■

The following proposition defines a condition under which expand coincides
with arc-consistency.

P roposition 4.2.2 [23] I f every constraint C{ in a CSP A (X , D, C) only has
one tuple, then expand(PjL, {sa t(c i) , . . . , sat(cn)} enforces arc-consistency on
the CSP A { X ,D ,C) .

P roof It can be proved by trivially applying the propagation rule 3 (cf. Sec
tion 3.4). ■

In the rest of this thesis, as we are going to enforce the propagation rule
in atleast, we revise the propagation rule 3 as follows:

If for all r G P w ith a 6 m a xr(A), there exists a literal x such th a t

a £ ^ m a xr (A U {a;}), then A A U {not x}.

Exam ple 4.2.3 Let P be the following program:

Cl 4- x(0), 2/(0), z(0).
d «- z (0) ,y (0) ,z (l) .

a;(0) can be derived by expand(P, {ci}) because ci £ m a x r ({ciU{not x(0)}})
for all r G P w ith Ci € raaa;r ({ci}). Similarly, y(0) can also be derived because
ci ^ m a x r({ci U {not y(0)}}) for all r 6 P w ith cx 6 m a xr ({ci}). ■

Proposition 4.2.4 [28] Let A (X , D, C) be a CSP. Suppose after an appli
cation of arc-consistency, D is reduced to D ' . I f for any variable Xj € X ,
a value d is removed from D Xj, then not Xj (d) is in the set returned by
lookahead(Pji, sa t(C)) . ■

The following example shows th a t lookahead is strictly stronger than arc-
consistency.

Exam ple 4.2.5 Consider a CSP that consists of three variables x, y and y,
all with the domain {0 ,1}, and the following constraints:

c i(x ,y) = {(0 , 0), (1 , 1)}
c2(y,z) = {(0,1), (1,0)}
c3 (z ,x) = {(0,0), (1,1)}

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is clear th a t arc-consistency cannot reduce any domain. A backtracking
algorithm th a t begins with the assignment x —> 0 would need to backtrack.
However, when x(0) is selected by lookahead, a contradiction is derived so th a t
not x(0) is added, and subsequently not x (l) , not y (0), not ?/(!), not z (0) and
not z (l) . ■

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

A rc-C onsistency w ith U nit
Propagation

In the previous chapter, we knew th a t arc-consistency is strictly weaker than
lookahead. In this chapter, we identify w hat is missing in arc-consistency, and
devise a new m ethod th a t prunes the same search space as lookahead. Then
we present an algorithm for this method, and prove its correctness.

5.1 Definition
The insight revealed in the last chapter suggests th a t some space pruning
power is missing in arc-consistency. In this section we identify w hat is missed.

Given a CSP A (X , D, C) and a partial instantiation II, we define a function
th a t extends II as follows [28]:

unit-propagate(A, II)
= IIU {x —>• a | cy>x £ C or cx>y £ C and y —> h £ II such th a t

a is the only value in D x th a t is consistent with 6}

T hat is, in a binary constraint, if an unassigned variable has exactly one value
in its domain th a t is consistent with the value of the assigned variable, the
unassigned variable must be assigned this value, given II.

A collection of pairs II is said to be in conflict if and only if there are
distinct values d and d' such th a t x —> d, x —» d’ £ II. The notion of conflict is
needed because, as we will see shortly, the function unit_propagate may lead
to such a conflict.

The function unit-propagate* (A, II) below calls unit-propagate(A, II) re
peatedly until nothing can be further propagated or a conflict is reached [28].

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T hat is,
Function u n it .propagate* {A, II)

repeat
IT := n
II := unit.propagate(A , II')
i f II is in co n flic t then

re tu rn “co n flic t”
until n = II'

re tu rn II.

Exam ple 5.1.1 Let A (X , D , C) be a CSP with X — {x, y} , D x = D y —
{0,1}, and C consisting of

ci 0 , 1/) = {(0 , 1)} c2 {y,z) = {(1 , 1)} c3 (z , x) = {(1 , 1)}

Given II = {x —> 0}, u n it .propagate* {A, II) returns “conflict” because the set
returned by unit.propagate{A , II) is {x —> 0, y —> 1, z —>• 1, x —> 1}. ■

Now we strengthen the process of enforcing arc-consistency by adding
unique value propagation, called unit propagation. We name the function
A C +, and describe it as an abstract, non-deterministic procedure.

Procedure A C + [28]
A C + takes as input a CSP A (X , D, C), and performs the following domain

reduction operations repeatedly until no domain can be further reduced.

1 . For any c £ C, if there is exactly one uninstantiated variable x in its
scope, remove any d from D x if d is inconsistent with the value of the
instantiated variable in c.

2. For any c £ C where both variables x and y in the scope of c are unin
stantiated, remove any d from D x if

(a) there is no value in D y th a t, together with d, is consistent with c;
or

(b) unit.propagate* (A , {x —> d}) returns “conflict” .

A C + is obviously correct. The only addition is part (b), in which case the
conflict is a sufficient ground for removing d. Furthermore, A C + doesn’t seem
to take a lot more tim e than A C . Note th a t when the domains of all affected
variables have more than one valid value, the process of unit propagation
stops. So the overhead is proportional to the occurrences of unique values for
variables during unit propagation.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Theorem 5.1.2 [28] Let A (X , D , C) be a CSP. Suppose after an application
o f A C +, D is reduced to D '. Then, fo r any variable x € X , a value d is
removed from D x iff not x(d) is in the set returned by lookahead(P^, sa t (C)) .
m

By Theorem 5.1.2 and Lemma 3.4.6, we therefore have:

Corollary 5.1.3 Let A (X , D , C) be a CSP. A C + returns a same set o f re
moval values from D , independent o f any order in which variables are chosen
from X , and values are chosen from D . ■

Note th a t both node consistency and arc-consistency are implemented in
A C +. In the following section, as we are going to give an algorithm for arc-
consistency w ith unit propagation, we delete the first part of A C + which en
forces node consistency. We call it ACUP.

