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Chapter 1 

Introduction

A constraint problem is a problem where a solution to  the problem requires 
the satisfaction of possibly many constraints (conditions, properties) simul
taneously. In general, constraint problems are NP-complete. T h a t is, it is 
unlikely to design an algorithm th a t can scale efficiently with the problem 
size, in all the cases.

Constraint programming (CP) is a programming paradigm th a t can be 
used to  study and solve constraint problems. In this framework, the end user 
writes a program for a constraint problem, stating w hat has to be solved in
stead of how it is solved. Constraint programming is one of the most exciting 
developments in programming languages in the last decade. It has been suc
cessfully applied for solving many practical problems, such as scheduling and 
planning.

There are two frameworks for CP th a t are studied intensively by researchers 
in artificial intelligence. One is constraint satisfaction problem (CSP), and the 
other boolean satisfiability (SAT).

A CSP can be expressed by a collection of constraints over a finite set of 
variables, where each variable has a finite domain. A solution to  a CSP is 
an assignment to each variable of a value from its domain such th a t all the 
constraints are satisfied. A CSP may have one, many, or no solutions.

In SAT, a constraint problem is represented by a set of clauses. To find a 
solution for a SAT instance is to  find an assignment for the boolean variables 
th a t makes all the clauses satisfied.

In solving a constraint problem, it is common to  apply some constraint 
propagation techniques to prune the search space. Arc-consistency is the most 
popular propagation technique in CSP solvers, while lookahead appears to be 
its counterpart in SAT solvers.

Although CSP solvers and SAT solvers were developed largely in paral
lel, the relation between arc-consistency and lookahead has been open for 
some time. Recently, [28] shows th a t arc-consistency for CSPs is weaker than

1
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lookahead in SAT in pruning the search space. A new m ethod called A C + is 
formalized to  enhance arc-consistency to achieve the same pruning power.

In this thesis, we review the work given in [28]. We further design an algo
rithm  for A C + and perform some further comparisons with other consistency 
techniques in the literature.

1.1 M otivation
A CSP can be solved by a straightforward method called generating  and 
testing. F irst, it generates a complete instantiation of all variables, and then 
tests whether this instantiation satisfies all the constraints. If it does, then 
a solution is found, otherwise another instantiation is generated and tested 
until a solution is found or all instantiations have been generated and tested. 
Obviously, this algorithm  is not very efficient.

The most common algorithm for solving CSPs is based on backtracking. 
The idea for a backtracking algorithm is to extend a partial solution toward a 
complete solution consistently. It assigns a value from its domain to  a variable, 
and tests whether th is assignment is consistent with the already assigned vari
ables. If it does, then th is process continues, otherwise the algorithm chooses 
an alternative value for this variable. If no value can be assigned to  this 
variable consistently, the algorithm backtracks to  the proceeding variable.

A backtracking algorithm  can m aintain a certain kind of consistency for the 
underlying CSP in order to  prune the search space. Consistency techniques 
can remove the inconsistent values from the domains in a CSP. As a result, the 
search space is reduced. A general notion of consistency is called k-consistency  
which requires th a t any partial solution for any k — 1 variables be consistently 
extended to  a  partial solution with any additional variable [6 , 15]. The most 
popular case of ^-consistency is arc-consistency (when k — 2 ). Consistency 
techniques can be applied before search, as well as during search.

A SAT instance can also be solved by using a backtracking search al
gorithm. The well known algorithm is Davis-Putnam-Logemann-Lovehand 
(DPLL) procedure [1], A common technique for space pruning is lookahead. 
Lookahead tentatively assigns a value for each variable, and checks w hether 
this assignment leads to  a contradiction. If it does, lookahead then assigns the 
opposite value for th is variable (cf. [5]). In this way, the variable gets a value 
propagated from already assigned variables w ithout going through a search 
process. In order to  derive a contradiction, constraint propagation techniques 
are used. Unit propagation is a widely used constraint propagation technique 
in SAT solvers.

Answer set program m ing is a newly developed programming paradigm  for 
solving constraint problems, where a constraint problem is represented by a 
logic program specifying the constraints th a t must be satisfied. A model for

2
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an answer set program corresponds to  a solution to the problem being solved. 
A program may have zero, one or more models. Logic programming based 
on the stable semantics [9] yields an answer set programming system. Recent 
im plementations of the stable model semantics include Smodels [19, 2 0 , 24] 
and DLV [4]. Technically, answer set programming can be viewed as a variant 
of SAT.

Although arc-consistency and lookahead are both used to prune the search 
space in solving constraint problems, the relation between lookahead in SAT 
solvers and arc-consistency in CSP solvers remains open for some time. Re
cently, Walsh [27] compared the impact on achieving arc-consistency on CSPs 
with unit propagation on SAT problems. Gent [10], in extending an idea 
from Kasif [14], shows th a t the “support encoding” of binary CSPs into SAT 
instances is able to  achieve arc-consistency by unit propagation.

In [28], lookahead is related to  arc-consistency under some assumptions. 
Firstly, we fix the encoding from CSPs to  answer set programs. Secondly, we 
choose the lookahead algorithm  in Smodels for comparison. Finally, we only 
deal w ith binary constraints. Under these assumptions, we showed th a t looka
head is more powerful than  arc-consistency in pruning the search space. This 
insight enables us to  identify what is missing in arc-consistency. Unique value 
propagation, or ju st u n it propagation , a terminology borrowed from SAT, is 
identified to  make up the gap. Unit propagation for CSPs assigns a value for 
a variable if there is a unique value in its domain th a t is consistent w ith the 
partial instantiation. This process continues until no value can be assigned to 
a variable or a conflict occurs. A new m ethod called A C + th a t combines arc- 
consistency and node consistency with unit propagation is formalized. A C + 
for CSPs prunes the same space as lookahead in Smodels. We give a worst 
case time complexity of lookahead for the translated programs from CSPs. 
Indirectly, a bound for the tim e complexity of A C + is obtained for CSPs.

In this thesis, we extend the work in [28]. Based on the result given in [28], 
lookahead can be viewed as a providing an algorithm for A C + indirectly. As 
lookahead is a general algorithm, it is worthwhile to investigate whether there 
exists more efficient algorithms for A C +. In this thesis, we design an algo
rithm  for a restricted version of A C + called arc-consistency with unit prop
agation (ACUP) for CSPs. In ACUP, node consistency is removed, since it 
can be processed separately. We prove the correctness of this algorithm  and 
give its time complexity. The complexity bound of this algorithm is lower 
than the one given in [28]. Therefore, the algorithm provided in this thesis is 
more efficient. Furthermore, we compare the pruning power for ACUP with 
th a t of arc-consistency look ahead and path consistency [2]. We show th a t 
for some CSPs, ACUP is stronger than  arc-consistency look ahead, while for 
some others, ACUP is weaker. The same conclusion is applied to  the relation 
between ACUP and path  consistency. Although i-consistency  is very power-

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ful in pruning search space, and has a high time complexity (0 (2 l(ek)2i) for a 
brute-force algorithm [2]), we show th a t for some CSPs it still cannot find the 
conflict th a t  can be found by ACUP.

1.2 Contributions
The contributions of this thesis are as follows:

1 . We perform a review on the constraint propagation techniques between 
CSPs and answer set programming.

2 . An algorithm  for ACUP is presented. The correctness of the algorithm 
is proved, and the complexity of the algorithm is given. The complexity 
result implies th a t our algorithm  is more efficient than  lookahead.

3. We also compare ACUP with consistency techniques in the literature. 
We show th a t the pruning power for arc-consistency with unit propaga
tion overlaps with th a t of arc-consistency look ahead and path consis
tency. A revised version of the arc-consistency look ahead algorithm is 
given to  achieve the extra pruning power.

1.3 Thesis Layout
This thesis is organized as follows. The next chapter introduces the defini
tions of CSPs, arc-consistency, and path  consistency. We also discuss some 
general search strategies in the literature. Chapter 3 provides some concepts 
in logic programming with the stable model semantics, and the algorithm of 
Smodels. Lookahead is also discussed. In C hapter 4, we review some results 
in [28]. Firstly, Niemela’s translation is introduced. Under this translation, it 
has been shown th a t lookahead is strictly stronger than  arc-consistency. Then, 
in Chapter 5, we introduce the result in [28], showing th a t arc-consistency plus 
node consistency with unit propagation {AC +) prunes exactly the same space 
as lookahead. Also in this chapter, we present an algorithm  for ACUP, an 
alternative version of A C +, which only combines arc-consistency with unit 
propagation. Its correctness is proved and complexity is analyzed. Further
more, in Chapter 6 , we compare ACUP with other consistency techniques in 
the literature. We show th a t the pruning power of ACUP neither dominate 
nor is dominated by path  consistency and arc-consistency look ahead (ACLA) 
in the literature. ACLP is revised to incorporate the idea in ACUP to prune 
more search space. Chapter 7 concludes our work, and gives some comments 
on future research.

4
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Chapter 2 

Constraint Satisfaction Problem

2.1 Definitions
A constraint satisfaction problem or CSP is a triple A ( X ,  D , C) ,  where C  
is a finite set of constrains {ci, c2, . . . ,  q,} over a finite set of variables X  =  
{ x i , x 2, • ■ ■, x m} and a domain D  =  { D Xl, D X2, . . . ,  D Xm} th a t maps each vari
able Xi G X  to  a finite set of values, w ritten D Xi.

A constraint q  is a relation R4  defined on a subset of variables .S', C X .  
Si is called the scope of q . If S', =  { x ix, . . .  , x im}, then R4  is a subset of the 
Cartesian product D Xi x  . . .  x  D Xim.

The arity  of a constraint refers to  the size of its scope. A unary  constraint 
is defined on a single variable; a binary constraint is defined on two variables; 
an i-ary constraint is defined on i variables.

Instantiation

An instantiation of a set of variables is an assignment of each variable in the set 
with a value from its domain. Formally, in a CSP A ( X ,  D,  C ), an instantiation 
of a set of variables {x ix, . . . ,  x im)  is a set of pairs { (xh , ah ) , . . . ,  {xim, a,m)}, 
where { x ^ , . . .  , x im)  C X ,  aik C D Xjfc. We denote by x -4  a  or (x, a) th a t 
variable x  is assigned value a € D x.

Satisfaction of a constraint

A constraint q  is satisfied by an instantiation if and only if the instantia
tion to  variables in the scope of q  yields a tuple in the relation Rj.

Consistent Partial Instantiation

A partial instantiation is consistent w ith constraint q  if and only if the assign-

5
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m ent yields a projection of a tuple in the relation of R^. A partial instantiation 
is consistent if and only if it is consistent w ith every constraint. A consistent 
partia l instantiation is also called a  partia l solution.

Solution

A solution to  a CSP A ( X ,  D,  C)  is an instantiation of all its variables X  =  
{ x i ,X 2 , ■ ■ •, x m}, where each variable Xj is assigned a value from its domain 
D Xi such th a t all the constraints in C ~  {ci, c2, . . . ,  cn} are satisfied.

E x a m p le  2 .1 . 1  Let a CSP be A ( X ,  D,  C),  where X  = {x, y, z} , D x =  D y — 
D z =  {0,1, 2 }, and cxy =  {{0,1), (0 , 2 ), (1 , 2 )}, cyz =  {{0,1), (0, 2), (1 ,2)}.

Then {x  =  0 , y =  1, z — 2 } is a solution for A . ■

Two CSPs are said to  be equivalent if and only if they have the same set 
of solutions.

2.2 Arc-Consistency
A general notion of consistency is called k-consistency, which require a partial 
solution with an assignment of k  — 1 variables to be consistently extended to 
a partial solution with an assignment of an additional variable. When k  =  1, 
it is called node consistency; when k ~  2 , it is called arc-consistency; when 
k = 3, it is called path  consistency.

Now we give the formal definition of arc-consistency as follows.

D e fin itio n  2.2.1 Given a CSP A ( X ,  D,  C ) 7 a constraint c E C over {x , y} ,  
where x, y E X ,  x  is arc-consistent with respect to y over c i f  and only i f  for  
every assignment x  —»• a E D x, there is a corresponding assignment y  —> b, 
where b G D y such that x  —> a and y b satisfy c.

A  binary constraint whose scope is {x, y }  is arc-consistent if x  is arc-consistent 
w ith respect to  y  and y is arc-consistent with respect to  x. A CSP is arc-
consistent if all of its constraints are arc-consistent.

E x a m p le  2 .2 .2  Consider a CSP as described by the constraints {x  < y, y <
z, z  < 3), where D x — D y =  {1, 2,3} and D z =  {2,3,4}.

