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ABSTRACT

During the last few decades, there have been many developments in the areas
of Polynomial and Spline Approximation, and the active study continues with
unremitting interest. At the same time, there are still quite a few problems
which can not be resolved even though they are well known to the specialists in
the field.

The thesis focuses on some of such problems in the area of Shape Preserv-
ing (Clonstrained) Approximation of real functions on finite intervals. In many
applications, it is desirable that the mathematical model preserve certain geo-
metric properties of the data (such as monotonicity and convexity). These are
the subjects dealt with by Constrained Approximation.

The estimates of different rates of approximation obtained in the thesis are
given in terms of the usual and the Ditzian-Totik moduli of smoothness (both of
which, in a sense, “measure smoothness” of the functions being approximated).
In particular, one of the main results in the thesis is the closure of a gap that was
open for more than 10 years. Namely, we estimate the degree of approximation of
convex functions by convex polynomials in terms of the third moduli of smooth-
ness. The weaker estimates in terms of the moduli of order two were obtained by
D. Leviatan in 1986. On the other hand, it was shown by A. S. Shvedov in 1981
that the estimates of this type involving the fourth moduli are no longer correct.

Thus, the obtained estimate is exact in a certain sense.
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CHAPTER 1

INTRODUCTION

1.1 Preamble

In many applications, it is desirable that the mathematical model preserve certain
geometric properties of the data (such as monotonicity and convexity). These
are the subjects dealt with by Shape Preserving (or Constrained) Approxima-
tion. More precisely, Shape Preserving Approximation is the approximation of
functions f for which the mth forward difference, given by

< m m—t - .
AP (f, z,la, b)) := { ; (z) (=)™ f(z + th), if [z,z+mh] Cla,d],
0, otherwise,

is nonnegative for given m € A, forall 0 < h < (b — a)/m and z < [a, b], by
polynomials (or splines) with nonnegative mth derivatives. Let A™ [a, b] be the
set of such functions f (note that if f € C™ [a, b], then f € A™ [q, b] if and only
if fm)(z) >0, z € [a, b]).

The rates of the best nth degree unconstrained and shape preserving polyno-
mial approximation of a function f are defined by

E.(f) = p,.iélexn |f — Pnlleo

and

EM(f) = _iof Nf —palles mEN,

pn€EMlNA™

respectively, where II, denotes the set of algebraic polynomials of degree < n.
It is very well known that, for every m € N, the set Upeny IIn N A™ is dense

in A™, ie., E{™(f) — 0 as n — oo. This immediately follows, for example,

from the fact that, ||B.(f,z) — f|| = 0 for any f € C[0, 1}, and B{™)(f,z) >0

if f € C[0, 1) N A™, where B,(f,z) denotes the Bernstein polynomial of degree
< n:

Bu(f,) = f‘_: f(k/m) (’,:) (1 — z)*

At the same time, in 1969, G. G. Lorentz and K. L. Zeller [6] showed that there
exists a function f € A™ such that

(m)
imsue 5 =

1



Thus, the problems on Shape Preserving Approximation are not trivial conse-
quences of those on Unconstrained Approximation, and require a special treat-
ment.

In this thesis we investigate how well the “m-mopw#is™ functions can be
approximated by the “m-monotone” polynomials. We s il se ~alled Jackson
type estimates in terms of the usual and the Ditzian—Totik modu - - - smoothness.
The usual modulus of smoothness in the uniform metric is defined by

*(f,t,[a, b]) := w*(f,t,[a, bl)e = Sup NAK(S, - [as 8D cta. ) -

The modulus of smoothness w¥ introduced and used extensively by Z. Ditzian

and V. Totik [2] is given by
k _ 1Ak
w",(f, t)? - os<lll"§z “Ahg(-)(fv )"P ’

where

k v .
Ak(f,z) = > (I:) (=1)*"f(z + kh/2 —ih), if z £ kh/2€ I,

=0
0, otherwise

(A%(f,z) is the kth symmetric difference). It is obvious that under the proper
conditions on the innction ¢ = ¢(z) (for example, for p(x) = V1 — r?) the step
of the difference is decreasing near the endpoints of [—1, 1]. So uniform estimates

in terms of the Ditzian-Totik modulus of smoothness are more exact than the
usual ones (see [2]).

We are now ready to give a brief outline of the thesis.

1.2 Onutline of the thesis

The second chapter of the thesis closes a gap that was op~n for more than 10
years. Namely, it was shown by D. Leviatan [5] in 1986 that it is possible to
estimate the rate of convex approximation in terms of the second usual modulus
of smoothness, i.e., for a convex function f € C([) there exists a sequence of
polynomials p, of degree < n such that

(1) |f(z) — Pa(z)| < CW?(f,Ba(=)), zE€I,

where Aq(z) := n~'v/T—22 + n~2. It follows from A. S. Shvedov (9] that w?
in (1) can not be replaced by w*. We show in the second chapter that not
only w?(f,A,) can be replaced by w?(f,A,), but also the estimate in terms of
w3(f,1/n) holds true. This allows constructive characterization of approximation
properties of convex functions in terms of their moduli of smoothness (involving

2



both pointwise and uniform estimates). We also obtain an estimate for the convex
polynomial approximation in L, 1 < p < oo, metric in terms of 3(f,1/n), (the
third Sendov-Popov 7 modulus in Ly).

In the third chapter, we obtain uniform estimates for monotone and convex
approximations in terms of the weighted Ditzian-Totik moduli of smoothness.
Together with known results they complement the investigation of the rate of
shape preserving approximation in the sense of the orders of these moduli.

In the fourth chajpter, we prove a theorem on coconvex polynomial approxi-
mation which is the first result on this subject without any extra restrictions on
the function being approximated. The only previously known direct results on
coconvex approximation are due to R. K. Beatson and D. Leviatan [1] (who re-
marked that it is possible to obtain Jackson type theorems for functions with only
one inflection point) and X. M. Yu [10] (who obtained a Jackson type estimate
for a function with one regular converity-turning point, and also proved a re-
sult on approximation of (at least three times) differentiable functions with some
extra conditions on convexity-turning points). We prove that if f € C?[-1,1]
has finitely many inflection points, then, for sufficiently large n, there exists a
polynomial p, of degree < n satisfying f”(z)pi(z) > 0,z € [-1,1] and such that

“f - pﬂiioo <C n”* ‘-‘Jcp(fna n-l) .

Finally, in the fifth chapter, we obtain a direct estimate for copositive polyno-
mial approximation in terms of wg, the third Ditzian-Totik modulus of smooth-
ness. Namely, for a function f € C[-—1,1] with finitely many sign changes
we construct a sequence of polynomials p, which are copositive witk: f (i.e.,
f(z)pa(z) > 0, —1 <z < 1) and such that

(2) If = Palle < Cuwp(fin™h).

It is known (see S. P. Zhou [11]) that w3 can be replaced neither by wj, nor even
by w?. Thus, the above estimate is exact in a certain sense, and completes the
investigation of this type of constrained approximation in the vniform metric.
Also, together with converse theorems in terms of the Ditzian-Totik moduli the
estimate (2) immediately implies the equivalence between E,(f) = O(n~®) and
EO(f,r) = O(n~°) in the case 0 < a < 3.

1.3 Definitions and Notation
The following notation (see [4] and [7]-[8]) is used throughout the thesis:
1-—z? 1
Aq(z) = — + 5 ze l:=[-1,1];

jw .
Tj = ZTjn ==cos7z—,053 <n;

3



Fj 1= Ejni=cos (- — =), 1<5 <
IJ.—IJ,n.—COS n—:.)—.; . SIS n;
z% := 2%, := cos ('Z: - l) if j<nf2,
J I n 4n
0._ .0 ._ __7_7r_ 3m i 1> n/2:
Tj 1= Tjn = cos | T ~ ) >n/2;
Ij:= Ijn = xj,zi], hji=hjn =72 -2, 1 < j<n
(note that h;xy < 3h; and A,(x) < hj < 5An(x) for z € I;.)
Also,
ti(z) = tim(z) := (z — 29)7% cos® 2narccos z + (z — &;)7 " sin” 2n arccos x

is an algebraic polynomial of degree 4n — 2 (see [3] and [7]).
Let

1

m Kk
Wi, mian, - samibiseo be) o= [ ) TI(w = a) TI(b — p)dy
=1 i=1

then for ¢; < z;, 1 <i<m, b; > z;,,1 <i <k and sufliciently large g

b)) (=) = FEt(y)? iy — ai) 15, (6 — y) dy

/ . .
T;(n,p;a@1,-..,8m; b1, .. = I - s 7
j(n?#7a’l7""a1n1 | BRI k)

is an algebraic polynomial of degree 2u(2n — 1)+ m+k + 1, which is well defined
because I1;(n, g; a1, - - -,am; b1, . .., bx) is positive for large p (see Proposition 10).

If m = 0 or kK = 0, i.e., if there are no a;’s or b;’s in the definition of T;, we
use the notation Tj(n, u; @; by, . . ., be)(z) or Tj(n, p5a1,. . ., am; 0)(z), respectively.
Thus, for example,

' JE i) T (b — y) dy
nm*Mﬁ””Jm”:Uﬁ&w“ﬁkm-ﬁw‘

For brevity, we also denote

¢w=wm=wmuy=r—ﬁL——,nmmur={l”“GMJL

z — z;| + h; 0 otherwise.

and x;(z) := xlz;, 1}(z).
Also,

~1 if f(z; <0,
sgn( f(z)) := { 0 if f(z)=0, and sgn,(z) := sgn(z — a) .
1 if f(z)>0.



L(z, f;aq,--.,ax) denotes the Lagrange polynomial, of degree < k, which
interpolates a function f at the points ao,...,ar. We also denote

L(z, f;zi) := L(z, f; i, Ti—1, Ti-2)

and
L(z, f;[a, b]) := L(z, f;a,(a +b)/2,b) .

C represents positive constants which are not necessarily the same even when
they occur in the same line. In order to emphasize that C' depends only on the
parameters vy, . .., vk we use the notation C(vy,...,vk). At the same time, A(u)

and Co(y) denote constants which depend only on x4 and remain fixed in the
proofs.
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CHAPTER 2

POINTWISE AND UNIFORM ESTIMATES FOR
CONVEX APPROXIMATION OF FUNCTIONS
BY ALGEBRAIC POLYNOMIALS !

2.1 Introduction

Let [ := [—1, 1], A™ := A™(4), AT(f,z) := AP(f,z,I). For k € N we denote
by H} the class of all functions f € C(I) whose kth modulus of smoothness does
not exceed the k-majorant ¢ = ¢(t) (i.e., ¢ is a continuous and nondecreasing
function such that ¢(0) = 0, and t~*¢(t) is nonincreasing), that is,

w*(f,t) =k (f,t, 1) < (1)

Also, let W™ H? := {f: f*) € H?}.

In the monotone case (i.e., when the shape preserving approximation of func-
tions from A! is considered) the foliowing analog of direct theorems for uncon-
strained polynomial approximation is known.

Theorem A Letk e N ifr e N, and k =1 or2 ifr = 0. Then, for f €
W'Hf N A! and an arbitraryn € N, n > k+r — 1, a polynomial p, € I, N Al
satisfying

(3) |f(z) = pa(2)] £ CAn(z) #(An(z)),  C=C(k,r), z €1,

exists.

An immediate consequence of A.S. Shvedov [12] is the fact that the statement
of Theorem A is not correct for r =0, k > 3. For r = 0, k = 1 or 2 Theorem A
is a consequence of the work of R. A. DeVore and X. M. Yu [1] who constructed

the sequence of polynomials p, € II, N A! which approximate a function f €
C(I) N A? so that

(4) |f(z) — pa(z)] € CO*(fin'V1-2%), =zl

For r € N, k € N Theorem A was proved by I. A. Shevchuk [9], {10}.
For convex approximation the following result is known.

1A version of this chapter has been published in Constr. Approx. (1994) 10: 153-178.
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Theorem B Letk e N ifr > 2, k=14r=1,andk =10er2ifr =0
Then, for f € W™H{ N A? and an arbitraryn € N', n > k+r — 1. a polynomial
p. € IL, N A? satisfying (3) exists.

A. S. Shvedov showed in [12] (see also [11]) that the statement of Theorem B
is not correct forr =0, k >4andr =1, k> 3. Forr =0,k =1 or 2, and

r = k = 1 Theorem B is a consequence of D. Leviatan [6], where the estimate
(4) was obtained for convex approximation. For r > 2, k € N Theorem B was
proved by S. P. Manya and I. A. Shevchuk (see [11], for example). There is a gap
in Theorem B as nothing is known for r =0,k =3,and r = 1, & = 2.

Let us write a number a > 0 as the sum « = r + 3 where r is a nonnegative
integer and 0 < 8 < 1. Denote by Lip“«a the class of all functions f(z) on [ such
that

W (f, 1) = O(tF).

A concequence of Theorem B and also classical converse theorems (see, for ex-
ample, p. 263 of [3]) is

Theorem C For a > 0, a # 2, a function f = f(z) is conver on [ and helongs
to Lip~a if and only if, for each n > 1+ 1, a convez polynomial on I, p, = pa(r)
of degree < n, ezists such that

(5) |f(z) — pa(z)] < CA(2)7, zel.

For o = 2 the result of Theorem C is not complete as this case corresponds to
r =1, k = 2 in Theorem B.

In this chapter it is shown that Theorem B is correct fov r =0, k = 3 (and,
therefore, for r = 1, kK = 2), and hence Theorem C is correct for a = 2. Namely,
they are consequences of the following theorem.

Theorem 1 For a convez function f € C([) and every n > 2 a convez polyno-
mial p, = pn(z) of degree < n exists such that

(6) |f(z) = pa(z)] £ CW3(f,An(z)), zEI
If f € CY(I), then the following estimate also holds:

(7) |f(z) — pu(z)]l € CW?(f,An(z)), z€l
Moreover, for f € C2(I) there is also the foilowing estimate:

(8) |f"(z) — Pa(2)] < Cw(f”, An(z)), zel.

Corollary 2 If f € CY(I)NA?, then, for every n > 2, a polynomialp, € I1,.NA?
exists such that

(9) |f(z) = pu(2)] £ CAN(2)W*(f',An(z)), €L
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Remark . Estimate (6) can be improved to some degree (see the method in
[11], for example). Namely,

(10) |f(z) — pn(=)|

<C GS(f,n" V1 = z?), z€[-1+n"2%1-—n"%,
= W3 f,n~3(1 — )3, ze (-1, -14+n"2)U(1—-n"2 1]

All the estimates above are pointwise. The uniform estimates in terms of the
usual moduli of smoothness are rather imperfect because, as can be seen from
inequalities (3)-(10) the degree of approximation improves as the endpoints of
the interval I are approached.

Theorem 3 For a function f € C(I) N A? and every n > 2 a polynomial p, =
pn(z) € C(I) N A? exists such that

(11) Nf = Palla < CR3(f,n7").
If f € CY{I), then the following estimate also holds:
(12) If' = Pulleo < C@L(f',n71).

