University of Alb 1.

Support for Document Entry in the Multimedia Database

by

Sherine }-Medani (C)

A thesis submitted to the Faculty of Graduate Studies and Rescarch in partial fulfill-
ment of the requirements for the degree of Masters of Science.

Department of Computing Scicnce

Edmonton, Alberta
Fall 1996

National Lib
Bl S

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395, Wellington Street
© A, Ontano
44 KI1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

385, rue Wellir gton
Ottawa (Ontario)

Your e Volre relérence

Qur e Notre reference

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-18255-X

Canada

University of Alberta

Library Release Form

Name of Author: Sherine El-Medani
Title of Thesis: Support for Document Entry in the Multimedia Database
Degree: Masters of Science

Year this Degree Granted: 1996

Permission is hercby granted to the University of Alberta Libirary to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

Mhinima. G- MaLong i, |
Sherine El-Medani

2 El-Saada Street - apt.#101
Roxy Square, Cairo,

Egypt.

4
Date: Seqst., \.§—. , Gl

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Grad-
nate Studies and Research for aceeptance, a thesis entitled Support for Document
Entry in the Multimedia Database submitted by Sherine El Medani in partial
fulfillment of the requirements for the degree of Masters of Science.

y ' Ozsu (o su erv1s01
/ . .
A ¢< R)

B
Dr. D. Szafron (Co -supervisor)

Dr. ng Liu (Exammex

sl

Dr. Eugene pmaniuk (External)

st
Date: pﬁg 23,96

To my parents who helped me realize my dreamms and my friends who helped nie
achieve it.

Abstract

This thesis deseribes a dociment entry svstem that supports the automatic inser-
tion of documents with arbitrary tvpes into a multimedia database. The documents
conform to the international standards of SGML and HyTime. This is achieved by
fustantiating objeets in the database to represent the document components. These
are persistent objects that can be queried and retrieved using a query interface.

To achieve this goal, the database has to be queried dynamically to retrieve meta
imformation about the document structure. A generic meta type svstem was designed
to model such meta information. This type svstem consists of a number of built-
in types that model the characteristics common to SGML document components.
Whenever support for a new class of documents is added to the system. meta types
modeling the characteristies specific to this class are dynamically generated and added
to the meta type system. To insert documents conforming to this class into the
database. two system components were developed: the SGML Parser and the Instance
Generator. The SGML Parser validates the SGML documents to ensure database
consistency. The Instance Generator instantiates the appropriate database objects to

represent the document.

Contents

1 Introduction 1
L1 Motivation and Design Coiveria .0 0. 2

1.2 Thesis Scope aud Orgavization 1

2 SGML/HyTime Overview 6
2.0 SGML Overview o000 00 7
201 Document Type Definition N

2120 Document Tustanee .0 0000 P

2,13 SGML Declaration 12

2.2 HyTime Overview00 o [
221 The Base Module 13

222 The Location Address Module I

223 The Hyperlinks Module .. 00 . 15

3 Research Framework 17
3.1 The CITR Project 17
3.2 The News-On-Demand Application 1K
3.3 Support for Multimedia Applications 3]
3.4 System Architecture 20)

4 The Multimedia Type System 23
4.1 The Design of the Generic Meta Type System 21

4.1.1 A Universal Data Model vs. a Kernel Data Model . . . 24
4.1.2 A Flat Type System vs. a Structured Type System 26

5

ot
-

1.2 The Design of the Multimedia Tvpe Svstem
13 The Momie Type Svstemn .00
3L DataStream o000
182 Variant Types 000000000
483 Monomedia Types 0000000
1.4 The Element Type System .0 o000
441 Structure Elements o000 0000000
142 HyTime Elements 0000000000
L3 MM Elements © 000000
L4 Helper Types oo 00000000
L5 The Meta Type System . .. 0000000
150 The ElementType . 00000000000
152 AnnotatedType . 0000
153 AF Type. o 000000
0.0 MonomediaType o000 000000
L5 VariantType o000 0000000
LA.6 BEventType. o000 00000
LA AxisType 0000
LAS DataStreamType © oo 0000000
159 ElementAttribute Type. ... 0000
4.5.10 Extending the ElementType Tyvpe Svstem

Handling Multiple DTDs

A1 The DTD-Parser
52 The Type Generator
5.2.1 Interface with the Document Entry System
522 Modeling of the Element Structure e
5.2.3 Modeling of the Element Attributes
5.2.4 Modeling of the Element Behavior.
5.2.5 Modeling of the Element Type

The DTD Manager

6 Automatic Document Entry System

6.1 The SGML Parser

6.1.1 Developing the SGML Parser
6.2 Modifications to the Original Parser
6.2.1 Fetching the DTD from the Database

6.2.2 Maintaining Data Structures

6.

o

6.2.4 Invoking the Instance Generator

6.2.5 Changes to the Command Line Parameters

6.3 Data Structures . . .

6.1 Limitations of the Current System
6.4.1 PFxternal and Parameter Entities

6.1.2 AMarked Sections . . .

|

The Instance Generator

7.1 Ensuring Database Consistency

7.2 Antomatic Instantiation of Ohjects

7.3 Updating C'hild List

7.4 1D Reference Resolution . . .

8 Related Worlk

3 Porting sgmlnorm to AIN

......................

8.1 D-STREAT
8.1.1 Comparison Between D-STREAT and Our System
82 VERSO

D &

9 Conclusion and Future Work

A A DTD for News-Articles

8.2.1 Comparison between VERSO and Qur System

61

G
6o

66

87

93

List of Figures

3.1 Conceptual Multimedia DBAS Arcnitecture

L1 Atomie Type System oL 00 L
1.2 Top Level Hierarchy of the lement Type Svstem 00 00 L0 L L.
1.3 Example for MM Video Type- . 00000 0000000
1.4 Built-in Meta Tvpes o 00 00000000

L5 Type MonomediaType and its Derived Types

1.6 Type VariantType and its Derived Types . .
1.7 Type EventType and its Derived Types . . .
5.1 Architecture for Handling Multiple DTDs .

6.1 Architecture for Automatic Document Entry

Chapter 1

Introduction

In recent years, there has been a rapid increase in the use of multimedia apphications
in a diversity of fields including education. entertainment, librarices. news on-demand
applications. advertising. medicine, teleconferencing and many others. One of the
major reasons for this popularity is the abilitv of multimedia svstems to incorporate
and integrate information from diverse media sonrees such as sraphics, andio, video,
images and text. This presents users with varions channels for conmmunication and
information delivery, thus allowing fo= & “voader and richer means of interaction.
However, as the popularity of multinedia applications has inereased. so have the
amount and the complexity of avaliable data. Despite the diverse nature and the
vast amount of data embedded within multimedia applications, there is currently
no uniform way of managing and accessing such data efficiently. Different mnltime
dia file systems provide different soiutions for solving these probicms. The problem
becomes even more complicated for mmlti-nser and distributed mnltime systems
where concurrency control, access control, application idependence and aata distri-
bution become important issues. Since these issues have heen successfully addressed in
database systems for years, it is only reasonable for multimedia applications to make
use of database management systems (DBMS) instead of attempting to solve the same
problems independently. Multimedia applications can henefit from standard DBMS

services such as data abstraction, application nentrality, fault tolerance, conenrrency

control and data distribution (in distributed DBMS 1ecle ologe)y TOSEMVO3] A
DBEMS will also provide these applications with the ability to go hevond the simple
retrieval of information to high-level accesses through gueries.

Despite all these henefits, the nse of database technology in multimedia applica-
tions is currently quite restricted. This is what motivated our work in developing
a mmltimedia DBMS at the Laboratory for Database System Research at the Uni-
versity of Alberta. The goal of onr rescarch is to provide a “complete”™ multimedia
database system. It s pari ol & major project funded by the Canadian Institute of
Telecommunications Research (CITR) which started in 1993 with a six vear duration
(see Chapter 3 for more details). This Master’s thesis is a step towards this goal. It
altns at supporting doowment entry into the rnltimedia database. Supporting docu-
ment cntry involves instantiating objects in the database to represent the documents”
components. These are persistent objects that can be gueried and retrieved using a
query interface. Since multimedia applications require different document structures.
our database design allows multiple document structures to be represented and stored
in the database. Complying to this design, the document entry system supports the
insertion of different types of doenments in the database, thus providing the flexibility

required by multimedia applications.

1.1 Motivation and Design Criteria

One of the shortcomings of many of the existing DBMS is the unavailability of tools for
the insertion of multimedia documents in the database. This is generally considered
outside the scope of the DBMS. It is our belief that document entry is an important
DBMS tool.

If a multimedia DBMS is to be used for multimedia applications, it has to provide a
method for inserting documents in the database. Manually inserting these documents
is not a realistic option given the large volume of data.

Another reason for supporting document entry is to ensure database consistency:.

Database consisteney is considered an important databiase coneept that has heen
extensively researched over the vears. Concurreney control technigies have been nsed
m DBMS to ensure data integrity and consisteney. However to maintain a consistent
database. one has to start with a consistent database. Supportine document entry
can ensure the consistency of the database by ensuring that the inserted docaments
are error-free.

This thesis provides an antomatic way of inserting docmments in the nmmltime
dia database conforming to multiple docnment structures. The system meets the

following design eriteria;

o Flexibility:

As mentioned earlier. multimedia applications are diverse in nature and purpose,
It is almost impossible to have one document structure 1o represent the different
types of multimedia documents. Morcover, if one exists it will he too peneral
and inefficient to rve the application requirements. Therefore, snpporting
multiple document structures is almost inevitable. With maliple docunient
structures. the automatic insertion of documents conforming to the different
structures has to be supported. This provides the flexibility and generality

needed for multimedia applications.

e Data Consistency:

The system ensures database consisteney by validating multimedia docnments
before insertion. If the document does not conform to a docinent type defini-

tion (DTD) in the database or if it already exists in the database, it is rejected.

¢ Adherence to International Standards:

Since multimedia sources are diverse, there is a need for a standard document
representation. This is a way to support heterogeneity of tools. The Standagd
Generalized Markup language (SGML) standard [ISOS6] has been chosen for

this representation. Being an ISO standard, there are a number of anthoring

tools and conversion teals that support SGMLL Also. SGNL s the hasis of the
Hypennedia/Time-Based Structural Langnage (HyTime) standard [1S092]. an
ISO standard that supports hypermedia doenments (e.g. links, video, andio,

cte).

1.2 Thesis Scope and Organization

This thesis deserthes an automatic way of inserting documents with different docu-

ment types into a multimedia database, The major contributions of this thesis are:

o The design of the meta type system which is used to store meta information
about the SGML dorument elements. This meta information is necessary to

tistantiate objects in the database to resresent the document.

e The dynamic extension of the meta type system to support new document
types. This is achieved by generating C+4 code whenever a new document
type definition (see section 2.1.1) is added to the system. The generated code

defines new meta types to represent the new elements defined in the DTD.

o The dyvnamic extension of the element type system by generating member func-

tions necessary for modeling the document instances.

e The development of the Document Entry System which is composed of the
SGML Parser and the Instance Generator components. The SGML Parser is
used to validate the SGML documents before inserting them in the database.
It forms a parse tree for the document structure. The Instance Generator uses

the parse tree to automatically instantiate objects in the database.

The thesis is organized as follows. Chapter 2 gives an overview of the
SGML/HyTime standard. Chapter 3 introduces the monomedia project components
and their general architecture. The design of the generic multimedia type system is

discussed in Chapter 4. The type system consists of three main components: the

Atomic Type System which models the basic multimedia objects, the Element Type
System which provides the abstract classes from which the document components are
subtyped. and the Meta Type System which is used to store some meta information
about the DTD elements. Chapter 5 deseribes the system for handling multiple Y1 Ds
and its interface with the document entry system. Chapter 6 deseribes the docnment
entry system. focussing on the SGML Parser component. The Instanee Generator
component is discussed in Chapter 7. A review of some related work is intraduced in
Chapter 8 together with a comparison between their approaches and the ones adopted

by our group. Conclusions and future directions are discussed in Chapter 9,

Chapter 2

SGML /HyTime Overview

The Standard Generalized Markup language (SGML) and the Hypermedia/Time-
Based Structural Langnage standards ([ISO86]; [1S092]) have been adopted as the
document representation in the CITR Project. Both are 1SO standards that are
widely used and accepted in the publishing field. SGML supports textual documents
whereas HyTime adds support for hypermedia docnments.

SGML was chosen because of its suitability for multimedia applications. The

strengths of SGML can be summarized as follows:

e SGML has been widely used in both conventional and multimedia publishing.
That’s why there is a variety of authoring tool. and conversion tools that sup-
port SGML. Multimedia authors can make use of these tools to facilitate the
process of document creation. Also, the availability of different conversion tools
can provide a “smooth” transition for the existing multimedia documents from

their formats to the SGML format.

o SGML separates structure from lavout. Its generic markup schema enables
the addition of information to the text to indicate the logical structure of the
document. This makes it easily mapped to the database schema and thus

facilitates the automation of data modeling in the database.

e SGML’s unambiguous format makes it more portable across multiple platforms.

6

Multimedia documents can be easily interchanged between different systems giv

g the multimedia anthors the flexibility to work iu their favorite environments,

This chapter provides an overview of the SGML/HyTime standards, Not all the
features are discussed here, the interested reader is referred to [VE94) and [NKNO1)

for more details.

2.1 SGML Overview

SGML was introduced to allow docnment authors to communicate i « standard way.
This is achieved by incorporating information in the document indicat me its notation
as well as its structure. A document author is allowed to reference of her documents
(hyperlink) regardless of the heterogeneity of their notations. It then becomes the
responsibility of the processing application to interpret and integrate the different
documents with the different notations.

SGML also provides a method to express documents in terms of 1heir logical
structure. It is considered a meta language that provides a means (o exprioss the
document’s syntax rather than the syntax of a specific document type. 1o every
document type, there should exist a Document Type Definition (DTD) thar p-ecifies
the syntax of the valid documents of that type.

A typical SGML system consists of SGML documents and SGMLL software, SGMI,

software includes:

¢ An SGML Editor or Conversion Tools: An SGML editor can be used to
help docum«nt authors in composing SGML documents. The SGML documents
must conform to a DTD in the system. Alternatively, conversion tools can be
used to convert documents from other notations such as LaTeX or MS Word
format to the SGML notation. The success rate of conversion is dependent, on

how strictly the structure is enforced in the original document,.

e A DTD Parser: A DTD parser is used to parse DTDs to ensure that they

are syntactically correct. The DTD parser is not an essential part ot an SGMI,

installation since the DTD will be parsed by an SGML parser during the parsing
of document instances. However, it might be nseful for document designers
to test their DTDs before composing documents. Also. in some processing
applications snch as our multimedia database application. parsing the DTD

before the doenment might be of special importance.

¢ An 5GML Parser: An SGML parser is used to validate SGML instances to
ensure that they conform to their DTDs. If the document does not conform. a
list of errors shonld be produced. SGML parsers help document authors find

errors and prevent markup misuse.

® A Processing System: Ounce an SGML document is verified by a parser,
it can be processed by the processing application. The processing of SGAL

documents is not under the control of the SGML standard.

An SGML document consists of three major components: the document instance.
the document type definition (DTD) and the SGML declaration. A detailed discussion

of the different components is provided in the rest of this section.

2.1.1 Document Type Definition

As mentioned earlier, a DTD is used to define the valid syntax for a specific document
type. It defines the logical components that can appear in the document and their
hicrarchical /sequential relationships. The logical components of the document are
expressed using “generic markup” where tags are used to identify the names of the
different components.

A typical DTD defines 3 types of markup commands: elements, attributes and

entities. Consider the following example:

<!ELEMENT article - - (docs_alts?, frontmatter, async, sync?)>
<'ATTLIST article

id ID #REQUIRED

language CDATA #IMPLIED>
<{ENTITY SGML "Standard Generalized Markup language">

8

As shown in the example, every DTD command starts with “<!™ followed by a
kevword (ELEMENT. ATTLIST. ENTITY) to denote the type of the commaud. The
content of the command is then given followed by a *>" 1o close the command.