Enforcing node consistency reduces D z to D'z =  {2, 3}. Enforcing arc-consistency 
reduces Dx to D'x =  {1,2}, as for x  — 3 there is no value for y  such th a t the 
constraint is satisfied. Similarly, D y is reduced to D'y — {2, 3}. Working on 
the constraint y < z  for variable y, D'y is further reduced to  2, which forces

6
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r e v is e
I n p u t :  two variable x,-, Xj in a certain constraint Cy, and their respec

tive domains D Xi, D x .
O u tp u t :  D Xi such th a t Xi is arc-consistent with Xj
fo r each a,i E DXi do

i f  there is no value aj E D Xj such that (ait af) E Cij th e n  
j remove a, from DXi;

e n d
e n d

Figure 2.1: Algorithm of revise

D ’x to  become {1} by the first constraint, and D'z to become {3} by the last 
constraint. By now, no further reduction is possible. ■

Many specific algorithms th a t enforce arc-consistency for binary constraints 
have been developed (cf. [2 , 18]), such as AC-1, AC-3, AC-4. An essential sub
procedure used in arc-consistency is r e v is e  [2] (cf. Figure 2.1). r e v i s e ( x i , Xj ) 
tests every value a in D Xi to see if there is a support value in D Xj. If not, then 
a is removed from domain D Xi.

Since each value in D Xi is tested with each value in D Xj, revise  has the 
tim e complexity 0 (k2), where k bounds the domain size.

Algorithm AC-1 given in Figure 2.2 is a brute-force algorithm  th a t enforces 
arc-consistency of a CSP. It applies revise  to  all variable pairs th a t are in the 
scope of the constraints, until no further domain value can be removed.

Let e be the number of constraints, and k a bound on the domain size. 
Since the loop of part 1 in AC-1 takes 0 ( e k 2) time, and in the worst case, 
one iteration may cause the deletion of just one value from one domain, we 
conclude:

P ro p o s it io n  2 .2 .3  [2] The time complexity o f AC-1 is 0 (e 2 k 3).

One can see th a t AC-1 is a naive algorithm  which processes all the con
straints even if only a few values are removed in the previous rounds. It can 
be improved to  check only the affected constraints.

In AC-3 (cf. Figure 2.3), a q u e u e  is established initially to store the pairs 
of variables in the scopes of all the constraints. In each round, a pair ( x i ,  X j )  

is removed from the queue, and the inconsistent values in D Xi are removed by 
r e v i s e ( x i , X j ) .  If r e v i s e ( x i ,  x j )  causes a removal in D Xi, then all the related

7
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AC-1

In p u t:  a constraint A { X ,  D,  C)
O u tp u t:  a consistent CSP equivalent to A  
r e p e a t

i fo r each Cij G C  do
fo r each (xi, xf )  where x^ and Xj in the scope of Cij do  

revise(xi, X j ) ;  

revise(xj ,  x^;
e n d

e n d
u n ti l  no domain is changed;

Figure 2 .2 : Algorithm of AC-1

pairs to x,- are added to the queue. This procedure continues until the queue 
becomes empty.

E x a m p le  2 .2 .4  Consider a CSP that includes three variable x, y, z , where the 
domains of all variables are D x — D y — D z =  {0,1,2}, and the constraints 
are cxy =  {{0 , 1 ), (0 , 2 ), (1 , 2 )}, cyz =  {{0 , 1), (0 , 2 ), (1 , 2 )}, cM =  {(2 , 1 ), (1 , 2 )}

Now we show how AC-3 works on this CSP. Initially, (x,y) ,  (y, z),  and (z , x )  
are put into the queue. Then (x, y) is removed from the queue. Applying 
revise(x,y) ,  2  is removed from D x. Due to  {z, x) in the queue already, we 
don’t  need to add (z, x)  to  the queue again. Then (y, z) is removed from the 
queue. Since 2 is removed from D y, (x, y) is added to  the queue again. At 
this stage, {z , x)  is removed from the queue. As a result, 0 and 1 are removed 
from D z, and (y, z) is added to  the queue again. In the following round, 2 is 
removed from D x, and 1 removed from D y. From now on, no further domain 
value can be removed, so no new pair is added to  the queue. Therefore, the 
algorithm stops. Finally, we get D x = {0}, D y =  {1}, D z =  {2}. ■

As each tim e when revise  causes a change, there is at least one value th a t 
is removed from the domain, so the size of queue is at most 0 (ek), where 
k  bounds the domain size, and e is the number of constraints. We already 
know the time complexity of revise  is 0 (k2), we therefore have the following 
proposition:

P ro p o s it io n  2 .2 .5  [2] The time complexity of AC-3 is 0 {e k z).

8
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AC-3
In p u t:  a constraint A ( X , D, C)
O u tp u t:  a consistent CSP equivalent to A  
fo r each ĉ - G C  d o

fo r every pair (aq, xf )  with X, and Xj are in the scope of do 
| queue -f- queue U { ( x i , Xj ) ,  ( x j , x j)};

e n d
e n d
w h ile  queue ^  0  do

select and delete { x^x f )  from queue-, 
r e v i s e ( x i , Xj );
i f  r e v i s e ( x i , X j ) causes a change in  D Xi th e n  

| queue 4— queue  U {(x*,, xf) ,  k ^  i, k  =£ }};
en d

e n d

Figure 2.3: Algorithm of AC-3

In the worst case, checking arc-consistency of a general CSP takes 0 ( e k 2) 
time (checking each constraint takes 0 (k2), and there are e constraints), so 
there is no algorithm th a t can have a time complexity lower than  0 (ek2).

AC-4 achieves this optim al tim e complexity by utilizing an efficient struc
ture to  store the relations in a CSP. Algorithm AC-4 is given in Figure 2.4.

AC-4 associates each assignment {x^ af) with the am ount of support from 
neighboring variable Xj, th a t is, the number of values in the domain of Xj 
th a t are consistent w ith the assignment (x j,a ,). If variables x and y  are in 
the same scope of a certain constraint, then x is the neighboring variable with 
respect to y , and y is the neighboring variable with respect to x. A value a* is 
then removed from the domain D t- if it has no support from some neighboring 
variables. AC-4 uses a counter array, counter (xi, a*, X j ) ,  to  store the number 
of support values from neighboring variables for the assignment of (x^ af). An 
array S(xj ,  aj) is used to  store all the values in the other variables supported 
by (Xj, Oj). C is used to store the unsupported values.

In each step, the algorithm  picks up an unsupported value from C, and 
updates all the affected counters. The counters th a t become zero as a result 
are placed in C. This process continues until all the unsupported values are 
removed.

E x a m p le  2 .2 . 6  Consider a three variable CSP: x, y, z  with D x =  {1,2}, D y =

9
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AC-4
In p u t:  a CSP A ( X ,  D,  C)
O u tp u t:  a  consistent CSP equivalent to A
initialize S(xi ,  af), counter(xi, a*, xf)  from all ctj 6  C;
for all counters do

if  counter (xi, ai, Xj) = 0  ( i f  (xi,af) is unsupported by Xj) th e n
add (xi, ai) to £ ;

en d
e n d
w h ile  C is not empty do

choose and remove (xi, af) from C, remove at- from D Xi;
fo r each (Xj ,a j ) G S(x{,  a*) do

decrement counter ( x j , aj ,Xi);
if  counter (xj, a j ,Xi)  = 0  th e n
| add (xj, aj) to  £ ;

e n d
en d

e n d

Figure 2.4: Algorithm of AC-4

10
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{3,4} , D Z =  {0,1}. There are two constraints: cxy =  {{1,3) (1,4) (2,4)}, 
^  =  {(3,0) (3,1)}.

Initializing the S(x,  a) arrays, we have

s(x, 1) =  {(s/,3), (a, 4)}
S(i ,2)  =  {<#,4)}
S(»,3) =  {(i,l> (2,0) (2,1)}
S(8I,4) =  {( i ,1> (x , 2 »
S(*,0) = {<y, 3)}
S(2,1) =  {(k,3)}

For counters, we have

counter {x, 1 , y) -  2 

counter (x, 2 , y ) = 1 , 
co u n ter(y ,3 ,x )  = 1, 
counter(y,3 , z) = 2 , 
counter {y, 4, x) = 2 , 
counter(y,A , z) = 0 , 
counter (z, 0 ,y) = 1 , 
counter (Zj l , y )  = 1 .

We don’t  need to add counters between variables th a t are not directly con
strained, such as between x  and z.  First C — {(y,  4)} due to counter(y, 4, z) =
0, which means there is no support for the assignment y —»■ 4. In the first iter
ation, (y, 4) is removed from £ , and value 4 is removed from domain Dy. Then 
we decrease affected counters, which are counter(x, 1 , y) and counter{x, 2 ,y).  
Due to  counter(x, 2, y) =  0, (x, 2) is added to  £ . In the next iteration, (x, 2 ) is 
removed from £ , and 2 is removed from D x. Then we decrease affected coun
ters again, and set counter (y, 4, x) =  1 . Since no new counter becomes zero, 
no new pair is added to  £ . Consequently £  remains em pty and the algorithm 
stops. Finally, the domains change to  D x =  {1}, D y =  {3}, D z =  {0,1}. ■

Note th a t the number of elements in S(xi ,  aj) is twice the number

of tuples in the constraints, also counter (xj, aj ,Xk)  is equal to  twice the
ij,k

number of tuples in the constraints, which is 0 ( e k 2). So the initialization 
step th a t establishes the counters of supports and the pointers to  the supports 
requires 0 ( e k 2) time and space. In the while  loop of the algorithm, each 
iteration decreases at least one counter by one, so there are a t most 0 (ek2) 
iterations. We therefore conclude [2]:

P ro p o s it io n  2 .2 .7  The time complexity and space complexity of AC-4 is 0 ( e k 2).

11
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2.3 Path Consistency
D e fin itio n  2.3.1 Given a CSP A (X , D, C), a two variable set (xi ,xf )  is path 
consistent relative to Xk iff fo r  every consistent assignment {(xi, af) {xj, aj)},  
there is a value E D Xk such that the assignment {(xi,  af) (xk, a*)} is con
sistent and {(xk, ak) {xj, a ff}  is consistent [2]. A binary constraint is path 
consistent relative to Xk i f  and only i f  fo r every pair (ai, aff  E Cij, there is a 
value afc in Xk, which is a neighbor of both Xi and Xj, such that (ai,ak) E 
and (a*,, af) E Ckj■ A  CSP is path consistent i f  and only i f  fo r  every c ĵ E C, 
and fo r  every Xk, k  ^  i ,k  j , where Xk is the neighbored variable to both Xi 
and Xj, is path consistent to Xk-

E x a m p le  2 .3 .2  Consider a CSP that has three constraints over three vari
ables x , y, and z with D x — D y ~  D z =  {0,1}, cxy =  {{0,1} (1,0)}, cxz =  
{{0 , 1 ) (1 , 0 }}, and czy = {(0 , 1 ) (1 , 0 )}.

Obviously, this CSP is arc-consistent. However, consider (0,1} E cxy, there 
doesn’t  exist a value a for z  such th a t (0, a) E cxz and (a, 1) E czy simultane
ously, so the CSP is not path consistent. ■

Enforcing arc-consistency makes a CSP consistent between two variables, 
while enforcing path  consistency makes a CSP consistent among three vari
ables. A general notation of consistency can be defined based on the consis
tency among i variables.

D e fin itio n  2.3.3 Given a CSP A ( X , D , C ) ,  i f  fo r  any consistent instantia
tion o f any i — 1  distinct variables, there exists an instantiation of any ith  vari
able such that the i values taken together satisfy all o f the constraints among 
the i variables [2], then A is i-consistent. I f  i — 2, it is called arc-consistent. 
I f  i = 2>, it is called path consistent.

E x a m p le  2 .3 .4  Consider a CSP that has four variables X\, x 2 ,xs, x 4  with 
DXl = D X 2  =  D X 3  — D xa =  {0,1,2}, and four constraints x \ ^  x2,£ i 7  ̂
x$,X2  #  £3 , X2  7  ̂ x 4, £3  7  ̂ x 4 , x 4  7  ̂ X\. We can see that this CSP is both arc 
and path consistent, but not f-consistent. ■

2.4 General Search Strategies for CSPs
Constraint propagation can reduce the search space in com puting a solution 
of a given CSP. But for most CSPs, we are still left w ith choices to reach 
a solution by only employing constraint propagation. The only way to  pro
ceed is guessing  and testing. T ha t is, we must search the space of possible 
choices. The naive algorithm for performing system atic search is chronological
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backtracking. It incrementally a ttem pts to extend a partial solution toward 
a complete solution, by repeatedly choosing a value for another variable con
sistent w ith the values in the current partial solution. If all the values in the 
domain of a variable have been tried and fail to give a consistent instantiation, 
a dead-end occurs. At this point, backtracking  takes place, and the preceding 
variable in the partial instantiation becomes the current variable. The search 
continues until the required number of solutions has been found or no variable 
can be instantiated.

Chronological backtracking algorithm  is not efficient. In general, it has 
three disadvantages.

1 . One is thrash ing  [7], i.e., repeated failure due to  the same reason. 
Thrashing takes place because the chronological backtracking algorithm 
does not identify the real reason of the conflict, i.e., the conflicting vari
ables. As a result, search in different parts of the space w ithout identi
fying the real conflict keeps failing for the same reason. Thrashing can 
be avoided by look back techniques, by which the algorithm backtracks 
directly to the source of failure, instead of backtracking to  the preceding 
variable in the partial instantiation.