Moreover, for f € C?(I) there is also the following estimate:
(13) " = Palle < C@L(f",n7Y).

Theorem 3 improves the estimate of convex approximation
(14) Wf = palle < CRL(f,n71),

which was obtained by D. Leviatan [6].

Corollary 4 If f € C}(I)NAZ2, then, for everyn > 2, a polynomial 7, € II,NA?
erists such that

(15) If = palle < Cn7lag(f 07,

Let us recall that the kth integral modulus of f € L,[—1,1}, 1 < p < o0, is
the function

cl—kh 1/p
= su {5 [ R X

0<h<t

For a function f bounded on [—1, 1] the local modulus of smoothness of order
at the point z € [—1, 1] is the function (see Definition 1.4 of [8])

W (f,z,8) = sup {|AL(f, )| : t,t + kh € [z — k6/2, = + k6/2)} .
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The kth averaged Sendov-Popov modulus of smoothness of a function f
bounded and measurable on [—1, 1] is (see Definition 1.5 of [8])

1 mn 1/p
P (f,8)p = WA (s )llp = {5 [ W fra 8 de} . Se o 27
The following properties of 7% are used (see Theorems 1.4 and 1.5 of [8]):

(]6) wk(f,é)p < Tk(fv(s)p < wk(f,J).

A constant C(k) depending only on k > 2 exists such that, for each

function f absolutely continuous on [a, b], the following inequality
holds:

(17) | ™(f,8)p < C(k)o ™ (f',8),.

In this paper the following theorem is proved.

Theorem 5 Let 1 < p < oo. For a function f € C(I)NA* and everyn > 2 a
polynomial p, = pa(z) € C(I) N A? exists such that

(18) |f = Pally < CT3(fin™)sp-
If f € CL(I), then the following estimate also holds:

(19) If' =Pl < CT2(f',n7")p.
Moreover, for f € C?(I) there is also the following estimate:

(20) "f” —palls < C'r(f”,n—l),, .

Corollary 6 By (17) and (18), for f € CY(I)NA? and everyn > 2, a polynomial
pn € II, N A? ezists such that

(21) Nf—palls < Cn W (f',n1),, 1<p<oo.
By the method of [12], using (17) and also estimate (18), it is easy to prove:

Theorem 7 For a function f € C*(I)N A® and every n > 2 a polynomial
pn € I, N A3 ezists such that

(22) “f—pnlloo < Cn-lwz(flvn—l)oo'

10



2.2 Anuxiliary Results
Proposition 8 (see [9] and [10], for ezample). The following inequalities hold:

(23) min {(z — 29)72, (z — %;)?} < t;(=)
< max{(:c ~ )7 (z — :7:,-)”2} , zel,
(24) ti(z) < 10%h72, zel;,
(25)
Z;—x; _ 1 _ 1 _ 3 . _n
z?—x,- > = 3 L >Zh,-, Zj_1 — T >Zhj’ xj--~z?§ 'é'hj for 5 < 5
(26)
L1 — I; 1 _ 1 _ 3 .. n
xj_1—$?>—iT—J—> Zhj, T;—x; > Zhj, :I:?-—:I:j < gh] for J >§,
21y max{(z -2 (e — )72} < 64(je — 25l +h)E = €L
and
(28) (lz — 21+ h) 72 S tj(2) S4-10%(lz — 250 + b)), zel.

Proposition 8 can be verified by simple calculations using the definitions of
the points z;, m?, #; and properties of the trigonometric functions sin and cos.

The following proposition can be easily verified either by straightforward com-
putations or by induction on v.

Proposition 9 Let v be an integer, p>v+2andc; 240 >0,1 <1< v. Then
the following estimates are valid:

1
p—1

2!1

p—l/——lc1

1-p

o0 v
cl...c,,ttl,—pS/; = T[(ci +t) dt < et
0

i=1
The following result permits us to define the polynomials
Ti(n,p;an, - y8m;b1,. .., be).

Proposition 10 Let 1 < j < n be fized. Then the following inequalities hold:

m k -1
Co(p) < Oj(n,p;a1,...,am;by,. .., bk) h?“'l (H(Zj_]_ — a;) H(b,- — z,))
=1 =1

S CO(I"‘) ’

where a; < z;,1 <i<m, b > zj,1 <i <k and p is sufficiently large in
comparison with k and m (for example, u > 5(m + k + 1) will do).

11



Proof (cf. [10]). The proposition will be proved for j < n/2. For j > n/2
the proof is analogous with the only difference that instead of (25) one should
use (26).

We write

x Ty 1
Hi(na/‘;ala"-aam;bl,--.,bk)=:{/:_f./ l_*_/
- I, Ty

Now denoting [T, (zj_1 —a:) TI5 (b r;) by Tjmk and using estimates (23)-(25),
we have

}=(")1+(‘)-:+93~

: w -2 3p e -2

and

z; m k )
0, > /o 1(:::? — a;) ];];(b.' - ;) mm{(y — )T, (y - a"cj)“2“} dy

Ty i=
> 4 Ty [ min{(y — 297, (v - 8)7*} dy
Z,
2 —m—k (o2u—1 = -2
_>_ 2“ — 14 (2 u - l)FJ‘mk (a:j et :L‘(J)) #t1
T e
= 2u—1 3/ gmk T ‘

Similarly, Proposition 9 and the inequalities (25) yield

z; m k
@l < [t Hlv—al [Ie-vd

z; m k
< [T =9 Tl = aid + 29 — ) TT(bi = 25 + 25 — ) dy
- =1 i=1
< /zo_'z.t‘ K H(l:z:j_l —ai| +t) H(lbi —z;| +t)dt
e =1 =1
< gm+k ik (:1:9 - ,)-—2;;-}-1
= 2u-m—-k—-1" ;T
au—1 om+k —outl
< 4% Timk b

2u—m-—k—1

and

1 m k
@) < [ty Iy —ed ITib—vldy

=1

IA

1 m k
/ 1(y — ;)% [I(lzj-1 — aidl + vy — ;) TJ(16 — =51 +y — z;) dy

i=1 i=1
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< /°° y $-2H H(lJ:J 1—ail +t) H(lb — x| +t)dt

1=1

2m+k 21
< 2#__m_k_lrjmk($j—l—$j) g
< 4% 2 [jmi A7 24+
= p—m—k—1 Mk '

Hence,
Hj(na/*"; Aty .5 qm; bh R bk) h?“—‘l (ijk)_l

- 24u+m+k—1 3ut1
<1 < bt
< 10 +2“_m_k_1_10

Finally, the inequalities in the other direction are the following

I;(r, p3a1,. ..y @m; b1y 05 bk) h?“‘l (Tjmi) ™"

> 2 4—m—k(22u—1 _ 1) (-8_)2“_1 _ 24#+m+k—1 S -];
_2/1-"'1 3 2“—m_k_1—’u"

Lemma 11

Let a; < z;,1 <1< m, b; > ;- L,1<i<kandl < j<n bea fired indez.
Then for the polynomial Tj(z) = Tj(n,p; @1, .-, amibr, ..., be)(z) of degree <
4un + m + k the following inequalities hold:

(29) |Ti(=)| < Clu)wi* ™ k5",
(30) 1_1.“</ (¥)dy < 1—g;
and

(31) Ix;(z) — Tj()] < Cu)p2 ™ ",

where u > 5(m +k+1), z € I.

Proof Proposition 10 and the inequalities (28) imply for any z € [

Ti(=)| < Clu)ts(oy w2 T] A2l 7y iz 2l

i=1 |mJ 1 at‘ i=1 lbi—mjl

< C(u) ¥ byt II(HW _“h—) ﬁ(lw"—l_ﬁ—)

|zj—1 — ai| i=1 |b: — le

< ceht (L+4)™" < Cluyp Ay,

which is the inequality (29).
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To prove the inequality (31), first, we conrider the case @ < r;. The estimate
(29) implies

(@) = To(a)l = I1) = | [ Titw) dyf
< C’(u) h?#—m—k—l /_N(wi —y+ }lj)-—'lu+7n+k dy < C(lt)‘d'j‘“-m—k.—‘ )

For z > z;, similarly, we have

xi(@) = @) = =T = |[ T

S C(#) h?#—m—k—l A (y _ x}_ + hj)-2u+vn+k dy S. C([l.) ‘Z"?“—m—k—‘ )

Thus, the inequality (31) is also verified.
To prove the remaining inequality (30), denoting for brevity [T, (y—a;) T1%, (b,

=1

y) by ';(y), and using integration by parts,we get the following identities:

1
[ Tiwdy < 1-3,

= [ [uernwdad < 0-2) [ uer o

1 1
= /_1(1 —y)ti(y)* Li(y)dy < (1= Zj)/_, ti(y) Ci(y) dy
1
< (n,p;z5,81,. .-, 8mi b1, ..., b)) = / 1('!/ —z;)t(y) U(y) dy > 0,

and, analogously,

1
flTj(y)dy >1—-z,

rl
< I(n,p;a1,...,8m; Tjm1,b1,...,bx) = /_l(a:j__l —y)ti(y)* Ui(y)dy > 0.

Together with Proposition 10 this yields (30). a

Let
Qj(z) :=Tj(n,10;z;;0),
Qi(z) :=T;(n,10;0; z;_,)

and

Qi(z) := Tj(n,9;0;0).

The following lemma is a corollary of the above results.
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Lemma 12 The following inequalities hold for all z € I:

(32) 0 < Qi(z) < Cyi*h;t,

(33) Ixi(z) — Qi(z)| < C¥}7,
(34) 1-zn < [ Gy < 1-a;,
(35) 1Qi(z)| < C¥I®h;t,

(36) 0 < xj{z) —Qj(z) < Cv¥}®,
(37) 1—zj1 < /_lle(y)dy <1-zj,
(38) IQ(z)] < CpPR;T,

(39) 0 < Qi(2) = xj-1(z) < C¥}*
and L

(40) 11—z < /_IQj(y)dy <l-—gz;.

Proof Let us note that Qj(z) <0, z < zj; Qj(z) > 0, z > z;; Q;(-1) = 0;
Q;(1) =1 and Qg(:z:) >0, z < Tj-3; Q;(a:) <0,z > zj; Q;(-1) = 0;
Q;(1) = 1. This yields Q;(z) < x;(z) and x;-1(z) < Qj(z), which are the left-
hand side inequalities in (36) and (39), respectively. The other inequalities follow
from Lemma 11. =

It follows from inequalities (34), (37) and (40) that a,8,v € [0, 1] can be
chosen so that for polynomials

55(2) = [ (@@;() + (1~ )@ (v)) dy
5i2) = [ (8Q;) + (1 = B)Qin(v)) dy

and .
oi(2) == [ (1Qs) + (1 = Qi) dy
the following equations occur:
&(1) = (1) =0;(1) =1 —z;.

Let R;(z) := (z — z;)8;(z) and Rj(z) := (z — z;)8;(z). Polynomials R;(z),
R;(z), and o;(z) and their derivatives give sufficient approximation of the trun-
cated power functions x;(z), (z —;)+, and (z— ;)3 (definitions of the truncated
power functions are given in the next lemma). Taking into account the fact that
analytic representation of any spline of degree 2 contains only these functions,
this enables us to obtain a good approximation of any spline of second degree by
polynomials wit® controlled derivatives (see Section 2.3).
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Lemma 13 The following inequalities hold for all z € I:

(41) [67(z)] < Cv¥}°h}?,

(42) 167(2)| < C91°h;?,

(43) 0 < oj(z)] < C¥}°R;?,
(44) 16;(z) — xi(z)| < C¥}®,
(45) 185(z) — x;(2)| < Cy}®,
(46) loi(z) — xi(z)| < Cy)7,
(47) §(z) < xj(z), 85(z) = xj-1(z),
(48) I(z — z;)+ — 8i(z)| < CP7h;,
(49) l(z — zj)+ — &;(z)| < C¥j7h;,
(50) (z — z;)+ —oj(z)| < C¥i°h;,
(51) l(z — z;)] — Ri(z)| < C¥;°h7,
(52) Iz — z,)3 — Ri(z)] < Cyj°h],
(53) 12(z — z;)+ — Rj(z)| < C¥}'h;,
(54) 12(z — z;)+ — Rj(z)| < C¥j7h;,
(55) |R}(z) — 2x;(2)| < Cy}®
and

(56) |R}(z) — 2x;(z)| < C¥}®,

where (z — z;)% := (z — z;) x;(z).

Proof First, (47) is a consequence of the left-hand side inequalities in (36)
and (39) as

&i(z) = aQj(z)+(1— a)Qjv(x)
< axi(z) + (1 — a)xj+1(=)
< Xj+1T)

and

§(z) = BQj(z)+(1—B)Qin(z)
> PBxj-1(z) + (1 - B)x;(x)
> xj-1(z).
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Inequalities (41)-(43) are immediate consequences of (35), (38), and (32) and
the observation that ;41 < 18¢;. Also, since ¥; ~ C if z € I;, then inequalities
(44)-(46) are consequences of (36), (39), and (33) as

16:(z) — xi(@)] < 1Qi(z) — xi(z)] + |Qs+1(2) — x5(2)]
'Qi(z) — xi(z)] + 1Qi+1(z) — Xj+1(2)| + x [2511, %] ()
oy

IA A

The proofs of (48)-(50) are similar so we only prove (48). For z < z; we have
l(z — z;)+ — 85(z)]
< [ (@lQi®) - x:)l + (1 = Qi (¥) = x5 d

. B 18
C —_— ) d
[ (im)

< Ch¥(|z — =i + k).

IA

For z > z; we have the estimate

I(z — z;)+ — d;(=)]
= |(8;(1) — &i(x)) — ((1 — ;) — (z — z;))]
= [6;(1) — d;(x) — (1 —z)|

= |[ Qi@+ (1 ~ )Qiniy) ~ 1) dy

< [ (@l@i@) ~ x5l + (1 — Qs ly) — xina@)]) dy
oo . 18
< CL (El_——;hj—lm) dy < Chjd}".

The inequality (48) is proved.

Inequalities (51) and (52) follow immediately from (48) and (49), respectively,
and inequalities (53) and ‘54) are consequences of (48), (44), (49), and (45).
Finally, (55) and (56) follow from (41), (44), (42), and (45). The proof of the

lemma is now complete. -

2.3 Pointwise Estimates of Convex Approximation

Following the ideas of [1] we construct a convex spline S(z) of degree < 2 which
sufficiently approximates the convex function f = f(z), f € C(I), that is,

If(z) = S(=)] € C’(f,An(z)), =ze€l.
Then we approximate S(z) by a convex‘a.lgebra.ic polynomial so that

1S(z) — pa(z)] < Cwa(f, An(z)), zel.
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This proves the estimate (6).

Construction of the Convex Spline
Let

S(z) := max {L{z, f;z;), L(z, fizjn1)}, ze€el;,2<3<n~-1,

S(.’IJ) = L($1f;z2)1 IEEI)_,
and
S(z) := L(=z, f;zn), z € I,.