An element command is a production rule which is defined for every clement iy
the DTD. The name of the element is specified on the left hand side of the production
rule. The omitted tag minimization information is then represented by two charace
ters; one for the start-tag and one for the end-tag. A minus stgn -7 s used 4 the
tag should not be omitted and a letter ‘0" is used if the tag may be omitted. The
right hand side of the production rule is called a content modedl. The content model
specifies which elements can occur inside the element’s content. Element names in the
content model are followed by occurrence indicators such as ("7 4" and YY) and
are linked together by connec.ors such as (*&, " and 7). Oceurrence indicators

specifies the number of times an element can occur inside the content:

G the element can occur zero or more times.
“qr the element can occur one or more times,

W

the element is optional (can occur zero or one time).

Connectors indicate the relationship between the elements in the content model

Ry

, elements separated by commas must occur in the same order.

“Lm elements separated by “&” must appear in the element’s content,
but in any order.

A.’I‘ﬁ

Only one of the elements separated by ™ should appear in the

element’s content.

Elements that do not have any sub-elements are called e af clements, Leaf ele-

ments can have one of the following content models:

#PCDATA stands for parsed character data. These elements contain
the textual contents of the document. Markup inside the
clements” text should be interpreted by the parser.

CDATA stands for character data. Markup inside the elements” text
should he ignored by the parser.

RCDATA stands for replacable character data. Same as CDATA except
that entity references are recognized by the parser. Entities
are discussed at the end of this section.

EMPTY These elements do not have any content.

Optionally, attributes can be defined on elements in the DTD using an attribute
command. Attributes do not helong to the content of 21 element but they provide
more information about it. An attribute statement consists of the name of an element
i the DTH and a list of all attributes that belong to this element. Each item in the
list consists of the attribute name, the declared value and the defanlt value. Possible
declared values include: CDATA, ENTITY, ID. IDREF and IDREFS. An attribute
with au 1D declared value is used to uniquely identify an element. This element can
he eross-referenced from other elements using an IDREF or IDREFS attribute. At-

tribute defaults include:

#FINED Should be followed by the attribute’s value. If the attribute’s
value is specified, it should be always equal to the fixed value.

#FREQUIRED The attribute’s value should always be specified in the
document.

#CURRENT If the attribute’s value is not specified, the most recent value
should be used. .

#IMPLIED If the attribute’s value is not specified, the processing
application should choose a default.

An entity is a unit of information that may be referred to by a symbol in a DTD

or in a document instance. Entities are defined by an entity command. There are two

types of entities: parameter entities and general entities. Parameter entitios are only
used within markup declaration. mostly within DTDs. General entitios can be used
anywhere within the DTD or the document instance. Thev can be further elassitied
nto: internal and externol entities. Internal entities are nsed as a shorthand notation
for text strings. In the o ove exaniple, the string “Standard Generalized Markup
Language” can be defined as the replacement text for an entity "SGML™. External
entities are used to include external files. They can be divided into local or public
entities. Local entities are usually specific to the system on which they are installed.
Public entities are public domain entities that are registered in a standard way atnd

available for public use.

2.1.2 Document Instance

TWu%docuxnentinstanceronsktsofthv(Wﬂﬂ(ﬂﬂﬁ(ﬁtln'duruxnvnltogvlhvr\vhlnnlnrknp
information that identifies the different logical components of the document. Sinee
every SGML instance should comply to a specitic DTD. a referenee to the DTD name
must also be included. The boundaries of the document components are delimited
by tags that specify their beginning and end positions. For example. consider the

following SGML document:

<!DOCTYPE thesis SYSTEM "thesis.dtd">
<thesis>
<frontmatter>
<title> Support for Document Entry in the MM Database </title>
<author> Sherine El-Medani </author>
<degree> Masters of Science </degree>
</frontmatter>
<tableofcontents>
<body>
<chapter>
<section> ... </section>
<section> ... </section>
</chapter>
</body>
</thesis>

11

The DTD filename and the root element name is specified in the DOCTYPE
statement. Since any valid element in the DTD can act as a root, the root clement

should be specified for every document instance,

2.1.3 SGML Declaration

The SGML declaration is used to define the details of how SGAML should be applied
to the document. For example, it specifies which character set (e.g. ASCII or other)
and delimiters (e.g. <, >, < /) can be used in the document. It is usually common
to all documents in an SGML declaration. However, if no specific SGML declaration

is assoclated with a doenment, a default declaration can be used.

2.2 HyTime Overview

HyTimeis an [SO standard built on top of SGML to support hypermedia documents.
It provides an expressive mechanism to represent the structure of multimedia. hyper-
text, hypermedia, time-based and space-based documents. It enables multimedia
documents to communicate regardless of their heterogeneous notations. It also pro-
vides a standard technique to express the temporal and spatial relationships among
the logical components of a multimedia document.

HyTime defines a set of architectural forms (AF) that can be used v iien designing
a DTD. Whenever a DTD element needs to implement a HyTime fuuctionality, it
should conform to a HyTime AF. This can be achieved by defining a HyTime attribute

with a fixed value equal to the AF name. For example,

<!ELEMENT 1link - - (#PCDATA)>
<!ATTLIST 1link
Hytime NAME #FIXED ilink

linkends IDREFS #IMPLIED >

defines an element 1ink which conforms to the independent link (ilink) AF. An inde-

pendent link is used to define a hyperlink with any number of link ends. Note that,

for 1ink to conform to the ilink AF, it has to define the linkend attribute which is
defined in the HyTime standard.

HyTime architectural forms are grouped together into a number of modnles cach
of which describes a concept or a gronp of related concepts. These modules are:
the base module, the location address modnle, the hyperlinks module, the finite
coordinate module, the scheduling module and the rendition modnle. The modules
are designed in a hierarchical fashion where cach module can use features defined in
modules lower in the hierarchy.

Only those modules of Hy Time which are appropriate to a certain document need
to be declared in the document. For example for a DTD to support hyperlinks, the

followii.g declaration should he inclnded!:

<?Hytime support base>
<?Hytime support hyperlinks>

The rest of this section provides a brief discussion of some of the Hy'Time maodules
namely the base module, the location address module and the hyperlinks module, The

reader is referred to the HyTime standard for more details {15092,

2.2.1 The Base Module

This module must always be supported by a HyTime compliant system. It ineludes

facilities that are needed by almost all the other modules. ‘These facilitios ineliude:

¢ Hyperdocument Management Facility

It defines the basic HyTime concepts (such as archifectural forms) and the rep-
resentational and document management conven'vnces. For example, it delines
the HyDoc architectural form which is used to epresent the root element of a
HyTime document. It also defines the ID a‘:ribute which is required by the
definition of some other architectural form: including the HyDoc architectiral

form.

Note that, the base module should Le s:pwito & ooy any systemn that supports HyTime.

|

.
.

!

e HyTime Identification Facility

It is used to solve name collision problems hy allowing the replacement of

HyTime-specific identifiers with user-defined identifiers [NKN91].

o Coordinate Addressing Facility

This facility is required by the address location module and finite coordinate
module. It allows the dimensions and positions of events to be scheduled and

allows document locations to he addressed by position.

e Activity-Tracking Facility
It provides a standard way by which the author of a document containing a

hyperlink can inform the owner of the linked-to document of the existence of

the link and to request notification if the document is modified.

2.2.2 The Location Address Module

The location address module provides methods for addressing and referencing data.
SGML attribute of type ID{s) and IDREF(s) can be used to identify /reference an
element. However, this technique has a number of limitations. First, only the contents
of an entire element can be referenced; for example, a substring of a text element
cannot be referenced using this method. Second. only elements within the same
local document that have an ID attribute can be referenced. This is because the
uniqueness of IDs is guaranteed only within the document’s name space and not
across documents. The address location module extends SGML'’s reference capability

to accommodate more general cases. HyTime supports three kinds of addressing.

e Addressing by Name

HyTime defines the named location address architectural form that provides a
method to address named SGML entities and uniquely identified SGML ele-

ments across documents. This is achieved by modeling the information needed

15
to locate the external file and to retrieve the named element or entity within

the file.

o Addressing by Position

HyTime allows addressing of objects by their position in sor o universe by spec-
ifying the position and the units of measurement (quanta) in the universe, For
example. a substring can by located by specifving the quanta to be characters
or words. the starting location of the parent string and the start position of the
substring. Similarly, a tree node in the document hierarchy or a specitic objeet

in a list can be located.

e Addressing by Semantic Construct

HyTime provides two architectural forms which allow semantic addressing,
namely the attribute location address AT and the nolation-specific location ad-
dress AF. Using the first AF, an element can be located based on an attribufe
value: for example, the first object with a location attribute of value Edmon-
ton. The second AF allows a subset of a data object to he located even if the
data is not in SGML. For example, locating the second polygon from the right
in a figure. Note that, a system capable of interpreting the data has to be nsed

for the data location.

2.2.3 The Hyperlinks Module

HyTime provides five kinds of hyperlinks classified according to the purpose of the

link and the number of link ends allowed:

¢ Independent Links (ilinks)

The most general purpose hyperlink architectural form as it can have any mium-

ber of link ends.

e Property Links (plinks)

plinks can ouly have two link ends. It is usually used to associate a property
with an element.

Conceptual Links (clinks)

Like plinks, clinks always have two link ends. However. one of the link ends
must be the clink’s own location in the document. 1+ r example. clink can he

used to represent a text’s footnote.

Aggregate Location Links (agglinks)

It links multiple locations together in such a way that they are treated as a
single aggregate location.

Span Links (spanlinks)

It allows the content of continuous SGML elements (possibly the whole SGML
dociment) to appear as a continnous string regardless of the intervening SGML

markup.

16

Chapter 3

Research Framework

3.1 The CITR Project

The work reported in this thesis is part of the Broadband Services Project funded
by the Canadian Institute for Telecommunications Rescarch (CI'TR)Y - a Network of
Centres of Excellence funded by the Government of Canada, The project is a malti-
university project spanning a six years duration starting in 1993, It aims at research-
ing enabling technologies for distributed multimedia applications exploring broadhand
communications technologies. The research consists of 4 major components: Contin-
uous Media File System (CMFS) (University of British Columbia), Quality of Serviee
(QoS) Negotiation (University of Montreal), Synchrouization (University of Ottawa)
and Database (University of Alberta). The system architecture design and integration
work is done at the University of Waterloo.

The database component developed at the University of Alberta focusses on data
management issues such as application independent storage and management of data,

versioning and meta data management.

17

3.2 The News-On-Demand Application

In the first phase of the project, a prototype was developed nsing news-on-demand
as the target application. Two researcl areas were investigated: modeling the news-
on demand data in the database [Vit95] aud the design of a visual query interface to
the database [EM95]0 Modeling the da involved the design of a suitable DTD for
news articles and the implementation -7 the type system corresponding to the DTD.
The system was built on top of the object-oriented DBMS ObjectStore.

The news-on-demand application was chosen for the prototype because it is a
good representative of a distributed multimedia svstem. News documents. whicl)
include television news and newspapers. incorporate nou-continuons media (such as
text and images) and continnons media (sneh as video, audio and synchronized text).
These documents are inserted by news providers (or information sources) into the
distributed multimedia database. The doenments can then be retrieved from the
database by subscribers or end users using the query facility.

In designing the type system. four important issues were taken into consideration:
(1) modeling of the individual document media components (sneh as text. mage,
andio. video); (2) modeling of the document structure (e, the hierarchical and the
sequential relationship hetween the logical elements of the document); (3) modeling
of the presentation information for the document using stvle sheets that are stored in
the database; (4) representing meta information about the multimedia objects such as
th- temporal and spatial relationships betveeen the different continuous media ohjects.

resulting news-on-demand application, the types that are necessary to
modene news articles are “hard-coded™ in a static type system that supports only
news-on-demand documents. The articles, which comply to the SGML/HyTime stan-
dards, are inserted into the database by instantiating appropriate objects of theses
types to represent them. Each article is treated as a base object with layers of anno-
tations. This approach allows the article’s content to be stored as a continuous text

block which improves the search and display efficiency. Once articles are inserted in

the database, they cannot be deleted or updated; thus the database implements a

14
read-only model. In a future release. the news providers may insert newer versions
of the news articles. The database management will handle the version managenment
issues,

The reader is referred to [Vit95] and [EN195] for more details about the news:

on-demand application.

3.3 Support for Multimedia Applications

The research, being conducted this year, aims at generalizing the multimedia type
system, developed for the news-on-demand application. to support a wide range of
applications. To achieve this goal, two major projects have been implemented. The
first is the design of a generic multimedia type system that is capable of supporting
multiple DTDs [Sch96]. This is achieved by defining a generie type system (e, a
number of built-in types) to model the characteristics common to multimedia doc-
uments. Whenever a new DTD is added to the system, new types are dynamically
added to the type system to support the new elass of documents. This method pro-
vides a dynamic extensible type system in contrast to the static news-on-demand Lype
system. A description of the generic type svstem and the dynamic ereation of types
1s provided in Chapter 4.

The second project, which is the contribution of this thesis, provides an automatic
method of inserting SGML documents of arbitrary types into the database. In the
news-on-demand application, the news articles were assumed to conform 1o the news
DTD so documents were not validated to detect errors in their structure. This places
the responsibility on document authors to ensure that their documents are error-free
before attempting to insert them into the database. With multiple DTDs, the need
for a full-fledged parser to validate the docnments gains more importance. [t releases
the document authors from the burden mentioned earlier and ensures the consistency
of the database. Also, in the news-on-demand application, the instantiation routine,

were hard-coded to instantiate objects that represented the news-on-demanid Lypes.

With the dynamic support of new classes of documents, the instantiation routines
cannot be hard-coded. The types of the objects to be instantiated has to be dynam-
ically detected after parsing the document instances. My research addresses these
two issues. ‘To validate document instances, the multimedia system is conpled w'th
an SGML parser. The output of the parser is retrofitted to create a parse tree to
represent the document instance. Automating the instantiation phase is done in two
stages. First, when adding support to a new document class in the database, meta
types are dynamically added to the database to store meta information about the
DTD types. Second, whenever a new document is inserted in the database. the In-
stance Generator! queries the database for the DTD’s meta types. These meta types
together with the parse tree are used to instantiate the appropriate objects in the
database to represent the document instance. A more detailed description of this

rescarch is presented in Chapters 5, 6 and 7.

3.4 System Architecture

The multimedia system follows a distributed multiple server/multiple client ar-
chitectu:e The clients are connected to a set of servers over a broadbend ATM
network. The servers are responsible for the sturage and management of multimedia
documents. There are two types of servers: the continuous media servers (CMS)
and the non-continuous media servers (NCMS). The ("MS are file servers that store
continuous media such as audio and video. The NCMS store non-continuous media
such as text and still images. The current architecture integrates only the NCMS
with the database (i.e. only non-continuous media is stored in the database). As for
the continuous media, the database only stores meta infurmation, namely quality-of-
service parameters, synchronization requirements, and information for locating the

media files on the CMS.

"The Instance Generator is one of the components of the document entry system. It is discussed
in Chapter 7.

20)

Applications

el

Visual Query Interface l Application independent APL

AN L7
N P
0w £ Multimedia
Query Processor & DBMS
Optimizer Extensions

ObjectStore

Figure 3.1: Conceptual Multimedia DBMS Architecture

The multimedia DBMS architecture is depicted in Figure 3.1. We use ObjectStore
as the underlying DBMS for the multimedia system. Since ObjectStore does not.
provide native support for multimedia types other than text, a multimedia layer is
built on top of ObjectStore. This multimedia layer defines types to represent the
media objects (atomic types), the DTD logical components (element types) and meta
information for the DTD components (meta types).

Users and applications can access the multimedia database via a visual query in-
terface or an application independent API. Currently, the visnal query interface is
implemented based on the news-on-demand application only and has yet to be gener-
alized. It interacts with the ObjectStore query processor using the multimedia type
system. Future work includes the development of a query processor and optimizer
that support content-based queries of images and videos. Once the (query processor
and optimizer are integrated to the system, the query interface will interact, with it,

rather than with ObjectStore. The new interaction s shown with a dashed line.