Procedure A C U P [28]
ACUP takes as input a CSP A (X , D, C), and performs the following do

main reduction operations repeatedly until no domain can be further reduced.

1. For any c G C where both variables x and y in the scope of c are unin
stantiated, remove any d from D x if

(a) there is no value in D y th a t, together with d, is consistent w ith c;
or

(b) unitjpropagate*(A, {x —> d}) returns “conflict” .

Corollary 5.1.4 Let A (X , D, C) be a CSP. ACUP returns a same set o f re
moved values from D , independent o f any order in which variables are chosen
from X , and values are chosen from D . ■

5.2 An Algorithm for ACUP
We design an algorithm for ACUP based on AC-4. We call this algorithm AC4-
UP. AC4-UP uses the same data structure as AC-4. An array counter (x^, ai, Xj)
is used to store the number of support values from neighboring variables for
the assignment of (xi, a*), and an array S(xj , af) to store values in the other
variables supported by {xj,af). Additionally, S\ (xj, aj, xi) is used to m aintain
consistent values for x, th a t are supported by (xj, af).

AC4-UP is given in Figure 5.1. It works as follows. First, it initializes
the values for S, S% and counter for all the constraints. In the remaining
parts of the algorithm, it adds unsupported values to C (£ stores the conflict
pairs {x^ af) due to counter (xi, a*, xf] = 0 , or unitjpropagate* {A, {xi —y aj})
returning tru e). In each step of the while loop in part 5, the algorithm picks up

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an unsupported value from £ , updates all the affected counters and affected
sets of consistent values, puts any unsupported value to £ by checking the
counter and checking the conflict using unit propagation. This procedure
continues until all the unsupported values are removed.

Consider applying this algorithm to Example 4.2.5.
Initially, we have

5 (x ,0) = { (y ,0) ,< ^ ,0)}
s i x , 1) = { (y , 1),(z ,1)}
S(y, 0) = {(#, 0), {z, l>}
S(y, l) = {<£,1), M > }
S(z , 0) = { (y , l) , { x , 0) }
S(z , 1) = {(y, 0>, {x, 1)}
Si{x,0,y) = { y, o)}
S ifo O .z) = { z,0)}
S i (x , l , y) = { y, i »
Si(x, 1, z) = { z , l) }
Si (y ,0 ,x) = { x , 0)}
Si (y ,0, z) = { A !)}
S i (y , l , x) = { ar,l)}
S i (y , l , z) = { 2 , 0)}
Si (z ,0 ,x) = { x -> o>}
Si (z ,o,y) = { v >!)}
Si(z , l , x) = { x -> i)}
s 1(z , i , y) = { y>o>}
counter {x, 0, = i
counter (x, 0, = l
counter [x, 1 , = i
counter (x, 1 , = i
counter {y, 0, = i
counter (y, 0, = i
countering, 1 , = i
counter {y, 1 , z = i
counter (z , 0 ,x = i
counter(z, 0, y = i
counter(z, l , x = i
counter{z, 1 , y = i

After initiation, £ is empty, and
unitjpropagate*(A, {a; —> 0}) is called and the following conflict chain is
generated.

{ (s ,0), {y , 0), {z, 1), (x, 1)} .

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AC4-UP
Input: a CSP A (X , D, C)
O utput: A CSP equivalent to A (X , D, C)

1 Initialize S(xi , af), counter (xi , a,, Xj), Si(xi , ai, Xj) from all C y ;
2 for all counters do

if counter (xi, ai, xj) =0 (if (xi, ai) is unsupported by Xj) then
| add {xi, ai) to £;

end
end

3 for all counters do
i f co u n ter(x i,a i,X j)= l (if there is unit propagation) then

| add (xi, af) to C\,
end

end
4 for each (xj, aj) € £ i do

if unitjpropagate*(A, {x j —> aj}) then
J add {Xj , aj) to L\

end
end

5 w hile C is not empty do
Choose {X{, ai) from C, remove it from £ , and remove aj from D Xi\
for each {Xj ,a j) € S(xi , af) do

decrement counter (x j , aj,Xi);
if counter (xj, a j ,xf) = 0 then
| add (xj, af) to £ ;

end
delete (xt, a*) from Si (xj , aj,Xi)\
for all assignments do

if counter(xk,ak,Xi) — 1 then
if u n it .propagate* (̂ 4, {x —> a^}) th en
| add (xk, at) to £ ;

end
end

end
end

end

Figure 5.1: An algorithm for ACUP based on AC-4

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

un it .propagate*
In p u t: a CSP A, an assignment Xi —» a.
O u tp u t: true: if there is a conflict; false: if there is no conflict,
initialize queue, R to empty;
add (Xi, a ^ to queue;
w h ile queue is not empty do

remove first element (xj, aj) from queue;
add (xj, aj) to R /*R stores the set of assignments propagated

from Xi a.t */;
if there is a conflict in R th e n
| return true /*conflict */;

else
fo r every X{ such that counter (xj, aj,Xi) = 1 do

fetch (Xi,ai) G S\{xj ,aj ,Xi);
add (xi, ai) to queue;

e n d
e n d

en d
return false;

Figure 5.2: unitjpropagate* algorithm

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A conflict occurs since x is assigned 0 and 1 simultaneously. So {x , 0) is
added to C. Similarly, all tuples in

{(y, 0), {z , 1), (x, 1), (y, 1), (z, 0)}

are also added to C.
Now arc-consistency is applied, and the domain is annihilated.

