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ABSTRACT 

Many companies maintain large databases of incident reports. Incidents that have severe 

consequences are analyzed in detail to prevent recurrence, while minor incidents are typically 

stored without any further evaluation. Especially with common incidents and those with lesser 

consequences, details that are necessary to understand the cause of the incident might be missing. 

Incidents that occur in the oil and gas industry can be reported more accurately and analyzed to 

provide value to companies maintaining databases, and to prevent and mitigate risks. Such 

information can be used to lower costs and improve safety culture.  

 

The initial objective of this study was to create a risk matrix system for collectively analyzing 

incident reports, commensurate across companies, for increased reliability in reporting and 

enhanced analytical power across an industry. A supervised machine learning approach was 

applied in conjunction with this risk matrix to analyze incident reports and provide a risk score. 

 

During this research project, 15,000 incident reports, including both process and occupational-type 

incidents, were analyzed from three oil sand companies across Alberta. The results were classified 

by incident type (determined by industry experts) and consequence type (using the risk matrix). 

Furthermore, potential and actual risk scores were evaluated for every incident using the risk 

matrix. This analysis built the foundation for a system to identify trends and leading indicators, 

and to design prevention and mitigation strategies across the entire industry. 

 

The goals of this researched evolved to include the application of artificial intelligence and 

machine learning to create a digitalized system for efficiently reporting incidents that can be used 
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to generate a risk matrix, trend report, prevention and mitigation strategies, and leading indicator 

identification for every incident report that is inputted.  

 

Implementing this system was accomplished by utilizing a combination of supervised machine 

learning and keyword analysis. During this research project, the 15,000 incident reports were 

analyzed to build a customized library of keywords. These keywords were assigned to a list of 

statements that were generated using a company’s safety guidelines, standard operating 

procedures, and asset management systems. The basic structure for generating outputs was 

demonstrated using a large incident database provided by collaborators of the project and some 

sample inputs. Three case studies of incident reports were also processed and presented using the 

proposed methodology, delivering practical outputs that could be used by workers and companies 

to improve safety and increase hazard awareness.  
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1. INTRODUCTION 

1.1. BACKGROUND 

The data analyzed in this research is the incident databases of several large companies involved in 

the energy sector in Alberta. By participating in this study, these companies were hoping to see 

overall mitigation and prevention of risk. With this in mind, different companies have different 

standards for the details involved in incident reporting. Furthermore, these incident reports are 

treated with varying levels of importance by various persons within the organization. My initial 

impression of the incident database was a large number of low consequence incidents that 

constantly recur with disproportionate number of high consequence incidents that rarely occur.  

 

Incident reports are written to document the details of an incident and to provide information that 

has the potential to be useful in the future (Kane, 1985). This information can be used in a variety 

of different ways – for the purpose of investigation, as legal documentation, and to learn from the 

past to prevent similar occurrences in the future (Macrae, 2015; Christou and Konstantinidou, 

2013). In order to fulfil these requirements, the reports need to accurately describe the incident, 

contain complete information, and include details to facilitate future investigation. An incident 

report should include location, time/date, and the names of the individuals and employers involved 

(Occupational Health and Safety Act [OHS], 2018).  

 

While focusing on individual incident reports, it became more obvious that the incident data was 

not “clean.” A number of incident reports were incomplete (it was impossible to determine the 

event that occurred with the information provided), spelling mistakes were very common, and it 

was difficult to determine the causes of incidents. Unlike high consequence incidents, it was 
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difficult to trace root causes of low consequence incidents – there was no further pertaining to such 

incidents.  

 

In addition to the raw incident data, the companies participating in this research also had their own 

risk matrices for analyzing incidents – these risk matrices were used to evaluate the risk involved 

with incidents. Some companies also provided other forms of analysis, for example, root cause 

analysis and risk scores using the risk matrices. The same mistakes plaguing the incident reports 

could also be found in these risk assessments – human error and incorrect calculations were quite 

common.  

 

These incident databases created many opportunities for research. First, the system for reporting 

incidents can be modified to allow incidents to be reported more clearly. Second, there was an 

opportunity to evaluate the risk involved with each incident. Finally, it was possible to suggest 

improvements to prevent or reduce the consequences of the incidents that were occurring in these 

company databases.  

 

For this research, 15,000 incident reports were analyzed using supervised machine learning and 

keyword analysis. These incident reports are used to generate a “Customized Library” to analyze 

the input of new incident reports and to provide actionable information. Risk is evaluated using a 

risk matrix and trends were analyzed to identify different types of incidents and their occurrences. 

Prevention and mitigation strategies are also suggested using a variety of engineering and 

operating standards. Finally, leading indicators are identified for the provided incident reports. 

Leading indicators can be arranged into three groups: operations-based (pertaining the functioning 
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of an organization’s operations), systems-based (relevant to the management of environment, 

health, and safety), and behavior-based (referring to the relationships between people and groups) 

(Inouye, n.d.). This was used as a guideline for matching leading indicators to incident reports. 

 

1.2. RESEARCH OBJECTIVES 

Our research seeks to improve current methods of incident reporting by: 

• Implementing machine learning and keyword analysis to categorize incidents and analyze 

risk; 

• Automating the process of evaluating risk by utilizing machine learning to generate risk 

matrices and trend reports; and 

• Providing actionable information to companies – prevention and mitigation strategies and 

the identification of leading indicators. 

 

The premise of using machine learning and keyword analysis is to enhance the consistency and 

accuracy of the methods currently used in industry. By using these methods, it is possible to reduce 

bias and human error in the process of incident reporting. Companies can identify incidents that 

should be prevented and create safer environments for their workers. The benefits of this research 

are twofold: the costs of damages caused by incidents can be reduced and companies will gain the 

trust of their workers with the employees knowing that their company is looking after their 

wellbeing. Consequently, workers can be trained to identify hazards and improve the safety of 

their workplaces.  
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1.3. THESIS OUTLINE 

This thesis includes four chapters. Chapter 2 uses machine learning to analyze and categorize 

incident reports to automate the process of predicting the frequency and consequence of an 

incident. Chapter 3 improves this machine learning algorithm by adding another computational 

layer for keyword analysis. Incident reports were analyzed, and four outputs were delivered: risk 

matrices, trend reports, prevention and mitigation strategies, and leading indicators. Chapter 4 

summarizes the results of this research. 
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2. SEEING THE FOREST AND THE TREES: USING MACHINE LEARNING TO 

CATEGORIZE AND ANALYZE INCIDENT REPORTS FOR ALBERTA OIL SANDS 

OPERATORS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A version of this chapter was published as Kurian, D., Ma, Y., Lefsrud, L., and Sattari, F. 

“Seeing the Forest and the Trees: Using Machine Learning to Categorize and Analyze Incident 

Reports for Alberta Oil Sands Operators,” Journal of Loss Prevention in the Process Industries. 
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2.1. INTRODUCTION 

This research is motivated by an opportunity to analyze past incident reports across organizations 

with similar operations. In Canada, Occupational Health and Safety (OHS) is handled by 

provincial jurisdictions. Incident reporting is mandated by law in the province of Alberta 

(Occupational Health and Safety Act [OHS], 2018). Many incidents involving hazardous 

chemicals occur yearly, and there is always potential for loss of containment when these substances 

are not properly controlled. Process safety management seeks to manage hazards associated to 

process industries, and to reduce the risks involved with the release of hazardous chemicals 

(Occupational Safety and Health Administration [OSHA], 2000). When applied to the oil and gas 

industry, process safety incidents typically involve failure in a pipeline system or facility. Such 

incidents can result from small mistakes that lead to disastrous consequences, and it is important 

to learn from incidents to reduce the risk involved with these events (Ness, 2015).  

 

In addition to the reporting requirement for loss incidents, many large companies have designed 

their own systems for the internal reporting of incidents. This includes seemingly meaningless or 

irrelevant incidents – low risk (either low frequency or low consequence) which simply remain in 

company data repositories without further analysis – and other incidents which could have had 

more serious consequences and, thus, trigger change in industry practice (Greenwell et al., 2003).  

 

Risk is defined as the effect of uncertainty affecting objectives (International Organization for 

Standardization [ISO], 2018). Given this, a hazard may or may not lead to a loss incident, under 

slightly different circumstances. To evaluate the level of risk associated to an incident, companies 

often use a risk matrix (i.e., A Guide to the Project Management Body of Knowledge [PMBOK], 



7 

 

2017) – a simple, yet powerful risk evaluation tool used for semi-quantitative risk analysis. In 

addition to the ISO (2018) definition, the PMBOK (2017) defines risk (R) as the product of 

probability (P) and consequence (C): 𝑅 = 𝑃 × 𝐶. This definition can be applied to the risk matrix 

where the total risk (RT) is the sum of all risks in the system where n is the total number of risks: 

𝑅𝑇 = ∑ 𝑅𝑛
𝑛
𝑖=1 . 

 

An example of a risk matrix can be seen in Figure 2-1. Risk matrices are often color-coordinated 

or zoned, usually based on the organizations’ risk tolerability (Kletz, 2005; Markowski & Mannan, 

2008). At some level, low risks are categorized as acceptable, some medium risks are considered 

to be tolerable, and high risks are categorized as intolerable and requiring reduction. This scale is 

often made more specific – for example, medium risks could potentially be further classified as 

tolerable acceptable or tolerable unacceptable. The goal of the risk acceptability principles is to 

understand the organization’s tolerability level, assess all risks, and reduce these to an acceptable 

level by lowering the likelihood or minimizing the consequences (Kletz, 2005; Markowski & 

Mannan, 2008). The risk matrix is one of the most widely used tools for risk evaluation and 

prioritization – it is simple to implement, maintain, understand, and explain (Animah & Shafiee, 

2019; Gul & Guneri, 2016; Landell, 2016).  
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Figure 2-1. A sample risk matrix used in risk evaluation (PMBOK, 2017) 

 

Typically, organizations file reports for all incidents that occur on-site, including process safety 

incidents, and categorize these into their risk matrix according to the consequences or potential 

consequences (health and safety of people, damage to the environment, financial loss, reputation, 

etc.).  

 

While risk matrices have a variety of benefits, including assisting decision-making and prioritizing 

risks, they also have many weaknesses (Thomas et al., 2013). First, it is difficult to use a matrix to 

evaluate risk in a system with no high consequences risks. In such a case, it would be challenging 

to define the maximum and minimum boundaries of the consequence scale. Risk matrices are also 

limited by their two-dimensional precision outlook (Bjerga & Aven, 2015). Other technical 

weaknesses of risk matrices identified by Duijm (2015) and Thomas et al. (2013) include: 

 



9 

 

• the type of scale used to calculate risk scores (linear, logarithmic, exponential, etc.), 

• the inability to classify multiple risks which may be associated to each other, or a single 

risk which might have multiple consequences, 

• the assessment of very likely, moderate impact risks and possible, significant impact risks 

as being the same when they might be very different qualitatively, and  

• the arbitrary nature of ranking (ascending or descending) which can play a significant role 

in the final stage of prioritizing and managing risk. 

 

Another issue is the difference in risk matrices used by different companies. Even with the overall 

structures of the risk matrices remaining the same, varying scales demonstrate individual 

organizations’ resilience to certain consequences. Companies will define catastrophic financial 

loss differently, creating radically dissimilar upper limits to high consequences items. 

Furthermore, in common practice, risk matrices use an open upper limit. This could mean that, 

theoretically, a tenfold factor between two financial losses could still be classified in an identical 

manner.  

 

Aside from these “technical” issues, there are also other issues with the usage of such risk practices 

in industry: the bias and inconsistency of human reporting. Thomas et al. (2013) defines centering 

bias as the tendency of people to avoid reporting extreme values. When dealing with incident 

reports, skewness (i.e., low frequency, high consequence events) is more concerning than centering 

on ‘normal’ incidents. Additionally, with many individuals rating risks, it is likely that similar 

incidents might be rated quite differently by various people within the same company. It might 

even be possible for the same individual to evaluate the same incident differently at various points 
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in time. Given this, it can be easy to conclude that reporting and assessing risks can vary 

significantly across companies, which prevents meaningful comparison. 