It is easy to see that S(z) is a convex spline of degree < 2 with knots r;,0 < j < n.
Now we consider the index 7 to be fixed and denote

a, = L’(zj,f;zu), V=Ja]+17.7+2'
Let us call a knot z;, 2 < j < n —2, “a knct of type I” if
(57) ajy1 < Gjy2,  ajp1 < aj.
That is,
S(E)’:'L(.’L‘,f;:r,,), :z:e[:z:‘,, xu—l], v=j3+1,7.
Note that inequalities (57) are equivalent to the following ones:
[Zj, Tj—-1,Tj-2; f] < [mj-l-l’ Zj,Tj—-1; f] S [Ij+2, Tjit+1,Tj; f] 3

where square brackets denote the divided difference of f.
A knot z; is “a knot of type II” if

(58) aj42 < Qjt1, aj; S QAjqt
which is equivalent to

(42, Tir1, 253 fl < [Tjrr.2j, 215 f1 < [z, Tj-1,25-2: f]-

In this case
S(:E) = L(z, f; zu-i-l), T € [zu’ xu—l],V =3+ 1,7.
Let z; be “a knot of type ITI” if

(59) Qip2 < Gj41 < @j

or, equivalently,

{xj+2,$j+1,$j;f] < [$j+1,$j,$j-1;f]
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and

[zj,Ti—1,Tj-2; f] < [Tis1,Tj,zj—1; f]-
In this case

S(z) = L(=z, f; zj+2), z € [Tj41, T5]
and

S(z) = L(z, fi25), = € x5, zjmi].-

Let the knots, which are not knots of type I, IL, or III, be “knots of type Iv”,
It is not difficult to see that if z; is a knot of type IV, then

(60) S(z) = L(z, f; zj+1), T € [Zj41, Tim]-

Let z; be a knot of type II if a3 < az, Tn_1 is a knot of type I1if a, < @n-—1,
otherwise they are knots of type IV.

From (57)—(60) it follows that the spline S(z) has defect 2 at knots 1, 11,
and III (i.e., the first derivative of the continuous spline S(z) does not exist
at these knots) and does not have it at knots of type IV (S, S’, and 5" exist
and are continuous at these knots). Taking this into consideration, we get the
following analytic representation of the spline S(z) in terms of the truncated
power functions (z — z;)+ and (z —z;)3 (for an analytic representation of splines
see, for example, Section 2.3 of [5]):

S(z) = f(=1)+ Ao(z + 1) + [Tn, Tno1, Ta2; fl(z +1)°
+ Y A{@e )@ —e)s - (2 -z}

2<i<n—1, z; EIUVIIK

+ 3 B; {(x,- —zip)(z —zi)s + (T — xi)i} )

1<i<n—~2, z; IUIII

where
AO = [zru Tn-13 f] - [xn-la Tn—2; f] + [xn—27 Tn, f] ’
A; 1= [Tig1, Tin Tim1; £ — (26 Tima, Tica; S, 2<i<n-—-1,
and
B,’Z=—A"+1, lSzSn—?..

Note that A4; > 0 for z; € TU III (i.e., if knot z; is a knot of type I or IIT) and
B; >0if z; € IIVIIL

Now let us estimate the value |f(z) — S(z)|, £ € I. For this we need the
following well-known Whitney inequality (see Section 2.1 of [8], for example):
(61) Ig(m) - L(:t, g;a0,- .- 7ak)l < C(k)wk+1 (91 ar — Qo, [a07 ak]) ’

where g € Cla, b], aiy1 —ai=ai—ai1, 1 <i<k—1l,and z € [ao, ak)-
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For z € [z;, zi—2] we have
1£(@) ~ L(=, £;2)] ~
(62) = lf(-r) - L(:L‘, f; [.’17,', 1':'—2}) - L(:L’,f - L; -T-'t)l
< "f _ fJ"C[z'.-.x.'..zl (1 + (2: — :l:i)(z — 1‘.‘-2) D

(Ti1 — ) (Tim1 — Tiz2)

. . o (hi + hi—)?

S C“"s (fa ht + h;—lv [zn It-—-2]) (l + —“m—"')
< Cuw’(f,An(2)) -

This yields

(63) |f(z) — S(z)| < C®(f,An(2)), zel.

Construction of the Convezr Polynomial

Let us fix n, denote n; := Mn, where an absolute constant M 1is an integer
and will be chosen later, and choose i; so that T, », = Tia-

Using the analytic representation of S(z) and also the approximation of the
truncated power functions given in Lemma 13, we write the following algebraic
polynomial of degree < 50Mn:

pafz) = f(=1)+ Ao(z + 1) + [Tns Tac1, Taz; fl(z +1)°
+ > Ai{(zi-1 — )iy, (2) — Riyni (7))

2<ign—1, z;€IVIII

+ Z B; {(.‘L‘, - :1:;.*.1)0‘,'1,,1'(1) + Ril.nl(m)} .
1<i<n~2, z;€lIVIII

(The distance between S(z) and this plynomial is estimated in inequality (69)
below.)

Now we show that it is possible to cl.oose M so that this polynomial will be
convex on I. For this it is enough to choose M so that the following inequalities

hold:
(64) (Zic1 — i)o} o (2) — R 4 (2) 2= —2x:(2), rel,

(xi - xi+1)a;’1,n1 (z) + R:.’l,ﬂl(x) Z 2X‘l(z)’ z e I .

Indeed, using (64) and taking into account inequalities A; > 0 for z; € TUlIll
and B; > 0 for z; € ITUIII, we have, for z € I\ {z1,. -1 Tn-1}

pe(z) = 2[Tn; Tn-1,Ta-2; fl + S Ai {—2xi(z)}

2<i<n—1, z;€IUIIT
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+ > 2B;xi(z) = S§"(z).
1<i<n—2, z;€ITUIIT
As S(z) is convex on each interval I;, 1 < j < n, then S”(z) > 0 for z €
(zi, i-1), 1 < i < n and, hence, pl(z)>0for z € I\ {z1,..-,Tn-1}. As pa(z}
is a polynomial, i.e., it has a continuous second derivative, then pli(z) = 0 for
z € I, and therefore p, € A

Thus, it is sufficient to rrove (64). Inequalities (64) are consequences of the
following estimates:

(65) min{@:;,nI (.'L’), Q:1+l,nl(x)} min{h’i’ hi+1} > 47 T € Ii1+1.n; U Ii1.n1
and _ _
(66) min{Q’, ., (z), @, 41,1, ()} min{ki, hiya}

Z 2'3 - Iil ma’x{lQ:'hnl (z)li IQé;-{-l,nl (x)l’ |Q:’1,n1 (z)|7 |Q:'1+1,n1 ($)|}
for every z € I.

Indeed, suppose that (65) and (66) are true. Then for any z € I together
with (47) we have, for z & Ii; 41,0, U Liy s,

(Zim1 — 2:)0 1 (2) = Rl 2, (2)
= ki (1@ (@) + (1 — V@41, (2))
—(z — 1) (@@} my (2) + (1 — )@}y 41, (%)) — 26}, 1, (2)
> himin{Q}, ., (), Qi 1., (2)}
—|z — zi| max{lQ}, n, (@), | Q@ 41,m (@)} — 2X[Zir 1m0, 11(2)
> —2x[zi41m, 1(2) = —2xi(T) -

For x € I;; 41, Ui, n, taking into account (65) and (66) we have the following
estimate:

(Tim1 — 2i)0]) o, (2) — B 1, (7)
2 h,/?. min{QZ,‘m (.T), Q:’;-{-l,nl(z)} - 2X[Iil+1v"l ? 1](1:)
> 2- 2X[xi1+l,ﬂn 1](:1:) 2 —2X‘.($) :

This proves the first estimate in (64). Considerations for the proof of the second
estimate in (64) are analogous.

Thus, our problem is reduced to the following one: find such an integer con-
stant M that, for n, := Mn, inequalities (65) and (66) are valid.

It follows from (23) that, for x € I;; 41,0, U iy n,

tix.m (.’L‘) > min{(x - z?hm)-d’ ("r - iil,ﬂx)—z}

> (hi+1,m +h51,ﬂl)_2 > h;? /16.

11,1
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From Proposition 10 we have

[ tam@Pdy < Co(@)h51]

1,

Thus, we have, for example, the following estimate:

ti n (3)9 h;
h; L i (i
tl ™ (z) fil til.m (y)g dy z CO(g) 16 hil.m

Now it is sufficient to choose the number n, € N so that

h; > 4 -16°Co(9)hi, n, -

This verifies (65)
Using the same idea, Proposition 10, and also inequalities (28) to prove (66)
we write, for example,

11 ny (IE) - 2|$ - :L',”Qu Ny (m)l
> Co(9)7th; R}t ny (2)°

- 11,7

—200(10)‘1’ - z‘llxil—lrnl - lhlxsnl i, n\(x)w

3

2 Cﬂ(g) 1h; hxl:nl(lx Tiy nxl + hu,nx)—m

-2 410 103000(10)}":1 nl(lx - Iil."lx' + hil.m)_ls
> ¢l kil {Co(9)7 hi —2- 4% 10%°Co(10)hi, m, } -

Thus, (66) is verified if the number n; € A is chosen so that
hi > 2-4'°.10%C(9)Co(10)h;, n, -

Taking into account that hi/hi,a, > n1/5n we conclude that inequalities (65)
and (66) are true for ny = [10°°Co(9)Co(10)}n =: Mn.
It remains to estimate |p.(z) — S(z)|. Sxmxlarly to (62) using

flzicy) — L{zi—a, f;x:)

iy Ti1.Tion, Tiea, f] =
Lzi, Zi-1, 2i-2, 73 ] (zim1 — zi)(Tie1 — Tiz2)(Tic1 — Ti-3)

we have
[zis Ti-1yTi-2,Ti-3, f] S Cht'—aws(f’ An(xf))

and lence

[Ai| = |[Tig1, Tis Tiz1, Ticz; [l(Zice — Tipa)] < Ch723P(f, Dn{zi)) -

It aiso follows from the last inequality that
|Ai] < Ch7'WA(f, An(zi)) for fe CY(I)
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and
|A;] < Cw(f”,An(z:)) for fe C?*(I).

Now let us note that the estimate h;, ., < h; < (M?/5)h;, », implies that
(67) Yiyn < SM3;.
Using the inequalities (see [9] and [10])
Ai(y) < 48n(z)(Iz — Y|+ An(z))
and
2|z — y| + An(z)) > lz—yl+ An(y) > (lz~yl+ An(2))/2, =z,y€l,

and also the properties of the modulus of smoothness we have

68) WA < o (£,2/BaE)(E -l + Ane))

_ s ) [zt Aaa)
= (f’m"( N a0 )

Iz — =] + A2\
< oo (2l Pui( Ao

3
< a0 (E=RERY s ane).
From (50)-(52), (67), and (68) we now have

(69) lpa(z) — S(z)|
< > |Aif {Ail(z = 2:)4 — 05, n,(2)]
2<i<n—1, z;€IUIII

+ |Biy i (2) — (2 — 231}
+ > |Bi| {hir1](z — 2:)+ — Tiyn, (2]

1<i<n—2, z; €IIVIIX

+ |Biym(2) — (= — 2)% 1}
C 3R (f, D))

=1

< C’(f,An(x))-

IA

Inequalities (63) and (69) complete the proof of the estimate (6) as
1f(z) = pa(@)] < 1F(2) — S(@)| +15(2) — pu(@)] < W*(f,An(z)), z€l.
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To prove (7) the following equations are used:

S'(z) = Ao+ 2[311, Tn—1)Tn-2; f](l‘ + 1)
+ > Ai {hixi(z) — 2(z — i)+ }

2<i<n—1, z;€IUVIll

+ > B; {hisaxi(z) + 2(z — zi)+ }

1<i<n—-2, r;eIUIII
It follows from (46), (53), and (54) that
(70) Ipa() — ')
< > |Ai] { kil m, (2) — xi(2)]

2<i<n—1, z; EIUVIII
+ | R,y (2) — 2(z — 72)4 |}
+ > |B:| {his1]0}, (@) — xi(@)]

1<i<n—2, z; EITUIII

+ R . (z) = 2z — z:)4 ]}

< O WS, Al

< Cur(f,An(e).
Now, (7) follows from the following estimate for z € Ij := [zj, 2 -2):
(71) |f'(z) = L'(z, fiz5)| < Cw?(f2 ks, 1)

In order to prove inequality (71) (see Lemma 1.4.2 of [11]) let us denote

T

L(z) := f(z;) + ., L(u, f'sz5,z-2) du
(L(z) is an algebraic polynomial of degree 2) and note that
f'(z) — L'(z, fi35) = f'(z) = L'(z) ~ L'(z — L ;).
The following estimate is a consequence of the Whitney inequality (61):
() — L(z, 25,2520 < Cw(fohs, ), s€ly
This implies, for any z € I,

|f(z) — L(=)| =

[ () = Lw, £33, m5-2)) du| < Chyw*(fhinTy).
z;
Now, together with the estimate forz el s

|L'(z — L;z;)] < CR7M\f = Lll, < Cuw?(f'hy) Ly,
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the following inequalities complete the proof of (71):

l.f’(x) - L'(:B, f; .’E,‘)' < Ifl(z) - El(x)l + Cw2(fla hJ'a i]) .
= |f'(z) — L(=z, f';zj,zj-2)| + Cw?(f', hj, 1)
< sz(f',hj,jj), T € ij.

To prove (8) we use the following equations:

S"(z) = 2[Tn,Tn-1,Tn-2;f]
+ > A; {—2xi(z)} + > 2Bixi(z)

2<i<n—1, z;€IUIII 1<i<n—2, & €IIUIIL
and
S”(.’B) = 2[22]',:1:_7'..1, :Bj...z;f] or .S'"(:z:) = Q[mj+1,:t:j,:z:j_1;f], if z€ Ij.

It follows from (43), (55), (56), and (68) that
)

~~ s

(72)  |pl(z) — S"(=)]
< S |Asl {hilo?, o (2] + 12x:(2) — BY, o, (2]}
2<i<n—~1, r; €IVIII
+ S |Bil {hixalo, o, (2)] + 12x:(2) — RE, o ()1}
1<i<n—2, z; E1IVIIIL
n—1
< C S w(f", Au(z))9}®
1=1

< C w(f"’ An(z)) .

Now, (8) follows from the following estimate for z € I; (see also Lemma 1.4.2 of

[11]):
(73) |f"(z) = 2[zj, Tj-1,Zj~2; f]

‘2 /: /:l {f"(z) — f"(zj + (251 — )t + (€j2 — Tj-1)ta) } dizdty
< w(f”‘)h.‘i + hj—la IJ)
< Cuw(f" Aa(x))-

Thus, Theorem 1 is proved for all n > 2.

