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“Do or do not. There is no try.”
-Master Yoda

“I want to know God’s thoughts. The rest are details.”
-Einstien



Abstract

Digital filters having sharp transition band play a vital role in modern digital sig-

nal processing (DSP) applications. Emerging technologies require digital filters to

be both computationally efficient in software/hardware realizations. This thesis

is concerned with the design and structural-level optimization of sharp transition

band digital filters employing the well known frequency response masking (FRM) ap-

proach. Unlike the conventional finite impulse response (FIR) based FRM approach,

the FRM technique used in this thesis incorporates infinite impulse response (IIR)

digital interpolation subfilters, thereby reducing the overall filter order that results

in a reduction of hardware complexity. Two realization methods are discussed in

this thesis, namely, the bilinear-lossless-discrete-integrators (bilinear-LDI) digital

filter design technique, and the lattice wave digital filter (lattice WDF) digital filter

design technique.

Diversity controlled (DC) genetic algorithm (GA) is employed to optimize both

types of IIR based FRM digital filters over the efficient canonical signed digit (CSD)

multiplier coefficient space. DCGAs represent FRM digital filters by a binary chro-

mosome and proceed from a population pool of candidate chromosomes to future

generations in order to arrive at the desired FRM digital filter satisfying the design

specifications. A novel cost-function is used that allows the DCGA to simultane-

ously optimize both the amplitude-frequency and group-delay frequency response.

A fast convergence speed has been observed.
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Chapter 1

Introduction

Digital filters play a central role in modern digital signal processing (DSP) systems.

With the emerging DSP technologies and applications, there is an ever growing

demand for digital filter structures that lend themselves to efficient hardware im-

plementations. In practical applications, e.g. in audio signal processing, image

processing or data compression, digital filters with sharp transition bands are re-

quired. Anti-aliasing filters used in digital photography are a commonplace example

of where such sharp transition band digital filters are required. Anti-aliasing filter

remove signal components that have a higher frequency than is able to be properly

resolved by a digital recording device before the sampling phase. If this is not done

it causes undesirable artifacts to appear in the digitally reproduced image.

An ideal anti-aliasing filter could be considered as a “brick-wall” filter in that it

perfectly leaves all desired low frequencies intact and completely cuts off all unde-

sired high frequencies. Such ideal filters cannot be realized in practise, and so they

are approximated using filters having a small finite transition bandwidth. However,

since the order of digital filters is inversely proportional to their transition band-

width, narrow transition bandwidth digital filters become less economical if designed

by using the conventional techniques.

Frequency-response masking (FRM) approach has been developed [1] for the

design of practical sharp transition band digital filters in terms of low-order finite

impulse response (FIR) interpolation subfilters and FIR masking subfilters. The

interpolation subfilters have gradual transition bands, but are interpolated and ar-

ranged in such a manner as to realize very narrow transition bandwidths in the
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overall FRM FIR digital filter. The resulting FIR interpolated digital subfilters

have an inherently large number of zero-valued multiplier coefficients, leading to a

substantial reduction in the computational complexity of the resulting digital filter.

However, even the conventional FRM digital filter design approach may require FIR

interpolation subfilters with prohibitively high orders.

It is well known that infinite impulse response (IIR) digital filters generally pos-

sess orders which are substantially lower than those of the corresponding FIR digital

filters satisfying similar design specifications. Therefore, IIR digital filters prove to

be attractive alternative candidates for interpolation subfilters in the FRM digital

filter design approach [2]. However, the resulting IIR interpolation digital subfil-

ters may suffer from bounded-input bounded-output (BIBO) stability problems, in

addition to inevitably giving rise to group-delay distortions.

This thesis is concerned with the development of novel techniques for the de-

sign and rapid optimization of FRM digital filters employing hardware efficient IIR

interpolation subfilters. In these optimization techniques, the corresponding de-

sign specifications concern both the magnitude-frequency as well as the group-delay

frequency response characteristics of the resulting FRM digital filters.

From a practical point of view, particularly in the hardware implementation of

the FRM digital filters, there is every incentive to represent the constituent multi-

plier coefficients in computationally efficient number systems, e.g. in SPT or canon-

ical signed-digit (CSD) number systems, while still satisfying all the other design

specifications. This is mainly due to the fact that such number systems permit the

representation of the constituent multiplier coefficient values in terms of only a few

non-zero digits within the coefficient wordlength, thereby reducing the correspond-

ing multiplication operations to few shift-and-add operations.

Of course, the above optimization problems tend to have multimodal cost func-

tions, calling for built-in internal or external mechanisms for escaping from local

optimal solutions in the course of optimization. It is well known that genetic algo-

rithms (GAs) provide a promising approach to solve discrete and multimodal op-

timization problems due to the fact that they are capable of automatically finding

near-optimal solutions while keeping the computational complexity of the optimiza-

tion at moderate levels. Consequently, they have emerged as an efficient alternative
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for the optimization of FIR as well as IIR digital filters. These algorithms encode

the digital filter realization into a chromosome, and proceed toward an optimal so-

lution through the evolution of a population of potential candidate chromosomes in

an iterative manner from one generation to the next.

However, the conventional GAs do not search the solution space robustly due

to lack of mechanisms through which entrapment at local optimal solutions can

be avoided. It was demonstrated in [3] that diversity control can be exploited to

help to increase the convergence speed of conventional GAs. The main idea behind

diversity controlled (DC) GA is to increase the diversity of the population pool

through the incorporation of additional non-elite chromosomes based on a pair of

external control parameters.

Unfortunately, a direct application of DCGA to the optimization of the above

FRM digital filters over the CSD multiplier coefficient space gives rise to two different

problems:

• The first problem arises because of the fact that the operations of crossover

and mutation in the course of DCGA optimization may lead to chromosomes

that may no longer conform to the CSD number format.

• The second problem, on the other hand, stems from the fact that DCGA op-

timization may result in a solution chromosome that satisfies the given mag-

nitude and group-delay frequency-response design specifications, but that the

corresponding IIR interpolation digital subfilter is not BIBO stable.

In this way, DCGA lacks inherent mechanisms to ensure that the optimized digi-

tal FRM filters conform to CSD number format, and that their IIR interpolation

subfilters are BIBO stable.

In [4], the former problem was resolved in the context of the DCGA optimiza-

tion of FRM digital filters having FIR interpolation digital subfilters. This was

facilitated by generating an indexed look-up table (LUT) of permissible CSD multi-

plier coefficient values (with pre-specified wordlengths and pre-specified maximum

number of non-zero digits), and by employing the indices of the resulting multiplier

coefficient values (as opposed to the values themselves) to represent FRM digital

filter chromosomes. The key point in generating the CSD LUT is to ensure that the

3



constituent indices form a closed set under the operations of crossover and mutation

(or other similar operations) in the course of the underlying DCGA optimization so

as to preserve adherence to the CSD number format.

In this thesis, the latter problem mentioned above is resolved by resorting to the

use of a set of novel CSD LUTs. These LUTs are constructed to consist of such CSD

multiplier coefficient values which automatically (i.e., without the need to check the

stability) lead to FRM digital filter chromosomes whose IIR interpolation subfilters

remain BIBO stable under the operations of crossover and mutation throughout

the course of DCGA optimization. In this way, the resulting FRM digital filter

chromosomes not only conform to the CSD number system, but is also BIBO stable

(without ever making recourse to the process of gene repair).

The proposed DCGA optimization is first applied to a seed FRM digital fil-

ter consisting of infinite-wordlength multiplier coefficient values. The correspond-

ing infinite-wordlength IIR interpolation subfilters are realized in terms of bilinear-

lossless-discrete-integrator (bilinear-LDI) allpass digital networks [5]. The main ad-

vantage of the bilinear-LDI design approach is that it leads to digital filters which

exhibits exceptionally low passband sensitivity to their multiplier coefficient values

(permitting reduced multiplier coefficient wordlengths), while being minimal in the

number of digital multipliers and digital unit-delays (and practically minimal in the

number of digital adders as well).

The investigations are restricted only to elliptic function digital filters. It is

well known that an elliptic IIR filter can achieve a sharper transition band between

the passband and stopband edges than any other filter with the same number of

multiplier coefficients.

For the implementation of an IIR elliptic filter, different realizations can be used

including a direct, cascade, parallel, or ladder connection of the two allpass networks.

The given transfer function is realized with a minimal number of multipliers (equal

to the filter order) if the parallel connection of two allpass networks is chosen [6].

Another advantage of this realization is that the allpass characteristic is insensitive

to the coefficient wordlength (thus allowing fewer bits necessary to represent the

multiplier coefficients).

The infinite-precision multiplier coefficient values are subsequently quantized to
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their closest CSD counterparts (to within the pre-specified wordlength and the pre-

specified maximum number of non-zero digits), in order to obtain a corresponding

FRM digital filter consisting of finite-precision multiplier coefficient values. The

resulting CSD seed FRM digital filter is subsequently used to form an initial pop-

ulation pool of CSD FRM digital filter chromosomes for DCGA optimization. A

novel cost-function is employed in the DCGA optimization process so as to simul-

taneously optimize the magnitude-frequency as well of the group-delay frequency

response of the desired FRM digital filters. The group-delay frequency response is

calculated using the adjoint network method [7].

A second application of DCGA consists of optimizing a seed FRM digital filter

consisting of infinite-wordlength IIR interpolation subfilters realized utilizing lattice

wave digital filter (WDF) allpass networks. The overall FRM filter still consists of

IIR interpolation subfilters and FIR masking subfilters. The lattice WDFs have low

sensitivity to multiplier coefficient accuracy. Also, it is minimal in the number of

digital multipliers (equal to the filter order).

Once again, only elliptic function digital filters are considered. In addition to

the sharp transition bands, elliptic filters also provide the possibility of realizing a

transfer function with all its z-plane poles located on a circle in the digital frequency

domain [8]. Subsequently, the obtained locations of the poles is used to adjust the

values of half of the multiplication coefficients in the lattice WDF design. These

coefficients can be adjusted such that they no longer need to be quantized in order

to be represented in finite-wordlength. This eliminates half of the most sensitive

multiplier coefficients as optimization variables.

Similar to the case of bilinear-LDI, a parallel addition and subtraction of allpass

networks is used to realize the IIR interpolation digital subfilters. The allpass net-

works are further decomposed into first and second order allpass sections [9]. These

can be implemented using known techniques that have low noise and low limit cycle

oscillations [10].

The infinite-precision multiplier coefficient values are subsequently quantized to

their closest CSD counterparts, in order to obtain a corresponding FRM digital filter

consisting of finite-precision multiplier coefficient values. The resulting CSD seed

FRM digital filter is subsequently used to form an initial population pool of CSD
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FRM digital filter chromosomes for DCGA optimization. The cost-function allows

for simultaneous optimization of the magnitude-frequency as well of the group-delay

frequency response of the desired FRM digital filters.

This thesis is organized as follows. Chapter 2 provides background information

on different types of analog and digital filters. It briefly compares the salient features

of the bilinear-LDI and lattice WDF digital filter design technique. Additionally, it

provides an overview of conventional FRM technique using only FIR digital filters

for both the interpolation and masking digital subfilters. Finally, it also defines the

CSD number system and works out its main characteristics in terms of the worst

case quantization as a function of wordlength and non-zero coefficients.

Chapter 3 is concerned with the design and DCGA optimization of FRM digital

filters incorporating elliptic IIR digital interpolation subfilters. The digital inter-

polation subfilters have a topology consisting of parallel branches that add and

subtract two allpass networks in order to produce the required interpolation and

complementary interpolation filters. The allpass networks are realized through the

use of the bilinear-LDI design technique. The required constraints that guarantee

BIBO stability of the bilinear-LDI allpass digital networks (and thus the overall

FRM digital filter) are derived. A novel LUT-based scheme is developed to ensure

that the interpolation digital subfilters remain BIBO stable throughout the course

of DCGA optimization. A detailed design methodology is also presented.

Chapter 4 is concerned with the design and DCGA optimization of FRM digital

filters incorporating elliptic IIR digital interpolation subfilters, and the overall digi-

tal filter topology is similar to that described in Chapter 3 with the exception that

the allpass networks are realized through the use of the lattice WDF design tech-

nique. Digital filter realization using cascaded first and second order digital allpass

sections is presented. The theory used to fix half the multiplier coefficients of the

interpolation digital subfilters to an constant, easily implementable value (thereby

avoiding the need to quantize them) is detailed.

Chapter 5 illustrates the use of DCGA through its application on lowpass FRM

digital filters. Both bilinear-LDI and lattice WDF techniques are illustrated and

compared.

Finally, Chapter 6 summarizes the entire thesis and draws a conclusion. The
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authors contributions in this thesis are highlighted and suggestions for future work

are made.

The remainder of this chapter proceeds as follows. Section 1.1 gives an overview

of the different types of optimization techniques available. Section 1.2 provides a

brief overview of the conventional GA and contains a step-by-step summary of the

procedure. Section 1.3 describes the DCGA optimization technique and highlights

its salient features and the differences between DCGA and GAs. Finally, Section

1.4 provides a brief summary of this chapter.

1.1 Overview of Optimization Techniques

Broadly speaking, there are two main approaches available for the optimization of

digital filters. One approach is based on the conventional continuous optimization

techniques, while the other is based on heuristic discrete evolutionary optimization

techniques [11].

Continuous optimization techniques are usually greedy (i.e. they make use of gra-

dient information). These techniques are used to optimize applications with contin-

uous (infinite-precision) design variables, and they utilize the gradient information

of the objective function for guiding the direction of search. Examples of continu-

ous optimization techniques include the Newton’s method and the Parks-McClellon

algorithm [12]. While continuous optimization techniques have the advantage of

being able to directly find the optimal solution (search direction is deterministic in

nature), they also have the following drawbacks:

• The final implementable digital filter is finite-precision. Continuous optimiza-

tion techniques are not directly applicable unless one uses such techniques as

branch-and-bound (computationally extensive).

• In some cases, it may be difficult to obtain gradient information accurately.

This may be the case when the gradient is not analytically defined or the

optimization variables are discrete.

• Continuous optimization techniques do not have reliable techniques to escape

local optima of multimodal objective functions.
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Discrete optimization techniques, on the other hand, may or may not require

gradient information. These techniques can be successfully employed over discrete

domain (i.e. when the optimization parameters are discrete variables). The most

commonly used discrete optimization techniques are the GA and simulated annealing

(SA) [13]. While the GA and SA are probabilistic in nature, they do not require

gradient information to obtain near global optimums, and are well known to be

effective in solving complex multivariate, multimodal optimization problems.

In [14] a non-linear programming approach was developed for the optimization

of FIR based FRM digital filters over the signed-power-of-two (SPT) multiplier co-

efficients space. In [15], GAs were applied to the same FIR based FRM digital

filter optimization problem, leading to FRM digital filters with superior magni-

tude frequency-response characteristics. In addition, it was shown that the use

of GAs overcomes the inherent drawback of the commonly used linear program-

ming techniques which require the separate optimization of the constituent FRM

digital subfilters. In [16], GAs were applied to the optimization of the magnitude

frequency-response of an intermediate-frequency (IF) digital filters over the CSD

multiplier coefficient space, where the IF digital filter chromosome was formed by

the concatenation of the ternary representation of the constituent multiplier coeffi-

cient values.

GAs are evolutionary optimization algorithms that take inspiration from natural

selection and survival of the fittest in the biological world. GAs perform a parallel

search by forming a pool of candidate solution called chromosomes. As the GA

progresses from one generation to the next, new chromosomes are formed based on

well performing current chromosomes, and only the best performing chromosomes

survive. In this way, several regions of the search space are explored simultaneously,

thus allowing the GA to potentially attain a global optimum solution.

SA is another evolutionary optimization technique in which the search is made

by random moves from a starting point. If a move leads to a better result, it is

accepted (upward move). However, if it leads to a worse result (downward move), it

is only accepted with a given probability. This probability is high at first, resulting

in regular downward moves, but is gradually reduced so as to reach an optimum

solution. The reason for accepting downward moves is that they provide a mecha-
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nism for escaping local optimal points. However, too many negative moves lead the

optimization away from the optimal solution [17].

GAs and SAs have a parallel and linear search nature, respectively. GAs are

therefore effective in exploring the search space more comprehensively, whereas SAs

are normally used in situations where the application is so complex that a parallel

search is beyond reasonable limits of computational complexity.

1.2 Conventional GA

GA was introduced by Goldberg [18] in the 1970s and became a popular heuristic

technique for the optimization of complex non-linear systems. GA is an optimiza-

tion technique that simulates natural selection and reproduction to move towards

an optimal solution, and closely resembles the concept of biological evolution. In

general, GAs consist of the following steps:

• Initialization: A seed chromosome is formed by concatenating the design vari-

ables represented in their binary form. The initial value of these design vari-

ables is specific to the application being optimized. Subsequently, an initial

population pool consisting of N chromosomes is generated by randomly com-

plementing bits of the seed chromosome [19].

• Evaluation: Each chromosome in the current population pool P (t), where t

represents the generation number (initially t = 0), is evaluated based on an ap-

plication specific cost-function (also called the fitness function) that ascertains

the degree to which the design specifications are satisfied. Each chromosome

is given a single fitness value, even though the fitness function itself may be

based on one or more performance criteria. Subsequently, the chromosomes

in the pool are ranked based on the value of their fitness [19].