In the long run, as discussed in Chapter 9, TIGUKAT [OPSt95]. an exten-
sible object-oriented database, currently under development at the Laboratory for
Database System Research at the University of Alberta. will replace ObjectStore.
TIGUKAT, as opposed to ObjectStore, has inherent support for multimedia objects.

The testbed environment for the multimedia system consists of IBM RS/6000
workstations acting as client and server machines and interconnected via a broadband

ATM network.

[

Chapter 4

The Multimedia Type System

As mentioned earlier. the focus of this research is the automatic insertion of documents
in the multimedia database. This is achieved by instantiating the appropriate objects
in the type system that corresponds to the document’s structure. That is why the
design of a type system that enables such antomatic insertion is a crucial step towards
achieving this goal.

To automatically insert documents of arbitrary types in the database, the database
should be queried dynamically to retrieve information about the different types. This
is achieved by modeling DTDs as objects. Every DTD object stores meta information
about its components such as the element names, their attributes and their content
models. At run-time. the DTD object can be queried to determine which types
should be instantiated to represent the different document components. Such meta
information is modeled in the meta type system.

The design of the meta type system is one of the major contributions of this
thesis. It is implemented as a kernel type system that can be extended to support,
new DTDs as need arises. The kernel type system consists of built-in types that
define a number of meta types to model the characteristics common to multimedia
document elements. Whenever a new DTD is added to the system, new types are

dynamically added to the meta type system to support the new class of documents’,

The process of extending the meta type system is described in more detail in Section 4.5.10.

23

These new types are derived from the appropriate huilt-in meta tvpes: thus forming
a hicrarchy of types in a structured type system. Section 4.1 discusses the reasons
for adapting these techniques in designing the meta tvpe system and the alternative

technigques that were considered.

4.1 The Design of the Generic Meta Type System
In designing a type system, two fundamental questions need to be addressed:

(1) What data model should be used?

(2) Should a flat or a structured type system be supported?

The rest of this section discusses these two jssnes.

4.1.1 A Universal Data Model vs. a Kernel Data Model

To design a database system capable of supporting multiple DTDs, two possible data
models can be used. The advantages and disadvantages of both models are listed

])(‘]()WI

o The use of a universal data model that is capable of supporting all document
types (DTDs). This means that one type system should be used to represent

different meta types conforming to different DTDs.

Advantages: Using a universal data model, the database schema will be static
since there is no need for extending the meta type system to support new
DTDs. This simplifies the meta type system implementation and relieves

the system from costly schema evolution techniques.

Disadvantages: To design a universal data model to support all DTDs is very
difficult, if not impossible. Even if such a data model exists, it will be

too general and inefficient to serve multimedia application purposes. Also,

it will be hard to model the document structure in a way to allow type
checking and querying built on document components. This will be a

major drawback in the type system.

o The use of a kernel data model that can be extended to support new DTDs as

need arises.

Advantages: The structure of the different DTDs will be directly mapped to

the database schema which facilitates type checking and querving.

Disadvantages: Dynamically adding types to the type system involves dynamie
schema evolution and instance conversion which can be very costly to ap-
plications linking to the database schema. Depending on which schema
evolution strategy is employed. certain overheads will be imposed on the
applications?. Overheads range from the necessity to relink all applications
using the database (even if they are not using the new schema) to slower

access time for object instances (if versioning techniques are employed).

The second approach was adopted in designing the meta type system. To minimize
the dynamic schema evolution overhead. only leaf-types are dynamically added to
the database schema; this avoiding the need for instance conversion, This technigue
is adopted because ObjectStore allows the addition of leaf types to the database
schema without the need to call the schema evolution facility. These types are added
automatically to the database schema whenever an application using these types
opens the database. Other applications will not be affected by the database schema
unless they need to use the new types; in this case such applications have to be
relinked to the new schema. This approach increases the accessibility of the database
and isolates applications using the database from the schema modifications as much

as possible.

2A discussion of the different schermna evolution strategies is out of the scope of this thesis. The
reader is referred to [Sch96) and [PO95) for such discussion.

4.1.2 A Flat Type System vs. a Structured Type System

The second issue that needs to be addressed is he use »i a flat versus a structured
type system. Using a flat type system inveive, adding tie pew generated tvpes as
root types in the database {no supertvpes). F.en thougo © 1 technique is easy and
straightforward to implement, a structured type sysren: wa: adopied in our system.
This is because the flat type system does not make 1< o .oheritance to reduce code
redundancy and express common behavior. Ter exwin: oo if two = 'ments in two
different DTDs, say imagel and image2, represent a i ain 0! vt timage). Using a
flat type system, the data members and code needed Lo istantiate :lie media object
will be duplicated in the two generated meta tvpes. If both tvpes wvere subtyped
from a common element, say ImageType, that abstracts the common .« ie and data
members, redundancy will be highly retuced. Also. the ability to exni=ss eoi;monality
between types allows for a more powe-Tul query model. For exai:pie. the database
can be queried for the meta informat wi of all types that represent an image media
object. To maintain a structured type sysiem, information is gathered about the
DTD elements to enable the system to automatically detect the supertypes from
which each element should be subtyped.

Abstraction and reusability of types are not fully exploited in the current type
system. As mentioned earlier, to minimize the dynamic schema evolution overhead,
the new types added to the system are always created as leaf nodes in the hierarchy
of types. This excludes the possibility of extracting features that are common to
different types within one DTD or across DTDs and abstracting them into super-
types. Thus our system restricts reusability of types to the built-in types that are
moceled in the kernel type system. A main disadvantage of this approach is that
the resulting system suffers from some code redundancy. Future research aims at ad-
dressing the reusability and abstraction issues for types that are dynamically added to
the database. Addressing this problem involves not only addressing dynamic schema

evolution issues but also semantic heterogeneity issues (see Chapter 9).

4.2 The Design of the Multimedia Type System

Designing a type system for an object-oriented database is not casy since the type
system will eventually be mapped to the database schema. In our svstem, it is even
a more challenging task because our data model shonld be sufticiently general to
support the different multimedia applications; i.c. to handle multiple DTDs.

The modeling of the meta information discussed earlier is only one component of
the multimedia type system. Modeling of other information is crucial to the modeling

of the multimedia documents:

e Modeling of the different media objects: A multimedia document consists
not only of text but of other media components such images, audios and videos.
Since ObjectStore does not provide native support for niltimedia objects, a
multimedia layer is built on top of ObjectStore. This layer models the mnlti-
media objects together with their quality of service parameters in the so-called

atomic type system. The atomic type system is described in Section 1.3,

e Modeling of the document structure: Since SGML documents are strie-
tured, the type system should reflect the structure of these documents and the
hierarchical /sequential relationship hetween their components. In our system,
the document structure is modeled in the element type system (see Section 4.4)

where every DTD element is represented using a type in the type system.

The resulting multimedia type system consists of three components: the atomic
type system, the element type system and the meta type system. The design of
the multimedia type system conforms to the design of the meta type system. It is
implemented as a kernel type system that can be extended to support new D'TDs.
The kernel type system consists of a number of built-in types that constitute the core
of the multimedia database schema. These built-in types define the atomic types
and a number of element and meta types that model the characteristics common to

multimedia documents.

Py

Even though the design and implementation of the atomic and the element t >
systems are part of a separate thesis [Sch96], they are discussed in the next tw
sections. The discussion is included for completeness and due to their impact on the

meta type systemn.

4.3 The Atomic Type System

The atomic type system is used to model media objects (such as text. image, video
and audio) that are the basic components of multimedia documents. In our svstem,
these media objects are referred to as primitive objects. The primitive objects refer
to the raw media representation together with synchronization and quality-of-service
information.

The quality-of-service parameters are needed for presentational purposes and can
be negotiated at the document’s retrieval time according to the hardware avaliable
on the client machine and the desired quality and cost requi- by the client. For
example, the quality-of- service pararieters for a video can include the duration of the
video (number of minutes), the video color (black-and-white or colored), the width
and height of the video, the video format (MPEG1, MPEG2 or JPEG), the frame
rate, ete.

Primitive objects arc allowed to have multiple variants that differ only in their
quality-of-service parameters. For example, a video can have two variants: one being
a colored version of the video and the second being a black-and-white version, or one
variant being in a different format than the other. Also, for continuous media types
such as audio and video, variants can differ in the number of data streams that are
associated with each variant. Normally, the higher the number of data streams, the
higher the quality-of-service and the higher the presentation quality.

Figure 4.1 shows the type hierarchy for the atomic type system3. At the root

3Abstract supertypes are displayed in bold font, whereas concrete types are displayed in a normal
font.

Atomic

e

Monomedia DataStream Variant
‘“ 7N
\ NC]/VlType CMType
N
AudioMedia STextMedia / AtomicVideo| AtomicAudio
VideoMedia | ImageMedia AtomicText AtomicSText
TextMedia Atomiclmage

Figure 4.1: Atomic Type System

of the atomic type system. the type Atomic is defined as an abstract supertype of
all atomic types. The three derived types of Atomic represent the three types of

information that are modeled in the atomic type system.

4.3.1 DataStream

DataStream is an atomic type for streams. Streams are only used to represent files
for the continuous media objects (audio, video and synchronized text)t. These files,
in contrast to the non-continuous media (text and images) files, are not stored in the
database but on a continuous media file server (CMFS). The database stores meta
information about these files that is necessary for their retrieval from the CMFS.
The type DataStream is used to capture some of that meta information such as the
file size on the CMFS and the universal object identifier (uoi) which is a1+ .«

identifier used to locate the file on the server.

“Note that, one particular audio or video can consist of a number of streams. The combination
of several streams generates a quality-of-service level.

4.3.2 Variant Types

Variant is defined in the atomic type system to represent the variants that can be
associated with a media object. It holds the raw media representation. the QoS infor-
mation and some other information needed by the synchronization component. There
are two types of variants according to the type of media the y model: non-continuous
media is represented by the type NCMType and continuous media is represented by
the type CMType. The distinction between the continuous and non-continuous media
1s made since they are handled differently in the system. Non-continuous media is
stored in the database as native objects whereas continuous media objects are stored
on a CMFS with meta information stored in the database®. Since instances of NCM-
Type store the raw media in their objects, it defines a data member called content
which is an array of bytes. Instances of CMType store meta information such as the
server on which the continuous media is stored (site) and references to the data
streams that composes the media object (DataStream *). Note that, storing the
server name in the variant object assumes that all the data streams associated with
a variant object will be stored on the same server. If such assumption is invalid, the
server name shonld be stored with each stream (in the DataStream type).

The five variant types are modeled using the five atomic types shown in figure
4.1. Each of these types are used to store the QoS information specific to that type of
media. For example, the type Atomiclmage stores a pointer to an image QoS instance
(imageQoS *). Instead of modeling the QoS information directly in the atomic type
system, a different type hierarchy is maintained (TQoSVariant type system). These
types are introduced to achieve a clear distinction between information stored about
the contents of an atomic object and the presentation information (QoS information).
The di ussion of the TQoSVariant type system is not presented in this thesis. It can

be found in [Sch96).

SThis is a hybrid approach between non-integrated and integrated database systems. Non-
integrated databases stores only meta information about multimedia objects in the database and the
actual objects on files whereas integrated database systems store the multimedia objects together
with their meta information in the database.

30

4.3.3 Monomedia Types

The concept of Monomedia types are introduced to allow a primitive object to have
multiple variants. Since each Monomedia instance can be associated with QoS infor.
mation about the object irrespective of its variants. the attribute monomediaQoS is
introduced to model this information in the TQoSVariant type system,

Monomedia is subtyped into five derived types that correspond to the five variant
types. Instances of these monomedia types store references to all of their variants,
For example, an instance of type ImageMedia will store references to all of its variants,
which are of type Atomicimage.

The link between the Monomedia types, the Variant (vpes and the DataStream
1s maintained through pointers. For example. an instance of type VideoMedia will
have pointers to all its associated variants which are instances of type AtomicVideo.
Each of the referenced instances will, in turn. have pointers to all its associated data
streams, which are instances of type DataStream. Iu composing an SGML multine

dia document instance, these references are represented by using SGNL ID/IDREY

referencing capability (discussed in Chapter 2). It then becomes the responsibility of

the Instance Generator to resolve these references after instantiat ing the appropriate

objects in the database (Chapter 7 descr. s this process).

4.4 The Element Type System

The element type system is used to model the DTD structure. It is a uniform repre-
sentation of elements in the DTD and their hierarchical relationships.

As mentioned earlier, in designing our kernel type system, a number of built-in
element types were defined to model the characteristics common to all (or some)
DTD elements. These built-in types constitute the core of the clement Lype systemn.
Whenever support for a new DTD is required, new types are dynamically created
to represent the logical eleinents in the DTD. According to the characteristios of the

DTD elements, the corresponding types that represent them are subtyped from the

Element

I\

VariantElement Text Image Stream HyElement
Annotateiiement ?’ctured
StructuredAnnotated

Figure 4.2: Top Level Hierarchy of the Element Type Svstem

predefined element types.
Iu general, any DTD element that needs to be supported by our type sv:em will

fall under one of three categories.

4.4.1 Structure Elements

Structure elements are elements in the DTD that are defined to represent the structure
of the document instances, such as an element title in a thesis or an article DTD. To
represent these types in the element type system, a number of built-in types have

been introduced:

Element

This is the supertype of all element types. Element stores some basic information
that should be modeled for every element in the DTD. A DTD element type will
be directly subtyped from Element only if the element is defined to have an EMPTY

content model. Figure 4.2 shows the types derived from Element.

33

Structured

Structured is the supertvpe of all DTD clements that have a complex content model;
i.e. non-leaf elements. Since non-leaf elements alwavs have child elements, the type
Structured maintains a childList which stores references to all the element s ehildren

in the order in which they appeared in the instance.

AnnotatedElement

For efficiency. the textual content of a document instance is stored as a one contin.
uous string with layers of annotations. Every textual element is associated with an
annotation which stores the start and eud position of the clement with respect to
the document’s text string. Annotations are needed for all elements that need to be
located within the text stiing. For example, annotations can be used to store e
position of a certain image within the document for display purposes. The type An-
notatedElement is the supertype of all types with annotations. An element is said to
be annotated if the element or any of its subtypes have a £#PCDATA in their content
model or if the element needs to he located within the text hlock (e.g. images and

links).

Structured Annotated

StructuredAnnotated is the supertype of all elements which are structured and have
annotations. The type StructuredAnnotated is derived from hoth supertypes: Struc-
tured and AnnotatedElement. It inherits the childList attribute from Structured and

the absoluteAnnotation attribute from AnnotatedElement.

4.4.2 HyTime Elements

HyElement is the supertype of all elements in the type system that conform to a
HyTime architectural form; i.e. the elements that have a HyTime attribute. Its im-

mediate subtypes represent the architectural forms that are currently supported by

our system. These are: HyDoc_AF, Dimspec_AF. Axis_AF. Event_AF. llink_AF. Fcs_AF.
Extlist AF, and Evsched AF. Our type system can be extended to support other Hy-
Thune architectural forms by defining built-in types to represent these AFs and deriv-
ing them from the HyTime type,

Following the HyT me standard, all the HyTime types representing HyTime AFs
define an id attribute (inherited from HyTime) to uniquely identify elements for
referencing, FFarthermore, they contain data members for all attributes that are
required by the HyTime standard to support the architectural form. The list of
attributes defined to support the different architectural forms is provided in [Sch96)].

Note that, types Video. Audio and SText are derived from the HyTime type
Event AF since they use HyTime events to represent their synchronization informa-

tion.

4.4.3 MM Elements

The MM types have been introduced in our type system to provide a consistent way
of handling objects that refer to monomedia objects. Since monomedia tvpes are
muodeled in the atomic type system, it follows that MM types refer to atomic types.