 

Many of these issues can be resolved by introducing machine learning. Automating the process 

of using a rule-based matrix to evaluate risk will remove bias and allow for consistent risk 

ranking. Having a consistent system in place would allow for cross-company collaboration to 

better understand incidents and assess the associated risks. The benefits of this would extend 

when analyzing the data for trends and leading indicators, as a larger dataset would allow for 

greater statistical power when examining trends and identifying low-frequency, high-impact 

events. Taleb (2007) describes black swan events as events that are outliers, have a high impact, 

and are explainable only after they have occurred. By applying this logic to incident reports, 

combining several large incident databases allows companies to identify and develop strategies 

against hazards and latent causes found by other companies that have not yet been identified on 

their own sites. Using machine learning algorithms, it is also possible to create a system to rank 

and categorize incidents.  

 

2.2. METHODOLOGY 

For this research, several companies provided access to their incident databases and risk matrices 

to improve their current system of reporting incidents. This is accomplished by:  

• creating a risk matrix with a consistent scale that can be used by all companies in Alberta’s 

oil sands sector and 

• automating the process of classifying and categorizing risks by utilizing supervised 

machine learning. 
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The programming language, Python, is used to design the supervised machine learning algorithm 

to classify incident reports. Python is an open source project, it has many libraries that are readily 

available for download, and has a variety of online support through various forums. From a 

numerical perspective, Python has been rated the number one programming language for 

engineering and applied sciences (Cass, 2019).  

 

Supervised machine learning functions by using predictor features to predict a class label 

(Kotsiantis, 2007). It differs from unsupervised learning in that the class labels are known when 

applying supervised learning. In this case, the predictor features are incident reports and class 

labels are assigned categories. For this research, several different class labels are applied: to 

provide a general category for incident reports and to score an incident report on a risk matrix 

(consequence type, actual risk score, and potential risk score). The process for applying supervised 

methodology to incident reports can be seen in Figure 2-2. In order to consider model accuracy, 

all incident reports used in this research must be classified manually; however, manually 

classifying such large amounts of data is not necessary to predict class labels for commercial use. 

For this research, 15,000 incident reports are used, randomly selected from the 54,000 incident 

reports available (provided by five oil sand companies operating in Alberta).  
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Figure 2-2. Process for classifying incident reports using supervised machine learning. 

 

2.2.1 Manually Classify Data 

By interviewing several industry experts, we decided to classify incidents into the following 

primary categories: communication, health/safety, leak/spill, miscellaneous, operation, and 

• Incident type (survey subject matter experts to determine labels)

• Consequence type (determine from literature or by surveying subject matter 
experts)

1. Manually classify data

• Convert text (incident reports) to numerical vectors

• Separate data into training and test data

2. Prepare data for machine learning classification

• Adaboost

• Decision tree

• K-nearest neighbor

• Logistic regression

• Multi-layer perceptron

• Multinomial Naive Bayes

• Random forest

• SVM (including Linear SVC)

3. Use classifiers from scikit-learn library to classify data

• Confusion matrix

• Precision, recall, F1-score, support

• Accuracy

4. Calculate metrics for each classifier

• Risk matrix

• Trend analysis

5. Deliver outputs
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vehicle. These incidents can then be further classified into more specific sub-categories. The 

primary, secondary, and tertiary levels of classification can be seen in Figure 2-3. This form of 

categorization can also be used to determine the frequency of an incident occurring, which is one 

of the outputs necessary to calculate risk.  

 

Figure 2-3. Primary (white), secondary (blue), and tertiary (orange) tiers for the classification of 

incident reports. 

 

It is also necessary to apply labels to the incident reports in a manner such that an incident report 

can be evaluated by the risk matrix. When calculating consequence, we consider financial loss, 

environmental impact, damage to reputation, and worker health (Muhlbauer, 2004). Two types of 

scores are given to each incident report: an actual risk score, based on the consequences of the 

incident, and a potential risk score, based on possible “worst-case” scenarios. This potential risk 

score is important when analyzing near misses that have no actual consequences. To justify these 

risk scores, labels are applied for the type of consequence (health/safety, environment, finance, 
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and reputation). Once a severity rating is given, a risk level can be calculated by evaluating the 

severity in conjunction with the frequency calculation. 

 

Risk matrices were acquired from the companies participating in this study. The severity ratings 

of these companies were averaged to create a scale for consequence. Using average values in such 

a fashion, while uncommon, can be considered good practice (Cunha, 2016). Consequences are 

rated based on impact to health and safety, environment, company’s reputation, and finance using 

a five-point scale.  

 

2.2.2. Prepare Data for Machine Learning Classification 

The typical classification-type problem is numerical in nature. When a dataset is expressed 

graphically, classification boundaries can be drawn to separate different numerical values. The 

content of an incident report consists mostly of text, which makes working with incident reports a 

challenge. To overcome this challenge, the Python scikit-learn library is used to transform the 

incident reports into a numerical form (Imani et al., 2018). The scikit-learn library includes a 

feature called the TfidfVectorizer to convert incident reports to numerical values that can then be 

used for classification (Garreta et al., 2017). Tf-idf stands for term frequency times inverse 

document frequency. Term frequency refers to the number of times a term appears in a document 

– in this case, the number of times a word appears in an incident report. The term frequency can 

be scaled (typically logarithmically) for document length. The inverse document frequency refers 

to a weight that is applied to give more value to words that are rare across multiple documents and 

to reduce the value of words that are common. Together, term frequency times inverse document 

frequency applies a high weight to a word (term) that appears multiple times in the same document 
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but is rare in the collection of documents. In summary, this method builds a dictionary using the 

terms found in the documents, counts the occurrences of each term, and applies weights based on 

the occurrences. The final result is the transformation of text to a numerical vector. 

 

In order to train a machine learning algorithm to rank and categorize risks, many incident reports 

must be classified to set a guideline for the program (Raschka & Mirjalili, 2017). An accepted 

method for accomplishing this is to separate the data into a training set and a test set, where the 

entirety of this data must be classified manually. Applying the train/test split method to this 

research, the 15,000 incident reports being analyzed will be divided into a training set and a test 

set: 10,500 incident reports (70% of the randomly selected data) are used as training data while 

the remaining 4,500 incident reports (30% of the randomly selected data) are used as test data. As 

its name implies, the training data are used to train the program in classifying incidents and the 

test data can then be used to judge the accuracy of different classifiers. The “predicted” values of 

the test data are then compared with the manually classified “true” values to determine the 

accuracy of the model. The feature used to split the data into training and test data is called 

train_test_split and can be found as part of the scikit-learn library. 

 

2.2.3. Use Classifiers from scikit-learn Library to Classify Data 

The scikit-learn library also has many built in classifiers that can be used. For this research, every 

classifier compatible with the data was used to identify the classifier with the highest accuracy. 

The vectors generated by the TfidfVectorizer are considered sparse matrices. This means that most 

numbers in each vector are 0. This sparseness can result in incompatibility with some classifiers. 

Given this, we use several classifiers: Adaboost classifier, decision tree classifier, k-nearest 
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neighbors, logistic regression, multi-layer perceptron classifier, multinomial Naïve Bayes 

classifier, random forest classifier, and support vector machine classifier (including linear support 

vector classifier). Once the data from the vectorized incident reports are expressed graphically, 

these classifiers utilize different approaches to generate decision boundaries that can be used to 

categorize the data. 

 

2.2.4. Calculate Metrics for Each Classifier  

Metrics are calculated in conjunction with train/test split to deliver scores and performance 

metrics, also calculated using the Python library, scikit-learn (Garreta et al., 2017; Pedregosa et 

al., 2011). For this study, the metrics used are confusion matrices, classification reports, and 

accuracy scores to determine a model’s feasibility. Once a model is fitted to a training data set, 

these tools can be used to analyze the model’s accuracy on the corresponding test data set. 

Confusion matrices are used to evaluate the accuracy of a classification. A confusion matrix 

requires the true classification, the predicted classification, and the labels (optional). If labels are 

not provided, the confusion matrix will arrange all labels found in the training and test data sets 

alphabetically. The output is a matrix, Ci,j where i is the true number of observations in a group 

and j is the predicted number. From this matrix, it is easy to count the number of true negatives, 

false negatives, true positives, and false positives. A classification report delivers a text report of 

precision, recall, F1-score (or F-measure), and support for each label found in the data. The input 

variables are the true classification, predicted classification, and labels (optional). Precision is the 

ratio of the number of true positives to the sum of true positives and false positives. Recall is the 

ratio of the number of true positives to the sum of true positives and false negatives. The F1-

measure is the mean of precision and recall, and support is simply the number of true occurrences. 
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Precision and recall will have values between 0 (poor prediction) and 1 (good prediction). 

Accuracy score computes the percentage of predicted labels that exactly match the corresponding 

true labels. The input parameters are the true classification and the predicted classification labels, 

and the output is a single accuracy value as a percentage (100% = perfect accuracy). 

 

2.2.5. Deliver Outputs 

The typical process of determining a scale for likelihood is by allowing several experts to 

determine the probability of an incident occurring within a certain time period. For example, a low 

likelihood risk would occur once every 10,000 years while a high likelihood risk would occur once 

per year (Basu, 2017; Calixto, 2016). The incident databases supplied by companies contain many 

incident reports and the incident date and time, which allows us to calculate frequency of each 

incident type within a certain time period, and eliminates the need for a human to predict the 

likelihood. Applying this to a sample incident where a feed stream is taken offline due to a leak, 

one could tally the total number of incidents resulting in loss of production due to leaks over a 

period of time, and either interpolate or extrapolate information to determine likelihood. These 

likelihoods also allow comparisons such as the ratio of the total number of leaks in proportion to 

the total number of incidents reported, or the number of leaks resulting in feed streams being taken 

offline in proportion to the total amount of leaks. Such calculations are useful in providing 

strategical insight when planning preventative measures.  

 

2.3. RESULTS AND DISCUSSION 

To rate the severity of an incident, the values of the risk matrices from several collaborators were 

averaged to develop a 5-point scale (see Figure 2-4). This scale is used to manually classify both 
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the actual and potential risk associated with incidents. And the supervised machine learning 

algorithm aims to predict consequence based on the same scale. 

 

Figure 2-4. Consequence scale for incident reports using average values from multiple 

companies. 

 

By using the methods discussed, we created a program which consistently classifies and analyzes 

incidents. Table 2-1 depicts the accuracies of the classifiers used in this study when applying 

primary labels to incident reports. The least accurate classifier was the basic Support Vector 

Classifier (SVC). Support Vector Machines (SVMs) were originally designed for “one-against-

one” approaches or binary classification (Guenther & Schonlau, 2016). The SVM is a learning 

algorithm that maximizes the margin between classification boundaries. A hyperplane is created 

for each class label using support vectors – the training samples closest to the hyperplane – and 

the decision boundary attempts to maximize the distance between hyperplanes. The basic SVC can 

be seen to have the lowest accuracy of the selected classifiers at 56.98%. Unlike the SVC, the 

Linear Support Vector Classifier (Linear SVC) is a type of SVM that adopts the “one-vs-rest” or 

“one-vs-all” approach for classification (Milgram et al., 2006). It compares each class against 
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every other class when drawing decision boundaries which leads to very accurate classification 

when dealing with data that is linearly separable. Based on this data, the most accurate classifier 

was the Linear SVC with an accuracy of 88.48% when predicting primary labels. For the remainder 

of this section, the focus will be on the results obtained using the Linear SVC as it was consistently 

the most accurate classifier for analyzing incident reports.  