2.4 Estimates in Terms of the Ditzian-Totik Moduli

To prove inequalities (11)-(13) it is sufficient to estimate |lf®)(z) — S¥(z)| and
|p¥) (z) — S™)(z)| in terms of the @3~* moduli with » = 0,1, and 2, respectively.
First, let us note the following:
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For the interval [z;,z;_2] we denote & = z; if |ri_2| < |zi] and & =
z;_o otherwise. Then for any y € [z, Ti-2] and 0 < A < n~! the
inequality p(&;,h) < p(y, h) is valid.

If h = /1—22h +h% = p(z,h), then 0 < h < An(z) <= 0 < h < n ',
Using (62) and the above we get, for a fixed z € [z;, Ti-2],

f(z) = Lz, fiz)] < 10°W3(f, An(); (2, 7i-2])
10%w>( f, 13An(&); (i, Ti-2])
C W(f, Anl&); [z, zi2])

¢ O<heBa(t:) |330s, 9, [z m‘"2])llclr-

¢ O<heBn(E) |30, y)l|cl=-'

= ¢ s |8t

0<ﬁ$n‘

< C B3 nny(F6))

IANIA A

I

--rt-—'l]

IA

vIl'—Q]

for some 0 < ho < n~! and {; € [zi,Ti—2]. (Actually, using the compactness
argument the last inequality can be replaced by an equality.)

Now, using the inequality p(&;, ho) < p((i, ho), continuity of p((;, h), and the
fact that p(Ci,h) — 0 as h — 0 we can conclude that a number A,, 0 < h; <
ho < n7!, exists such that p(&:, ko) = p((i, h1). Thus,

1f(2) = L(z, fiz)]l < C |B i (f16)|
¢ sup lllai(y.h)(f’y)l

o<h<n=~

< C&(f,n7h).

IA

Clzi,z.-2}

This implies

If(z) — S(z)| < C&(f,n7"), zel.
Now we can use the same considerations as in (69) to estimate |p,(z) — S(z)|.
For this we need the estimates of the coefficients A;, which appeared in the

constructions of S(z) and p.(z), in terms of the “nonuniform” moduli &3.
Using the same method as above we have the following estimate of |A|:

|Ad = |[Zi+1, Tiy Tic1y Tic2; fl(Ticz — ZTig)]
f(z) — L{zi, f; Tig1, Ti1,s Ti—2) (Ziva
(zi — Tig1)(Ti — Tic1)(Ti — Tizz)
C hfz “-’s(f, An(:); [Tig1, Tim1])
Ch2a3(f,n™").

Il

- ~’L'£+1)

IN A
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Moreover, if f € C!(I), then

C h72 B (f, An(zi); [Tis1, Tima])
C h7E An(z) WP (f, An(zi); [Tigr, Tiz1])
C A7 @i(f,nTh).

| Al

IANIA A

Similarly, if f € C?([I), then

| Ail

IA

C hi% An(z:)? w(f", An(zi); [Tig1, Tiz1])

< Ca,(f',n7h).
Now, analogously to (69), we have
n—1
|pa(2) — S(z)| < Ca(f,n™) D i® < Cay(fin™).
i=1
This completes the proof of the estimate (11).

Analogously to (70) and (72) in the cases f € C'(]) and f € C2(I), we have
the estimates

. (2) — §'(2)] < CaA(fn~") 3wl < Ca2(f,n™)

i=1

and
IPi(z) — §"(z)] € Ca,(f,n7!) 2 ¥i® < Ca,(f,n7h),
i=1
respectively.

Now inequalities (71) and (73) imply, for z € [},
If'(z) = S'(2)| < Cw(f',An(z;); ;) < C@3(f,n™")

and

1F"(z) = §"(2)] < Cw(f", An(zs); ;) < Ca,(f",n7)
in the cases f € C'(I) and f € C?*(I), respectively. Thus, inequalities (12) and
(13) are also proved. n

2.5 Estimates in Terms of the Sendov-Popov 7-moduli in
L, norm

We need the well-known Jensen inequality, that is,
lalb, + ...+ anbnlp S a1|b1|” + ...+ anlbnlp )

where a; > 0,1<i<n,and % ,a; =1, p>1, and also the following lemma.
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Lemma D (see Lemma 2.5 of [8]).

Let {z;: =1 = 20 < 21 < ... < Znq1 = 1} be a partition of the interval [—1,1] into
n + 1 subintervals and let r > 1 be an integer. If & = i1 — 2y, | <@ < n,
d, = max{d;: 1 <1< n}, then

10 1/p .
(3 Do (W(frzi2h))P 6.-) < VAN 2T (foh  da/r),
= =1

Now, let us estimate || f — S||,:

i7-st = (5[ 1@ - s@p )

<

1 n \/p
(512;1 /1, 1F(z) = S(a) d:v)

1/p
1 & )
< (5?;1 I, CPW(foxjihjoy+hy+ ) dw)
<

n 1/p
C ( w3(f3x1;hj—l +hJ+hJ+1)p h_])
=1

J

S CTB(f; n-l)p’
where hg := hp41 := 0.

Using the estimate Z;:;l t,/)]l-s < C (see the proof of Lemma 2 in [4], for exam-
ple) and the Jensen inequality we get

15— pals = (5 /" lon(e) = St@p ) ”

. n ‘ P 1/p
< C (/1 (Zws(f,mj;hj—n + h; +hj+1)'l/)}") rl:v)
-1 \5o
L n 1/p
< o (/1Zw3(f,xj;hj_1 +hj+hj+1)p1/);6d.'ll>
-5
n o b 16 i/p
S C (Z:lw:’(f,a:j;hj_; +h.j + hj+|)p J[0 (t +th) dt)
n 1/p
< C (ng(f, zjihi—1 + hy + higr)? h:‘)
i=1
< CTs(f5n—l)p-
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Thus, using Minkowski’s inequality we have

f—pally < UF =Sl + IS —pulls < CT(fin™)s.

The proof of (18) is complete. The proofs of (19) and (20) are analogous. .

Note that it is possible to relax some of the conditions put on f in Theorems 1-
7. This is connected with the fact that a convex function on the interval [—1, 1]
(at least in terms of divided differences) is continuous on the open interval (-1, 1)
and has left and right derivatives at every point of this interval (see, for example,
Sections 11 and 72 of [7]).

2.6 Final Remark

Recently, Y. Hu, D. Leviatan and X. M. Yu obtained the uniform estimate for
convex polynomial approximation in terms of w?(f.n~t). Their paper “Con-
vex Polynomial and Spline Approximation in C{—1,1]” appeared in Constructive
Approzimation, 10: 31-64.
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CHAPTER 3

UNIFORM ESTIMATES OF MONOTONE
AND CONVEX APPROXIMATION
OF SMOOTH FUNCTIONS 2

3.1 Introduction and Main Results

The present chapter is devoted to the investigation of monotone and convex
approximation of smooth functions, i.e., cases for ¢ =1 and ¢ = 2.

The rates of the best nth degree unconstrained and shape preserving polyno-
mial approximation of a function f are defined by

En(f) = inf IIf = Palleo

and
EO() = ol If—palloy  9EN,

€IlnNna?

respectively.
We recall that

*(f,t,la, b]) := su

P max
0<h<t [z:z+kh]Clab]

|AL(S, )]

denotes the usual kth modulus of smoothness of f.
The Ditzian-Totik modulus of smoothness is given by

WE(f)p = sup AL G(A N, e(@) =VI—2%.
0<h<t
The Ditzian-Totik weighted modulus of smoothness with weight " is
w{;(f’ t)‘?'m

= sup |[(1 -2 — kho()/2)"* (1 + = — kho(2)/2)"* Al (£, 2], -

0<h<t

where

k
Ak(f,x) := 2(’:) (—1)*~f(z — kh/2 +ih), if |z kh/2| <1,

0, otherwise

2A version of this chapter has been published in J. Approx. Theory (1995) 80: 76-107.
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is the kth symmetric difference.

Let I:=[-1,1], p(h,y) :==hV1—y?+ R, y€l,p:=p(h.x), z€ I

For the sake of brevity and convenience of exposition in tne uniform metric
we will use the following definition of the “nonuniform”™ modulus of smoothness
@k(f,t) and the “nonuniform” weighted modulus @k .(f,t), which are equivalent
to wh(f,t)eo and wh(f,t)er .00, Tespectively (see {5] and [14]):

a’:(f: t, [a, b]) = sup

max AX(f. 1), (>0,
0<h<t [I‘I-i-kp]c[a'b]l o(fr )l

@g(f,t) == aG(f,t, 1),

S5, (f,0) == sup  sup
’ 0<h<t {z,z+kp]CI

where w,(z, k, k) := (1+z)/2(1 —z —kp)"/?, (r+1) € V. Obviously, @k o(fit) =
@g(f,1)-
For k =0, let

w,(z, k, AL(f,7)| ,

@0, (f,t) == esssupre(1nl(l — z*) /2 f(2)].

For arbitrary f € C(--1,1), the function &% (f,t) can be unbounded. How-
ever, it was shown in [5] (see also [14]) that the necessary and sufficient condition

for @% .(f,t) to be bounded for all £ > 0 is the existence of a constant M < oo
such that

1(1 - x2)f/2f(z)| < M, ze(-1,1).

Let B", (r + 1) € N, denote the space of all functions f such that f €
C[-1,1}nC"(-1,1) and |(1 - xz)’/zf(')(:r:)| < o0, z € (—1,1). Thus,

@k (f,t) < o0, t>0 = feB .

In order to avoid considerations of trivial cases (when the right-hand sides of
estimates are equal to infinity) we will have the restriction on f that it be from
the B” class. Also, let us note that for such functions f, any 0 < [ < r, and
k > 0, the following inequality holds (see also Lemma H below):

(74) SEAH D, ) < Co(r, k)t~ @k (f0,t) t>0.
For unconstrained approximation the following direct result is known.

Theorem E (see [5] and [14], for example). Let k € N, (r +1) € N. Then for
a given function f € B" on I and eachn 2k +r —1,

(75) E.f) < Cn7 @k (fn™h)  C=C(rk).
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Our goal is to investigate the possibility of obtaining the estimate (75) for
shape preserving approximation.
First of all, the following negative results are known.

Lemma 14 There is no such constant C that for every nondecreasing function
f on I, f € B2, the estimate

EQ(f) < Cn2ay,(f"n™Y)

©,2

is valid.
Moreover, even the estimate EMN(f) < C &l ,(f",1) is false.
Thus, the estimates

EQ(f) < Cn7'af> (V0,07 C=CH),
generally speaking, are not correct for 0 <1< 2 and k € N.

Lemma 15 Letv > 0 be fized. There is no such constant C that for every convez
function f on I, f € B*, the estimate

EQ(f) < Cn*ay,(fW,n")

is valid.
Moreover, even the estimate E?(f) < C @Y ,(f®,1) is false.
Thus, the estimates

E®A(f) < Cn~! Dﬁfis“(f('),n‘l) C =C(k),
generally speaking, are not correct for0 <1< 4 and k € N.
Proof Lemma 14 follows from Lemma 2 of [10] and the estimate

&;,2(9{1, t) S 4

from the proof of Lemma 3 in [10]. Lemma 15 is a consequence of Theorem 2 of
[8]. It is worth mentioning that for the particular cases /=0 and [ =0or 1 in
Lemmas 14 and 15, respectively, they follow from A. S. Shvedov’s work [15]. =

It will be si-swn in the present chapter that the estimate (75) can be obtained
for shape preserving approximation of functions f € B” withr >3 and r > 5 in
the monotone and convex cases, respectively. For the other r such direct results
are known (see [7]-[9], [11] and [12]).

Namely, the following theorems will be proved.

Theorem 16 Let ke N, re N, r >3, and f € B". If f is nondecreasing on
I, then for everyn>k4+r—1,

EV(f) < Cnmak (f,n7Y), C = C(r,k).
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Thecrem 17 Letk e N, re N, r > 5, and f € B". If f is conver on I, then
for everyn > k+4+r—1,

E@(f) < Cn @k (f7n™Y), C=C(rk).

Now ore can summarize estimates of monotone and convex approximation in
terms of LTJ:,',.. For the sake of convenience we will present the results obtained in
the form of Figs. 1 and 2. A disk in the position (k,r) means that for a monotone
(i = 1) or convex (i = 2) function f from the B" class the estimate

EO(f) < Cnmak (fO,nY),  C=C(r,k)

holds. A circle means that this estimate is correct for not all f € B".
These results are obtained or are derived from the following papers.

Positive results (monotone case)

r=0,k=2,
and, consequently, also for D. Leviatan [11]
{(k,P)1 <k+r <2}
r>3 k=0 G. A. Dzubenko, V. V. Listopad and
_ I. A. Shevchuk [7]
r>3,k2>1 present chapter
Negative results (monotone case)
r=0,k>3 A. S. Shvedov {15]
r=2k>1landr=1,k2>2]| K. A. Kopotun and V. V. Listopad {10]
Positive results (convezr case)
r=0,k=2,
and, consequently, also for D. Leviatan [12]
{(k,r)1<k+r <2}
r=0,k=3,
and, consequently, also for K. A. Kopotun [9]
{(k,r)lk + 1 =3}
r>5k=0 K. A. Kopotun [8]
r>5k>1 present chapter
! Negative results (conver case)
r=0,k>4andr=1,k2>3 A. S. Shvedov [15]
r=4,k=0,
and, consequently, also for K. A. Kopotun [8], see also Lemma 15
{(k,r)|k+r>4,r <4}
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Thus, investigation of the rate of shape preserving approximation of functions

from BT classes in terms of n"’u‘:ﬁ,'r( fr},n~1) is complete in the sense of the orders
of moduli of smoothness.

However, more detailed consideration shows that some extra conditions on
the smoothness of f sometimes allow direct results in the cases for which the
general estimate is not correct. These conditions are given by the relation of f to

BT H[k, 1] classes. The necessary definitions and detailed discussions are given
in the following section.

3.2 Sha_pe Preserving Approximation of Functions from
BT H[k,y] Classes

The following construction of ®* classes which was created by Stechkin (see [16],
for example) will be useful.

Let ®* be the class of all kK majorant functions, i.e., continuous nondecreasing

furi.vions i = ¥(t) on [0, 00) such that ¥(0) = 0 and t~*3(t) does not increase
on {0, co).

Obviously, GJ;,( f,t) does not have to belong to &* class. However, the fol-
lowing result is valid:

For the function

tkak , U
w™(t) = sup —————"”'r(f ),

u>t ‘U-k tZO’

the inequalities
@k (f,1) < w(t) < Clk) @, (f,1)
hold, and if @ .(f,t) -+ 0ast — 0, then w” € oF,

Also, for any ¥ € ®* or ¢ ~ 1, k € N, and r + 1 € N there exists a function
f € C(-1,1) such that

C(k)$(t) < @5,(F,1) < CR)%(2).