In our system, every concrete type in the atomic type system is modeled in the
clement type system using an MM type. This maintains a one-to-one correspondence
between the conerete atomic types and the MM types. Whenever an element in the
DTD refers to a multimedia object. it is subtyped from one of the MM tvpes. This
indirection is maintained so that no new types will be directly derived from an atomic
type.

There are MM types defined in our type system to correspond to the three types

of information represented in the atomic type system:

® The MM type for DataStream is Stream which contains an attribute datastream

that represents a pointer to type DataStream.

e The MM types for media atomic types (TextMedia. ImageMedia, AudioMedia,

34

VideoMedia and STextMedia) are Text. Image. Audio. Video and SText. Eacl
one of these MM types contains a veference of the corresponding media type,
For example, Image contains an attribute media which points to an ImageMedia

object.

o MM types for variant atomic types (AtomicText. Atomicimage. AtomicAudio.
AtomicVideo and AtomicSText) arc TextVariant. ImageVariant, AudioVariant.
VideoVariant. and STextVariant. These MM types are derived from the type

VariantElement.

Figure 4.3 shows the relationship between the atomic types and the MM element
types for Video types. In the figure. the following convention is used: user-defined
types appear with a "My’ prefis followed by the element type name from which they
are derived. Instances of types are appended by “a’ or “an’ followed by their type

name.

4.4.4 Helper Types

There are a number of types in the generic type system that are not subtyped from

Element but logically belong to the element tvpe systen.

Annotation Type

The Annotation Type is used to store the start and end position of an element in the
textual string of the document. Any annotated clement (refer to Sec " m 4.1.1) has

an instance of type Annotation associated with it.

DocumentRoot Type

The DocumentRoot type is used to store the document’s text string and a list of all
the Monomedia objects (TextMedia, ImageMedia. AudioMedia, cte). This list is stored
in the DocumentRoot for efficiency purposes since atomic objects are required quite

frequently by other components of the system.

36

Class Hierarchy of Video Element Types | Class Hierarchy of Video Atomic Types

Element ; Atomic

Stream 5 DataSream
(DataStream *stream)
VariantElement ! Variant

MyStream CMType

(DataStream *streaml.ist)

VideoVariant
(AtomicVideo *vidco)

HyElement . AtomicVideo Monomedia
My VideoVariant Video ; VideoMedia
(VideoMedia *media) : (AtomicVideo *variantspecList)
MyVideo :

Instances of Video Atomic Types

(VideoMedia "‘mec:iia) aVideoMedia

; %\'iho*variamspecust)
(AtomicVideo *video) . .

: anAtomicVideo |—-> anAtomicVideo

AtomicVideq * K I (DataStream
(AtomicVideo vnqen) *streamList)

§ v
(DataStream *strdam) : .
| aDataStream l—) aDataStream

(DataStream *stream)

Figure 4.3: Example for MM Video Types

The DocumentRoot also stores the document’s lists of annotations with its text
string. This list can be used for, among other purposes, displaving a document sinee
presentation information might depend on the document’s structnre (for example, all
titles are displayed in boldface),

Since annotations are specific to each DTDs elements, the annotation lists can
not be stored in the built-in DocumentRoot type. Instead for every DTD, a new
type Is created as a subtype of DocumentRoot. The new type will contain data
members to represent the document’s annotations. For example, an article DTD will

be represented by a new type ArticleRoot.

DTD Type

To facilitate the process of document entry, the DTD type has been introduced, For
every DTD in the type system, a DTD object is created which stores the D'TD name,
the DTD string and a types list. The types list contains a meta type objeet for eaely
element defined in that particular DTD. At document instantiation tine, these types

are used to antomatically instantiate objects to represent the document instance,

4.5 The Meta Type System

The meta type system is used to model meta information abont D'TD elements that
is necessary for the automatic document instantiation. For every logical elenient
defined in the DTD, there is a corresponding type in the meta type system as well as
in the element type system. This provides a one-to-one correspondence hetween the
coucrete element types and the concrete meta types in the type system. The design
of the meta type system is one of the major contribution of this research.

In our type system, meta types are used to perform two important, tasks:

o They store meta information about the logical elements in the DT such as
the elements names, their attributes, and the supertypes from which these el-

ements are derived in the element type system. Such information is necessary

37

ElementType

7N

AF _Type AnnotatedType
Helper Classes
MonomediaType DataStreamType
EventT AxisT ElementAttribute
ventType xisType Namegroup
VariantType

Figure 4.4: Built-in Meta Types
for instantiating the appropriate database objects and setting their attributes.

o They define functions to instantiate database objects to represent the differ-
ent components of the document instance. These functions are referred to as

instantiation routines®.

A number of built-in meta types have been defined in our kernel type system to
represent the characteristics common to all (or some) element meta types. Whenever
a new DTD is added to the system, the generated meta types to represent the DTD
will be derived from one of these predefined types.

Figure 4.4 shows the top level type hierarchy for the meta type system. The rest of

this section discusses these built-in types, their member functions and data members.

6The reader should make the distinction between the instantiation routines and the Instance
Generator. The term instantiation routines is used to refer to the dynamically generated code for
object instantiation. This code is generated by the Type Generator once for each DTD. The Instance
Generator is the system component that is invoked after the SGML Parser for every document
instance. It is described in detail in Chapter 7.

4.5.1 The ElementType

The ElementType type is the supertype for all meta tyvpes. Tt as used to store the
meta information necessary to represent the elements in the DTD. It contains the
data members: name. attrList, supertype and isStructured. The name data
member stores the element name as it appears in the DTD7. A List of all the attributes
defined in the DTD for the specific element is stored in the attrList data member,
Supertype is an enumeration that represents the built-in element tyvpe from which
the element is derived. The isStructured data member is used to denote whet her
the element type has a complex data model or not (i.e: is derived from Structured
or not). This inforimation is important for the Instance Generator to decide whetlher
to call CreateObject or CreateStrObject to create the element tvpe. The member

functions can be divided into the following categories:

¢ Functions used to instantiate database objects

These functions, namely CreateObject and CreateStrObject. arc virtnal fune-
tions that are redefined in the generated meta types for the D'TD elements®,
CreateObject is redefined for the leaf clements (i.c: elements with simple con-
tent model) wherecas CreateStrObject is redefined for elements with a complex

content model.

e Functions for setting attributes

The member function SetAttributes is a general function that loops over
the attribute list and calls SetSpecificAttribute for all attributes that do
not need special handling. The SetSpecificAttribute function is a virtual

function defined in type Element and redefined in the generated element types,

The member functions CreateAString, FillInList and Get_TLanguage Value

are also used to set attributes. CreateAString is used to create a persistent

"Since SGML element names are case insensitive, the element names are stored in Upperease
letters.

8Note that, the document entry systern relies on virtual functions for instantiating the appropriate
database objects. This concept will be addressed in Section 4.5.10.

RYY

string iu the database and set its contents. GetStrValue searches the attribute
list to find the value of specific attribute given its name. FillIntList is used to
fill an ObjectStore list of type integer given a string representation of the values.
Get_TLanguage Value takes a string and returns its corresponding TLangnage

. . q
enumeration value if any®.

e Functions for determining special attributes

special attributes should be set during object creation and skipped
during SetAttributes!®. These functions include: IsInHandledList,

IsAttributeHandled and HandleID.

Type ElementType has two abstract derived types: AnnotatedType and AF_Type.

4.5.2 AnnotatedType

The Type AnnotatedType is used to represent the meta type for elements that have
annotations. These elements are derived from the Tvpe AnnotatedElement. It de-
fines the function Create Annotation which is used to create a persistent Annotation
object. The meta types for all annotated DTD elements will be derived from this

type.

4.5.3 AF _Type

The AF_Type type is used to represent the meta types for elements that conform to
a HyTime or an MM architectural form. Some of the attributes defined on these
elements need special handling (special attributes).

As mentioned earlier, special attributes should be set during object creation and
skipped during SetAttributes. These attributes are special either because they are

represented on the atomic rather than the element side (e.g., attribute price for an

*The function Get_TLanguage Value should be placed in LanguageType. It was moved to Ele-
mentType because the root element should update the language of the document’s text block.
'9A discussion of special attributes is provided in Section 4.5.3

40

Image MM type) or they ne.d special handling such as type conversion. The latter
are usually HyTime attributes.

AF_Type defines two member functions:GetStrAttrValue and GetIntAttrValue.
GetStrAttrValue searches the attribute list to find the value of a specific at-
tribute given its name and creates a persistent string that corresponds to that value.
GetIntAttrValue gets the value of an attribute given its name and returns an mteger
that correspouds to that value.

AF_Type has five abstract derived types: MonomediaType. VaraintType, Event-

Type. AxisType and DataStreamType.

4.5.4 MonomediaType

The type MonomediaType is used to model the MM eclements that represent media
atomic types (elements derived from Text, Image, SText, Audio and Video).

MonomediaType defines the following member furctions: GetDoubleAttrValue.
Get_id and Get_price. GetDoubleAttrValue returns a double number that corre-
sponds to the value of a specific attribute given its name. Get_id and Get_price
create a persistent string to represent the id and the price respectively for a mono-
media object,

As shown in Figure 4.5, MonomediaType has five abstract derived types: Text-
Type, ImageType, AudioType, VideoType and STextType. Each of these types de-
fines a function that creates a Monomedia object that corresponds to its media
type. For instance, TextType defines the function Create TextMedia which creates
a persistent TextMedia object and sets its attributes; ImageType defines the funetion
Create ImageMedia which creates a persistent ImageMedia and so on. Also, the fune-
tion IsAttributeHandled is redefined in each of these types to roﬁect the handled
attributes.

Since Text and Image have annotations in our type system, the types TextType and
ImageType are derived from the type Annotated Type. Similarly, AudioType, VideoType

and STextType are derived from EventType since Audio, Video and SText are derived

11

MonomediaType
Annotate‘d']‘\ype / \ EventType
\ VideoType
TextType
AudioTyy*

ImageType STextType

Figure 4.5: Type MonomediaType and its Derived Types

from Event_AF.

4.5.5 VariantType

Variant Type models the meta types of MM elements that represent variant atomic
types. These elements are derived from TextVariant, ImageVariant, STextVariant. Au-
dioVariant or VideoVariant.

Since all atomic objects have the data members: id. format and size. the func-
tions Get_id, Get_format and Get_size are defined in this type. It also defines:
GetUnsignedAttrValue and GetFormatAttrValue which scan the attribute list for a
certain attribute and return an unsigned integer or a TFormat enumeration value
to correspond to the attribute’s value.

VariantType is subtyped into ColorType and LanguageType. The two types rep-
resent the elements that have a color and language attribute respectively. Col-
orType defines the member functions: Get_width, Get_height and Get_color.
On the other LanguageType defines the member functions: Get_language and

GetLanguageAttrValue.

VariantType

/

ColorType LanguageType

TextVariantType | STextVariantType
ImageVariantType videoVariantType

AudioVariantType

Figure 4.6: Type VariantType and its Derived Types

ColorType is further subtyped into ImageVariantType and VideoVariantType
whereas LanguageType is subtyped into TextVariantType, AudioVariantType aud
STextVariantType. Each of the five types define a function that creates a per-
sistent Variant object corresponding to its atomic type and redefines the funetion
IsAttributeHandled. ‘or instance, ImageVariantType defines the fnetion Cro-
ate_Atomiclmage which creates an Atomicimage instance, TextVariant Type defines

the function (‘reate_AtomicText and so on.

4.5.6 EventType

EventType is used to represent elements in the DTD that are derived from Event AF
or Evsched AF. These elements are characterized by having a pls2gran list!!,

EventType defines a function Fill_pls2gran which fills the pls2gran list with
integer items that -orrespond to its string value.

As shown in figure 4.7, EventType is subtyped into: AudioType, VideoType,

pls2gran is a HyTime required attribute for Event and Evsched AF. It stands for pulse to
granule ratio.

EventType

AudioType / \ EvschedType

VideoType STextType

Figure 4.7: Type EventType and its Derived Types

StextType and EvschedType. The first three types were discussed ear! or.
EvschedType is used represent the meta type for elements that are derived from
Evsched AF. It contains the function Fill gran2hmu which fills the gran2hmu list'?

with integer items that correspond to its string value.

4.5.7 AxisType

AxisType is used to represent elements in the DTD that ~re derived from Axis_AF.
These elements are characterized by having an axismdu list and an axisdim. It
defines functions Fill_axismdu and Get_axisdim which set the values of axismdu

and axisdim respectively!3,

*gran2hmu is a HyTime required attribute for Evsched AF. It stands for base granule to HyTime
measurement granule (HMU) ratio.)

Baxismdu and axisdim are HyTime required attributes for Axis AF. axisdim stands for the size
of the axis in MDU (measurement domain units) and axismdu stands for axis measurement domain
unit.,

tx

4.5.8 DataStreamType

The type DataS* mType is used to represent DTD elements that are derived from
the MM element type Stream. These elements are characterized by having a reference
to an atomic DataStream type.

DataStreamType defines a function Create_DataStream to create an atomic ohjeet
of type DataStream. It. also. defines functions Fill_axismdu and Get_axisdim which

set the values of axismdu and axisdim respectively.

4.5.9 ElementAttribute Type

Even though ElementAttribute is not subtyped from ElementType. it logically belongs
to the meta type system. It is used to store meta information about element at

tributes. It defines the following data members:
e name is the attribute name as specified in the DTD.

¢ valtype is the attribute type (e.g. CDATA. ID, IDREF(s). NAME(s). NUMBER(s).

etc).

¢ deftype is the attribute’s default type (e.g. FIXED. REQUIRED. CURRENT,
IMPLIED. etc).

¢ defvalue is the attribute’s default value defined in the DT if any.

o curvalue is the last value assigned to the attril:ute during parsing the current
document instance. This data member is used only when deftype is set Lo

CURRENT.

® namegrp: name group if exists

4.5.10 Extending the ElementType Type System

All the types discussed above are built-in types that constitute the generic Lype

system. As mentioned earlier, these types represent the multimedia objects (atomie

typesj and the behaviors and characteristies common to DTD elements (elenient and
meta element types),

Whenever support for a new DTD is needed, new types are generated in the type
system to support the new class of documents. These types extend the type svsten
to model the features specifie to the new DT,

To modela new DTD in the system, a number of types need to be generated,

o Forcach DTD. asubtype of DocumentRoot is generated to represent the specific
DTD's root. The new type will define data members to represent the list of

annotations for the speeific DTD.

o An clement type will be generated to represent the root element of the DTD.

The new type will be a subtype of type Document and type StructuredAnnotated.

o For every element in the DTD. a new type will be generated and subtyped
from one of the predefined element types™. If the DTD element has attributes.
the new type will redefine the virtual function SetSpecificAttributes to set
the attributes defined in the attribute list according to their tyvpes (whether
they represent an integer, a string. a list of integers. etc). If the DTD element
contains some attribute(s) of type IDREF(s). the virtual function ResolveRef
is redefined to resolve the references. Furthermore, if the new type is derived
from Structured. the virtual function SetChild is redefined to set the children

data members. This link is important for traversing the document.

o For every element in the DTD, a new meta type will be generated and subtyped
from one of the predefined meta element types. One of the virtual functions
Createlbject or CreateStrObject will be redefined in the new meta type

depending on whether the element is structured or not.

MDetermining the supertypes for the generated typ-~ is out of the scope of this thesis (see [Sch96)).

46

Chapter 5

Handling Multiple DTDs

Since multimedia documents are diverse in nature and structure, it is almost pos-
sible to design a single catch-all DTD that can represent all multimedia documents.
Even if such a DTD was designed, it would be too general to serve the different apph-
cation requirements. Therefore. maltiple DTDs should be designed to represent the
different document types.

A system that supports different multimedia applications has to be sufliciently
general and extensible to handle the dynamic insertion of multiple DTDs in the
database. This is achieved by implementing a svstem that is capable of analyzing
DTDs and creating types to represent these DTDs in the database.