 

Table 2-1. Classification accuracy of primary labels for different classifiers 

Classification Method Accuracy 

Support Vector Classifier (SVC) 56.98% 

Adaboost 63.21% 

Multinomial Naïve Bayes 66.76% 

k-Nearest Neighbors 73.56% 

Random Forest 75.80% 

Decision Tree 75.95% 

Logistic Regression 84.37% 

MLP Classifier (Neural Network) 85.50% 

Linear SVC 88.48% 

 

Table 2-2 displays the confusion matrix associated to primary label classification for the Linear 

SVC. The confusion matrix shows the actual (manually classified) labels for the incident report on 

the y-axis and the predicted (machine learning classified) labels on the x-axis. This metric displays 

where the classifier is most accurate, and where it has misclassified the labels. The main diagonal 

of this matrix shows the number of actual labels that have been correctly identified by the classifier. 
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Table 2-2. Confusion matrix for Linear SVC used in primary label classification 

  Predicted 

  Comm. Health/S Leak/Spill Misc. Operation Uncat. Vehicle 

A
ct

u
a
l 

Comm. 62 2 0 1 9 0 0 

Health/S 0 709 4 0 110 0 20 

Leak/Spill 0 2 241 0 48 0 4 

Misc. 0 1 1 43 10 1 0 

Oper. 2 68 14 5 2571 4 51 

Uncat. 0 16 0 4 38 43 2 

Vehicle 0 31 7 2 91 1 547 

 

Table 2-3 depicts the classification report for the Linear SVC when analyzing primary labels.  

These metrics display how the model classified the data and the accuracy to which the model is 

predicting each class label. As a general statement, it can be seen that as support increases, the 

accuracy of the supervised machine learning algorithm also increases. The algorithm was able to 

score the highest F1-score (0.92) when predicting the Operation label due to the massive amount 

of data available. Recall that the F1-score is the average of precision and recall and that the closer 

the values of precision, recall, and F1-score are to 1, the more accurate the class prediction. Support 

is the total number of actual labels assigned to each primary label.  
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Table 2-3. Classification report for Linear SVC used in primary label classification. 

Primary Label Precision Recall F1-score Support 

Comm. 0.97 0.84 0.90 74 

Health/S 0.86 0.84 0.85 843 

Leak/Spill 0.90 0.82 0.86 295 

Misc. 0.78 0.77 0.77 56 

Oper. 0.89 0.95 0.92 2715 

Uncat. 0.88 0.42 0.57 103 

Vehicle 0.88 0.81 0.84 679 

 

The accuracies of the Linear SVC when predicting the consequence labels of Health and Safety, 

Environment, and Finance was calculated and reported in Table 2-4. It was difficult to assign a 

label for damage to a company’s reputation due to the large number of incidents and the difficulty 

to estimate the severity of the consequence. In order to train a machine learning algorithm to assign 

a label for damage to a company’s reputation, it would require attempting to find public records 

of every incident. Due to the intrinsic nature of high consequence incidents, it is assumed that these 

will garner media attention along with other consequences (i.e. health and safety, environment 

and/or finance). Thus, a consequence label of “Reputation” was attached to any incident with an 

actual risk score of 1 or 2.  
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Table 2-4. Classification accuracy of Health & Safety (H/S), Environment (E), and Finance (F) 

labels for different classifiers 

Classification Method Accuracy (H/S) Accuracy (E) Accuracy (F) 

Adaboost 79.91% 93.87% 77.70% 

Decision Tree 78.19% 93.14% 73.04% 

Linear SVC 85.29% 94.85% 81.37% 

k-Nearest Neighbors 79.66% 92.16% 78.19% 

Logistic Regression 77.45% 89.22% 79.16% 

MLP Classifier (Neural Network) 83.09% 90.44% 79.90% 

Multinomial Naïve Bayes 74.75% 88.97% 77.21% 

Random Forest 80.64% 91.42% 76.72% 

Support Vector Classifier (SVC) 70.83% 88.97% 71.81% 

 

The classification accuracies for actual and potential risk scores can be found in Table 2-5. Actual 

risk scores refer to the severity of an incident that has occurred while potential risk scores refer to 

near misses and possible consequences of incidents that could have been more severe given 

alternate circumstances. In most cases, for incidents that occurred, actual and potential risk scores 

are equal.  

 

 



23 

 

Table 2-5. Classification accuracy of Actual Risk and Potential Risk Scores for different 

classifiers. 

Classification Method Accuracy (Actual 

Risk Score) 

Accuracy (Potential 

Risk Score) 

Adaboost 82.11% 46.32% 

Decision Tree 72.79% 53.68% 

Linear SVC 82.35% 67.65% 

k-Nearest Neighbors 76.72% 57.35% 

Logistic Regression 78.43% 66.18% 

MLP Classifier (Neural Network) 80.88% 64.46% 

Multinomial Naïve Bayes 78.43% 62.01% 

Random Forest 78.92% 59.56% 

Support Vector Classifier (SVC) 78.43% 45.10% 

 

Along with classification, another goal of this study was trend analysis of incidents. Figure 2-5 

illustrations how descriptive labels can be used to analyze trends in incidents. Incidents are 

categorized based on their primary labels and counted based on month. The lowest number of 

incidents have occurred in January. This can be an example of how trend analysis can be used for 

risk analysis – it might be worthwhile to pursue the reason behind such a low incident count in 

January while the remaining months have roughly the same total amount of incidents. Possible 

reasons for this low incident count could be employees taking time off, an error when reporting, 

or very strict operating procedures for the first month of the year. The figure also shows that the 
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month of March has the most incidents and that operational-type incidents are the most common, 

accounting for 56.98% of total incidents. Primary labels can also be analyzed in greater detail.  

 

 

Figure 2-5. Number of incidents per month for a random sample of 15,000 incidents using primary 

classification labels. 

 

Figure 2-6 demonstrations the subcategories of operation-type incidents per month. Operation-

type incidents are subcategorized as follows: equipment, incorrect operations, nature, and 

uncategorized. Most operation-type incidents occur because of equipment. This information can 

be used to prioritize risks and avoid loss by designing appropriate prevention and mitigation 

strategies. 

 

 



25 

 

 

Figure 2-6. Number of operational-type incidents per month for a random sample of 15,000 

incident reports using secondary classification labels. 

 

Additional information that can be gleaned from Figures 2-5 and 2-6 is the number of incidents 

pertaining to process safety. Most incidents classified with the primary labels of “Operation” and 

“Leak/Spill” fall under process safety, accounting for approximately 9,450 of 15,000 incident 

reports, or 63% of the total number of incidents. This demonstrates the need to prioritize risk 

reduction in process safety. There are many ways this can be done. One such approach would be 

to isolate process safety incidents and identify safety indicators that can be further analyzed and 

acted upon to reduce the risk involved with such incidents (Swuste et al., 2016). This could also 

be used to identify correlations between different incidents that might otherwise remain unnoticed. 

Furthermore, with the cooperation of the companies involved in this research, it would also be 

possible to gather detailed information about incidents that are not included in typical incident 

reports. These details could be used to support prevention and mitigation strategies to target 

specific incident types that are often overlooked – many incidents that are high probability/low 
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consequence are often ignored due to their “low risk” nature, when in fact, these traits might lead 

to severe loss over an extended timespan (Greenwell et al., 2003; Leistad & Bradley, 2009).  

 

Incident report data are also useful in process safety education by providing a comprehensive 

understanding of latent root causes (Mkpat et al., 2018). Achieving excellence in process safety 

leads to fewer incidents, mitigating the consequences of incidents that occur, and providing 

optimal emergency response (Halim & Mannan, 2018). Education can be provided within a 

company, through educational institutions, and can also include government agencies and 

authorities. Such collaborations are already being used to increase worker awareness toward 

common hazards, and in the future, should be used to allow operators to identify precursory 

conditions of process safety incidents such as equipment failure (Halim & Mannan, 2018; Rowe 

& Francois, 2016).  

 

The metrics calculated using Linear SVC for assigning consequence type and risk scores can be 

found in Appendix A. The assigned labels can be used to determine the type and risk level of 

incident reports. While the machine learning algorithm can operate with training and test data, it 

can also be used to make predictions about unclassified incident reports. The caveat to using 

machine learning to predict unclassified data is the probability of misclassification. With ~80% 

accuracy for the Linear SVC, approximately one out of five incidents will be misclassified. 

 

2.4. CONCLUSIONS 

By working with such a large, combined incident database, the goal of this research was to increase 

awareness of process safety incidents that occur in the oilsands sector and, potentially, the oil and 
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gas industry more broadly. We used a supervised machine learning model to analyze the incident 

reports in order to simplify the reporting process, increase accuracy, and to reduce human bias.  

 

Our analysis included predicting labels for incident type, consequence type, actual risk score, and 

potential risk score. While experimenting with different classifiers, the Linear SVC was found to 

have the greatest accuracy. Further, a supervised machine learning model implemented with the 

Linear SVC can analyze tens of thousands of incident reports in minutes, allowing for companies 

to develop prevention and mitigation strategies for incidents. Companies can target the most 

common and costly incidents, as well as the highest consequence incidents, in order to prevent or 

reduce the likelihood of such incidents from recurring. This study found that operation-type 

incidents were the most common from one sample of incident data, with most operational incidents 

being related to process safety. In this case, it is advisable to understand why such incidents are so 

common and to reduce both the consequences and the likelihood of these incidents. Properly 

managing these process safety issues would be beneficial to a company, especially when the areas 

for improvement are clearly delineated by quantitative studies.  

 

The supervised machine learning model has much potential for future use. A supervised machine 

learning algorithm can be easily modified to accept new training/test data to predict class labels 

for a specific company based on its existing systems. This can allow a company to focus its efforts 

on preventing incidents that are causing the company losses, in addition to using the much larger 

aggregated database to properly increase hazard awareness for its workers. There is an opportunity 

to create a practical product for industry by using machine learning to improve trend analysis, 

design prevention and mitigation strategies, and to identify leading indicators.  



28 

 

2.5. REFERENCES 

 

A Guide to the Project Management Body of Knowledge [PMBOK] (Sixth Edit). (2017). 

Newtown Square, PA, USA: Project Management Institute, Inc. 

Animah, I., & Shafiee, M. (2019). Application of risk analysis in the liquefied natural gas (LNG) 

sector: An overview. Journal of Loss Prevention in the Process Industries, 63(October 

2019), 103980. https://doi.org/10.1016/j.jlp.2019.103980 

Basu, S. (2017). Basics of Hazard, Risk Ranking, and Safety Systems. In Plant Hazard Analysis 

and Safety Instrumentation Systems. https://doi.org/10.1016/b978-0-12-803763-8.00001-7 

Bjerga, T., & Aven, T. (2015). Adaptive risk management using new risk perspectives - An 

example from the oil and gas industry. Reliability Engineering and System Safety, 134, 75–

82. https://doi.org/10.1016/j.ress.2014.10.013 

Calixto, E. (2016). Reliability and Safety Processes. In Gas and Oil Reliability Engineering. 

https://doi.org/10.1016/b978-0-12-805427-7.00006-3 

Cass, S. (2019). The Top Programming Languages 2019. Retrieved from IEEE Spectrum 

website: https://spectrum.ieee.org/computing/software/the-top-programming-languages-

2019 

Cunha, S. B. da. (2016). A review of quantitative risk assessment of onshore pipelines. Journal 

of Loss Prevention in the Process Industries, 44, 282–298. 

https://doi.org/10.1016/j.jlp.2016.09.016 

Duijm, N. J. (2015). Recommendations on the use and design of risk matrices. Safety Science, 

76, 21–31. https://doi.org/10.1016/j.ssci.2015.02.014 

Garreta, R., Hauck, T., & Hackeling, G. (2017). Scikit-learn: machine learning simplified. 

Birmingham, UK: Packt Publishing. 