• Generation of mating pool: In order to produce the next generation population

pool P (t + 1), a mating pool is constructed by selecting Nmating (Nmating <

N&Nmating is even) chromosomes from the current population pool P (t). If

the best fit chromosome from P (t) is guaranteed inclusion in Nmating, then the

GA is described as elitist. If there is a chance that the best fit chromosome
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from P (t) may not be selected then the GA is non-elitist. The selection of

Nmating is based on some stochastic function (e.g. Bernoulli distribution [4])

that usually have a greater tendency to select chromosomes with a high fitness

value. However, it is necessary to include a few chromosomes with low fitness

values to increase diversity in the mating pool. In this way, the offspring of a

low fitness chromosome and a high fitness one may outperform its parents.

• Parent selection: Nmating/2 pairs of parents are selected from the mating pool

to generate offspring by using the conventional roulette wheel selection or the

correlative roulette wheel selection method [20]. Correlative roulette wheel

selection ensures parent chromosomes pairs have sufficient hamming distance

between them. This results in a more diverse offspring.

• Formation of next generation population pool: The next generation population

pool P (t+1) is selected from the current population pool P (t) after it has been

augmented with chromosomes produced through genetic operations simulating

reproduction. Many variations of reproduction operations exist but a typical

approach is as follows:

– Crossover operation: An example of a typical two-point crossover opera-

tion is as shown in Fig. 1.1. The Nmating/2 parent chromosome pairs in

the mating pool undergo a two-point crossover operation, producing two

offspring per parent pair. The crossover points are chosen randomly for

every parent pair. The resulting Nmating chromosomes are added to the

original population pool P (t) to form an enlarged population pool P̂ (t)

consisting of N + Nmating chromosomes. The enlarged population pool

P̂ (t) then undergoes the mutation operation.

– Mutation operation: An example of a typical mutation operation is shown

in Fig. 1.2. The enlarged population pool P̂ (t) undergo the mutation op-

eration. Mutation involves a very small probability p
M

that one or more

arbitrarily chosen bit in a random chromosome will be flipped (either

from ‘0’ to ‘1’ , or from ‘1’ to ‘0’). In some cases, the best fit chromosome

in P (t) is excluded from the possibility of mutation.
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Figure 1.1: Example of a Two-Point Crossover

Figure 1.2: Example of Mutation

The crossover operation generates new chromosomes which often share many

of the desirable characteristics of their parents, a combination of which could

result in higher fitness results. While crossover produces new chromosomes, it

does so within the solution space of the current population P (t)1. Mutations

allow the GA to explore entirely new search areas and increase the diversity

of the population pool.

Once the genetic operations have been applied to create the enlarged popu-

lation pool P̂ (t), the newly made chromosomes are evaluated (similar to the

above step of Evaluation) and all the chromosomes are once again ranked based

1Note however that there is a possibility of mutation at the crossover points.
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on the value of their fitness. The next generation population pool P (t + 1)

is selected from the best performing chromosomes of P̂ (t). Consequently, the

next generation population pool is expected to have an average fitness value

greater than the current generation since only the best solutions from the cur-

rent generation are selected for reproduction (along with a small proportion

of less fit members).

• Termination: The above steps are repeated from one generation of the pop-

ulation pool to the next generation, with incremental improvements as the

algorithm progresses, until a pre-specified termination condition is met. This

termination condition may be based on one or more performance criteria, and

it usually ensures that all design specifications are met. The algorithm is also

terminated if the pre-set maximum number of allowed iterations is reached

without the GA converging to a satisfactory solution [21].

The above steps can be arranged in the flowchart shown in Fig. 1.3.

The salient features of the GA described above are as follows:

• GAs can perform a parallel search using a population pool of potential can-

didate chromosomes, making them effective at finding optimum solutions to

complex multimodal optimization problems. The parallel nature of GA allows

it to rapidly narrow down the search space to the region having the global

optimum, and this is the primary reason why it is often preferred over SA in

applications involving large search spaces.

• GAs do not require any gradient information to perform the optimization. This

is useful in highly non-linear cases and also if the number of design variables

is very large (as is the case with digital filter optimization).

Unfortunately, GAs also suffer from well known issues concerning the speed

of convergence. Even though GAs are parallel in nature, it is possible that all

candidate solutions belong to a small region of the search space that does not contain

the global optimum. This is because a few chromosomes with a comparatively

high fitness value (but not globally optimal) may rapidly dominate the population

pool. As a result, there will be a rapid decline in diversity of the population pool
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Figure 1.3: Flowchart for a Conventional GA

from one generation to the next, since crossover occurs between very similar parent

chromosomes. This makes the future generations very similar and curtails the ability

of GAs to continue to search for better solutions. When this happens, the GA cannot
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converge to the global optimal, rendering the algorithm ineffective. Such cases of

premature convergence happen if the probability of mutation is too low or if the

seed chromosome is chosen inappropriately.

1.3 DCGA Optimization Technique

In GAs, the method of selection is such that if there is a dominant chromosome

(one that shows a comparatively high fitness value) in the population pool, then it

is likely that it will produce several offspring. On the other hand, other chromosomes

with lower fitness values contribute less or even no offspring at all. Consequently,

in such cases, as the GA progresses from one generation to the next, the population

pool experiences a rapid decline in diversity and all its chromosomes start looking

very similar to or are exact replicas of the dominant chromosome. Obviously, this

loss of diversity happens at an exponential rate and results in the GA converging

prematurely [3].

The solution to avoiding this entrapment at local optima is to ensure that the

population pool remains diverse. However, care must be taken that the GA is

not made to be so diverse that the convergence rate starts to look like that of a

completely random search. Consequently, an appropriate level of diversity must

be constantly maintained in the population pool at all times. There have been

many methods developed to achieve this dual goal, based on increasing the rate of

mutation, or using selection techniques that maintain a diverse population pool.

Srinivas [22] proposed the use of adaptive probabilities for crossover and muta-

tion to maintain the diversity of the GA, where the probabilities of crossover and

mutation are varied depending on chromosome fitness values. Ling Cen et. al.

introduced SA to prevent GA from premature convergence [23]. SA is based on

the idea that initial iterations are likely to produce results that are worse off than

their predecessors in order to incorporate as much diversity as possible in the earlier

stages of the algorithm. As the SA continues, the likelihood of upward changes

is reduced, allowing the algorithm to converge. Shimodaira [3] proposed DCGA

where a cross generational probability survival selection (CPSS) scheme is used to

select candidate chromosomes for the next generation that successfully explore the

solution space and escape from local optimum points.
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DCGA is used from here on as it strikes a good balance between maintaining

a diverse population pool among GA without making the GA so random that the

convergence time renders the algorithm ineffective. DCGA has some essential dif-

ferences compared to the conventional GA and consists of the following steps:

• Initialization: A seed chromosome is formed similar to that in the GA (see

Section 1.2). Once again, the seed chromosome is based on the application.

The initial population pool consists of N chromosomes, where N is even.

• Generation of mating pool: In DCGA, the members of a current population

pool P (t) and their offspring chromosomes are combined to form an enlarged

population pool P̂ (t) of 2N chromosomes. The offspring are produced using

two-point crossover (using random pairing) and mutation at a constant rate.

Mutation is not allowed to affect the best fit chromosome (seed chromosome

when t = 0). Any duplicates formed by the genetic processes are removed

from the population pool.

• Evaluation: The chromosomes in the enlarged population pool P̂ (t) are ranked

by evaluating their fitness values. The fitness function depends on the appli-

cation under optimization, and usually ensures that all design specifications

are satisfied.

• Selection of the next-generation population pool: The best chromosome in

P̂ (t) is directly allowed to be a member of the next-generation population pool

P (t+1). The remaining 2N1 chromosomes in the population pool P (t+1) are

selected from the enlarged population pool P̂ (t) based on the following CPSS

probability relation:

ps = [(1 − c) × h/L + c]α (1.1)

where h represents the hamming distance (i.e. the number of bit locations at

which a given chromosome is different from another chromosome) between a

candidate chromosome and the best fit chromosome in P̂ (t), where L repre-

sents the total bit-length of the individual (binary) chromosomes, and where c

and α denote, respectively, the shape coefficient and the exponent parameter.

In this way, the selected chromosome with hamming distance h is chosen as
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a candidate for the next generation population pool if ps is greater than a

locally generated uniform random number between ‘0’ and ‘1’. This selection

process is referred to as the CPSS scheme.

The CPSS scheme is repeated until N − 1 chromosomes are selected for the

next generation population pool P (t + 1) (the best fit chromosome having

already been selected). However, in situations when CPSS leads to less than

N − 1 chromosomes, the remaining chromosomes are formed by randomly

complementing bits in the best fit chromosome. It should be pointed out that

according to Eqn. 1.1, chromosomes with a large hamming distance from the

best fit chromosome will have a greater chance to be selected as members of

the next generation. In other words, the more similar the structure of one

chromosome is compared to the best fit one, the less the chance it will have

of being selected.

• Termination: The above steps are repeated until the design specifications are

satisfied or the maximum number of allowed iterations is reached. In princi-

ple, DCGA is capable of finding the global optimal solution provided that no

bound is imposed on the constituent number of generations. However, in prac-

tical situations, DCGA is set to terminate once all of the design specifications

have been satisfied. In such situations, the resulting solution may or may not

represent the global optimal solution, but simply a solution that satisfies all

of the given design specifications.

There is no known relationship between the values of c and α and convergence

rate. Therefore, the values of these parameters must be selected empirically, and

is highly dependent on the characteristics of the fitness function. The speed of

convergence to an optimal solution is, in general, affected by both c and α values.

Therefore, empirical investigation is best conducted over a range of values of c

and α to identify the values that correspond to a rapid convergence. A DCGA

having appropriate c and α values has the following advantages over other discrete

optimization techniques [3]:

• The best fit chromosome is always selected as a member of the next-generation

population pool. This acts as an anchor point, so even if the rest of the
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population pool is made diverse through, for example, high rates of mutation,

the search region always remains within the vicinity of the best fit chromosome.

This is particularly useful if the best fit chromosome lies in a region near the

global optimum. In the conventional GAs, however, crossover and mutation

may destroy the best fit chromosome and this setback usually has a slow

recovery.

• If the best fit chromosome is close to a region having a local optimum, there is

a chance that it might become dominant and cause a premature convergence

in a conventional GA. However, with DCGA the next-generation selection is

based on the hamming distances of the best fit chromosome with the remaining

population pool. This means that even if the best fit chromosome is near a

local optimum value, it is not allowed to become a dominant chromosome in

the population pool, thus preventing premature convergence.

• Through the use of the shape coefficient c and the exponent parameter α,

DCGAs permit the desired external control of the diversity in the popula-

tion pool for rapid convergence to an optimal solution. Different applications

require different values of c and α [11]. If the application being optimized

presents a fitness function having only a few local optima than a high value

for c and/or low value for α results in a rapid optimization. This is because,

with a few local optima, the chance of entrapment is low and therefore low

levels of diversity suffice. Conversely, if the application presets a fitness func-

tion having several local optima then a low value of c and/or high value of

α ensures that the population pool maintains a high level of diversity, thus

allowing it to escape the local optima and avoid premature convergence.

• The amount of computations per generation in DCGA and conventional GAs

are almost the same (only addition is the CPSS). The computational time of

DCGA is much less than the that of the joint optimization technique employing

SA in [23] and the variable crossover and mutation rate method in [22].

DCGA tends to have a convergence time around an order of magnitude less

than conventional GAs. For example, in [19] it took GA a 1000 generations to

arrive at a bandpass FRM FIR digital filter, whereas the proposed DCGA took only
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144 generations for satisfying the same design specifications. For the applications

presented in this work, the value of c and α are determined empirically, but a

comparison between GA and DCGA is not made. The results of DCGA optimization

are, however, compared with an adaptive version (see Appendix 1).

1.4 Summary

This section has presented a brief description of two main discrete optimization algo-

rithms, namely the GA and the DCGA. These algorithms are known to be effective

in optimizing functions that are highly non-linear, multimodal and multivariate, and

can work in discrete variable domains. DCGA is applied to the optimization of FRM

digital filters having finite-wordlength CSD multiplier coefficients. Two main cate-

gories of FRM digital filters are introduced: FRM digital filters incorporating IIR

interpolation digital subfilters realized as a parallel combination of two allpass net-

works that are implemented using bilinear-LDI design technique, and FRM digital

filters incorporating IIR interpolation digital subfilters realized as a parallel com-

bination of two allpass networks that are implemented using lattice WDF design

technique.

GAs perform a parallel search over the domain by forming a population pool

of potential candidate solutions called chromosomes. The GA creates new chromo-

somes based on the current best performing chromosomes, and the population pool

increases in average performance as the GA progresses from one generation to the

next. The parallel nature of GAs gives it the advantage of being able to quickly find

the global optimum, and this is done without any recourse to gradient information.

Unfortunately, GAs are susceptible to premature convergence to a local optimum

as a result of a rapid decline in diversity within the population pool.

DCGA is an effective mechanism by which the diversity of a population pool

can be externally controlled using the shape coefficient c and exponent parameter

α. DCGA is just as effective as GAs in finding an optimal solution, but at the same

time it is capable of avoiding entrapment at local optimal points. DCGA allows

the best fit chromosome of a current generation to be automatically selected for the

next generation, thus making sure that if the best fit chromosome is in a region

close to the global optimum the algorithm can quickly converge. It also employs
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an innovative selection mechanism called cross-generational probabilistic survival

scheme (CPSS) that maintains diversity in the population pool. The CPSS ensures

non-elite chromosomes are chosen based on their hamming distances from the best

fit chromosome, thus giving the offspring the potential to break free of entrapment

at local optima. It is observed that DCGA increases the convergence speed of GA

by an order of magnitude.

The direct application of DCGA to optimize the IIR based FRM digital filters in-

troduces the problems of maintaining the required CSD number format of multiplier

coefficients and maintaining BIBO stability of the overall filter. In the case of real-

ization using the bilinear-LDI design technique these problems are resolved using a

novel set of LUTs such that DCGA optimization leads to FRM digital filter chromo-

somes whose IIR interpolation subfilters remain automatically BIBO stable under

the operations of crossover and mutation throughout the course of optimization.

In the case of realization using the lattice WDF technique, a LUT-based approach

ensures the DCGA only searches the multiplier coefficient space that adheres to a

CSD number format.
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Chapter 2

Background

The previous chapter provided an introduction to GA and DCGA optimization tech-

niques and discussed their applications. This chapter provides general background

to the proposed topics in this thesis.

This chapter proceeds as follows. Section 2.1 includes a discussion about the

types of filters available, their frequency characteristics, and the difference equa-

tions of typical FIR and IIR digital filters. Section 2.2 provides an overview of the

conventional FRM technique. Section 2.3 gives an explanation of the CSD num-

ber system used to represent digital multiplier coefficients and highlights some of

the properties of the CSD LUTs used in DCGA optimization. Finally, Section 2.4

provides a summary of this chapter.

2.1 Analog and Digital Filters

Filters are electrical devices that are designed to manipulate the frequency spec-

trum of a signal. They are used in particular to attenuate the unwanted frequency

components (in the stopband region of the filter) while leaving the wanted frequency

components intact (in the passband region of the filter). The classical filter char-

acteristics include the lowpass filters, the highpass filters, the bandpass filters, the

bandstop filters and finally, the allpass filters [19]. Multiband filters provide a com-

bination of such characteristics.

Filters can be broadly categorized as analog filters and digital filters. Analog

filters deal with input signals that are continuous-time infinite-precision quantities

such as a voltage or a current. In general, analog filters can be classified by the type
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of components that realize them [11]:

• Passive filters: Filters that are implemented by using resistors, capacitors and

inductors. Passive filters have the advantage of guaranteed BIBO stability.

However,they cannot be manufactured on integrated circuits (ICs) due to dif-

ficulties in integrating the constituent inductors.

• Active filters: Filters that are implemented by using the active components in-

stead of inductors, lending themselves to IC fabrications. Active filters include

certain active-RC filters and switched-capacitor filters.

Digital filters deal with signals which are discrete-time finite precision quanti-

ties, e.g. a voltage that is sampled and quantized. They use delays, multipliers

and adders to perform numerical manipulations on sampled values of the signal.

In order to convert the signal from analog to digital or, conversely, from digital

to analog, A/D converters and D/A converters are required, respectively. Digital

filters offer many advantages over the analog counterparts, including programma-

bility, adaptability, high stability with respect to aging, temperatures changes, and

manufacturing errors. In addition, with the impact of silicon technology scaling,

digital filters can be successfully implemented for high-frequency applications with

increased speeds, smaller chip areas and lower power consumptions [19].

Digital filters can be broadly classified by the length of their impulse response

as FIR or IIR filters. FIR filters have the following difference equation:

y(n) = b0x(n) + b1x(n − 1) + b2x(n − 2) + · · · + bM̆x(n − M̆) (2.1)

where x(n) represents the input signal, y(n) represents the output signal of the filter

and M̆ is a positive integer. The transfer function of FIR filter H(z) can be derived

by taking the z-transform of Eqn. (2.1):

H(z) =
Y (z)

X(z)
= b0 + b1z

−1 + b2z
−2 + · · · + bM̆z−M̆ (2.2)

(subject to zero initial conditions)

In contrast to FIR filter, IIR filters have the following difference equation:

y(n) = b0x(n)+b1x(n−1)+ · · ·+bM̆x(n−M̆)+a1y(n−1)+ · · ·+aN̆y(n−N̆) (2.3)
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where both M̆ and N̆ are positive integers. The transfer function of an IIR filter is

of the form:

H(z) =
Y (z)

X(z)
=

b0 + b1z
−1 + b2z

−2 + · · · + bM̆z−M̆

1 + a1z−1 + a2z−2 + · · · + aN̆z−N̆
(2.4)

In this thesis, the FRM design technique uses both IIR and FIR digital filters.

