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ABSTRACT

A robot manipulator operating in three dimensional workspace should have six
degrees of freedom fcr the end effector to be capable of reaching every point in the
workspace. Such a robot is said te be kinematically non-redundant. By implication, a
kinematically redundant robot has more than the minimal aumber of degrees of free-
dom required to reach points in the workspace. Redundancy can be used to achieve
goals that cannot be achieved by a non-redundant manipulator. In this thesis a time-
optimal control algorithm is developed for three link planar manipulator operating in
an obstacle-free two dimensional workspace. The solution depends on the following
factors : The end effector trajectory is specified, the initial configuration of the mani-
pulator is known and the pseudoinverse of the Jacobian is used to obtain the inverse
kinematic solution at each step along the specified trajectory. The acceleration of the
end effector along a specified trajectory is used as the control variable. This minimum
time algorithm is extended to avoid an obstacle in the workspace. The solution is
dependent on the joint trajectories which are determined a priori for a given obstacle.

Simulation results are presented.
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Chapter 1

Introduction

1.1 Robotics Background

Early research work on robotics can be traced back to the late 1940’s when
remotely controlled master-slave mechanical manipulators were developed in the U.S.A
to handle radioactive materials. The first industrial manipulator with computer control
was introduced in 1959 by Unimation Inc. This was the predecessor to the present-
day popular PUMA robot (Fig. 1.1). Robotics research has come a long way during
the past three decades. Many sophisticated manipulators with more sophisticated con-
trol schemes have been developed in recent years in the laboratories and some of these

have found their way into practical real world applications.

For a general and typical industrial application, in three dimensional workspace, a
manipulator wiil have to have as a minimum six degrees of freedom and the robot
shown in Fig. 1.1 belongs to this category. Questions relating to the design and control
of such a robot to perform desired tasks are being tackled by the research community.
One such question is related to the number of degrees of freedom which the manipula-
tor possesses. It has been shown that a manipulator with more than the minimum
degrees of freedom ( a redundant manipulator ) has more flexibility and will be neces-
sary in some situations. This thesis is concemed with the role of redundancy in robot

manipulators. A more specific statement of the thesis objective will be given later in



Figure 1.1 A Puma 560 robot
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this chapter.

1.2 Limitations of Non-Redundant Manipulators

A manipulator with the minimum degrees of freedom for a given workspace is
called a non-redundant manipulator The presence of obstacles in the workspace and
singularity configurations ( to be defined later ) of the manipulator are the two major
limitations of a non-redundant manipulator. A brief explanation of these two limita-
tions is given in the following subsection. A significant portion of the research effort

during the past decade has addressed these two limitations.

1.2.1 Obstacles in Workspace

In practical applications, it is highly unlikely that the workspace of a manipulator
will be free from obstacles. Suppose the manipulator is to move from one point to
another point in the workspace and there are no restrictions to the joint motions, the
trajectory is usually determined by the control scheme used. An object can be
obstructing the manipulator in two different circumstances. The first occurs when an
obstacle is in the path of the end effector as it moves along the trajectory. The links
are not affected as they move along their respective trajectories corresponding to the
movement. The second case occurs when obstacles are encountered by the links of the
manipulator as they move when the end effector moves from an initial position to a
final position.

Obstacle avoidance can be achieved relatively more easily at the path planning
stage for the first case. Typically, the control algorithm is constructed in such a way
that the manipulator is made to follow a predetermined path from the specified initial
point to the specified end point avoiding the obstacle in the work space if such a path

is available. This usually results in additional traveling distance for the end effector



and additional computations are to search for the alternate path. Artificial intelligent
algorithms are often used to find the obstacle avoidance path efficiently and

effectively.

The determination of the obstacle avoidance algorithm in the second case is usu-
ally more difficult. More than one intermediate link may run into the obstacle as the
arm moves along the specified trajectory. The obstacle avoidance algorithm which can
tackle this problem is therefore more complicated. Moreover, there is always the pos-

sibility that an obstacle free trajectory may not exist.

There are situations where the end effector trajectory is just as important as the
end points themselves or the end effector must pass through certain points in the
workspace. It is impossible to find any alternate path to avoid the obstacle with a
non-redundant manipulator. In such a case, a redundant manipulator can be used to

solve the problem.

o
>

X

Figure 1.2 A singular position for non-redundant manipulator

1.2.2 Singularity

Another difficulty encountered by robot motion algorithms is the singular

configuration of a manipulator. All manipulators have locations in the workspace



where movement or rotation in at least one direction cannot be achieved. These
specific locations are known as the singularities of the manipulator. In Figure 1.2, the
end effector cannot move in the direction paraliel to the link a;. Near such
configurations, small displacements of the end effector require excessively large and
physically unrealizable joint speeds, which introduce severe inaccuracies in the desired

motions,

Singularities are divided into two categories. One is the workspace boundary
singularity, which typically occurs as the arm is fully stretched out or folded back
when the end effector is at the boundary of the workspace. The other singularity is
known as the workspace interior singularity. It is found within the workspace and is
usually caused by the lining up of two or more joint axes of the manipulator. Obvi-
ously, the boundary singularity can never be eliminated since there must be a boundary
somewhere in the workspace. The interior singularity, however, can be avoided and
there are two traditional approaches to deal with this well known problem. The first
method avoids these singular 1egions completely in the path planning stage. Envelopes
enclosing the singularities are identified and motions in the state space are restricted to
lie outside these envelopes. The other approach, however, is to compromise between
the desired end effector motion and possible joint motion. Velocity constraints are
placed on the end effector to prevent excessive velocities and joint angle trajectories
are interpolated between singular points. The major drawback of this scheme is that
the envelopes practically eliminate one or more degrees of freedom of the manipulator.
Researchers have turned their attention to see how an extra degree of freedom can be

employed to resolve these difficulties.

1.3 The Use of a Redundant Manipulator



A maniprlator, with more than the minimum number of degrees of freedom
necessary for a particular task in a given workspace is known as a kinematically
redundant manipulator. The number of extra degrees of freedom is referred to as the
redundancy of the manipulator. It has also been suggested that future general purpose
manipulators should contain at least one degree of redundancy [ Hollerbach 84 ).
Only a few redundant manipulators have actually been built. Most of the research has
been device-independent. Among those are the seven degrees of freedoms tendon-
driven, torque controlled robot [ Takase, Inoue, and Sato 74 ], the articulated seven
degree of freedoms UJIBOT driven by d.c. servomotors equipped with tachogenerator
at each joint to measure the joint angle and velocity [ Hanafusa, Yoshikawa and
Nakamura 81 ], an 8 degree-of-freedom sheep shearing robot [ Trevelyan, Kovesi, and
Ong, 83 ] and a seven degrees of freedom CESAR research manipulator with a spheri-
cal wrist. ( Dubey 87 ) Most of the theories of the redundant manipulator have been

developed by simulations.

Until recently research work in redundant manipulators has been concentrated on
robots with only one degree of redundancy. One degree of redundancy is, in general,
sufficient to avoid singularities and avoid obstacles, if it is added to a non-redundant
manipulator effectively. Consider the specified path in Figure 1.3 and Figure 1.4 for
the same motion from point A to point B of a non-redundant manipulator and a redun-
dant manipulator. Both manipulators have the same total link lengths and the link
length for all the links is the same. Suppose the task requires the end effector to fol-
low a straight line motion from A to B, and an obstacle, ( represented by the rectangu-
lar box ) is presented in the workspace. It can be seen in Figure 1.3 that the non-
redundant manipulator collides with the obstacle before it completes the specified path.
However, the redundant manipulator manages to follow the specified trajectory without

running into the obstacle. For the specified path, the end effector is not obstructed by
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Specified path

Figure 1.3 A non-redundant manipulator and an obstacle
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Specified path

Figure 1.4 A redundant manipulator and an obstacle




obstacles, but rather the intermediate link may run into obstacles because of the
confined workspace as shown in this example. This simple example demonstrates the

necessity for the use of a redundant manipulator for obstacle avoidance.

1.4 Objective of This Thesis

For many present day applications, the speed of robotic manipulators 1s rather
slow when compared to the human hand. Current manipulator controllers are not
designed to move the arm as fast as possible. The maximum velocity and acceleration
are actually obtained by trial and error until the actuators are saturated. For higher
productivity, it is desirable to operate the manipulator at the maximum allowable velo-
city at all points along the trajectory. Time optimal algorithms have been developed in
the past for non-redundant manipulators. The objective of these alge=ithms is either to
find the minimum time path for the end effector to move from cne point to another
point in the workspace [ Geering et el. 86 ] or to move the end effector along a

specified path in minimum time [ Bobrow et el. 83 ].

Instead of the former time optimal control approach which uses the joint torques
as the control variables. Bobrow uses a single control variable namely, the acceleration
of the end effector along the planned trajectory to obtain the minimum time control.
In doing so, the whole trajectory in the Cartesian space can be specified in contrast to
only the end points for most of the other time optimal control algorithms. Torque con-
straints are placed and transformed into the velocity limit curve in the phase plane of
the control variable. The minimum time is achieved by driving the end effector along
the trajectory at maximum acceleration and then at maximum deceleration. One
switching in the phase plane is required as long as the switching curve remains below
the maximum velocity curve. However, a more complicated algorithm for multiple

switching is needed when the joint torques are not sufficient in meeting the velocity
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requirement.

In this thesis, non-redundant time optimal control strategy of Bobrow above is
extended to the redundant case. The redundant time optimal algorithm is further
extended to include obstacle avoidance. For non-redundant manipulators, it is only
possible to achieve either minimum time specified paths [Bobrow &3] or minimum
time obstacle avoidance [ Dubrowsky 86 J. In this thesis, both path specification and
obstacle avoidance are include in one time optimal control algorithm. This is made
possible by utilizing the extra degree of freedom in redundant manipulators.  This
algorithm is verified experimentally by means of a simulation program written in C on
the Unix system. Graphical animation is also written in C using the Computer Graph-

ics Interface (CGI) available in the Sun workstation.

Time optimal control for redundant manipulators, however, has difficulties with
the non-uniqueness of the intermediate joint trajectories because there are infinitely
many possible sets of joint angles that can satisfy an end effector requirement. There-
fore, the time optimal algorithm developed in this thesis is optimal only under the con-
dition that the joint angles are specified. In this thesic, the starting angles are assumed
to be given and the intermediate joint trajectories sz obtained from the pseudoinverse.
The minimum time referred to in the following chupters is only optimal under the con-

straint of the pseudoinverse inverse kinematic s:wution.

1.5 Structure of Thesis

This thesis is weighted equally iz hoth the theoretical and experimental aspects.
The background and some theoretical results for the time optimal control algorithm are
presented. These are followed by the computer simulations and experimental resuits.
A more detail description of the objective of each chapter is given at the beginning of

each chapter. Only a brief outline is mentioned here.
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Chapter two reviews the mathematical backgrounds for redundant manipulators.
It is intended to fill in the mathematical details required to understand the control algo-
rithms described in later chapters. Major properties for underdetermined systems and
the nul! space are given. The use and definitions of the pseudoinverse are also intro-

duced.

Chapter three presents the three link redundant manipulator model that is used
later to implement the time optimal algorithm. The dynamic and kinematic models of
the manipulator are derived. Assumptions and parameters of the manipulator are also
given.

Chapter four develops the time optimal control strategy for a redundant manipula-
tor. ft is a three link planar manipulator operating in two dimensions. The usc of the
pseudoinverse to obtain a unique set of joint angles for a Cartesian position is dis-
cussed. Single swiiching cases as well as the more complicated multiswitching cascs

are both considered.

Chapter five develops an obstacle avoidance algorithm. This avoidance algorithm
is applied to the time optimal control developed in chapter 4 to avoid obstacle in the

workspace.

Chapter six describes the programming structure of the algorithms in chapter four
and five. The control laws are applied to a computer simulated three link planar
redundant manipulator driven by a set of input torques. The torques calculated in
chapter 3 and 4 are used as inputs to the program to produce the expected time

optimal motions. Examples are given to illustrate the developed theories.

Chapter seven states the conclusions and suggests future research topics.