2. Another disadvantage is th a t it always chooses a fixed order of instanti
ating the variables. A CSP may have different search spaces on different 
variable orders. W hen a good order is chosen, the conflict can be found 
and avoided early by the algorithm. There are several strategies in the 
literature to  choose an order in which the variables are instantiated.

3. Finally, the chronological backtracking algorithm  cannot detect the con
flict before it really occurs. This drawback can be avoided by apply
ing look ahead technique, which can be invoked when the algorithm is 
preparing to assign a value to the current variable. It applies consis
tency techniques to forward check the possible conflicts, and chooses a 
consistent value for the current variable.

In this thesis, as we compare the difference between look ahead techniques 
in the literature and arc-consistency with unit propagation, we only introduce 
look ahead strategies based on constraint propagations.

We now present a general look ahead algorithm in Figure 2.5 [2], In this 
algorithm, different propagation m ethods can be embedded to form differ
ent algorithms such as forward checking [1 1 ], arc-consistency look ahead or 
maintain-arc-consistency [7]. For this reason, we write a SELECT-VALUE- 
XXX subprocedure to indicate the specific propagation m ethod embedded in 
the general algorithm by replacing XXX.

Initially, this general algorithm uses a tentative domain D' to  store the 
original domain, and the first variable is the current variable. The SELECT-

13
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Backtracking
In p u t :  a CSP A { X , D , C )
O u tp u t:  either a solution or notification th a t no solution can be found 
D ' = D;
i =  1 ;
w h ile  1 <  i <  n  do

instantiate x, -f- SELECT-VALUE-XXX; 
i f  Xi is null /*  no value was re turned*/ th e n

i  =  i — 1 /*backtrack*/ ;
reset each D'k to  D k, k  > i, to its value before Xi was last 
instantiated; 

e lse
| i = i + 1 /*  step forward*/;

e n d  
e n d
if  i=  0  th e n
| return  “no solution” ;

else
| return instantiated  values of ( x i , . . . ,  x n)\ 

e n d

Figure 2.5: A general lookahead algorithm from [2]

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VALUE-XXX procedure propagates the partial instantiation to remove incon
sistent values from D '. The idea here is to  reduce the domains of the unassigned 
variables by maintaining certain level of consistency before com m itting to a 
choice. The reduction to  an em pty domain causes the algorithm to  backtrack. 
At this stage, different propagation methods can be applied. Upon backtrack
ing, D ' is reset to its original set in order to  give up the modifications th a t are 
caused by the current instantiation.

F o rw a rd  C h eck in g

In the literature, it is often felt th a t arc-consistency is too expensive to be 
beneficial in real applications. As a result, a restricted version, called forward 
checking (FC), where values from the domains of future variables are filtered 
out if they are inconsistent w ith the current instantiation, is sometimes pre
ferred [28].

The forward checking algorithm  is given in Figure 2.6 [2]. It enforces a 
partial consistency check in the interm ediate stage of the general look ahead 
algorithm. It assigns a tentative value for the current variable, then per
forms arc-consistency check between the partial instantiation and the future 
variables. The values th a t are inconsistent with the current partial value as
signment are removed from the domain of each future variable. If the domain 
of any future variable becomes empty, it chooses another value for the current 
variable, enforces an arc consistency check, and resets the domains for all the 
future variables. If all the values in the domain of current variable have been 
checked, and no value can be chosen, it resets the domains and backtracks to 
the previous instantiated variable.

E x a m p le  2.4.1 Consider the following CSP with four variables X \ , x 2 , 2:3 , and 
x \, and respective domains D Xl — {0,1}, D X 2  — {0,1,2}, D Xi =  { 0 ,1}; D Xi — 
{0,1}. Suppose there are six constraints :

c Xl ,x2 — {{1, 2), (0 , 0), (0 , 1), (0 , 2)}
c*1)I3 =  {(0,0)}
C X l , X 4  {(0, 1) }
C X 2 , X 3  =  {(1,0), (0, 0)} 
cX2,x4 =  {(1,0), (0,1)} 
cX4,X3 = {(0,0)}

Suppose the order of instantiating variables is x i , x 2 , x 3 , x 4. Initially, le t’s 
s ta rt at X\ —> 0. By applying arc-consistency on the future variables x 2, x 3, 
and x 4, the value 1 is removed from D X3, and the value 0 from D X4. No value 
is removed from D X2. Now suppose x 2  —» 0. At this stage, arc-consistency 
is again applied to the future variables x 3, x 4, but no value can be reduced 
from D Xi, DX4. Suppose 0 is chosen as the instantiated value for variable x 3.

15
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SELECT-VALUE-FORWARD-CHECKING 
In p u t:  a CSP A ( X ,  D', C), current variable Xi
O u tp u t:  a value for the current variable, or a null if no consistent value 
w h ile  D[ is not empty do

select an a G D ', and remove a from D\\ 
fo r each k, i < k < n  do  

fo r each value b G D'k do
if  not consistent(aiJx, Xi = a, Xk = b) th e n  
| remove b from D 'k;

e n d
e n d
if  D'k is empty th e n
| reset each D'k, i < k < n  to  value before a was selected; 

e n d
return a; 

e n d  
e n d
return null;

Figure 2.6: SELECT-VALUE subprocedure for forward-checking
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At this stage, consider the propagation on future variable X4 . All the values 
are removed from D X 4  because they are inconsistent w ith the instantiation 
{xi  -> 0, £2  —> 0 ,x 3  -»  0}. Because D X 4  is empty, backtracking happens. The 
algorithm will backtrack to the previous variable x 2, and consider the next 
value 1 in D X 2  for x 2, and the domain D X 4  is reset to  {1}. Now x 2  —> 1 is 
then propagated to  the future variables x 3  and x4 again. We can see th a t 1 in 
D X 4  is inconsistent w ith the current partial instantiation X\ —v 0, x 2  —y 1. The 
fact th a t 1 is removed from D X 4  causes D X 4  to  become empty. So backtracking 
tries value 3 for x 2. Upon propagating this instantiation to x 3, and £ 4 , D Xz 
is annihilated. Hence the algorithm will backtrack to  the next value 1 for xi,  
and all the propagation effects caused by x —¥ 0 are undone. At this stage, all 
the domains are thus back to  their original form. Now the instantiation x  -» 1 

is propagated to the future variables x 2 , x 3  and x±. 0  and 1 are removed from 
D X 2  and all the values in D Xz are removed due to inconsistency. Therefore, 
backtrack happens again, and no solution can be found. ■

A rc-C onsistency Look Ahead

Experiments show th a t for problems with relatively tight constraints and rela
tively sparse constraint graphs, algorithms where future variables are checked 
against each other could substantially outperform forward checking [6]. This 
approach is called arc-consistency look ahead. In contrast to  FC, arc-consistency 
look ahead performs full arc-consistency check between the current variable 
and future variables, and among all future variables. Clearly, arc-consistency 
look ahead does more work than  FC. In an arc-consistency look ahead algo
rithm , full arc-consistency on all uninstantiated variables is enforced following 
each tentative value assignment to  the current variable. If a variable’s do
main becomes annihilated during this process, the current candidate value is 
rejected, then it chooses another value for the current variable. If it is consis
tent (no domain becomes empty), the algorithm chooses the current candidate 
value for the current variable. If all the values in the domain of current variable 
are checked and no value can be chosen, it backtracks to  the most recent in
stantiated variable. An algorithm  of choosing a candidate value for the current 
variable is given in [2 ] (cf. Figure 2.7). it is called SELECT-VALUE-ARC- 
CONSISTENCY (SVAC).

W hen the current variable is instantiated to  a value, SVAC discovers in
consistent values due to  the instantiation using arc-consistency, and removes 
them. If the instantiation causes an empty domain, it chooses another value 
for the current variable, and all the removed values are undone. Otherwise, 
the current value is assigned to  the current variable.

A popular variant of arc consistency look ahead is m ain ta in ing  arc-consistency, 
which performs arc-consistency after each domain value is rejected. For exam
ple, suppose the current variable x  has five values {1, 2, 3, 4, 5}. First, tenta-
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SELECT-VALUE-ARC-CONSISTENCY 
In p u t:  a CSP A ( X ,  D ' , C), current variable
O u tp u t :  a value for the current variable, or null if no consistent value
w h ile  D\ is not empty do

select an arb itrary  element a G D ', and remove a from D\\
make A  arc-consistent with the partial instantiation.
if  any future domain is empty (don’t select a) th e n

reset each D p i < j  < n, to  its value before a was selected;
else

return  a;
e n d

e n d
return null;

Figure 2.7: SELECT-VALUE subprocedure for arc-consistency look ahead

tively assign 1 to x, and apply a full arc-consistency check. If an empty domain 
occurs, then x  — 1 is reject, and 1 is removed from domains D x — {1 ,2 ,3 ,4 ,5 } . 
Now we have D x =  {2 ,3 ,4 ,5} , and apply full arc-consistency again with this 
reduced domain.
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Chapter 3

Logic Program m ing w ith Stable 
M odel Sem antics

3.1 Introduction
Logic program m ing with stable model semantics has been developed as a vi
able constraint programming paradigm [16], where a constraint problem is 
expressed by a logic program, and the stable models for the program are the 
solutions to  the constraint problem.

Norm al logic program

A normal logic program is a set of rules of the form

h 4— o, \ ,..., an , not ..., not bm .

where h, a i ,..., an, bi , ..., bm are function-free atoms. In the above rule, atom 
h is called the head of the rule and the other literals make up the body. An 
expression such as not b is called a not-atom. Atoms and not-atom s are re
ferred to  as literals. Not-atoms are also called negative  literals and atoms are 
called positive  literals.

Positive logic progam

A logic program without not-atom s is called a positive  program or a negation 
fr ee  program. A model of a logic program is an interpretation th a t satisfies 
all the rules in the logic program. A model is minimal if no proper subset is 
also a model. It is well-known th a t a positive program always has a unique 
minimal model [3]. The minimal model of a positive program can be computed 
by a fixpoint operator Tp defined as follows [13]:
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Tp(M)  — M  U {/i | h i— a,i,..., an G P, { c t i , anJ C M y

where M  is a set of atoms and P  is a positive program. The function TP is 
monotonic since given sets of atoms Si and S 2, if Si C S2 then Tp(Si) C TP(S2). 
The unique minimal model can be constructed by starting with an empty set 
and applying the TP operator until a fixpoint is achieved as follows [13]:

t ;°  =  0
T t(i+1) =  Tp ) w h e n  i > 0

W hen S is a fixpoint, S -  Tp( T f  ) =  Tpt(i).

3.2 Stable M odel for Normal Logic Program
The definition of a stable model for a norm al logic program is based on the 
idea th a t one guesses a set of atoms in the program, and then tests w hether 
it is a stable model.

Before giving the definition, we introduce reduct first.
Given a program  P  and a set of atoms M ,  the reduct P M of P can be 

derived as follows [25]:

1. delete each rule in P  th a t has a not-atom  not x  in its body such th a t 
x  G M ,  and

2 . delete all not-atom s in the remaining rules.

Clearly, P M is a positive program. Therefore P M must have a unique minimal 
model.

Definition 3.2.1 [25] Give a set o f atoms M  in program P, M  is a stable
model of P  iif  M  is the least fixpoint o f P M, where P M is the reduct of the 
normal logic program P  with respect to the set of atoms M.

We have defined the stable model semantics for normal logic programs 
based on guessing and testing. A naive algorithm  th a t computes the stable 
models can be based on the definition. First, a set of atoms is guessed, then 
this set is tested whether it is a stable model or not by the definition. By 
using this naive approach, we can find all the stable models by enumerating 
all subsets of the atoms in a program and testing whether each subset is a 
stable model. There are 2" subsets of atoms, where n  is the number of atoms 
in a program.

The problem of determining whether a normal logic program has a stable 
model is NP-complete [17].
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E x a m p le  3 .2 .2  Consider the following program P:

a <— c, not b. 
b <— not c. 
c <— a, not b.

One can check th a t M  — {b} is the only stable model for program P. The 
reduct of P M, for example, is obtained as follows:

1 . deleting the first and th ird  rules from P to get {6  <— not c. }, and

2. deleting the not c from the second rule.

We then get P M =  {b «—}. As there is only one rule w ith an empty body in 
the program, the minimal model is {b}, which is the same as M .  So M  =  {b} 
is a stable model of program P.

However, M \ =  {a} is not a stable model, since P Ml — {a <— c. b. c <— 
a.}, the minimal model of P Ml is {6}, which does not coincide with M i. 
Similarly, one can verify th a t all the other sets of atoms are not stable models. 
■

All stable models are justified in the sense th a t every atom  in a stable
model has to  have some reason to  be there. T hat is, if an atom  is in a stable
model, there must be a rule w ith the atom  as the head where all the body 
literals are satisfied.

A program may have no stable model. For example, let program P  be

a t— not a.

There is no stable model for P.  There are only two possible models: {a} and
0. If {a} is a model, then the body of the only rule in program P , not a, is 
fa lse ,  which does not support a. 0 is not a model either, since the minimal 
model for the reduct P 0 is a.