Realization of FIR digital filters is straightforward. In order to realize IIR filters, one

need to start from a corresponding analog prototype filter and transform the filter

transfer function from analog domain to digital domain using the bilinear transfor-

mation technique. Alternatively, one can apply the wave digital filter technique to

transform the filter structure from analog to digital.

Compared to the lattice WDF technique, the bilinear transformation technique

is well known for preserving the BIBO stability and sensitivity properties of the

analog prototype reference filter. However, in both these two techniques, one must

design carefully to avoid any delay free loops. Moreover, IIR filters usually suffer

from BIBO stability problems because of the existence of feedback loops (IIR filters

are stable if all the poles are inside the unit circle of the complex z plane). They may

also require a secondary allpass filter in order to compensate for phase distortions.

FIR filters do not suffer from the above problems. They are always BIBO stable

and can be designed with having an exact linear-phase. Conventionally, FIR filters

are designed by truncating an infinite duration impulse response sequence using

windowing techniques (e.g. Rectangular window, Bartlett window, Kaiser window)

to obtain the desired finite impulse response. However, at a cost for BIBO stability

and linear-phase, FIR filters are generally more complex and involve larger number

of multipliers than IIR filters. As a result, IIR filters can achieve a given filtering

characteristic using less memory and shorter filter order than a similar FIR filter

design.

2.2 Overview of Conventional FRM FIR Design Tech-
nique

The block diagram in Fig. 2.1 shows a conventional FRM digital filter. Let Fa(z)

represent the transfer function of a linear-phase FIR interpolation lowpass digital

subfilter, and let Fa(e
jω represent the corresponding frequency response, and where
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Figure 2.1: Block Diagram Representation of Frequency-Response Masking

Fb(z) represents a complementary counterpart of Fa(z) with Fb(e
jω its corresponding

frequency response. Here, z represent the discrete-time complex frequency, and ω

represents the corresponding (normalized) real frequency-variable. In addition, let

θ and φ represent the passband and stopband edge frequencies of Fa(e
jω), and let

δ = θ − φ represent the transition bandwidth associated with Fa(e
jω). Fb(e

jω)

represents a magnitude complementary counterpart of Fa(e
jω) in accordance with

|Fa(e
jω) + Fb(e

jω)| = 1 (2.5)

Moreover, F0(z) and F1(z) represent FIR masking digital subfilters while Fa(z
M )

and Fb(z
M ) represent M -fold interpolated versions of Fa(z) and Fb(z), respectively.

For a linear-phase filter Fa(z) of order N
FIR

, the relationship between Fb(z) and

Fa(z) is as follows:

Fb(z) = z(N
FIR

+1)/2 − Fa(z) (2.6)

and hence Fb(z) can be implemented by subtracting the output of Fa(z) from the

delayed version of the input, as shown in Fig. 2.2.

Figure 2.2: Block Diagram Representation of Frequency-Response Masking
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The FRM FIR digital filter in Fig. 2.1 has an overall transfer function

F (z) = Fa(z
M )F0(z) + Fb(z

M )F1(z) (2.7)

The masking digital subfilters F0(z) and F1(z) are employed to suppress the un-

wanted image bands produced by the interpolated digital subfilters Fa(z
M ) and

Fb(z
M ). The masking filters are made to have equal order (by zero padding) in

order to ensure that their phase characteristics are similar. The interpolated digi-

tal subfilters Fa(z
M ) and Fb(z

M ) can realize transition bands which are a factor of

M sharper (i.e. δ/M) than those of Fa(z) and Fb(z), without increasing the num-

ber of required non-zero digital multipliers. Consequently, this technique produces

overall filters with very sparse coefficients and so the resulting filter has very low

computational complexity.

The magnitude frequency-responses of the various subfilters incorporated by the

FRM FIR digital filter design approach are shown in Fig. 2.3. Here, Case I design

is when the transition band of F (z) is extracted from that of Fa(z
M ). Similarly,

Case II design refers to the case in which the transition band of F (z) is extracted

from that of Fb(z
M ).

The edge frequencies of the the overall digital FIR filter and its constituent

subfilters is given in Table 2.1, where K represents an integer value that determines

the number of image lobes to be masked.

In this thesis, the conventional FRM FIR digital filter is replaced by an FRM

digital filter incorporating IIR digital interpolation subfilters. The details of the

design of an FRM IIR digital filter are given in Section 3.3.

2.3 CSD Number System and Quantization Errors

As mentioned in the previous chapter, from a hardware implementation point of

view, a suitable design employs finite-wordlength multiplier coefficients with sparse

non-zero coefficients. In this thesis, we choose the very commonly used CSD num-

ber system. Subsequently, DCGA optimization is carried out using a LUT-based

scheme, where the LUTs consists of permissable CSD multiplier coefficients.

Care must be taken in making the LUTs, since making it too few entries would

result in large quantization errors in the multiplier coefficients, thereby not permit-
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Figure 2.3: Magnitude Frequency-Response of Frequency-Response Masking Digital
Filters

ting the DCGA optimization to converge to a filter satisfying design specifications.

Conversely, making the LUTs too many entries greatly increase the solution space,
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Table 2.1: Edge Frequencies of the Overall FRM FIR filter and Masking Subfilters

Filter Passband Edge Stopband Edge

Case I

H(z) (2Kπ + θ)/M (2Kπ + φ)/M

F0(z) (2Kπ + φ)/M (2(K + 1)π − φ)/M

F1(z) (2Kπ − θ)/M (2Kπ + θ)/M

Case II

H(z) (2Kπ − φ)/M (2Kπ − θ)/M

F0(z) (2(K − 1)π + φ)/M (2Kπ − φ)/M

F1(z) (2Kπ − θ)/M (2Kπ + θ)/M

and this slows down the rate of convergence of the DCGA optimization.

Let us consider a FRM digital filter consisting of CSD multiplier coefficients

m̂
FRM

∈ CSD(W,w), where CSD(W,w) represents the set of all possible CSD

numbers having a wordlength of W digits and a maximum number of w non-zero

digits. In this way, the CSD multiplier coefficients m̂
FRM

can be expressed in the

general form

m̂
FRM

=
W∑

n=1

Dn × 2(R−n) (2.8)

and satisfying the constraints

Dn ∈ {−1, 0, 1} (2.9)

Dn × Dn+1 = 0 (2.10)

W∑

n=1

|Dn| ≤ w (2.11)

with R representing a fixed value radix-point in the range 0 < R < W . Constraint

(2.10) implies

max [w] = W/2 for even W

max [w] = (W + 1)/2 for odd W
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The choice of radix-point R for the LUTs depends upon the largest multiplier

coefficient m
FRM

, and can be easily determined. Setting values for W and w is

more complicated, and depend on the passband and stopband ripple specification

and stopband frequency of the overall FRM digital filter F (z), as well as the order

and stopband frequency of the interpolation digital subfilter Fa(z). The greater the

restriction on passband and stopband ripples, the higher is the required resolution

of the LUTs (i.e. LUTs having a lower average quantization from infinite-precision

to finite-precision domain). Higher resolution LUTs can be generated by increasing

the wordlength W , as shown in Fig. 2.4, or the maximum number of non-zero digits

w, as shown in Fig. 2.5.

Figure 2.4: Worst Case Normalized Quantization with w = 3

Looking at Fig. 2.4, it is seen that the worst case normalized CSD quantization

is not very sensitive to changes in W , especially after 8 bits. Therefore, it may

be necessary to increase w in addition to increasing W in order to have a LUT

resolution great enough to achieve desired filter specifications after optimization.

But while the worst case quantization is highly sensitive to w, as seen in Fig. 2.5,

increasing w is much more detrimental to hardware efficiency than simply increasing

W , and w is therefore kept minimal. Note should be made that in the case of IIR

interpolation digital subfilter the passband sensitivity to quantization is very low.

Therefore, if the passband ripple specification is tight, it usually translates into
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Figure 2.5: Worst Case Normalized Quantization Error with W = 11

requiring a higher resolution LUT for the FIR masking digital subfilters. If the

stopband ripple specification is strict, the LUTs for both the interpolation digital

subfilters and the FIR masking digital subfilter need to have a high resolution.

CSD LUTs with a limited value of w have a non-uniform distribution, which

means that the quantization error isn’t constant over the CSD range. Fig. 2.6

shows how the quantization error is distributed over a representative normalized

CSD range. As can be seen, the worst case quantization increases as it advances

from the least significant to the most significant end of the CSD number range.

This pattern remains more or less the same regardless of the chosen values of W

or w. This quantization pattern plays an important role in deciding what values

of W and w while building the required LUTs. If, for instance, F (z) is to have

a wide band, then the corresponding FIR masking filters F0(z) and F1(z) are also

wideband. This in turn results in a large central multiplier coefficient compared

to the rest of the coefficient values. Since the most significant values of the CSD

range are more sparsely spread, this large multiplier coefficient usually has a high

quantization error going from the infinite-precision to a finite precision value. A

wideband F (z) therefore normally requires large values of W and/or w to reach an

acceptably low ripple size as compared to a narrowband F (z).

Similarly, the required resolution for the LUTs also depends upon the stopband
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Figure 2.6: Worst Case Quantization with W = 9 and w = 2

edge specification of the interpolation filter Fa(z), which in turn depends on fre-

quency edge specifications of F (z) and the interpolation factor M . The larger the

stopband edge of Fa(z), φ, the greater is the value of its central multiplier coeffi-

cient. Therefore, φ is kept low by choosing an appropriate value of M . (It should

be noted, however, that if φ is made excessively low, it results in very large order

FIR masking digital subfilters.)

2.4 Summary

A brief background of the basic concepts pertaining to this thesis were presented in

this section. Distinctions were made between analog and digital filters, as well as

between the FIR and IIR digital filters. An overview of the conventional FRM digital
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filter design technique, using only FIR digital subfilters, was presented. Finally, the

CSD number system was discussed, with particular reference to size of CSD LUTs

required in order to satisfy design specifications.
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Chapter 3

Design of FRM Filters
Incorporating Bilinear-LDI
Digital Subfilters

This chapter discusses in detail the design, realization and discrete optimization

of FRM digital filters employing IIR interpolation digital subfilters. The IIR digi-

tal subfilter design topology consists of a parallel combination of a pair of allpass

networks such that its frequency-magnitude response matches that of an odd order

elliptic minimum Q-factor (EMQF) transfer function. This design is realized using

the bilinear-LDI approach, with multiplier coefficients represented as finite-precision

CSD numbers.

The above resulting digital filter is optimized over the discrete multiplier coef-

ficient space, resulting in an FRM digital filter which is capable of direct imple-

mentation in digital hardware without any need for further optimization. A general

set of constraints is derived in terms of multiplier coefficients to guarantees that

the IIR bilinear-LDI interpolation digital subfilters remain BIBO stable throughout

the course of DCGA optimization. Particular attention is given to ensuring that

the overall FRM digital filter is automatically (i.e. without the need for constantly

checking digital filter chromosomes) BIBO stable throughout the course of optimiza-

tion procedure. To this end, a novel worst-case LUT-based system is proposed.

This chapter proceeds as follows. Section 3.1 describes the design procedure for

FRM filters incorporating IIR interpolation digital subfilters and discusses formation

of power complementary filter pairs through the use of a parallel allpass digital
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network realization. Section 3.2 outlines the special type elliptic filters used for

the design of FRM digital filters. Section 3.3 presents the design methodology

for implementing an allpass network using the bilinear-LDI approach. Section 3.4

introduces a novel set of stability constraints that guarantee the BIBO stability

of digital filters described in Section 3.3. Section 3.5 presents a novel LUT-based

scheme that allows the DCGA to maintain BIBO stability of every chromosome

throughout the optimization process. Section 3.6 outlines in detail the design and

DCGA optimization of FRM digital filters incorporating bilinear-LDI based IIR

digital subfilters. Finally, Section 3.7 provides a summary of this chapter.

3.1 Design of FRM Digital Filters Incorporating IIR
Interpolation Digital Subfilters

In the case of FRM digital filters with IIR interpolation digital subfilters, the FIR

interpolation subfilters Fa(z) and Fb(z) (see Section 2.2) are replaced by IIR inter-

polation subfilters Ha(z) and Hb(z). The masking filters F0(z) and F1(z) are not

changed (i.e. they are still equal order FIR digital filters). Then, the FRM IIR

digital filter has an overall transfer function given by:

H(z) = Ha(z
M )F0(z) + Hb(z

M )F1(z) (3.1)

The IIR interpolation filter Ha(z) is chosen to have an odd-order N
IIR

. It is

shown in [24] that odd-order elliptic transfer function can be represented as a sum

of or difference between two allpass transfer functions. Therefore, Ha(z) is realized

as an addition of two allpass digital networks G0(z) and G1(z):

Ha(z) =
G0(z) + G1(z)

2
(3.2)

where G0(z) is odd-ordered and G1(z) is even ordered. It so happens that the

difference between G0(z) and G1(z) results in a filter that is power complementary

to Ha(z), and can therefore be used as the complementary interpolation subfilter

Hb(z).

Hb(z) =
G0(z) − G1(z)

2
(3.3)

It can be easily verified that Ha(z) and Hb(z) are power complementary and
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satisfy the following relationship [9]:

|Ha(e
jω)|2 + |Hb(e

jω)|2 = 1 (3.4)

In addition, it is well known that this is the most economical implementation

since it requires a total of only N
IIR

multiplier coefficients to realize both Ha(z)

and Hb(z) (effectively halving the number of multiplier coefficients required). The

block diagram in Fig. 3.1 shows the IIR interpolation digital subfilters realized as

a parallel combination of two allpass networks. Fig. 3.2 shows an overall FRM IIR

digital filter realization.

Figure 3.1: Block Diagram of Interpolation and Complementary Filters as a Parallel
Combination of Two Allpass Networks

Figure 3.2: Block Diagram of the Overall FRM IIR Digital Filter

The structure in Fig. 3.2 can be rearranged in the following way. Using Eqs.

(3.2-3.3), the overall transfer function of H(z) given by Eqn. (3.1) can be expressed

as:

H(z) =
G0(z

M ) + G1(z
M )

2
F0(z) +

G0(z
M ) − G1(z

M )

2
F1(z) (3.5)
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Let

A(z) =
F0(z) + F1(z)

2
(3.6)

B(z) =
F0(z) − F1(z)

2
(3.7)

Then H(z) simplifies to

H(z) = G0(z
M )A(z) + G1(z

M )B(z) (3.8)

The block diagram representing Eqn. (3.8) is shown in Fig. 3.3

Figure 3.3: Alternative Block Diagram of the Overall FRM IIR Digital Filter

The advantage of realizing the IIR based FRM digital filter as shown in Fig.

3.3 is that two adders shown in Fig. 3.2 are no longer required. This amounts to

a simplification in hardware implementation. However, it should be pointed out

that the FIR masking filters F0(z) and F1(z) are made to be equal order using zero

padding, and this results in the masking filters being moderately sparse. This is not

the case when A(z) and B(z) are used instead. Therefore, the gain in hardware that

could be achieved by using the realization in Fig. 3.3 is offset by a greater number

of non-zero multiplier coefficients required.

3.2 Using Elliptic Filters with Minimum Q-factor (EMQF)
to Realize the IIR Interpolation Digital Subfilters

As mentioned in the Chapter 2, bilinear-LDI falls into the category of digital filter

realization techniques that require a corresponding analog reference filter. To this

end, a suitable analog reference filter Ha(s) and its complement Hb(s) have to be

determined in order to derive the multiplier coefficients of the IIR interpolation dig-

ital subfilters Ha(z) and Hb(z). This section discusses how to generate the transfer
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functions of the suitable analog reference filters Ha(s) and Hb(s), where s is the ana-

log frequency domain variable. Once Ha(s) and Hb(s) have been determined, the

interpolation digital subfilters Ha(z) and Hb(z) are derived by using bilinear-LDI

technique (see Section 3.3).

As indicated by Eqn. (3.4), the squared ripple in the passband region of Ha(s) is

equal to the squared ripple in the stopband region of Hb(s). Similarly, the squared

ripple in the stopband region of Ha(s) is equal to the squared ripple in the pass-

band region of Hb(s). Also, depending on whether the design specifications require

a Case I or Case II FRM technique, either Ha(s) or Hb(s) could determine the

maximum passband and stopband ripple of the overall FRM IIR digital filter H(z).

Consequently, the interpolation filter Ha(s) is chosen to have equal passband and

stopband squared tolerances. In this way, the resulting Hb(s) also displays equal

passband and stopband squared tolerances. Such filters fall under a special class of

elliptic filters called EMQF.