Chapter 2

Mathematical Background of Redundant
Manipulators

2.1 Introduction

In the case of a non-redundant manipulator, the kinematic equation which relates

the joint velocities to the Cartesian velocities is written as

JO =i 2.1

where Q and x are the vector of the joint velocities and the vector of the Cartesian
velocities respectively. J is the Jacobian matrix of the kinematic equation which con-
tains trigonometric functions of the joint angles. For non-redundant manipulators, the
sizes of the vectors § and £ are the same because the number of joints of the manipu-
lator is the same as the degrees of freedom. Therefore, the Jacobian is a square
matrix. However, for the redundant case, the dimension of 9 is greater than the
dimension of x. The Yacebian matrix is, therefore not square and when the joint velo-
cities are to be expressed in terms of the Cartesian velocities, the inverse of a non-
square matrix is required. The "inverse" of a non-square matrix is known as the pseu-
doinverse. The derivation of kinematic equation of a redundant robot relies heavily on
the pseudoinverse and its associated matrix properties. These properties are not only

useful in obtaining the mathematical model but are also essential to most of the present
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control algorithms for the redundant manipulators. In this chapter, the definitions and

theorems relevant to the pseudoinverse of a matrix will be reviewed.

2.2 Range Space and Null Space of a Matrix

For a general matrix H with m rows and n columns, the range space and null
space are defined below.
Definition 2.1

The range space of a matrix H, denoted by R (), is defined as a set of vectors

such that

RHY={z:z2z=Hx} 2.2.1)

where x is an arbitrary vector in the Euclidean space that serves as the domain of H.

The dimension of the range space is sometimes referred to as the rank of the
matrix. For robotic manipulators, the range space of the Jacobian matrix, R(/), is
called the manipulatable space and the dimension of R (J) is called the degree of mani-
pulatability ( d.o.m ). Since the Jacobian matrix is joint angle dependent, d.o.m is
defined for each geometric position of the manipulator. The singularity region of the

workspace will then have a lower degree of manipulatability.
Definition 2.2

The null space of H, denoted by N(H), is a set of vectors that maps to zero

through H such that

N(H)={x : Hx =0} (2.2.2)

where x is an arbitrary vector in the Euclidean space that serves as the domain of H .
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‘the dimension of the null space, namely the nullity, is then the number of
independent vectors that span the null space. For redundant manipulators, the null
space of the Jacobian matrix, N(J), is called the redundant space and its nullity is
called the degree of redundancy ( d.o.r ). From the above definition, it is noted that all
the vectors, x in the null space must be orthogonal to the row vectors of H if they
were to map to zero by H. Therefore, the null space of a matrix H must be composed
of vectors which are also linearly independeat to the row vectors which defines the
range space. For a non-square matrix 4, when the number of columns is larger than
the number of rows, the dimension of the null space of H# is the same as the difference
between the columns and the rows. Denote the rank of an mxn matrix 4 by Y(H)

and its nullity by p(H). The nullity and rank of a matrix are related by

pH)+Yy(H)=n (2.3)

which implies the sum of the dimension of the null and range space of a redundant
manipulator is equal to the number of columns of the Jacobian matrix. Therefore, the

sum of d.o.m. and d.o.r is actually the total number of joints of the manipulator.

2.3 Definition of the Pseudoinverse

The use and definitions for pseudoinverse arise from the need to take the inverse
of a non-square matrix. It is also called generalized inverse for it is virtually the
inverse of a general matrix. It is extensively used to find a solution for an underdeter-
mined system of linear equations out of the infinitely many possibilities. The pseu-

doinverse of a rectangular matrix can be defined by the following theorem.[Albert 72}
Theorem 2.1

For any matrix H, its pseudoinverse defined as



H* = lim (K- H+8% ) 'HT (2.4.1)
50

H* = lim HT(HHT + §2y! (2.42)
50

always exists. It can also be written as
H*=HT(HHT)! (2.4.3)
if the rows of H are all linearly independent and as

H*=HTHY'HT (2.4.4)

if the columns of H are all linearly independent.

For an nXxm rectangular matrix, it is at its full rank if and only if either its rows
or columns have all linearly independent vectors. Therefore, an n dimensional vector
spac. can have at most n linearly independent vectors, and definition (2.4.3) is used
only when the row dimension is less than the column dimension, otherwise definition
(2.4.4) would be used. It is an underdetermined system in the case of the redundant

manipulator, and the pseudoinverse of the Jacobian is defined according to (2.4.3).

The number of independent vectors defines the dimension of the range space of a
matrix, and its transpose cannot have more independent vectors than itself. The range
space of a matrix, R (H), is actually the range space of HHT. This means that HH7 is
singular if and only if the rows of H are not all linearly independent. This concludes
that the pseudoinverse defined in (2.4.3) always exists if the rectangular matrix, H , is

at its full rank. Definition (2.4.4) can be shown to exist with the same arguments.

It is seen from equation (2.4.3), that the pseudoinverse is indeterminate whenever
HHT is singular. In the application of the pseudoinverse to the redundant manipulator,
the Jacobian does have linearly dependent rows when the end effector is at the boun-

dary of the workspace. These points define the singular regions of the redundant
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manipulator.

2.4 Theorems and Properties of the Pseudoinverse

Pseudoinverse is sometimes called the Moore-Penrose pseudoinverse for
Penrose’s contribution in his paper in 1955 [ Penrose 1955 ]. He brought the interest
of the pseudoinverse back by pointing out that the pseudoinverse provides an unique
solution to a set of matrix equations and that it satisfies the following Penrose condi-

tions. For any matrix H, and its pseudoinverse B=H*, they must satisfy

HBH =H (2.5.1)
BHB =B (2.5.2)

and both HB and BH are symmetric.

Another way of defining the pseudoinverse would be to make use of the well
known singular value decomposition theorem ( SVD ). A better and more complete
definition to the pseudoinverse can be derived directly from the Penrose conditions and
the SVD theorem. Not only does the SVD help to understand the concept in behind,
it can also be extended easily to give a numerical computation algorithm that has sub-

stantially higher accuracy than (2.4.3).
Theorem 2.2

For an mXn matrix H, let L be an rxr diagonal matrix of (HH")'s non-zero
eigenvalues A’s arranged in any order, then there exists an mxr matrix P and an rxn

matrix Q which satisfies the following conditions

H =PLY2Q (2.6.1)
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HHT = pLPT (2.6.2)
HH* = PPT (2.6.3)
PTP =1 (2.6.4)
HTH =Q7LQ (2.6.5)
H*H =07Q (2.6.6)
0T =1 2.6.7)
where
L' = diag(M}2 M7, ... A1) (2.6.8)

Equation (2.6.1) of Theorem 2.2 is referred to as the SVD theorem. Any matrix
H can be decomposed into product of three matrices, the diagonal eigenvalues matrix
L and its corresponding orthogonal eigenvector matrices P and Q. From (2.6.4) and
(2.6.7), it is seen that the columns of P and the rows of Q are orthogonal. Equations
(2.6.2) and (2.6.5) indicates that the column of P and the row of Q consist of the
eigenvectors of HHT and HTH respectively. Due to the fact that any matrix of the
form HHT has non-negative eigenvalues, the square root of L defined in (2.6.8) is
always real and positive. The size of the diagonal mawix L is governed by the

number of non-zero eigenvalues of HH7 or the rank of H.

Starting from equation (2.6.1), with the help of properties (2.6.2) to (2.6.7) and
the Penrose conditions, the pseudoinverse of H can be defined in a similar decom-

posed form. Substitute equation (2.6.1) into (2.6.3) yields

PLY2QH* = ppPT 2.7.1)



= LY2QH* = pPT (2.7.2)

Since the inverse of a diagonal matrix is simply the reciprocal of its diagonal elements,
L~1? is denoted as the inverse of L2 Multiplying equation (2.7.2) with QT -1

gives

QTQH* = QTL-1”pT (2.7.3)

Finaily, substituting (2.6.6) into the left side of (2.7.3) and applying the Penrose condi-

tion (2.5.2), the pseudoinverse can be defined as
H+HH+ = QTL—IIZPT
H*=QTL-12pT (2.7.4)

It is obvious that in equation (2.7.4) the linear independent vector restriction in
(2.4.3) is released. The rank of H, which is r, affects only the dimensions of P, Q
and L, and (2.7.4) holds regardless. For numerical computation, it is more convenient
to break down the matrix equation (2.7.4) into a sum of vector products. It would be
much more difficult if L is not diagonal. Making use of this advantage, the pseudoin-
verse can be rewritten as

k

H*=3 A12qTp, (2.8)

i=l

where g; and p; are the corresponding row vectors of A; for matrices P and Q respec-

tively.

From the definitions given above, it is easily seen that the solution provided by

the pseudoinverse is unique. Sometimes, the pseudoinverse solution may not be a
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desirable one among all other possibilities. The pseudoinverse would not be zppreci-
ated as much if there is no other means to look for the wanted solution. The null
space of the pseudoinverse provides a means to find all the possible solutions to the

underdetermined system.
For any vector x in the finite dimension Euclidean space that has a linear sub-

space L, there exists an unique vector £eL that has the property that x and x—% are

crthogonal. This implies that x has an unique decomposition

X =%+£ (2.9)
where X is orthogonal complement of subspace L. Now, consider the projection of
this vector on the range space of a matrix HTH, then £ and ¥ will belong to
RMHTHY=RH Ty and N (HTH)=N(H ) respectively. The projection vector on the null

space of H can be written as

F=x-% (2.10)

It can be shown that the projection of a vector on R (H*H) is the same as the

projection on R (HT), therefore it follows from (2.10)

A

x-%
=x—-H*Hx
=({-H*H)x (2.11)

The matrix (/~H*H) is known as the null space projection matrix for it is the afterim-
age of the vector x onto the null space of H. This null space projection matrix is fre-
quently used to cbtain a solution for a homogeneous system of equations, Hx=0,

When H is at full rank, the null vector is the only solution, therefore the null space
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projection matrix must be a zero matrix. From (2.11), it implies that H*H is an iden-

tity matrix. Moreover, this projection matrix is used extensively in conjunction with

the pseudoinverse to yield a complete solution for a non-homogeneous system. The

major properties of the pseudoinverse can be summerized by the virtues of the follow-

ing theorem
Theorem 2.3

a) xo ininimizes

llz—-Hx |?

if and only if x, is of the form

Xo=H*z + -H*H)y

for some y.

b) The value of x which minimizes (2.12.1) is unique if and only if

H*H =1

Equation (2.12.3) is true if and only if zero is the only null vector of H.

c¢) The equation

has a solution if and only if

HHYz =2

(2.12.1)

(2.12.2)

(2.12.3)

(2.12.4)

(2.12.5)

Equation (2.12.5) is true if and only if ze R(H). x is a solution to (2.12.4) if and

only if it is of the form of (2.12.2). Equation (2.12.4) has an unique solution (=H*z)

if and only if HH*z=z and H*H =l .



The proof of this theorem is available in [ Albert 72 ].

2.5 Application of the Preceding Results to Redundant Manipulator

Theorem 2.3 provides much insight to the use of the pseudoinverse and the null
space in general. Part (c) of this theorem is directly applicable to the redundant mani-
pulator for (2.12.4) and it is of the same form as the kinematic Jacobian equation (2.1).
Equation (2.12.5) states the only criterion for the Jacobian equation to have a valid
solution, that is when x lies in the range space of J. This is always true unless the
rank of the Jacobian matrix is less than the dimension of the vector ¥. In the case
when J is deficient, the Jacobian equation can only be satisfied if the dimension of x
is reduced accordingly. This explains the reduction of the degree of freedom at singu-
larity.

From part (b), the joint angle solution for redundant manipulators is unique only
if zero is the only vector in the null space of the Jacobian. Since the null space of the
Jacobian has at least one non-zero vector, there are always infinitely many possible
joint velocity vectors that satisfy a particular Cartesian velocity vector. The null space
projection in (2.12.2) provides a mean to find the desired solution through y. From
(2.12.2), it is also seen that the pseudoinverse solution without the null space is of
minimum norm because the general solution with the addition of a s:ull space projec-

tion vector to the pseudoinverse can only increase the norm of Xq

The first part of Theorem 2.3 is perhaps the most useful for it has no restriction
on f. The minimum of the norm of (2.12.1) is obviously zero when H has full rank,
however when H is singular, x simply gives the minimum norm solution to (2.12.1).
The minimum norm of (2.12.1) is virtually the minimum error of (2.12.4). Theorem
2.3 simply provides the kinematic Jacobian equation with an exact solution whenever

it is available and a minimum error solution if there is no exact answer.
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Chapter 3

Kinematics and Dynamics of a Three
Link Planar Redundant Manipulator

3.1 Introduction

In this thesis, all the theoretical ideas and control algorithms are developed for a
three link manipulator shown in Fig 3.1. Since the motion is confined to a plane, the

three link manipulator can be considered as a redundant manipulator.