5.3 The Correctness of A C4-UP
Before giving a proof of the correctness of AC4-UP, we need to introduce the
following definition and lemmas.

D e fin itio n 5 .3 .1 A unit propagation chain in CSPs is a sequence of assign
ments {x \ —> Oi , . . . , x n -> an}. I f there is a conflict in it, we call it a conflict
chain.

E x a m p le 5 .3 .2 Consider the Example 4-2.5. There is a conflict propagation
chain {x —> 0 , y —> 0 , z —> 1 , x —> 1 } in it. ■

L e m m a 5.3 .3 Given a CSP A (X , D, C), a conflict chain {x i —> ax, . . . , x n —»
an} in A , i f the domain value at! where 1 < i < n, is removed from its domain,
then ai can be removed by arc-consistency.

P r o o f Suppose a* is removed for the domain D Xi where 1 < i < n. Because
ai is the only domain value for X{ th a t supports x ^ x -> a ^ \ in a certain
constraint, whose scope contains Xj_i and X{. If is removed, there is no
domain value th a t supports x ^ x —> i. So a ^ i is removed from D Xi_x.
Continuously, aj_2, . . . , o2, and ax are removed from D X i _ 2 , . . . , D X2, and D Xl
respectively. ■

Lemma 5.3.3 specifies th a t when the conflict chain from a certain assign
ment is broken, the inconsistency due to this assignment can still be found by
arc-consistency.

L e m m a 5.3 .4 Let A (X , D, C) be a CSP. AC4-UP returns the same set o f the
removed values from D , independent o f any order in which a pair is chosen
from C in the while loop of part 5 in AC4-UP.

Lemma 5.3.4 is used in the proof of the correctness for AC4-UP.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P r o o f Let E and E' be the sets of removed values of any two invocations
A i and A 2 of AC4-UP. Let the corresponding sequences of such removals be
E = (d i , dn} and E' = {d[, ..., d'n,}. We will prove th a t for any dj £ E , we
have di £ E '. We show, by a simple induction on n, th a t each dj £ E', where
1 < i < n.

Obviously, if di is removed by A x, (x x, d x) is added to £ before the while
loop in p a rt 5, then there must be counter (xx, dx, x*)= 0 in part 3, or
unitjpropagate* (A , { x x —> dx}) returning true in part 4 initially. So dx is
removed by A 2.

Now suppose any dk, where 1 < k < i — 1, is removed by A x, and dk is
also removed by A 2. We want to show th a t if dj is removed by A x, dj is also
removed by A 2.

If {xi,di) is added to £ before the while loop in part 5 in A x, dj can be
removed by A 2 in a similar way as above.

If (xi, di) is added to £ after the while loop in part 5 in A x, then there are
two cases:

(xi, di) is added to £ by counter (xi, dj, x*,) = 0 or unitjpropagate* {A, {xi —>•
dj}) = true. We show th a t in either case A 2 also achieves the same result, and
removes dj from DXi.

1 . If counter (xi, di}Xj) = 0 in A x, it is caused by the removal of dx, d2, . . . , d j_ i.
Therefore, for some Xj, where Xj £ {xi, x 2 . . . , £ j-i} , S(xj , dj) = {{xi, d i) , ..
and counter{xi,di ,Xj) is decreased by one for Xj. Due to the fact th a t
for any djt, where 1 < k < i — 1 , dk £ {d[, d'2 . . . , d ',_x} is also removed
by A 2, A 2 always has a chance to decrease counter{xi: di, Xj) for every
Xj. So counter(xi ,di ,Xk) = 0 can always be reached for A 2 regardless of
the order in which d'k are removed. As a result, di is removed by A 2.

2 . If unitjpropagate*{A, (x , —> dj)} = true in A x, there is a conflict propa
gation chain. In A 2, because there is a loop in part 7, unijpropagate* (A ,
{Xi —>• dj)} can always be called. Also, for any dk, where 1 < k < i — 1 ,
dk £ {d[, d '2 . . . , d',_1} is also removed by A 2. Thus, A 2 can decrease
counter(x{, di, Xj) for every Xj. As a result, the counters in the propa
gation chain can be set to 1. If any counter in the propagation chain
becomes zero, by Proposition 5.3.3, (xj, dj) is added to £ , hence dj is
removed by A 2. Otherwise, unitjpropagate* {A, {xj —> dj}) returns true
in A 2. Consequently, dj is removed by A 2.

We therefore conclude tha t E C E '. By symmetry, E' C E. Therefore,
E = E '.m

Now we give the theorem stating the correctness of AC4-UP.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T h e o re m 5.3 .5 Let A (X , D, C) be a CSP. Suppose after an application of
ACUP, D is reduced to Df. Then fo r any variable x € X , a value d is removed
from D x by ACUP i f f d is also removed from D x by AC4-UP.

Note th a t by Lemma 5.3.4 and Lemma 5.1.4, we know th a t both ACUP and
AC4-UP return a same set of removed values from their respective domains,
independent of any order of removed values. Our proof is based on the idea
th a t for any sequence of removed values in one side, there is a corresponding
sequence in the other.

P r o o f (=>) Let dx, ..., dn be the sequence of domain values removed from the
respective domains D Xl, ..., D Xn by ACUP, in th a t order. We show th a t there
is a corresponding sequence d i , ..., dn of domain values removed by AC4-UP.