An EMQF filter has all its s domain poles around a circle and so that its poles

have equal magnitudes. While filters having EMQF transfer functions are maximally

insensitive to component variations, they do at the expense of not being able to

independently specify passband and stopband ripples [25],[26]. Additionally, EMQF

filters have exceedingly low passband attenuation. Given a squared passband and

stopband tolerance of δp and δa, respectively, for an EMQF filter, the passband

ripple Rp and minimum stopband attenuation Ra are related by [8]:

Rp = −10 log(1 − δp) (3.9)

Ra = −10 log(δa) (3.10)

The required passband and stopband edge frequencies for the analog reference

filter Ha(s) can be determined using design specifications along with Table 2.1. Fre-

quency wrapping from digital to analog domain, and vise versa, has to be accounted

for in accordance with

ΩA =
2

T
tan(

ωdT

2
) (3.11)

where ΩA is the analog frequency variable, ωd is the digital frequency variable,and

T represents the sampling period.
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Once the transfer function of the analog reference filter Ha(s) (and its comple-

ment Hb(s)) is determined, it is represented as a sum (and difference, respectively)

of two allpass analog filters G0(s) and G1(s). The poles of G0(s) and G1(s) are

determined by cyclically distributing the poles of the prototype filter Ha(s) [8], in

accordance with Fig. 3.4.

Figure 3.4: Distribution of the s-Plane Poles of Ha(s)

The real pole belongs to G0(s), making it an odd-ordered allpass function, while

G1(s) ends up an even-ordered allpass function. The zeros are then chosen to adhere

to the general form of an allpass transfer function [5]

G(s) =
P (−s)

P (s)
(3.12)
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where P (s) is a Hurwitz polynomial of order, say, ñ. Moreover, P (s) is expressed as

P (s) = EvP (s) + OdP (s) (3.13)

where EvP (s) denotes the even and OdP (s) denotes the odd part of P (s).

3.3 Implementation of EMQF Interpolation Subfilters
Using Bilinear-LDI Design Approach

In this section, the bilinear-LDI approach is used to design physically realizable

digital filters G0(z) and G1(z). The design procedure is given in [5], [27] and is

briefly included here for completeness.

The bilinear frequency transformation is given by

s =
2

T

z − 1

z + 1
(3.14)

where T represents the sampling period, for mapping the transfer function of a pro-

totype reference filter from the analog domain (represented by the analog frequency-

variable s) to the digital domain (represented by digital frequency-variable z). The

bilinear frequency transform is well known for its characteristic ability of preserving

the BIBO stability (in infinite wordlength) and sensitivity properties of the analog

prototype reference filter. Unfortunately, care has to taken to ensure that there are

no delay-free loops using this technique.

The LDI frequency transformation is given by

s =
1

T

(

z
1
2 − z−

1
2

)

(3.15)

and it maps the hardware realization of the prototype reference filter from the analog

to digital domain. While the LDI frequency transformation ensures the absence of

delay-free loops in the digital implementation, it results in a digital filter having

poor magnitude-frequency responses.

The bilinear-LDI technique is a combination of the two above mentioned realiza-

tion schemes. The method essentially consists of the application of the conventional

LDI design technique to a network resulting from a pre-compensated analogue pro-

totype filter. The pre-compensation is such that the application of the LDI design
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technique results in a filter that exactly matches the bilinear frequency transform

of the original (un-compensated) analogue prototype filter.

The resulting bilinear-LDI digital filters themselves have the following desirable

features from a hardware realization perspective:

• They are minimal in the number of digital multiplication operations and prac-

tically minimal in the number of digital adders and unit-delays.

• They lend themselves to fast two-cycle parallel digital signal processing speeds.

• They exhibit exceptionally low passband sensitivity to their multiplier coeffi-

cient values, permitting small coefficient wordlengths.

As discussed in Section 3.2, the analog reference filter Ha(s) is decomposed into

two allpass analog networks G0(s) and G1(s). The allpass digital networks G0(z) and

G1(z) are obtained from G0(s) and G1(s) using the bilinear-LDI design technique

as follows.

By simple manipulation of Eqns. (3.12) and (3.13) we get

G(s) = K̃
1 − Z(s)

1 + Z(s)
(3.16)

Here, K̃ = 1 or -1, and Z(s) is a realizable reactive impedance given by

Z(s) =







OdP (s)
EvP (s) for even ñ

EvP (s)
OdP (s) for odd ñ

(3.17)

where ñ is the order of G(s) (odd when realizing G0(s) and even when realizing

G1(s)). Thus the impedance Z(s) has a zero at s = 0 for even ñ and a pole at s = 0

for odd ñ, while having a zero at s = ∞ both for even ñ and odd ñ.

The bilinear-LDI digital realization of G(s) is achieved through the following

four steps:

• Step 1 :The transfer function G(s) is decomposed in the form

G(s) = 1 − 2g(s) (3.18)

where

g(s) =
Z(s)

1 + Z(s)
(3.19)
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Figure 3.5: Realization of G(s): (a) Signal-flow graph of G(s), (b) Realization of
g(s) as a voltage divider, (c) Realization of Z(s) as a Foster II canonical impedance

Here, G(s) can be realized as the transfer function of the signal-flow graph in

Fig. 3.5a. Furthermore, g(s) represents a lowpass or highpass analog filter that

can be realized as the transfer function of the voltage divider network in Fig.

3.5b. Finally, Z(s) represents realizable reactances (consisting of capacitors

and inductors only) and can be decomposed into its Foster II canonical form,

39



as in Fig. 3.5c, in accordance with

Z(s) =
1

Y (s)
(3.20)

Y (s) = sC1 +
1

sL1
+

m∑

i=2

sCi

s2CiLi + 1
(3.21)

where m = ñ/2 for even ñ and m = (ñ+1)/2 for odd ñ, and where Cp represent

capacitances and Lp represent inductances (for p = 1, 2, · · · , m), and inductor

L1 is only present for even ñ.

• Step 2 : Pre-compensation is applied to the resulting network. This amounts

to a modification of circuit elements in accordance with

V
′

A1(s) =
VA1(s)

1 − sT/2
(3.22)

r
′

0 = r0 ∗ z1/2 (3.23)

and

L
′

1 = L1 (3.24)

C
′

1 = C1 +
T

2
+

T 2

4L1
+

m∑

i=2

Ci
T 2

4Li

Ci + T 2

4Li

(3.25)

L
′

i = Li

[

Ci + T 2

4Li

Ci

]2

(3.26)

C
′

i =
C2

i

Ci + T 2

4Li

(3.27)

with r0 = 1Ω and for i = 2, 3, ...,m

• Step4 : The analog integrators in the signal-flow graph of the pre-compensated

network are replaced by LDI digital integrators, and the resulting network is

scaled by z−1/2 to eliminate any half-delays. The resulting digital network is

displayed in Fig. 3.6. The multiplier coefficients here are given by

mLp =
T

L′

p

(3.28)

mCp =
T

C ′

p

(3.29)

for p = 1, 2, ..., m
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Figure 3.6: Realization of G(z)

3.4 Constraints for Guaranteed BIBO Stability

In order for the FRM digital filter consisting of CSD multiplier coefficients m̂
FRM

to be BIBO stable, it is both necessary and sufficient for the bilinear-LDI IIR in-

terpolation subfilters Ha(z) and Hb(z) to be BIBO stable. Similarly, in order for

the interpolation subfilters Ha(z) and Hb(z) to be BIBO stable, it is both necessary

and sufficient for the bilinear-LDI allpass digital networks G0(z) and G1(z) be BIBO

stable. In this way, it is required that the bilinear-LDI digital allpass networks G0(z)

and G1(z) remain BIBO stable throughout the course of the DCGA optimization

over the CSD multiplier coefficient space CSD(W,w).

In the course of DCGA optimization, the infinite-precision multiplier coefficients

mLp and mCp can only take quantized values m̂Lp and m̂Cp. By taking into account

the mapping properties of the bilinear analog-to-digital frequency transformation, in

order for the bilinear-LDI digital allpass networks G0(z) and G1(z) to remain BIBO

stable, it required that the values of the corresponding reactive elements L̂p and Ĉp

remain positive [28]. To this end, in accordance with Eqns. (3.28) and (3.29), one

has

L̂
′

p =
T

m̂Lp
(3.30)

Ĉ
′

p =
T

m̂Cp
(3.31)

Moreover, in accordance with Eqns. (3.24)-(3.27), one has

L̂
′

1 = L̂1 (3.32)
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Ĉ
′

1 = Ĉ1 +
T

2
+

T 2

4L̂1

+
m∑

i=2

Ĉi
T 2

4L̂i

Ĉi + T 2

4L̂i

(3.33)

L̂
′

i = L̂i




Ĉi + T 2

4L̂i

Ĉi





2

(3.34)

Ĉ
′

i =
Ĉ2

i

Ĉi + T 2

4L̂i

(3.35)

where L̂1 = ∞ for odd-ordered allpass network G0(z).

By substituting Eqns. (3.30) and (3.31) into Eqns. (3.32)-(3.35), and by solving

the resulting equations for the reactive elements L̂p and Ĉp, one can obtain

L̂1 =
T

m̂L1
(3.36)

Ĉ1 =

T

{

4
m̂C1

− m̂L1 − 4

(
m∑

i=2

1
4

m̂Li
− m̂Ci

)

− 2

}

4
(3.37)

L̂i =
T (m̂Lim̂Ci − 4)2

16m̂Li
(3.38)

Ĉi =
−4T

m̂Ci(m̂Lim̂Ci − 4)
(3.39)

From Eqns. (3.36)-(3.39), L̂p > 0 and Ĉp > 0 provide that

m̂L1 > 0 (3.40)

m̂Li > 0 (3.41)

m̂Ci <
4

m̂Li
(3.42)

m̂C1 <
4

{

m̂L1 + 4

(
m∑

i=2

1
4

m̂Li
− m̂Ci

)

+ 2

} (3.43)

Then, in order to make the CSD FRM digital filter BIBO stable, it is necessary

and sufficient to choose the values of the multiplier coefficients m̂
FRM

∈ CSD(W,w)

such that the inequality constraints (3.40)-(3.43) are satisfied. The equations and

corresponding condition required for BIBO stability are summarized in Table 3.1.
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Table 3.1: Relations for Elements of Back-Transformed Reactance

Element Equation Inequality Constraints

L̂1
T

m̂L1
m̂L1 > 0

Ĉ1

T











4
m̂C1

−m̂L1−4







m∑

i=2

1
4

m̂Li
− m̂Ci






−2











4 m̂C1 < 4

{

m̂L1 + 4

(
m∑

i=2

1
4

m̂Li
− m̂Ci

)

+ 2

}−1

L̂i
T (m̂Lim̂Ci−4)2

16m̂Li
m̂Li > 0

Ĉi
−4T

m̂Ci(m̂Lim̂Ci−4) m̂Ci
< 4 (m̂Li)

−1

In order to make the CSD lowpass digital IIR FRM filter BIBO stable, it is

necessary and sufficient to choose the values of the multiplier coefficients m̂Li, m̂Ci ∈
CSD(W,w) such that the inequality constraints of Table 3.1 are satisfied.

It should be pointed out that constraint (3.42) is most stringent when m̂Li is at

its largest possible value. Similarly, constraint (3.43) is most stringent when m̂L1,

m̂Li and m̂Ci are all at their largest possible values (while m̂Li and m̂Ci still adhere

to constraint m̂Ci < 4 (m̂Li)
−1).

3.5 Generation of CSD LUTs

The proposed DCGA optimization of BIBO stable FRM digital filters is carried

out over the CSD multiplier coefficient space CSD(W0 or 1, w0 or 1), where W0 or 1

represents the multiplier coefficient wordlength, and where w0 or 1 represents the

maximum number of non-zero digits (for FIR or IIR digital subfilters, respectively).

The multiplier coefficients values are taken from a set of CSD LUTs which are

constructed as follows [11]:

• One LUT is constructed for all multiplier coefficient values m̂
FIR

∈ CSD(W0, w0)

for the masking digital subfilters F0(z) and F1(z). The values of W0 and w0

are determined empirically based on the amplitude frequency-response of the

masking digital subfilters F0(z) and F1(z).

• N
IIR

− 2 LUTs are constructed for all multiplier coefficient values m̂
IIR

∈
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CSD(W1, w1) except for m̂C1 in the allpass digital networks G0(z) and G1(z).

That is, one LUT is constructed to include all permissible CSD values for the

multiplier coefficient m̂L1 ∈ CSD(W1, w1) of G1(z) in inequality constraint

(3.40), and N
IIR

−3 LUTs are constructed to include all permissible CSD values

for the multiplier coefficients m̂Li ∈ CSD(W1, w1) and m̂Ci ∈ CSD(W1, w1)

of G0(z) and G1(z) in the inequality constraints (3.41) and (3.42). Once again,

the values of W1 and w1 are determined empirically. Also, it is expedient to

assume that m̂
IIR

have only positive values.

• Unlike the inequality constraints (3.40)-(3.42), the inequality constraint (3.43)

for the multiplier coefficient m̂C1 involves more than one other multiplier co-

efficient. To circumvent this problem, let us replace the inequality constraint

(3.43) by a corresponding equality constraint in accordance with

m̂C1 =
4

{

m̂L1 + 4

(
m∑

i=2

1
4

m̂Li
− m̂Ci

)

+ 2

} − ε (3.44)

where ε is a positive infinite-precision slack variable. Then the problem under

consideration amounts to a judicious selection of ε > 0 . In this way, one

can bypass any direct reference to the value of the multiplier coefficient m̂C1.

Instead, one can incorporate the value of the slack variable ε as a gene in the

construction of the FRM digital filter chromosome. This is best facilitated by

replacing the slack variable ε by a corresponding finite-precision counterpart

ε̂, and by representing ε̂ by a binary number having a suitable wordlength.

Then, the equality constraint (3.44) is replaced by the best approximation

m̂C1 ∈ CSD(W1, w1)

≈ 4
{

m̂L1 + 4

(
m∑

i=2

1
4

m̂Li
− m̂Ci

)

+ 2

} − ε̂ (3.45)

One ε̂ is required for each of the allpass digital networks G0(z) and G1(z).

Unfortunately, introducing the slack variables causes certain problems. For in-

stance, the multiplier coefficient being represented by the slack variable could possi-

bly undergo unwanted changes as a result of changing other multiplier coefficients,
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even if the slack variable remains fixed. In addition, there often tends to be a many-

to-one mapping between the slack variable and the multiplier coefficient it repre-

sents, since the slack variable is binary and the rest of the multiplier coefficients are

CSD. This causes redundancy during the optimization process. Moreover, a lot of

unnecessary operations (e.g. conversion of the binary slack variable to its decimal

value) are involved.

In order to circumvent the problems mentioned above, a novel LUT-based ap-

proach is described here. The salient feature of the proposed LUT scheme is that it

makes no recourse to slack variables for referencing the values of the CSD multiplier

coefficients, while still satisfying all constraints necessary to guarantee BIBO sta-

bility of the overall FRM digital filter. The multiplier coefficients values are taken

from a set of CSD LUTs which are constructed as follows:

• One LUT is constructed for all multiplier coefficient values m̂
FIR

∈ CSD(W0, w0)

for the masking digital subfilters F0(z) and F1(z).

• A template LUT is constructed for all multiplier coefficient values m̂
IIR

∈
CSD(W1, w1) for the digital allpass networks G0(z) and G1(z). Once again,

it is expedient to assume that m̂
IIR

have only positive values.

• The template CSD LUT is used to form one size-reduced LUT per multi-

plier coefficient for digital allpass networks G0(z) and G1(z), where each size-

reduced LUT initially includes CSD values bounded from below by the smallest

representable value belonging to CSD(W1, w1), and from above by the cor-

responding value of the finite-wordlength seed coefficient. The size-reduced

LUTs are augmented before DCGA optimization process commences. The

purpose of this augmentation is to ensure that the exploration space include

as many of those CSD multiplier coefficients m̂L1, m̂C1, m̂Li and m̂Ci which

still satisfy the BIBO stability constraints (3.40)-(3.43). A total of N
IIR

size-

reduced LUTs are formed.

If necessary, the above LUTs are increased in size in such a manner that the

number of CSD values in each LUT is a power-of-two. Then, the indices into the

CSD LUT in each LUT can be represented by a finite wordlength binary number,

and the resulting index sets become automatically closed under genetic operations.
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Having constructed the above LUTs at the outset, they remain fixed throughout

the course of DCGA optimization. In this way, FRM digital filter chromosomes are

formed by concatenating the binary indices into the corresponding CSD LUTs for

the constituent multiplier coefficients.

3.6 Design Methodology

The design methodology for the proposed DCGA optimization of BIBO stable

bilinear-LDI based FRM digital filters over the CSD multiplier coefficient space

can be summarized as follows:

1. Designing the IIR interpolation digital subfilter : the first step in determining

the interpolation subfilter specifications is to fix the interpolation factor M

from a pre-specified range. This is done in a way that the order of the FIR

masking filters is kept minimal. Using the passband edge frequency ωp and

stopband edge frequency ωa and the expressions for boundary frequencies given

in Table 2.1, one can determine the filter case and calculate the approximate

passband edge θ̃ and stopband edge φ̃ of the digital interpolation lowpass

subfilter H(ejω), for every value of the user specified range of interpolation

factors M . The order of the FIR masking filters depends on the minimum

distance between consecutive image replicas of either the interpolated subfilter

Ha(e
jMω) or its complement Hb(e

jMω). Then, displacement λM and distance

D̃M for each interpolation factor M are given as:

λM = max[|(π
2
− θ̃)|, |(π

2
− φ̃)|] (3.46)

D̃M =
π

M
− 2λ

M
(3.47)

To minimize the length of FIR-masking filters, the value of M that results in

the largest value of D̃M is chosen. This determines the optimal interpolation

factor M as well as the approximate passband edge θ̃ and stopband edge φ̃ of

the digital interpolation subfilter H(ejω).