(Proofs of these statements can be found, for example, in [14].)
Now, let B" H[k, ] be the set of functions f € B" such that

ok (f7,1) < ¥(2) where ¥ € ®* or ¥ ~ 1.
Thus, we have the decomposition of the B" class

B = UJ B H[k, ],
ve{vlvedk or y~1}
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which, first of all, is complete, as for any function f € B there exists ¥ € ®* or
Y = const such that f € B"H[k, 9] and @k (f"),t) ~ (), t > 0. Second, this
decomposition is “relatively precise,” as for any 1 € ®F or ¢ ~ 1 there exists a
function f € B” such that ¥(t) ~ Qﬁ,,(f('), t),t>0.

Taking into accouwnt all this and also the inequality (74), one can conclude
that Theorems 16 and 17 are corollaries of the following Theorems 18 and 19.

Theorem 18 Let k€ N, € ® or ¥ =1, and let f € B3 H[k, ] be a nonde-
creasing function on [—1,1]. Then for everyn 2 k+2

EQN(f) < Cn3y(n™"), C =C(k).

Theorem 19 Let ke N, p € ®* orp =1, and let f € B®H[k, ] be a convez
function on [—1,1]. Then for everyn > k+4

EQ(f) < Cn~Sy(n?), C=C(k).

Remark . For ¥ = 1, Theorems 18 and 19 are consequences of the results
obtained in [7] and [8], respectively. In this chapter only the case ¢ € &F will be
considered.

Also, as was shown in [10] (see also [8]), functions f which are being discussed
in Lemmas 14 and 15 belong to the classes B2H[1, const] and B*H[1,const] N
B3H(1, Ct], respectively.

Now, using the following inclusions which are consequences of (74),

B2d(1,1] c B'H[3—-,Ct* '], I=0or 1,

and
B3H[1,t] ¢ B'H[4 - [,Ct*], 0<Ii<2,

and also the fact that
¥ € ®F = Y(t)>CtF, 0<t <1, C = const,

one can obtain the following lemmas.

Lemma 20

There is no such constant C that the estimate E{V(f) < Cn~%yp(n™") is valid for
every nondecreasing function from the B2H[1,9] class with ¥(t) ~1,0<t < 1.
Thus, for 0 < | < 2 and any k > 3 — I the estimate EM(f) < Cn~'y(n71),

C = C(k), generally speaking, is not correct for nondecreasing functions from
B'H[k,¢) with ¢(t) > >, 0<t < 1.
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Lemma 21
There is no such constant C that the estimate E®(f) < Cn~3¢(n~') is valid

for every convez function from the B3H(1,¢) class with arbitrary ¥:(t) € ®'.
Thus, for 0 < 1 < 3 and any k > 4 — | the estimate E®(f) < Cn~ly(n7t),

C = C(k), generally speaking, is not correct for convez functions from B' Ak, ]
with arbitrary P(t) € ®*.

Forl = 4 and any k > 1 the estimale EQ)(f) € Cn~3yp(n~?') is not correct
for convez functions from B*H([1,¢] with ¥(t)~1,0<t < 1.

At the same time, the following theorems are valid.

Theorem 22 Let kK € N, and let f be a nondecreasing function such that f €

B2H[k,] where ¥(t) = P, t > 0,0 < B < k, and B8 < 2. Then for every
n>k+1

EQ(f) < Cn 2 g™ (ie, EP(f) < Cn?7P),

where C = C(k)/(2 — B).

Theorem 23 Letk € N, and let f be a convez function such that f € B H{k, ]
where P(t) =t%,t>0,0< B <k, and B < 4. Then for every n > k+3

EQ(f) < Cn7*p(n™")  (ie, EP(f) < Cn7* ),

where C = C(k)/(4 — B).

It is worth mentioning that Theorems 18-23 are genaralizations of the direct
result for

e .= Brl?[latﬁ] if agN, where r:=[a] and f:=a—r
o B"H[Q,t] if aEN, where r ' =a—1

classes which are obtained in [10].

3.3 Characterization of B"H[k,9] Classes
We will write 1 € S(r, k) (Conditions Z and Z of (1], see also [16}) if

b 1
r / b(u)ut du + t* / bw)u ™ du = O(t), te(0,1].
) '
The following inverse theorem is known (see [5] and [14], for example).
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Theorem F Letk e N, r+1 €N, and € ®*NS(r,k). If for a given function
f on [—1,1] and each n > k + 7 — 1 the inequality

Eu(f) £ n7"9(n77)

holds (if n = 0 then we define the right-hand side of this inequality to be an
absolute constant), then

feB HkCy], C=C(rk).

Now a consequence of Theorem F and the direct results for the shape pre-
serving approximation which are given above is the following constructive char-
acteristic of B” H [k, ] classes with ¥ € ®* N S(r, k).

Theorem 24 Let 3 € ®* N S(r, k), where
(k,r) € {(k,r)lkeN, r=23Yu{(k,r)k+r<2, keN, r+1eN}.

A function f is nondecreasing and in the BT H[k,C)] class, if and only if for
eachn>k+r—1

EW(f) < Cn"¥(n™"),  where C = C(r,k).
Theorem 25 Let ¥ € & N S(r, k), where
(k) € {(k, ")k €N, r =8} U{(k,P)k+7 <3, keN, T+1€N}.

A function f is conver and in the BrH[k,C¥)] class, if and only if for each
n>k+4+r-—1

EQ(f) < Cn~"p(n7Y), where C = C(r,k).

Remark . For (k,7) € {(k,7)lk+7>4,0<r<3}andany® € N S(r, k)
Theorem 25 is false.

For (k,7) € {(k,0)|k >3} U {(k,1)|k > 2} and ¢ € ® N S(r, k) such that
¥»(t) > Ctk', t > 0, Theorem 24 is false.

For r = 2 Theorem 24 is valid in the case 7(t) = t#¥ € ® and B < 2, and for
r = 4 Theorem 25 is valid in the case ¥(t) = t° € ® and B < 4, with the same
dependance of the constants C on k and 3 as in Theorems 22 and 23, respectively.
In the other cases this question is still open.
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3.4 Notation

Throughout this chapter the following notation and definitions are used (cf. [7}-
[10], (13}, [14]):
A:=p(n7' z) = Au(x), xel,

T;n(z) := Tj(n,3x; 0;0) (=),
Tj,n(m) = T;(n,3x + L2,z )(x)

are algebraic polynomials of degree 6x(2n — 1) + 1 and 6\(2n — 1) + 4n + 1,
respectively.

ain(z) = /_l(alTj,n(y) + (1 — a1)Tj41,ny)) dy
and
5in(@) = [ (aTsnl) + (1 - a)Tymn()dy,  1S5<n—1,

where numbers a; and a3, 0 < a3 < 1,0 < az < 1, are chosen so that 7;,(1) =
&;n(1) = 1 — z; (see [8]), are polynomials of degree 6x(2n — 1) + 2 and 6x(2n —
1) + 4n + 2, respectively.

Tog(t) = sinnt/2 K42 f"' sinnt/2 242 Jt -
T\ sint/2 ~m \ sint/2

is the Jackson type kernel.

1 aC arccos r+arccosy

D¢ ey, z) = zr_l—)!a—zg(x - y)c"I/ Jne(t)dt, o,y €l

arccos r—arccosy

is the Dzjadyk type kernel.

X, €, and ¢ in the above definitions are integers which will be chosen later.
For brevity, we denote

Li(z, f, {zo, h}) := Li(z, f,To, To + p(Z0, h), . . -, %o + kp(zo, h)) -
Also, for @ # b and (z — a)(z — b) < 0 let
z b -1
Sz, ha,b):= [ (y—a)(b—y)dy ( [r=a)6-v) dy) :

S(z,l;a,b) = 0 if (z — a)(z — b) > 0 and |z — a| < |z — bl, and S(z,l;a,b) =1
otherwise.
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3.5 Auxiliary Statements

In our proofs we will use the method from [13] (see also {7] and [8]) which is a
modification of DeVore’s ideas concerning the decomposition of the approximated
function (see [3] and [4]).

The following analog of Whitney’s theorem in terms of “nonuniform” moduli
of smoothness @X will be important for the proofs given below.

Lemma G (see Lemma 18.2 and ineq. (18.13) of [14]). Denote po := p(h, Zo).
Let [zo,z0 + (k — 1)po] C [a,b] C I. Then for every z € [a,b], the following
inequality holds:

|f(z) = Li-1(z, f; {z0, B})| < C (lz — zo| + po)**p5* @g(f, b, [a,8]) .
In particular, for every z € [zo, o + (k — 1)po],
|f(z) = Li-1(z, f; {z0, R})| < C&L(f5h,[20,zo + (K — 1)po]),
where C = C(k).

The following lemma shows the connection between moduli of smoothness of
different orders.

Lemma H (see Lemma 18.4 of [14]). Letk+1 e N, re N,0<1<r—1,
(r,z+ (k+r—1)p) €I, and

R =2pl= (o (z,k+7r —LR))"L if [>r/2,
Grur(z,h) = { R p=r?|In(hw, (z,k + 7/2,h)p~ )| if [=1r/2,
hrp~! if l<r/2.
If f € B, then
(76) Aktr=t(f0 2) < C Grurlz, bk (F7,h), h>0,
where C = C(r,k). In particular, inequality (74) holds.
Remark . Another consequence of (76) is the estimate
EF=l(F01) < o ek (F,1), t>0 and I<r/2.
For 2! = r we have sup_ Gr1-(z,h) = +oo which presents the main difficulty in

this case. In fact, these will be the cases for r = 2 and r = 4 for monotone and
convex approximation, respectively.

It turns out that the estimate (76) can be improved for some classes of func-
tions. Namely, the following result is valid.
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Lemma 26 Let [ € N, f € B¥H[k, ] with ¢(t) = t° € ®* (e, 0 < 8 < k)
and such that 8 < 2l. Then the following estimate holds:

|AMH(F0, 2)] < Ch¥ p! p(h), (z,z+ (k+1p) C(-1,1)
and h >0, where C = C(r,1)/(2l - B).

Proof The beginning of the proof is analogous to that of Lemma 18.4 in [14].
First, using the formula for integral presentation of the usual differences we get

- — P s
A’;“(f“),x) = Af’(./o /0 f(m(--{—ul+u2+---+u;)du1...du;,x)
= /p.../p[&';(f(m,x+ul+u2+-~+u1) du,...dw
0 0
=: O(z).

Now, if [z,z + kp] C [-1 + A%} 1 —h*and £ <0 (for z > 0 considerations are
analogous), then
s Py
@I < [ [ |Bkonn(FP A+ 1)L =y — kp(Oh,))|
0 0
x(1+y) ' 1—-y- kp(0h,y)) " du, ... duy,

where y 1= z + u; + u2 + -+ + w, and 8 = O(y) is chosen so that p(h,z) =
p(Oh,z + uy + uz + -+ + w).
This yields

18(z)] < c/o".../o" sup sup

0<h<Ch y€E[-1+h%,1-h?] AI’:(i*'y)(f(m’ y) wau(y, ks h)|
x(1+z)  duy...du
C /p.../pt/)(Ch)(l+x)"du1...du,
0 0
< Cp(1+2)" ¢(Ch)
< Ch¥p™'y(h), C =C(k,1).

Now, let us consider the case —1 < z < —1+ h? (if [z,z + kp] N [1 — h%,1] # 0,
considerations are analogous).

The following Shevchuk’s identity will be employed (see (1.27) of (14]):

IA

Let N + 1 given points yo,¥1,...,yn be such that M + 1 of them
coincide with zg, z1,...,Zr, where N > M > 2. Then the following
identity holds:

[zO,mla"‘axM;f]
N-M
= Z (yn-i-M _yﬂ) [ym.-',yn-i-M;f] [$0a---1$M;Hn,M1,
n=0

where I, amr(z,) 1= H?’;‘;‘(m, ~ Yntj)+-
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‘Ne fix y 1= T+ u; +uy+-- -+ u, choose m > 1 so that p/(2™ —1) <y+1<
p/{2™! — 1) »~d denote v := p/(2™ — 1).
Let m + k points z; be defined by

n=y+ (2 -, 0<i<m,
zi=y+(i—m+1)p, m+1<i<m+k-—1.

Now, A¥(f®, y) = [y, y + p.- .-,y + kp; FCI]REL
At the same time, for k > 2, choosing M = k and N = m + k — 1, we have

[y, ¥ +p,---,y + kp; FO]

m-—1
= Z (zZn+k — Zn) [zna ce -3 Zniks f(zl)] [y,y +p,.- Y+ kp; Hn,k] )

n=0
where
k-1
(77) M(y+ip) := [[(y+ip— 2zntj)+, O0<i<k.
j=1

Each term of this sum will be examined below.
First of all, let us note that (zn4x — 2n) ~ 2"v for all 0 <n <m—1. Now,

|[Zn7 oo oy Zntks f(m)]l
f(2')(2n+1) - Lk-l(zn+1; f(m; Zny Zn+2:%n435-- - zn+k)
(zn41 — 2a)(Zn41 — Zni2)(Znt1 = 2n43) -+ - (Zns1 — Zntk)

< C@ ) *|f® (za41) = Li-a(znss; FO {2, BY)

. (2 T .
- Lk—l(z‘n-i-la f( ) — Lk—11 Zny2Zn4212%n439- -9 zn+k)l

where F is chosen so that z,+(k—1)p(%, 2n) = Za4k, which implies that h ~ /270
Taking this into consideration and using Lemma G we have

I[zna ooy Ttk f(zl)]l < C(znu)—k ‘Dzl;(f(zl)7 Vv 2nV7 [zns zn+k])

= C(2"v)F sup sup
0<fzs\/ 2"y z:[z.z+kp(:,;z NClzn,2n4 &)

x Bk (F,2)|
C(2"v)™*! sup sup |w21(z, k, B)Aﬁ(ﬁ’z)(f(m, z)l
h z

< c@Ev)ytly(Vaw),  C=C(kD).

Now, |[y,y + ...,y + kp; I i) with 0 < n < m —1 will be estimated. First,
let us consider the case n < m —k + 1. Let

IA

k-1
pe-1(2) == [I(z = zn+5)» z € [y,y + ko]
=1
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and

- — pk-—l(z) if < S :ﬁ+k—l
Pr1(2) = { 0 ~therwise.

Then the equality

k—1 )
M.x(z) = [I(z— zasi)+ = Pe—1(2) — Pe—1(3)

=1

gives

l[yvy'i'p:”'ay""kp;nn.k“

v, y+ 0,2y~ kp; Pea]l
= |pr—1(y)| (K'p*)™
< Cp-k(znu)k—l .

Now, f m—k+1<n<m—1,thea 2"v ~ 2v ~ p. This yields

k k-1
Cp* > TI(y +ip — zasid+

=0 j=1
Cp?
Cp % (2"v)F !, C = C(k).