We show, by a simple induction on n, th a t each di, where 1 < i < n, is
removed by AC4-UP.

F irst we prove th a t if d\ is removed by ACUP, di is also removed by AC4-
UP. According to the function ACUP, d\ is removed by arc-consistency or
u n it propagation. The proof is based on above two cases.

1 . Suppose di is removed from D Xl by ACUP due to the fact th a t there is
no value b in y such th a t (di, b) G cXljV.

In AC4-UP, according to the definition of counter, after the initialization
in part 1 , counter (xi, d\, y) = 0. So (aq, d\) will be added to £ . In p art 5,
the while loop will pick up (oq, d\) in £ (note th a t this assumption
is valid because the order of picking up pair in £ is unim portant (cf.
Lemma 5.3.4)) and d\ is removed from D Xl.

2. Suppose di is removed from D Xl in ACUP, because unitjpropagate*
(A , {oq —> d\}) returns “conflict” . We need to show th a t di can also
be removed by AC4-UP.

Suppose “conflict” by unitjpropagate*{A, {aq —» di}) is due to a conflict
chain as follows:

{aq di, x ^ di'v .. . ,x iln -> d ^ } (5.1)

where aq = x ^ and di ^ dyn.

In AC4-UP, after the initialization in part 1, counter (xi, d\ ,Xi ') = 1,
counter (xr2, d ^ , x^) = 1, . . . , counter { x ^ ^ , , x ^) = 1. In p art 3,
(aq, d i) , . . . , (xi'n,di'n) are added to £ j . In part 4, unitjpropagate*(A, {oq
ai}) causes a conflict, so (oq, di) is added to £ in p a rt 4 of AC4-UP. In
part 5, the while loop picks up (aq, d\) in £ and d\ is removed from D Xl.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now we will show th a t if any di, i > 0, is removed by AC4-UP, di+x is also
removed by AC4-UP.

There are two cases in which dt‘+i is removed by ACUP.

1 . di+i is removed by ACUP due to the fact th a t there is no value b in y
for some k, where 1 < k < i, such th a t {di+x,b) € cXuy.

So there is counter (xi+x, di+x,y) = 0. If this is caused by removal of
di, d2, . . . , di in ACUP, there is also a corresponding sequence in AC4-
UP, so {xi+i,di+i) is removed. As a result di+x is removed in AC4-UP
by part 5.

2. Suppose di+i is removed from D X i + 1 in ACUP, because unitjpropagate*
(A , {aq+i —> dj+i}) returns “conflict” . We need to show th a t di+i can
also be removed by AC4-UP.

If this is caused by a sequence of removal dx,d2, • • • > dj in ACUP, there
exists the same sequence in AC4-UP to cause this result (the assumption
holds according to the Lemma 5.1.4). In AC4-UP, unitjpropagate*(A, {oq+i
di+x}) can always be called, and return true. So (aq+i,d j+i) is added to
jC, and dl+x is removed by AC4-UP.

(«£=) Let dx, ..., dn be the sequence of domain values removed from the respec
tive domains D Xl, ..., D Xn by AC4-UP, in th a t order. We show th a t there is
a corresponding sequence dx, ..., dn of domain values removed by ACUP. We
show, by a simple induction on n, th a t each di where 1 < * < n is also removed
by ACUP.

Obviously dx is removed due to the fact th a t counter (xx, dx, y) = 0, or
unitjpropagate*(A, { x x —> dx}) = true outside the loop in part 5 of AC4-UP.

If counter (xx, d x,y) = 0, it means th a t for a certain constraint cXuy, there
is no value in D y tha t, together w ith dx in D Xl, is consistent with cXuy, so dx is
removed by ACUP (Note th a t we can choose this x x first, and do a comparison
based on the Lemma 5.1.4).

If unitjpropagate*(A, {aq —»■ di}) = true, unitjpropagate*(A, {aq -> dx})
returns “conflict” . As a result, dx is removed also by ACUP.

Now suppose any where 1 < k < i, is removed by ACUP, we show th a t
di+1 is also removed by ACUP.

If (xi+x,d i+1) is added to C by the outside loop in p art 5 of AC4-UP. di+x
can be removed by the same way as dx.

If (xi+x,di+x) is added to C by the inside loop in part 5 of AC4-UP, then
counter(xi+x,d i+x,Xk) = 0 or unitjpropagate*{A, {oq+i —> di+x}) = true.

1 . counter(xi+x, di+x, y) = 0. It must be caused by AC4-UP in a sequence
{d!x,d '2, . . . , d'i} € {dx, c?2 , . . . , di}. In ACUP, we can apply the same se
quence {d[, d'2, .. •, d'} (note th a t this can be achieved by Lemma 5.1.4).

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally, there exists a certain constraint cXl+1>y, such th a t there is no
value in D y th a t, together with di+1 in DXx+1, is consistent with cXi+uy.
Consequently, di+1 is removed.

2 . unitjpropagate*(A, {xi+j —» dj+i}) = true. Obviously, this is caused by a
sequence d[,d '2, . . . , of removed values from domains in AC4-UP gener
ating a conflict propagation chain, where for any d'k , d'k G {d \ , d2) ■ • • > d*}-
In ACUP, we can apply the same sequence {d[, d'2, . . . , d'f} by Lemma 5.1.4.

unitjpropagate* (A , {x i+i —> c?i+i}) returns “conflict” for this propaga
tion chain. So di+1 is removed. ■

5.4 C om plexity
Suppose e is the number of constraints, and k is the maximum domain size.
We have the following theorem:

Theorem 5.4.1 The time complexity o f AC4-UP is 0 (e zk z), and space com
plexity is 0 (ek2).