EMQF filters have the property of equal square magnitude ripple size in the

passband and stopband. Therefore, of the two ripple specifications, whichever

gives the smallest tolerance in the squared magnitude response determines
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both the passband ripple Rp and stopband ripple Ra of the interpolation dig-

ital subfilter Ha(e
jω). The interpolation digital subfilter order N

IIR
is then

determined using Rp, Ra, θ̃ and φ̃. N
IIR

must be rounded to the nearest larger

odd integer so that it can be implement by a parallel combination of two all-

pass networks. With the order N
IIR

, and passband and stop band ripples Rp

and Ra fixed, the ratio of the analog passband edge θA and stopband edge φA

is a constant k given by [29]

D =
100.1Ra − 1

100.1Rp − 1
(3.48)

q = 10
− log(16D)

N
IIR (3.49)

q = q0 + 2q5
0 + 15q9

0 + 150q13
0 (3.50)

kp =

[
1 − 2q0

1 + 2q0

]2

(3.51)

k =
√

1 − k2
p (3.52)

In order to satisfy to the passband edge specification, the digital passband

edge θ = θ̃ for Case I filters. The digital stopband edge φ is then determined

using the analog ratio k. (Here, frequency warping from digital to analog

domain, and vise versa, given by Eqn. (3.11) needs to be taken into account

.) Similarly, φ = φ̃ for Case II filters, and θ can be determined by using ratio

k. Also, using given ripple specifications along with the boundary frequencies

described in Table 2.1, one can determine the transfer function of the FIR

masking filters F0(e
jω) and F1(e

jω).

2. Generation of seed FRM digital filter chromosome: The seed FRM digital

filter chromosome is formed in an ordered manner by concatenating:

• A block of B
IIR

bits serving as the binary index into the corresponding

CSD LUT for each multiplier coefficient in the bilinear-LDI allpass digital

networks G0(z) and G1(z) (except for the multiplier coefficient m̂C1 in

case when a slack variable is used) .

• A block of Bε̂ bits serving as the binary value of the slack variable ε̂, in

the case when a slack variable is used. If the worst-case LUT technique

is used this step is skipped.
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• A block of B
FIR

bits serving as the binary index into the correspond-

ing CSD LUT for each multiplier coefficient in the FIR masking digital

subfilters F0(z) and F1(z).

In this way, each of the above blocks of bits forms a gene in FRM digital filter

chromosome.

3. Generation of Initial Population Pool : An initial population pool of N chro-

mosomes is formed by scanning the FRM digital filter seed chromosome suc-

cessively one gene at a time, and by randomly flipping the bits in the ρ-th bit in

a given gene in accordance with the probabilistic relationship p
F
× 0.5Bρ+1−bρ

(with bρ representing the current bit position within the gene, and with Bρ

representing the wordlength of the gene), where p
F

is a fixed probability factor.

4. Formation of the Next Generation Population Pool : The current population

pool P (t) of size N is replaced by an enlarged population pool P̂ (t) of size 2N

by using the following genetic operations:

• Crossover Operations: Chromosomes in the population pool P (t) are

randomly paired as parents in such a manner that each chromosome is

chosen only once as a parent. The resulting parent chromosome pairs

undergo two-point crossover operations, reproducing two offspring for

each parent pair. The resulting offspring are then combined with the

initial population pool P (t) to form the enlarged population pool P̂ (t).

• Mutation Operations:A few chromosomes (determined by a small muta-

tion probability p
M

) in the enlarged population pool P̂ (t) undergo mu-

tation operation by randomly flipping their bits to enhance diversity.

Any resulting duplicate chromosomes are eliminated so as to maintain diver-

sity, and the chromosomes in the enlarged population pool P̂ (t) are ranked by

evaluating their fitness values. The next generation population pool of P (t+1)

is then formed by using the CPSS scheme.

5. Fitness Evaluation: The fitness of each of the resulting FRM digital filter

chromosomes in the enlarged population pool P̂ (t) is evaluated in accordance
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with

fitnessmagnitude = −20log[max(εp, εa)] (3.53)

fitnessgroup−delay = ςp (3.54)

fitness = fintessmagnitude − fitnessgroup−delay (3.55)

where

εp = max
︸︷︷︸

ω∈∆ωp

[Wp|H(ejω) − 1|] (3.56)

εa = max
︸︷︷︸

ω∈∆ωa

[Wa|H(ejω)|] (3.57)

ςp = max
︸︷︷︸

ω∈∆ωp

[Wgd|τ(ω) − µτ |] (3.58)

with ∆ωp representing the passband frequency regions, ∆ωp representing the stop-

band frequency region, and τ(ω) representing the group-delay frequency response of

the FRM digital filter. Here, Wp, Wa, and Wgd represent the passband, stopband,

and group delay weighting factors, and µτ being the average group delay over the

passband region.

The group-delay of H(ejω) is given by

TG(ω) = −Im

{
1

H(ejω)

dH(ejω)

dω

}

(3.59)

The passband weighting factors Wp and stopband weighting factors Wa, are

easily determined from user specifications. The group-delay weighting factor is

formulate as

Wgd =
ζ × fitnessmagnitude

fitnessgroup−delay
(3.60)

where ζ is a fixed constant such that 0 < ζ < 1, and where fitnessmagnitude and

fitnessgroup−delay are determined from the seed FRM digital filter chromosome.

The importance of group-delay in the optimization increases as ζ → 1.

In Section 5.1, Section 5.2 and Section 5.3 examples illustrating the DCGA

optimization of the design procedure described above are presented. Comparisons

are made between the two methods to generate CSD LUTs, namely, the LUT-based

approach that employs slack variables, and the worst-case LUT approach.
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3.7 Summary

In this section, the design and DCGA optimization of a FRM digital filter having

IIR interpolation digital subfilters is discussed. The IIR interpolation subfilters are

chosen from a special class of elliptic filters having EMQF transfer function, and

are designed in an efficient manner using the addition and subtraction of allpass

networks. The allpass networks are realized using the bilinear-LDI design technique.

The BIBO stability criterion for a general order bilinear-LDI allpass network is

derived in terms of the constituent multiplier coefficients. Automatic BIBO stability

of the FRM digital filter is guaranteed by means of a novel LUT scheme that uses

the mentioned BIBO stability criterion. Finally the DCGA optimization procedure

is discussed in detail, with particular reference to the novel cost-function that is

capable of simultaneously optimizing both magnitude-frequency and group-delay

frequency response.

50



Chapter 4

Design of FRM Filters
Incorporating Lattice Wave
Digital Subfilters

In the previous chapter, the design and DCGA optimization of FRM digital filters

incorporating bilinear-LDI allpass networks was described. This chapter discusses

in detail the design, realization and discrete optimization of FRM digital filters

employing lattice WDF interpolation digital subfilters. The IIR digital subfilter

design topology consists of a parallel combination of a pair of allpass networks

such that its frequency-magnitude response matches that of an odd order elliptic

minimum Q-factor (EMQF) transfer function. The allpass networks are realized

using lattice WDF, with multiplier coefficients represented as finite-precision CSD

numbers.

The lattice WDF design is decomposed into first order and second order allpas

sections. These sections are then cascaded to produce the required allpass net-

work characteristics. The salient feature of this technique is that half of all the

second order allpass section multiplier coefficients can be fixed at a single, easily

implementable value. This common multiplier coefficient is independent of the filter

order and its transition bandwidth, and its value only depends on the frequency for

which the filter attenuation is 3dB. If the 3dB attenuation frequency is adjusted, the

common multiplier coefficient can be implemented using a predetermined number

of shift-and-add operations.

Subsequently, the realizable digital filter is optimized over the discrete multi-
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plier coefficient space, resulting in an FRM digital filter which is capable of direct

implementation in digital hardware without any need for further optimization. The

common multiplier coefficient does not need to be optimized, since it implemented

as an exact value (it does not undergo quantization). This reduces the number of

design variables to be optimized to half, thereby increasing the speed of convergence.

Unlike the bilinear-LDI filter implementation technique, there is no BIBO stability

issue with lattice WDFs implementation. This stems from the fact that a the lattice

WDF is composed of first and second allpass sections cascaded together, and this

simplifies the BIBO stability criteria on the multiplier coefficients.

This chapter proceeds as follows. Section 4.1 provides an overview of lattice

WDFs and contains its general transfer functions. Section 4.2 describes how lattice

WDFs are cascaded into two parallel branches of allpass networks in order to realize

the interpolation digital subfilter. Section 4.3 works out the way to halve the number

of quantized multiplier coefficients required to implement the interpolation digital

subfilter and its complement. Section 4.4 outlines in detail the design and DCGA

optimization of FRM digital filters incorporating lattice WDF based IIR digital

subfilters. Finally, Section 4.5 provides a summary of this chapter.

4.1 Overview of Lattice WDFs

The principle of WDFs are described in [6]. Only basic definitions, as given in [30],

are repeated here.

The lattice WDFs are derived from real lossless symmetric two-port equally

resistively terminated reference filters. The reference filter is an analog prototype

designed in the s-domain. The transfer function of the lattice WDF is obtained

by the bilinear transformation given by Eqn. (3.14). The relationship between the

frequencies of reference analog filter and the frequencies of the WDF is related by

Eqn. (3.11):

The wave-flow diagram of a lattice WDF is shown in Fig. 4.1. In the branches

of the lattice WDF, S1(s) and S2(s) are allpass functions. Therefore, they may be

expressed in the following general form:

S1(s) =
g1(−s)

g1(s)
(4.1)
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Figure 4.1: Wave-Flow Diagram of Lattice WDFs

and

S2(s) =
g2(−s)

g2(s)
(4.2)

where g1(s) and g2(s) are Hurwitz polynomials of, say, degrees ñ1 and ñ2, respec-

tively.

It is well known that the transfer functions that are realized by these WDFs are

given by:

S11(s) = S22(s) =
S1(s) + S2(s)

2
=

˜̃
h(s)
˜̃g(s)

(4.3)

S12(s) = S21(s) =
S2(s) − S1(s)

2
=

˜̃
f(s)
˜̃g(s)

(4.4)

where
˜̃
h(s),

˜̃
f(s) and ˜̃g(s) are polynomials in s.

In the following it is expedient to assume that ñ1 is odd and ñ2 is even. The

opposite choice would simply amount to changing the sign of Eqn. (4.4). It is seen

from Eqns. (4.1)-(4.4) that:

˜̃g(s) = g1(s) × g2(s) (4.5)

Here, ˜̃g(s) is a Hurwitz polynomial of degree ñ where ñ = ñ1+ñ2 and must therefore

always be odd.

Also, from Eqns. (4.1)-(4.4) it is clear that:

˜̃
h(s) =

g1(−s)g2(s) + g1(s)g2(−s)

2
(4.6)
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and
˜̃
f(s) =

g1(s)g2(−s) + g1(−s)g2(s)

2
(4.7)

i.e.
˜̃
h(s) and

˜̃
f(s) are even and odd degree polynomials, respectively.

It is known that the transfer functions are related at the real frequencies s = jΩ

by the Feldkeller equation:

|S11(jΩ)|2 + |S21(jΩ)|2 = 1 (4.8)

4.2 Synthesis of FRM Digital Filters Using Cascaded
Allpass Networks

As in Section 3.1, the FRM IIR digital filter has an overall transfer function given

by:

H(z) = Ha(z
M )F0(z) + Hb(z

M )F1(z) (4.9)

where Ha and Hb are a pair of power complementary filters given by:

Ha(z) =
G0(z) + G1(z)

2
(4.10)

Hb(z) =
G0(z) − G1(z)

2
(4.11)

Here, Ha(z) is chosen to have an odd-order N
IIR

, so that Ha(z) and Hb(z) can be

realized as an addition and subtraction, respectively, of two allpass digital networks

G0(z) and G1(z). This is done by cyclically distributing the poles of Ha(z) between

G0(z) and G1(z). Further, the allpass transfer functions G0(z) and G1(z) can be

expressed in the form of products of first-order and second-order rational functions

[9, 8]

G0(z) = z

[(n+3)/4]
∏

1

βi + αi(1 + βi)z
−1 + z−2

1 + αi(1 + βi)z−1 + βiz−2
(4.12)

G1(z) =

[(n+1)/2]
∏

[(n+7)/4]

βi + αi(1 + βi)z
−1 + z−2

1 + αi(1 + βi)z−1 + βiz−2
(4.13)

Eqns. (4.12) and (4.13) represent G0 and G1 as a cascade realization of allpass

networks in terms of coefficients αi and βi. If the poles of the prototype filter are

given by

zi = rie
±jθi (4.14)
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then the coefficients αi and βi are determined as [8]

β1 = 0 (4.15)

α1 = −r1 (4.16)

βi = r2
i (4.17)

αi = −2
ri cos(θi)

1 + r2
i

i > 1 (4.18)

The block diagram in Fig. 4.2 shows the FRM digital filter with the IIR inter-

polation digital subfilters realized as a parallel combination of two allpass networks.

Figure 4.2: Diagram of the FRM Digital Filter Using Cascaded Allpass Networks

The most commonly used first and second-order allpass networks using lattice

WDF design technique are shown in Fig. 4.3 and Fig. 4.4, respectively.

4.3 Using EMQF to Realize IIR Interpolation Filters
with Reduced Number of Multipliers

Since the interpolation digital subfilters Ha(z) and Hb(z) are power complementary,

in order to accommodate both Case I and Case II FRM digital filter a special class of

elliptic filters called EMQF is used (similar to the case of realization using bilinear-

LDI design technique). This keeps the interpolation digital subfilters equal-ripple

in both passband and stopband regions. Given a squared passband and stopband

55



Figure 4.3: Various First-Order Allpass Lattice WDFs

tolerance of δp and δa, respectively, for an EMFQ filter, the passband ripple Rp and

minimum stopband attenuation Ra are related by Eqns. (3.9-3.10). The required

passband and stopband edge frequencies for Ha(z) can be determined using design

specifications along with Table 2.1.

EMQF analog filters have the important property that their s-plane poles are

distributed around the circle |s| =
√

Ωa [25], where Ωa is the normalized analog

stopband edge (with respect to the analog passband edge) given by:

√

Ωa =

√

tan(πfa)

tan(πfp)
(4.19)

where fp and fa are passband and stopband edge frequencies, respectively, of the

EMQF digital filter. Also, the frequency at which the digital filter has an attenuation

of 3 dB, f3dB, corresponds in the analog filter domain to the frequency
√

Ωa and

can be determined directly from the relationship:

tan2(πf3dB) = tan(πfp) tan(πfa) (4.20)
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Figure 4.4: Various Second-Order Allpass Lattice WDFs
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By using the bilinear transform given by Eqn. (3.14), the analog poles around

the circle |s| =
√

Ωa are mapped into a circle orthogonal to the unit circle and

centered on the real axis of the z-plane, as shown in Fig. 4.5.

Figure 4.5: Pole Distribution in z-plane

The digital piles zi are inside the unit circle and are distributed around the circle

(x0, D), and intersects the unit circle at the frequency where the IIR filter has a 3

dB attenuation (z3dB). Using this fact, it is evident that x0 is related to the 3 dB

attenuation frequency, f3dB, by [9]

x0 =
1

cos(2πf3dB)
=

1 + tan2(πf3dB)

1 − tan2(πf3dB)
(4.21)

Also, the poles ri can be related to x0 in accordance with (see Fig. 4.5)

2ri cos(θi) =
1 + r2

i

x0
(4.22)
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Comparing (4.22) and (4.18) we get

α1 = −x0

(

1 −
√

1 − 1

x2
0

)

= −1 − tan(πf3dB)

1 + tan(πf3dB)
(4.23)

αi = − 1

x0
, i > 1

= − cos(2πf3dB) (4.24)

Thus, all αi can be determined solely by f3dB, and all αi of second-order sections

(i > 1) have the same value.

In summary, the poles of allpass functions G0(z) and G1(z) are determined by

cyclically distributing the poles of the interpolation digital subfilter Ha(z) [8], which

is an odd-order EMQF filter. With the poles of G0(z) and G1(z) determined, αi and

βi are determined. Further, αi and βi are related to f3dB as shown in Table 4.1 [26].

By a judicious selection of the value of f3dB, all αi of second-order allpass sections

can be represented by a single, easily implementable multiplier coefficient. Lattice

WDF first and second-order sections can then be made, as shown in respectively

Fig. 4.3 and Fig. 4.4, and implemented in cascade fashion to form the parallel

allpass branches G0(z) and G1(z).

Table 4.1: Allpass Network Coefficients for Lattice WDF Design

Pole (i) Coefficients (α, β)

i = 1 α1 = −1−tan(πf3dB)
1+tan(πf3dB)

real pole β1 = 0

2 ≤ i ≤ (N
IIR

+ 1)/2 αi = − cos(2πf3dB)

complex conjugate pair βi = r2
i

It is important to note that the lattice WDF digital filter design technique does

not suffer from the BIBO stability constraints required for the bilinear-LDI design

technique described in Section 3.4. Therefore, only two CSD LUTs are required:

one for the interpolation digital subfilters that ranges from (−1,1), and another one

for the FIR masking digital subfilters that also has ranges from (−1,1).
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Some important features of the resulting interpolation digital subfilters are as

follows:

• The absolute value of the constant αi for i > 1 (|αi| = |1/x0|) is always smaller

than unity because the centre of the poles loci x0 is always placed outside the

unit circle.