Greenwell, W. S., Knight, J. C., & Strunk, E. A. (2003). Risk-based Classification of Incidents. 

39–50. 

Guenther, N., & Schonlau, M. (2016). Support vector machines. The Stata Journal, 16(4), 917–

937. https://doi.org/10.1177/1536867X1601600407 

Gul, M., & Guneri, A. F. (2016). A fuzzy multi criteria risk assessment based on decision matrix 

technique: A case study for aluminum industry. Journal of Loss Prevention in the Process 

Industries, 40, 89–100. https://doi.org/10.1016/j.jlp.2015.11.023 

Halim, S. Z., & Mannan, M. S. (2018). A journey to excellence in process safety management. 



29 

 

Journal of Loss Prevention in the Process Industries, 55(April), 71–79. 

https://doi.org/10.1016/j.jlp.2018.06.002 

Imani, A., Forman, J. E., & Amir, W. (2018). A Clustering Analysis of Codes of Conduct and 

Ethics in the Practice of Chemistry. 

International Organization for Standardization [ISO]. (2018). Risk Management - Guidelines 

(ISO 31000:2018E) 

Kletz, T. A. (2005). Looking beyond ALARP - Overcoming its limitations. Institution of 

Chemical Engineers Symposium Series, (150), 69–76. https://doi.org/10.1205/psep.04227 

Kotsiantis, S. B. (2007). Supervised machine learning: a review of classification techniques. 

https://doi.org/10.1115/1.1559160 

Landell, H. (2016). The Risk Matrix as a tool for risk analysis. 

Leistad, G. H., & Bradley, A. R. (2009). Is the focus too low on issues that have a potential to 

lead to a major incident? Society of Petroleum Engineers - Offshore Europe Oil and Gas 

Conference and Exhibition 2009, OE 2009, 1, 467–472. https://doi.org/10.2118/123861-ms 

Markowski, A. S., & Mannan, M. S. (2008). Fuzzy risk matrix. Journal of Hazardous Materials, 

159(1), 152–157. https://doi.org/10.1016/j.jhazmat.2008.03.055 

Mkpat, E., Reniers, G., & Cozzani, V. (2018). Process safety education: A literature review. 

Journal of Loss Prevention in the Process Industries, 54(October 2017), 18–27. 

https://doi.org/10.1016/j.jlp.2018.02.003 

Muhlbauer, W. K. (2004). Pipeline Risk Management Manual - Ideas, Techniques, and 

Resources (Third Edit). 200 Wheeler Road, Burlington, MA, USA: Gulf Professional 

Publishing (an imprint of Elsevier). 

Ness, A. (2015). Lessons learned from recent process safety incidents. Chemical Engineering 

Progress, 111(3), 23–29. 

Occupational Health and Safety Act [OHS]. , Pub. L. No. Chapter O-2.1 (2018). 

Occupational Safety and Health Administration [OSHA]. , U.S. Department of Labor § (2000). 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Duchesnay, 

E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning 

Research, 12, 2825–2830. Retrieved from https://scikit-learn.org/stable/user_guide.html 

Raschka, S., & Mirjalili, V. (2017). Python Machine Learning (2nd Editio). Birmingham, UK: 

Packt Publishing. 



30 

 

Rowe, S., & Francois, J. M. (2016). Process safety data – The cornerstone of PSM and often it’s 

undermining. Journal of Loss Prevention in the Process Industries, 43, 736–740. 

https://doi.org/10.1016/j.jlp.2016.06.002 

Swuste, P., Theunissen, J., Schmitz, P., Reniers, G., & Blokland, P. (2016). Process safety 

indicators, a review of literature. Journal of Loss Prevention in the Process Industries, 40, 

162–173. https://doi.org/10.1016/j.jlp.2015.12.020 

Taleb, N. N. (2007). The black swan: the impact of the highly improbable. USA: Random House. 

Thomas, P., Bratvold, R. B., & Bickel, J. E. (2013). The Risk of Using Risk Matrices Decision 

Analysis View project A Generalized Sampling Approach for Multilinear Utility Functions 

Given Partial Preference Information View project The Risk of Using Risk Matrices. Article 

in SPE Economics and Management, (April 2015). https://doi.org/10.2118/166269-MS 

 

  



31 

 

3. USING MACHINE LEARNING AND KEYWORD ANALYSIS TO ANALYZE 

INCIDENTS AND REDUCE RISK IN OIL SANDS OPERATIONS 
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3.1. INTRODUCTION 

Risk, as defined by the International Organization for Standardization [ISO] (2018), is uncertainty 

of all types and sizes, both internal and external, which can affect an organization as it attempts to 

achieve its goals. According to the Project Management Institute [PMI] (2004), risk management 

processes need to be tailored specifically to each project. As such, organizations work to manage 

risk by identifying, analyzing, and evaluating risk, and then taking appropriate courses of action – 

planning responses, implementing changes, and continual monitoring. Generally, the process of 

identifying hazards and estimating risk is considered qualitative risk management and should be 

conducted first to identify and prioritize risks requiring detailed quantitative analysis. 

 

An effective method of identifying hazards and estimating risk is to analyze historical data 

(Patriarca et al., 2018). In the oil and gas industry, such historical data can be found in incident 

reports (Nordlöf, 2015; Laberge et al., 2014). Incident reports contain many instances of past 

shortcomings or failures, which can be used as learning experiences to prevent similar incidents 

from reoccurring. Companies can use this knowledge to train their workers, and workers can study 

specific cases to identify hazards and to learn appropriate responses and countermeasures.  

 

In Alberta, incident reports are required to contain the location of the incident, time and date, name 

of the employer involved, contact information of the site contact, and a general description of the 

incident (Government of Alberta, 2019). To build rapport, some companies add further details to 

incident investigation. Some measures might include root cause analysis, hazard and operability 

(HAZOP) studies, and basic risk ranking procedures such as risk matrices (Nordlöf, 2015; Pasquini 

et al., 2011). The risk matrix is a tool used to provide an estimation of the frequency and possible 
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consequences of the incident (on two axes), identify the relative severity of the risk (mapping zones 

of low, medium, high, etc.), and to determine what course of action must be taken to prevent or 

mitigate future incidents of that type (Albery et al., 2016). 

 

A risk matrix is easy to implement, maintain, understand, and explain – due to these benefits, the 

tool is commonly used by companies to assess risk (Thomas et al., 2014); however, there are many 

drawbacks to using a risk matrix for risk analysis, including human bias and inconsistencies when 

reporting (Goerlandt and Reniers, 2016; Duijm, 2015). To strengthen this existing system, we 

applied a supervised machine learning approach to accurately analyze and evaluate risk in incident 

reports in previous research. Artificial Intelligence and Machine Learning (AI/ML) hold great 

promise for enhancing process safety management by visualizing data and recognizing patterns 

across big datasets in real-time, determining the most effective leading indicators, especially how 

they may relate to low-frequency high-consequence events, and prioritizing improvements to 

safety processes. AI/ML have already been applied to established process safety tools like bowties 

(Khakzah, Khan & Amyotte, 2013), process hazard assessments (PHAs) and layers of protection 

analysis (LOPAs) (Xu et al., 2018), and hazard and operability studies (HAZOPs) (Zhao et al., 

2009). 

 

Yet, for many reasons, implementing AI/ML into companies’ legacy process safety management 

systems has been slow. These databases create an overwhelming amount of (often dirty) data that 

are rarely analyzed in detail and effectively leveraged. There are several reasons for this. First, 

operators tend to only analyze incidents with severe consequences to prevent recurrence, while 

minor incidents are only stored without any further evaluation. Yet, high-frequency and low-
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consequence incidents often display leading indicators that are overlooked but would be useful to 

predict high-consequence incidents (Aven, 2011; Steen & Aven, 2011). Second, while detailed 

data is used to create HAZOPs, PHAs, LOPAs, and bowties, there are issues with the data itself. 

This data is often ‘dirty’ or incomplete, fragmented across data sources, proprietary with little 

incentive for sharing with others, or has uncertain or contested ownership (Dong et al., 2017; 

Ransbotham et al., 2017). Third, leading operators have invested in developing internal AI/ML 

skills through training or hiring, but many operators outsource their AI/ML services. Yet, operators 

are surprised by AI/ML researchers’ and suppliers’ requirement for large datasets to allow their 

algorithms to learn, which results in operators perceiving AI/ML as a high-effort, low-payoff 

venture (Ransbotham et al., 2017).  

 

To address these barriers, researchers and consultants often aggregate data across operators to 

create more complete, ‘clean’, and larger datasets to enhance algorithm training and ‘detectability’ 

of leading indicators (Kurian et al., 2020). Yet, cross-organizational aggregation and collaboration 

introduces other barriers such as: differences in representativeness, context, and content that makes 

the data incommensurate (Zuboff, 2015; Kellogg, Valentine & Christin, 2020) and model 

overfitting that can lead to inaccurate predictions when the model is used on different or more 

general data (Bengio, Goodfellow & Courville, 2017). 

 

We have recognized and begun to address these barriers in our previous research; a total of 15,000 

incidents were manually classified: descriptive labels, actual and potential risk scores, and 

consequence labels (environment, finance, health/safety, and reputation) were applied to each 

incident. The incident reports were then divided into training and test data, and the machine 
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learning algorithm used the training data to predict labels for the test data. The result of this 

research was a machine learning algorithm that could apply labels to incidents with 75-90% 

accuracy (depending on the label), and the outputs were used to develop risk matrices and to 

analyze trends in incidents.   

 

The machine learning used in previous research was an attempt to remove human bias, and this 

method allowed for consistent reporting of incidents. However, many different variables 

(mentioned earlier) had to be manually analyzed and it was difficult to improve the accuracy 

beyond a certain level. Some incident reports lacked the detail required for classification and it 

was impossible to completely remove bias as using a supervised learning model implies manual 

training.  

 

We continue to address these barriers with this research, by using machine learning to attach a 

basic label to describe an incident report. Furthermore, this research applies additional keyword 

analysis to increase the accuracy of machine learning classification. This research provides 

significant changes to the current system of incident reporting. By having the user select options 

from a standardized list that allow for detailed analysis of risk, the user is forced to accurately 

describe the risk involved in an incident. Additionally, due to the increased efficiency in reporting 

incidents, it becomes possible to provide practical outputs beyond typical risk evaluation: 

prevention and mitigation strategies, such as leading indicators to increase the awareness of 

hazards in the workplace. This information can be used to predict incidents and to train workers to 

prevent/mitigate risk from incidents that might occur in the future.  
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3.2. METHODOLOGY 

The objectives of this research are to: 

• strengthen the current incident reporting system by creating a customized library using 

artificial intelligence, machine learning, and statistics; 

• support the design of more sensitive risk prevention and mitigation strategies, as well as 

leading factors; and 

• enhance organizations learning from incidents and create opportunities to reduce losses.  