Figure 5.1 shows the system components that were developed for handling mul-
tiple DTDs. These components are: the DTD Parser, the Type Generafor and the
DTD Manager. Even though the implementation of this system is part of another
thesis [Sch96], some of its components directly affect document instantiation and are
contributions of this thesis. In this chapter, the system is presented as a whole, The
reader 1s referred to Section 5.2.1 for a description of the contributions of this thesis.

The rest of this chapter provides a short discussion about these components. Ouly
the issues that affect the automatic docnment entry system are discussed in detail,

A complete description of the system can be found in [Sch96).

47

DTD

<'Element...>
<'Attnbute.. > J

Type v, * ;
Gencrator " Type System :
! :
DTD i j
Parser Y DTD & DTDy

Manager i
1
|
|

SGML Documents|

|
i
|
ol
|
I
|

Multimedia DBMS !

— !
!

Visual Query Interface ;

TN

Figure 5.1: Architecture for Handling Multiple DTDs

5.1 The DTD-Parser

The DTD Parser component is used to check a new DTD for correctness. During
parsing, the parser collects information about the SGML elements defined in the
DTD to be used for the automatic generatiou of types to represent the DTD. After
a successful validation of the DTD, the parser calls the Type Generator

A publicly avaliable DTD parser called dpp, developed at the University of Illi-
nois. was used for validating DTDs. The parser is written in ¢ and uses flex and
bison (lex/yacc replacement). dpp checks the correctness of the DTD by checking
its conformance to a meta DTD. This meta DTD describes a grammar for defining
DTDs.

Some modifications were made to the original version of dpp to meet our system
requirements. While validating the DTD, dpp does not build data structures to
represent the DTD elements. These data structures are not necessary to validate the

DTD, which is its main function. However, in our svstem such data structures are

19
necessary to invoke the Type Generator and they have to be maintained.
dpp has been modified t¢ maintain a list of the elements defined in the DTD.
While parsing the DTD. whenever an element definition is encountered. an entry in

the element list is created. Eachi entry has the form:

struct Element {
char *name;
struct ContentDecl *content;
struct Attribute *prt_attr_list;
struct Element *next_elem;
struct Group *incl;
int reachable;
int visited;
struct Group *mult_elem;
int islist;
int isStructured;
enum SType supertype;

};

where name is the element name, content is a pointer 1o the content model of
the element, prt_attrlist is a pointer to the clement’s attribute definitions, and
next_elem is a pointer to the next eleraent in the element list. This data member is
important for traversing the elements list. incl is a pointer to the list of elements
that can occur inside the current element through inclusion!.

Whenever an attribute definition is found in the DTD, an entry is ereated in the
attribute list of the element that contains the attribute. Each entry of the attribute

list has the following structure:

struct Attribute {
char *name;
char *valtype;
enum DefType deftype;
char *defvalue;
struct NameGrp *namegrp;
struct Attribute *rext_attr;
int predef;
}

Mnclusion is an SGML feature which is used as a shorthand for defining a content model. Elements
named in an inclusion can occur anywhere in the element being defined or any of the subelements.

)
where name is the attribute name, valtype is the attribute type (e.g. CDATA. ID.
...}, deftype is the default type (e.g. FIXED. REQUIRED, ...), defvalue is the defanlt
vialue, namegrp is a pointer to the attribute name group, if defined. and next_attr is

a pointer to the next attribute in the attribute list.

5.2 The Type Generator

After the successful validation of the DTD, the Type Generator is invoked with the
element list data structure. For every element entry in the element list, the Type Gen-
crator generates C++4 code to dynamically create the necessary C++/0bjectStore
types to represent the element. After the successful completion of the code genera-
tion, the generated code is compiled and execnted to update the database schema.
Applications nsing the new DTD can link to the new schema and make use of the
new types.

The Type Generator is the system component responsible for generating the types
which model the specific characteristics of the DTD elements. This task is a critical
step that affects the whole system. During document instantiation. instances of the
generated types will be instantiated to represent the document instance. Hence. the
type design affects the way the documents are stored in the database. It follows that
the type design greatly affects the performance and capabilities of the system. A
“good” design facilitates querying and document retrieval and increases the system'’s
functionality.

To successfully model a new DTD in a type system, a very important question
needs to be addressed: What information needs to be modeled in the new types and
how can this information be represented in the most efficient way? Modeling DTDs

i a type system should involve modeling the following information:

* Modeling of the Element Structure: SGML documents are structured with
the element root at the top of the tree and DTD elements as nodes in the hi-

erarchy. Elements appearing in the content model of an element represent the

)

children of this element’s node in the compuosition hierarchy. Leaf nodes rep.
resent elements with simple content model (PCDATA or EMPTY). The document
structure should be reflected in the type svstem. This enables document traver-
sal starting from a specific tree node as well as querving built on document

structures.

* Modeling of the Element Attributes: In SGML. elements can define at.
‘ributes. Even though attributes are not part of the document hicrarchy, they
can be useful in identifving certain information abont the DTD elements and
they should be modeled in the type system. This enables queries built on at-
tribute valies to be supported by the system: for example, queries like: “give
me all books whose language attribute is set to English or whose subject

attribute is set to databases”.

* Modeling of the Element Behavior: DTD clements have hehaviors, For
example, an instance of element mylmage defined in a DTD should be able to
retrieve the image it is storing or a structured element shonld know its children.

Such behaviors should be modeled in the type system.

¢ Modeling of the Element Type: This involves storing meta information
(such as element names, attributes) about DTD elements in the type system,
Such information can be necessary to automatically instantiate documents in
the database. It can also be used in querving (for example, “give me all ements
in the system that have a keyword attribute” or “give me all the attribute

names/types defined on the element book™).

To mociet this information in our type system, the Type Generator generates two
types for every logical element defined in the DTD. The first type represents the DT
element in the element type system. It is used to model the structure, behavior and
attributes of the DTD elements. The second type, which represents the element in
the meta type system, models the element type. The rest of this section discusses

how the system models the different types of information.

!

5.2.1 Interface with the Document Entry System

The Type Generator s the system component reponsible for extending the tvpe svs-
tem to support new document types. As mentioned earlier, the extensions inclnde
generating new types to represent the DTD elements as well as the meta types that
correspond to the elements. Even though the implementation of the Type Generator
is part of [Sch96]. some of these extensions directly af¢t document instantiation
and are contributions of this thesis.

Since the Type Generator is one coherent system, it is hard and unnatural to
separate the discussion based on the contributions of this thesis vs. those of [Sch96).
The system is, therefore, presented here as an integral entity.

The rest of this section highlights the contributions of this thesis to the Type
Generator. The details of these contributions are presented in the discussion of the
Type Generator provided in the rest of the chapter. Thev can he summarized as

follows:

o The extension of the element type system to model some behaviors neces-
sary for document instantiation. These hehaviors are modeled as member
functions in the newly generated element types. The member functions are
SetSpecificAttribute. SetChild and Reso.veRef. They are discussed in

Section 5.2.4.

o The extension of the meta type svstem to model the new element meta tvpes.
To generate the C44 meta types, after the element types are generated. the
Type Generator calls the modules for meta type generation. The element list
deseribed in Section 5.1 is passed to these modules. The discussion of the meta

»

eneration is presented in Section 5.2.5.
type generation is presented in Sect 5.2

e The generation of an application that initializes the types list of the DTD object
to store the DTD meta objects. This is achieved by parsing the elemer. list
and generating code to instantiate a meta object for each entry in the ist.

These meta objects are persistent objects that are stored in the DTD object in

[N

the database. The code for fetching the DTD object from the database is also
generated. The Type Generator compiles the generated application and invoke

it aiter invoking the DTD Manager 7.3

5.2.2 Modeling of the Element Structure

As mentioned earlier, elements appearing in the content model of an element are con-
sidered its child nodes in the composition hierarchy. These child elements (subele-
ments) are modeled as data members in the element tvpe.

A DTD can specify constraints in an element’s content model (such as the type,
the number and the order of the subelements). Modeling some of these constraints is
difficult. since ObjectStore and C+4 provide no support for expressing constraints,
However, these constraints should be modeled in the type system. The rest of the

section discusses how we . .del these constraints in the tvpe system,

Modeling the Number of Subelements

An element’s content model specifies the number of times an element can appear in
it using occurrcnce indicators (refer to Chapter 2) and the possibility of inclusions.

If an element can appear more tha. once in the content model, the tvpe system
should provide enough storage space to keep information about all child clements:
i.e. the parent type should store a list of elements instead of a pointer to a specifie
element. Similarly, if the element can appear more than once in the D'TD. it should
be maintained as a list in its annotation data member in the specifie subelass of
DocumentRoot.

A simple solution to this problem is to implement all subelement’s data members
as lists. This way the Type Generator does not have to keep track of the constraints.
However, due to the high overhead of using lists in ObjectStore, this solution has not,
been adopted. Currently, the Type Generator automatically detects whether or not
the element should be a list and generates the data members accordingly. It, also,

sets the data member isList to indicate whether or not the element is implemented

as a list in the DocumentRoot type annotations. This information is important for the
mstantiation rontines since the method for setting a pointer to an object is different

than that of setting an element in a list.

Modeling the Order of Subelements

In the DTD, the order of the elements 1s specified using connectors. Subelements
can be ordered (7 they are separated by “.") or uncrdered (if they are separated by
“&7). To model this: enstraire the abstract sup. - v pe Structured. from which all the
structured elements are derived, cone - 2 ¢ildList and the method GetNth which
returns cae nth element in the childLizi. Elements in #3 =hildList are assumed to
be inorder. 1t is the responsibinty of the Instance ¢ enerator to instantiate the
subelements in order?.

Note that. the solutions described ahove allow our type system to model the con-
straints; however, they are not automatically enforced. This is not a major drawback
of the system since the constraints are enforced by the SGML parser while parsing
the document instances. The Instance Generator is not invoked unless the document

is error-free,

5.2.3 Modeling of the Element Attributes

Attributes are implemented as data members in the element type unless they are in-
herited from one of the abstract supertypes or represented in the atomic type system.

The type of the attribute data member depends on the value type defined in the
attribute. If the value type is NUMBER/NUMBERS, it is represented by an integer or a
list of integers respectively. If it is IDREF or IDREFS, it is represented by a pointer
to type Element or a list of pointers to Element respectively. All other attribute values

are stored as character strings.

2Using this technique, the type system does not provide a mechanism to express whether the
elements are ordered or unordered.

oy

Note that, rive instantiation rontines responsible for setting the elements' at-
tributes use the same technique to determine the type of the data member being
set. This information is accessed from the valtype data member in the Attribute

data structure.

5.2.4 Modeling of the Element Behavior

There are two possible ways of modeling clement behaviors in our svstem. The tirst
is through inheritance from the built-in classes that the clement is derived from.
For example, type Structured defines the member function GetNth described in the
previous section. Since any structured element in the DTD will have Structured as
one of its supertypes, it will automatically inherit the GetNth behavior.

In designing our generic type system, an object-oriented approach was adopted;
as much functionality as possible was promoted to the abstract built-in supertypes.
This allows for more abstraction and reusability in our system and decreases redun-
dancy in the generated code. For every DTD element, the Type Generator should
automatically detect from which abstract types it should be derived to inherit the
appropriate behaviors. The automatic detection of supertypes is discussed in [Sch96).

Besides the inherite:. behaviors, each concrete type should model the hehaviors
that are specific to its particular DTD element. Such behaviors inclucde functions for
creating. initializing and deleting objects, access functions, ete. For simplicity, all
data members for the concrete types are made public. This eliminates the necessity
to define access functions for them: thus reducing the amount of generated code.

For every concrete type, a constructor and a destructor is generated. Construc-
tors usually involve memory allocation and initialization for a new instance whereas
destructors involve cleanup and deallocation of memory for that object,

Other functions need to be defined for the concrete types to facilitate object

instantiation during document entry. The rest of this section discusses these functions

in details.

~

SetChild

As discussed in Section 5.2.2, to model document structures in our type system.
every structured element in the DTD stores references to all its children as well as
a childList to keep track of their order. During document instantiation, these
references must be updated to point to the child instances.

To achieve this goal, a function SetChild is generated for every concrete tvpe
that is derived from Structured. SetChild takes a string representation of the child
name and a pointer to the child’s instance. It updates the data member that stores
the child reference as well as the childList with the instance pointer.

To generate the code for SetChild, the element’s content model is traversed. For
every element in the content model list, code is generated to set the appropriate data
members.,

At document instantiation time, whenever an object is created, the SetChild
function for its parent element is called to set the parent’s child elements. Since
the initial traversal of the tree structure for valid SGML documents is always in a
depth-first order (i.e. the parent element is always defined before its subelements),
the object’s parent element will always be instantiated before its subelements. Note
that. using this technique, the childList will always have the children in the order
in which they appeared in the document instance?; thus maintaining the elements’

order constraint (discussed in Section 5.2.2).

SetSpecificAttribute

As discussed in Section 5.2.3, element types contain data members to model the values
of their attributes. During document instantiation, these data members should be
updated to store the actual attribute values.

To achieve this goal, a function SetSpecificAttributeis generated for every con-

crete type that has attributes. SetSpecificAttribute takes the attribute name and

3This is because the Instance Generator traverses the instance’s parse tree in sequential order.

a6

a string representation of the attribute value and updates the element’s appropriate
data member.

To generate the code for SetSpecificAttribute. the element's attribute lst
(stored in prt.attrlist) is traversed. For every attribute in the attribute lst
excluding special attributes (see Section 1.5.3) and IDREF attributes (see Section
5.2.4), code is generated to set the appropriate data members. Nute that, since
SetSpecificAttribute takes the attribute value as a string. data conversion might
be required for attributes of other types (eg. integer attributes).

During document instantiation, after an ohject is created, the general-purpose
function SetAttributes is called to set all the attribute values (see Section 1.5, 1)

which in turn calls SetSpecificAttribute to set a particular attribnte value.

ResolveRef

Attributes of valtype IDREF, as discussed in Section 5.2.3. are modeled as pointers
of type Element since they can reference any DT element that has an ID attribute.

Even though IDREF attributes are modeled in the same fashion as all other at-
tribute types, resolving IDREFS (updating the data members) during document in-
stantiation time shonld be handled differently. The difference lies in the time the data
members should be updated. In SGML documents, attributes are defined within the
element’s markup; therefore, the function SetAttributes is called immediately after
instantiating the object. IDREF attributes are different. In SGML documents, it is
valid for elements to reference other elements hefore the referenced element, is defined,
In this case, the instance with the IDREF attribute will be instantiated before the
referenced element.

To solve this problem, resolving IDREFS is delayed until after all the document,
objects are instantiated. During object instantiation, a dictionary of alt objects with
ID/IDREF attributes is maintained (see Chapter 7 for a detailed discussion). This
dictionary is then used to call ResolveRef for all the elements in the dictionary that

need IDREF resolution. ResolveRef takes the IDREF attribute name and a pointer

to the referenced instance.
To generate the code for ResolveRef. the element’s attribute list is traversed.
For every IDREF attribute in the list, code is gencrated to set the appropriate data

members,

5.2.5 Modeling of the Element Type

To model meta information in the type system. the Tvpe Generator generates tvpes
in the meta type system to represent the DT elements.

For every entry in the element list, a meta type is generated as a subtype of one of
the built-in meta types (described in Section 1.5). The choice of the supertype from
which the meta type should be derived is determined by the supertype data member
of the element list entry.

Besides the inherited behaviors from built-in types, the following functions are de-
fined for cach conerete type: a constructor for initializing new instances. a destructor
for cleamip and a function CreateObject or CreateStrObject. CreateStrObject
is generated for all the structured elements in the DTD: CreateObject is generated
otherwise!, The parameters for CreateObject are: node which represents an entry
in the parse tree (see Section 6.2.2), parent which is pointer to the element’s parent
object in the document hierarchy and table which represe.:is the dictionary used for

resolving IDREFS in the document. CreateObject performs the following tasks:

o li creates an instance of the corresponding element type. For example, a meta
type ArticleSectionType defines the function CreateStrObject that creates an
instance of type ArticleSection. If the corresponding element type is annotated.
it creates an Annotation object and updates the document root annotation list.
Note that, if the corresponding element type is an MM type, the corresponding
atomic object is created. To reduce code redundancy, functions for creating

atomic objects are abstracted in the generic meta type system and inherited by

For simplification, the two functions are referred to as CreateObject hereafter.