A constraint in logic programs is of the following form:

—̂ r q ,..., an , not b\ ,..., not bm.

A model M  satisfies the constraint if the body of the constraint is fa lse  in M .  
If M  is a stable model of a program, then M  must satisfy all the constraints 
in the program.

Under the stable model semantics, the above constraint can be translated to 
the following rule:

/  <— not f ,  ai, ..., an, not b\ , ..., not bm .

where /  is a new unique atom in the program.
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3.3 An Example Program
In this section, we will use a well-known problem, namely the colorability 
problem, to  illustrate logic program m ing based on the stable model semantics.

The problem is, given facts about vertices, arcs and available colors, to  find 
an assignment of colors to vertices such th a t each vertex has a color and any 
two vertices connected with an arc do not share the same color. The following 
is a logic program th a t solves the colorability problem based on Smodels [12],

Note, in general, we write function-free programs with variables. The stable 
models for a program with variables are the stable models for its instantiated, 
ground program.

Colorability

“/„ r u l e s  t o  g e n e r a t e  a n s w e r  s e t s

c o l o r ( V , C )  4 -  v e r t e x ( V )  , c o l ( C )  , n o t  o t h e r C o l o r ( V , C )  .
o t h e r C o l o r ( V , C ) 4— v e r t e x ( V ) , c o l ( C ) , n o t  c o l o r ( V , C ) .

“/ . u t i l i t y  r u l e

h a s C o l o r ( V ) - * — v e r t e x ( V ) , c o l ( C )  , c o l o r ( V , C ) .

“/ . C o n s t r a i n t s

4-  e d g e ( V , V I ) , c o l o r ( V , C ) , c o l o r ( V l , C ) , V ^  V I ,  
v e r t e x ( V ) , v e r t e x ( V l ) , c o l ( C ) .

4— n o t  h a s C o l o r ( V ) , v e r t e x ( V ) .

4 -  c o l o r ( V , C ) , c o l o r ( V , C l ) , c o l ( C ) , c o l ( C l ) , v e r t e x ( V ) .

In the above program, col, ver tex  and edge are domain predicates. A do
main predicate restricts the range over which a variable can obtain values. 
The values a variable can obtain are the values th a t make domain predicates 
true. A domain predicate also restricts the instantiation of a rule w ith the 
predicate. In this program, rule

color(V, C) 4- ver tex iV ), col(C), not other Color{V,C). 

can be instantiated to  the following equivalent ground rules:

color{1, red) 4- ver tex( l) ,  col(red), not other Color (I, red).
color (1, green) 4- ver tex( l) ,  col(green), not ot her Col or (1 , green).
color{1, blue) 4- vertex(  1), col(blue), not otherColor(l, blue).
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color(5, red) 4— vertex(  5), col(red), not other Color (5, red), 
color(5, green) <— vertex{5), col(green), not otherColor(5, green). 
color(5, blue) 4— vertexr(5), col(blue), not otherColor(5,blue).

color (V, C) means th a t vertex V  gets color C. The first two rules in this 
program are used to generate all possible assignments of colors to vertices. If 
color{V, C)  is in a stable model, the second rule specifies th a t otherColor(V, C) 
can not be in the same stable model. On the other hand, if otherColor(V, C) 
is in a stable model, the first rule determines th a t color(V, C) can not be in 
the same model. The auxiliary predicate otherColor(V, C) is used to provide 
all assignments where color(V, C) gets value fa lse .

The fourth rule says th a t two vertices connected w ith an arc do not share 
the same color. The fifth rule specifies th a t every vertex m ust get a t least one 
color. The last rule states th a t a vertex can only get one color.

3.4 Constraint Propagation in Smodels
In this thesis, we focus on the constraint propagation technique used in Smod
els, as we want to  compare it w ith arc-consistency for CSPs.

First, we give the following notations.
A set of literals is consistent  if there is no atom  a such th a t a and not a are 

both in the set, otherwise there is a conflic t  in the set. Given a set of literals 
A, A + =  {a | a G A, a is an atom} and A~  =  {a | not a G A , a is an atom}. 
Let B  be a  set of atoms. not(B )  =  {not b \b  G P , b is atom}. For a program 
P , atom s(P) denotes the set of all atom s x  such th a t either x  or not x  appears 
in P. An atom  set A  agrees with B  if B + C A  and B~  n  not (A) =0. The 
negation of literal x  is defined as not(x)  where if x  is an atom , not{x) =  not x, 
not(not x) — x. B  covers A  if A  C {x  \ x  G B, or (not x) G B }.

The algorithm for Smodels is given in Figure 3.1, where P  is a ground 
program, and A is a set of literals. The function smodels(P, A)  returns true  
if there is a stable model of P  th a t agrees with A. Given a set of literals, 
the algorithm first performs constraint propagation, which consists of two 
functions: expand(P, A)  and lookahead(P, A). A superset of A,  called A', 
is returned. It is shown th a t any stable model th a t agrees with A  also agrees 
with A'. Then it checks w hether a conflict happens in A'. If so, it returns false, 
causing backtracking. If A' is consistent and covers all the atom s in program 
P,  then the atom set A '+ is a stable model, and therefore the algorithm  stops. 
If A' does not cover all the atoms in P , then the algorithm  chooses a literal x  
outside of A' computed by the procedure heuristic(P, A 1) , and adds it to  A ' . 
If the chosen literal along w ith A' can be extended to a stable model, true  is
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Function smodels (P , A)

A  := ex p an d (P , A)
A  : = l o o k a h e a d ( P ,  A)

I f  c o n f l i c t ( P ,  A )  t h e n  
R e t u r n  fa lse  

E l s e  i f  A  c o v e r s  Atoms (P )  t h e n  
R e t u r n  true { A + i s  s t a b l e  m o d e l }

E l s e
x  := h e u r i s t i c ( P ,  A )
I f  s m o d e l s ( P ,  A \ j { x } )  t h e n  

R e t u r n  true  
E l s e

R e t u r n  s m o d e l s  ( P ,  A  U {not  r} )
End i f  

End i f

Figure 3.1: Algorithm of smodels

returned. Otherwise, the function tests whether not x  U A' can be extended 
to a stable model.

Function Expand(P, A)

Figure 3.2 shows the details of the function expand(P, A). The function 
expand(P, A) expands atom  set A  by using two functions: atleast(P, A)  and 
atmost(P, A). Function atleast(P, A) returns a super set A '  of A  by applying 
four propagation rules. Any stable model th a t agrees w ith A  must agree with

F u n c t i o n  e x p a n d ( P ,  A) 

r e p e a t
A' :=  A
A  : = a t l e a s t ( P ,A )
A  := A  U { not y  | x  G A tom s(P )  

and x  4- utmost(P, A) } 
u n t i l  A  — A' 
r e t u r n  A .

Figure 3.2: Function expand(P, A)
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atom set A'. The function atmost(P, A) computes another atom  set A", which 
contains all the possible consequences of A. Any literal x  th a t is not in A" 
must not be in any stable model th a t agrees with A, so not x  must be in the 
stable model th a t agrees with A.

atleast(P, A) can be computed according to the properties of stable model 
semantics. Given a rule r  in program P:

h 4— o*i, CLn , n o t &i,...., n ot bm .

Define m in r(A) to  be the inevitable consequences of A  w ith respect to rule 
r  as

m in r(A) = {h  | {oq, ...,an} C A +, {b u  ..., bm} C AT}

Let S  be the stable model th a t agrees w ith A. It means th a t if S  agrees with
the body of a rule, it also agrees with the head of the rule.

Define m a xr (A ) to be the possible consequences of atom  set A  w .r.t rule r
as

m a xr (A) = {h  | {cq, ...,a n} n d - =  0, {61 ,..., bm}  D i + =  0}

If there exists an atom  a such th a t for all r  G P, a ^  m a x r (A ) , then S 
agrees with not a.

There are four propagation rules in atleast(P, A)  [25]:

1 . If r  G P ,  then A  :=  A  U m in r (A).

2. If there is an atom  a such th a t for all r  G P, a £ m a xr (A), then A  :=
A  U {not a}.

3. If for an atom  a G A, there is only one r  G P  for which a G m axr (A), 
and there exists a literal x  such th a t a ^  m a xr(A  U {2;}), then A  := 
A  U {not x} .

4. If not a £ A, and there exists a literal x  such th a t for some r  G P, 
a G m in r (A  U {rr}), then A  :=  A  U {not x}.

Rule 1 adds the head of a rule to A  if the body is true in A. Rule 2 says 
th a t if there is no rule with a as the head whose body is not false w.r.t. A, 
then a cannot be derived by any consistent extension of A, and thus cannot 
be in any stable model agreeing with A. Therefore, not a is added to A. Rule 
3 says that if a G A, the only rule r with a as the head must have its body 
true in A, so the body of r is added to A. Rule 4 forces the body of a rule to 
be false if the head is false in A.
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The four rules can help derive new literals th a t the stable model agrees 
with. A fixpoint of operator /a ( P )  [25] can be defined to compute the 
atleast(P, A)  which returns the smallest set of literals th a t can not be 
enlarged by using rules 1-4 above further.

f A( B ) = A u B
U {a | a G Atom s (P) and a G m inr (B) and r  G P }
U  {not a | a G atom(P)  and for all r  G P, a  ^ m a x r (B)}
U {not(x)  | there exists a G P  such th a t a G m a xr (B) 

for only one r G P  and a m a x r (B  U r)}
U {not(rr) | there exists not a G B  and r  G P  such th a t 

a G m in r (B  U x)}

E x a m p le  3 .4 .1  Let P  be the following program:

a <— c, not e. ( r l )
b 4— not a. (r2 )
c 4— a, not b. (r3 )
f 4 - b, not c. (r4 )

Given A = {5}, we compute atleast(P ,A)  as follows:

1 . Because e does not appear in the head of any rule in P ,  by applying rule 
2, we get A = {b, not e};

2. Applying rule 3, since 5 G A, and r 2 is the only rule w ith b as head, not a 
will be added to  A. Now we get A  =• {6 , not a, not e};

3. Since not a £ A, and a is the head of r x, a G minn (A U c), so not c is 
added to  A by applying rule 4. Now we get A =  {6 , not a, not e, not c};

4. Applying rule 1, /  G minTi (A), so /  is added to A, then we get A =  
{b, not a, not e, not c, /} ;

5. Since no new literals could be deduced, stop. ■

Function atmost(P, A) can be computed by the another fixpoint operator 
based on the following definition [25].

f r (S, C) =  {h\ h 4- ax, ..., an, not bx, ..., not bm G P,
ai G C  for 1 <  t <  n  and ^  S  for 1 <  j  < m }

where S  and C  are sets of atoms.

Define atmost(P, A) [25] as the least fixpoint of
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where B  is a set of atoms.
f ' { B ) contains h if a ,’ s are already in B  but not in A~, and none of the 6/ s  

is in A +. By including not a if a ^  almost(P, A), atm ost generates unfounded 
atoms in the same way as in computing the well-founded model [8].

E x a m p le  3 .4 .2  Let P  be the program:

a <— not b. (ri)
c <— a, not c. (r2)
b 4— c, not a. (r3)

Given A  =  0, atm ost(P , 0) = {a , c} is computed as follows: 
S tarting with B  =  0:

/ r,(0,B ) =  {a},

B  =  / '(B ) =  / . ,  (0. B) U /„  (0, B) U /„  (0. B) -  A -  =  {a},
/n  (0. B) = {a}, 
/„ (0 ,B ) =  {c},
/ r,(0 ,B )= 0 ,
B = f ' (B)  = / r i(0, B) U / „ ( • ,  B)  U / r,(0, B ) - A ~  = {a,c}, 
/n  (0. B) = { a } ,
/r,(0 ,B ) = {c},
/„ (0 ,B ) =  {6},
B = /'(B ) = / ri (0, B) U / „  (0. B) U / , ,  (0, B) -  A~ =  {a. c, b},  
/r,(0 ,B ) = {o},
/r.(0 ,B ) = {c}, 
/r.(0 ,B ) =  {6},
B  = /'(B ) =  / ,,  (0, B) U U ,  (0, B) U / , ,  (0, B) -  /T  = {a, c, 6}.

Because the result of f ' { B ) cannot be enlarged, so the iteration stops. Conse
quently expand(P, A) derives not b due to  b ^  atmost (P, A). ■

L e m m a  3.4.3 [25] The function expand(P, A) is monotonic in the parameter

Because both ^ ^ p m a xr(P, A)  and atmost(P, A) compute the inevitable 

consequences of A, a question arises. Are they the same? If not the same,
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what is the  difference between them ? In the following, we will answer this 
question.

Given a logic program, it is convenient to  construct a dependency graph: 
for each rule a -f- ..., bn, not c i , ..., not cm in the program, there is a positive
edge from a to each &*, 1 < i < n, and a negative edge from a to  each cj, 
1  < j  < m.  A program has a positive loop if there is a path  from an atom  to 
itself which only contains positive edges.

Lem m a 3.4.4 [28] I f  a program P  has no positive loops, then for  any a ^ 
atmost(P, A), not a € atleast(P, A).