![y?y+p9*'-vy+kpznn,kll

IA

<
<

Putting all these estimates together we get the following:

m—1
l[y, y+p,--,yt+kp; f‘“’]l < C(k,D)p* S (2")'Pp(V2my).

n=0

Thus, using the inequality 8 < 2I, one has

A7, y)| < ClhD S+ 1) S/ + 1)

n=0
< Cl,) S (2" + 1))-1+4/2
n=0
< C(k,1) (y+1)7HF2 (1 — 27+~

IA

Y
Ok, 1) (v + )72 .

And now the desired estimate emerges as
s i ~{+3/2
o) £ C AR 0(z+u1+...+u1+1) du; ...dy

< o[ 1BYUE+1P72) if B/2¢ N
= |AL((z +1)P/?1In(z + 1),z)| otherwise

1
< R = _
< Ch where C C(k’l)2l—-,8'
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The last inequality is a consequence of Dzjadyk’s [6, p. 160-161] understanding
that if 3/2 € N then !> 3/2+ 1.

For k = 1 cc -siderations are simpler. The difference is that instead of (77)
one should consider the identity

m~—1
[y’ y+p; f(ZI)] = p_l Z (Zn+l - Zn)[zn+ls Zns f(zl)] .
n=0
Thus, the lemma is proved. -

In our proofs we will deal with the first derivative of a function f in the
monotone case and with the second one in the convex case. Obviously, the
condition f € B", r € N implies that f € C#(~1,1) forall u < r. However, it
would be more convenient to have the continuity of the derivatives on the closed
interval [.

The following lemma gives sufficient conditions for a function f to have con-
tinuous derivatives on [—1,1].

Lemma 27

Let ke N, (r+1) €N, p €N, p € O be such that Jo Y(u)u~2#+"1du < oo.
If for a function f and each n > k+1 —1 there ezists a polynomial p, € I1,, such
that

|f(z) = pa(2)] < 7" 9(n7Y), zel,
then f € C*[—1,1].

Despite the fact that this lemma is probably known to the reader, its proof is
adduced here since the author failed to find any references to it.

Proof For any no € N the series Zanno (pzn+1(z) — p2n(z)) converges uni-
formly to f(z) — p2ne(z) as M — oo, and

[pansr(z) — pn(z)] < 217 9(277), zel.
Applying Markov’s inequality one has

[P () — B (2)| < C22™ p(27),  zel.
This implies

o0 oo 2—"
Y [pa@) - @) < €3 [ w T () du

n=ng n=ng
2T utr—1
= C —2utr— d .
/0 u Y(u)du < oo
Thus, f € C#{—1,1], and the proof of the lemma is complete. .

The following corollary is a consequence of Lemma 27 and Theorem E.
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Corollary I The following implications are valid:

f e B3 H[k,¢], ¢ € ®* = f
f e B*H[k,t*], 0<B<k = f
f e B*H[k,¥], ¢ e d* = f
feBiHK,tP], 0<B<k = f

Lemma J (see [13], for example). Letp+1 € N and q+ 1 € N. The Dzjadyk-

type kernel D¢ ne(y,z) is @ polynomial in x of degree < (£ + 1)(n — 1), and the
following inequalities hold:

s Ld

3o Dene,2)| € CATHz —yl+ 8), =060,

1 ap o .
l 1' / ( )q axp C.n.f(ya ) y 6p'q < C n m{ZE 1< (l ( [)C)/_) ,
p! J-1 ; =

C = C(p,q,§,C), where 8,4 is the Kronecker symbol, and the integral in the last
inequality is a polynomial of degree < g—p (it is identically equal to zevo if ¢ < p).

Now, let us note that the methods of proofs of Theorems 18-23 as well as of
all auxiliary statements are the same. In connection with all this it would be
inexpedient to give their proofs separately. We will give the complete statements
of auxiliary propositions for all four cases, using the following abridgements. For
the sake of convenience throughout the chapter, in the wording B2H[k,¥] and
B*H{[k, ] it will be implied that ¥(t) =t%,0 < 8 < k, B < 2 and ¥(t) = th,
0 < B < k, B < 4, respectively (however, most of the statements are true for all
functions ¢ € ®*). We will also use the notation [m_i}, [m.i], [c4], and [cdi] in
order to emphasize the cases designed for the proofs of Theorems 22, 18, 23, and

19, respectively. Also, we set variables = and A to have the following values in
these cases:

[m]
[e-]

[mi]

2,
4, [c4i]

{1
!
ol

11 (1)
(Il
o o~

» A 1, A=3,

s A 2, A=35.

Thus, in order to follow the proof of Theorem 22, for example, it is enough o
pay attention to the statements marked by [m_i], understanding that in -5 cuse
==1land A=2.

The following theorem is a generalization of the direct theorem (Theorem E)

for BAH [k, ] classes.

Theorem 28 Let a set F C I and a function Q be such that Q € B*H{k,1) and
Q) (z) =0 for z € F. Then the polynomial

d(2,@) = [ (Q) ~ 0y, Q) Denelys ) dy + A=, Q)
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approzimates Q and its derivatives so that

?

A E—2k-2A+Z—1
A + dist(z, I'\ F))
zel, p+1eN, and 0<p<Z=,

where the polynomial Q(z,Q) is defined by

m] Qz,Q) := Q(—1)+ [ Liya-2(z, @, {—1,/2(k + A —2)-1})d=,

€] Az.Q) = Q1)+ Q(-1)z+1)

+ [7 fL Leraa(2, Q" {=1,\/2(k + A = 3)7'}) d=dt.
Proof In order to avoid overloading of the text by unnecessary notation lat

us give the proof in the case [c_i]. The proofs for the other cases are analogous.
Denote g(z) = Q(z)— (=, Q). Then g € B*H[k,?] and applying Lemmas G,

H, and 26 we get
/_:l /:1 (Q”(z) — Lisa(z Q" {=1,/2(k + 1)—1})) d= dtl

< Ca*Q",1) < Cy(1).

|e®(z) — dP(z, Q)| < Cin~*A™PY(n™") (

f

lg(z)i

Thus,
(») (») (») ' 0P
QW) — dP(z,Q) = ¢7(=) — [ o) 5 Demely,z) dy.
Now, let = be fixed and, for convenience, such that z 4+ (k+1)A < 1. Denote

() = 9@) + @y~ 2+ [[ [ Len(zg", {0 Y dzdt,

and note that {®)(z) = ¢!?)(z), p=0,1,2.
For y € [z,z + (k + 1)A] we have the estimate

I < ) — gl + la(y)!
< co+ [ [ |Len(ag {zn™ D - d'(2)
< C¥(1)+CaE(g",n7") < Cy(1).

dz dt

Therefore, applying Markov’s inequality for all 0 < 7 < k + 3 we have
D) < CA™P(1),  y€lz,z+ (k+1)A]

and, in particular, [I()(z)] < CA~I(1).
We expand the polynomial {(y) into Taylor series

k+3

(y) = Uz)+ D_(y — =¥ 1D(2)/5!.

i=1
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Thus,

. 1 or
0(z) — [ 9) 5 Deme(ws2) dy

= [ () ~ 90D 2o Deme(@,2) dy

k+3 p
+ D —1"’(1') ( . pP! — / v =2V 5 Denely. x)du>
-—0
’ k+3
= A(z)+§: B(r 7).
J‘—D

Using Lemma J and the above estimate for I()(z) we have

k+3 k43
> - B(:c N <€ 3 caip(l)nminlHLAI-(-D9/2)
j=0 J =0
< CA-k-S,;,(l},l—min{2€+l.c+(1-(-1)<)/2)
< CA‘k‘3¢(n-1)nk—min{2€+l.(+(1—(—1)<)/2)
< Cn_4A€_2k_p_71r/)(n—l) ]

The last inequality is true if
min{2 +1,{ + (1 — (—-1)%)/2} > 26 —k ~ 4 and E>k+6.
Now, let us estimate A(z), using Lemma J and the following estimate:
Yy t
1)~ s < [ [ |Leni(ag" {zn7')) = ¢"(2)| dz e

2k4-4
< C‘y zlzw—‘kp-i-Z(g”, n_l) (|y | )

A
2k+4
< oh-ap (BLEEER) T aacpey,  ver
Thus, we kzve
! 1
@) < € [ ) = s ANz —yl + ) dy

1
< € [ (s =yl + 2)* AT ty(n ™) dy
< CATPHTrdy(not) [T (4 £)%E dt
0
< CAPn~%p(n~'), with £-2k—82>0.
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The estimate of the theorem is proved in the case z ¢ F.

Now, if z € F, then g"(z) = —Li41(2,Q", {—1,4/2(k +1)'}), i.e, g(c) is
a polynomial of degree < k + 1 on F. Thus, if [z,z + (k + 1)A] C F, then
l(y) = g(y) for y € F, and, therefore, for these =

@] S C [ (2=l + APFEATTE Tty (0 dy

4 1 A £-2k—7
- -p -
< Cn*A7PY(n )(A+dist(:r,1\F)) -

The case when z € F and (z + (k + 1)A) ¢ F follows from the above, since in
this case dist(z, I\ F) ~ A.
The proof is complete. n

Remark . In the proofs of Theorem 28 for the other cases it is sufficient to
have the following inequalities:

min{26 + 1,( + (1 = (-1)¥)/2} > 26 —-k—4 and £22k+10.

Lemma 29 [m_]([7], see also [13]). Let E be a union of some intervals I;. Then
the polynomial

Qu(z,E) = > (Tin(z) = Tin(2))

ie{ill;, E}

of degree < 6x(2n — 1) +4n + 1 satisfies the following inequalities:

(1) 'Qn(z’ E)l S C27 T € I,
(2) Qu(z,E) = —Cs3A™, z € E,

(3) Q.(z,E) = Cad™H(A/(A + dist(z, E)))'™>", z€I\E.
Lemma 29 [c_](/8]). Let E be a union of some intervals I;. Then the polynomial

Qn(l‘, E) := Z (zji-1 — x:i-')-l (05:.n(T) — Gjin(T))

ie{ill,,;€E,l;;+1€E}
of degree < 2(3x + 1)(2n + 1) satisfies the inequalities:

(1) |@n(=, B)| < Co, zel,
(2) Q4(z.E) 2 —Carr?, zeE,
(3) Qi(z.E) = Cia™? (A/(A+dist(, E)) T, =€ I\E,

where E := E\ {I;;|l;;xn € E}.
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Lemma 30 [m_]([7], see also [18]). Let 0 < ¢'(z) < A™'. z € [, then the
polynomial

Ra(z,9) = (1) + 3 (9(25-1) — 9(z;)) Tjm(2)

=1

of degree < 6x(2n — 1) + 1 is nondecreasing on I, and the following inequality
holds:

lg(z) — Ra(z,9)l < Cs, zel.
Lemma 30 [c](/8]). Let 0 < g"(z) < A2, z € I, then the polynomial
R"(z7 g) = g(zﬂ—l) + [.'Bn, xn—l;g](z - In—l)

n-~-1

+ S [zje1, i Tic; T i1 — Tj41)T5n(2)
i=1

of degree < 6x(2n — 1) + 2 is convezr on I, and the following inequality holds:
|g(1‘) - Rn(:l:,g)| < Cs, zel.
Lemma 31 Let a function g € BAH[k,¥] and a set S;, which contains 2k +

9A — 2= — 1 neighboring intervals I, i.e., §; = [[U ;11U .. U ak4a-2-1), be
given. If for every 0 < i < 2(k+ A —Z= —1) there ezists a point &; € [;4i at which
lg@ (2] < n () p(n ™, 7)),
then _ -
9= (z)] < Cen™ P(n™H)A™=
for all z € ;.

Proof The identity
g N(z) = (Q(E)(m) — Liva-z-1 (zag(s)a{$j+2(k+A—E—l)s"—l}))

=

— Liyr-=—1 (m,g ) — Ligya-=—1,%0,Z2,Za,-.-, 52(k+1\—2~1))
+ Lipa-=-1 (33, g(“), Z0,%2,Z4,..- ,52(k+/\—3—1)) )

the inequality

lg(‘:‘)(z) — Ligya-z—1 (1‘, 9(3), {-’rj+2(k+A—E—l)1 n”! })l

< CLTJ:,-*—A—E (g(E), n—l’ g]) < Cn—AA"E'c,b(n—l) , z€ 3,‘ ,

which is a consequence of Lemmas G, H, and 26, and the estimate

ILm(ma f; ag, a1, - -, am)l
m . -m
< (o max lai —a; I) (0 Toin lai— ajl) gnax |f(ai)l
complete the proof of the lemma. =



3.6 Decomposition of Approximated Functions
Let a function f belong to A= N BAH[k, ).
Definition 1 The interval I; is called an interval of type I if, for all z € I;,
fE(z) € Co(Cs + Ca)n™*A™=Y(n7"),
an interval of type 1l if it is not an interval of type I and, for all z € I},
fE(z) > (C3+ Ca)n™ A =y(n ™).
Let all other intervals be of type IIL

We denote intervals of types I, II, and III by E,, E,, and Ej3, respectively.

Remark . It follows from Lemma 31 that there cannot be more than 2(k +
A — = — 1) neighboring intervals of type III, i.e., each set S contains at least
one interval of type I or IL

Now, let the set [m_] E; U E3 [c]] E1 U EsU {I; € Ez|[;41 ¢ E2} be presented
as a finite union of nonintersecting intervals. Let G; be the set containing all
those intervals which include not less that 40k + 10 intervals I;:

G, = [.’L‘jl,:lfjo]U[Ija,:rjs]U..., 0<7<p+1<n.
Let us denote j, := j, + 3(1 + (=1)*) and let S,(z) := 1if |z;]| = 1, and
S.(z) := S(z,k + 4;z;,,%;, if |z;,| # 1 (see Section 3.4 for the definition of
S(z,!; a,b)).
Definition 2 Let g,(z) := 0 for z € G,
ai(z) = fE(2)S.(z) for =z €[z, T3]
and g,(z) := f&(z) in all other cases.

Denote g2(z) := f&)(z) — g1(z) and

m] fi(z) :== fF(-1)+ [Z,a1(y) dy,
fa(z) == JZ, 9:(y) dy;

]  fi(z) == f(=1) + (=)= +1) + [Z, [2, 01 (y) dy dt,
fa(z) == [Z, [, g2(y) dy dt.

Obviously, the following correlations hold:

H(z) + foz) = f(=)
ai(z) =0 and g2(z) >0 for all zel.

51



Lemma 32 The following inequality holds:
a(z) < Cr n~4 1.1)(71_1) A~E, zel.

Proof Analogously to the proof of Lemma 31, one can show the validity of
the estimate f&) < Cn~2¢Y(n"1)A"S, z € G,. Together with 0 < S,(z) < 1,

this proves the lemma. n

Lemma 33 The function f, belongs to BAH[k, Cs).
Lemma 33 is a consequence of the following lemmas.

Lemma 34 [m_] Let the interval [a,b] C [—-1+n~%,1—n"?] be such that a—b| ~
V1 — a?/n, where n is a fized natural number which is sufficiently large. And let
a given function g € B"H[k,vy], r > 1, be such that

lg'(@)| < n TP (b—a)t  z€a,b].
Define the function G so that

G'(z) := ¢'(z) S(=,!; a,b) —-1<z<1

and G(—1) = g(—1), where l 2 k+r.
Then G € B"H[k,Cv¥)] with C independent of n.