H

the concrete types.

o Each elementin the element type system should know its type (its corresponding,
meta type). After creating the element s object, CreateObject updates its type

data member to point to the meta type.
o It updates the data members for the element s special attribites (il any).

¢ If the element has a parent (it is not the root clement), it calls the funetion

SetChild defined for the parent object to update its child data members,

o [t calls the function SetAttributes to set the attribute values,

5.3 The DTD Manager

The DTD Manager is invoked by the Type Generator after the type generation is
successfully completed.

The DTD Manager stores the DTD in the database as an object of the huilt-in
_element type DTD. The DTD object stores the DTD name. the D'ED string and a
types list. The types list contains a meta object for cach clement defined in that
particular DTD. At document instantiation time. the meta objects are used by the
Instance Generator to antomatically instantiate SGML documents. FEach meta type
object can be asked to create an object of its corresponding element tyvpe by calling
the member function CreateObject.

Note that. even though the DTD elements are represented by meta types, the
DTD is still stored as a text string in the DTD object. This is because the DT s
needed by the SGML parser to validate the document instances, Regenerating, the
DTD string from the list of meta types objects is currently not possible sinee the
information stored is not sufficient. For example, 'Ontity information is not stored
in the database since the DTD Parser resolves entity references antomatically. Oy
the other hand, the SGML Parser will need such information since entities can be

defined in the DTD and referenced in the document instance. Evenif all the necessary

60
information is encoded, the regeneration process will be quite costly as it will involve
extensive querying to the database and string generation for the DTD. Sinee DTDs are
usnaiy not too tong. storing the DT string does not involve a significant overhiear

on the system,

Chapter 6

Automatic Document Entr>

System

The main focus of this thesis is to develop a system capable of supporting the au-
tomatic instantiation of SGML document instances in the multimedia database, To
achieve this goal. the system components shown in Figure 6.1 have heen developed.

The system consists of three major components:

¢ Authoring Teols:

SGML documents are structured with markup information encoded together
with the document contents. Aunthoring such docnments mannally can be a
very tedions and time-consnming job especially for those doenments conforming
to compiex DTDs. Therefore, there is a great need for SGML authoring tools
that can support document authoers in composing their documents. A number
of authoring tools are commercially and publicly available, Examples of these
include: Near € Far developed by Microstar! and the psgml extension of the
Emacs editor. Psgml was examined in our project to explore the ability of

coupling our syctem with authoring tools.

Another alternative for composing SGML documents is using conversion tools,

' For information about Microstar’s products, see http://www.nicrostar.com.

61

Authoring
Tools
SGMI. Document
«arucles R
rtcles Instance - -
5 |
SGMI <'Element> i
i’u'rsc ; <'Atdist> H DTDs ;
' w ;
/0% Parse Tree —— - '
. Type System :
! O& C++ Types K\yp__:’/ |
Y
|
Instance Wa% Lol SGML Documents '
3 S !
Generator C++ Objects NS — ;
Il
Muitimedia DBMS :
|
Users ;
i

Figure 6.1: Architecture for Automatic Document Entry

Document authors can use their favorite tools and notations to compose doc-

uments as long as conversion tools are available to convert the notations to

SGML.
The SGML Parser:

The SGML Parser parses an SGML document, created by an authoring tool to
validate its conformance to its DTD. While parsing the document, the parser
gathers information about the document structure and builds a parse tree. After
the snccessful validation of the document instance, the Instance Generator is

invoked.

The Instance Generator:

The Instance Generator traverses the parse tree and instantiates the objects in
the database to represent the elements in the document. To instantiate these

objects, the Instance Generator uses the meta type objects stored in the DTD

62

6

object. Chapter 7 discusses the Instance Generator.

The rest of this chapter discusses the SGML Parser component of the svstem.

6.1 The SGML Parser

To instantiate SGML documents in the database. a parser is needed. The SGMIL

parser should perform the following tasks:

e For every SGML document, its DTD should be fetched from the database and
used in parsing. If the DTD is not found in the database, the document should

be rejected.

e Validate the SGML documents to ensure they are error-free hefore inserting
them into the database. If the document does not couform to its DTD. it

should be rejected.

e Gather information about the document’s parse tree. Every element in the
parse tree should store a reference to its parent node, as well as other informa-
tion. Such information is needed by the Instance Generator to antomatically

instantiate objects in the database that correspond to the docmment .

e (Clompose a continuous text string for the document contents withont the
markup information and the list of annotations 1o represent the docunent's

elements.

e Invoke the Instance Generator if the document validation is sucessfully com-

pleted.

6.1.1 Developing the SGML Parser

Two alternatives were considered to develop the SGML Parser component. of our

system:.

o Develop a new SGML Parser from seratel,
o Use an existing SGML Parser and retrofit it to fit our system requirements.

Sinee SGML is very complex. it would he difficult to develop a full-fledged SGAL
Parser within the time frame of this thesis. Also. the development of sucli a parser
is not a research contribution. For these reasons. the first possibility was eliminated
and the possibility of using an existing SGML Parser was explored.

Finding an SGML parser is not diflicult. since there are a nnmber of freeware and
commercially avaliable SGML parsers. Among these arer Are SGML. Sqnls, Nsqmls.
TED Parser and many others. After examining the different alternatives. Nsgmls
version 1.0.1% was chosen,

sgndvormis a freeware parser developed by James Clark®. It is developed in C++
based o the Sgmls parser which was developed in €.

This SGML parser was chosen over the other parsers for a number of reasons:

o It was developed in C'+4 which makes it casier to integrate with Object Store.

our object-oriented DBMS.
o lts ohject-oriented design made it easier to modify and reuse the code.

o It is a full-fledged SGML parser that provides support for a number of SGML

advanced features.

o Itis widely accepted and used in the SGML community (according to the dis-

cussions raised in the comp.text.sgml newsgroup).

6.2 Modifications to the Original Parser

Modifications to the original version of sgminorm were made to satisfy our syvstem

requirements. Due to the complexity of sgminorm code (approximately 45K lines of

“The parser actually used is called sgminorm. It is a variation of Nsginls which uses the same
("++ librazies (sp libraries).
31t can be obtained from ftp.jclark.com.

i1

('++ code) and the lack of documentation®, T attempted to make my moditications
as independent as possible of the sgminorm code. These moditications are discissed

in this section.

6.2.1 Fetching the DTD from the Database

As mentioned in Section 2.1.2. every valid SGML document shonld have a DOCTYPE
statement to specify the document root and the DTDs file name. The original
version of sgminorm used this file name to load the DTD fo be used in vahidating
the docnment. In our svstem, the DTD is stored in the DTD object and it shonld he
fetched from the database.

To achieve this goal. the SGML Parser queries the database for the DTD objects
using the docnment root name defined in the DOCTYPE statement. If the D'TD is not
found. the system displays an appropriate error message and exits. Otherwise, the
dtdstring for the DTD is fetched and written to a temporary file that can be read

in the same way that the original sgminorm expected it

6.2.2 Maintaining Data Structures

Even though sgminorm maintains data structures to represent the document instance,
they are not easily mappable to the structures needed to invoke the Instance Gen-
erator. Therefore, T decided to maintain my own data structures independent of the
original sgminorm data structures. A deseription of the data structures maintained
is provided in Section 6.3. This also provides an casy upgrade path for our system as

new sgmlnorim versions are released.

When I started itnplementing the system in spring 1995, there was altmost no documentation,
currently some external docurnentation is avaliable at http://www jelark.com/sp/index h.

6H

6.2.3 Porting sgmlnorm to AIX

sgmlnorm was originally developed for Sun SunOS using g++ as the compiler. It
was successfully ported by Nelson Beebe to a nummber of different operating systems
including Solaris.

Sinee our system uses ObjectStore on IBM RS/6000s, sgminorm had to be ported
to AIX. To link with ObjectStore modules, the porting had to be done using AIX's
native compiier (ICY). Unfortunately, the reported attempts made by Nelson Beebe
tu port tne parser to AlX failed so I had to do the porting.

In porting sgminorm. 1 faced a number of problems. sgminorm makes extensive
use of templates to subport its functionality. Template handling in g++ and xIC are
very different. xiC handles its templates by creating a tempinc directory that is used
to store the code generated for handling templates. During compilation of programs.
the tempinc directory is automatically created. At linking time. the generated code is
compiled and linked to the executables. If a library is to be created. all the template
objects should be explicity compiled and linked to the library.

After a number of attempts. the porting of sgminor:. to xIC" under AIX was

~necessiul,

6.2.4 Invoking the Instance Generator

The output for the original version of sgminorm is a list reporting the errors encoun-
tered during validation and a textual string representation of the document instance
that is being parsed.

sgmlnorm has been modified to suppress the textual output. After the successful
validation of the document, it invokes the Instance Generator with.the information
gathered from parsing. If the validation fails, errors are reported and the system is

exited without any instance generation.

66

6.2.5 Changes to the Command Line Parameters

For an SGML document instance to be inst mtiated. it has to specify the database to
be used. The specified database is used to feteh the DTD string as well as to model
the document.

An option -D was added to the command line parameters of sgminorm 1o allow

the document to specify the database name.

6.3 Data Structures

sgmlnorm was modified to create data structures while parsing the SGML documents.
These data structures store information that is needed by the Instance Generator to
instantiate the appropriate types in the database.

The information gathered by the SGML Parser is stored in an instance of the

ParsingResults class. The ParsingResults class has the form:®

class ParsingResults {
char *textBlock;
TreeNode *root;
int textSize;
int bufSize;

The ParsingResults object stores the following information:

o the contents of the document as a continnous string after removing the markup
information. During instantiation, this text string will he stored as an Atom-

icText that is referenced from the document root.

e the root of the document’s tree structure which represents the document root
specified in the DOCTYPE statement. Note that, the document’s tree structure

is represented as a linked list with each tree node maintaining a pointer to the

For simplification, member functions declaration are removed from the class definitions
presented.

next node in the tree in depth-first sequence, as well as a pointer *» its parent

node,
e textSize stores the size of the document’s contents string.
e buffSize stores the size of the allocated buffer for the textBlock.

For every element defined in the document, a node is created in the parse tree by

mstamiating a TreeNode object. The TreeNode object has the following structure:

class TreeNode {
char *elementName;
int startAnnot;
int endAnnot;
NodeAttribute *attrlist;
TreeNode *parentNode;
TreeNode *nextNode;

The TreeNode models the following information:

e the element name as defined in the DTD. This will be used to retrieve the

appropriate meta type from the DTD object.

® startAnnot and endAnnot are used to store the annotation information of the
clement; i.e. its start and end location in the text block. Note that. if the
element is not annotated, the end location will be equal to the start location

minus one,
s attrList stores points to the first attribute of the attributes’ linked list.

e parentNode is a pointer to the element’s parent in the document’s hierarchy

tree,

® nextNode is a pointer to the next node in the parse tree following a depth-first

sequence. It is used to traverse the document nodes sequentially.

Each attribute defined in the element’s attribute list is modeled using a NodeAt-

tribute object which is in the form:

68

64
class NodeAttribute {
char *attrName;
char *attrValue;
NodeAttribute *nextAttr;
};

where name is the attribute name, attrValueis a string representation of the attribute

value and nextAttr is a reference to the next node in the attribute list,

6.4 Limitations of the Current System

In the current system. there are a number of limitations. Most of them arise from
the fact that only the text of the document instance and annotation lists are stored
in the database. In some cases, there is no way of regencrating the original marked-
up documents from the information in the database. This means that we are loosing
some information in the process of modeling the document. To understand this point,

let’s look at a number of SGML features:

6.4.1 External and Parameter Entities

As mentioned in Section 2.1.1, external entities in SGML are a way of dividing the
document into different files which can then be included in the main docnment in-

stance. To define an external entity, a definition is added in the DTDH:
<!ENTITY chapterl SYSTEM "chapterl.sgm">

This external entity can be included in any place in the document by referring Lo

its name. For example:

<!DocType Book SYSTEM 'book.dtd">

&chapteri

While parsing the document, the SGML Parser includes the external file in the

document output. All the text is stored in the textBlock in the database as one

string; there will be no indication of the presence of the external entity. If the same
document is rewritten without the reference to the external entity (the text of the
entity included in the same file), the modeling of the two documents will he exactly
the same in our system,

The same argnment applies for the parameter entities as well,

6.4.2 Marked Sections

The problem of loosing information in modeling the doct :ent is more obvious in the
marked section feature of SGML. The concept of mark sections in SGML is the
sar > as #ifdef in C.

Document author can group parts destined for different group of readers into the
same document and decide which parts should be INCLUDE(d) and whicl parts
should not. The following example clarifies the use of marked sections:

<!doctype Book [
<!ELEMENT Book - - (title, body)>

<!ELEMENT title -0 (#PCDATA) >
<!ELEMENT body -0 (#PCDATA) >
<!ENTITY % ENGLISH "INCLUDE">
<!'ENTITY % FRENCH "IGNORE">
<!ENTITY Y% DUTCH "IGNORE">

1>
<Book>

<![JENGLISH [<title> Practical SGML]]>

<![%FRENCH [<title> SGML en pratique]]>

<![%DUTCH [<title> SGML in de praktijk]]>

<body>

This example illustrates the use of marked sections.
</Book>

While parsing this document, only the included text will be stored in the
textBlock. If the modeled document is regenerated from the database, we will get

the following output®:

®Document regeneration is not provided by the current system: however, it can be easily incor-
porated if the feature is needed.

<Book>
<Title> Practical SGML </Title>

<Body> This example is illustrates th« use of marked sections. </Body>
</Book>

Note that, there is no indication of the presence of the marked section in our
system. Also. since the rest of the document (the excluded parts) is not stored in the
database, it cannot be regenerated.

This problem gains more importance when disenssing update issies. Carrently,
our database is read-only: once SGML documents are inserted, their contents cannot
lu’nuuﬁﬁﬁd.lﬂn'exanuﬂe.thv;nnhur(d'ﬂu\pnwﬁuus(hnwunvn!runnu!rhnngvllw
parameter entity values to nse the French or the Duteh version instead of the English
version. If updates are allowed in the svstem and the author can change these entity
alizes. it will not be possible to model the new document from the information stored
in the database.

There are two ways to solve this problem. The first and the sitnplest solution is
to store the original document string in the database. This way. if re-modeling of
the docume. is required. the missing information can he restored from the original
string representation. Even though this approach is adopted in our system for D'FDs
(see Section 5.3), it is unacceptable for document instances. Multimedia documents
are likely to be very large in volume (on the order of Mbytes or even Ghytes): thus
replicating the document by storing its original forir.t will impose a huge overhead
on the system. An even more serious problem arises when the document contents are
updated (if updates are allowed). How should we reflect the changes 1o the original
text string?

The second solution is to model entities and marked sections as objects in the
database in a way that enables the restoration of the original doenment. Using
this technique, the problem is reduced to how to model entities to facilitate sneh
restoration. The problem is not addressed in this thesis due to direet connection to

update issues, Which will be considered next year (sec Chapter 9).

Chapter 7

The Instance Generator

The Instance Generator is the system component responsible for modeling the docu-
ment instance in the multimedia database. It is invoked by the SGML Parser after
the successful validation of the document instance. The ParsingResults data struc-
ture (see Section 6.3). generated by the parser, is used by the Instance Generator to
automatically instantiate objects in the database. These objects represent the SGML
document’s components. To achieve this goal, the following questions were addressed:

. How can the system ensure the consistency of the Jatabase by ensuring the
unignueness of the inserted documents?

2. How can the Instance Generator antomatically detect which object types to be
instantiated?

3. How can the system keep track of parent nodes and update their child list every
time a child object is created?

1. How can the Instance Generator resolve references with.n the document?

The next four sections discuss the four questions, respectively.