• The distance of the poles from the unit circle is nearly maximal compared to

elliptical filters having different passband ripple. This provides lower magni-

tude sensitivity to coefficients βi.

• Relations given in Eqns. (4.23) and (4.24) are independent of the filter order

N
IIR

. Also, half the multipliers αi for i > 1 obtained have the same value

that, by the proper choice of f3dB, can be adjusted to be implemented using a

minimal number of shift-and-add operations, without any unwanted influence

on the other filter characteristics.

4.4 Design Methodology

The design methodology for the proposed DCGA optimization of BIBO stable lattice

WDF based FRM digital filters over the CSD multiplier coefficient space can be

summarized as follows:

1. Designing the IIR interpolation digital subfilter : Using the passband edge fre-

quency ωp and stopband edge frequency ωa, and the expressions for boundary

frequencies given in Table 2.1, we can determine the filter case and calculate

the approximate passband edge θ̃ and stopband edge φ̃ of the digital inter-

polation lowpass subfilter H(ejω) in exactly the same manner as described in

Section 3.6. The passband ripple Rp and stopband ripple Ra of the interpola-

tion digital subfilter Ha(e
jω) is also calculated in the same fashion as described

in Section 3.6, in order to obtain a filter having an EMQF transfer function.

The interpolation digital subfilter order N
IIR

is then determined using Rp, Ra,

θ̃ and φ̃. N
IIR

must be rounded to the nearest larger odd integer so that it

can be implement by a parallel combination of two allpass networks.
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Using θ̃ and φ̃, the approximate 3 dB frequency of the interpolation digital

subfilter H(ejω), f̃3dB, by (see Eqn. (4.20)):

f̃3dB =
1

π
arctan

(√

tan
(

θ̃/2
)

tan
(

φ̃/2
)
)

(4.25)

Subsequently, f̃3dB is used to get the corresponding infinite-precision value of

αi (i > 1) by (see Eqn. (4.24)):

αi = − cos(2πf̃3dB) (4.26)

The infinite-precision value of αi is approximated to its the nearest larger

finite-wordlength CSD value α̂i, using the CSD LUTs. A larger value is chosen

so that that f3dB is increased, thus ensuring that the passband edge frequency

specification ωp is not violated. The finite-wordlength value of α̂i is then used

to calculate an adjusted value of f̃3dB:

ˆ̃
f3dB =

1

2π
arccos(−α̂i) (4.27)

Next, the adjusted 3 dB frequency
ˆ̃
f3dB is used to calculate the final passband

and stopband edge frequencies, θ and φ, respectively, of the interpolation

digital subfilter Ha(z). As mentioned in Section 3.6, the ratio of the analog

passband edge θA and stopband edge φA is a constant k [29] given by Eqns.

(3.48-3.52). This relationship is used to find θ and φ as follows:

θ = 2 arctan(tan(π
ˆ̃
f3dB

√
k) (4.28)

φ = 2 arctan(tan(π
ˆ̃
f3dB/

√
k) (4.29)

With the order N
IIR

, passband ripple Rp and stopband ripple Ra, and pass-

band edge θ of the interpolation digital subfilter Ha(e
jω) all determined, the

transfer function coefficients of Ha(z) can be obtained, and subsequently the

values of coefficients αi and βi. Also, using given ripple specifications along

with the boundary frequencies described in Table 2.1, one can determine the

transfer function of the FIR masking filters F0(e
jω) and F1(e

jω).

A salient difference between the FRM digital filters designed using bilinear-

LDI and lattice WDF design techniques is that the FRM digital filter using
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bilinear-LDI design technique matches the design specification for passband

edge ωp exactly, while the FRM digital filter using lattice WDF design tech-

nique mostly has a passband edge frequency that is marginally greater than

ωp.

2. Generation of seed FRM digital filter chromosome: The seed FRM digital

filter chromosome is formed in an ordered manner by concatenating:

• A block of B
IIR

bits serving as the binary index into the corresponding

CSD LUT for each multiplier coefficient α̂1 and β̂i in the lattice WDF all-

pass digital networks G0(z) and G1(z). Note that α̂i is not a optimization

variable for DCGA algoritm.

• A block of B
FIR

bits serving as the binary index into the correspond-

ing CSD LUT for each multiplier coefficient in the FIR masking digital

subfilters F0(z) and F1(z).

The remainder of the DCGA optimization proceeds in exactly the same fashion

as described in Section 3.6 and is therefore mentioned only briefly as follows. Once

the seed chromosome is constructed, the initial population pool generated by ran-

dom perturbations of the seed chromosome. The initial population pool is enlarged

by the inclusion of offspring chromosomes produced by the crossover operation. The

enlarged population then undergoes the mutation operation with a small fixed prob-

ability. This is followed by the formation of the next generation population pool

through the fitness evaluation and selection of the enlarged population pool. The

cost-function used to evaluate fitness is exactly as described in the case of the FRM

digital filter using the bilinear-LDI design technique.

In Section 5.4and Section 5.5 examples illustrating the DCGA optimization of

the design procedure described above are presented. Also, comparisons are made

between the lattice WDF and bilinear-LDI digital filter design approach.

In Section 5.4, and Section 5.5 examples illustrating the DCGA optimization of

the design procedure described above are presented. Comparisons are made between

the FRM digital filters based on bilinear-LDI and lattice WDF design approach.
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4.5 Summary

This section discusses another design technique for FRM digital filters with IIR

interpolation digital subfilters. The interpolation subfilters are efficiently realized

using the addition and subtraction of two allpass networks that are implemented

using the lattice WDF design technique. The salient feature of this technique is

that half the most sensitive coefficients of the interpolation digital subfilter are of

the same value. By judiciously selecting the edge frequencies of the interpolation

digital subfilter, these exact value of these coefficients can be implemented using

a minimal number of shift-and-add operations. The design procedure for the seed

chromosome of a FRM digital filter utilizing the lattice WDF design technique is

described in detailed.
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Chapter 5

Application Examples

In the previous two chapters, the design and DCGA optimization of FRM digital

filters using bilinear-LDI and lattice WDF design approach were discussed. This

chapter presents examples of DCGA optimization of these FRM digital filters, to-

gether with the details on how all the constituent subfilters are designed.

Two different sets of lowpass FRM digital filter specifications are used, with

the first set of specifications resulting in a fifth-order interpolation digital subfilter

Ha(z), and the second set resulting in a seventh-order subfilter Ha(z). Each of

these design specifications are met using the bilinear-LDI and lattice WDF design

approach, and relevant comparisons are made. In the case of the bilinear-LDI design

approach, the LUT-based techniques that uses both the slack variables as well as

the worst-case LUT approach are considered.

This chapter proceeds as follows. Section 5.1 contains an example of a FRM

digital filter incorporating a fifth-order interpolation digital subfilter Ha(z) realized

using the bilinear-LDI design approach. In this example, the DCGA optimization

technique employs slack variables. Section 5.2 contains an example of a FRM digital

filter incorporating a seventh-order Ha(z). It also makes use of the bilinear-LDI

design approach and slack variables. Section 5.3 illustrates the design of a FRM

digital filter with the same design specifications as in Section 5.2, but this time

the worst-case LUT approach is employed. Section 5.4 contains an example of a

FRM digital filter incorporating a fifth-order Ha(z) realized using the lattice WDF

design approach. The design specifications in this example match those in Section

5.1. Section 5.5 also contains an example that employs the lattice WDF design
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approach, but with a seventh-order Ha(z) (design specifications in this example

match those in Section 5.2 and Section 5.3). Finally, a summary of the conclusions

drawn is presented in Section 5.6.

Note that all frequency values in this chapter are normalized so as to maintain

a Nyquist sampling frequency of 2π radians. Also, FIR masking digital subfilters

F0(z) and F1(z) are always made to have equal orders (by zero-padding) to ensure

that they maintain similar phase characteristics.

5.1 Application Example 1

This section is concerned with the design of a lowpass FRM digital filter satisfying

the specifications given in Table 5.1, by using the bilinear-LDI design technique.

The LUT scheme utilizing slack variables is employed for the DCGA optimization

in this example.

Table 5.1: Example 1: Design Specifications

Maximum Passband Ripple Ap 0.05[dB]

Minimum Stopband Loss Aa 38[dB]

Passband-Edge Normalized Frequency ωp 0.20π[Rad]

Stopband-Edge Normalized Frequency ωa < 0.24π[Rad]

Normalized Sampling Period T 1[s]

Interpolation Factor Range M 6 − 15

The first step in the design of the FRM digital filter is to determine the opti-

mal value of the interpolation factor M . Here, optimal M refers to the value of

interpolation factor in the range 6 < M < 15 that results in the lowest order of

the FIR masking digital subfilters F0(z) and F1(z). Using the above specifications

and Table 2.1, we can calculate the approximate passband edge frequency θ̃ and

stopband edge φ̃ frequency of the digital interpolation subfilter Ha(e
jω) for every

value of interpolation factor 6 < M < 15. Further, by using Eqns. (3.46-3.47), the

optimal interpolation factor M can be determined as M = 7. Also, the value of K

in Table 2.1 turns out to be 1, and the overall FRM digital filter turns out to be of

the type Case II.

Once M is fixed at its optimal value, and the corresponding passband edge θ̃
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and stopband edge φ̃ are calculated from Table 2.1, the requirements for the digital

subfilters have to be obtained. The order of interpolation digital subfilter Ha(z),

N
IIR

, is obtained using standard MATLAB routine “ellipord”. If N
IIR

is even it is

rounded to the first larger odd integer value. In this way N
IIR

= 5 . Then, Eqns.

(3.48-3.52) are used (as described in Section 3.6) to get the exact edge frequencies

θ and φ of filter Ha(z). This is followed by using Table 2.1 to get the corresponding

edge frequencies of subfilters F0(z) and F1(z). The resulting requirements for this

example are given in Table 5.2.

Table 5.2: Example 1: Required Subfilter Requirements

Subfilter Order Rp [dB] Ra [dB] Passband Edge Stopband Edge

Ha(e
jω) 5 0.0007 38 1.1912 1.8850

F0(e
jω) 37 0.05 38 0.2693 0.6283

F1(e
jω) 39 0.05 38 0.7274 1.0678

F0(z) has to be zero-padded by one zero on each end. The overall FRM dig-

ital filter H(z) has a normalized passband edge ωp = 0.2000π, and a normalized

stopband edge ωa = 0.2315π.

The values of the inductances and capacitances of allpass networks G0 or 1(z),

L0 or 1, p and C0 or 1, p, the values of the precomensated inductances and capacitances

L
′

0 or 1, p and C
′

0 or 1, p, and the values of the multiplier coefficients mL0 or 1, p and

mC0 or 1, p can be obtained as summarized in Table 5.3.

Table 5.3: Example 1: Analog Component Values and Corresponding Digital Mul-
tiplier Values

Variables Values

C0,1 ; C
′

0,1 ; mC0,1 0.3828[F] ; 1.0123[F] ; 0.9878

C0,2 ; C
′

0,2 ; mC0,2 0.3173[F] ; 0.1878[F] ; 5.3253

L0,2 ; L
′

0,2 ; mL0,2 1.1423[H] ; 3.2615[H] ; 0.3066

C1,1 ; C
′

1,1 ; mC1,1 0.4081[F] ; 1.2888[F] ; 0.7759

L1,1 ; L
′

1,1 ; mL1,1 0.6567[H] ; 0.6567[H] ; 1.5227

The next step is to construct the LUTs required for DCGA optimization. A set

of five CSD LUTs are required, four LUTs with entries belonging to CSD(11, 3)
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(with 7-bit fractional part) for the multiplier coefficients mC0,2 , mL0,2 , mC1,1 , and

mL1,1 constituent in the interpolation digital subfilters Ha(z) and Hb(z), and one

LUT with entries belonging to CSD(11, 3) (with 10-bit fractional part) for all the

multiplier coefficients constituent in the masking digital subfilters F0(z) and F1(z).

An 11-bit finite-wordlength slack-variable ε̂ is used.

An initial population size of N = 500 was chosen for the ensuing DCGA opti-

mization. The remaining DCGA optimization parameters are given by

• c = 0.6, α = 0.4

• p
M

= 0.3

• p
F

= 0.5

• ζ = 0.4

The DCGA parameter used in [11] showed slow convergence in empirical computa-

tional investigations. Therefore, smaller/larger values of c/α were used, resulting

in a faster convergence speed. The value of ζ was also determined through empir-

ical investigations. The ζ value that provided a good balance between magnitude-

frequency and group-delay frequency response optimization was selected. 1

The DCGA optimization converged in around 150 generations to a desired FRM

digital filter with the CSD multiplier coefficients m̂L0 or 1, p and m̂C0 or 1, p as given in

Table 5.4 (where the over-bared digit 1̄ is used to represent −1).

Table 5.4: Example 1: Finite-Precision Multiplier Coefficient Values After DCGA
Optimization

Multiplier CSD Representation Decimal Value

m̂C0,1 0001.000001̄0 0.9844

m̂C0,2 0101.0100000 5.2500

m̂L0,2 0000.0101001 0.3203

m̂C1,1 0001.01̄01000 0.8125

m̂L1,1 0010.1̄000000 1.5000

Note should be made that the FIR masking digital subfilters CSD multiplier

coefficients m̂
FIR

are also optimized during DCGA optimization.

1These parameters are kept constant in all the remaining examples.
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The analysis of the seed FRM digital filter before DCGA optimization and op-

timized FRM digital filter after DCGA optimization revealed frequency response

characteristics as given in Table 5.5.

Table 5.5: Example 1: Frequency-Response Analysis Before and After DCGA Op-
timization

Frequency-response characteristic Before DCGA After DCGA

Maximum Passband Ripple Ap 0.1286[dB] 0.0440[dB]

Minimum Stopband Loss Aa 31.7879[dB] 38.9543[dB]

Maximum Normalized Group-Delay τ 48.7 46.0

The magnitude and group-delay frequency-responses of the interpolation digital

subfilters before and after the DCGA optimization are obtained as shown in Fig.

5.1 and Fig. 5.2.

Figure 5.1: Example 1: Ha(e
jω) Magnitude Response: Non-optimized (dash) /

Optimized (solid)

The magnitude and group-delay frequency-responses of the FIR digital subfilters

before and after the DCGA optimization are obtained as shown in Fig. 5.3 and Fig.

5.4

The magnitude and group-delay frequency-responses of the FRM digital filter

before and after the DCGA optimization are obtained as shown in Fig. 5.5 and Fig.

68



Figure 5.2: Example 1: Hb(e
jω) Magnitude Response: Non-optimized (dash) /

Optimized (solid)

Figure 5.3: Example 1: F0(e
jω) Magnitude Response: Non-optimized (dash) / Op-

timized (solid)

5.6
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Figure 5.4: Example 1: F1(e
jω) Magnitude Response: Non-optimized (dash) / Op-

timized (solid)

Figure 5.5: Example 1: H(ejω) Magnitude Response: Non-optimized (dash) / Op-
timized (solid)
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Figure 5.6: Example 1: H(ejω) Group Delay: Non-optimized (dash) / Optimized
(solid)

5.2 Application Example 2

This section is concerned with the design of a lowpass FRM digital filter satisfying

the specifications given in Table 5.6. These specifications require a seventh-order

Ha(z). The rest of the design approach is similar to Section 5.1.

Table 5.6: Example 2: Design Specifications

Maximum Passband Ripple Ap 0.1[dB]

Minimum Stopband Loss Aa 40[dB]

Passband-Edge Normalized Frequency ωp 0.60π[Rad]

Maximum Stopband-Edge Normalized Frequency ωa < 0.62π[Rad]

Normalized Sampling Period T 1[s]

Interpolation Factor Range M 6 − 15

Once again, the first step is to determine the optimal value of M so as to get

minimal order FIR masking filters F0(z) and F1(z). In this example M = 6 (see

Table 2.1 and Eqns. (3.46-3.47)). Also, the value of K from Table 2.1 turns out to

be 2 and the overall FRM digital filter is of the type Case II.

The next step is to obtain the value of N
IIR

. Similar to the previous section,
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this is achieved by using MATLAB once the approximate edge frequencies θ̃ and φ̃

have been calculated. N
IIR

turns out to be seven. Next, Eqns. (3.48-3.52) are used

to calculate the exact edge frequencies θ and φ . The resulting requirements are

given in Table 5.7.

Table 5.7: Example 2: Required Subfilter Requirements

Subfilter Order Rp [dB] Ra [dB] Passband Edge Stopband Edge

Ha(e
jω) 7 0.0004 40 0.9811 1.2566

F0(e
jω) 20 0.1 40 1.2566 1.8850

F1(e
jω) 38 0.1 40 1.9309 2.2579

F0(z) has to be zero-padded by nine zeros on each end. The overall FRM digital

filter H(z) has a normalized passband edge ωp = 0.6000π and a normalized stopband

edge ωa = 0.6146π.

The values of the inductances and capacitances of allpass networks G0 or 1(z),

L0 or 1, p and C0 or 1, p, the values of the precomensated inductances and capacitances

L
′

0 or 1, p and C
′

0 or 1, p, and the values of the multiplier coefficients mL0 or 1, p and

mC0 or 1, p can be obtained as summarized in Table 5.8.