Lemma 34 [c_] Let the interval [a,b) C [—1+n"2,1—n"?] be such that |a —b] ~
V1 —a?/n, where n is a fized natural number which is sufficiently large. And let
a given function g € B"H[k, 9], r > 2, be such that

lg"(2)] < n"Yp(n7)(b—a)* =z €la,b].

Define the function G so that G"(z) = ¢"(z) S(z,l;a,b), -1 <z <1, G'(-1) =
g'(—1), and G(—1) = g(—1), where [ > k + .
Then G € B"H[k,C)] with C independent of n.

We will prove Lemma 34 [c.] for [a,b] C [—1+n~2,0] (for b > 0 considerations
are similar). The case [m.] is analogous with the only difference being that instead
of the second derivatives one should deal with the first ones.

Proof of Lemma 34 [c.] We will use the fact that the interval [«,b] is
separated from the endpoints of the interval [—1,1]. Also, it is enough to consider
the behavior of G “near” the interval [a, b], as outside of [a, b] G either is a linear
function or it coincides with g.

Namely, it is sufficient to prove that

sup sup |(1 + z)7? A‘;(G(r), z)l < C(t),
0<h<t [z.z+kp]N[a,b]#0
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where t is such that t < (10kn)™!.
Now, let 0 < h < t be fixed and note that if [z,z + kp] N [a,bd] # O, then
z € [a — 3k+/1 + ah, b], and the following holds:

(78) (1+z)~(1+a) and p~V1+zh~+/1+ah.
For convenience, denote S(z) := S(z,[; a,b) and note that
(79) |SP(z)] < C(b~a)®, O0<p<l, =zel.

(In fact, S®?)(z) =0 for z & [a,b] and p > 1.)
We will use the Marchaud inequality for the usual moduli of smoothness (see,
for example, [5], [6], and [14])

wi(g,tifab) < C¥ (/ * w7 Wk (g, u; [a, b]) du

+b—a)lgles) »  1<i<k-1,
and the Besov inequality ([2]) which is given by
190 < C ((0—a) (9", b - a;[a,b])
+(b—a)illgle) , 0<i<r.
Using (79) and also the identities
G = (¢"S)r-D = ri‘j (" - 2) gt glr=i~2)

=0 i

and
k

_ E\ - . s )
A:(glgz,l‘o) = Z (j>Ai.(g1,$o)A: (g2, zo + jh),

j=o0

we have for zg € [a — 3k+/1 + ah, b]

|A5(GN, z0)|

r=2 k -9 . - . ,
SR P Ip> ( i )@”""“— a) 2Tk A (g7, 30)]

1=0 7=0 J
Now, (78) and the Besov inequality yield, for 0 <: < r — 2,

19w < C((b—a)y 2wk (g"),b— a;[a,8]) + (b — @) *l|g"lfws1)
< C((b—ay—""2(1 +a)""%p (b — a)(1 + a)7*/?)

+(b— a)""2n T yh(n 1))

C(b—a)y™"2(1 + a) " /*p(n7").

IA
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Using the last estimate, (78), and the Marchaud inequality, we have for j <
E4r—21-—-2:

(80) ‘DJv(g(l"f'z), t; [a’ b1,) ~ wJ (g(i+2)’ ‘/1 + at; [G., b])
b—a
< 71243 / —jm1, kbr—i=2 (i+2) ,,.
< C(1+a)’*t ( — w (g ,u; [a, b)) du

+(b = a) 7 |g" | a.y)

< C(]. -+ a)j/i’tj (/\/b;t ur—i—j-3(1 + a)—r/2¢ (u(l + a)—x/z) du
+(b _ a)r—i—j—z(l + a)—r/zd)(n—l))
< C(1+ a)U=n/2g3ky(2)

((1 + a)—k/2/ —a k+r—i~j—-3 du + n—k(b—— a)r—;’_j_z)
1+4at
< C(1+ a)(i—f)/th—k¢(t)n—k(b _ a)r—i—j—z )

Note that k + 7 — ¢ — 3 = 2 only if 1 = r — 2 and j = k, and, thus,
k(g t; e, b)) S C(L + a)~"/2P(t), i.e., (80) is true in this case also
Now, putting all these estimates together we have the following inequalities
for any zg, such that [zo, zo + kp(h, z0)] N [a,b] # O:

|+ zo)'ﬂAk(dﬂ zo)|

< cz_jg ( )(’;)p"-f(b—a)“"(l+a)j/2n-*t1‘*'°w<c)
< cgg( () e-ata+aprau
< owl).

Thus, the lemma is proved. »

Denote & := {[;|I; € E;, I; ¢ G} (clearly, £ = E; in the case [m.]) and
G, := {z|dist(z, &) < 3%H+TA}.

It follows from Definition 2 that g,(z) = 0 for z € I\ G2. Note, that for
ny; > n the following inequality holds:

p(ni’, z) < A
dist(z, G2) + p(ni %, z) = “dist(z,&) + A~

Now, we choose &, ¢, and x so that all the conditions in the proofs above are
valid. For example, § = 24k, ( = 48k, and x = k will do.
The following lemma is a consequence of Theorem 28 and Lemma 33.
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Lemma 35 For any integer n; > n the polynomial d,,(z, f2) has the following
properties:

le(Z) - d‘n; (:E, f2)| S Clon-Ad’(n_l) ]

df;)(x,fz-) > _Clln;A,/,(nl—l)(p(nfl,:z:))‘E (dist(m‘Ag) + A
and

dE)(z, f2) = (Cs + Ca)nPhp(n™H)A™E — Cuny*(nM)(p(nit,2))™=, z € £,
where CIO = CICG and Cll = 0103032".

12k
) ,z€I\E,

3.7 Proofs of Theorems 18-23
Let n; € N, n; > n. Denote

o (2) = nAY(n=Y)Gn(E, E) + du (2, f2) + Bules fr).

Then 7,,(z) is a polynomial of degree < 50kn,.
It follows from Lemmas 29, 30, 32, and 35 that

|f(z) — o, (2)] < (Cz + Cro+ 0507)71_A¢(n—1) ,r€el,
mSNz) 2 (C4clzn-A¢(n—l)A_E - Cn"l_A'ﬁ(nl_l)(P(nfl,x))_s)

A 12k
><(dist(a:,:S')-%-A) » z€I\E,

and
& (2) > Cn 2 P(n™H)AE — Cuni?d(ni*)(p(ni,2)) =, 2 € €,

where Cm — 312&(8k+23).

Now, let us choose ny so that ny = "4+, where C13 := {[4C11/CsCr2] + 2} €
N. Then the following inequalities hoid.

(mi] =, (z) >0, zeI\(LUIL),
n! (z) > —Cn¥(n™'), z€ LU IL;

[mdii] = (z) >0, zel;

fcd] mp(z)>0, zelI\(LUIL),
7":1’.1 ((L‘) > —Cn’,b(n_l) sy T € Il U In;

[cdi] =7, (2) >0, zel.

Thus, Theorems 18 and 19 are proved for n > Cis.

In order to obtain analogous results for Theorems 22 and 23, the following
lemmas will be useful.
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Lemma 36 [m_] For the algebraic polynomial of degree < 5n,

Mo (z) = /x (sin(n/Zarccost) )‘° i

-1 \nsin(1/2arccos t)

the following inequalities hold:

M, (z) >0, zel,
0 < M, (z)<10°n"%, z€l,
M (z) > 2719, zel,.

Lemma 36 [c_] For the algebraic polynomial of degree < 5n,

- . 10
Ma(z) = /;1 ‘/_yl ( sin(n/2 arccos t) ) dtdy,

nsin(l/2arccos t)

the following inequalities hold:

Mi(z) =0, zel,
0< M, (z)<2x 10", z€l,
M!(z)>2710, ze€l,.

Proof Lemma 36 [c_] is Lemma 8 from [8]. Lemma 36 [m_] can be verified
by direct computations with the use of the inequalities 2/ < sint < ¢, 0 <

t < w/2, or, applying Markov’s inequality, it can be immediately derived from
Lemma 36 [c.]. =

Now, the polynomial

[m] Fa(z) 1= mn,(z) +21°Crip(n~ ) (Mn(z) — Ma(—2)),
[c]  Fn(z) := 0, (2) +2°C0Pp(n™1)(Ma(z) + Ma(-1)),
of degree < 50kn, satisfies Theorem 22 in the monotone case and Theorem 23 in
the convex one.
Thus, Theorems 22 and 23 are proved for n > Ci3.
For the other n, the theorems are consequences of the cases n = & + 1 for

Theorem 22, n = k + 2 for Theorem 18, n = k + 3 for Theorem 23, and n = k +4
for Thecrem 19, for which it is sufficient to choose

ma(z) 1= Q(z, f) + 5max{Co(2, k), Co(3, k), Co(4, k), Co(5, k) }1o(/2/ k)==.

The proofs of Theorems 18-23 are now complete.
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CHAPTER 4

COCONVEX POLYNOMIAL APPROXIMATION
OF TWICE DIFFERENTIABLE FUNCTIONS 3

4.1 Introduction and Main Result

Our pri:s. iuterest in this chapter is coimcnotone and coconvex polynomial ap-

pros - .34, that is, approximation of a function f which is piecewise monotone
(or .-~ aise convex, i.e., has finitely many inflection points) by polynomials
which are comonotone (or coconvex) with f. Let || - || := || - llo denote the

uniform norm and ¢(z) := V1 — z2.

The following result on comonotone approximation of continuous functions is
known.

Theorem K Let f € C[—1,1] have 1 < r < oo changes of monotonicity at
the points {y:}io, : “1 < < ... <y < L Then there erist polynomials
p-,p. € I1, which are comonotone with f on [—1,1)] and such that

(81) If = poll < C(r,d(r)) W (f,n ")
and
(82) \f =)l < C(r, do) wo(fr "),

where d(r) := min{y1 +1,¥2—Y15- - -, Yr —Yr-1, 1—y,} and do := min{y:1+1, 1—y-}.
For piecewise monotone differentiable functions we have the following.

Theorem L Let f € C—1,1] have 1 < r < oo changes of monotonicity at
the points {yi}izy : =1 <1 < ... <y, < 1. Then for each n 21 there is a
polynomial p, € 11, comonotone with f and such that

(83) |f = pall < C(r,do) n7  wo(f'sn71)
and
(84) “f, - p:;" < C(T, do) w‘P(flv n—l) ’

where do := min{y, + 1,1 — ¥, }.

3A version of this chapter has been published in J. Approx. Theory (1995) 83: 141-156.
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Tt.-orem L and the estimate (82) in Theorem K were proved by D. Leviatan
{5]. “stimate (81) is due to A. S. Shvedov [13] and X. M. Yu {16]. It was also
shown by A. S. Shvedov [13] that the constant C* in (81) can not be replaced by
that independent of d(r). Moreover, the estimate (81) is exact in the sense that
w? can noi be replaced by w3. This is an immediate consequence of S. P. Zhou
[17}-

Other relevant results can be found in [1], [3], [6]-[12], for example.

Thus, for comonotone polynomial approximation there are quite a few satis-
factory results. At the same time, it seems that little is known about coconvex

approximation. The only direct results of this type which we are aware of at
present are the following.

i) R. K. Beatson and D. Leviatan remarked in [1] that it is possible to obtain

Jackson type theorems for coconvex approximation of functions with only
one inflection point.

ii) X. M. Yu [15] obtained a Jackson type estimate of coconvex approximation
of a function with one regular convezily-turning point.

iii) Also, in [15] X. M. Yu quoted her result on coconvex approximation of
differentiable functions (which are at least in C*{—1,1]) with some extra
conditions on convexity-turning points.

The goal of this chapter is to present a result on coconvex approximation
which is analogous to Theorem L. Namely, we prove the following theorem.

Theorem 37 (coconvex approximation) Let f € C?[—1,1] have 1 <17 < 00
inflection points at {yi}je, : =1 <y1 < ... < yr <1, do:=min{y, + 1,1 - -}
and d(r) = min{y1 + 1L, 02— v1,-- -, Y¥r —Yr-1, 1 —y,}. Then there exists a constait
A = A(r) such that for each n > —‘3—(('5)1 there is a polynomial p, € Il, satisfying
f'(z)pl(z) = 0,z € [-1,1] and such that

(85) 1f — pall < C(r) 2w, (f"mY)
(86) If = PLll < C(r)n~ wo(f",n )
and c

87) 1 — g < S0

\//J; wv(f”an—l) .

Corollary 38 (comonotone approximation)

Let f be the same as in Theorem L. Then there ezists a constant A = A(r) such
that for each n > %gg- there is a polynomial p, € IL, satisfying f'(z)p,(z) =

0,z € [~1,1], and the following inequalities hold:

(88) If = pall < C(r)n~twu(f,n7")
and c)
(89) If —pLll < ==

Jd wy(f',n7H).
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4.2 Auxiliary Statements and Results

Using the identity sgn_ (z) = 2x;i(z) — 1 a.e. we conclude that the polynomial
Tj(z) := 2Tj(z) — 1 (see Lemma 11) sufficiently appreximates sgn,,;(z). Also,
it is easy to see that Tj(z) is increasing on I;. Later on we will need similar
polynomial (it will be denoted by Q;(z)) which satisfies one extra conditicun:
sgn(Q;(z)) = sgn,(z) for some a € I; (In other words, we want the polynomial
not only approximate sgn,(z) and be increasing on I;, but also be copositive with
sgn,(z)). Our construction of T;(z) does not immediately yield this equality.
However, Tj(z) can be refined to satisfy it. Namely, the following lemma is valid

(note that we assume a; < Tj41,1 <1< m, b; > z;-2,1 <1< k).
Lemma 39 Letn and 1 < j < n be fired, a; < zj41,1 <t <m, b; 2 z;_2,1 <

i <k and a € I;. Then there exist numbers A = 2",v € N and 0 < & <1 such
that for the polynomial :

QJ(I) = Qj(n1#1a;ala'"7am;bl’-°'7bk)(x)
= 2 {gnl(Ana.u;als'--,am; bl,""bk)(z)
+(1 - f) sz(‘4n7l‘l; ag,--. 7am;b17"’7bk)(z)} -1 s

where indices j1 = j1(A) and j2 = j2(A) are chosen so that zj, an = Tj41 and
TjyAn = Tj-1, the following is true:

m k

(90) Qi(=) II(z —a) [I(6:i — =) > 0,
i=1 i=1
in particular, Q;(z) increases on I;4 U I; U I,
(91) lsgna(z) — Qi(z)| < Cu)p* ™,
(92) lsgna(z) — Qj(x) < 2/3, £ & [;11 U [; U iy,
(93) Qj(z)sgny(z) > 0 for all z €[-1,1]
and .
(94) |Qi(2)| < Clwy$* ™ h5*.
Proof First of all, denoting n; := An we obtain the following consequence

of Lemma 11 for any = & I;41 (note that Xj, a,(z) = xj(z) for z & I;41):
Ixi(z) — T ()]

h. 2u-m—k—1 h. 2u~-m—k-—-1
S C - 21,11 ) S C ( J1:71 )
(Ix - zi+l| + hjl:ﬂx hi/12 + h.‘il-nl

Rjym \24FTY o \ ekl C 1
= C( h; = C(}K = AmEl =3
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for sufficiently large A.