P roof In unitjpropagate* , there are a t most 0(e) assignments added to queue
before a conflict happens, so the to ta l running time for unitjpropagate* is
bounded by 0 (e).

There are a to ta l of 0 (e k 2) elements in S', so decrement counter is per
formed at most 0 (e k 2) times. In each iteration of decreasing the counters,
unitjpropagate* is performed 0 (ek) times, and each call of unitjpropagate*
takes 0(e) time. Consequently the to ta l running tim e is 0 (e zk z).

Since AC4-UP doesn’t use any array th a t exceeds the size of S in AC-4,
the space complexity of AC4-UP is the same as AC-4, which is 0 (e k 2). ■

We have presented an algorithm for A C + w ithout node consistency. From
the complexity point view, node consistency doesn’t play any role in the com
plexity of our algorithm. In [28], we showed th a t A C + has the same pruning
power as lookahead. The time complexity of lookahead for a translated pro
gram from a CSP is 0 (e zk i). Indirectly, we know a bound for A C +, which
is higher than th a t of our algorithm. Consequently, our algorithm is more
efficient than lookahead.

In AC4-UP, when every tuple in a CSP A is removed, each pair (xi, af) in
the CSP needs to be checked to see if there is a conflict caused by unitjpropagate*
CA, {xi —> a;}). Practically, we can find all the conflicts by applying arc-
consistency and unit propagation alternately in a constant num ber of itera
tions. Unit propagation can be achieved in 0 (e 2 k) time separately, so the to tal
running time is 0 (e2k + ek2).

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Further Observations

ACUP has more pruning power than arc-consistency. W hat is the relation
between ACUP and other space pruning techniques in the literature such as
arc-consistency look ahead (ACLA) [2], pa th consistency. Do they coincide or
not? In this chapter, we will answer these questions.

6.1 ACUP Vs. Arc-Consistency Look Ahead
The following example shows th a t there exists a CSP for which ACUP is more
powerful in pruning the search space than ACLA.

E x a m p le 6 .1 . 1 Consider a CSP with X — { x \ ,X 2 , x 3, x 4}, all with domain
{0 , 1 }, and the following constraints

cl {xl , x 2) = {(0 , 0), (0 , 1), (1 , 1)}
0 2^ 2 , 0:3) = { (0 , 0), (0 , 1), (1 , 1), (1 , 0)}
cz{x3 , x 4) = {(0 , 0), (1 , 1)}
c4 (x 4 , x 5) = {(0 , 1), (1 , 0)}
c5 (x 5 , x 3) = { (1, 1) , (0 , 0) }

c3 and c4 together show th a t there is no solution, bu t arc-consistency cannot
detect the conflict between c3 and c4, since for each value of any one variable
there is a value for the other variable. In fact, arc-consistency enforced on this
CSP does not remove any domain value.

However, with ACUP, 0 is removed from D C3, so is 1 , resulting in an empty
domain, hence the result th a t this CSP has no solution can be generated
without search.

Now consider ACLA. Suppose the current variable is x 4. Let us tentatively
assign x 4 to 0. Now, since enforcing arc-consistency involves two variables,
with a tentative assignment to the current variable, the consistency check is
among triplets, much stronger than arc-consistency alone. However, one can

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

see th a t since the spot of conflict is unrelated to variable x 4, inconsistencies
cannot be detected. ■

In the above example we notice th a t if the current variable were chosen
to be one in {x 2 ,X 3 , x 4}, then the inconsistencies could be detected by arc-
consistency. Is it enough to achieve the same pruning power as ACUP if
arc-consistency look ahead is applied to all the future variables (let’s call it
ACLA+)?

The following example shows th a t there exists a CSP in which ACUP has
more pruning power than ACLA+ .

E x a m p le 6 .1 . 2 Consider a CSP with X — { x 4, x 2, x 3, x 4} with D Xl = D Xs =
D Xi = {0,1, 2}, D X 2 = {0,1, 2, 3}, and the following constraints

ci (x 1 , x 2) = {(0 , 0), (2 , 2), (1 , 0), (1 , 1), (2 , 1), (1 ,3)}
C2(x2, x 3) = {(0, 0), (1, 2), (2,1), (2, 2), (2,0), (3,1)}
cs(x3, *4) - {(0, 0), (2, 2), (1, 0), (1, 1), (1, 2)}
c4(x4, x 4) = {(0, 2), (1, 0), (2, 0), (1, 1), (2, 2)}

Obviously this CSP is arc-consistent. We can see th a t only the propagation
from x\ = 0 can cause a conflict propagation chain {0:1 = 0 , x 2 = 0 , £3 =
0, x 4 = 0, x 4 — 2 }. So 0 is removed from the domain of aq, and DXl =
{1,2}. Enforcing arc-consistency now, no domain can be reduced further. By
removing the inconsistent tuples, the constraints become

c1 (x 1 , x 2) = {(2, 2), (1,0), (1,1), (2,1), (1, 3)}
c2 (x 2 , x 3) = {(1, 2), (2,1), (2, 2), (2, 0), (3,1)}
c3 (x 3 , x 4) = {(0 , 0), (2 , 2), (1 , 0), (1 , 1), (1 , 2)}
c4 (x4, Xi) — {(0 , 2), (1 , 1), (2 , 2)}

The propagation from x 2 = 1 can cause a another conflict propagation chain
{x 2 = 1, £3 = 2, x 4 = 2, x 4 = 2, x 2 = 2}. Therefore 1 is removed from D X2.