Table 5.8: Example 2: Analog Component Values and Corresponding Digital Mul-
tiplier Values

Variables Values

C0,1 ; C
′

0,1 ; mC0,1 0.5110[F] ; 1.1595[F] ; 0.8624

C0,2 ; C
′

0,2 ; mC0,2 0.7499[F] ; 0.6014[F] ; 1.6629

L0,2 ; L
′

0,2 ; mL0,2 1.3496[H] ; 2.0987[H] ; 0.4765

C1,1 ; C
′

1,1 ; mC1,1 0.5340[F] ; 1.2712[F] ; 0.7866

L1,1 ; L
′

1,1 ; mL1,1 1.2064[H] ; 1.2064[H] ; 0.8289

C1,2 ; C
′

1,2 ; mC1,2 0.1071[F] ; 0.0772[F] ; 12.9560

L1,2 ; L
′

1,2 ; mL1,2 6.0137[H] ; 6.0137[H] ; 0.0863

The next step is to construct the LUTs required for DCGA optimization. A

set of 7 CSD LUTs are required, six LUTs with entries belonging to CSD(12, 3)

(with 7-bit fractional part) for the multiplier coefficients mC0,2 , mL0,2 , mC1,1 , mL1,1 ,

mC1,2 , and mL1,2 constituent in the interpolation digital subfilters Ha(z) and Hb(z),
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and one LUT with entries belonging to CSD(11, 3) (with 10-bit fractional part) for

all the multiplier coefficients constituent in the masking digital subfilters F0(z) and

F1(z). A 12-bit finite-wordlength slack-variable ε̂ is used. A larger wordlength is

used in this example than that in to Example 1 since using CSD(11, 3) (with 7-bit

fractional part) for the interpolation digital subfilter multiplier coefficients resulted

in the DCGA optimization experiencing difficulty in converging to the desired overall

FRM digital filter.

The DCGA optimization converged in around 200 generations to a desired FRM

digital filter with the CSD multiplier coefficients m̂L0 or 1, p and m̂C0 or 1, p as given in

Table 5.9.

Table 5.9: Example 2: Finite-Precision Multiplier Coefficient Values After DCGA
Optimization

Multiplier CSD Representation Decimal Value

m̂C0,1 00001.001̄0010 0.8906

m̂C0,2 00010.01̄01̄000 1.6875

m̂L0,2 00000.1000001̄ 0.4922

m̂C1,1 00001.01̄00010 0.7656

m̂L1,1 00001.001̄0010 0.8906

m̂C1,2 101̄00.0001000 12.0625

m̂L1,2 00000.00101̄01 0.1016

The analysis of the seed FRM digital filter before DCGA optimization and op-

timized FRM digital filter after DCGA optimization revealed frequency response

characteristics as given in Table 5.10.

Table 5.10: Example 2: Frequency-Response Analysis Before and After DCGA
Optimization

Frequency-response characteristic Before DCGA After DCGA

Maximum Passband Ripple Ap 0.4207[dB] 0.0875[dB]

Minimum Stopband Loss Aa 19.4949[dB] 41.1543[dB]

Maximum Normalized Group-Delay τ 202.7 188.8

The magnitude and group-delay frequency-responses of the FRM digital filter

before and after the DCGA optimization are obtained as shown in Fig. 5.7 and Fig.
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5.8

Figure 5.7: Example 2: H(ejω) Magnitude Response: Non-optimized (dash) / Op-
timized (solid)

Figure 5.8: Example 2: H(ejω) Group Delay: Non-optimized (dash) / Optimized
(solid)
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5.3 Application Example 3

This section is concerned with the design of a lowpass FRM digital filter satisfying

the specifications given in Table 5.11. The design approach used in this example

employs worst-case LUTs.

Table 5.11: Example 3: Design Specifications

Maximum Passband Ripple Ap 0.1[dB]

Minimum Stopband Loss Aa 40[dB]

Passband-Edge Normalized Frequency ωp 0.30π[Rad]

Maximum Stopband-Edge Normalized Frequency ωa 0.31π[Rad]

Normalized Sampling Period T 1[s]

Interpolation Factor M 6 − 15

The design specifications here are the same as that in Example 2, and therefore

the design procedure matches the previous section save for the construction of LUTs

for DCGA optimization.

In this example, a set of eight CSD LUTs are required, seven LUTs with entries

belonging to CSD(12, 3) (with 7-bit fractional part) for the multiplier coefficients

mC0,1 , mC0,2 , mL0,2 , mC1,1 , mL1,1 , mC1,2 and mL1,2 constituent in the digital allpass

networks G0(z) and G1(z), and one LUT with entries belonging to CSD(11, 3) (with

10-bit fractional part) for all the multiplier coefficients constituent in the masking

digital subfilters F0(z) and F1(z).

The DCGA optimization converged in around 200 generations to a desired FRM

digital filter with the CSD multiplier coefficients m̂L0 or 1, p and m̂C0 or 1, p as given in

Table 5.12.

The analysis of the seed FRM digital filter before DCGA optimization and op-

timized FRM digital filter after DCGA optimization revealed frequency response

characteristics as given in Table 5.13.

The magnitude and group-delay frequency-responses of the FRM digital filter

before and after the DCGA optimization are obtained as shown in Fig. 5.9 and Fig.

5.10

A comparison of fitness function values over 200 generations (averaged over ten

iterations) between the LUT scheme using slack variables in Example 2 and the
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Table 5.12: Example 3: Finite-Precision Multiplier Coefficient Values After DCGA
Optimization

Multiplier CSD Representation Decimal Value

m̂C0,1 00001.001̄001̄0 0.8594

m̂C0,2 00010.01̄01̄000 1.6875

m̂L0,2 00000.10001̄00 0.4688

m̂C1,1 00001.01̄01000 0.8125

m̂L1,1 00001.01̄01000 0.8125

m̂C1,2 101̄01.0000000 13.0000

m̂L1,2 00000.00101̄00 0.0938

Table 5.13: Example 3: Frequency-Response Analysis Before and After DCGA
Optimization

Frequency-response characteristic Before DCGA After DCGA

Maximum Passband Ripple Ap 0.3089[dB] 0.0723[dB]

Minimum Stopband Loss Aa 19.3509[dB] 42.7777[dB]

Maximum Normalized Group-Delay τ 203.7653 188.4375

Figure 5.9: Example 3: H(ejω) Magnitude Response: Non-optimized (dash) / Op-
timized (solid)

worst-case LUT scheme of this example is shown in Fig. 5.11. As seen, worst-case
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Figure 5.10: Example 3: H(ejω) Group Delay: Non-optimized (dash) / Optimized
(solid)

LUT formation technique results in a significant improvement in convergence speed.

Figure 5.11: Averaged Fitness Function Values, with Slack-Variables(dash), and for
Proposed Technique (without Slack-Variables)(solid)
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5.4 Application Example 4

This section is concerned with the design of a lowpass FRM digital filter satisfying

the specifications given in Table 5.14. Lattice WDF design technique is to be used

here. The design specifications in this example match those of Section 5.1.

Table 5.14: Example 4: Design Specifications

Maximum Passband Ripple Ap 0.05[dB]

Minimum Stopband Loss Aa 38[dB]

Passband-Edge Normalized Frequency ωp > 0.20π[Rad]

Maximum Stopband-Edge Normalized Frequency ωa < 0.24π[Rad]

Normalized Sampling Period T 1[s]

Interpolation Factor Range M 6 − 15

The first step is to determine the optimal interpolation factor M , and this is

done in a similar fashion as in the previous sections. M turns out to be seven, the

value of K from Table 2.1 turns out to be 1 and the overall FRM digital filter is of

the type Case II.

Using MATLAB routine “ellipord”, the order of interpolation digital subfilter

Ha(z) turns out to be N
IIR

= 5. The next step is to calculate the required edge fre-

quencies of Ha(z), and masking digital subfilters F0(z) and F1(z). Eqns. (4.25-4.27)

are used to get the final
ˆ̃
f3dB frequency. This

ˆ̃
f3dB frequency allows an exact real-

ization of α̂i, without any need to quantize it any further. The final f3dB frequency

is used to calculate the exact values of the passband edge frequency θ and stopband

edge φ frequency of the digital interpolation subfilter Ha(e
jω) in accordance with

Eqns. (4.28) and (4.29). Table 2.1 can now be used to get the final edge frequen-

cies of all the digital subfilters and the overall FRM digital filter, and the resulting

requirements are given in Table 5.15.

F0(z) is zero-padded by four zeros on each end. The overall FRM digital filter

H(z) has a normalized passband edge ωp = 0.2045π and a normalized stopband

edge ωa = 0.2358π.

The values of the multiplier coefficients of allpass network G0 or 1(z), α0,1 and

β0 or 1,i can be obtained as summarized in Table 5.16.

Note here that α̂0 or 1,i is fixed at −0.1367, and is not included as a variable in
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Table 5.15: Example 4: Required Subfilter Requirements

Subfilter Order Rp [dB] Ra [dB] Passband Edge Stopband Edge

Ha(e
jω) 5 0.0007 38 1.1912 1.8850

F0(e
jω) 34 0.05 38 0.2551 0.6425

F1(e
jω) 42 0.05 38 0.7408 1.0544

Table 5.16: Example 4: Digital Multiplier Coefficient Values

Variables Values

α0,1 −0.0687

β0,1 0.7028

β1,1 0.2283

the DCGA optimization.

Next, the LUTs for DCGA optimization are generated. Two CSD LUTs are re-

quired, one LUT with entries belonging to CSD(11, 3) (with 10-bit fractional part)

for the multiplier coefficients α0,1, β0,1, and β1,1 constituent in the interpolation dig-

ital subfilters Ha(z) and Hb(z), and one LUT with entries belonging to CSD(11, 3)

(with 10-bit fractional part) for all the multiplier coefficients constituent in the

masking digital subfilters F0(z) and F1(z).

The DCGA optimization converged in around 300 generations to a desired FRM

digital filter with the CSD multiplier coefficients α̂1, and β̂0 or 1,i as given in Table

5.17.

Table 5.17: Example 4: Finite-Precision Multiplier Coefficient Values After DCGA
Optimization

Multiplier CSD Representation Decimal Value

α̂1 0.0001̄001̄001 −0.0693

β̂0,1 1.01̄01̄000000 0.6875

β̂1,1 0.01001̄01000 0.2266

Note that α̂0 or 1,i = −0.1367(0.001̄001̄0100) throughout the optimization proce-

dure.

The analysis of the seed FRM digital filter before DCGA optimization and op-
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timized FRM digital filter after DCGA optimization revealed frequency response

characteristics as given in Table 5.18.

Table 5.18: Example 4: Frequency-Response Analysis Before and After DCGA
Optimization

Frequency-response characteristic Before DCGA After DCGA

Maximum Passband Ripple Ap 0.1310[dB] 0.0411[dB]

Minimum Stopband Loss Aa 28.8881[dB] 38.1820[dB]

Maximum Normalized Group-Delay τ 102.2921 102.5812

The magnitude and group-delay frequency-responses of the interpolation digital

subfilters before and after the DCGA optimization are obtained as shown in Fig.

5.12 and Fig. 5.13.

Figure 5.12: Example 4: Ha(e
jω) Magnitude Response: Non-optimized (dash) /

Optimized (solid)

The magnitude and group-delay frequency-responses of the FIR digital subfilters

before and after the DCGA optimization are obtained as shown in Fig. 5.14 and

Fig. 5.15

The magnitude and group-delay frequency-responses of the FRM digital filter

before and after the DCGA optimization are obtained as shown in Fig. 5.16 and

Fig. 5.17
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Figure 5.13: Example 4: Hb(e
jω) Magnitude Response: Non-optimized (dash) /

Optimized (solid)

Figure 5.14: Example 4: F0(e
jω) Magnitude Response: Non-optimized (dash) /

Optimized (solid)
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Figure 5.15: Example 4: F1(e
jω) Magnitude Response: Non-optimized (dash) /

Optimized (solid)

Figure 5.16: Example 4: H(ejω) Magnitude Response: Non-optimized (dash) /
Optimized (solid)
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Figure 5.17: Example 4: H(ejω) Group Delay: Non-optimized (dash) / Optimized
(solid)

5.5 Application Example 5

This section is concerned with the design of a lowpass FRM digital filter satisfying

the specifications given in Table 5.19. Lattice WDF design technique is to be used

here. The design specifications in this example match those of Section 5.2 and

Section 5.3.

Table 5.19: Example 5: Design Specifications

Maximum Passband Ripple Ap 0.1[dB]

Minimum Stopband Loss Aa 40[dB]

Passband-Edge Normalized Frequency ωp 0.30π[Rad]

Maximum Stopband-Edge Normalized Frequency ωa 0.31π[Rad]

Normalized Sampling Period T 1[s]

Interpolation Factor M 6 − 15

Similar to that in Section 5.4, the above specifications and Table 2.1 are used

to calculate the interpolation factor M as well as the approximate passband edge

frequency θ̃ and stopband edge φ̃ frequency of the digital interpolation subfilter

Ha(z). In this example, M = 7. Also, the value of K from Table 2.1 turns out to
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be 2 and the overall FRM digital filter is of the type Case II.

Using the design procedure in the previous section, the order of Ha(z) turns

out to be N
IIR

= 7. Next, the exact values of the passband edge frequency θ and

stopband edge φ frequency of Ha(z), in accordance with Eqns. (4.28) and (4.29).

The final edge frequencies of all the digital subfilters and the overall FRM digital

filter are given in Table 5.20.

Table 5.20: Example 5: Required Subfilter Requirements

Subfilter Order Rp [dB] Ra [dB] Passband Edge Stopband Edge

Ha(e
jω) 7 0.0004 40 1.1912 1.8850

F0(e
jω) 20 0.1 40 1.2467 1.8948

F1(e
jω) 40 0.1 40 1.9395 2.2493

F0(z) is zero-padded by ten zeros on each end. The overall FRM digital filter

H(z) has a normalized passband edge ωp = 0.6031π and a normalized stopband

edge ωa = 0.6173π.

The values of the multiplier coefficients of allpass network G0 or 1(z), α0,1 and

β0 or 1,i can be obtained as summarized in Table 5.21.

Table 5.21: Example 5: Digital Multiplier Coefficient Values

Variables Values

α0,1 −0.2619

β0,1 0.6016

β1,1 0.2575

β1,2 0.8788

Note that α̂0 or 1,i is fixed at −0.4902. Next, the LUTs for DCGA optimization

are generated. Two CSD LUTs are required, one LUT with entries belonging to

CSD(12, 3) (with 10-bit fractional part) for the multiplier coefficients α0,1, β0,1,

β1,1, and β1,2 constituent in the interpolation digital subfilters Ha(z) and Hb(z),

and one LUT with entries belonging to CSD(11, 3) (with 10-bit fractional part) for

all the multiplier coefficients constituent in the masking digital subfilters F0(z) and

F1(z).
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The DCGA optimization converged in 300 generations to a desired FRM digital

filter with the CSD multiplier coefficients α̂1, and β̂0 or 1,i as given in Table 5.22.

Table 5.22: Example 5: Finite-Precision Multiplier Coefficient Values After DCGA
Optimization

Multiplier CSD Representation Decimal Value

α̂1 0.01̄000001̄000 −0.2539

β̂0,1 0.10010000001 0.5630

β̂1,1 0.01000010001 0.2583

β̂1,2 1.001̄00001̄000 0.8711

Note that α̂0 or 1,i = −0.4902(0.1̄0000010100). The analysis of the seed FRM dig-

ital filter before DCGA optimization and optimized FRM digital filter after DCGA

optimization revealed frequency response characteristics as given in Table 5.23.

Table 5.23: Example 5: Frequency-Response Analysis Before and After DCGA
Optimization

Frequency-response characteristic Before DCGA After DCGA

Maximum Passband Ripple Ap 0.2166[dB] 0.0959[dB]

Minimum Stopband Loss Aa 34.6919[dB] 40.2657[dB]

Maximum Normalized Group-Delay τ 74.9322 69.5239

The magnitude and group-delay frequency-responses of the FRM digital filter

before and after the DCGA optimization are shown in Fig. 5.18 and Fig. 5.19
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Figure 5.18: Example 5: H(ejω) Magnitude Response: Non-optimized (dash) /
Optimized (solid)

Figure 5.19: Example 5: H(ejω) Group Delay: Non-optimized (dash) / Optimized
(solid)
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5.6 Summary

This section presented the application of DCGA optimization to bilinear-LDI and

lattice WDF based FRM digital lowpass filters.

In the first two examples, the LUT scheme utilizing slack variables was used.

From Example 1 to Example 2, the specifications increase in the passband frequency

region, but at the same time the required transition bandwidth is reduced. This

caused certain issues. As the passband frequency region gets larger, it usually results

in less options for optimizing the masking digital subfilter coefficients (see Section

2.3). At the same time, the narrower the required transition band, the higher is the

order of interpolation digital subfilter. It is empirically observed that higher order

interpolation filters also tend to have larger coefficient values (and more aspect

ratio), and this too causes problems in the DCGA optimization. As a result of the

above mentioned problems, a larger coefficient wordlength is used in Example 2.

Even then, the convergence speed is slower for Example 2 than Example 1.