The kinematics and dynamics of the manipulator are derived in this chapter. The
end effector is assumed to have insignificant mass, hence the dynamics of the end
effector are ignored. The orientation of the end effector is not taken into account for
the ease and simplification of the derivation. The orientation of the end effector for
planar manipulator applications is usually fixed at a certain angle and the algorithm

presented in this work is independent of the orientation of the end effector.

3.2 Manipulator Kinematics

The link length and joint angle variables used in the following discussion refer to
those in Figure 3.1." Kinematics is the representation of the end effector position in
terms of the joint angles in the two dimensional plane. To simplify expressions, tri-
gonometric functions like sine and cosine are denoted by s and ¢ respectively, and the
appended subscripts imply the trigonometrical operation on the sum of the correspond-

ing joint angles. For example, s,=sin (6,+8,). Now, the Cartesian position (x ) of



Figure 3.1 A Three Link Redundant Manipulator

N"



the end effector in the plane can be expressed as

x Licy+ 15 ya + 13003 |

With the above equations, any Cartesian position is uniquely defined, given a set
of joint angles. Solving (3.1.1) for the 0’s, given any (x,y) position in the plane is

known as the inverse kinematics of the manipulator.

To analyze the motion of the manipulator, the angular velocities of the joints are
required. The description of the manipulator motion in the joint space in terms of the
motion in the Cartesian space is obtained from the kinematic equation (3.1.1). Taking
the time derivative of (3.1.1), the relation of the joint and Cartesian velocity is given
as follows
0,

% =l151-138 1371385123 135 15-135 123 135153
- (3.1.2)

) 0
y LicHae pHlsc oy [c1pHsc 13 13cos 2
83

where (x,y) is the velocity in the Cartesian plane and é,- is the velocity of the i*
joint. The above equation can also be written in matrix form as
i =J(0)8 (3.1.3)

where Q is the joint velocitv vector and x is the Cartesian velocity vector, J(0) is a
2x3 matrix known as the Jacobian matrix of the manipulator. Since the Jacobian is a

non-square matrix, the joint velocities can be obtained from the pseudoinverse as

0 = J*(0) (3.3 4)
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3.3 Manipulator Dynamics

It is important to know the forces or torques and the related equations of motion
if any control is to be done to the arm. The dynamic model of the manipulator is usu-
ally very complicated and highly non-linear. The non-linearities arise from the
Coriolis and centrifugal forces. Gravitational force also contributes to the difficulty in
deriving the dynamic equations of the manipulator. The dynamic equations of the
manipulator are the expressions of the joint torques in terms of the joint angles, veloci-
ties and accelerations. Formulation of the dynamics is far more complicated than that
ot the kinematics. The Lagrangian approach is used instead of the numerical iterative
Newton-Euler dynamics formulation because the redundant manipulator used here has
a relatively small number of degrees of freedom. Closed form dynamic expressions
are derived below to rcduce computation time for the evaluation of the inertia matrix,
the Coriolis and centrifugal forces. The Lagrange-Euler equation is given by

T = % [_a?ér—i ] - Baé—,. i=123 (32)
where L is the Lagrangian function. It is the difference between the total kinetic
energy K and the total potential energy P. The kinetic energy »f each link is made up
of the translation and rotation components. To find the kinetic energies of all the
joints, both the linear and angular velocities have to be found. The potential energy
for a planar manipulator is not taken into account since the manipulator is assumed to

be in the horizontal plane and there are no gravitational effects.

The kinetic energies of all the joints are calculated from the kinematics of the
manipulator. The translational kinetic energy of each link is found from the velocity
at the mid-point of that link. Let (x;y), (x5,y,), and (x3,y3) denote the center points

of the first, second and third link respectively as shown in Fig 3.1. The position coor-



di:-ates of the center of link 1 are

11
l‘l —é-(‘l
, = l, 3.3
l ———
2!

r o

= (3.4)
Y1 =19

The resultant velocity is the square root of the sum of the square of the components

and is given by

hig 35
2 1 J3)

There are more assumptions to be made before the kinetic energy of joint one can
be found. The mass of each link is assumed to be evenly distributed along the link
and the link is assumed to be a thin rod. These assumptions are made to facilitate the
calculation of the moment of inertia of the links because it is extremely difficult to cal-
culate the exact moment of inertia from the actual mass distribution of the links of the

manipulator. The moment of inertia of a thin rod that rotates about its end point is

known to be / =%m1 2, where m and | are the mass and length of the rod respectively.
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The moment of inertia at the center of the link can be found by applying the parallel

ax. aeorem to transfer the moment of inertia from the end of the link to the center of

the link. The equivalent inertia is -ili-ml 2, thus the rotational kinetic energy for joint i

is expressed as

1,1 :
7 (Ggmile! 3.6)

The total kinetic energy of joint one can now be found from expressions (3.5) and

(3.6) to be

Lm 1262 (3.7)
6

The total kinetic energy of the other two links can be found in a similar way.
Since there are no potential energy terms, the Lagrangian function is merely the sum

of all the kinetic energy terms. The Lagrangian function after simplification can be

expressed as follows

1 L)
L = "2"(03 +ay+ascy,+aq+ agCaz +agc3)9i‘

1

4 ‘%‘(07 +a, + 08C3)é22 + 2(11632

1 1 ”
+ ((17 +d, +305C2 + 306023 + (1803)6192

+(a; + %065'23 + %‘ascs)éxés +(a; + %ascs)ézés (3.8)
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where all the a’s are the constants that contain the masses and the link lengths of the

manipulator. They are defined as

a, = -:-i-m3132 (3.9.1)
a,=ay + %mzh’- (3.9.2)
ay=d, + %—mlllz (3.9.3)
ag=(: +my)l} (3.9.4)
as=(my+2msy) 1, (3.9.5)
ag=mal il (3.9.6)
ay=mal} (3.9.7)
ag =msl,l; (3.9.8)

With the Lagrangian function defined by (3.8) the joint torques can now be found
from the Lagrangian equation (3.2). To find the first term of the torque of the first
joint, the partial derivative of the Lagrangian function is taken with respect to the velo-
city of joint one and then the time derivative is taken. The second term of (3.2) can
be found by taking the partial derivative of the Lagrangain with respect to the angle of
joint one. The torques of the second and third joint are found in a similar way. Going
through the above mentioned algebraic work and simplification for all the three Joints,

the joint torques are expressed as
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Ty=a3+d4+asCy,+aq+agys +agcsby

l 1 .
+ (07 +d, +305C2 + 5‘066'23 + (18(,‘3)92

1 1
+ + — + —7g01)0
(a, 5 36C23 F S 7g 2)83

—(agSy3+ass,) 010, - (agsy- ags3) 0,0,

1 1 ) .« .
= (Zassy+ 36523 ) 03 — (agsy3 +ags3) 6,05

— %aﬁs23 + %agsg, ) 62 (3.10.1)

1 1 .
Ty = (07 +4a, +305C2 + ‘506(33 + (18(:3)91

+(a7+02+08C3)éz'f'(al"'%asc:;)é:;
1 1 2
+(Sassy+ Saesy) O

- 08S3élé3— 0883é263 - '%'0853é32 (3102)

'c3=(a1 +—;—a(,c23+%agc3)éz+(a1+%agc3)éz+alé3

+ ( %06S23 + %0833 ) 912 + a3s3éléz + —;'08S3é32 (3.10.3)
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From the above torque equations, the mass inertia matrix can be formed from the
coefficients of 8, The i'* row of the inertia matrix is composed of the coefticients of
the torque equation of joint i/ and the j* entry of each row corresponds to the
coefficient of 0 ;- Collecting terms from the above torque equations, the inertia matrix

can be written as

~

1 1 . .
asxtasta 5C 2+a7+a60—_,3+a §C3 aqta 2'*'—2-(0 5Cota 6023)4-0 gC3 a l+3(d 6C23tHd gt .‘)

a7+(12+%(05€2+a6(323)+08€3 a7 +ans+agc, a, +-,l;'agt‘3 3.1

1 1
a+=(agCo3tagcs) ay+ <agcy a

the Coriolis and centrifugal forces V(G,é) can also be written as a vector from the joint

velocities terms of the above torque equations

.

- . . . l » 2 . - l . 2-
~(@6523+a552)018;(a523+553)81 053 (55 2+a6523)0;~(@ 6523+ 553)8,83- (a5 25+ 5 )03

+(assy+ags 23)07-ags38,05-ags 3(’263—%0 85303 (3.12)

3(@65235+0553)01+a35 38,8+ 2045 167

The above derived dynamic equation will be used in the following chapters. The

numerical values used for simulation is summarized in the following table.



i l;(cm) m; (kg) 0;  (degree)
1 50.0 30.0 180
2 43.0 25.0 120
3 35.0 20.0 120

Table 3.1 Parameters of the three link redundant manipulator
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Chapter 4

Time Optimal Control of A Redundant
Manipulator

4.1 Introduction

Minimum time for non-redundant manipulators moving from one point to another
point along a specified path is unique for there is only one unique set of joint trajec-
tories that can satisfy the end effector requirement. However, for redundant manipula-
tors there are infinitely many possibilities for one end effector position. Having a
different starting position for the same end effector path will give different choosing a
different inverse kinematic solution will immediately imply a different ’optimal time’.
The minimum time algorithm developed here is therefore dependent upon the method
used for solving the inverse kinematics. The pseudoinverse is used here to find the
inverse kinematic solution simply because there is no other known alternative that has

been proved to have a lesser time than the popular pseudoinverse solution.

A time optimal centrol algorithm for a planar redundant manipulator is presented
in this chapter. The end effector is to move from one point to another following a
specified trajectory in a two dimensional plane given the configuration of the manipu-
lator and the joint velocities at the starting point. The objective of the algorithm is to
find a set of joint torques which will drive the manipulator from its given initial posi-

tion to the final position along a specified desired path in minimum time.



33

The time optimal control for redundant manipulator is not attempted with the con
ventional optimal control method, the Pontryagin’s maximum: principle, for various
reasons. It is because the conventional method is faced with a dimensionality problem.
Even for a second order system, which is the case here, each extra degree of freedom
for the redundant case implies two more states and co-states equations. Thus for the
case considered here the dimension is six. The increase in system equations
effectively reduces the chance of getting a convergent solution for a two point boun-
dary value problem (TPBVP). It was pointed out that the solution does not converge
for even the simple case of a three degree of freedom elbow-type manipulator [
Bobrow et el 83 ]. Moreover, it would be rather difficult, if not impossible, to add the
path as an additional constraint. The minimum time control approach derived by
Bobrow for the non-redundant manipulator will be used instead for the redundant case.
The major advantage of this algorithm is that an initial value problem is solved instead

of the difficult TPBVP,

Bobrow’s method for the time-optimal control of a non-redundant manipulator is
described first. The vector that contains the displacement and velocity along the
specified trajectory is the state vector. The non-linear dynamics and other constraints
are transformed into state dependent constraints on the acceleration along the path.
The acceleration along the path is actually the control variable. Time optimal solution
is obtained from the acceleration profile which gives the maximum velocity along the
path. Therefore, the joint angles and velocities are written as functions of the displace-
ment. A second order differential equation can be formed with the displacement and
velocity as state variables. This differential equation is integrated as an initial value
problem in both the forward and backward directions to obtain the intersection of tra-

jectories and hence the switching time.
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The key to the extension of this method to the redundant case is that pseudoin-
verse is employed to obtain the joint angles as a function of the Cartesian position.
This is made possible by taking the Cartesian velocities as the increment and using the
pseudoinverse to find the corresponding joint increment. The solution to the problem
i1s divided into two main categories, the single switching case and the multiple switch-
ing case. Multiple switchings occur when the available torque is not able to meet the

velocity requirements.

4.2 Time Optimal Control of Non-Redundant Manipulators

A simple planar two link non-redundant manipulator ( Figure 4.1 ) is chosen for
the derivation of the algorithm. The manipulator is assumed to have rigid links and
friction is not taken into account. Lagrange’s equations will be used to describe the
manipulator dynamics. The dynamics of the end effector are assumed to have negligi-

ble effect on the manipulator dynamics. The orientation is assumed to be unchanged.

The end effector is required to move along the specified path from Py to P r. The
initial and final velocities are taken as zero. The dynamics of the manipulator based

on the Lagrangian approach have the following form

M@8+h@®,0)=T @.1)

where 8 and T are vectors of the joint angles and joint torques respectively. M (8) is a
square matrix of the mass moment of inertia and 4 (8,8) is the vector of the centrifugal

and Coriolis terms.