 

Figure 3-1 shows an overview of the methodology used in this research. The process of reporting 

incidents is expanded to a three-step procedure with an intermediate step for user input. For the 

first step, a company is required to provide data pertaining to past incidents and safety 

requirements. The second step involves designing a customized library for analyzing future 

incidents that are reported. The final step provides a detailed analysis and suggestions that can be 

used to prevent incidents from occurring or to minimize the damage caused by such events.  
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Figure 3-1. Overview of methodology 

 

Figure 3-2 provides a more detailed description of the steps involved in designing the customized 

library and delivering outputs (with the corresponding steps coloured similarly). For this research, 

several collaborating companies provided access to their incident databases containing incident 

reports from 2013 to 2017, inclusive. The methods described in this research are applied to the 

data supplied from one of the participating companies including a total of approximately 15,000 

incident reports. A customized library is generated from this data and output results are 

programmed given the input data.  
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Figure 3-2. Detailed description of methodology 

 

3.2.1. Input Data 

To design a customized library, there was a requirement for input data from the companies 

participating in the research. This data included an incident database containing incidents for the 

• Asset management system

• Safety procedures and guidelines

• Incident database

1.1 Input data

• Assign identifying labels to incident reports (survey subject matter experts to determine labels)

2.1. Manually classify data

• Convert text (incident reports) to numerical vectors

• Separate data into training and test data

2.2. Prepare data for machine learning classification

• Adaboost

• Decision tree

• K-nearest neighbor

• Logistic regression

• Multi-layer perceptron

• Multinomial Naive Bayes

• Random forest

• SVM (including Linear SVC)

2.3. Use classifiers from scikit-learn library to classify data

• Confusion matrix

• Precision, recall, F1-score, support

• Accuracy

2.4. Calculate metrics for each classifier

• Add identifying labels from machine learning classification

• Lemmatize incident database

• Identify and include the most commonly used words

2.5. Apply natural language processing 

• Create statements that can be used to accurately describe risks

• Match identifying labels (from machine learning classification) and most commonly used words (from keyword analysis) 
to statements used to analyze risk

2.6. Generate customized library

• User inputs an incident report and selects statements that match the incident being reported

3.1 User Input

• Risk matrix

• Trend analysis

4.1. Analyze data / outputs

• Prevention and mitigation strategies

• Leading indicators

4.2. Provide recommendations
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past five years, standard operating practices, safety procedures, and guidelines to develop proper 

responses to incidents and hazards, and asset management systems to better understand the 

different systems and equipment involved in incident reporting. Input data was stored securely and 

used to design a customized library of keywords for a company.  

 

15,000 incident reports were selected from the provided incident reports, analyzed, and used to 

generate output results. These incident reports were used to train a machine learning algorithm to 

predict class labels for new incident reports that will be inputted. By using these class labels in 

conjunction with keyword analysis, it was possible to develop outputs for any incident report that 

shares similarities to other incidents in the incident database.  

 

3.2.2. Apply Machine Learning and Keyword Analysis 

Applying machine learning and keyword analysis to incidents reports is a multi-step process. For 

this research, a supervised machine learning algorithm was used to classify incident reports. 

Depending on the data being analyzed and the selected classifier, the total computational time of 

supervised machine learning algorithms can be very small compared to other approaches (Singh 

et al., 2017). Supervised machine learning operates by using predictor features to forecast class 

labels – it aims to categorize data by utilizing prior information (Kotsiantis, 2007). The first step 

to implementing supervised machine learning towards the classification of incident reports is to 

manually classify incident reports by labelling them with consistent identifiers (key descriptors, 

immediate and latent causes, contributing factors). By interviewing university professors and 

industry experts from participating companies, the following labels were selected to identify 
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incidents: communication, health/safety, leak/spill, miscellaneous, operation, uncategorized, and 

vehicle. The label of “uncategorized” was assigned to incident reports that could not be classified. 

 

Once the incident reports were manually classified, the data in the incident database was prepared 

for machine learning classification. The TfidfVectorizer feature was used from Python’s scikit-

learn library to transform each incident report into a numerical vector, and thus, the incident 

database is transformed into a matrix (Imani et al., 2018). Alternatively, the incident can be viewed 

as a dictionary with the individual incident reports being documents and the words found in the 

incident reports being terms. The occurrence of each term is counted, and weights are applied by 

comparing how often a term is found in a document versus the entire dictionary. The result is the 

transformation of text to a numerical vector. These manually classified incidents were then 

separated into training and test data sets, containing 70% and 30% of the data, respectively. The 

numerical vectors of the incident reports in the training set were expressed graphically, and a 

classifier was used to generate decision boundaries used to classify data. The numerical vectors 

representing the incident reports are considered sparse matrices – matrices in which most of the 

numbers are 0. The reason for this sparsity is because of the way that the dictionary was built using 

the TfidfVectorizer – every word (term) found in the incident database is added to the dictionary 

sequentially. For every word (term) found in an incident report (document), a count is applied to 

the position of the word in the incident database (dictionary). Subsequently, the terms in the 

dictionary that are not found in the document are assigned values of 0. Given the massive number 

of terms compiled in the dictionary, the vectors used to represent each incident report, and thus, 

the matrix used to represent the incident database, will be sparse. A number of classifiers from the 

scikit-learn library that are compatible with sparse matrices were used to classify the incident 
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reports: Adaboost classifier, decision tree classifier, k-nearest neighbors, logistic regression, multi-

layer perceptron classifier, multinomial Naïve Bayes classifier, random forest classifier, and 

support vector machine classifier (including linear support vector classifier). The supervised 

machine learning algorithm then attempted to identify features in the incident report that could be 

used to connect it to a given label, and metrics were calculated for different classifiers to identify 

the most suitable classifier for the data.   

 

Previous research discovered that the most accurate classifier for categorizing incident reports 

from Alberta’s oil and gas industry was the Linear Support Vector Classifier (Linear SVC), 

boasting accuracies close to 90% when predicting labels (Kurian et al., 2020). The metrics used 

were the confusion matrix, classification report, and accuracy score (Garreta et al., 2017). The 

confusion matrix was used to demonstrate how a classifier makes predictions for labels and 

requires the true and predicted classifications of the model. In a confusion matrix, the true label 

can be found on the y-axis and the predicted label on the x-axis. The classification report delivers 

precision, recall, F1-score, and support with inputs of the actual and predicted labels. These metrics 

can be described as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

2
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Values for precision, recall, and F1-score will be between 0 and 1, where values closer to 1 

represent a more robust model. Support is the count of true occurrences for each label. Finally, the 

accuracy score is the percentage of predicted labels that the model correctly identifies. 

 

After determining accuracies from the machine learning classification, Natural Language 

Processing (NLP) was used to analyze keywords. NLP allows computers to interact with humans 

by processing and analyzing natural language data (Srinivasa-Desikan, 2018). Aside from the 

scikit-learn library which was used to convert incident reports into numerical vectors, there are 

two Python libraries that are commonly used for NLP: spaCy and Natural Language Toolkit 

(NLTK). The primary difference between these two libraries is that spaCy adopts an object-

oriented approach while NLTK is used as a string processing library. Consequently, spaCy is more 

efficient when working with words, while NLTK performs better than spaCy when analyzing 

sentences (Malhotra, 2018). As such, spaCy was selected for keyword analysis in this research. 

SpaCy has many features that can be used to pre-process text data – it comes with tokenization 

and lemmatization features which were used to transform the words in the incident database to 

their canonical form (Srinivasa-Desikan, 2018). For instance, the words “run,” “running,” and 

“ran” would all be reverted to “run.”  

 

Keyword analysis was completed by lemmatizing all the words found in the incident database. A 

counter was then used to identify and tally the lemmatized words, and these words were then 

arranged from most frequent to least frequent. The keywords that could be used to classify 

incidents were then selected to include in the customized library (stop words, punctuation, names 

of individuals, etc. were removed).  
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The customized library was created with two variables: the identifying labels used to train the 

machine learning algorithm and the keywords identified using the spaCy library. The labels and 

keywords stored in the customized library were then matched to statements that could be used to 

analyze and evaluate risk. These statements were used to encompass varying levels of risk and 

restrict a user to select an option that could be used to accurately analyze the risk in an incident. 

The purpose of using both machine learning and a “manual” keyword approach was to increase 

accuracy and ensure that the generated statements could accurately describe any incident. To some 

extent, the keyword analysis was also used as a buffer to compensate for misclassification by the 

machine learning algorithm.  

 

3.2.3. User Input 

The labels and keywords found in the customized library were used to generate a list of statements. 

These statements were rule-based outputs developed in accordance to the inputted standard 

operating procedures, safety guidelines, and asset management systems provided by the company. 

When a user enters an incident into the system, there is a prompt to select statements applicable to 

the incident being reported. A list of statements is generated from which the user can select those 

relevant to the incident being reported. Parameters can be assigned to generate a specific number 

of statements and to restrict the maximum number of statements that can be selected. There was 

also an attempt to attach priority to the statements most likely to match the incident – the statements 

generated by the supervised machine learning algorithm appear first followed by the statements 

selected by the keyword analysis. In practice, the statements selected by the keyword analysis 

should have a wider range of selection and should include the statements selected by the machine 

learning algorithm. This is because machine learning predicts a single label to match the incident 
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whereas the keyword analysis identifies every word that is common in the incident report and the 

customized library. In the case where both the machine learning algorithm and keyword analysis 

yields the same results, the duplicates are removed, and the statements selected by the machine 

learning algorithm retain priority in the listing. Finally, there is also a feedback loop that is 

designed in the user input stage. When a user selects statements to match the incident report, this 

information is recorded and used to improve machine learning accuracy for future incident report 

classification. 

 

3.2.4. Output Results 

When an incident report is inputted, four outputs are delivered (based on statements selected by 

the user): a risk matrix for the incident, trends of similar incidents, prevention and mitigation 

strategies to reduce the risk of the incident in the future, and leading indicators that can be 

identified by workers prior to the recurrence of a similar event.  

 

A risk matrix is generated by calculating frequency and consequence (Ni et al., 2010). Frequency 

is a prediction of how likely it is for an incident to occur within a given time period. With access 

to a company’s incident database, the actual count of incidents were used to calculate frequency 

as opposed to predicting the frequency of an incident. In Alberta’s oil and gas industry, 

consequences can be categorized into four types: impact to worker health/safety, environmental 

damage, financial loss, and harm to a company’s reputation (Muhlbauer, 2004). Based on the 

statement selected by a user, each incident is categorized into one or more of these consequence 

categories.  
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Another practical output that was delivered was trend reports. Trends were calculated by analyzing 

the statements selected by the user and the date of the incident. The total count of the selected 

statements was plotted by month to show incident trends and identify where and when 

improvements are needed and where safety measures are excelling. 

 

Based on the inputted standard operating practices, safety, and asset management system, specific 

prevention and mitigation strategies were assigned to each of the statements that were selected. 

Additional statements were also programmed for specific groups of statements that were 

commonly selected together. This same process was applied to identify leading indicators for 

specific incidents. This type of output is based entirely on the input of an incident report, and 

provides actionable information to users as they enter incident reports and to companies as they 

seek to reduce risk in their work sites.  

 

3.2.5 Summary of Methodology 

To summarize the methodology, the first step is to input data, the second step is to process data, 

the third step is to input new incident reports, and the fourth step is to provide outputs. There is a 

feedback loop between steps 1 and 3 where new incident reports that are inputted will be analyzed 

and then added to the existing database.  

 

Supervised machine learning was implemented in previous research to complete basic risk analysis 

and evaluation of incident reports in the form of risk matrix outputs, and this research was 

integrated into the current methods of analysis. For example, the trend reports currently generated 

are based on the outputs of machine learning from past research; however, the system is designed 

to create updated trend reports as new incident reports are inputted. As such, current analysis is 
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based on the incident database that has already been provided by companies. In the future, as 

incident reports are added using the proposed methodology, outputs will become more specific to 

the newly inputted incident data as accuracy continues to improve. 

 

3.3. RESULTS AND DISCUSSION 

Identifying labels were used to manually classify 15,000 incident reports: communication, 

health/safety, leak/spill, miscellaneous, operation, uncategorized, and vehicle. As suggested by the 

previous study (Kurian et al., 2020), supervised machine learning was used with the Linear SVC 

classifier to predict labels for incidents since it provides the highest accuracy. Table 3-1 displays 

the confusion matrix for the Linear SVC classifier. The actual (manually classified) labels are 

shown on the y-axis while the predicted (machine learning classified) labels are shown on the x-

axis. The main diagonal of this matrix demonstrates the number of true labels that the classifier 

accurately predicted. 

 

Table 3-1. Confusion matrix for Linear SVC when predicting the identifying label. 