If there is no positive loop in the program, atleast(P, A)  can expand the literals 
w ithout using atmost(P, A).

Exam ple 3.4.5 Let P  be the program:

a •*— c, not b. (rx) 
b <— not a. (r2)
c <- c. (r3)

We can see that this program has only one stable model {6}. atleast(P, 0) =  
0, and atmost(P, 0) =  {&}. As a result, not a and not c are derived by 
expand(P, 0). Due to the loop c c in the program P, atleast(P, 0) can
not derive not a, neither not c. But they can be computed by the result of 
atmost (P, 0). ■

Function Lookahead(P, A)

The expand  function uses some properties of stable semantics to  refine a par
tially computed model, thus reducing the search space. After applying the 
expand  function, we reach a point th a t no further literals can be deduced 
by expand. We then can further expand the partial model by the function 
lookahead, which tests every possible choice before com m itting to  one. Con
sider a program P  and a set of literals A. We choose an additional literal x  
outside of A, then set A' =  expand(P, A  U {a;}). If there is a conflict in A', 
then not x  is added to the partial model.

This is based on the following propagation rule:

If the stable model M  agrees w ith the set of literals B  but does not agree 
with B  U {a;}, it holds th a t M  must agree with B  U {not a;}.
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F unction  lookahead(P , A)  
re p e a t 

A' := A
A  : = lookahead_once (P , A )  

u n t i l  A  — A' 
r e tu r n  A .

F unction  lookahead_once(P , A)
B  := Atoms (P )  -  Atoms {A)
B  : = B  U not (B) 
w hile  B  7^ 0 do

ta k e  any l i t e r a l  x  ^  B  
A' -  expand(P , A  U { x } )
B  := B  -  A 1 

i f  c o n f l i c t ( P ,  A')  th en  
r e tu r n  expand(P , A  U {not (x )} )  

end i f  
end w hile 

r e tu r n  A .

Figure 3.3: Function lookahead(P, A)
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lookahead has been shown to  be the most effective cost-saving m ethod used 
in Smodels [23]. The function lookahead(P, A)  is given in Figure 3.3.

Lookahead(P, A) calls function Iookahead-once (P , A)  repeatedly until no 
further literal can be added. Lookahead^once(P, A) picks up a literal from 
outside of A, say x, and expands A  with x. Let A' =  expand(P,A  U {a;}). If 
there is a  conflict in A', then it returns expand(P, A  U {not x } ) ,  otherwise, 
the function lookahead„once{P, A) tries all the literals outside of A, until a 
conflict happens or all the literals outside of A  have been tried. In this case, 
it ju st returns A.

L e m m a  3.4 .6  [28] The function lookahead(P, A) returns the same set, inde
pendent o f any order in which literals are chosen from B  in the while loop of 
the function lookahead-once(P, A ) .

E x a m p le  3 .4 .7  Consider the following program.

a not b. 
b t— not a. 
a <— b.

The stable model for this program is {a}.
If lookahead checks not a first, a conflict occurs. Consequently, a is added 

to  the resulting set. Suppose it then checks b, another conflicts happens. As 
a result, {a, not b} is added to  the result.

It can be shown th a t lookahead returns the same result regardless of the 
orders in which literals are checked. ■
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Chapter 4 

A rc-C onsistency Vs. Lookahead

In this chapter, we first introduce a standard encoding from CSPs to answer 
set programs, then show th a t arc-consistency is weaker than  lookahead and 
stronger than  expand in Smodels under this translation.

4.1 Translation from  CSPs to  Logic Programs
There are different encodings of CSPs into SAT instances. To perform the 
comparison between arc-consistency for CSPs and lookahead in Smodels, we 
use a “standard translation” first given by Niemela [21] from CSPs to  logic 
programs. It is called “standard” because arguably it is the most direct and 
straightforward way to  represent a CSP as a ground logic program. O ther 
translations to function-free logic programs can be found in [16, 2 1 ],

Let A { X ,  D, C) be a CSP. We denote by P 4  the logic program  translated 
from it. The translation of Niemela [21] consists of three parts. The first part 
specifies the uniqueness property - a variable in CSP can only be assigned with 
one value. For each variable Xi G X  and its domain D Xi — { a i , ..., a j ,  we use 
an atom, Xi(aj), to represent whether or not Xi gets the value aj. Thus, for 
each 1 <  j  < I, we add a rule

Xi(aj) 4- not Xi(ai) , ..., not Xi(aj),not Xi(aj+i ) , ..., not Xi(ai). (4.1)

In the second part, constraints are expressed. For each constraint ..., x n)
where q  G C, and each tuple (a1;..., an) G C;, we add

sat(ci) 4— Xi(ai),  ...,xn(an).

Finally, we express that every constraint in C must be satisfied by

(4.2)

sat <— sat(ci),..., sat(cm). 
f  4- not / ,  not sat.

(4.3)
(4.4)
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where /  is a new symbol.
The rules in 4.3 and 4.4 can be om itted if we ask Smodels to  compute the 

stable models containing sat(ci) , ..., sat{cm). This is w hat we assume in this 
thesis. We denote this set by sa t(C ) =  ( s a t( c i) , ..., sat(cm)}.

Under this assumption, it can be shown th a t given a CSP A ( X ,  D, C) and 
a set of literals M  such th a t sat(cj) G M  for any c, G C, M  is a stable model 
of Pa  iff {% —> & I x  G X , a G D x, x(a) G M }  is a solution to the given CSP.

P r o p o s i t io n  4 .1 .1  A  CSP A  has a solution iff Pa  has a stable model.

P r o o f  Suppose A ( X ,  D, C) has a solution with {x i = vx, . . .  , x n = vn} where 
n  is the number of variables in A ( X ,  D, C). Then for every assignment x f = Vi 
in the solution, we define a set B  th a t contains Xi(vi). Obviously, B  is a stable 
model of Pa , because it satisfies all translated  rules in PA , and cannot be 
reduced to  a smaller set.

According to  the translation, every constraint m ust be satisfied, and ev
ery variable has only one assignment. If Pa  has a stable model, it must 
include { sa t(c i) , . . . ,  sat(cm) , x i(i>i),. . .  ,arn(t>„)}, Hence the assignment x \ —> 
, . . . ,  x n —>■ Vi for the variables satisfies all the constraints, and is ju s t a solution 
for A ( X ,D ,C ) .  M

The size of Pa  is calculated as follows. For each variable the uniqueness 
property is expressed by a t most k  rules, and each rule with a t most k literals, 
where k  bounds the domain size. The number of tuples in a constraint is at 
most k2. We have e constraints, therefore

P ro p o s it io n  4 .1 .2  [28] For any binary CSP A ( X ,  D, C), Pa can be con
structed in 0 ( e k 2) time. The size of Pa is also bounded by 0 ( e k 2). The 
number of literals is bounded by 0 (ek). ■

E x a m p le  4 .1 .3  Consider the CSP A ( X ,  D, C) in Example 2.2.2 again: C  =  
x < y A y < z A z < 3 ,  with D x =  D y —{1, 2, 5} and D z = (2, 3, 4}- Fs 
translation Pa  consists of the following rules: 

x ( l)  <— not x(2), not x(3). 
x(2) -f- not x ( l ) ,n o t  a;(3). 
x(3) <— not x ( l ) ,n o t  x{2). 
y( 1) G- not y(2), not y (3). 
y (2) <— not y ( l ) ,n o t  y (3). 
y(3) -f— not y ( l ) ,n o t  y (2). 
z (2) <— not z(3 ) ,no t z (4).
2 (3 ) <— not z ( 2 ) ,no t z (4). 
z (4) <— not z ( 2 ) ,n o t  z (3). 
sat{ci) <— 37(1), 2/(2 ).
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sa t(c i) « -  x ( l) ,y (3 ) .  
sat(ci)  4-  x(2),y(3). 
sat{pz) <- y ( l ) , z ( 2 ). 
sat(c2) y{ l) ,z (3 ) .
sat(c2) y ( l) ,z (4 ) .  
sat(c2) <- y(2),z(3). 
sat(c2) <- y(2), z(4). 
sat(c2) y(3),z(4). 
sat(c3) <— z (2). 
sat(c3) 2 (3). 
sat sat(ci), saf(c2), saf(c3).
/  •<— not / ,  sat.

One can verify th a t lookahead(Pj1, sat(C )) returns the following set of 
literals

{not a:(2), not x (3 ),no t y{ 1), not y (3),no t z (2 ) ,no t z (4), a;(l), y(2), 2 (3 ), sat(c)}. 
The reader may want to examine this construction against domain reduc

tion by arc-consistency as given in Example 2.2.2. We can see th a t 2 and 3 
are removed from D x, 1 and 3 from D y, 2 and 4 from dz . ■

4.2 A C + Vs. Expand and Lookahead
Under the above translation, one question arises in the equivalence between 
arc-consistency and lookahead: Is the propagation by the expand  function 
powerful enough to enforce arc-consistency? The answer is NO, as shown by 
the following example.

Exam ple 4.2.1 Consider a CSP A ( X ,D ,C ) ,  X  = x, y, with one constraint 
Cx,y =  {(0,0), (1,1)}, where D x =  {0,1,2} and D y =  {0,1}. Under Niemela’s 
translation, we have the following rules that ensure every variable can only be 
assigned one value:

a;(0) -f- not x ( l ) ,  not x ( 2 ). 
x ( l)  <— not x (0 ), not x ( 2 ). 
x ( 2 ) <- not x ( 0 ) ,n o t  x ( l) .  
y (0 ) «- not y( 1 ). 
y( 1 ) <- not y{0 ).
and two rules with sat(c) as the head:

sat(c) <— #(0), y ( 0 ). 
sat(c) t -  a :(l),r/(l).
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Enforcing arc-consistency removes 2 from D x. not x(2) cannot be de
rived by expand(Pji, sat(c)) because no propagation rule can be applied in 
expand(PA,sat(c)). However, if we perform lookahead, by picking up x(2) 
in look ahead-once(P^ sat(C)), expand(P„4 , sat(C)  U x(2))  derives not sat(c), 
resulting in a conflict with sat(c). ■

The following proposition defines a condition under which expand  coincides 
with arc-consistency.

P roposition  4.2.2 [23] I f  every constraint C{ in a CSP A ( X ,  D, C) only has 
one tuple, then expand(PjL, {sa t(c i) , . . . ,  sat(cn)} enforces arc-consistency on 
the CSP A { X ,D ,C ) .

P roof It can be proved by trivially applying the propagation rule 3 (cf. Sec
tion 3.4). ■

In the rest of this thesis, as we are going to  enforce the propagation rule 
in atleast, we revise the propagation rule 3 as follows:

If for all r  G P  w ith a 6 m a xr(A), there exists a literal x  such th a t 

a £ ^  m a xr (A  U {a;}), then A  A  U {not x}.

Exam ple 4.2.3 Let P  be the following program:

Cl 4- x(0), 2/(0), z(0). 
d  «-  z (0) ,y (0) ,z ( l) .

a;(0) can be derived by expand(P, {ci}) because ci £ m a x r ({ciU{not x(0)}}) 
for all r  G P  w ith Ci € raaa;r ({ci}). Similarly, y(0) can also be derived because 
ci ^  m a x r({ci U {not y(0)}}) for all r  6 P  w ith cx 6 m a xr ({ci}). ■

Proposition 4.2.4 [28] Let A ( X ,  D, C ) be a CSP. Suppose after an appli
cation of arc-consistency, D  is reduced to D ' . I f  for any variable Xj € X ,  
a value d is removed from D Xj, then not Xj (d)  is in the set returned by 
lookahead(Pji, sa t(C )) . ■

The following example shows th a t lookahead is strictly stronger than  arc- 
consistency.

Exam ple 4.2.5 Consider a CSP that consists of three variables x, y and y, 
all with the domain {0 ,1}, and the following constraints:

c i(x ,y )  = {(0 , 0 ), (1 , 1 )}
c2(y,z) = {(0,1), (1,0)}
c3 (z ,x )  =  {(0,0), (1,1)}
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It is clear th a t arc-consistency cannot reduce any domain. A backtracking 
algorithm th a t begins with the assignment x  —> 0 would need to  backtrack. 
However, when x(0) is selected by lookahead, a contradiction is derived so th a t 
not x(0) is added, and subsequently not x ( l ) ,  not y (0), not ?/(!), not z ( 0 ) and 
not z ( l ) .  ■
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Chapter 5 

A rc-C onsistency w ith U nit 
Propagation

In the previous chapter, we knew th a t arc-consistency is strictly weaker than  
lookahead. In this chapter, we identify w hat is missing in arc-consistency, and 
devise a new m ethod th a t prunes the same search space as lookahead. Then 
we present an algorithm for this method, and prove its correctness.

5.1 Definition
The insight revealed in the last chapter suggests th a t some space pruning 
power is missing in arc-consistency. In this section we identify w hat is missed.