The constraints on the actuator torques are expressed as arbitrary functions of the

joint angles and velocities



Figure 4.1

A two link planar manipulator

*y
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The objective is to find the joint torques T(t) which drive the end effector from the
initial pos.tion Py to the final position P; in a minimum time, along the specified path.

Let x be the distance traveled by the end effector measured from Py and let x,
and x; be the initial and final distance moved by the tip of the arm, with path velocity
and acceleration of the tip of the manipulator denoted by ¥ and ¥ respectively. The
key to solving this time optimal problem is to transform the system to an equivalent
system with a single control variable, X the acceleration along the trajectory. This
implies that the joint angles have to be computed as a function of x and the angular

velocities and accelerations as functions of x, ¥ and X , that is

8 = 0(x) 4.3.1)
0 = 0(x, x) 4.3.2)
0 =0(x, x, ¥) (4.3.3)

The above equations may look simple but it is extremely difficult or almost impossible
to express them analytically even for the planar manipulator considered here. They
depend upon the geometry of the specified path and also the inverse kinematics of the
manipulator. For these reasons equations 4.3 will be computed numerically for each

X.

The difficulty of expressing the joint angles, velocities and accelerations in terms
of the trajectory displacement can be reduced by decomposing the problem into two
parts, the evaluation of the inverse kinematics of the manipulator and the expression of
the Cartesian co-ordinates of a particular path in terms of the path parameter x. The

latter part is no more than a particular way of defining the trajectory. That is,

r=Traj(x) (4.4.1)
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The trajectory is to be specified as function Traj with the distance traveled by the end
effector, x, as the independent variable and the Cartesian position of the manipulator r

as the output. For example, if the end effector is to move horizontally from right to

-0
1= | v (4.4.2)

r=r() 4.5.1)

left, starting at (xq, y o), then

Now, recall the kinematic equation

1

If we denote r~" as the inverse kinematic function of the manipulator, the inverse

kinematic equation can be written as

8=rl(r) 4.5.2)

There are generally a few options to solve the inverse kinematics. For manipulators
with simple kinematics, the closed form analytic solution is used; but for more
involved kinematics, either a table look up or numerical iweration is used. The inverse
function of the joint angle can now be obtained by substituting (4.4.1) into (4.5.2) to

give

0(x) = r~"Traj(x)) 4.5.3)

Thus, the inverse function can be obtained as long as the inverse kinematic function is
defined at each point of the trajectory. In order to take the time derivative of (4.5.3),
its right hand side must be piecewise continuous and differentiable for all x. This
indirectly imposes the condition that the specified path be a smooth function. The

derivative of equation (4.5.3) is not used for the evaluation of © for it is easier to take
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the derivative of (4.4.1). The change of the position vector r with respect to time is
equivalent to the scalar change of x with respect to time, ¥ multiplied by the unit vec-
tor which is tangential along the trajectory. Let this unit vector be v, the derivative of

(4.4.1) is written as

d . .
dtr—xv 4.6.1)

Differentiate the kinematic equation (4.5.1) with respect to time and substitute (4.6.1)

on the left side get

v =J(0)8 4.6.2)

where J(6) is the Jacobian matrix of the partial derivatives of the joint angles. When

the Jacobian matrix is not singular, the joint velocities can be expressed as

O(x X )=/l @) v 4.6.3)

Singular configurations of the manipulator can easily be avoided in the path plan-
ning stage, therefore the Jacobian can always be made invertible. Again, (4.6.3) is not

used to find the joint accelerations, instead equation (4.6.2) is differentiated as

v +wx2=J(0)0+J (9)0 @.7.1)

where w is the derivative of v with respect to x and J (0) is the derivative of the Jaco-
bian matrix with respect to time. It is noted that the evaluation is more complicated
than it looks. The derivative of the unit vector v with respect to x is best understood
as the incremental change of the tangential vector or tangential acceleration. Since
there is no increment in magnitude for a unit vector, w can be considered as another

vector normal to the unit vector v. The second term on the left side of (4.7.1) is there-
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fore the normal acceleration of the tip of the manipulator. The complexity in solving

.- is the

(4.7.1) lies in taking the time derivatives of the Jacobian matrix. Suppose g;;

element on the i row and j™ column of the Jacobian matrix, the corresponding time

derivative is expressed as

da,-j n aa,-j .
—_—=)y ——0 472

where n=2 for the case considered here. The joint accelerations can be expressed

explicitly after rearranging terms of (4.7.1) as

00, %, X)=1"18)( vk +wiZ—J (0) ) 4.7.3)

The purpose of expressing the joint acceleration © as a function of x,x and X is,
after all, to find expressions for the maximum accelerations and decelerations of the
end effector along the trajectory. Substituting equation (4.7.3) into the dynamic equa-

tion (4.1), the torque vector T can be writt<:1 ¢xplicitly as functions of x, ¥ and £

T = ¥C(e)+Cplx, %) 4.8.1)

where C(x) and C,(x, x) are vectors defined as follows

Ci(x) =M@V @®)lv 4.8.2)
Cax X) = MOV @) (wi>-T ()6 ) + h (0,0 4.8.3)

The torque of the i joint in the vector equation (4.8.1) must satisfy the torque
constraint of (4.2). Therefore, substitute it into (4.2) and rearrange terms so that tac
bounds of the trajectory acceleration are explicitly expressed in terms of the torque

constraints of each joint. The dependence of T ,, and Tomin o0 O and 6 can be
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repiaced by dependence on x and X through equations (4.3.1) and (4.3.2). The con-

straints on the acceleration X is given by

fi(x,x)<x<g (x,x), i=1,2 4.9.1)

where f and g are defined by

-
(T;.~—Ca)
o : C,;>0
H
fi(x ,x)= 1 (4.9.2)
(T; —-Cy)
— 2 , C“<0
Cyi
(T; . —Ca)
]
g (x,x)= 1 (4.9.3)
(T; ., —Ca)
Cl~ , CI,'<O
i

Equations (4.9.2) and (4.9.3) are valid only when C,; is non zero. They give the
range of the end effector acceleration X that the actuator motors are capable to pro-
duce. When condition (4.9.1) is violated, the joint torques will not be sufficient to
keep the tip in the desired path. This can happen when the range of ¥ in (4.9.1) for
the individual joints does not overlap. That is when the trajectory acceleration require-
ment for the joints cannot be all satisfied at the same time. In that case, the trajectory
velocity is too large for the joint torques to realize and the tip will start to deviate
from the specified path. Therefore, the necessary and sufficient conditions for the end
effector to stay in the path is that the intervals [f;(x X), g;(x x)] for all the joints must

have a nonempty intersection and that C; (x,X)#0 for all i. From equation (4.8.1), it
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is seen that x is arbitrary for joint i if C,; is zero and X can be determined from the
other constraints in (4.8.1). The remaining concern is the possible situation where
Cy;’s are zero for all the joints. This will not occur if the manipulator is not at a
singular position. The mass matrix M is always positive definite and v is a unit vec-
tor, it follows from (4.8.2) that C, will not be a null vector if the Jacobian is inverti-
ble. Any trajectory acceleration X which satisfy (4.9) for a given x and X is known as
an admissible acceleration. From the above discussion, the admissible acceleration can

now be redefined as

fx,x)<x<g(x,x) (4.10.1)
where
f(x,x)= max f;(x,x) (4.10.2)
i
g(x,x)=min g (x,x) 4.10.3)

i

The maximum and minimum of f; and g; are taken over those with non-zero Ci.
For when any two of the intervals of [fi(x,x), g;(x,Xx)] do not overlap,
fi(x,x)>g;(x,X) and equation (4.10.1) cannot be satisfied. Having an admissible
acceleration or f;(x,x)<g,;(x,x) is crucial in solving this time optimal problem. The
time optimal control problem can now be restated mathematically as follows: deter-
mine X (¢), subject to 4.10.1, such that t¢, the final time is minimized with given initial
and final trajectory displacement and velocity. The acceleration along the trajectory is
now the control variable and the torque constraints are embedded into equation

(4.10.1).



4.3 Time Optimal Control of Redundant Manipulator-Problem Formulation
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Figure 4.2 Two possible configurations for a 3-link planar redundant manipulator

For non-redundant manipulators, there are only a few possible postures for any
Cartesian position and it is easy to specify the inverse kinematics as a function. How-
ever, the redundant manipulator kinematics is not unique and there are simply
infinitely many possibilities for any point inside the workspace. Figure 4.2. shows two
possible configurations of a three link manipulator for the same Cartesian co-ordinates.
Unlike the non-redundant case, a closed form inverse kinematics does not exist for the
redundant case. The redundant kinematics have more unknowns than the number of
equations. It is difficult to obtain a unique solution by iteration. The major difficulty
in the application of the above control algorithm to the redundant manipulator comes
from the fundamental requirement that the joint angles be a function of the Cartesian
co-ordinates. The nature of this algorithm only allows one set of uniquely defined joint
angles for each . ‘esian position. Obviously, inverse kinematics of the redundant

manipulator musi. oc defined somehow.

The trick here is to use the pseudoinverse to look for a unique solution. The
pseudoinverse is particularly suitable for this application because of its geaeric proper-

ties of uniqueness and minimum norm. It has been widely used to resolve the
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kinematic problem for redundant manipulators. However, the problem here is that it is
only applicable for resolution of redundancy at the velocity level or acceleration level.
To get around this problem, the Cartesian velocities in the x and y direction are taken
as increments to the x and y Cartesian position. The pseudoinverse of the Jacobian
can then be used to find the corresponding increment in the joint angles. Instead of
solving the inverse kinematics directly, the joint angles are found according to the pre-
vious joint angles. This implicitly requires an additional set of starting angles to be
specified for the non-redundant case. This is due to the infinitely many possible joint
configurations for any given Cartesian and starting at different postures means totally
different intermediate joint trajectories. Therefore, at time ¢, the joint angles for the

next time interval can be expressed as

O(x(t+dt))=0(x(t))+d6 4.11.1)

where x (¢) is the trajectory displacement at ¢, x (t+dt) = x+dx, and dx is the change
in x during the time interval. The corresponding increment in € is denoted as d© and

is evaluated from

dg=J*(8(x))dr 4.11.2)

in which J*(8(x)) is the pscudoinverse of the Jacobian evaluated at 8(x) and dr is the
incremental change of the path in the Cartesian co-ordinates. The incremental change
dr is actually evaluated from the difference of r in equation (4.4.1) at time ¢ and

t+dt, it can be written as

dr=Traj(x(t+dt))—-Traj(x(t)) (4.11.3)

Now, the inverse kinematics is written as a function of x, the former displacement,

and dx, the relative change in x compared with the previous time interval.
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Substituting (4.11.2) and (4.11.3) into (4.11.1), 8 can be written as

B(x +dx ) =0(x) +J(O0()) Traj(x+dx)-Traj(x)) 4.11.4)

The inverse kinematic solution obtained from the above formulation is formed to
be satisfactory; therefore it is not necessary to use a more sophisticated method to
evaluate (4.11.2). From (4.11.2), it is seen that dr is always a small quantity and the
pseudoinverse is the only cause for any misbehavior. The pseudoinverse provides
proper solutions unless the Jacobian matrix is rank deficient. Again, singularity is

assumed to be avoided in the path planning stage, therefore the Jucobian is always at

its full rank.

Similarly, the joint velocities are not found by taking the time derivative of the
equation (4.11.4), rather equation (4.6.3) is used. The derivation of (4.6.3) is the same
as that in the non-redundant case, except that the Jacobian matrix is non-square in the
redundant case and the pseudoinverse is used. The use of the pseudoinverse at the
velocity level is justified because the inverse kinematic solution is actually obtained by
the pseudoinverse as well. The joint velocities found by the pseudoinverse is
equivalent to taking the time derivative of (4.11.4). Replacing the Jacobian inverse by
the pseudoinverse in the above derivation from (4.6.3) onwards, the algorithm for the

redundant case follows exactly as for the non-redundant case.

4.4 Solution to the Time Optimal Problem for the Redundant Case

With the above formulation, the minimum time can now be found by choosing
from the admissible accelerations governed by (4.10.1) a unique x(¢) that will make
the velocity x as large as possible at every point of x(¢). The idea behind this
approach is similar to the bang bang control strategy in the classical optimal control

theory [ Athans & Falb 66 ]. Minimum time can be achieved by first driving the
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manipulator at the maximum allowable trajectory acceleration and then switching to
maximum deceleration at an appropriate switching time ;. This will be proved later
in this chapter. The solution to the problem of obtaining the control law, after all, is
to find the single or multiple switching times t.’s that will bring the end effecter from
the initial boundary condition to the final boundary condition in minimum time subject

to the previously mentioned assumptions and conditions.