  Predicted 

  Comm. Health/S Leak/Spill Misc. Operation Uncat. Vehicle 

A
ct

u
a
l 

Comm. 62 2 0 1 9 0 0 

Health/S 0 709 4 0 110 0 20 

Leak/Spill 0 2 241 0 48 0 4 

Misc. 0 1 1 43 10 1 0 

Oper. 2 68 14 5 2571 4 51 

Uncat. 0 16 0 4 38 43 2 
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Vehicle 0 31 7 2 91 1 547 

 

Table 3-2 is the classification report for the Linear SVC when predicting the identifying labels for 

incident reports. From here, it can be seen how accurately each label is predicted by the supervised 

machine learning algorithm. The overall accuracy of the Linear SVC when predicting the 

identifying label is ~88.48%. F1-scores (average of precision and recall) closer to 1 signify better 

model accuracy while support is the number of true occurrences of each label.  A low F1-score 

and support means the model requires more exposure to predictor features to become more 

accurate.  

 

Table 3-2. Classification report for the Linear SVC when predicting the identifying label. 

Identifying Label Precision Recall F1-score Support 

Comm. 0.97 0.84 0.90 74 

Health/S 0.86 0.84 0.85 843 

Leak/Spill 0.90 0.82 0.86 295 

Misc. 0.78 0.77 0.77 56 

Oper. 0.89 0.95 0.92 2715 

Uncat. 0.88 0.42 0.57 103 

Vehicle 0.88 0.81 0.84 679 

 

Prior research applied the supervised machine learning to the incident database classify incident 

reports. The supervised machine learning is now used to predict labels for incident reports that will 

be inputted in the future. Table 3-3 matches statements that can be used to accurately describe 
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incidents to the identifying labels used in supervised machine learning classification. When the 

user inputs an incident report, the machine learning algorithm will predict a class label for the 

incident report. The statements found corresponding to the predicted label will then be made 

available for user selection. Note that some labels have only minor differences in syntax (e.g. 6 

types of statements pertaining to equipment describing different types of risk and severity of 

consequences). These labels can play a strong role when determining outputs; further, selecting a 

specific statement from this list can help to distinguish a minor incident from a major incident.  

 

Table 3-3. Statements generated for user selection based on labels selected by supervised 

machine learning algorithm. 

Statements Identifying Label 

Equipment (Damage - cost <$1m) Operation 

Equipment (Failure - cost <$1m) Operation 

Equipment (General - cost <$1m) Operation 

Equipment (Damage - cost >$1m) Operation 

Equipment (Failure - cost >$1m) Operation 

Equipment (General - cost >$1m) Operation 

Fatality Health/Safety, Vehicle 

Fire (Damage) Vehicle 

Fire (Injury) Health/Safety 

Incorrect Operations Communication, Operation 

Injury Health/Safety, Vehicle 

Laceration/abrasion Health/Safety 
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Leak/spill Health/Safety, Leak/Spill 

Minor Injury Health/Safety, Vehicle 

Miscellaneous Miscellaneous 

Miscommunication Communication, Operation 

Missing Equipment Miscellaneous 

Near Miss Health/Safety, Vehicle 

No Treatment Injury Health/Safety, Vehicle 

Property Damage Miscellaneous 

Quality Assurance Communication 

Severe Injury Health/Safety 

Slip/trip/fall Health/Safety, Weather 

Snow/ice Weather 

Sprain/strain Health/Safety 

Vehicle (heavy equipment) Vehicle 

Vehicle (light vehicle) Vehicle 

Vehicle collision (no injury) Vehicle 

Vehicle collision (with injury) Vehicle 

Weather Weather 

Wildlife Miscellaneous 

 

Table 3-4 shows how statements are matched to keywords. It is important to remember that the 

spaCy library lemmatizes the words in the incident reports. This means that keywords can be 

inputted in their canonical form without having to account for variations of a word (i.e. verb tense, 
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singular vs plural, etc.). Here, the 15,000 incident reports were analyzed, and words found in the 

incident reports that could be used to classify incidents were matched with corresponding 

statements. One point to note is that  abbreviations are also considered as keywords – the spaCy 

library ignores words that it does not recognize when lemmatizing the incident reports. Some 

common abbreviations found in the incident reports are: HT (haul truck), MOP (maximum 

allowable pressure), SOL (safe operating limit), QA (quality assurance), ROW (right of way), and 

STF (slip/trip/fall).  

 

To summarize, both the labels used in supervised machine learning and the keywords found in the 

incident report are assigned to statements. When an incident report is inputted into the system, the 

machine learning algorithm predicts a label to describe the incident and the incident report is 

lemmatized for keyword analysis. A list of statements is then generated based on the predicted 

label and matching keywords. The user is required to select statements that accurately describe the 

incident. 

 

Table 3-4. Statements generated for user selection based on keywords found in incident reports 

Statements Keywords 

Equipment (Damage - cost <$1m) damage, defective, equipment, exchanger, filter, hose, 

maintenance, not working, pump, seal, sump, valve, 

working 

Equipment (Failure - cost <$1m) defective, equipment, exchanger, failure, filter, hose, 

maintenance, not working, pump, seal, sump, valve, 

working 
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Equipment (General - cost <$1m) defective, design, equipment, exchanger, filter, hose, 

maintenance, missing, not working, pump, seal, SOL, 

sump, trip, valve, venting, working 

Equipment (Damage - cost >$1m) damage, defective, equipment, exchanger, filter, hose, 

maintenance, not working, pump, seal, sump, valve, 

working 

Equipment (Failure - cost >$1m) defective, equipment, exchanger, failure, filter, hose, 

maintenance, not working, pump, seal, sump, valve, 

working 

Equipment (General - cost >$1m) defective, design, equipment, exchanger, filter, hose, 

maintenance, missing, not working, pump, seal, SOL, 

sump, trip, valve, venting, working 

Fatality fatality, fire, h2s, vehicle 

Fire (Damage) alarm, burn, burnt, fire, flame 

Fire (Injury) alarm, burn, burnt, fire, flame 

Incorrect Operations adequate, allowable, engineering, exceed, exceeded, 

improper, incorrect, incorrect, operations, knowledge, less, 

management, missing, missing, sign, missing, tag, MOP, 

performance, skill, SOL, unacceptable, unauthorized, 

verbal, wrong 

Injury abrasion, fall, finger, fire, h2s, illness, injure, injury, 

laceration, rest, slip, sprain, stf, strain, trip, vehicle 

Laceration/abrasion abrasion, bruise, cut, finger, laceration, paper, cut, papercut 
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Leak/spill contaminate, drain, overflow, spill, leak, smell, seal 

Major leak/spill contaminate, drain, overflow, spill, leak, smell, seal 

Minor Injury abrasion, aid, fall, finger, fire, first, illness, injure, injury, 

laceration, slip, stf, treatment, trip, vehicle 

Miscellaneous missing, missing, equipment, theft 

Miscommunication communicate, communication, incorrect, management, 

miscommunicate, miscommunication, missing, missing, 

tags, operation, order, unacceptable, vendor, wrong, 

performance, less, adequate, verbal, skill 

Missing Equipment missing 

Near Miss miss, near, near, miss 

No Treatment Injury no, treatment, stf, treatment 

Property Damage drain, fire, leak, odor, odour, smell 

Quality Assurance assurance, document, documentation, incorrect, order, qa, 

quality, vendor, wrong 

Severe Injury fall, fire, h2s, illness, slip, sprain, stf, strain, trip, vehicle, 

rest, injury, injure, finger, disability 

Slip/trip/fall fall, fell, ice, injure, injury, oil, slip, snow, stf, trip, water 

Snow/ice ice, nature, poor, weather, snow, weather 

Sprain/strain back, finger, ice, injure, injury, lift, oil, slip, snow, 

treatment, water 

Vehicle (heavy equipment) accident, bulldozer, collision, dozer, haul, truck, ht, loader, 

loader, ROW, vehicle, zoom, boom, zoomboom 
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Vehicle (light vehicle) accident, bus, car, collision, light, vehicle, lv, ROW, truck, 

vehicle 

Vehicle collision (no injury) accident, bulldozer, bus, collision, crane, dozer, excavator, 

fork, lift, forklift, haul, truck, ht, loader, truck, vehicle, 

zoom, boom, zoomboom 

Vehicle collision (with injury) accident, bulldozer, bus, collision, crane, dozer, excavator, 

fork, lift, forklift, haul, truck, ht, loader, truck, vehicle, 

zoom, boom, zoomboom 

Weather hail, ice, nature, poor, weather, rain, sleet, snow, weather, 

wind 

Wildlife animal, bird, fish, fox, wildlife, wolf 

 

The statements are also matched to practical outputs that can be used by industry. Table 3-5 

demonstrates how statements are categorized into the consequences categories used to generate a 

risk matrix. Several of these statements can fall into multiple categories.  

 

Table 3-5. Statements categorized by consequence type. 

Statement Consequence 

Leak/spill, Major leak/spill, Wildlife Environment 

Equipment (Damage - cost <$1m), Equipment (Failure - cost <$1m), 

Equipment (General - cost <$1m), Equipment (Damage - cost >$1m), 

Equipment (Failure - cost >$1m), Equipment (General - cost >$1m), Fire 

(Damage), Incorrect Operations, Leak/spill, Major leak/spill, Miscellaneous, 

Finance 
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Miscommunication, Missing Equipment, Property Damage, Quality Assurance, 

Vehicle (heavy equipment), Vehicle (light vehicle), Vehicle collision (no 

injury), Weather, Wildlife 

Fatality, Fire (Injury), Injury, Laceration/abrasion, Minor Injury, Near Miss, No 

Treatment Injury, Severe Injury, Slip/trip/fall, Snow/ice, Sprain/strain, Vehicle 

collision (with injury), Weather 

Health/Safety 

Fatality, Severe Injury, Wildlife Reputation 

 

Our prior research generated a consequence scale to assign a numerical value denoting the severity 

of the risk, found in Figure 3-3 (Kurian et al., 2020). This consequence scale was created using the 

average values of consequences taken from the risk matrices of several companies collaborating 

with this research.  

 

 

Figure 3-3. Consequence scale used to analyze the severity of incidents. 
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Table 3-6 uses the consequence scale (from Figure 3-3) to assign a severity rating to each statement 

and frequency scores were determined by using the tally of keywords in the incident database. 

Using the consequence and frequency scores, a risk score is generated. If multiple statements are 

selected, every category pertaining to the selected statements are represented on the risk matrix 

with their corresponding risk scores. If multiple selected statements have different consequence or 

frequency ratings within the same risk category, the greatest consequence value is selected to be 

represented on the risk matrix (along with its corresponding frequency).  
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Table 3-6. Consequence score assigned to statement using consequence scale in Figure 3. 

 Consequence Frequency 

Statement Environment Finance Health/Safety Reputation Environment Finance Healthy/Safety Reputation 

Equipment (Damage - cost <$1m) 
 

5 
  

 5   

Equipment (Failure - cost <$1m) 
 

5 
  

 5   

Equipment (General - cost <$1m) 
 

5 
  

 5   

Equipment (Damage - cost >$1m) 
 

4 
  

 3   

Equipment (Failure - cost >$1m) 
 

3 
  

 3   

Equipment (General - cost >$1m) 
 

3 
  

 3   

Fatality 
  

1 1   1 1 

Fire (Damage) 
 

4 
  

 3   

Fire (Injury) 
  

3 
 

  3  

Incorrect Operations 
 

5 
  

 5   

Injury 
  

3 
 

  2  

Laceration/abrasion 
  

4 
 

  4  

Leak/spill 4 4 
  

3 3   

Major leak/spill 2 2 
 

2 1 1  1 

Minor Injury 
  

4 
 

  5  

Miscellaneous 
 

5 
  

 2   

Miscommunication 
 

5 
  

 3   
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Missing Equipment 
 

5 
  

 2   

Near Miss 
  

5 
 

  2  

No Treatment Injury 
  

5 
 

  2  

Property Damage 
 

5 
  

 1   

Quality Assurance 
 

5 
  

 3   

Severe Injury 
  

2 3   1 1 

Slip/trip/fall 
  

5 
 

  5  

Snow/ice 
 

5 5 
 

 5 5  

Sprain/strain 
  

3 
 

  3  

Vehicle (heavy equipment) 
 

4 
  

 4   

Vehicle (light vehicle) 
 

5 
  

 4   

Vehicle collision (no injury) 
 

5 
  

 5   

Vehicle collision (with injury) 
 

4 3 
 

 2 2  

Weather 
 

5 5 
 

 5 5  

Wildlife 4 4 
 

3 1 1  1 
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By counting the selected statements, and taking into account the date of the incident, it is also 

possible to plot trends of specific incident types by month. It is also possible to design prevention 

and mitigation strategies to match statements and combinations of statements. A similar process 

can also be used to identify leading indicators. These suggestions can be designed using a 

company’s safety guidelines and procedures and asset management systems.  