The simplifications made to the LUT scheme in Example 3 result in significant

improvement to the DCGA convergence speed compared to the convergence speed

in Example 2.

The last two examples are based on lattice WDF FRM digital filters. Since half

the interpolation digital subfilter coefficients are fixed and not part of the optimiza-

tion procedure, lattice WDF FRM digital filters exhibited slower convergence speeds

compared to bilinear-LDI FRM digital filters. Note should be made, however, that

even though the specifications of Example 1 and Example 4, and Example 2 and

Example 5 are exactly the same, the two realizations are not directly comparable.

This is because the final edge frequencies do not match exactly, and the FIR masking

digital filter orders are not the same.

The group-delay frequency response varies for bilinear-LDI FRM digital filters

and lattice WDF FRM digital filters based on the given specifications.
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Chapter 6

Conclusions

6.1 Conclusions

This thesis has been concerned with the design and discrete optimization of two dif-

ferent types of FRM digital filters employing IIR interpolation digital subfilters. The

first type of FRM digital filter employed interpolation subfilters that were realized

using an addition and subtraction of allpass digital networks that were implemented

using bilinear-LDI realization technique.

The second type of FRM digital filter employed interpolation subfilters that

were also realized using addition and subtraction of allpass digital networks, but

that were implemented using lattice WDF realization technique. In the latter case,

half of the most sensitive coefficients were fixed to an easily implementable value,

so as to avoid distortion due to quantization error.

The optimization of IIR based FRM digital filters can be achieved by employing

either the existing gradient-based optimization techniques or conventional GAs. The

latter approach is well known for its effectiveness and efficiency in solving complex

multimodal optimization problems over a discrete solution space. However, the

conventional GAs suffer from low convergence speed problems that usually have a

high tendency to converge towards a local optimal point. Therefore, this thesis has

incorporated diversity control in the conventional GAs for the rapid optimization

of FRM digital filters. DCGA has the advantage of increasing the diversity of

the population pool through the incorporation of additional non-elite chromosomes

(chosen based on their hamming distance from the chromosome with the best fitness

value). DCGA optimization was used in this thesis to optimize the FRM digital
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filters over the CSD multiplier coefficient space, so that the resulting optimized

filter would be directly implementable in hardware.

A direct application of DCGA to optimize a bilinear-LDI based FRM digital

filter would result in two separate problems: first, the chromosomes may not con-

form to the CSD number format, and second, the resulting filter may not be BIBO

stable. This thesis resolved the latter problem by developing novel stability con-

straints directly on the CSD multiplier coefficients. The constraints are developed

for an arbitrary-order bilinear-LDI allpass network. Further, a novel worst-case

LUT scheme is developed in order to simplify previous techniques involving slack-

variables. The resulting DCGA optimization is shown to be automatically BIBO

stable. Finally, a novel cost-function is utilized so as to simultaneously optimize

the FRM digital filter in both the magnitude-frequency and group-delay frequency

response.

DCGA optimization was also applied to lattice WDF based FRM digital filters.

Half the IIR interpolation subfilter multiplier coefficients were removed through the

use of filters having EMQF transfer functions. The cost-function here too carried

out a simultaneous optimization of the FRM digital filter in both the magnitude-

frequency and group-delay frequency response.

In both cases, the usefulness of the proposed DCGA optimization has been

demonstrated through its application to the design of a lowpass FRM digital filter

satisfying stringent specifications. The results of the DCGA optimization have been

discussed.

6.2 Summary of Contributions

• This thesis has presented a novel IIR based FRM digital filter incorporating

interpolation digital subfilters realized using bilinear-LDI design technique.

• A step-by-step procedure for the design of FRM digital filter incorporating

interpolation digital subfilters realized using bilinear-LDI design technique is

presented.

• A novel set of stability criteria are developed in this thesis that guarantee the

BIBO stability of a general order bilinear-LDI allpass digital network. The
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stability criteria are based directly on CSD multiplier coefficients, allowing

automatic BIBO stability throughout the course of DCGA optimization in a

computationally efficient manner.

• A novel worst-case LUT scheme is introduced in this thesis, that simplifies the

previous techniques required to ensure automatic BIBO stability throughout

the course of DCGA optimization. The worst-case LUT scheme is demon-

strated to yield faster optimization convergence rates.

• A novel cost-function is developed that simultaneously optimizes both the

magnitude-frequency and group-delay frequency response. The group-delay

frequency response is calculated efficiently using adjoint networks technique.

• The usefulness of DCGA optimization of bilinear-LDI based FRM digital filters

has been demonstrated.

• The usefulness of DCGA optimization of lattice WDF based FRM digital

filters has been demonstrated.

• A novel adaptive DCGA is introduced in Appendix 1 that is capable of exter-

nally generating diversity.

• The design and DCGA optimization of a IIR Nyquist filter is detailed in

Appendix 2. This design is novel in that the finite-wordlength representation

does not require any time domain optimization (i.e., it ensures perfect zero-

crossings), and only frequency domain optimization is required.

6.3 Suggestions for Future Work

Further work involves the improvement of DCGA convergence speed through dy-

namic adjustments of the shape coefficient c and the exponent α. It may be rea-

sonable to encode those two parameters as chromosomes in the process of DCGA

optimization. This will increase the length of the chromosome, but may lead to

noticeable reduction in the time spent on empirical investigations.

This thesis has investigated the bilinear-LDI ladder and lattice WDF digital

filter realization techniques. Future work involves different realization approaches
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of the FRM digital filter (e.g. the bilinear-LDI digital Jaumann filter realization

approach).
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Appendix A

Adaptive DCGA

While DCGA offers large improvements in convergence speed compared to conven-

tional GAs, it still lacks in some aspects. One of the main issues with DCGA is that

while it is capable of maintaining a threshold level of diversity in the population

pool, it does not include any mechanism that actively generates diversity in the

population pool. Mutation does allow some exploration, but in the case where the

population pool starts to converge to a local optimum, the mutation rate is often

too low to effectively steer the algorithm out of a premature convergence. If the

mutation rate is increased too much, the algorithm becomes too random and this

adversely affects the rate of convergence of the DCGA.

A second issue arises from the way in which DCGA determines the diversity

of the population pool. The CPSS uses hamming distance as a measure of diver-

sity between the chromosome that has the highest fitness value and the remaining

chromosomes in the population pool. Hamming distance counts the number of bit

locations at which a given chromosome is different from another chromosome.

Unfortunately, hamming distance is not directly proportional to the diversity be-

tween chromosomes. That is to say, a large hamming distance might correspond to a

small actual difference between two chromosome, whereas a small hamming distance

might actually correspond to a large actual difference between two chromosome. An

example of this is shown in Fig. A.1.

Another issue with the CPSS is that it only uses the hamming distance be-

tween the chromosome that has the highest fitness value and the chromosome being

evaluated as a criteria for selection. This means that the CPSS does not have a
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Figure A.1: Examples of Hamming Distance

mechanism to ensure that the chromosomes of a population pool are evenly spread

out, but it simply ensures that the chromosomes selected for the next generation

population pool differ from the best-fit chromosome. Consequently, even with the

use of the CPSS it is possible to select a population pool with a low overall diversity.

DCGA also experiences difficulty in converging to the global optimum if the

initial population pool is generated with a low overall diversity. The same is true if

the seed chromosome is generated randomly or exhibits a low fitness (for example, if

the multiplier coefficients of the seed chromosomes are not first optimized in infinite-

precision using gradient-based techniques).

In such cases, in addition to a judicious selection of the shape coefficient c and

the exponent parameter α (low value of c and/or high value of α, see Section 1.3), a

high mutation rate is required to allow the DCGA to properly explore the solution

space. This, however, is only required until the DCGA a region containing the

global optimum. Once the DCGA starts to converge, a high mutation rate and low

value of c and/or high value of α makes the algorithm unnecessarily explorative and

actually reduces the convergence speed of the algorithm.

A.1 Adaptive DCGA Optimization Technique

In considering the above problems, a novel variation of the DCGA with an adaptive

mutation operation is presented here. The main goal of this adaptive algorithm is to
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maintain a threshold level of diversity through the CPSS and also to generate diver-

sity by a increasing the rate of mutation whenever the DCGA starts to stagnate and

shows no improvement in the best-fit chromosome. At the same time, the mutation

rate is reduced if the DCGA locates the region of the solution space containing the

global optimum and begins to converge. The main steps of the adaptive DCGA are

as follows:

• Initialization: This step is the same as in DCGA. A seed chromosome is formed

by concatenating the design variables represented in their binary form. Subse-

quently, an initial population pool consisting of an even number of N chromo-

somes is generated by randomly complementing bits of the seed chromosome

[19].

• Generation of the enlarged population pool: As in DCGA, the members of

a current population pool P (t) are randomly selected into N/2 parent pairs.

Each parent pair then undergoes a two-point crossover operation to produce

two offspring that are added to P (t) to produce an enlarged population P̂ (t).

The crossover operation here is similar to the one discussed in Section 1.2,

with one exception. The two bit-locations that correspond to the crossover

points are not selected randomly from the entire chromosome length. Instead,

the crossover points are selected randomly from only those bit-locations of the

chromosome that do not sever a bit-string representing a design variable (such

as a multiplier coefficient). That is to say, the crossover points can be placed

at the start of end of a bit-string representing a design variable, but cannot

be placed in between the length of the design variable, as shown in Fig. A.2.

The reasoning behind this change is that if the crossover points are randomly

selected from the entire chromosome length, then its possible to produce an

offspring that contains a design variable value that is not present in any chro-

mosome of the original population pool P (t) (effectively resulting in gene

mutation). Since an adaptive mutation operation is already present in the

algorithm to generate any necessary diversity, the diversity resulting from the

crossover operation is no longer required, and may even reduce the convergence

rate when low mutation rates are required.
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Figure A.2: Example of a Two-Point Crossover Based on Coefficient Edges

• Adaptive mutation: The mutation probability is now determined based on

the variance of the fitness of the current population pool P (t). Note here

that in the first iteration of the adaptive DCGA the fitness of P (t) is not yet

determined, and so the mutation probability is kept at zero. The reason for

using variance of the population fitness is that its a single simple calculation

based on fitness values and it provides a fairly good indication as to the level

of diversity in the population pool. If the fitness variance is low, it most

likely indicates that the chromosomes are very similar and thus all have the

same fitness. Conversely, a large fitness variance indicates that a lot of non-

elite chromosomes are included in the population pool. Consequently, if the

variance of the fitness of a population pool falls below a particular threshold,

the mutation probability is increased so as to generate a population pool with

greater diversity, and vise versa. Additionally, the best-fit chromosome is

kept exempt from the mutation operation, thus making the adaptive DCGA

an elitist algorithm. The overall effect of such an algorithm on the fitness

variance of the population through the course of DCGA is shown in Fig. A.3.
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Figure A.3: Characteristic Profile of the Fitness Variance using Adaptive DCGA

Along with mutation probability, the strength of mutation is also made adap-

tive. Conventionally, the strength of a mutation refers to the frequency and

location of the bit-flipping operation that defines a mutation: the strength of

mutation increases as a bit is flipped from the least significant bit position of

a design variable in a chromosome to the most significant bit position. How-

ever, in this case the strength of mutation refers to the change in the decimal

value of the design variables in the chromosome. For example, if the value of

a design variable shifts from the binary number 10000000 to 01111111, then

it is considered a low strength mutation since the decimal value of the design

variable shifted only by one.

The strength of the mutation is adapted based on two factors. The first

factor is the average population of the population pool P (t). If the average

population fitness is low, it normally means that the solution space hasn’t
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been properly explored yet. In that case, the strength of a mutation is a

randomly selected from a large range of values (i.e. the average strength of

mutation is increased). This allows the DCGA to start searching completely

new and relatively distant regions of the solution space. However, as the

average population fitness increases, it is often due to the fact that the region

containing the global optimum is being searched by the DCGA. Consequently,

the strength of a mutation is now selected randomly from a smaller range of

values (i.e. the average strength of mutation is decreased), thus preventing

the DCGA from exploring lower fitness regions of the solution space.

The second factor that is used to adaptively change the strength of mutation

is the number of consecutive iterations that do not result in an improvement

in the best-fit chromosome. If the DCGA begins to stagnate, and shows no

improvement over successive generations, then the strength of mutation is

increased in hopes of encouraging the DCGA into producing a new best-fit

chromosome. If a new best-fit chromosome is obtained, the mutation strength

is reduced to its previous level.

• Evaluation: Once the mutation operation is completed, the chromosomes in

the enlarged population pool P̂ (t) are evaluated to determine their fitness and

ranked by their fitness values. This step is similar to the conventional DCGA

technique.

• Selection of the next-generation population pool: This is done using the con-

ventional CPSS technique described in Section 1.3. It should be noted that

hamming distance is still used to ensure that a threshold of diversity is main-

tained in the next generation population pool P (t + 1) (i.e. fitness variance is

not used here, it is only used for adapting the mutation rates).

• Possible Reset: Finally, even with a variable mutation probability and muta-

tion strength, there are cases where the DCGA stagnates at a local optimum

and that greatly reduces the speed of convergence. While the adaptive mu-

tation and CPSS ensure the population pool is diverse, if the best-fit chro-

mosome becomes dominant in the population pool there is no competition

in the population pool. Therefore, the DCGA quickly converges back to the
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local optimum points. In the event that this happens, it is characteristic to

see prolonged periods where the best-fit chromosome remains unchanged from

one generation to the next.

If the adaptive DCGA begins to show signs of stagnation, the entire popula-

tion pool is reset. A reset is carried out in exactly a similar manner as the

generation of the initial population pool described in Initialization. However,

instead of using the original seed chromosome, the reset population pool is

formed by randomly flipping bits of the current best-fit chromosome. This is

done so that the good information obtained from the best-fit chromosome is

not completely lost. A critical part of the reset operation is that the best-fit

chromosome used to form the reset population is not itself included in the pop-

ulation pool. This prevents the DCGA from being pulled back into the region

containing the local optimum as a result of a dominant best-fit chromosome.

• Termination: The above steps are repeated until the design specifications are

satisfied or the maximum number of allowed iterations is reached.

The adaptive DCGA is a simply an extension of the DCGA since it still maintains

the CPSS scheme. However, it does include the following additional salient features:

• The crossover operation no longer has the potential to inherently produce mu-

tations at the crossover points. Consequently, the crossover operation results

in a rapid loss of diversity in the population pool. This means that the adap-

tive DCGA is much more rapid at converging at a global or a local optimum.

• The mutation rate is now increased when the population diversity goes below

a pre-defined minimum, so as to increase the diversity of the population pool,

and the mutation rate is decreased when the population diversity goes above

a pre-defined value, so as to allow for a more rapid convergence to the global

optimum value.

• The strength of mutation is now varied to ensure that the adaptive DCGA is

less likely to stagnate at a local optimum value.

• The parameters on which the mutation operation is adapted (population fit-

ness mean and variance) are easily calculated, and thus the adaptive DCGA
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is not significantly more computationally demanding than the conventional

DCGA.

• The selection of the next-generation population pool uses the CPSS, and so the

diversity of the population pool is maintained in terms of both the hamming

distance between the best-fit chromosome and the rest of the chromosomes in

the population pool (used in CPSS) as well as the fitness variance (used for

adaptive mutation operation).

• The reset operation usually results in a lower average fitness of the population

pool as well as a lower fitness value of the best-fitness chromosome. However,

it is empirically observed to significantly increases the likelihood of pulling

the adaptive DCGA away from a region containing a local optimum and thus

preventing premature convergence.

In empirical investigations, the adaptive DCGA showed significant improvements

from the conventional DCGA in two respects. Firstly, it converged to desired spec-

ifications in less iterations, and secondly, it showed itself more immune to cases

of premature convergence. A FRM digital filter with seventh-ordered bilinear-LDI

based IIR interpolation digital subfilters was optimized using both the conventional

DCGA technique and the adaptive DCGA technique and the results are compared

in Fig. A.4.

Fig. A.4 shows that the adaptive DCGA converges to a higher fitness value in

200 generations compared to the conventional DCGA technique, even though the

conventional DCGA technique started off with a seed chromosome with a higher

fitness value. Also, the dip seen in the maximum fitness value of the adaptive DCGA

technique corresponds to a population reset when the algorithm was beginning to

prematurely converge at a local optima.

The adaptive DCGA is particularly useful in cases where the seed chromosome is

not optimized in the infinite-precision domain and thus has a low fitness value, or if

the initial population pool having a low diversity is generated. Also, its convergence

speed increases significantly when the solution space contains several local optima,

or if the values of c and α are not optimized for a particular application through

empirical investigations.
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Figure A.4: Comparison of Convergence Speed Between Adaptive DCGA (solid)
and Conventional DCGA (dashed)

Unfortunately, the adaptive DCGA is also associated with certain issues. An

important issue comes from the fact that fitness variance is not directly proportional

to the diversity of a population (as is the case with hamming distance). Also, since

the absolute values of fitness mean and fitness variance depend on the application

being optimized, the parameters for adaptive mutation (for example, the fitness

variance threshold to increase mutation probability) have to be optimized for a

particular application (as is the case with c and α). However, parameters such

fitness mean and fitness variance could be normalized and thus used for any general

application, but this is subject to future investigations. Finally, by making the

DCGA an adaptive algorithm, more parameters are required. The issue with having

more optimization parameters is that they are normally arbitrarily set and thus need

to be properly set to ensure best results.
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