Given a CSP A ( X ,  D, C) and a partial instantiation II, we define a function 
th a t extends II as follows [28]:

unit-propagate(A, II)
=  IIU {x  —>• a | cy>x £ C  or cx>y £ C  and y  —> h £ II such th a t 

a is the only value in D x th a t is consistent with 6}

T hat is, in a binary constraint, if an unassigned variable has exactly one value 
in its domain th a t is consistent with the value of the assigned variable, the 
unassigned variable must be assigned this value, given II.

A collection of pairs II is said to  be in conflict if and only if there are 
distinct values d and d' such th a t x  —> d,  x  —» d’ £ II. The notion of conflict is 
needed because, as we will see shortly, the function unit_propagate may lead 
to  such a conflict.

The function unit-propagate* (A, II) below calls unit-propagate(A, II) re
peatedly until nothing can be further propagated or a conflict is reached [28].
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T hat is,
Function  u n it .propagate* {A, II) 

repeat
IT := n
II :=  unit.propagate(A , II') 
i f  II is in  co n flic t then  

re tu rn  “co n flic t” 
until n  =  II' 

re tu rn  II.

Exam ple 5.1.1 Let A ( X , D , C )  be a CSP with X  — {x, y} , D x = D y — 
{0,1}, and C  consisting of

ci 0 , 1/) =  {(0 , 1)} c2 {y,z)  =  {(1 , 1)} c3 (z , x )  = {(1 , 1)}

Given II =  {x  —> 0}, u n it .propagate* {A, II) returns “conflict” because the set 
returned by unit.propagate{A , II) is {x  —> 0, y  —> 1, z  —>• 1, x  —> 1}. ■

Now we strengthen the process of enforcing arc-consistency by adding 
unique value propagation, called unit propagation. We name the function 
A C +, and describe it as an abstract, non-deterministic procedure.

Procedure A C + [28]
A C + takes as input a CSP A ( X ,  D,  C),  and performs the following domain 

reduction operations repeatedly until no domain can be further reduced.

1 . For any c £ C,  if there is exactly one uninstantiated variable x  in its 
scope, remove any d from D x if d is inconsistent with the value of the 
instantiated variable in c.

2. For any c £ C  where both variables x  and y in the scope of c are unin
stantiated, remove any d from D x if

(a) there is no value in D y th a t, together with d, is consistent with c; 
or

(b) unit.propagate* (A , {x —> d}) returns “conflict” .

A C + is obviously correct. The only addition is part (b), in which case the 
conflict is a sufficient ground for removing d. Furthermore, A C + doesn’t  seem 
to  take a lot more tim e than  A C . Note th a t when the domains of all affected 
variables have more than  one valid value, the process of unit propagation 
stops. So the overhead is proportional to  the occurrences of unique values for 
variables during unit propagation.
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Theorem  5.1.2 [28] Let A ( X , D , C ) be a CSP. Suppose after an application 
o f A C +, D  is reduced to D '. Then, fo r  any variable x  € X ,  a value d is 
removed from  D x iff not x(d) is in the set returned by lookahead(P^, sa t (C) ) .
m

By Theorem 5.1.2 and Lemma 3.4.6, we therefore have:

Corollary 5.1.3 Let A ( X , D , C ) be a CSP. A C + returns a same set o f re
moval values from  D , independent o f any order in which variables are chosen 
from  X , and values are chosen from  D . ■

Note th a t both node consistency and arc-consistency are implemented in 
A C +. In the following section, as we are going to  give an algorithm  for arc- 
consistency w ith unit propagation, we delete the first part of A C + which en
forces node consistency. We call it ACUP.

Procedure A C U P [28]
ACUP takes as input a CSP A ( X ,  D,  C),  and performs the following do

main reduction operations repeatedly until no domain can be further reduced.

1. For any c G C  where both variables x  and y in the scope of c are unin
stantiated, remove any d from D x if

(a) there is no value in D y th a t, together with d, is consistent w ith c; 
or

(b) unitjpropagate*(A, {x  —> d}) returns “conflict” .

Corollary 5.1.4 Let A ( X ,  D,  C) be a CSP. ACUP returns a same set o f re
moved values from  D , independent o f any order in which variables are chosen 
from X ,  and values are chosen from  D . ■

5.2 An Algorithm  for ACUP
We design an algorithm for ACUP based on AC-4. We call this algorithm  AC4- 
UP. AC4-UP uses the same data  structure as AC-4. An array counter (x^, ai, Xj) 
is used to store the number of support values from neighboring variables for 
the assignment of (xi, a*), and an array S(xj ,  af) to  store values in the other 
variables supported by {xj,af).  Additionally, S\  (xj, aj, xi) is used to  m aintain 
consistent values for x, th a t are supported by (xj, af).

AC4-UP is given in Figure 5.1. It works as follows. First, it initializes 
the values for S, S% and counter for all the constraints. In the remaining 
parts of the algorithm, it adds unsupported values to C (£  stores the conflict 
pairs {x^ af) due to  counter (xi, a*, xf] =  0 , or unitjpropagate* {A, {xi —y aj}) 
returning tru e ). In each step of the while loop in part 5, the algorithm  picks up
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an unsupported value from £ , updates all the affected counters and affected 
sets of consistent values, puts any unsupported value to  £  by checking the 
counter and checking the conflict using unit propagation. This procedure 
continues until all the unsupported values are removed.

Consider applying this algorithm  to Example 4.2.5.
Initially, we have

5 (x ,0 ) =  { (y ,0 ) ,< ^ ,0 )} 
s i x , 1) =  { ( y , 1),( z ,1)}
S(y,  0) =  {(#, 0), {z, l>}
S(y,  l) =  {<£,1), M > }
S( z , 0)  = { ( y , l ) , { x , 0 ) }
S(z ,  1) =  {(y,  0>, {x, 1)}
Si{x,0,y)  =  { y, o)}
S ifo O .z )  =  { z,0)}
S i ( x , l , y )  = { y, i »
Si(x,  1, z) =  { z , l ) }
Si (y ,0 ,x)  = { x , 0 )}
Si (y ,0, z)  = { A !)}
S i ( y , l , x )  = { ar,l)}
S i (y , l , z )  = { 2 , 0 )}
Si (z ,0 ,x)  =  { x -> o>}
Si (z ,o,y)  = { v >!)}
Si(z ,  l , x )  = { x -> i)}
s 1( z , i , y )  = { y>o>}
counter {x, 0, =  i
counter (x, 0, =  l
counter [x, 1 , =  i
counter (x, 1 , =  i
counter {y, 0, =  i
counter (y, 0, =  i
countering, 1 , =  i
counter {y, 1 , z =  i
counter ( z , 0 ,x =  i
counter(z, 0, y =  i
counter(z, l , x =  i
counter{z, 1 , y =  i

After initiation, £  is empty, and 
unitjpropagate*(A, {a; —> 0}) is called and the following conflict chain is 
generated.

{ ( s ,0 ), {y , 0 ), {z, 1 ), (x, 1 )} .
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AC4-UP
Input: a CSP A (X , D, C)
O utput: A CSP equivalent to A (X , D, C)

1 Initialize S(xi ,  af), counter (xi , a,, Xj), Si(xi ,  ai, Xj) from all C y ;
2 for all counters do 

if  counter (xi, ai, xj)  =0 (if  (xi, ai) is unsupported by Xj ) then
| add {xi, ai) to  £; 

end  
end

3 for all counters do 
i f  co u n ter(x i,a i,X j)= l ( if  there is unit propagation ) then

| add (xi, af) to  C\, 
end  

end
4 for each (xj, aj) € £ i do 

if  unitjpropagate*(A, {x j —> aj})  then
J add {Xj , aj) to  L\

end  
end

5 w hile C is not empty do 
Choose {X{, ai) from C, remove it from £ , and remove aj from D Xi\ 
for each {Xj ,a j ) € S(xi ,  af) do

decrement counter (x j , aj,Xi); 
if counter (xj, a j ,xf) =  0 then  
| add (xj, af) to  £ ;

end
delete (xt, a*) from Si (xj ,  aj,Xi)\ 
for all assignments do

if counter(xk,ak,Xi) — 1 then
if u n it .propagate* (̂ 4, {x —> a^}) th en  
| add (xk, at)  to  £  ; 

end  
end  

end 
end 

end

Figure 5.1: An algorithm for ACUP based on AC-4
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un it .propagate*
In p u t:  a CSP A, an assignment Xi —» a.
O u tp u t:  true: if there is a conflict; false: if there is no conflict, 
initialize queue, R  to  empty; 
add (Xi, a ^  to  queue; 
w h ile  queue is not empty do

remove first element (xj, aj) from queue;
add (xj, aj) to  R  /*R  stores the set of assignments propagated

from Xi a.t */; 
if  there is a conflict in R  th e n  
| return true /*conflict */; 

else
fo r every X{ such that counter (xj, aj,Xi)  =  1 do  

fetch (Xi,ai) G S\{xj ,aj ,Xi);  
add (xi, ai) to  queue;

e n d  
e n d  

en d
return false;

Figure 5.2: unitjpropagate* algorithm
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A conflict occurs since x  is assigned 0  and 1 simultaneously. So {x , 0) is 
added to  C. Similarly, all tuples in

{(y,  0 ), {z , 1 ), (x, 1 ), (y, 1 ), (z, 0 )}

are also added to  C.
Now arc-consistency is applied, and the domain is annihilated.

5.3 The Correctness of A C4-UP
Before giving a  proof of the correctness of AC4-UP, we need to introduce the 
following definition and lemmas.

D e fin itio n  5 .3 .1  A unit propagation chain in  CSPs is a sequence of assign
ments {x \ —> Oi , . . . ,  x n -> an}. I f  there is a conflict in it, we call it a conflict 
chain.

E x a m p le  5 .3 .2  Consider the Example 4-2.5. There is a conflict propagation 
chain {x  —> 0 , y —> 0 , z  —> 1 , x  —> 1 } in it. ■

L e m m a  5.3 .3  Given a CSP A ( X ,  D,  C),  a conflict chain {x i —> ax, . . . ,  x n —» 
an} in A , i f  the domain value at! where 1 < i < n, is removed from its domain, 
then ai can be removed by arc-consistency.

P r o o f  Suppose a* is removed for the domain D Xi where 1 < i < n. Because 
ai is the only domain value for X{ th a t supports x ^ x -> a ^ \  in a certain 
constraint, whose scope contains Xj_i and X{. If is removed, there is no 
domain value th a t supports x ^ x —> i. So a ^ i  is removed from D Xi_x. 
Continuously, aj_2, . . . ,  o2, and ax are removed from D X i _ 2 , . . . ,  D X2, and D Xl 
respectively. ■

Lemma 5.3.3 specifies th a t when the conflict chain from a certain assign
ment is broken, the inconsistency due to  this assignment can still be found by 
arc-consistency.

L e m m a  5.3 .4  Let A ( X ,  D,  C) be a CSP. AC4-UP returns the same set o f the 
removed values from  D , independent o f any order in which a pair is chosen 
from C in the while loop of part 5 in AC4-UP.

Lemma 5.3.4 is used in the proof of the correctness for AC4-UP.
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P r o o f  Let E  and E' be the sets of removed values of any two invocations 
A i and A 2  of AC4-UP. Let the corresponding sequences of such removals be 
E  =  ( d i , dn} and E' = {d[ , ..., d'n,}. We will prove th a t for any dj £ E , we 
have di £  E '. We show, by a simple induction on n, th a t each dj £ E', where
1 < i < n.

Obviously, if di is removed by A x, (x x, d x) is added to  £  before the while 
loop in p a rt 5, then there must be counter (xx, dx, x*)= 0 in part 3, or 
unitjpropagate* (A , { x x —> dx}) returning true in part 4 initially. So dx is 
removed by A 2.

Now suppose any dk, where 1 <  k < i — 1, is removed by A x, and dk is 
also removed by A 2. We want to  show th a t if dj is removed by A x, dj is also 
removed by A 2.

If {xi,di) is added to £  before the while loop in part 5 in A x, dj can be 
removed by A 2  in a similar way as above.

If (xi, di) is added to £  after the while loop in part 5 in A x, then there are 
two cases:

(xi, di) is added to £  by counter (xi, dj, x*,) =  0  or unitjpropagate* {A, {xi —>• 
dj}) =  true. We show th a t in either case A 2  also achieves the same result, and 
removes dj from DXi.

1 . If counter (xi, di}Xj) =  0 in A x, it is caused by the removal of dx, d2, . . . ,  d j_ i. 
Therefore, for some Xj, where Xj £  {xi, x 2  . . . ,  £ j-i} , S(xj ,  dj) =  {{xi, d i ) , .. 
and counter{xi,di ,Xj)  is decreased by one for Xj. Due to  the fact th a t 
for any djt, where 1  < k < i — 1 , dk £ {d[, d'2 . . . ,  d ',_x} is also removed 
by A 2, A 2  always has a chance to  decrease counter{xi: di, Xj) for every 
Xj. So counter(xi ,di ,Xk)  =  0 can always be reached for A 2  regardless of 
the order in which d'k are removed. As a result, di is removed by A 2.