If we apply ACLA+ to all future variables to this CSP, and x 2 is checked
first, Xi later, then 1 can not be removed from D X2.

Suppose 1 is tentatively assigned to the current variable x 2. After applying
full arc-consistency check, the domains for D Xs, D X 4 , D Xl become {2}, {2}, {2}
respectively. No domain becomes empty. Consequently, ACLA+ cannot find
the conflict caused by the assignment x 2 —> 1 .

But if we apply ACUP, 2 can be removed from D X2. ■

The reason th a t ACLA+ cannot find the conflict is th a t ACLA+ only checks
the conflicts in a fix order. T hat is, it does not check back to see if the removal
of a conflict can cause another conflict. A conflict can depend on another
conflict. If the conflicts do not occur in a certain order, ACLA+ may not find
all the conflicts.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We have seen the examples th a t show ACUP is more powerful in pruning
the search space than ACLA+ for some CSPs. Is ACUP strictly stronger than
ACLA+ , or ACLA? The following example shows th a t ACLA+ , or ACLA is
more powerful than ACUP for some CSPs.

E x a m p le 6 .1 .3 Consider the CSP that has three variable x, y, z with
D x — {0 , 1 }, D y = {1 , 2 ,3 ,4}, D z = {1 , 2 ,3 ,4 } , and three constraints:

c Xy = {(0,1), (0,2), (1,3), (1,4)}
cyz = {(1,3), (2,3), (1,4), (2,4), (3,1), (4,1), (3,2) (4,2)}
czx = {<1,0), <2,0), (3,1), <4,1)}

If we have the partial instantiation x —> 0, in ACLA, 3, and 4 are removed
from D y. Similarly, 3 and 4 are removed from D z. In the next iteration, w.r.t.
CyZ, 1 and 2 are removed from both D y and D z. As a result, ACLA can find
this conflict.

By applying ACUP, no unit propagation can cause a conflict, so ACUP
cannot reduce the domain. ■

We notice th a t there is a gap between ACUP and ACLA. Now we add
ACUP to ACLA to make ACLA achieve a t least the same pruning power as
ACUP.

We only need to revise SELECT-VALUE-ARC-CONSISTENCY (cf. Sec
tion 2.4) in ACLA. The revised version of SELECT-VALUE-ARC-CONSISTENCY
is given in Figure 6 .1 . We call it SVAC+ .

E x a m p le 6 .1 .4 Consider above Example 6.1.2 again. A CSP A (X , D , C)
with X = {x , y, z} , all with domain {0 ,1 ,2}, and the following constraints

ci(x, y) — {(1 , 1), (0 , 0), (0 , 1), (0 , 2), (2 , 1)}
c2 (y,z) = { (l , l) , (2 , l) , (0 , 0) , (l , 2)}
c3(z, x) = {(1, 0), (0 , 1), (0 , 0), (2 , 0), (0 , 2)}

Suppose we use AC-4 as arc-consistency algorithm in SVRC+ . Initially (x, 1)
is added into C, which stores the conflict pairs in AC-4. Now applying arc-
consistency, 1 is removed from domain D x, and counter (y, 1, x) becomes 1.
W hen unitjpropagate*(A, {y —» 1 }) is applied, a conflict occurs, y —» 1 is
added to C. Applying arc-consistency again, 2, 1, and 0 are removed from D y,
D z, and D x respectively. ■

C o m p le x ity o f SVAC+

The general optim al time complexity for arc-consistency is 0 (e k 2), where
e is the number of constraints, and k is the cardinality of the largest do
main. Since the original SVAC needs to check each value in the domain of

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SVRC+
Input: a CSP A (X , D \ C), a current variable Xi
O utput: a value for Xi, or a null if no consistent value
w h ile D'{ is not empty do

select an arbitrary element a € D[, and remove a from D ';
make A arc-consistent with the partial instantiation;

if any future domain is empty {don’t select a) then
| reset each changed domain to values before a was selected:

else
conflict = false;
for each Xj € X do

for each aj e do
if unitjpropagate*{A, {x j —v aj}) returns “conflict”
then

conflict —> true;
break;

end
end

end
if conflict — true then
| reset each changed domain to values before a was selected;

else
| return a;

end
end

end
return null;

Figure 6 .1 : SVAC+ subprocedure

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the current variable, if we implement this procedure using the optim al arc-
consistency algorithm AC-4, SVAC has a worst case time complexity 0 (e k 3).
Note th a t, in SVAC+ , each pair (a;*, af) in a CSP A (X , D, C) is checked using
unit-propagate(A , {x, —> a*}) which takes 0(e) time if it is combined with
AC-4. Therefore, the loop in part 2 of ACLA+ takes 0 (e 2 k), and the time
complexity of SVAC+ is 0 ((e k 2 + e2 k)k) = 0 (e k 2(k + e)). ■

6.2 ACUP Vs. Path Consistency and i Con
sistency

P ath consistency makes every path of length 3 (the path from x to y to z)
consistent, while ACUP enforces consistency of every unit propagation chain.
The following example shows the difference between path consistency and
ACUP.

Exam ple 6.2.1 consider a C S P A (X , D , C) that has three variables x , y , z
with domain D x — D y = D z = {0,1, 2,3}, and three constraints:

cXy = {(0,0), (0,1), (1,2), (1,3), (2,0), (2,1), (3, 2), (3,3)}
= {(0,0), (0,1), (1, 2), (1, 3), (2,0), (2,1), (3,2), (3, 3}}

c*y = {(0,2), (1,3), (2,0), (3,1), (1,2), (0,3), (3,0), (2,1)}

Obviously, this CSP is arc-consistent. But we can see th a t for any pair
{aj, af) G cxy, there is no value ak for z such th a t (a*, ak) G cxz, and {ak, af) G
czy. Applying path consistency, the domains are reduced to empty.