4.4.1 Single Switching Case

The solution to this time optimal problem is best explained through a switching
curve in the x—x phase plane [ Bobrow 83 ]. The construction of the phase plane
trajectory for the single switching case is rather straight forward. A typical single
switching minimum time phase plane trajectory is shown in Figure 4.3. The end
effector starts to accelerate at x=g (x, x) from x to x, and decelerate at f (x, x) from

Xy 10 X7, X is the distance moved by the end effector at the switching time ¢;.

In Figure 4.3, the maximum acceleration phase trajectory is obtained by integrat-
ing X=g (x,x) for x, and x, for increasing t from x to some point @ shown in the
Figure 4.3. Then, the maximum deceleration phase trajectory X=f (x,¥) is found by
integrating backward in time from x; to until it intersects with the forward trajectory
at x;. The minimum time can actually be found for the manipulator with any starting
and finishing point on the phase plane as long as the acceleration required is within

allowable limits.

Assume that the time required to move the tip from the initial position x to the

final position x, is finite and is given by

(4.12.1)

x, dx
tr =] )

Xo



e

Figure 4.3 Time optimal trajectory for the single switching case

46
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Suppose #; is the minimum time, then x in the above equation has the maximum velo-

city profile. x is obtained by integrating the following differential equation

g (x,x) t <t
xX(x,x)= (4.12.2)
f(x,x) t>1

In the phase plane in Figure 4.3, with the same starting point, all the possible phase
plane trajectories lie between the extreme solutions for maximum acceleration and
maximum deceleration, with the maximum acceleration solution always having a
higher velocity. Suppose £ is another solution that gives shorter time, it implies that it
possesses a higher velocity than x in Figure 4.3 at some point between Xo and x;.
Since the phase plane trajectory from xg to x, already has maximum velocity, it is not
possible for £ to be larger than X. Any velocity higher than the minimum velocity

solution from the maximum deceleration cannot satisfy the fina! boundary condition.

The solution of the single switching case actually involves solving two initial
value differential equations, one in the forward direction and the other backward. This
implies that both the joint angles at the beginning and at the end of the trajectory are
known. The difficulty here for the redundant case is that there are infinitely many pos-
sibilities for the joint angles at the end point. A different set of initial joint angles for
the backward integration obviously gives a different phase plane trajectory. Intersec-
tion in the phase plane can still be found, however, the switching time obtained is
incapable of producing the desired trajectory. The reason being is at that particular
point of intersection, the joint angles inherited from the forward integration do not
correspond with those inherited from the backward integration even though both of
them have the same Cartesian co-ordinate. This implies that there is no choice for the

initial conditions for the backward integration from the end point. Solution to this
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problem lies in the uniqueness of the inverse kinematics discussed earlier. The end
poi-¢ “initial’ conditions can actually be obtained from the forward integration from the
iiitial point x¢ to the final point x; considering only the kinematics. The joint angle:
at x; are ther. used as the initial conditions for the backward integration. Since the
pseudoinverse solution to the inverse kinematics is unique, the joint angles at the phase
plane intersection are guaranteed to have the same joint angles as in the non-redundant

case.

4.5 Computational Problems

In this section, some techniques to streamline the computation are discussed.

4.5.1 Integration Technique

Among all the various algorithms suggested in the literature for solving a system
of initial boundary value differential equations, it is almost impossible to find one sin-
gle method that has best performance in all measurable parameters. There is always a
compromise between computation time and numerical accuracy. The most important
factor, huwever, is not the performance of the integration method but the behavior of
the differential system. Prior knowledge of the system is extremely important for the
choice of a suitable integration method because there are methods which are designed
to handle only specific behaviors of the system. Stiffness is maybe a typical special
behavior that requires special treatment. Because of the complexity of the dynamic
equations, it is difficult to prove that the system is stiff or otherwise. However, from
the restriction of a rapid change of joint angles and joint velocities, it is unlikely that

the dynamics is stiff.

The major difficulty in choosing a suitable integration algorithm does not lie in

any abnormal behavior of the dynamic equations, but on the dependence of these equa-
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tions upon the input torques. The system behaves according to the behavior of the
input torques. Discontinuity in the joint torques is almost guaranteed for the bang-
bang type optimnal control and this imposes restrictions in the selection of an appropri-

ate integration method.

The numerical integration algorithms can be classified into three categories, the
approximation of the actual solution by linear combination of independent functions,
the approximation by the first few terms of an orthogonal function and the approxima-
tion at some specified points in the integration interval. The last method is also known
as the discrete variable method and is more universally applicable than the other two.
There are two distinct conventional discrete variable methods of integration, the one-
step or Runge-Kutta (RK) method and the Linear Multistep method (LMM). As seen
from the derivation of these algorithms [ Lambert 73 [, the differential equations are
assumed to be continuously differentiable in the entire domain of the integration.
These methods are therefore not suitable for the simulation of the time optimal control.
However, a combination of the low order discretization scheme and the extrapolation

method can handle discontinuities and even singularities of a differential equation.

4.5.2 Extrapolation Methods

Suppose a number A is to be evaluated, and only the approximation A (h) can be
computed, where h is the discretization parameter and A (k) approaches Ag as h-a
That is A(h) is assumed to have an asymptotic expansion of the following form for

every fixed N

N
Ah)=Ag+ S ARY +Ry(h) (4.13.1)

i=1
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where A ,A,, - - - are coefficients independent of & and Ry (h), the error term, is of

order O (hV*') as h—0. For h=hgy, A(hg) and A(—;—-ho) can be calculated from equa-
tion {4.13.1) and when A —0 both A (hy) and A(-;—ho) approach Ay + O (h). How-

ever, a linear combination of A(hy) and A (%ho) such as

1

2A(-;—h0)—A0=A0——2—A2h&+ o = Ag+O(hY) @.13.2)

can yield a better approximation of A, than either A (k) or A (—;—ho) as seen from the

O (hg) term. Moreover, if A(Tlfk' ! is also used, a even better approximation which

differs Ay by O (hg) can be found. This is referred to as the basic idea of Richardson
Extrapolation method. Now, consider a sequence hg,h ks, - - - hg of h values where
ho>h>hy - - >hg>0, a linear combination of A (hs) can be used to approximate A,
with an error of O (h§*!). The formation of such a linear combination is the same as
doing a polynomial interpolation of A (h;) which is actually considered as a polyno-
mial with A as an independent variable. Instead of doing interpolation, extrapolation
of hs to zero is done to get the best approximation of Ag. An extrapolation table of

order M can be formed as follow

b1 Tyoio Ty—p Tom-
by Tuo  Tyop Tim-r  Toum (4.13.3)
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where M is the order of extrapolation and Ty, is the A=0 extrapolation of order M.
Tke second coi ..nn of the above table is known -5 the zero-th column of the extrapo-
lation table. Each enay T;o in the -~ := *h column is actually the evaluation of A (k;).
All the T’s values in the subsequent colun...s a.e caiculaieA iteratively by a1 =xtrapola-
tion formula based upon the zero-th column. The extr:uolation formula depends on
the method of extrapolation used. Polynomial and rational function extrapolations are
the two major types of extrapolation methods currcntly nsed. The rational function,
developed by Bulirsch and Steor [ Bulirsch and Steor 1966 ], is used here for it can
handle singularity and discontinuity much better than the polynomial function, of
course at the cost of more computation time. Tue extrapolation formula is a recursive
formula that generates the T s of the non-zero column either by rows from top to bot-
tom or by columns from left to right after the zero-th column has been evaluated. The

rational function extrapolation formula can be expressed as [ Fatunla 1988 )

Tr+l.s—l - Tr s-1

Tro=T, 51 + (4.13.4)

( hr )')' [1 _ Tr+l.s—l _Tr.s-l ]_1

hr+s Tr+l,s—l - Tr+l.s—2

where s=1,2,..M and r=0,1,..M. It is seen from the above expression that evaluation
of the first column requires T, _; to be known and it is set to zero. Y is a constant
depending upon the asymptotic error expansion in h. It is taken to be one when the
error expansion is A and two when it is A2, The choice of Y therefore depends upon
the error expansion of the single step method used for the generation of the zero-th
column. With the above equation and the zero-th column known, the M* order extra-

polation of A (hg) can be found.
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The key to the use of this extrapolation method to solve a differential system lies
in the generation of the zero-th column. Single step metliods such as the Euler's rule,
trapezoidal rule, mid-point rule and the Inverse Euler rule can all be used to generate
the zero-th column. However, the Inverse Euler rule is known to perform best near a
singularity. The Inverse Euler ruwe is actually adapted from the Inverse Polynomial
methnd [ Fatunla 1982 ]. Retaining only the first two terms of the denominator of the

inverse polynomial, a one step integration formula is formed as follows:

A — 4.13.5)

This is easily applicable to a single differential equation, but for a system of equations,
the division of matrices is not allowed. However, it has been proved [ Lambert 73 |
that the Inverse Euler equation is component applicable to systems. That is, the above

equation has to be applied individually to every single equation of the system.

4.5.3 Generation of the Zero-th Column

Before the evaluation of the zero-th column, the relation between successive
meshsizes h, and h, ) has to be determined. There is no straight rule to define the h,
as long as A, is smaller than h,. The following relationship between the meshsizes

is used

>
i

vy r=0,12,..M (4.13.6)



53

Now, a sequence of integers is needed to generate the increment of h,. The integers

are defined as

N, = hi r=0,12,.M @.13.7)
r

Assuming that x,, and y,, are the input and output vectors given at the (n+1)" step, a
sequence of mesh points at which the differential equation is evaluated within the step

can be defined as

ty =x, + sh,, $=0,1,2,..N, (4.13.8)

It is noted that f4=x,, and #y =x,,, correspond to the current and subsequent step of x.

With the above expressions for h,, N, and f;, the zero column can be generated using

the Inverse Euler rule as

, (zi)? .
2}, ==, §=0,1,2,..N, -1, i=12,..m 4.13.9)
i i
Zy — hr (Zs)

where m is the size of the system or the total number of differential equations. The

superscript i denotes the i

element of the vector z;,. Equation (4.13.9) is used
repeatedly to find all the z} with z{) = y,'; for all the elements in the vector. The term
(z!) is the evaluation of the differential equation at t,, that is (z!) = f;(t,,z,). Finally,

the elements of the zero-th column of the extrapolation table are defined as

=12 =y ®,ph,) (4.13.10)
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The above formulation of a rational function extrapolation with the Inverse Euler

method is used as an integration tool to solve the differential equation (4.12.2).

4.6 Examples

The time optimal control algorithm for the redundant manipulator discussed ear-
lier is implemented on the three link manipulator model described in chapter 3. Two
examples that require single switching are presented here. The maximum allowable
torque vector is chosen such that the joint velocities and accelerations are reasonable.
A larger maximum allowable torque is used for joint one and a smaller one is usad for
the last joint. This is done because the first joint usually needs a larger torque to pro-
duce the same angular motion than the other joints. Therefore, the maximum allow-
able joint torque vector is chosen to be (50.0,30.0,10.0) Newton meters. Variation of
the torque vector directly influences the time required for the desired trajectory and the

magnitude of the maximum velocity curve.

Suppose the end effector is to follow a straight line path that moves in the nega-
tive y direction starting at Py(1.0, 0.6), the time optimal solution can be found with
one switching. The path length is 0.5 meters and the end point P, 1s therefore
(1.0, 0.1). The initial joini angles are given as (0.12,0.406,0.659) in radians and the
kinematics is evaluated in the forward direction to obtain the joint angles at the desti-
nation which is found to be (-0.519, 0.58, 1.109). The motion of the end effector is
shown in Fig 4.4 which is obtained by drawing the position of the manipulator from
the initial time to the final time in twenty equal time intervals. From the spacing
between the links in Fig 4.4, it is noted that the end effector is slower at the beginning
and at the end of the path. The maximum velocity curve is found by equating the for-

ward and backward phase plane trajectories f (x, x)=g (x, x) and solve for x and x.



Figure 4.4 End effector motion
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Figure 4.5 Phase plane trajectory and maximum velocity curve
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Figure 4.6 The resulting a) Joint angles, b)Joint velocities and
¢) Joint torques for the end effector motion
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The phase plane trajectory and the maximum velocity curve are shown in Figure 4.5.