 

To illustrate our methodology, we present case studies with different consequences. We have 

received inputs from companies and generated the customized library. We assume that a user is 

inputting new incident reports, make assumptions about the statements selected by the user, and 

review the outputs created using the proposed methodology to demonstrate its practicality. 

 

3.3.1 Case Study 1 

The following sample incident taken from a company database is presented to demonstrate how 

this methodology is used to produce results: “Hose-Traceability. Heat number on the elbows do 

not match with the heat number on the documents. Followed up with vendor to get appropriate 

heat numbers as they showed something different.” 

 

Given this incident report, the user will have to select from the following statements: Equipment 

(Damage - Cost <$1M), Equipment (Failure - Cost <$1M), Equipment (General - Cost <$1M), 

Equipment (Damage - Cost >$1M), Equipment (Failure - Cost >$1M), Equipment (General - Cost 

>$1M), Incorrect Operations, Miscommunication, Quality Assurance.  
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It was assumed that the user selects: Miscommunication, Quality Assurance, and Equipment 

(General – Cost <$1M).  

 

With these statements, it was determined that the consequence is a financial risk with a 

consequence score of 5. By looking at the total number of occurrences of similar incidents, 

frequency was assigned a score of 3. This can be seen in the risk matrix found in Figure 3-4. The 

sample incident provided is a low consequence incident that occurs somewhat frequently. In most 

cases, missing quality assurance documents are simply inconvenient and may result in minor 

financial losses. Companies might decide to implement prevention methods or to encourage 

workers to be more methodical when filing such documents.  

 

Figure 3-4. Risk matrix for Case Study 1 
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With respect to the formatting of the risk matrix, the axis labels (from least to greatest, 1-5 

frequency scale and 5-1 consequence scale) was determined based on industry practice. The risk 

matrix is also given a gradient effect to show low impact risks as green and high impact risks as 

red.  

 

A trend report, shown in Figure 3-5, is generated by creating a histogram of similar incidents by 

month. The algorithm counts the number of occurrences of incidents with the same statements 

selected and displays the trends of these incidents for the past year. In this example, it can be 

observed that it is common for incidents of this type to occur during the middle of the year. It 

might also be worth investigating why such incidents occurred frequently in December, but were 

quite rare in January.  

 

Figure 3-5. Example of trend analysis for Case Study 1 indicating number of incidents per month. 
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Based on the selected statements, it is also possible to design prevention and mitigation strategies. 

These suggestions can be modified in the future and tailored to match the safety guidelines and 

procedures of different companies. For this incident, the program has been designed to provide the 

following prevention and mitigation strategies: (1) verify that instructions are clearly received, (2) 

clarify any doubts with the individual(s) assigning the task, (3) ensure that the task at hand is 

logical without blindly completing the assigned work, (4) verify part number before and after the 

order, and (5) ensure that all documents are properly handled and stored. The leading indicators 

are identified as: (1) poor filing system and (2) inadequate training.  

 

3.3.2. Case Study 2 

Next, we present a different incident with multiple consequences to demonstrate the versatility of 

the methodology: “Icy road conditions. Employee truck and 3rd party vehicle made driver side 

contact. Employee complained about minor whiplash.”  

 

This incident prompts the user to select from the following statements: Fatality, Fire (Damage), 

Fire (Injury), Injury, Minor Injury, Near Miss, No Treatment Injury, Severe Injury, Vehicle (Heavy 

Equipment), Vehicle (Light Vehicle), Vehicle Collision (No Injury), Vehicle Collision (With 

Injury).  

 

Here, it was assumed that the user selects: Injury, Vehicle (Light Vehicle), and Vehicle Collision 

(With Injury).  
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Given these selections, it was determined that the consequence is a Health/Safety risk with a 

consequence score of 3 and a Financial risk with a consequence score of 5. By looking at the total 

number of occurrences of similar incidents, the frequency was assigned a score of 2 – the reports 

of vehicle collisions with injury are much fewer in number than those of vehicle collisions with 

no injury. The risk matrix for this incident can be seen in Figure 3-6. The incident can be 

considered a low-to-medium risk where the health and safety component of the incident has more 

ramifications than the financial loss. Also note that for incidents with multiple consequences, the 

risk matrix has been designed to allow symbols to overlap. 

 

Figure 3-6. Risk matrix for Case Study 2. 
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Figure 3-7 shows the trends for  vehicular incidents with injuries. As expected, vehicular incidents 

involving collisions occur more frequently in winter. It might be beneficial for the company to 

identify factors pertaining to the cause of similar incidents, such as the geographic location, time 

of day, existing traffic signs, driving conditions, etc., in order to determine methods for prevention 

and mitigation. 

 

Figure 3-7. Example of trend analysis for Case Study 2 indicating number of incidents per month. 

 

Based on the statements selected, the algorithm has been designed to provide the following 

prevention and mitigation strategies: (1) drive at a speed suitable to road conditions, (2) ensure 

that vehicle is properly equipped for winter weather (e.g. winter tires, first aid kit, etc.), (3) pay 

attention to other vehicles on the road (e.g. make sure other drivers are not distracted, maintain 

safe following distance, check blind spots), (4) make sure that the seat is properly adjusted to 

provide ample neck and lumbar support, and (5) provide training for workers to drive in winter 

road conditions. The leading indicators are identified as: (1) winter weather and (2) poor traction.  
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3.3.3. Case Study 3 

The final case study is a very frequent incident found in the database: “Worker slipped and fell in 

the parking lot. Employee took a shortcut between the middle and largest (left most) park after 

parking her vehicle in the middle parking lot.” 

 

The resulting statements are given for the user to select from: Fatality, Fire (Injury), Injury, 

Laceration / Abrasion, Leak / Spill, Major Leak / Spill, Minor Injury, Near Miss, No Treatment 

Injury, Severe Injury, Slip / Trip / Fall, Sprain / Strain, Vehicle (Heavy Equipment), Vehicle (Light 

Vehicle), Vehicle Collision (No Injury), Vehicle Collision (With Injury).  

 

It was assumed that Minor Injury and Slip / Trip / Fall were selected.  

 

With these selections, the risk has a health and safety consequence score of 4 and a frequency of 

5. Such incidents are very common, especially in the winter season. The risk matrix for the incident 

is displayed in Figure 3-8.  
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Figure 3-8. Risk matrix for Case Study 3. 

 

An example of a trend report for slip/trip/fall incidents can be seen in Figure 3-9. Slip/trip/fall 

incidents are common, particularly due to snow or ice in winter. There are also other contributing 

factors in other seasons that might result in slippery surfaces. It might be beneficial for a company 

to impress upon workers the importance of proper footwear such as cleats and requesting signage 

or countermeasures (e.g. salt or gravel) at the source of a tripping hazard.  
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Figure 3-9. Example of trend analysis for Case Study 3 indicating number of incidents per month. 

 

Based on the statements selected to describe the incident, the algorithm provides the following 

prevention and mitigation strategies: (1) walk slowly and carefully on snow and ice, (2) wear 

proper and weather-appropriate footwear outdoors, and (3) ensure that proper authorities are 

notified to apply salt/gravel to regular walkways and parking lots. The leading indicators are 

identified as: (1) snow and/or ice and (2) lack of salt/gravel.  

 

As demonstrated by the case studies, applying such methods to incident reporting makes it possible 

to improve safety in a company at a foundational level. Having access to such information can 

allow companies to enhance their safety culture by providing timely prevention and mitigation 

strategies; giving feedback on safety performance versus historical trends; building a reputation 

with their employees for protecting occupational safety, process safety, and the environment; and 

reducing financial losses by focusing on higher priority risks that require attention.  
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3.4. CONCLUSION 

We began with the observation that AI/ML hold great promise for enhancing companies’ safety 

management systems. Yet, the adoption of AI/ML tools has been slow given an overwhelming 

quantity of dirty, incomplete, and fragmented data; a multitude of low-consequence incidents of 

unknown analytical value; and operators’ resulting perception that this is a high-effort, low-payoff 

venture (Ransbotham et al., 2017). We have addressed these barriers by aggregated data across 

operators and using keyword analysis to create more complete, ‘clean’, and larger datasets to 

enhance algorithm training, avoid overfitting, and more sensitive ‘detectability’ of leading 

indicators (Kurian et al., 2020).  

 

Our objectives for expanding on this research was to improve current incident reporting systems, 

provide practical and tailored outputs to prevent and mitigate risk, and to create opportunities to 

reduce losses due to incidents. By implementing a system that incorporates machine learning and 

keyword analysis with an intermediate step for user input, it was possible to accomplish these 

goals. With the methodology used in this research, we analyzed incident reports and generated a 

framework for evaluating and reducing risk.  

 

The analysis of incident reports used a supervised machine learning algorithm to predict 

identifying labels incidents for incidents. Next, the spaCy library from Python was used to 

lemmatize the incident reports. The resulting words were tallied and the most common words, 

along with the identifying labels used for machine learning analysis, were used to generate a 

customized library. The words stored in the customized library were assigned to statements used 
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to accurately describe risk involved in incidents. When a new incident report is inputted, this 

system runs the machine learning algorithm to predict an identifying label for the incident report, 

based on the newly expanded text corpora. The incident report is then lemmatized and cross 

referenced with the words stored in the customized library. Statements corresponding to the words 

in the customized library are then provided to the user. When the user selects statements matching 

the incident that occurred, a series of output results are provided. These outputs include a risk 

matrix, trends of similar incidents within the past year, suggested prevention and mitigation 

strategies, and any leading indicators that could be identified to prevent future occurrences of 

similar events. In this manner, the system is constantly learning from newly inputted incident data. 

In this manner, the system is constantly learning from newly inputted incident data. Likewise, 

experts can examine trends and revisit suggested prevention and mitigation strategies, to 

continually refine these. 