2 . If unitjpropagate*{A, (x , —> dj)} =  true in A x, there is a conflict propa
gation chain. In A 2, because there is a loop in part 7, unijpropagate* (A ,
{Xi —>• dj)} can always be called. Also, for any dk, where 1 <  k < i — 1 , 
dk £ {d[, d '2  . . . ,  d',_1} is also removed by A 2. Thus, A 2  can decrease 
counter(x{, di, Xj) for every Xj. As a result, the counters in the propa
gation chain can be set to  1. If any counter in the propagation chain 
becomes zero, by Proposition 5.3.3, (xj, dj) is added to £ , hence dj is 
removed by A 2. Otherwise, unitjpropagate* {A, {xj —> dj}) returns true 
in A 2. Consequently, dj is removed by A 2.

We therefore conclude tha t E  C E '. By symmetry, E' C E. Therefore,
E  =  E '.m

Now we give the theorem stating the correctness of AC4-UP.
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T h e o re m  5.3 .5  Let A ( X ,  D,  C) be a CSP. Suppose after an application of 
ACUP, D is reduced to Df. Then fo r  any variable x  € X ,  a value d is removed 
from  D x by ACUP i f f  d is also removed from  D x by AC4-UP.

Note th a t by Lemma 5.3.4 and Lemma 5.1.4, we know th a t both  ACUP and 
AC4-UP return  a same set of removed values from their respective domains, 
independent of any order of removed values. Our proof is based on the idea 
th a t for any sequence of removed values in one side, there is a corresponding 
sequence in the other.

P r o o f  (=>) Let dx, ..., dn be the sequence of domain values removed from the 
respective domains D Xl, ..., D Xn by ACUP, in th a t order. We show th a t there 
is a corresponding sequence d i , ..., dn of domain values removed by AC4-UP.

We show, by a simple induction on n, th a t each di, where 1 <  i < n, is 
removed by AC4-UP.

F irst we prove th a t if d\ is removed by ACUP, di is also removed by AC4- 
UP. According to the function ACUP, d\ is removed by arc-consistency or 
u n it propagation. The proof is based on above two cases.

1 . Suppose di is removed from D Xl by ACUP due to the fact th a t there is 
no value b in y such th a t (di, b) G cXljV.

In AC4-UP, according to  the definition of counter, after the initialization 
in part 1 , counter (xi,  d\, y) =  0. So (aq, d\) will be added to  £ . In p art 5, 
the while loop will pick up (oq, d\) in £  (note th a t this assumption 
is valid because the order of picking up pair in £  is unim portant (cf. 
Lemma 5.3.4)) and d\ is removed from D Xl.

2. Suppose di is removed from D Xl in ACUP, because unitjpropagate* 
(A , {oq —> d\})  returns “conflict” . We need to show th a t di can also 
be removed by AC4-UP.

Suppose “conflict” by unitjpropagate*{A, {aq —» di})  is due to  a conflict 
chain as follows:

{aq di, x ^  di'v .. . ,x iln -> d ^ }  (5.1)

where aq =  x ^  and di ^  dyn.

In AC4-UP, after the initialization in part 1, counter (xi,  d\ ,Xi ' )  =  1, 
counter (xr2, d ^ , x^ ) =  1, . . . ,  counter { x ^ ^ , , x ^ )  = 1. In p art 3,
(aq, d i ) , . . . ,  (xi'n,di'n) are added to £ j .  In part 4, unitjpropagate*(A, {oq 
ai}) causes a conflict, so (oq, di) is added to  £  in p a rt 4 of AC4-UP. In 
part 5, the while loop picks up (aq, d\) in £  and d\ is removed from D Xl.
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Now we will show th a t if any di, i >  0, is removed by AC4-UP, di+x is also 
removed by AC4-UP.

There are two cases in which dt‘+i is removed by ACUP.

1 . di+i is removed by ACUP due to the fact th a t there is no value b in y 
for some k, where 1 <  k < i, such th a t {di+x,b) € cXuy.

So there is counter (xi+x, di+x,y)  =  0. If this is caused by removal of 
di, d2, . . . ,  di in ACUP, there is also a corresponding sequence in AC4- 
UP, so {xi+i,di+i) is removed. As a result di+x is removed in AC4-UP 
by part 5.

2. Suppose di+i is removed from D X i + 1  in ACUP, because unitjpropagate* 
(A , {aq+i —> dj+i}) returns “conflict” . We need to  show th a t di+i can 
also be removed by AC4-UP.

If this is caused by a sequence of removal dx,d2, • • • > dj in ACUP, there 
exists the same sequence in AC4-UP to cause this result (the assumption 
holds according to the Lemma 5.1.4). In AC4-UP, unitjpropagate*(A, {oq+i 
di+x}) can always be called, and return  true. So (aq+i,d j+i) is added to 
jC, and dl+x is removed by AC4-UP.

(«£=) Let dx, ..., dn be the sequence of domain values removed from the respec
tive domains D Xl, ..., D Xn by AC4-UP, in th a t order. We show th a t there is 
a corresponding sequence dx, ..., dn of domain values removed by ACUP. We 
show, by a simple induction on n, th a t each di where 1 <  * <  n  is also removed 
by ACUP.

Obviously dx is removed due to the fact th a t counter (xx, dx, y) =  0, or 
unitjpropagate*(A, { x x —> dx}) =  true outside the loop in part 5 of AC4-UP.

If counter (xx, d x,y)  =  0, it means th a t for a certain constraint cXuy, there 
is no value in D y tha t, together w ith dx in D Xl, is consistent with cXuy, so dx is 
removed by ACUP (Note th a t we can choose this x x first, and do a comparison 
based on the Lemma 5.1.4).

If unitjpropagate*(A, {aq —»■ di}) =  true, unitjpropagate*(A, {aq -> dx}) 
returns “conflict” . As a result, dx is removed also by ACUP.

Now suppose any where 1 <  k < i, is removed by ACUP, we show th a t 
di+1 is also removed by ACUP.

If (xi+x,d i+1) is added to C by the outside loop in p art 5 of AC4-UP. di+x 
can be removed by the same way as dx.

If (xi+x,di+x) is added to C by the inside loop in part 5 of AC4-UP, then 
counter(xi+x,d i+x,Xk) =  0 or unitjpropagate*{A, {oq+i —> di+x}) =  true.

1 . counter(xi+x, di+x, y) =  0. It must be caused by AC4-UP in a sequence 
{d!x,d '2, . . . ,  d'i} € {dx, c?2 , . . . ,  di}. In ACUP, we can apply the same se
quence {d[, d'2, .. •, d'} (note th a t this can be achieved by Lemma 5.1.4).
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Finally, there exists a certain constraint cXl+1>y, such th a t there is no 
value in D y th a t, together with di+1 in DXx+1, is consistent with cXi+uy. 
Consequently, di+1 is removed.

2 . unitjpropagate*(A, {xi+j —» dj+i}) =  true. Obviously, this is caused by a 
sequence d[,d '2, . . . ,  of removed values from domains in AC4-UP gener
ating a conflict propagation chain, where for any d'k , d'k G {d \ , d2) ■ • • > d*}- 
In ACUP, we can apply the same sequence {d[, d'2, . . . ,  d'f} by Lemma 5.1.4.

unitjpropagate* (A , {x i+i —> c?i+i}) returns “conflict” for this propaga
tion chain. So di+1 is removed. ■

5.4 C om plexity
Suppose e is the number of constraints, and k  is the maximum domain size. 
We have the following theorem:

Theorem  5.4.1 The time complexity o f AC4-UP is 0 ( e zk z), and space com
plexity is 0 (ek2).

P roof In unitjpropagate* , there are a t most 0(e)  assignments added to  queue 
before a conflict happens, so the to ta l running time for unitjpropagate*  is 
bounded by 0 (e).

There are a to ta l of 0 ( e k 2) elements in S', so decrement counter is per
formed at most 0 ( e k 2) times. In each iteration of decreasing the counters, 
unitjpropagate* is performed 0 (ek) times, and each call of unitjpropagate* 
takes 0(e)  time. Consequently the to ta l running tim e is 0 ( e zk z).

Since AC4-UP doesn’t  use any array th a t exceeds the size of S  in AC-4, 
the space complexity of AC4-UP is the same as AC-4, which is 0 ( e k 2). ■

We have presented an algorithm for A C + w ithout node consistency. From 
the complexity point view, node consistency doesn’t play any role in the com
plexity of our algorithm. In [28], we showed th a t A C + has the  same pruning 
power as lookahead. The time complexity of lookahead for a  translated  pro
gram from a CSP is 0 ( e zk i ). Indirectly, we know a bound for A C +, which 
is higher than th a t of our algorithm. Consequently, our algorithm  is more 
efficient than lookahead.

In AC4-UP, when every tuple in a CSP A  is removed, each pair (xi, af) in 
the CSP needs to be checked to see if there is a conflict caused by unitjpropagate*  
CA, {xi —> a;}). Practically, we can find all the conflicts by applying arc- 
consistency and unit propagation alternately in a constant num ber of itera
tions. Unit propagation can be achieved in 0 (e 2 k) time separately, so the to tal 
running time is 0 (e2k + ek2).
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Chapter 6 

Further Observations

ACUP has more pruning power than  arc-consistency. W hat is the relation 
between ACUP and other space pruning techniques in the literature such as 
arc-consistency look ahead (ACLA) [2], pa th  consistency. Do they coincide or 
not? In this chapter, we will answer these questions.

6.1 ACUP Vs. Arc-Consistency Look Ahead
The following example shows th a t there exists a  CSP for which ACUP is more 
powerful in pruning the search space than  ACLA.

E x a m p le  6 .1 . 1  Consider a CSP with X  — { x \ ,X 2 , x 3, x 4}, all with domain 
{0 , 1 }, and the following constraints

cl {xl , x 2) =  {(0 , 0 ), (0 , 1 ), (1 , 1 )}
0 2^ 2 , 0:3) = { ( 0 , 0 ), (0 , 1 ), (1 , 1 ), (1 , 0 )}
cz{x3 , x 4) =  {(0 , 0 ), (1 , 1 )} 
c4 (x 4 , x 5) =  {(0 , 1), (1 , 0 )} 
c5 ( x 5 , x 3 ) =  { ( 1, 1) ,  ( 0 , 0) }

c3 and c4  together show th a t there is no solution, bu t arc-consistency cannot 
detect the conflict between c3 and c4, since for each value of any one variable 
there is a value for the other variable. In fact, arc-consistency enforced on this 
CSP does not remove any domain value.

However, with ACUP, 0 is removed from D C3, so is 1 , resulting in an empty 
domain, hence the result th a t this CSP has no solution can be generated 
without search.

Now consider ACLA. Suppose the current variable is x 4. Let us tentatively 
assign x 4 to 0. Now, since enforcing arc-consistency involves two variables, 
with a tentative assignment to  the current variable, the consistency check is 
among triplets, much stronger than  arc-consistency alone. However, one can
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see th a t since the spot of conflict is unrelated to  variable x 4, inconsistencies 
cannot be detected. ■

In the above example we notice th a t if the current variable were chosen 
to be one in {x 2 ,X 3 , x 4}, then the inconsistencies could be detected by arc- 
consistency. Is it enough to  achieve the same pruning power as ACUP if 
arc-consistency look ahead is applied to  all the future variables (let’s call it 
ACLA+)?

The following example shows th a t there exists a CSP in which ACUP has 
more pruning power than  ACLA+ .

E x a m p le  6 .1 . 2  Consider a CSP with X  — { x 4, x 2, x 3, x 4} with D Xl =  D Xs =  
D Xi =  {0,1, 2}, D X 2  =  {0,1, 2, 3}, and the following constraints

ci (x 1 , x 2) =  {(0 , 0 ), (2 , 2 ), (1 , 0 ), (1 , 1 ), (2 , 1 ), (1 ,3)}
C2(x2, x 3) =  {(0, 0), (1, 2), (2,1), (2, 2), (2,0),  (3,1)} 
cs(x3, *4) -  {(0, 0), (2, 2), (1, 0), (1, 1), (1, 2)} 
c4(x4, x 4) = {(0, 2), (1, 0), (2, 0), (1, 1), (2, 2)}

Obviously this CSP is arc-consistent. We can see th a t only the propagation 
from x\  = 0  can cause a conflict propagation chain {0:1 = 0 , x 2  = 0 , £3  =
0, x 4  =  0, x 4 — 2 }. So 0 is removed from the domain of aq, and DXl =
{1,2}. Enforcing arc-consistency now, no domain can be reduced further. By 
removing the inconsistent tuples, the constraints become

c1 (x 1 , x 2) = {(2, 2), (1,0), (1,1), (2,1), (1, 3)} 
c2 (x 2 , x 3) = {(1, 2), (2,1), (2, 2), (2, 0), (3,1)} 
c3 (x 3 , x 4) =  {(0 , 0 ), (2 , 2 ), (1 , 0 ), (1 , 1 ), (1 , 2 )}
c4 (x4, Xi) — {(0 , 2 ), (1 , 1 ), (2 , 2 )}

The propagation from x 2  = 1 can cause a another conflict propagation chain 
{x 2  =  1, £3  =  2, x 4  =  2, x 4 =  2, x 2  =  2}. Therefore 1 is removed from D X2.