The intersection is found to be at 0.6 seconds when x=0.236.

With thz switching time found, the time optimal solutivic can be obtained by first
integrating g (x, x) from +=0 to +=0.6 second and then switching to integrate f (v, 1)
from £=0.6 onward till the final destination is reached. The angles and velocitics of all
the joints are shown in Fig 4.6(a) and Fig 4.6(b) respectively. It is seen that the joints
velocities are all zero at the desired end point. Since this is not real time control, the
required torque is calculated from the dynamic equation given in (3.10) with the joint
angles, velocities and accelerations all known from equations (4.11.4), (4.6.3) and
(4.7.3) respectively. The calculated joint torques shown in Figure 4.6(c) are the typical
bang bang control type. The optimal time found in this particular example is r=1.22

seconds.

The results of a second example are shown in figures 4.7 to 4.9(c). The path
length, initial and final joint and Cartesian positions, the swiiching time, and the
optimal time are all summarized in Table 4.1 below. In this second example, the end
effector moves from P io P, form left to right as seen from Figure 4.7. The phase
plane trajectories of the corresponding motion is skown in Figure 4.8. The joint angle,

velocity and torque profiles are shown in Fig 4.9 (a),(b) and (c) respectively.



Figure 4.7 End effector motion for the second example
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Figure 4.8 Phase plane trajectory for the second example
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Path length 0.5
Initial joint angles (-0.1,1.079.1.89)
* " Yinal joint angles (0.609,1.586,1.6885)
Iniis: Cartesian Position (0.4,0.4)
Final Cartesian Position (-0.1,0.4)
Switching time 0.56
Optimal time 1.16

Table 4.1 Numerical values of the second example

4.7 Multiple Switchings Case

The key to solving the time optimal problem is to find an admissible maximum or
minimum acceleration that will yield a minimum time solution. It is important th.n to
define a region where an admissible acceleration always exists such that the end
effector remains on the specified path. Time optimal solution is possible only if condi-
tion g (x, x)<f (x, x) is satisfied throughout the optimal solution. This is best inter-
preted from the phase plane. The phase plane can actually be divided into two por-
tions, one region where g(x,x)<f (x,x) is satisfied and the other region where
g(x,x)>f (x,x). The maximum tolerable velocity curve is found by solving the
equation f (x, x)=g (x, x) and a typical multiple switching curve is shown in Figure
4.10. It is seen from the maximum velocity curve that condition f (x, ¥ =g (x, x) is
transformed to a bound on the velocity X in the phase plane. For, when the velocity x
is above the maximum velocity curve, the end effector cannot remain on the path with

any combination of admissible torques.

The multiple switchings method is used only when single switching fails to pro-

vide a valid time optimal solution. This occurs when the forward integration of
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g(x.X)<f(x.x)

g(x,i)>f(x,i)

Figure 4.10 Multiple Switching

Curve
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maximum acceleration from x and the backward integration of maximum deceleration
from Xr do not intersect before their velocities becomes so large that f (v .X)2g (v .Y).
In that case, the phase plane trajectories of the maximum acceleration in the forward
direction and maximum deceleration in the backward direction intersect the maximum
velocity curve before they intersect each other. Instead of a single switch to the
deceleration driving the end effector to the destination Xy, multiple switches between
accelerations and decelerations have to be made earlier to prevent the trajectory vzlo-
city from becoming too large and entering the prohibited region in the phase plane.
Examples for the multiple switching are not given here for it has been very
difficult to find examples which require multiple switchings. A couple of examples
have actually been found when the manipulator is given a very awkward starting posi-
tion. These examples, however, have a v shape maximum velocity curve and hence
violate the assumption of the switching algorithm that the maximum velocity curve

must be smooth at its minimum point [ Shiller 90 ).
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Chapter §

An Obstacle Avoidance Algorithm

5.1 Introduction

In this chapter, the use of redundant manipulstors for obstacle avoidance is dis-
cussed. As mentioned earlier, in the case of a non-redundant manipulator one can
have algorithms that generate either a time optimal motion along a specific path or a
minimum time obstacle avoidance trajectory but not both. It is shown here that the
extra degree of freedom of a redundant manipulator can be fully utilized to produce a

minimum time specified path and also to avoid obstacle at the same time.

An obstacle avoidance algorithm based upon the inverse kinematic function is
developed here and incorporated into the time optimal algorithm presented in chapter
4. The inverse kinematic function approach was first used to add constraints to redun-
dant manipulators [ Wampler II 87 ]. An inverse kinematic function defined in terms
of the location of the obstacle is used to find a set of joint trajectories that avoids an
obstacle in the workspace. This avoidance algorithm is then incorporated into the time

optimal algorithm to generate a minimum time obstacle avoidance algorithm.

5.2 Inverse Kinematic Function Approach

The simplest and easiest way to define a function for an underdetermined system

is to add additional constraints to make the system well determined and to satisfy the
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desired objectives at the same time. Defining the inverse kinematics as a function for
a redundant system is essentially the same as adding extra equations to the system,
The number of additional equations needed is the same as the degree of redundancy of
the manipulator. Since the planar redundant manipulator discussed here has one extra
joint, it is only required to define one additional function. Intuitively, this chosen
function must contain some information about the location of obstacle. Detailed
description of the additional function for the three link planar redundant manipulator is

given below, followed by the kinematic solution and an example.

5.2.1 Formuiation ¢f . . 3 onal Function

The only infc .2 . it the obstacle required in the definition of the addi-
tional function is @ yw.ut in the workspace which can represent the obstacle. This
point is chosen according to the shape and the size of the obstacle. For an obstacle
with irregular shape, this point can be chosen as a point which is nearest to the mani-
pulator or a point on the obstacle which is likely to be obstructing the manipulator.
However, for an obstacle which has a small size, it can be taken as the center of the
obstacle. This point is denoted as (x., y.) on the Cartesian plane in the subsequent

derivation of the algorithm.

A function of the joint angles F (8) can be defined as

FO)=Ya; s’ n=3 (5.1)

i=l

where @; and g; are constants to be specified. n is the total number of joints of the
redundant manipulator and is equal to 3 in this case. s;’s are the distances between

(x.. y.) and the end point of each link. It is written as
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(5.2)

where x; and y; are the Cartesian positions of the end point of link i. They can be

obtained easily from the geometry of the manipulator as

(x, ,)’1)'—‘(116‘1,1151)

(.rz , yz) = (1 1€ ]+12C 12 » IIS 1+[251:))

(x3,y3) = (e a0 jotl30 123 5 18 1H 28 19+ 35 123)

(5.3.1)

(5.3.2)

(5.3.3)

The function F(B) can be expressed in terms of the joint angles when equations

(5.3) are substituted back into (5.1). Denoting V; as the square of the distance s; for

the i** joint, F (8) can be written as

a a, a,

1
F(9)=(X.1V1T + (XQV;;_T + (13V3Z—
where

Vi=If +x2+y2+P,
Vo=V +13+ 21,0, + P,

V3=V?_+132+ 211[3C23+21213C3+P3

(5.4.1)

(5.4.2)

(5.4.3)

(5.44)

The P; are again substitutions used to keep the size of the above expressions reason-

able and the remaining derivation simpler. They are defined as
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Pl = _Il (Cl.r“ +3s ¥ ) (i‘iS)
Pz = —12(('12.Yc + 52V, ) (5.4.0)
P3 = "13(('1'_)}"(, + Y23y, ) (547)

With the above equations, the additional function is completely defined. «; and
a; in (5.4.1) are constants to be chosen for the control of individual joint. The func-
tion F(8) in (5.1) can be chosen as the sum of the distances between the obstacle and
the end point of each link or it can be the sum of the reciprocals of the distances. It

depends upon the sign of the constant ¢;. o; can even be chosen as any number other

than unity, thus s,~a' is not limited to be the distance but rather the distance raised to an
arbitrary power. o can be interpreted as the proportional constant or weighting factor
for its corresponding distance s; from the obstacle. These two constants provide cer-
tain degree of freedom for the variation of the function F (6). It allows different
weights to be put on particular joint to achieve best obstacle avoidance joint geometry.

A third equation in addition to the kinematic equations (3.1) is actually formed by

equating F (8) to a polynomial of time. The new equation can be written as

F®) = 3¢ (5.5)
i=0

where m is the order of the polynomial ard B;’s are its coefficients. F(8) is being
equated to a polynomial in ¢ for it is desirable to vary the distances between the obsta-
cle and the manipulator as a general function of time. The joints can be made to stay
away from the obstacle with proper choice of the coefficients B; and the order m of

the polynomial. For m=0, the sum of the distances between the joints and the obstacle
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has to be unchanged throughout the whole trajectory and equal to By. This is obvi-
ously not the best choice for the end effector can only move for a very short distance
before this requirement is violated. When m=1, the distances are required to vary as a
linear function of time. This is, of course, a better choice over the previous one for
the end effector can now travel for a longer distance before its position is violated
eventually. A second order polyromial is used for the discussion below because it
replaces the straight line velocity-obstacle distance profile by a parabolic one. It can
level off the increase of the distances with appropriate choice of B,. Higher order
polynomials are not considered simply because it is not necessary and the choice of

B;’s are substantially more complicated.

5.2.2 Inverse Kinematic Solutions

The basic inverse kinematic algorithm developed in chapter four for redundant
manipulator is used here to obtair the inverse kinematic soliition. The dynamics of the
inanipulator i1s not taken into consideration at this stage. With the inclusion of the
additional equation, the solution of the inverse kinematic problem becomes straight
forwa.d since the use of the pseudoinverse is no longer necessary. However, closed
form solution is still far from being realizable because of the complexity of the addi-
tional equation and its dependence upon ¢. The possibility of solving the kinematics
numerically as a non-linear system is ruled out because of the difficulties involved in
numerical iterations and the convergence to the desired solution. The inverse
Kinematic algorithm developed in chapter four, however, can be modified to include
the extra equation for obstacle avoidance. The advantage is that no numerical itera-
tions are required and continuity can be detected by having a maximum allowable

change in all the joint angles.
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It is seen from chapter four that the pseudoinverse is used in equation (4.11.2) to
find the incremental change of the joint angles. To find the Jacobian of the kinematic
equatons, the gradient of the function F (8) has to be evaluated. Again, further substi-
tutions are used to keep the expressions short and facilitate the computer implementa-
tion. Equation (5.4.1) is used to take the partial derivatives which are denoted by a
second subscript appended to the V; to form V;;’s terms where j is the joint angle that
the partial derivative is taken with respect to. The partial derivatives of the P; s terms
are represented likewise. Using the above defired notation, the partial derivatives of

F (8) with respect to all the joint angles are given below

Q’aie%)_ - .'%Ki V., (5.6.1)
age(?) =i§,KiVi2 (5.6.2)
age(f) = K4V a3 (5.6.3)
where
= a"o 4y ) i=12,3 (5.6.4)

The partial derivatives of V; are given in terms of one another and in terms of the par-

tial derivatives of P;’s. They are written as

Vii=°Py (5.7.1)
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Vo=V +Py (5.1.2)
Vi =Vy +Pj3 (5.7.3)
Vag = =21l252 + Pay (5.7.4)
Vip = Vap = 20,3523 + P3a (5.7.5)
Vg = =2l 103593 = 2l5l353+P 33 (5.7.6)

From (5.4.5) only the partial derivative of P with respect to joint one is non-zero
and for P,, the partial derivatives with respect to joint one and two are identical. All
the partial derivatives for Py are the same. Therefore, there are only three distinct P;;

terms and they are given as

P 11 = 2[1(3 lXC - C lyC) (577)
Pay = 205(s 12X = C12Y,) (5.7.8)
P 3y =205(s 123X, - €123);) (5.7.9)

The first two rows of the Jacobian matrix remain tne snme as in (3.1.2) and the
third row is the gradient of F(8) given in equations (5.6) with the substitutions of
(5.7). The same substitutions as in (5.7) are used for computer implementation of the
Jacobian. Since the dimension of the Jacohian inverse in equation (4.11.2) is changed
from 3x2 to 3x3, the corresponding dimension of dr has to be changed also. The first
two entrics of (4.11.3) remain the same; however the last entry is the time derivative
of the right hand side of equation (5.5). From the original definition of dr given in

(4.6.1), the unit vector v is formed by factoring out the megnitude of the trajectory
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velocity x. If the first two entries of the new v vector are to be unchanged, the last
element of the v vector becomes the last entry of dr vector divided by the trajectory
velocity x. Doing this creates problems at the starting and finishing points of the tra-
Jectory when the velocities are zeros. This problem is avoided by setting this last
enTy to zero whenever x is zero. This is justified because ¥ is to be multiplied back
to v as in (4.7.3). Sabroutines in chapter four are modified in accordance with the
above changes to obtain the inverse kinematic solution for the obstacles avoidance

Case.