But applying ACUP, since there is no unit propagation in this CSP, no
domain value can be reduced. ■

It can be seen th a t there is no unit propagation in this CSP. So ACUP
cannot be applied here. Therefore path consistency has more pruning power
than ACUP for this CSP.

Definition 6.2.2 The distinct length o f a unit propagation chain C is the
number of different variables in C.

Exam ple 6.2.3 The unit propagation chain {x \ —> 0 , x 2 —> 1, x% —»■ 0, —>
1, x i —> 1 } has length 4 because the different variables in the propagation chain
are { x 1, x 2, x s , x 4:} . ■

Obviously, we have the following proposition:

Proposition 6.2.4 Given a CSP, i f there is a conflict chain whose length is
i, and the CSP is i — 1 consistent, then ACU P can find the inconsistency while
i — 1 consistency cannot find it in this CSP.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Exam ple 6.2.5 consider a CSP A { X , D, C) that has 4 variables
xi , X2 , xz , X4 with domain D Xl = D X2 = D X3 = D Xi = {0,1}, and four
constraints:

Obviously, this CSP is arc-consistent. We can also check th a t it is path con
sistent. B ut there is a unit propagation chain { x x —> 0, x 2 —> 1, x 3 —» 0, aq —>
1 , x i —t 1 }, so unit-propagate* (A., {x —> 0}) returns a conflict. Therefore
ACUP can find the inconsistency while path consistency can not for this CSP.
■

From the above example, we see th a t ACUP and i consistency are different
techniques th a t can be used to prune the search space. W hen CSPs have many
unit propagations, ACUP has extra power as compared w ith i consistency.
Furthermore, the tim e complexity for ACUP is much lower than i consistency.
The following proposition defines the condition under which % consistency can
achieve a t least the same pruning power as ACUP.

P ro p o s it io n 6.2.6 Given a CSP, i f the length o f every unit propagation chain
is at most i, then any value removed by ACUP can be removed by i consistency
fo r any i > 2 .

P roof We only consider the case when there is a conflict in the unit propaga
tion chain { x x -» ax, . . ., Xi —> cq, x x = 6} with distinct length i, where {eq A
b}. For the pair (ai, af), we can’t find consistent any value for {aq, . . . ,
to achieve 02 G D X2, . . . , aj_ 1 G D Xi_l simultaneously. Therefore, i consistency
can also find the conflict, and remove ax from the domain D Xi ■

From above discussions, we see th a t ACUP is a new consistency technique.
It is strictly stronger than arc-consistency and overlaps w ith arc-consistency
look ahead and path consistency.

c ,

c.
W 2 = {<0 , 1) ,<1, 0)}
^ 3 = { (1 , 0), <0 , 1) }
^ = {<0 , 1), (1, 0)}
W l = { (1 , 1) , (0,0)}

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Summary and Future Work

7.1 S um m ary
In this thesis, we present an algorithm for ACUP, and give the proof of the
algorithm. The tim e complexity of our algorithm for ACUP is 0 (e 3 k3), which
is lower than th a t given in [28].

We also compare ACUP with the other consistency techniques in the lit
erature. We show th a t ACUP neither dominates nor is dominated by arc-
consistency look ahead and i consistency.

SVAC in arc-consistency look ahead chooses a value for the current variable
and checks if this assignment causes a conflict. It tentatively assigns a value
to the current variable, then performs arc-consistency checks. If there is an
empty domain, it means th a t this tentative assignment cannot be consistently
extended to the whole CSP, so another tentative value is chosen for the current
variable, and the consistency check is enforced again. In this manner, SVAC
is much stronger than arc-consistency alone since it performs arc-consistency
checks under a tentative assignment. But if the conflict lies in the other vari
ables instead of the current variable, SVAC cannot find it. ACUP can find this
conflict if there exists a conflict unit propagation chain in the CSPs. Choosing
every future variable as the current variable, assigning a tentative value for the
current variable, and performing consistency check cannot make up this gap
if the conflicts happen in a different order from th a t of choosing the current
variable. A loop is needed to run this check until no further conflict can be
found. Note th a t SVAC takes 0 (e k 3) if the optim al arc-consistency algorithm
is adopted. If SVAC is applied to all future variables, it will take 0 (e 2 k3)
time. If we want to achieve at least the same pruning power as ACUP, in a
straightforward manner, we need a loop to run the conflict checking until no
further conflict can be found. This approach takes 0 (e 3 k4) time. The differ
ence between ACUP and SVAC enables us to design a new algorithm called
SVAC+ to incorporate ACUP into SVAC. SVAC+ can find all the conflicts in

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

unit propagation chains, and takes 0 (ek2(e + k)) time, which is much lower
than 0 (e3 k 4).

i consistency makes i variables in a CSP consistent, i consistency (i > 2)
is more powerful than arc-consistency. But if the length of a conflict chain in a
CSP is greater than i — l , i consistency still can not achieve the same pruning
power as ACUP. In order to have at least the same pruning power as ACUP,
i consistency requires 0 (2 l(ek)2t) time for a brute force algorithm. It is much
higher th a t 0 (e 3 k 3) for ACUP.

7.2 Future Work
In this thesis, we compare one step lookahead in Smodels with arc-consistency.
It has been shown th a t one step lookahead is strictly stronger than arc-
consistency (2 consistency) in pruning the search space. The question arises if
i step lookahead is strictly stronger than i + 1 consistency. Does ^-consistency
with unit propagation achieve the same pruning power as i step lookahead ?