7.1 Ensuring Database Consistency

As discussed in Section 1.1, database consistency is an important concept. Maintain-

ing database consistency requires that the system rejects the input of a document if

72

it already exists in the database. This means that whenever a new SGMLL docnment
is to be added to the database, the system should ensure that it is not cquial to other
documents. To achieve this goal, an important question needs 1o be answered: How
to determine that two documents are equal?

Theoretically. two documents are equal if they have the same DTD. the same
structure and the same contents. Discovering whether documents have the same
DTD is simple. Since type extents are maintained for all user-defined tvpes in onr
database, root objects of documents conforming to the same D'TD will be maintained
in the same tvpe extent. Only those documents should be considered for COmparison.
However, there is no easy way to discover that doenments have the same content or
structure. Documents in our system are stored as a continnous text st ring with lavers
of annotations. Two documents are equal in structure and content if their text st rings
and their annotations are equal. Therefore, to ensure that the inserted docnment does
not exist in the database, its text string and annotations have to he checked against
all the documents in the specific type extent. This technique is ineflicient and will
propuse a huge overhead on the system especially with a large database.

Another approach to solving this problem is to devise a me thod to uniquely iden-
tify the documents in the database. This can be achieved by defining an ID attribute
in the document root attribute list. This attribute should be unique for documents
conforming to the same DTD. Whenever a new document is added to the database.
the root type extent is queried to check if there is a document with the same id in
the database. If there is. the document is rejected; otherwise it is accepted. This
approach has been adopted in the system. It is more efficient ax it relicves the system
from the time-consuming string matching required for the other approach. However,
it relies on the definition of the ID attribute. If the D'TD does not define an ID at.-
tribute, there is no way for the system to ensure the database consistency. It is the
responsibility of the DTD author to define such an attribute and to make it reqguired

for all the conforming docnnients to maintain a consistent, database.

7.2 Automatic Instantiation of Objects

Tomodel the docmnent in the database, objects must be instantiated for every node
i the parse trees The Instance Generator must antomatically deteet the types of
objects to he instantiated.

In onr system. this is achicved by maintaining the types list in the DTD object.
For every node in the parse treeo the types list is queried using the element name
to get the meta type object corresponding to the node. This meta object i used
to create the element objeet by calling the CreateObject member function. Sinee
CreateObject is a virtual function. it is dynamically resolved to eall the appropriate
fanction. After creating the object, CreateObject calls SetAttributes to set the
attribute valnes for the ereated objoct. SetAttributes. detined i ElementType. loops
over the defined attributes in the document and calls SetSpecificAttribute (sce

Section 5.2.1).

7.3 Updating Child List

Anothes task the Instance Generator should perform is to update the parent’s child
list after instantiating its child objects. To achieve this. each child object should keep
a pointer to its parent’s persistent object. i ur every node in the parse tree, its parent’s
pointer is passed to CreateObject. After the object is created, the parent’s child list
is updated by o Jiing the parent’s SetChild (see Section 5.2.4). One problem with
tais approach is how can the child object know its parent’s persistent pointer?

Every node in the parse tree has a parentNode data member. During parsing, the
SGML Parser updates this data member to store a transient pointer to the parent.
This reduces the problem to one of mapping the transient pointer to the persistent
pointer?

To accomplish this mapping, the class ParentsTable has been defined. Whenever
a persistent object is instantiated for a structured element. ParentsTable is updated

to store the transient pointer and the correspouding persistent pointer. Each entry

in the ParentsTable has the form:

class TableEntry {
TreeNode *node;
Structured *element;
TableEntry +¢nextEntry;

where node is the transient pointer. element is the persistent objeet pointer and
nextEntry is used to puint to the next cutry in the ParentsTable linked list.

For every node in the parse tree, hefore calling CreateObject., the ParentsTable
is scarched to find the parent’s persistent pointer. This persistent pointer is passed

to CreateObject as discussed ecarlier.

7.4 1ID Reference Resolution

To solve the forward referencing problem disenssed in Section 5.2.4, the Instance
Cenerator delays reference resolution until all the docwment objects are instantiated.

There are a number of approaches to resolve references:
]

e After instantiation. the parse tree can be traversed to get the elements that
have an IDREF attribute. For each element. the database can be queried to find
the object with the referenced ID; then the ParentsTable! can be searched 1o
get the original object’s persistent pointer. The pointer can be used to feteh

the object from the database and npdate it,

o After instantiation. the database can he gqueried to get all Cie elements in the
document that have an IDREF attribute. For each element in the list, the tran-
sient pointer can be fetched by searching the ParentsTable. The id referenced
in the transient object can be used to query the database for the referenced
object which will be used to update the element.

VThe ParentsTable would have to be extended ta store the information for all elements in e
docvment instead of only the stouctured elements.

e During the instantiation of the objects, a dietionary can he maintaned 1o ke
track of the ids defined in the documient, the elements that define them and
those that reference them. This dictionary can then be nsed to resolve the

references,

The first two approaches are ineflicient sinee they involve time-consuming datab.
queries and list scarches. The only advantage is that no extra data structures nunst
be maintained. Sinee maintaining the dictionary simplifies the id resolution problem
and does not involve a hnge overhead, the third approach has been adopted.

Whenever an element with an ID/IDREF is instantiated, the dictionary is checked.
If thereis an entry with the same id, the entry is updated to store the new reference:
otherwise, a new entry is added to the dictionary. Each entry in the dictionary has
the form:

class DictEntry {

char *id;
void *defElement;

RefElement *refElement;
DictEntry *nextEntry;

where 1d is the id wﬂne.defElementiseipohnertotheeﬁwnentthatdeﬁnestheid,
refElement is the list of elements referencing the id and nextEntry is a pointer to
the next DictEntry in the dictionary.

The RefElement class has the following definition:

class RefElement {
Element *referent;
char *attrName;
RefElewent *nextReference;

where referent is a pointer to the element referencing the id, attrName is attribute

name defining the IDREF and nextReference is a pointer to the next RefElement

in the linked hst.

Th

After instantiation. the dictionary is used to resolve references. For each entry in
the dictionary. the reference list is traversed and the clements are updated by calling
ResolveRef for each clement (see Section 5.2.1). ResolveRef takes the aftribute

name (attrName) aud a reference to the element defining the id (defElement).

Chapter 8

Related Work

The use of DBMS for nmltimedia applications has gained the attention of mans
rescarchers in the last number of vears. This is becanse multimedia applicatio
can benefit from basic DBMS services such as transaction management ., CONCUTTENCy
control and data distribution.

This chapter discusses a number of multimedia database svstems that are reported
in literature and compares their approaches to the approaches adopted in our SVs-
tenn. Special attention is paid towards ohject-oriented database systems that support

SGML and HyTime multimedia documents.

8.1 D-STREAT

At GMD - Integrated Publication and Information Systems Institute (IPSI), an ap-
plication for handling structured documents., called D-STREAT. is currently being
developed based on the object-oriented DBMS VODAK. D-STREAT is part of the
HyperStorM (Hypermedia Document Storage and Mod<ling) which researches the use
of object-oriented technologies to handle structured documents. The structured doc-
uments conform to the SGML and Hy Time standards.

To meet the ebjective of their project, the follewing requirements are identified

[BAYG):

-

4
o The database application should handle documents conforming 1o arbitrary

DTDs.

e The system shonld have a powerful guery model that supports queries uilt on

docnment struecture.

e The system should allow updates for documents that already exist in the

database without repeating the process of parsing the entire documents.

e Document components” semantics shonld be available within the database to

allow for querying based on meta information.

e Documents’ conversion to HTML should Le available for the documents to i
accessed via the WWW., Since the conversion hetween different DEDs and the
HTML DTD is not alwavs straightforward, it can he specified by the DTD

designer.

To administer documents of arbittary types in D-STREAT. documents are frag

i edin the database according to their logical structure. Every element in the DFD
-orresponds to a class in the database and every element in the docnment correspondds
to a database object. In the first version of D-STREAT, deseribed in [ABHO). the
textual content of the document was not stored as a single continnous text string. It
was fragmented and -iored in the database objects that correspond to the different
document components. Even though this technique is eflicient in handling declarative
queries and document component updates, it poses a petformance overhead in certain
access operations (such as retrieving entire doenments), documment insertion into the
database and text-based secarches. On the other haud, if the document is stored in
an upstructured way (as a one flat chject with one text string). declarative querving
and updates will be costly.

In [BG695), an improvement to the first version is provided. Sinee the choice of the
most appropriate data strocture is highly dependent on element access pattern, the

new versiou provides a hyLrid approach for physical document representation. Using

~()

this approach, the DTD designer can specify which DTD element tvpes shonld be
represented as database objects and which ones shonld be flat. Sinee cach flat element
tyvpe s stored in the database as a one objeet. the text content of all elements types
oecurring within the typeis stored as a one continnous string. This svstem is said
to be configurable as it depends on the DTDs semantic information. provided by the
DTD designer. to handle docnment managenient in an efficient wav, Confignration
is not only restricted to the internal representation of the DTD element types, but
15 extended to inclnde several indexing techniques and mechanisms for handline a
docnment’s secondary structures,

To handle multiple DTDs. D-STREAT follows the following steps [Bo93]:

o The DTD is parsed by a parser generator to generate the DT as an SGML
document instanee of the supcr-DTD. The super-DTD deseribes the definition
of the DTDs as defined in the SGML standard. For example. the definition of
an ELEMENT statement is specified in the super-DTD as follows:

<!'ELEMENT ELEM (ATTRIBUTE*)>
<!ATTLIST ELEM

elemName NAME #REQUIRED
contentModel CDATA #IMPLIED
FLAT (YES{NO|...) NO

Vhe super-DTD instance differs from the original DTD only on the svntactic

level, For example, an element defined in the DTD as:

<!ELEMENT article (frontmatter, body)>

will be generated in the super-DTD instance as:

<ELEM elemName="article" contentModel="(frontmatter, body)"
FLAT=NO ...>

The FLAT attribute defined on ELEM specifies whether the element should he

flat or non-flat. By default, the FLAT attribute value is set to M0 for all element

Sl
types. Thix default can be changed. after the super-DTD fnstance is generated.
by overwriting the FLAT attribute valne with value YES. If an clement is spectlied
as lat. all element types contained in it will be fat. For simplitication. the DT
designer ias to specify only the top-level lat element types (e not contained
i a flat element type). The system automatically detects the nested types and
treats them as flat types. To achieve this, a tool for analyzing DTDs called
the DREAM-Parseris extended and integrated in the svstem. This feature is

advantageons especially for big D'TDs with a lot of element types.

Besides the super-DTD instance, the parser generator generates a docnment

parser for parsing instances of that DID.

o The super-DTD iustance, generated by the parser generator, is parsed by a
sarser for super-DTDS'. The parser validates the document and issues the
1 I]

database commands that creates database objects to represent the YT,

o For cach element in the DTD. new classes are ereated 2. For every non-flit
element type in the DTD. an clament-type class is created; whercas for every
flat clement type. an instance of a virtual clement type, FLAT_TYPE. is created.
To encapsulate the internal representation of element types, o class called EL-
EMENT_TYPE is intradvced. ELEMENT_TYPE contains an instance for each
element type in the DTD. All methods invoked on element types are invoked
on the ELEMENT.TYPE instance which forwards the invocation either to the
element-type class or the instance of FLAT_TYPE.

To support HyTime AF, a metaclass is defined for cieh architectural form.
These metaclasses are called HyTime mctaclasses. Facly Hytime element Lype
in the DTD corresponds to an element-type class and an instance of the relevant

HyTime metaclass. Each HyTime element in the doenment instanee is reprie-

'The parser is an extension of the publicly avaliable Awmsterdam Parser (AS1).

*(lass creation is achieved Ly using the metecless feature of VODAK. In VODAK., instances of
metaclasses are themselves classes. They have instance creation methods whose invoeation jead v,
the creation of new classes. Therefore, svstemn shutdown is not necessary to extend tie type systeny

sented by two objects in the database: an instance of the element-type class and
an instance of the HyTime element-type class storing the Hytime informuation,

This is necessary, since VODAK does not support multiple inheritance,

o As mentioned earlier. the configuration information provided in the super-
DTD instance is used to either create an element-type class or an instance
of FLAT_TYPE. To speed the document instantiation process. this information
15 stored i a configuration file that is made avaliable to the document parser.
This is opposed to storing the information in the database. sinee accessing the

database will impose a performance overhead on the svstem.

Once the new classes for the DTD elements are created, SGML documents conforming
to that D'TD can be inserted in the database. These documents are parsed using the
spectfic document parser generated in Step 1. This parser is an extension of the
Amsterdam Parser (ASP). It checks the document’s conformance to the DTD and

instantiates database objects to represent the document.

8.1.1 Comparison Between D-S'T {: SAT and Our System

Compared to the multimedia applications descri- - 0 literature. D-STREAT is the
one that is most similar to our system. Both svaicins use an object-oriented DBMS
to support arbitrary document types and achieve the dyvnamic addition of DTD types

withont system shutdown. However, their are a number of differences:

e Since both svstems are different in their underlying DBMS (VODAK for D-
STREAT and ObjectStore for our project), they differ in the way they per-
form dynamic addition of types. In contrast to our structured type system,
D-STREAT does not explore reusability and data abstraction to reduce code
redundancy. Its database schema has a flat class hierarchy. This simplifies
the generation of types. since there is no need for the automatic detection of

supertypes, but increases code redundancy.

N2

N3
o Since D-STREAT uses the Amsterdam Parser for parsing D'TDx as well as doe
nment instances, DTDs are transformed into document instances hefore being
parsed. Our system uses a DTD-parser that understands DD svhvax so there

is no need for snch transformation.

o D-STREAT and our system handle the storage of documents’ textual content
differently. In our system. a document is stored as one continnous string with
layers of annotations. In D-STREAT. cach clement tyvpe instanee, with the
exception of flat elements, st 5 a portion of the document’s text eontent.
Fven though onr approach is efficient in retrieving an entire document . it poses

a considerable overhead if updates are considered.

¢ In our system, the meta information about the DTD elements is stored io the
meta type system. Whenever a document instance is added 1o the svstem,
the database is queried to get the neces.ary information. Fven though this
technique inereases the document instantiation time (since it folves costly
database access). it encapsulates all the necessary information in the database
which is a desirable feature. On the other hand, D-STREAT uses a conliguration

file to meke the meta information avaliable to the document parser.

o Iu contrast to D-STREAT, the current version of our system does not allow
updates for documents that already exist in the database. It also, does not
provide a number of facilities that are supported by D-STREAT, such as system

configurability, indexing mechanisms and document conversion to 11'TMI..

8.2 VERSO

VERSQ, developed at INRIA, France, is a database system that aims at modeling
SGML documents in an object-oriented database. 0y was chosen as the underiv
1.8 object-oriented DBMS for its sophisticated Lype system and its extensible query

language 0,SQL. Two major goals are identified for the systemn [CACIS94]:

8
o To extend the (O, data model to facilitate the mapping from “GML documents
to Oy instances. Two extensions of the data model are proposal to model the
DTD constraints, namely the use of occurrence identificrs and connectors (see
section 2.1.1). These extensions are: ordered tuples and union types. Ordered
tuples are used to represent the ordering of elements in the DTD. They model
the .7 connector. Union types are nsed to describe alternative content models
of elements (separated by the “[" connector). For example, the following DTD
element definition:
<!ELEMENT section ((title, body+) | (title, body*, subsec+))>

<'ATTLIST section
status (final|draft) draft #IMPLIED>

is mapped to the following (), declaration:

class Section public type union
(al: tuple(title:Title, bodies:1list(Body)),
a2: tuple(title:Title, bodies:1list(Body),
subsecs:1ist (Subsec)))
constraints:((al.title!= nil, al.bodies'!s 1list())
| (a2.title!= nil, a2.subsecs!= list())),
status in set ("final", "draft")

where al and a2 are system supplied names for the unnamed SGML name

groups.