5.2.2.1 Choice of Obstacle Avoidance Constants

Even with :i:e simple function ;- ‘&, iere is already a large variety of possible
combinations of the choices of a; anc ;. Obstacle avoidance can only be achieved
with proper choices of these constants and it is impossible to find them by trial and
error. It is attempted hzre to provide some guidelines for the determination of the con-
stants to generate a desirable obstacle avoidance trajectory. The overall effects of the
six constants ¢; and a; on the joints are rather difficult to comprehend at one time. It
is easier to consider the effects of the corresponding constants on a single joint first

and then include the other ioints for the overall effects.

The effects of the constants for joint two and three are eliminated by setting both
O, and o3 to zeros. As a result, F () becomes a function of the distance between the

end point of joint one and the obstacle only. The addition equation becomes

;51" = PBo + Byt + Byr® (5.5.1)

To study the effect of the constants in (5.8.1) on s, equation (5.8.1) is

differentiated to investigate the incremental change of s; at each time increment.
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Differentiate (5.8.1) with respect to time

dalsal
—— =By + 2y (5.8.2)
= aa,si T ds = By + 2B,0)dt (5.8.3)

The change in time dt and the change in distance ds; are considered as small incre-
mentals & and &8s, respectively. Equation (5.8.3) can be rewritten as follow with &s

as the subject

_(By + 2Byt)dr

as
al—l
a5,

(5.8.4)

The incremental change of the obstacle distance from joint one is made subiject of the
formula because it represents the effectiveness of the algorithm. The larger is &8s, for
each time step increment, the further away the joint is moving away from the obstacle.
The choice of the constants can now be made according to (5.8.4). The criteria for
choosing the constants in the denominator of (5.8.4) is first discussed for it can only
affect joint one. The choice of the B’s will be discussed later because it has a global

effects on all joints.

It is noted that a affects 85, independent of the current obstacle distance 8s,
whereas the effect of a; on &, is dependent on s, and the discussion is much more
involved. The effect of a; is perhaps the most obvious, it is inversely proportional to
3s,. However, when the end point of a particular joint is moving toward the obstacle,

it should be set to negative. A negative &s simply means that the end point of the
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joint is moving away from the obstacle instead of moving towards it. The effect of
varying a; on Os, is rather difficult to know from (5.8.4). Therefore, the terms that

contain g are isolated and the following function is formed

h@ys) = —— (5.8.5)
as,'

where k(a,.s,) is taken as a two independent variable function of ay and s, The
dependence of | on s implies that the effect of a; on &s, varies along the trajectory
as the end point of joint one moves away or towards the obstacle. Equation (5.8.5) is
plotted as a single independent variable function at different values of s1- The series
of curves are shown in Figure 5.1. Similarly, another series of curves are also plotied
at different values of a as in Firure 5.2. It is seen from Figure 5.2 that ¢ =1 s a spe-
cial case where s; has no effect on 85, at all. This is useful for the selection of the
constants 3; and B,. It is desirable to know the approximate range of the obstacle dis-
tance s, for which the value of h(a,s,) varies substantially. With the priori
knowledge of 5y, @ is chosen in such a way that the desirable values of A lies within
the approximate boundaries of the obstacle distance curves shown in Figure 5.1. The

major advantage of using (5.8.5) for obstacle avoidance is seen in the following.

From Figure 5.1, it is found that the variation of A within a certain range of s
for O<a <1 and 1<a <2 are very close. However, from Figure 5.2, the shape of the
curves for a;>1 is drastically diffezent from that for @ <1. For @ >1, as joint onc is
moving away from the obstacle h diminishes rapidly, that is the increment 8s,
decreases. This is highly desirable because if the end point of joint one keep moving
away from the obstacle at a constant rate, the end effector position will no lenger be

satisfied after a short while. On the contrary, when a <1, h increases as the end point
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Figure 5.1

Effect of s on h(a,s)
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moves away. This is equally desirable because there are situations where the end
effector has to move towards the obstacle temporarily in the course of avoiding the
obstacle or to follow the specified path when the joint is the end effector. In that case,
a; is best chosen to be less than unity. It is noied from Figure 5.1 that there is a
singular point at ;=0 which should be avoided. Also, when a, is negative, the
behavior of 4 is similar to that for O<a ;<! except that it is negative. If 4 is desired to
be negative, the proportional constant a, can be set to negative. Therefore, it is con-
cluded that there is no need to use a negative ag;. Figure 5.2 is mainly used to see the

actual range of h after a; has been chosen from the above guidelines.

The remaining constants to be determined in equation (5.8.4) are the B’s. These
values depend strongly upon the location of the obstacle and the posture of the mani-
pulator. There are situations in which they are not required and are set to zeros. For
when they are needed, there is not much room for the choice for their magnitude. It is
known that B, is actually the velocity of the sum of the distance terms moving away
from the obstacle. If B, is too large, the end effector is incapable of following the
designated path, and if it is too small, the effect of it cannot be seen. If the obstacle is
successtully avoided after setting a proper value of B,, B, is set to zero. When the
desired path cannot be satisfied with any choice of B, B, is used to level off the con-
stant increase of 8s, which drive the end effector off track. If that is the case, a nega-

tive B, is used and its magnitude is adjusted to get the best result.

Because the joint angles are strongly coupled with each other, the control of
joints two and three are in general more difficult than control of joint one. The gen-

eral approach to find all the constants is that

*  Set B, and B, as zeros and the rest of the constants to one’s except for the pro-
portional constants a3. If the specified path of the end effector is moving toward

the obstacle, o is set to be negative one otherwise o is set to one. Generate the
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inverse kinematic solution and compare the behavior of the intermediate joint

motions with the kinematc solution for no obstacle case.

* Set B, and B, according to the result from the previous step. B, is chosen as a
small positive number first to have the joints move away from the obstacle at a
constant speed. Then, if the end effector deviates at the end of the trajectory, B,

is increased until the best result is obtained.

*  This procedure is only required if the above two steps cannot provide an accept-
able solution. The constants a; and a; are adjusted together in pair to modify the
ochavior of all the joints. The desired motions of the joints are achieved by vary-

ing thie constants according to above given properties of the function 4.

The above rules serve only for general guidance and they may have to repeated in
order to refine the choice of the constants. There is no single unique combination of
the constants to get the best result and the same result may be obtained with different
combination of the constant. There are other factors that can directly affect the perfor-

mance of this algorithm.

Two major factors that influence the obstacle avoidance solution are the location
of the obstacle and the starting joint position of the manipulator. However, there are
some general restrictions tha. can be used to ensure proper behavior of the inverse
solution. The obstacle center cannot be placed anywhere on or in the vicinity of the
trajectory if both obstacle avoidance and the path requirement are to be satisfied. Put-
ting the obstacle too close o the end point of any intermediate joint is also to be
avoided for it causes singularity. A certain minimum distance from the obstacle is
preferable. For cases where the obstacle is too near to a particular joint, an alternate
position which is further away than the real obstacle center may be used to avoid

violating the above restriction and yield a better solution.
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5.2.3 Example

The first example given in chapter four is used again here to demonstrate the obs-
tacle avoidance algorithm. The center of the obstacle is placed at (0.6, -0.3) which is
chosen deliberately to be quite close to the trajectory and it cannot be placed much
closer without making the choice of the Cconstants very difficult. As seen from position
of the obstacle, the end point of joint three or the end effector is moving toward the
obstacle. aj is therefore set to negative with both B, and P, set to zeros from the
above guidelines. The result is shown in Figure 5.3 and it is observed that joint one
has changed substantially and the end effector position requirement is not met near the
end of the trajectory. Moreover, the obstacle is still not avoided, therefore a small
value of B,=0.0015 is used and the obstacle is successfully avoided as seen in Figure
5.4. In this example, it is not hecessary to use non-zero B, and non-unity values of o;

and g; to enhance or suppress indiv‘dual joint motion,

5.3 Incorporation of the Obstacle Avoidance Algorithm

The above derived inverse kinematic solution can be incorporated to the
minimum time algorithm only with Some modification. Since the Jacobian is no
longer rectangular and the foregoing formulation of the obstacle avoidance case resem-
bles a lot the non-redundant case. The Joint velocities are obtained from €quation
(4.6.3) and the required Jacobian has already been derived in the inverse kinematic
solution in chapter 3. The Joint acceleration are obtained from (4.7.3). In (4.7.3), the
unknown quantity yet to be derived is the derivative of the Jacobian. The first two
rows of J (6) remains unchanged and the elements in the last row can be found accord-
ing to the definition 4.7.2). Renaming the partial derivative of F(0) with respect to
joint i in equations (5.6) as u;, the last row of the derivative of the Jacobian is written

das
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Figure 5.3 Intermediate Result of Obstacle Avoidance Example



Figure 5.4 Final Result of Obstacle Avo.dance Example
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The same substitutions in the Jacobian of F(0) are also used here and an additional
subscript is again used for the partial derivatives of V;;’s in (5.7). Taking the partial

derivatives in (5.9.1) and after simplification its transpose can be written as follow

- .
3 ) 3 ) o i
3 (@ VA+K V)8 + Y (q; Vi ViatK; Vi), + (q3V 31V 334K 3V 313005
i=1 i=
3 . : .
Y 1(q; Vi1ViatK; Vi)81 + @ Vi3Vii+K; V)82l + (a3V 3V 134K 3V 323)03 (5.9.2)
i=2
g3V 3 V33tK V31300 + @3V 3V 334K 3V323)0s + (g3VEH+K V33203

where

— i=1,23 (5.9.3)

The derivatives of the V;; terms are written in terms of the P; terms defined in equa-
tions (5.4). Again, the later V;j terms are defined using the previously defined V;

terms to shorten the expressions. The derivatives of the V;; terms are given as

Vin=-P, (5.9.4)
Vou=Viui-P2 (5.9.5)
Vi =Vaur-Ps (5.9.6)
Vo =-F, (5.9.7)

Vip = VP (5.9.8)
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Vi3 =-P; (5.9.10)
Vam = =2lyl2c5 = P, (5.9.11)
Vg = Vogo—2l1l5c03 = Py (5.9.12)
Viy = =2 13003 = Py (5.9.13)
V33 = =211 3¢ 33205l 3¢ 3P (5.9.14)

The derivatives of the Jacobian ¢f F{8) given above fully define (5.9.1) and is
used as the last entry of the J matrix for the obstacle avoidance case. Because of the
change in the dimension of the Jacobian, the dimension of both the tangential velocity
v and acceleration vector w in (4.7.3) also has to be changed. Similar to the Jacobian,
the first two entries remain unchanged as in (4.7.3). The joint velocity of the last term
of v, however, is found by equating the right side of equation (4.6.2) to the derivative
of the right side of (5.5). Denote the unit vector v by its components with subscripts

x and y, equation (4.6.2) can be rewritten as

Vy

J@8=| v, i (5.10.1)

B1+2B,¢

X

To find the joint accelerations, the derivative of the above equation has to be taken.

The left hand side is unchanged and the right hand side is written as
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Vy Wxx. ] Vx
AR wy i i+ | v, [F 6102
B+2Byf ~(B+2B,1)% 2B, B+ 2Byt
X FER | x

where w, and w, are the x and y components of the normal acceleration vector w. It
is seen from the above expression that the control variable x appears also in the first
term and this is due to the fact that x is in the denominator in (5.10.1). The separa-
tion of the control variable X cannot be done directly. Since both x and X are scalars,
the terms in the last row can be rearranged. Afier simplification, equation (5.10.2) can

be rewritten as

s v,

wy, |52+ v | & (5.10.3)
2B,

| 2 0 |

The vectors v and w are modified as mentioned above to adjust to the size change
of the Jacobian matrix. Knowing both v and w, (4.7.3) can be used to found 0. The
derivation from (4.7.3) onward follows closely the non-redundant case presented in

chapter four.