If we apply ACLA+ to  all future variables to  this CSP, and x 2  is checked 
first, Xi later, then 1 can not be removed from D X2.

Suppose 1 is tentatively assigned to  the current variable x 2. After applying
full arc-consistency check, the domains for D Xs, D X 4 , D Xl become {2}, {2}, {2}
respectively. No domain becomes empty. Consequently, ACLA+ cannot find 
the conflict caused by the assignment x 2  —> 1 .

But if we apply ACUP, 2 can be removed from D X2. ■

The reason th a t ACLA+ cannot find the conflict is th a t ACLA+ only checks
the conflicts in a fix order. T hat is, it does not check back to  see if the removal 
of a conflict can cause another conflict. A conflict can depend on another 
conflict. If the conflicts do not occur in a certain order, ACLA+ may not find 
all the conflicts.
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We have seen the examples th a t show ACUP is more powerful in pruning 
the search space than  ACLA+ for some CSPs. Is ACUP strictly stronger than 
ACLA+ , or ACLA? The following example shows th a t ACLA+ , or ACLA is 
more powerful than  ACUP for some CSPs.

E x a m p le  6 .1 .3  Consider the CSP that has three variable x, y, z  with 
D x — {0 , 1 }, D y =  {1 , 2 ,3 ,4}, D z = {1 , 2 ,3 ,4 } , and three constraints:

c Xy = {(0,1), (0,2), (1,3), (1,4)}
cyz =  {(1,3), (2,3), (1,4), (2,4), (3,1), (4,1), (3,2) (4,2)}
czx =  {<1,0), <2,0), (3,1), <4,1)}

If we have the partial instantiation x  —> 0, in ACLA, 3, and 4 are removed 
from D y. Similarly, 3 and 4 are removed from D z. In the next iteration, w.r.t.
CyZ, 1 and 2 are removed from both D y and D z. As a result, ACLA can find 
this conflict.

By applying ACUP, no unit propagation can cause a conflict, so ACUP 
cannot reduce the domain. ■

We notice th a t there is a gap between ACUP and ACLA. Now we add 
ACUP to  ACLA to make ACLA achieve a t least the same pruning power as 
ACUP.

We only need to  revise SELECT-VALUE-ARC-CONSISTENCY (cf. Sec
tion 2.4) in ACLA. The revised version of SELECT-VALUE-ARC-CONSISTENCY 
is given in Figure 6 .1 . We call it SVAC+ .

E x a m p le  6 .1 .4  Consider above Example 6.1.2 again. A  CSP A ( X ,  D , C )  
with X  =  {x , y, z} , all with domain {0 ,1 ,2}, and the following constraints

ci(x,  y) — {(1 , 1 ), (0 , 0 ), (0 , 1 ), (0 , 2 ), (2 , 1 )} 
c2 (y,z) =  { ( l , l ) , ( 2 , l ) , ( 0 , 0 ) , ( l , 2 )} 
c3(z, x) = {(1, 0 ), (0 , 1), (0 , 0 ), (2 , 0 ), (0 , 2 )}

Suppose we use AC-4 as arc-consistency algorithm  in SVRC+ . Initially (x, 1) 
is added into C, which stores the conflict pairs in AC-4. Now applying arc- 
consistency, 1 is removed from domain D x, and counter (y, 1, x) becomes 1. 
W hen unitjpropagate*(A, {y  —» 1 }) is applied, a conflict occurs, y —» 1 is 
added to  C. Applying arc-consistency again, 2, 1, and 0 are removed from D y,
D z, and D x respectively. ■

C o m p le x ity  o f  SVAC+

The general optim al time complexity for arc-consistency is 0 ( e k 2), where 
e is the number of constraints, and k is the cardinality of the largest do
main. Since the original SVAC needs to check each value in the domain of
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SVRC+
Input: a CSP A ( X ,  D \ C),  a current variable Xi 
O utput: a value for Xi, or a null if no consistent value 
w h ile  D'{ is not empty do

select an arbitrary  element a € D[, and remove a from D '; 
make A  arc-consistent with the partial instantiation; 

if  any future domain is empty {don’t select a) then  
| reset each changed domain to  values before a was selected: 

else
conflict =  false; 
for each Xj € X  do 

for each aj e  do
if  unitjpropagate*{A, {x j —v aj}) returns “conflict” 
then

conflict —> true; 
break; 

end 
end 

end
if  conflict — true then
| reset each changed domain to  values before a was selected; 

else
| return a; 

end  
end 

end
return null;

Figure 6 .1 : SVAC+ subprocedure
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the current variable, if we implement this procedure using the optim al arc- 
consistency algorithm AC-4, SVAC has a worst case time complexity 0 ( e k 3). 
Note th a t, in SVAC+ , each pair (a;*, af) in a CSP A ( X ,  D,  C)  is checked using 
unit-propagate(A , {x, —> a*}) which takes 0(e)  time if it is combined with 
AC-4. Therefore, the loop in part 2 of ACLA+ takes 0 ( e 2 k), and the time 
complexity of SVAC+ is 0 ( ( e k 2  +  e2 k)k)  =  0 ( e k 2(k +  e)). ■

6.2 ACUP Vs. Path Consistency and i Con
sistency

P ath  consistency makes every path  of length 3 (the path  from x  to y  to z) 
consistent, while ACUP enforces consistency of every unit propagation chain. 
The following example shows the difference between path  consistency and 
ACUP.

Exam ple 6.2.1 consider a C S P A ( X , D , C )  that has three variables x , y , z  
with domain D x — D y =  D z =  {0,1, 2,3}, and three constraints:

cXy  =  {(0,0), (0,1), (1,2),  (1,3), (2,0), (2,1), (3, 2), (3,3)}
=  {(0,0), (0,1), (1, 2), (1, 3), (2,0), (2,1), (3,2), (3, 3}}

c*y =  {(0,2), (1,3), (2,0),  (3,1), (1,2), (0,3), (3,0), (2,1)}

Obviously, this CSP is arc-consistent. But we can see th a t for any pair
{aj, af) G cxy, there is no value ak for z  such th a t (a*, ak) G cxz, and {ak, af) G 
czy. Applying path  consistency, the domains are reduced to  empty.

But applying ACUP, since there is no unit propagation in this CSP, no 
domain value can be reduced. ■

It can be seen th a t there is no unit propagation in this CSP. So ACUP 
cannot be applied here. Therefore path  consistency has more pruning power 
than  ACUP for this CSP.

Definition 6.2.2 The distinct length o f a unit propagation chain C is the 
number of different variables in C.

Exam ple 6.2.3 The unit propagation chain {x \ —> 0 , x 2 —> 1, x% —»■ 0, —>
1, x i —> 1 } has length 4  because the different variables in the propagation chain 
are { x 1, x 2, x s , x 4:} .  ■

Obviously, we have the following proposition:

Proposition 6.2.4 Given a CSP, i f  there is a conflict chain whose length is 
i, and the CSP is i — 1  consistent, then ACU P can find the inconsistency while 
i — 1 consistency cannot find it in this CSP.
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Exam ple 6.2.5 consider a CSP A { X , D, C) that has 4 variables 
xi , X2 , xz , X4  with domain D Xl =  D X2 =  D X3 =  D Xi =  {0,1}, and four 
constraints:

Obviously, this CSP is arc-consistent. We can also check th a t it is path  con
sistent. B ut there is a unit propagation chain { x x —> 0, x 2  —> 1, x 3  —» 0, aq —> 
1 , x i —t  1 }, so unit-propagate* (A., {x  —> 0}) returns a conflict. Therefore 
ACUP can find the inconsistency while path  consistency can not for this CSP. 
■

From the above example, we see th a t ACUP and i consistency are different 
techniques th a t can be used to  prune the search space. W hen CSPs have many 
unit propagations, ACUP has extra power as compared w ith i consistency. 
Furthermore, the tim e complexity for ACUP is much lower than  i  consistency. 
The following proposition defines the condition under which % consistency can 
achieve a t least the same pruning power as ACUP.

P ro p o s it io n  6.2.6 Given a CSP, i f  the length o f every unit propagation chain 
is at most i, then any value removed by ACUP can be removed by i consistency 
fo r  any i > 2 .

P roof We only consider the case when there is a conflict in the unit propaga
tion chain { x x -»  ax, . . ., Xi —> cq, x x = 6} with distinct length i, where {eq A  
b}. For the pair (ai, af), we can’t find consistent any value for {aq, . . . ,  
to achieve 02 G D X2, . . . ,  aj_ 1 G D Xi_l simultaneously. Therefore, i consistency 
can also find the conflict, and remove ax from the domain D Xi ■

From above discussions, we see th a t ACUP is a new consistency technique. 
It is strictly stronger than  arc-consistency and overlaps w ith arc-consistency 
look ahead and path  consistency.

c ,

c.
W 2  =  {<0 , 1) ,<1, 0)} 
^ 3  =  { ( 1 , 0),  <0 , 1) }  
^  =  {<0 , 1), (1, 0 )} 
W l  = { ( 1 , 1 ) ,  (0,0)}  
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Chapter 7 

Summary and Future Work

7.1 S um m ary
In this thesis, we present an algorithm for ACUP, and give the proof of the 
algorithm. The tim e complexity of our algorithm  for ACUP is 0 ( e 3 k3), which 
is lower than th a t given in [28].

We also compare ACUP with the other consistency techniques in the lit
erature. We show th a t ACUP neither dominates nor is dominated by arc- 
consistency look ahead and i consistency.

SVAC in arc-consistency look ahead chooses a value for the current variable 
and checks if this assignment causes a conflict. It tentatively assigns a value 
to the current variable, then performs arc-consistency checks. If there is an 
empty domain, it means th a t this tentative assignment cannot be consistently 
extended to the whole CSP, so another tentative value is chosen for the current 
variable, and the consistency check is enforced again. In this manner, SVAC 
is much stronger than  arc-consistency alone since it performs arc-consistency 
checks under a tentative assignment. But if the conflict lies in the other vari
ables instead of the current variable, SVAC cannot find it. ACUP can find this 
conflict if there exists a conflict unit propagation chain in the CSPs. Choosing 
every future variable as the current variable, assigning a tentative value for the 
current variable, and performing consistency check cannot make up this gap 
if the conflicts happen in a different order from th a t of choosing the current 
variable. A loop is needed to  run this check until no further conflict can be 
found. Note th a t SVAC takes 0 ( e k 3) if the optim al arc-consistency algorithm 
is adopted. If SVAC is applied to  all future variables, it will take 0 ( e 2 k3) 
time. If we want to  achieve at least the same pruning power as ACUP, in a 
straightforward manner, we need a loop to  run the conflict checking until no 
further conflict can be found. This approach takes 0 ( e 3 k4) time. The differ
ence between ACUP and SVAC enables us to  design a new algorithm called 
SVAC+ to incorporate ACUP into SVAC. SVAC+ can find all the conflicts in
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unit propagation chains, and takes 0 (ek2(e + k)) time, which is much lower 
than 0 (e3 k 4).

i consistency makes i variables in a CSP consistent, i consistency (i > 2 ) 
is more powerful than  arc-consistency. But if the length of a conflict chain in a 
CSP is greater than  i — l , i  consistency still can not achieve the same pruning 
power as ACUP. In order to have at least the same pruning power as ACUP, 
i consistency requires 0 ( 2 l(ek)2t) time for a brute force algorithm. It is much 
higher th a t  0 ( e 3 k 3) for ACUP.

7.2 Future Work
In this thesis, we compare one step lookahead in Smodels with arc-consistency.
It has been shown th a t one step lookahead is strictly stronger than  arc- 
consistency (2 consistency) in pruning the search space. The question arises if 
i step lookahead is strictly stronger than  i + 1  consistency. Does ^-consistency 
with unit propagation achieve the same pruning power as i step lookahead ?

Another interesting topic is the difference between expand  and arc-consistency. 
Arc-consistency  is strictly stronger than  expand, but the optim al tim e com
plexity of arc-consistency is 0 (ek2), which is the same as the tim e complexity 
of expand  for the translated programs [28]. Can we improve the pruning abil
ity of expand  and achieve the same pruning power as arc-consistency in the 
same time complexity?

An understanding of the relationships between different approaches often 
reveals insights in these approaches and the corresponding techniques. Despite 
their proximity, in the past constraint propagation in answer set programming 
has rarely been compared to  consistency techniques in solving CSPs. By es
tablishing the relations between lookahead and arc-consistency, this thesis is 
the first step in this direction. Many more questions remain, among which 
bounds consistency as used for CSPs appears particularly interesting, not only 
because it can be extremely effective in reducing domains for some CSPs, but 
also because it appears to  have no counterpart in answer set solvers. We would 
like to see the arsenal of constraint propagation techniques applied to answer 
set programming also include a form of bounds consistency, so th a t the search 
space in large numerical domains can be reduced quickly.

Finally, our result is based on a standard encoding from CSPs to answer 
set programs. It is interesting to investigate w hether the same conclusion can 
be drawn under different encodings.
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