 

Three case studies of incident report inputs were analyzed using the proposed methodology. These 

incidents included quality assurance, vehicular, and slip/trip/fall -type incidents. By analyzing the 

trends in these incidents, it was surprising to see the low number of quality assurance-type 

incidents in January (in comparison to the rest of the year). As expected, the highest number of 

vehicular and slip/trip/fall incidents occurred during the winter months. By analyzing the factors 

resulting in the trends of such incidents, it is possible for companies to develop plans for future 

incidents. For example, a company could attempt to identify the reason for the low number of 

quality assurance incidents in January and attempt to reproduce these results for the remainder of 

the year. Additional effort could also be focused on reducing vehicular and slip/trip/fall incidents 

to protect worker safety.  
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This research proposed new methods to report and analyze incident reports using artificial 

intelligence, machine learning, and keyword analysis. There is much potential for future use and 

implementation – many of the variables used in this study can be easily modified to match the 

varying needs of different companies. The reports generated by implementing this methodology 

can allow a company to focus its efforts on preventing those incidents that are causing the greatest 

losses and to identify strengths within their existing systems. Furthermore, the methodology 

described in this research can be applied by any industry seeking to reduce risk using incident 

reports.  
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4. CONCLUSIONS AND FUTURE RESEARCH 

4.1. CONCLUSIONS 

The objectives for completing this research were to improve current incident reporting systems, 

provide methods for companies to improve consistency and accuracy when evaluating risk, and 

deliver practical and tailored outputs to prevent and mitigate risk. The goal of consistently and 

accurately evaluating risk was accomplished by implementing machine learning. The machine 

learning system classified risks with accuracies >80%. Later research combined a portion of the 

machine learning algorithm (with accuracy of ~88.48%) with keyword analysis to further increase 

accuracy. By implementing a step for user input, it was possible to create a new method for 

reporting incidents with users selecting from a list of programmed statements pertaining to an 

incident. This improved system of reporting incidents allowed for specific outputs to be designated 

to statements, providing practical and tailored outputs for companies to use to prevent and mitigate 

risk. Identifying leading indicators was another target for this research. Leading indicators were 

identified using the categories of operations-based, systems-based, and behavior-based leading 

indicators as a guideline.  

 

4.2. CONTRIBUTIONS AND FUTURE WORK 

The greatest empirical contribution made by this research was the methodology employed – the 

application of machine learning and keyword analysis along with rule-based arguments to the 

reporting of incidents. While it is possible to find previous work exploring machine learning as an 

analysis tool for specific incident types, there is little research that has been completed to broadly 

analyze all types of incident reports (Kakhki, 2019). Most previous research also focuses on the 

aspect of predicting incidents while this research seeks to change how incidents are reported and 
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to prevent incidents from occurring (without stopping at simply predicting incidents) (Sarkar et 

al., 2019). This research allows companies to realize the potential of and bring value to their 

incident databases. The identification of leading indicators, in particular, has created opportunities 

for companies to increase awareness of incidents that have already occurred and existing hazards. 

With this information, workers can be trained to deal with these hazards prior to beginning their 

work.  

 

With this, my research also makes an empirical contribution, by suggesting enhancements to how 

companies input, analyze, and use incident data. It is possible to improve the accuracy of machine 

learning classification by focusing the efforts of study on a single company’s incident database as 

opposed to the aggregated incident database. By doing this, it is possible to increase the accuracy 

while using the aggregated incident database to tailor the results for specific requirements. The 

outputs generated by the process of analyzing incident reports with machine learning and keyword 

analysis can be modified to fulfil different roles – these outputs can also be used to identify 

incidents that can be prevented to maximize safety and minimize losses. The methodology 

described in this research can be applied by any industry seeking to reduce risk using incident 

reports.  

 

Further, by aggregating incidents across multiple companies, it is possible to identify the leading 

indicators for higher consequence, low frequency incidents. Aven (2015) describes black swans as 

surprising events that have extreme impact.  Due to the relatively low number of high consequence 

incidents that occur, it is difficult to prepare for events that could be classified as black swans. 

While black swan events are considered outliers and difficult to predict (Aven, 2015; Taleb, 2007), 
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combining the incident databases of several companies increases the predictive power of incident 

analysis by increasing the amount of information and experience available. To put it differently, 

companies can analyze the leading indicators of incidents that have been found by other companies 

to develop strategies to deal with such hazards. As a defining feature of black swan events, surprise 

is an element that must be removed; and by pooling resources and increasing strength of 

knowledge, it is possible to prepare for low frequency risks (Aven and Krohn, 2014).  

 

Research is currently being undertaken to apply elements of Process Safety Management (PSM) 

from OSHA’s standard to categorize the risks found within incident reports. This will further align 

the deliverables of the methodology described in this paper to an industry standard where the 

outputs can be analyzed by individuals seeking to properly investigate incidents and reduce risk. 

As can be seen from this example, many of the variables used in this research can be modified for 

a variety of purposes to benefit a company. By changing how incidents are classified, it is possible 

to search for different trends within the data. In fact, almost every variable can be changed to match 

different specifications. The risk matrix used to evaluate risk can be changed; different companies 

can input their own operating procedures and safety guidelines to design customized prevention 

and mitigation strategies; and even the incident database can be replaced to provide more accurate 

results specific to a single company.  

 

There are two aspects of the methodology used in this research that are constantly evolving: the 

machine learning that predicts a label for the incident report and the trend analysis output. When 

a new incident report is inputted, the machine learning algorithm adds the incident report and its 

label to the existing incident database to further bolster the accuracy of predicting labels. The trend 
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reports that are outputted also change constantly. The current system is designed to provide trends 

for incidents that have occurred in the past twelve months; however, this duration can be modified. 

As time passes, old incidents are removed from the system and new incidents are added to provide 

current trends within incident reports that can be used to develop up-to-date strategies to prevent 

or mitigate risk.  

 

Lastly, this research contributes to resilience theories. For organizations to learn from their 

operations experience, subject matter experts, and previous incidents, they must be able to monitor 

their incidents, appropriately respond to negative trends, and address incidents with near miss 

potential (see Figure 4-1). However, companies are often overwhelmed by thousands of ‘messy’ 

(incomplete reports, rife with spelling mistakes, erroneously rated) incident reports and are unable 

to analyze the latent causes, consequences, and mitigations. As a result, their responses are often 

insufficient, which can result in a more consequential incident.  

 

This research provides companies with a method to design inherently safe systems by automating 

the process of analyzing incident reports. By tracking the efficacy of mitigation measures over 

time, it is possible to evaluate system effectiveness. At the same time, tracking the efficacy of 

leading indicators can be used to evaluate monitoring effectiveness. Finally, effectiveness of 

operations can be evaluated by tracking the efficacy of inherently safer design efforts to eliminate 

hazards. Evaluating system, monitoring, and operations effectiveness is an ongoing process that 

will allow companies to constantly improve and design more resilient systems (Hollnagel et al., 

2007). The methods described in this research have placed emphasis on constantly improving the 

accuracy of classification and providing up-to-date trends as new incident reports are added. In 
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addition to this ability to evolve, the algorithm is able to handle large amounts of incident reports 

and constantly provide feedback. This can be used to take advantage of massive incident databases, 

that might otherwise remain misused, and use this data to provide valuable insight towards creating 

a resilient system.  

 

As part of designing a system that is resilient, organizations must be willing to learn, anticipate, 

monitor, and respond to changes (Lefsrud, 2019). A key component of a resiliency is to constantly 

test whether ideas about risk match reality (Hollnager et al., 2007). As such, this research delivers 

outputs that can be used to design a resilient system. By designing systems that are resilient, an 

organization is better equipped to know what has happened, know what to expect, know what to 

do, and know what to look for.   

 

 

Figure 4-1. Safety Management System processes build resilience (Lefsrud, 2019; revised from 

Hollnagel et al., 2007) 
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4.3. LIMITATIONS 

This paper has highlighted several areas for future research. At the same time, there were certain 

limitations due to the scope of research and the resources available. The “Statements” included in 

the customized library were chosen by surveying several professors and industry experts. Also, 

due to lack of corporate support, the suggested prevention and mitigation strategies and the 

identification of leading indicators were determined manually using resources available to 

students. These resources included provincial, federal, and global standards typically used for 

analyzing processes and risk. Future research could use a single company’s safety procedures, 

operating guidelines, and asset management systems to tailor the outputs for a specific company’s 

needs. The “Statements” could be determined using a machine learning algorithm to analyze the 

incident database. Furthermore, the relationships between the “Statements” and the corresponding 

outputs could also be determined using a combination of machine learning and principles of 

science and engineering. This would create a more robust system for both reporting incidents and 

analyzing the risk within incidents. 

 

One point which was not mentioned previously deals with inputting an incident report which has 

not been previously reported into the system. In such a case, while the combination of machine 

learning and keyword analysis can still predict “Statements” to match the incident report, there is 

a very low chance that the algorithm will not be able to supply any outputs for a user to select. 

Future research could accommodate for this by allowing the user to classify the incident and then 

enabling the machine learning algorithm to teach itself how to deal with similar incidents in the 

future.  
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Another aspect for future research could focus on the predictive element of analyzing incident 

data. By teaching a machine learning algorithm to provide prevention and mitigation strategies 

and to identify the leading indicators of an incident, the same rhetoric would enable companies to 

train their workers in identifying hazards and preventing incidents from occurring. As incidents 

are reported for a work site, trend reports about the incidents occurring on site can be used to help 

workers prepare for such incidents, paying particular attention to the incidents that are occurring 

most frequently.  

 

Finally, one final project for the future could include designing a user interface to process incident 

reports using methodology similar to that proposed in this paper. Screenshots of some work that 

has been started can be found in Appendix B. Research in this area could create a website or mobile 

application that could be accessed in a variety of scenarios. The potential for this is immense – 

workers could have access to incident databases and solutions for dealing with incidents in the 

palm of their hands. 
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APPENDIX A 

Tables A-1 to A-6 show the confusion matrices and classification reports for the Linear SVC 

applied to consequence labels (Health/Safety, Environment, and Finance) and risk scores (actual 

and potential). 

 

Table A- 1. Confusion matrices for Linear SVC used for predicting consequence labels of 

Health/Safety, Environment (Env), and Finance (Fin) 

  Predicted 

  
Health/S Uncat 

(H/S) 

Environm

ent 

Uncat 

(Env) 

Finance Uncat 

(Fin) 

A
ct

u
a
l 

Health/S 829 561 0 0 0 0 

Uncat (H/S) 140 3235 0 0 0 0 

Env 0 0 292 233 0 0 

Uncat (Env) 0 0 12 4228 0 0 

Finance 0 0 0 0 3235 187 

Uncat (Fin) 0 0 0 0 701 642 
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Table A- 2. Classification reports for Linear SVC used for predicting consequence labels of 

Health/Safety, Environment (Env), and Finance (Fin)  

Primary Label Precision Recall F1-score Support 

Health/S. 0.86 0.60 0.7 1390 

Uncat (H/S) 0.85 0.96 0.90 3375 

Environment 0.96 0.56 0.70 526 

Uncat. 0.95 1.00 0.97 4239 

Finance 0.82 0.95 0.88 3422 

Uncat. 0.77 0.48 0.59 1343 

 

Table A- 3. Confusion matrix for Linear SVC used in actual risk score classification 

  Predicted   

  0 4 5 

A
ct

u
a
l 

0 12 0 339 

4 0 210 467 

5 23 12 3702 

 

Table A- 4. Classification report for Linear SVC used in actual risk score classification 

Actual Risk Score Precision Recall F1-score Support 

0 0.33 0.03 0.06 351 

4 0.95 0.31 0.47 677 

5 0.82 0.99 0.90 3737 
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Table A- 5. Confusion matrix for Linear SVC used in potential risk score classification 

  Predicted 

  0 2 3 4 5 

A
ct

u
a
l 

0 23 0 0 117 210 

2 0 12 0 0 12 

3 12 0 82 58 140 

4 12 0 0 1436 502 

5 0 0 12 467 1670 

 

Table A- 6. Classification report for Linear SVC used in potential risk score classification 

Potential Risk Score Precision Recall F1-score Support 

0 0.50 0.07 0.12 350 

2 1.00 0.50 0.67 24 

3 0.88 0.28 0.42 292 

4 0.69 0.74 0.71 1950 

5 0.66 0.78 0.71 2149 
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APPENDIX B 

Figures B-1 to B-4 show screenshots of how a user interface for reporting incidents could be 

designed. 

 

 

Figure B- 1. Screenshot of a user interface supporting the upload of incident reports in .csv format. 
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Figure B- 2. Screenshot of a user interface showing how uploaded incidents could look along with 

the status of analysis 

 



91 

 

 

Figure B- 3. Screenshot of user interface for selecting statements that match an incident. 
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Figure B- 4. Screenshot of user interface displaying a trend report. 

 