¢ To extend the O, query language to deal with the requirements of SGML doc-
ument retrieval. These extensions include: (1) the contains predicate to handle
querying on strings, (2) implicit selectors to select the correct path while han-

dling queries over union types, (3) two new sorts: PATH and ATTR to query data

without exact knowledge of its structure.

To represent SGML documents in the database, DTDs are mapped into O, schema
and a document instance into correspording obj. -ts. This is achieved by extending

the Euroclid parser with semantic actions. These actions are used to annotate the

DTD (or some intermediate BNF grammer). As shown in the example, cach SGML
element definition in the DTD is mapped into an), class with a type, some con
straints and a number of default behaviors (such as displaving. setting and gettine
attribute values. etc),

VERSO provides some predefined classes. such as Text and Bitmap. from which
hasic SGML types should be derived. This means that the textual docnment clements

store fragments of the document’s text content.

8.2.1 Comparison between VERSO and Our System

Similar to our system, VERSO handles documents with arbitrary types. The ditfer

ences hetween the two systems can be summarized as follows:

o In contrast to VERSO, DTD constraints are not modeled in our databise
schema: therefore. onr type svstem does not enforee these constraints. As dis.
cussed in Section 5.2.2, this is not a significant drawback. since the constraint

are enforced by the SGML parser during dosmment instantiation,

¢ Our query model is dependent on ObjectStore's guery model; no extenstons
have been added to haudle SGML elemnent retrieval. Sinee ObjectStore does
not allow for queries with incomplete structure knowledge, our data model does

not support this feature.

o Similarto D-STREAT. the textual content. of the document in VERSO is stored
as fragments in the daiabase objects representing the textual docmment olo-
ments. This imposes a performance overhead while fetehing the entire doen

ment.

o VERSO's type system is rather flat with no inheritance relationship between

classes. This increases code redundancy and decreases data abstraction.

o VERSO does not provide any native support for HvTime documents. However,

the authors claim that their query language extensions are particularly suited

N

NG
for the current extensions of SGMI, to multimedia and hypermedia doenments

(i.e. Hy'Time documents).

Chapter 9

Conclusion and Future Work

This thesis provides an antomatic way of iserting SGML docmments in an object
oriented multimedia datal ase. This is achicved by instantiating objects in the
database to correspond to the document ‘s component:. To antomatically instay
tiate these objects. the database is dynamically queried to retrieve meta information
about the objects” types. This meta informa.ion is modeled in the meta LVpe systenm.,

The major contributions of this thesis can he summarized as follows:

* A meta type system was developed to store meta information about DT oo
ments. The type system is sufficiently general and extensible to stupport differ-
ent multimedia classes. It is implemented as a kernel struetured fvpe svsten)
that defines a number of built-in types to model the characteristics common to

multimedia meta types.

o A facility to extend the meta type system to support new document types was
developed. This is achieved by generating C+4+4 code to define new meta Lypes
to represent the DTD element types. The new meta types correspond Lo the
new elements defined in the DTD and are dynamically added to the database

schema to model the DTD types.

* A facility to extend the element type system was developed. For every new
type created to represent a new DTD element, a number of member fiunetions

87

are g(‘ll(‘l‘;llt'(l. These functions ;)t‘l'fnl'm tasks that are necessary for the corredt
mstantiation of documents” objects sneh as updating attribnte valnes, updatine

parent Lists and resolving id references.

e The document entry system was developed which is composed of the SGMI

Parser and the Dastance Generator.

o The conpling of the system with the pseml extension of the Frnaes editonr has

heen studied to explore the ability of conpling our systenm with anthorine tools.

In the future, there are a number of modilications and enhancements that can be

introduced to the system:
e Unifying the two Parsers
Currently, the system uses two different parsers to parse the D'FDs (dpo parser)
and the document instances (sgmliorm parser). This imposes an overhead of
having to maintain the code for two parsers. Sinee sqmliorm version 1.4, 1
gathers information about the DTD while parsing the documents, it can he

nsed to replace the DTD Parser currently nsed,
¢ Reusability

To avoid schema evolution overhead and semantic heterogeneity problems in
our current system. reusability of user-defined types was not implemented. In
the future. reusability of types especially across multiple D'TDs, should be ex-
ploited. Elements having the same definitions across different DTDs should be
represented by common types in the type system. This will eliminate code re-
dundancy in the system and enrich the guery model of the database. To achieve
reusability a number of problems such as the semantic heterogeneity and name

conversion problems should he addressed.

e Updates

The database svstem supports a read only environment where documents in

the database cannot be updated. Since a document is modeled as a single

continuons text string with lists of annotations indexed from the start of the
string. npdates are very costly especially for large documents, This is hecanse
updating one clement will involve npdating the annotations of all annotated

cleinents positioned i the document after the updated clement.

To support updates in our system. relative annotations should he explored
where the original text string shonld he stored as substrings and annotations
are stored relative to the heginning of the substrings. This will decrcase the
update overhicads, A question that needs to be addressed is: How can we divide
the text string into substrings with as little impact as possible?

Alsoas discussed 1 Section 6.4.201f updates are to he supported. entities and
marked sections should be modeled as types in the type system and not replaced

i the text as in the current approach.

Indexing

The current system does not make use of indexes to improve access efficiency
stnee there is no automatic way of discovering whic! elements will be accessed
more frequently and consequently henefit by an index: maintaining indexes on
all elementsin the DTD will be very costly and inefficient. Future research will
aim at how to detect the elements that need indexing? One solution to this
problem is to give the DTD developer the ability to indicate in the DTD which

clements should be indexed.

Generalizing the Query Interface

The visual query interface developed in [EM95] is specific to the news-on-
demand application. This query interface should be generalized to support

different document types.

The development of a Query Processor and Optimizer

Currently, any gnery interface that needs to query the database will interact

directly with OhjectStoi-. Future work includes the development of a query pro-

0
cessor and optimizer that support content-hased queries of inees and videos,
Once the query processor and optimizer are integrated in the svstem, the query

mterface will interact with it rather than with ObjectStore,
Using TIGUKAT as the DBMS

Currently. our multimedia database systemis bailt as a taver on top of Oh
jectStore. In the dong rind TIGUKAT [OPS*95]. an extensible object oriented
database. currently nnder development at the Laboratory for Database Svstermn
Research ar the University of Alberta, will replace ObjectStore, TTGURK AT, as

opposed to ObjectStore, has inherent support for tultimedia objects.,

Bibliography

[ABIO1]

[B595)

[BAYG)

[CACSH1)

[EMO5)]

[1SO86]

15092

K. Aberer, K. Bohm, and C. Hiiser. The prospects of publishing nsing ad-
vanced database concept. In Procecdings of the Conferenee on Eleetronie

Publishing. pages 469 480, April 1991

K. Bohm, Building a configurable database application for structured docu-

ments. Arbeitspapiere der GMD 942, GMD-IPS] Darmstadt, 1995,

K. Bohrm and K. Aberer. Hyperstorm - administering sturctued documents us-
ing object-oriented database technology. In Procecdings of the ACM SIGMOD

International Confercnec on Managamant of Data, June 1996,

V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured
documents to novel query facilities. In Procecdings of the ACM SIGMOD

International Conference on Management of Data. pages 313-324, 1994,

G. El-Medani. A visual query facility for multimedia databases. Master's

thesis. University of Alberta, Department of Computing Science, 1995,

International Standards Organization. Information Processing - Text and Of-
fice Systems - Standard Generalized Markup language (ISO 8879). Interna-

tional Organization for Standardization, first edition, 1986.

International Standards Organization. Hypermedia/Time-Based Structural
Language: Hytime (ISO 10744). International Organization for Standard-

ization, firs* edition, 1992.

91

[NKXO1]

[OPS*as)

[OSEMV 5]

[PO9Y5]

[Sch96]

[vH941]

IVit05]

W
S. Newcomb, N Kipp.and V. Newconmb, The Hy Time hypermedia tine based
document structuring language. Communications of the ACM 3167 N3,

1991.

M. T. Ozsu. R.1. Peters, D. Szafron. B. Irani. A. Lipka. and A Munos,
Tigukat: A uniform behavioral ohjectbase management svstem. The VDB

Journal, 4(3):115-102, 1995,

MUT. Ozsu, DL Szafron. G. El-Medani, and C. Vittal, An object orieated
multimedia database system for a news-on-demand application. Multimcdia

Systoms, (3):182-203, 1995,

R. J. Peters and M. T. Ozsu. Axiomatization of dynamic schema evolution
in objectbases. In Proceedings of the 11th International Conferenee on Data

Engincering. pages 156-16.1, March 1995,

M. Schéne. A generic type system for an object-oriented multimedia databas
esysten. Master’s thesis. University of Alberta, Department of Computing

Science. {996.

Eric vav #erwijnen. Practical SGML. Kluwer Academic Publishers, second

edition. 19G4.

(. Vittai. An object-oriented multimedia database system for a news-on-
demand applivation. Master’s thesis, University of Alberta, Department of

¢ mpvting Science, 1995,

Appendix A

AD

TD for News-Articles

<!-- HyTime Modules Used -->
<7HyTime support base>
<7HyTime =zupport measure>
<7HyTime support sched manyaxes=3>
<?HyTime support hyperlinks>
<!-- Non-HyTime Notations used -->
<!NOTATION virspace PUBLIC -- virtual space unit (vsu)--
"+//IS0/IEC 10744//NOTATION Virtual Measurement Unit//EN">
<!-- Document Structure -->
<'ELEMENT article - - (doc-alts?, frontmatter, async, sync?)>
<!ELEMENT doc-alts - - (text, text-variant*)>
<!ELEMENT text - - EMPTY>
<!ELEMENT text-variant - - EMPTY>
<!ELEMENT fro:cmatter - - (edinfo, hdline, subhdline?, abs-p)>
<!ELEMENT edinfo - - (loc & date & source & author+
& keywords & subject)>
<!ELEMENT (loclt .urcelsubject) - - (#PCDATA)>
<!'ELEMENT (hdlinelsubhdline) - - (#PCDATA)>
<!'E {UMENT date - -~ (#PCDATA)>
<!ELEMENT (author |keywords) -~ - (#PCDATA)>
<!ELEMENT abs-p - - (paragraph)> .
<*ELEMENT async -~ - ((sectionl|figure|text{link)*,
(image-variant|text-variant)*)>

<!ELEMENT section - - (title?, (paragraphllist)*)>
<!ELEMENT title - - (#PCDATA) >
<!ELEMENT paragraph - - (emphi|emph2|list{figurellink

Iquote | #PCDATA) *>
<!'ELEMENT (emphi|emph2|quote) - - (#PCDATA) >
<!ELEMENT 1list - - (title?, listitem+)>

93

<!ELEMENT
<!'ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!'ELEMENT

<!ELEMENT
<!'ELEMENT
<!ELEMENT
<!ELEMENT
<!'ELEMENT
<!'ELEMENT
<!ELEMENT

<!ELEMENT
<!'ENTITY

<!ATTLIST

<YATTLIST

<!'ATTLIST

<!ATTLIST

<!ATTLIST

listitem
link

figure
figcaption
image

sync
audio-visual

(xlyltime)

av-fcs

av-evsched
(audiol|video!stext)

(paragraph)=>

(emph1]emph2|quotelfigure | #PCDATA)+>

(image, figcaption?) >

(#PCDATA) >

E. PTY>

(audio-visual+)>

(x, y, time, av-fcs, av-extlist+,
(audio-variant|video-variant|
stext-variant)*, stream*)>

EMPTY>

(av-evsched+)>

(audiojvideolstext)*>

EMPTY >

av-extlist - - (xdimspec, ydimspec,tdimspec)>
(xdimspec|ydimspec|tdimspec)

- - (#PCDATA)>
(image-variant]audio-variant|video-variant|stext-variant)

- - EMPTY>
stream - - EMPTY>
% variant-attbs
"id ID #REQUIRED
format CDATA #REQUIRED
streamspec IDREFS #REQUIRED
site CDATA #REQUIRr..">
article
HyTime NAME #FIXED HyDoc
id 1D #REQUIRED
language CDATA #IMPLIED>
quote
source CDATA #IMPLIED>
author
bio CDATA #IMPLIED
designation CDATA #IMPLIFD
affiliation CDATA #IMPLIED>
text
MM NAME #FIXED Text
id ID #REQUIRED
price CDATA #IMPLIED
variantspec IDREFS #REQUIRED>

text-variant

MM NAME
id ID
filename CDATA
format CDATA
language CDATA
size NUMBER

#FIXED TextVariant
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED>

<!'ATTLIST

<'ATTLIST

<YATTLIST

<VATTLIST

<!'ATTLIST

<'ATTLIST

<V'ATTLIST

<YATTLIST

<'ATTLIST

image

MM NAME
id iD
price CDATA

variantspec IDREFS

image-variant

MM NAME
id ID
filename CDATA
format CDATA
size NUMBER
width NUMBER
height NUMBER
color CDATA
audio-visual

id D

X

HyTime NAME
id ID
axismeas CDATA
axismdu CDATA
axisdim CDATA
y

HyTime NAME
id ID
axismeas CDATA
axismdu CDATA
axisdim CDATA
time

HyTime NAME
id ID
axismeas CDATA
axismdu CDATA
axisdim CDATA
link

HyTime NAME
id ID
linkends IDREF3
av-fcs

HyTime NAME
id ID
axisdefs CDATA
av-evsched

HyTime NAME
id ID
axisord CDATA

#FIXED image
#REQUIRED
#IMPLIED
#REQUIRED>

#FIXED ImageVariant
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED>

#REQUIRED>

#FIXED axis
#REQUIRED

#FIXED 'virspace"
#FIXED "1 1"
#FIXED "1280">

#FIXED axis
#REQUIRED

#FIXED "virspace"
#FIXED "1 1"
#FIXED "1024">

#FIXED axis
#REQUIRED

#FIXED "SISECOND"
#FIXED "1 1"
#FIXED "“3600">

#FIXED ilink
#REQUIRED
#IMPLIED>

#FIXED fcs
#REQUIRED
#FIXED "x y time'>

evsched
#REQUIRED
#FIXED "x y time"

<!ATTLIST

<!ATTLIST

<YATTLIST

<!ATTLIST

<{ATTLIST

<!ATTLIST

basegran CDATA
audio

#FIXED ‘"vsu vsu SISECOND">

#FIXED event
#FIXED audio
#REQUIRED
#IMPLIED
#REQUIRED
#REQUIRED

1 exspec for each variant, or 1 for all -->

#FIXED event
#FIXED video
#REQUIRED
#IMPLIED
#REQUIRED
#REQUIRED

1 exspec for each variant, or 1 for all -->

HyTime NAME
MM NAME
id 1D
price CDATA
variantspec IDREFS
exspec IDREFS
video

HyTime NAME
MM NAME
id ID
price CDATA
variantspec IDREFS
exspec IDREFS
stext

HyTime NAME
MM NAME
id ID
price CDATA
variantspec IDREFS
exspec IDREFS

#FIXED event
#FIXED stext
#REQUIRED
#IMPLIED
#REQUIRED
#REQUIRED

1 exspec for each variant, or 1 for all -->

audio-variant

MM NAME
%variant-attbs
duration NUMBER
samplerate NUMBER
bps NUMBER
quality CDATA
language CDATA
video-variant

MM NAME
Yvariant-attbs
duration NUMBER

width NUMBER
height NUMBER
framerate NUMBER
bitrate NUMBER
color CDATA
stext-variant

MM NAME

/variant-attis
language CDATA

#FIXED AudioVariant

#REQUIRED
#REQUIRED
#REQUIRED
#REQUIREY
#REQUIRED>

#FIYED VideoVariant

#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED>

#FIXED StextVariant

#REQUIRED>

a6

<V'ATTLIST

<YATTLIST

<PATTLIST

stream

MM NAME #FIXED stream
id ID #REQUIRED

uoi NUMBER #REQUIRELC

size NUMBER #REQUIRED>
av-extlist

HyTime NAME #FIXED extlist
id ID #REQUIRED>
(xdimspec|ydimspec|tdimspec)
HyTime NAME #FIXED dimspec

id ID $-EQUIRED>

97