5.3.1 Example

The time optimal solution for the example given in section 5.2.3 is presented
here. The inverse kinematic solution requires only single switching as can be seen
from the maximum velocity curve and the forward and and backward integration

curves in Figure 5.5. The intersection time is found to be ¢=0.467 seconds at
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x=10.194 meters and the 1otal time of travel is ¢+ =1.166 seconds. The joint angles,
velocities and torques profiles are shown in figures 5.6 (a), (b) and (c) respectively. It
is noted that the optimal time obtained in this section is less than that in the no obsta-
cle case. In the optimal algorithm developed in chapter 4, the inverse kinematic solu-
tion was obtained using the pseudoinverse, which is only one of the many possible
solutions. As mentioned earlier, the optimal time is dependent upon the method used
for solving the inverse kinematics; therefore the two results cannot be compared. It
just happens that in this particular case the minimum time required for the obstacle

free case is more than that in the case with the obstacle.
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Chapter 6

Computer Implementation

6.1 Introduction

‘The time optimal control and the obstacle avoidance algorithms discussed in
chapters 4 and 5 are implemented on the three link manipulator model given in chapter
three. The algorithms are programmed in C language and run on a SUN 3/160 works-
tation. The coding of these algorithms are not included in this thesis. However, it is
available from in the Robotics Laboratcry of the Electrical Engineering department. In
this chapter, the structure of the priagrams and the subroutines which implement the
minimum time and obstacle avoidance algorithms are described. This is essentially the
computation of the required torque that drives the arm from a given initial position to
the final position. In the last section of this chapter, the same three link planar redun-
dant manipulator is simulated and the calculated torque is used to drive the simulated

manipulator to verify the results obtained in chapters four and five.

6.2 Program Structure

The main program is built up by linking together various files. Each file is desig-
nated to handle one aspect of the manipulator algorithm. The kinematics, dynamics,
matrices manipulation, integration methods, trajectory generation, optimal time algo-

rithm, and the obstacle avoidance algorithm. The inputs outputs are all done in
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different files. All the necessary informations for solving the differential eguation are
being read in from one input file and all the outputs are printed into tiles, both are
done in the same directory. The foregoing discussion outlines the structure of the
major subroutines used for the calculation of the optimal time torque with or without

obstacle.

6.2.1 Time Optimal Algorithm

In the course of the formulation of the time optimal control problem, it was
transformed to a second order gifiersntial acceleration equation ¥=g(x.¥) and
deceleration equation x=f (x x). The soiution to the time optimal problem is virtually
solving these two initial boundary value problems. The algorithm and technique for
solving a second order differential equation has been given in details in chapter four.
The computer computation of the equations given earlier in chapter four is presented

here.

The function of g(x,x) and f (x,x) are calculated by the subrcu... called GF.
The arguments are x, X, ¥ and an input flag for the choice for the maximum accelera-
tion or deceleration. The subroutine takes x and x as inputs and passes the results X
back to the calling function as an argument. Note that the joint angle, and velocities
are not passed as arguments because they are defined as global variables to all the oth-
ers subroutines in the same file. In addition, GF is eventually called by the
differential equation solver subroutine which consider GF dependent on x and x only.
From equations (4.9.2) and (4.9.3), g (x ,x) and f (x x) are calculated from T »Ti .
C,; and C,;. The maximum and minimum allowable torques are calculated from the
subroutine Togbd which has the maximum and minimum torque vectors as argument.
The torque boundary used in this implementation is taken as functions of the joint

velocities only, it is calculated as
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T, =6+T, (6.1.1)
T, =0-T, (6.1.2)

The evaluation of the C|; and C,; is more complicated and is done in the subroutine
C12. Only x and x are passed as arguments, the output vectors C1 and C2 are
declared global. In C 12, the previous joint angle vector thest which is global to all
the files are first copied to the current joint angle vector the as the starting angles.
The starting angle is crucial to the evaluation of the inverse kinematics. The joint
angles and velocities are calculated in ang_vel which takes x, x as input arguments
and the joint angle and velocity vectors as output arguments. Equations (4.11) and
(4.6.3) with the pseudoinverse replacing the Jacobian inverse are evaluated in ang_vel .
In ang_vel, subroutine del_pth is then called to find the change in the Cartesian posi-
tion of the end effector at the displacement x. del_pth takes the previous x and finds
the Cartesian position of the end effector at x by calling another subroutine path.
path can generate straight line paths in different directions taking the displacement x
as input and evaluate the Cartesian position from the initial Cartesian position and the
path direction. The choice of the path direction is specified in the input file. The ini-
tial Cartesian and joint positions are global to all files. del_pth and path are written in

a separate file for they define and calculate the trajectory position and its change.

With dr evaluated by del_pth, d© in (4.11.2) can new be found. The joint
angles corresponding to the displacement x are calculated by Cart_jt which evaluates
the pseudoinverse of the Jacobian of equation (4.11.2) at the previous joint angles and
multiply it with the output of del_pth. The joint angles at x are finally obtained by
adding d0 to the old joint angles. The new joint angles are used for the calculation of
the joint velocity. The unit vector v, tangential to the path is found by subroutine

Vect_rx. Consider the end effector being perturbed by a small displacement along the
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trajectory. The difference between the perturbed vector and the original position vec-
tor gives the tangential vector along the trajectory. Vect_rx calculates the tangential
vector and normalizes it to a unit vector. Now, the calculation of the joint velocity

vector can be done easily as in (4.6.3).

The computation of C, requires the evaluation of the inertia matrix and the Jaco-
bian at the joint angles found by ang_vel. The inertia matrix and the Jacobian are
both given in chapter .aree. Using the previously computed r in equation (4.8.2), it is

then straight forward to obtain C,.

The computation of C,, however is much more complicated than that of ¢,
because it involves taking the derivative of the Jacobian. Similar to the Jacobian, its
time derivative is first calculated analytically and then implemented on the program.

By chain rule, the analytical expression for the derivative of the Jacobian can be writ-

ten as

d _4dj(e)de

= J(8)= 48 ar 6.2.1)
_0J®, /@, . /(O
= 39, 0, + 36, 0, + 20, 03 (6.2.2)

where each term in (4.13.4) represents a matrix. The term J (6) can be expressed

using the same notations for the sine and cosine terms given in chapter 3 as follow

110101126 120 1+80)~15¢ 1230 +0,403) —1a¢ 12(81+87)1 3¢ 1 3(61+0,485) 13 123(8,+6,+85)
6.3)
115101125 12(01 48201351230, +02483)  —1252(8,+6) 135 123(8,+07+83)  ~135173(8,+0,+05)
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Having both C, and C, computed, all the terms in equation (4.9.1) and (4.9.2)
are known. According to the input flag, the maximum acceleration and the maximum
deceleration can be chosen for forward and backward integration. Finally, the max-
imum of f; and the minimum of g; are found by subroutines maximum and minimum
respectively. The the maximum of f; or the minimum of g; is passed to the calling

function as X¥. This completes the description of the subroutine GF .

6.2.2 Obstacle Avoidance Algorithm

The computer implementation of the obstacle avoidance algorithm follows closely
the derivation given in chapter five. Equaticas (5.4) to (5.9) are used to find derivative
of the Jacobian. Subroutines inv_fcn is written to find the inverse function solution
for the inverse kinematics, it takes the the time, joint angles, the displacement along
the trajectory x and del_pth as inputs and replaces the old joint angles by the new
one. The required constants are read from the input file. Subroutine mk_Pf is also
written to find the Jacobian given in equation (5.6) and is being called in inv_fcn to
compose the new Jacobian numerically. Subroutine obs_ang_vel is also written to
replace ang_vel to include the obstacle avoidance algorithm for finding the joint angles
and velocities upon calling mk_Pf and inv_fcn. Subroutine C 12 is also modified as
obs_c 12 to find the corresponding C'1 and C2 terms. The major modification is given

in equation: (5.10).

6.3 Simulation and Results

The computer simulation of the model of the three link redundant manipulator
given in chapter three is discussed in detail here. The kinematics and dynamics equa-
tions derived earlier are implemented to verify the calculated torques in the previous

chapters. The computer simulated redundant manipulator is basically a program which
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takes a set of joint torques as inputs and gencrates a set of joint angles as outputs.
The redundant manipulator is also animated by another graphic program that takes the
joint angles as inputs and plots the corresponding postures on the screen at constant

time intervals.

To simulate the motion of the redundant manipulator, the dynamics of the mani-
pulator must be used. The same assumptions and dynamics as in chapter three are
used here for computer implementation of the manipulator. Having all the relevant
terms in the dynamic equation (1.5) derived in closed form, computer simulation of the
dynamics by iterations is not taken into consideration. The inverse dynamics is solved
instead to simulated the movement of the manipulator. That is, the joint accelerations

are expressed in terms of the joint torques as

8 = M~1(0)(t-V (8,8)) (6.4)

where the gravitation term and the friction term are dropped because of the assumption
stated earlier. Numerical evaluation of equation (6.1) is straight forward with M and
V fully defined. The inversion of the mass inertia matrix does not require special
attention in general because of its positive definite property. The numerical inversion
of a matrix is done by the well known lower triangle upper triangle (LU) decomposi-
tion and back substitution. Although the Singular Value Decomposition method men-
tioned in chapter two can also be used to find the normal inverse, it is used only to
find the pseudoinverse of the kinematics in the formulation of the time optimal and
obstacle problem. The joint accelerations can be found according %o equation (6.4)

with one matrix inversion, multiplication and subtraction.

The difficulties of this computer simulation process lies in the evaluation of the

joint angles. The inverse dynamics equation has to be integrated forward in time with
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given initial joint positions and velocities. Equation (6.4) can either be treated as a
system of second order ordinary differential equation or it can be reduced to a first
order system of differential equaticn by the state space approach. It is obviously
easier to handle a first order system than a second order one. Denote y; and y, as 0
and © respectively, the above equation can be rewritten as a system of first order

differential equations

N [ Y2 }
¥21~ IM@) -V (8,8)) (6.5)

There are actually six first order differential equations in (6.2) for each y contains
three equations. The six equations are non-linear and strongly coupled with each
other. The joint angles can be solved theoretically by any initial value differential

equation solver, however, the integration technique mentioned earlier is used.

The motion produced by the joint torques given in Figure 4.6 (c), Figure 4.9 (c)
and Fig.5.6 (c) are used as input torques to the simulation program and the resulting
motions are shown in Figure 6.1, Figure 6.2 and Figure 6.3 respectively. Comparing
Figure 6.1, Figure 6.2, and Figure 6.3 with Figure 4.4, Figure 4.7 and Figure 5.4
respectively, hardly any difference can be noted, however looking at the numerical

values, there is a slight error in the simulation result.
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Figure 6.1 Simulation Result of Figured4.4
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Figure 6.2 Simulation Result of Figure4.7



et

Figure 6.3 Simulation Result of Figure 5.4

16
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Chapter 7

Conclusion

A time optimal algorithm for a redundant manipulator has besn presented and
implemented on a three link planar manipulator. This algorithm is an extension of the
non-redundant minimum time aigorithm [ Bobrow 83 ] to the redundant case. This
algorithm uses the displacement along the trajectory in the Cartesian plane as the con-
trol variable and obtain the minimum time of a spevified trajectory. The pseudoinverse
is used to find a unique inverse kinematics solution out of all the possibilities that
satisfy the end effector requirement. The inverse kinematics solution is obtained by
evaluating the increments of all the joint angles through the pseudoinverse and adding
them to the previous joint angles. Given the initial joint angles, the minimum time for
the specified trajectory is found. Examples presented in this thesis required single
switching only. It has been very difficult to find a multiple switching case to illustrate

the multiple switching algorithm, thus multiple switching examples are not presented.

Time optimal solutions for specified path or obstacle avoidance has been
developed as seen from the literature for the non-redundant case. However, a minimum
time obstacle avoidance algorithm for a specified path has been given here with the
use of a redundant manipulator. This obstacle avoidance algorithm is developed in the
light of the inverse function approach [ Wampler 87 ]. Instead of the conventional
null space approach for obstacle avoidance [ Nakamura et el. 81 ], an additional equa-

ticn is added to the underdetermined kinematics equations to fully define the system.
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The function used is the sum of the distance to a constant power between the center of
the obstacle and each individual joint. Obstacle avoidance is achieved by setting the
gradient of this function by choosing an appropriate constant. This algorithm is then
incorporated to the time optimal algorithm to get the minimum time obstacle avoidance
trajectory.

The presented algorithms are not limited to the planar three link redundant mani-
pulator, it can be extended to a three dimensional seven or eight degrees of freedom
redundant manipulator. The obstacle avoidance algorithm can also be extended to
include more than one obstacle for manipulators with more than one degree of redun-

dancy.
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