Another interesting topic is the difference between expand and arc-consistency.
Arc-consistency is strictly stronger than expand, but the optim al tim e com
plexity of arc-consistency is 0 (ek2), which is the same as the tim e complexity
of expand for the translated programs [28]. Can we improve the pruning abil
ity of expand and achieve the same pruning power as arc-consistency in the
same time complexity?

An understanding of the relationships between different approaches often
reveals insights in these approaches and the corresponding techniques. Despite
their proximity, in the past constraint propagation in answer set programming
has rarely been compared to consistency techniques in solving CSPs. By es
tablishing the relations between lookahead and arc-consistency, this thesis is
the first step in this direction. Many more questions remain, among which
bounds consistency as used for CSPs appears particularly interesting, not only
because it can be extremely effective in reducing domains for some CSPs, but
also because it appears to have no counterpart in answer set solvers. We would
like to see the arsenal of constraint propagation techniques applied to answer
set programming also include a form of bounds consistency, so th a t the search
space in large numerical domains can be reduced quickly.

Finally, our result is based on a standard encoding from CSPs to answer
set programs. It is interesting to investigate w hether the same conclusion can
be drawn under different encodings.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] M. Davis, G. Logemann, and D. Loveland. A machine program for theo
rem proving. Communications of the ACM, 5(7):394-397, July 1962.

[10

[11

R ina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic
as a programming language. ACM, 23(4):733-742, O ctober 1976.

W. Faber and G. Pfeifer, h ttp ://w w w .dlvsystem .com /. Technical report,
V ienna University of Technology, Com puter Science Departm ent, Insti
tu te of Information Systems (184), Database and Artificial Intelligence
Group, 1996.

J.W . Freeman. Improvements to propositional satisfiability search algo
rithms. PhD thesis, Departm ent of Com puter and Inform ation Science,
University of Pennsylvania, 1995.

E.G. Freuder. Synthesizing constraint expressions. CACM, 21(11):958-
966, 1978.

J. Gaschnig. Performance measurement and analysis of search algorithms.
Technical Report CMU-CS-79-124, Carnegie Mellon University, P itts
burgh, Pa., 1979.

A. Van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for
general logic programs. Journal o f the ACM, 38(3):620-650, 1991.

M. Gelfond and V. Lifschitz. The stable model semantics for logic pro
gramming. In Proceedings o f the 5th International Conference on Logic
Programming, pages 1070-1080, 1988.

Ian Gent. Arc consistency in SAT. In Proc. E C A I 2003, pages 121-125,
2002 .

R. Haralick and G. Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, pages 263-313, 1980.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.dlvsystem.com/

[12] G. Huang, X. Jia, C. Liau, and J. You. Two-Literal logic programs and
satisfiability representation of stable models: A comparison. In Proc. 15 th
Canadian Conference on A I, LNCS, Springer, pages 119-131, 2001.

[13] Xiumei Jia. Using domain dependent knowledge for planning in answer
set programming. MSc thesis, 2003.

[14] S. Kasif. On the parallel complexity of discrete relaxation in constraint
satisfaction networks. Artificial Intelligence, pages 275-286, 1990.

[15] A. Mackworth. Consistency in networks of relations. Artificial Intelli
gence, 8(1):99—118, 1977.

[16] V. Marek and M. Truszczynski. Stable models and an alternative logic
program m ing paradigm. In K.R. A pt et al., editor, The Logic Program
ming Paradigm: A 25- Year Perspective, pages 375-398. Springer, 1999.

[17] W. Marek and M. Truszczynski. Autoepistemic logic. Journal o f the
ACM, 38:588-619, 1991.

[18] K. M arriott and P. Stucky. Programming with Constraints. MIT Press,
1998.

[19] I. Niemel and P. Simons. Efficient im plem entation of the well-founded
and stable model semantics. In Proceedings o f the 1996 Joint Inter
national Conference and Symposium on Logic Programming,Bonn, Ger
many, pages 289-303, September 1996.

[20] I. Niemel and P. Simons. Smodels - An im plem entation of the stable model
and well-founded semantics for norm al logic programs. In Proceedings of
the 4th International Conference on Logic Programming and Nonmono
tonic Reasoning, volume 1265 o f Lecture Notes in Artificial Intelligence,
pages 420-429, July 1997.

[21] I. Niemela. Logic programs with stable model semantics as a constraint
programming paradigm. Annals o f Math, and Artificial Intelligence, 25(3-
4):241-273, 1999.

[22] S. Padm anabhuni. Logic programming with stable models for constraint
satisfaction. PhD thesis, University of A lberta, 2000.

[23] Srinivas Padm anabhuni. Logic Programming with Stable Models fo r Con
straint Satisfaction. PhD thesis, University of A lberta, 2000.

[24] P. Simons. Efficient implementation of the stable model semantics for
normal logic programs. Technical R eport Research Report 35, Helsinki
University of Technology,Helsinki, Finland, September 1995.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[25] P. Simons. Extending and Implementing the Stable Model Semantics. PhD
thesis, Helsinki University of Technology, Helsinki, Finland, 2000.

[26] P. Simons. Extending and Implementing the Stable Model Semantics. PhD
thesis, Helsinki University of Technology, Helsinki, Finland, 2000.

[27] T. Walsh. CSP vs. SAT. In Proc. Principles and Practice o f Constraint
Programming, pages 441-456, 2000.

[28] Jia-H uai You and Guiwen Hou. Arc-consistency+unit propagation =
lookahead. Technical report, 2004.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