Analogously, for any z € I;_; choosing n; to be large in comparison with n
one has

h, 2u-~m~—~k—1
() -Ti,(z)| < C 2=
Ixj-1(z) 7a( )| < (]z—.’fj—ll“l"hjz.nx)
b, 2u—m—k-1 n \ 2e-m-k—1 C 1
B iamn < (__) - 2 < -
< C( h; ) =¢ ny BonET = 3

Now let A be fixed and such that the above inequalities are satisfied.

Since a € I; we have, in particular, Tj, (a) = 2/3 and Tj(a) < 1/3. Hence,
there exists 0 < & < 1 such that Q;(a) = 2{¢Tj,(a) + (1 = §)Tj,(a)} -1 = 0.

The above estimates yield

Isgna(z) — Q;i(z)] < 2/3, = € Linn U LU i,

which is the inequality (92).

Now note that (91) and (94) are immediate corollaries of Lemma 11, the fact
that

¢j ~ C, T E Ij+1U IjU I,
and the observation that
max{'/’j;.m,d’jz,n,} S 10A2¢J

(see inequality (62) of [4], for example).
Finally, using the definitions of Q;j(z) and Tj(z) we have

il

1 '
§Q§(m) {§le(An,u;a1,---,am;bx,---,bk)(l‘)

+(1 — €)T;,(An,p;01, .-y am; by, - ,bk)(w)}
m k
.ﬁtj An(z)“
= - a; b; — =
II(= ~a) I ”){nj,mn,u;al,...,am;b.,...,bk)

(1 — E)”"‘jz.Aﬂ(z)“ ]
I, (An,u;a1,...,8m; b1, .., bk) )

-+

Since the expression in square brackets is always positive (see inequalities
(28) and Proposition 10) we conclude that Qj(z) is copositive with [T, (z —
a;) T15_,(b; — z). In particular, since a; < zj41,1 Si<m and b; 2 z;-2,1 <1 <
k, Q;(z) increases on I;4; U I; U I;-;. Together with (92) this implies 93) =
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4.3 Coconvex Polynomial Approximation

We use the method from [1] and [5] and prove Theorem 37 by induction on r,
the number of inflection points. For r = 0 Theorem 37 becomes a theorem on
convex approximation which is a simple consequence of Theorem 2 of [4]. Let us
assume that (85)-(87) are valid for functions with 7 —1 > 0 inflection points. Let
f € C?[~1,1] have r < oo inflection points at {y:}_; : 1<y <...<y <L
Without loss of generality we can assume that f’(z) > 0,z € [—1,1]. We
fix one of y;’s. In fact, it is not important which one to fix, but notation and
considerations are simpler for y; =: a (also, if r = 1 it is convenient to denote
ya 1=y, := 1). We can assume that f(a) = f'(a) = 0 (subtract a linear function
from f which, obviously, has no effect on convexity ). Since f € C? and a is an
inflection point, then f”(a) = 0.
Following [1] we define the “flipped” function

- __J f(=z) if z > a,
f(=) = { —f(z) fz<a.

Then f € C?*[-1,1], fla) = fl(a) = f"(a) =0 and f has r — 1 inflection points
at ya,...,Yr, and also, as was shown in [5], .

(95) wo(f",t) < Cuwy(f",t), t>0.

By induction hypothesis there exists a constant A(r — 1) such that for each

n> A&'(;')l) > 2((::11)1 there is a polynomial g, € IL, such that f"(z)¢(z) >0,z €

I, and the inequalities (85)-(87) bold for f and gy (since f(@) = 0, increasing the
constant in (85) we can assume that g.(a) = 0).

Now we fix n > ma.x{A%'i:)l), msfa, as-:-)a.} and consider corresponding decom-
position of [—1,1]: [ = U, I; = Ui, [z;,z;-1]. Let index jo be such that
a € [Ty, Tjo-1)- Then zjo43 > —1 and zj,—4 < Y2, i.¢., [—1, a] and [a, y2] contain
at least three intervals I; each. This implies, in particular, that @(a) >n"! and,
therefore, 2¢p(a) > nA.(a).

Now we consider the algebraic polynomial p.(z) := [y P}, (y) dy such that

Pa(2) = (gh(2) = gu(@))Va(z) + gu(a)Wa(z),

and show that it is possible to choose polynomials V,,(z) and W,(z) so that pn
is coconvex with f and the inequalities (85)-(87) are satisfied. We claim that the
following properties of V, and W, are sufficient for coconvexity of p» with f:

(i) Va(z)sgna(z) 20,z €1,

(ii) V4 is copositive with (¢,(z) — g,(a)) ¢5() sgna(z),
i.e., (qn(z) — qa(a)) gi(=) Va(z) sgna(z) 2 0, z € 1,
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(ii1) lI;V,'1 is copositive with f(z)sgn(q,(a)). i.e., f'(z) W!(z)sgn(q\(a)) > 0,z €

Indeed, using these properties, the inequality f”(a:)q::(:z:) > 0 and the defini-
tion of f we have

sgn{p,(z)f"(=)}
= sgn{(q,(z) — ¢, (@))V; () f"(z) + g (z) Va(z)f"(2)
+q, ()W, (z) f"(z)}
sgn{(g,(z) — gL (a))Vi(z) f"(z) + qn(z) Va(z) f"(2)}

v

sgn{(gL(z) — dh(a))Vi(z)qgi(x)sgna(z) + (ga(z))*Va(z)sgna(z)} = 0.

Therefore, it is sufficient to construct polynomials V,(z) and W,(z) which
satisfy conditions (i)-(iii) and also (as we will see later) sufficiently approximate
sgn,(z). ‘

Using Lemma 39 we conclude that the polynomial

W, (:z:) = Qjo+2(na#, T jo+23 sy, uyr)z) if q,(a) 20,
" Qio—-2(nys 1 Tjo—23 Y15 Y2y - - -, ¥ )(2) if g (@) < 0.

satisfies condition (iii).

Indeed, it is clear that f”(z) is copositive with [T;_,(y; — z). Lemma 39
yields that if ¢/,(a) > 0, then Wi(z) = Q}, +2(n, &, Tjo42; B;y1, - .-,y )(2) is also
copositive with [T%,(y; — z) and, therefore, with f”(z). If g (a) < 0, then
Wi(z) = Q%y—2(m, 1y Tig—23 Y13 Y2, - - - » Y- )(Z) is copositive with (z—=vy1) [Tr=2(yi—x)

and, hence,
sgn{W, () f"(z)}sen{q.(a)}

~ —sgn{W.(2)f"(2)} = —sgn{— [T(w: — )%} 2 0.

=1

Thus, (iii) is satisfied.

To comstruct V,(z), first, we note that since g¢(z) changes sign only at
Y2, .. ., Yr, the function g}, (z) — ¢, («) is monotone on each of the intervals [—1,y2],
[yr, 1) and [9i, ¥i+1],2 < i < 7 — 1. Thus, g,(z) — ¢,(a) has at most one zero in
each of these intervals. Moreover, it changes sign at every zero different from
yi,2 < i < r (Note that ¢/,(z) — ¢/,(a) vanishes on some subinterval only if
gn(z) is a linear function. Since this case is trivial, everywhere below we assume
that gn(z) is 2 polynomial of degree > 2). Using this and also the inequality
q'(z) < 6,—1 < z < y, we conclude that the function (¢'(z) — gi(a))ar(z) is
nonpositive for ~1 < z < «, nonnegative for a < z < 2 and has at most
2(r — 1) changes of sign on [y, 1] (we denote these points in increasing order by
B1,Bz,...,01,1 < 2r —2 and note that §, = y). Hence, (¢,(z) — qn(@))gn(z) is
copositive with (z — a) [Ti=,(8: — z).
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Now we define

Vn(z) = Qjo(n1 M w; Bla v ’ﬂl)(z) .

Condition (i) immediately follows from (93). Using (90) we conclude that V (z)
is copositive with [Tt_,(8; — z). Therefore,

sgn{(an(z) — gn(2))q,(z)V,(z)sena(2)}

!
= sgn{(z — a)sgn, () [I(B: — =)’} > O,

i=1
and (ii) is also satisfied.
Thus, p.(z) is coconvex with f(z) and it remains to verify the inequalities
(85)-(87).
Using [5], properties of w,, inequality (95) and recalling that 2¢(a) > nlAn(a)
we have the following estimates for any = € I:

AN

£ £ 2y 2|$ - a|
F(@) ~ Fal < v (71,2522

. - h; lz — 2| + h;j 2y
< n 1T —a| +hj < Jjo jo 1 1
< wp (f AT ) < o ()

— C‘l/);;l We (f", n—l) <C ;_;1 W (f",n—l

96)  |f"(=2)l

I

and

(97) |f'(=)| 1£(z) = F(a)] = |z = allF(O)

< Clz—qf <~ x;:.l + o W (f”,n"1
Jo
lz — zj| + hj -
< C(lz—zjol + hjp) ;; 2wy (f,n!
< Cn7'yitw, (f07Y)

since |z — a| > |( — af.

Now we choose g so that all the conditions above are satisfied. For example,
p = 157 will do. However, because this choice of p is not important we will
continue to write u keeping in mind that u = u(r).

Using (96), (97) and also the inequalities

Va(@)l < C(w)¥ihs’

IWi(2)l < Clu) ¥t
lsgna(2) — Va(e)l < Clu) ¥,
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and
lsgna(z) — Wa(z)| < C(n)¥;

which follow from the definitions of V,, and W,, and Lemma 39 (since ¢; ~
1/),'0?,-, : = 1,2 and |sgn,(z) — sgn,%ﬂ(a:ﬂ < C(u)¥%), we have the following
estimates:
|f"(z) — pa(2)]
= |(F(z) — gi(z))sgna(2) + g(z)(sgna(z) ~ Va(z))
—(gn(z) — qn(@))Vi(z) — qu(a) Wy ()]
< 1) — UL+ lsena(z) — Val(@)]) + 7" (2)lIsgna(z) — Val2)|
+17(2) = gh@Vi(@) + 17 (@) = qu(@)(IVa ()] + W, (2)])
+ | (@)IVa(=)]

" Lyl o VU

< Clwe(fn™) {min(\/ilz + 1:\/1 =) Vo ¥ nhi,  nhs, }
" -1y ; 1 1

< CMwe(f’,n™) {min(\/@z FLVI=9) Vo a"} ’

since nhj, > v/1 — a?. Therefore,

C(r)
min(m 1L,v1—yr

" n—l — C(T)w " n-—l
)wv(f, ) Jd (S5 n77).

|f"(z) — ()} <

Similarly,

|f'(z) — Pi(2)l
= |(f'(2) — di(2))sgna(@) + ar(2)(sgna(2) — Va(z))
+ g, () (Va(z) — Wa(2))|
< Cr)ntwe(f ) {1+ 9l + 972} < Cryntwy (07

and, using the identity 3 ¢},(y)sgn,(y) dy = qn(z)sgn,(z),

() = pa(a)]
= |(/@ = qa@)sgpala) + [ @) (s80aly) ~ Va(w))dy

+ (@) [ (Valy) = Wa(v))dy
< ) n P (n™) {14 | [+ 0 ) ily) dy
+n | [ i) o}
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IA

C(r)n~?w,(f",n7") {1 +n

/:( hJ'o )“—2(1
o« \Iy = Zjol + B y

Crynw () {1+ n b | [y — ol + hi)~ o}
< M tw () {1 +nhy} < Cr)n 2 wy(f7,n7).

IA

Finally, to complete the proof of Theorem 37 it is sufficient to recall that

Pn € llc(r)n and use properties of w, modulus.

Remark . Although, all the proofs were given in the case when f has finitely

many inflection points, the considerations will not change if we allow f to be
linear on some subintervals. For example, if f’(z) = 0 for z € [e,8] C (—-1,1),
it is sufficient to fix any zo € [, 8] as an “inflection” point. Thus, Theorem 37
is valid for any function with finite number of convexity changes.
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CHAPTER 5

ON COPOSITIVE APPROXIMATION
BY ALGEBRAIC POLYNOMIALS *

5.1 Introduction and main result

We are interested in how well one can approximate a function f € C[—1, 1] with
finitely many sign changes by polynomials p, such that f(z)p.(z) > 0, z € [—1, 1]
(we say that in this case f and p, are copositive in [—1, 1]).

One of recent results on copositive approximation is due to D. Leviatan [5]
who proved the following theorem.

Theorem M There erists an absolute constant C = C(r) such that for every
f € C[~1,1] which alternates in sign r times in [~1,1], 0 < 7 < oo, and each
n > 1, there is a polynomial p, € I, which is copositive with f and satisfies

(98) |f = pnll £ Cuw(f,n™h).

This result was later improved. In particular, modulus w was replaced by w,,
and the dependance of C on the set of points of sign change was investigated (see
[6], for example). However, it was not known for a long time whether w in (98)
can be replaced by the modulus of smoothness of higher order.

S. P. Zhou showed that estimate {98) can not hold with w* instead of w. He
also considered copositive approximation in L,, 1 < p < co metric, and proved
that the estimate by the second integral modulus of smoothness w?(f,n"'), is not

correct in this case. These results can be summarized in the following theorem
(see [9] and [10]).

Theorem N There are functions f; and f, in C'[—1,1] with r > 1 sign changes
such that

EQV(f1,1) 2O (f2,7)
li e ol d L e ;
1f‘rl)s‘;xp SAfnh) oo an 1£rl’sogpw2(f2,n_l)p 0,1l <p<oo,
where E®)(f,r), is the error of the best copositive L, (C if p = oo) approrimation
to f by polynomials from I1,.

4 A version of this chapter has been published in Analysis Mathematica (1995) 21: 269-283.
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Recently, Y. Hu, D. Leviatan and X. M. Yu [4] showed that Theorem M can be
considerably improved. They were able to replace w in (98) by w?, thus, together
with Theorem N, revealing an interesting and unexpected difference between the

cases p = oo and 1 < p < oo for copositive polynomial approximation. Their
result is stated as follows.

Theorem O Let f € C[—1,1] change sign r times at —1 < y, < ... < y, < 1,
and let § := minog<i<r lyiv1 — yi|, where yo := —1 and y, 4, :== L. Then there crists
a constant C = C(r,d) but otherwise independent of f and n such that for cach
n > 407! there is a polynomial p, € llc,, copositive with f, satisfying

(99) ”f —pn“ < Cw?‘(fvn—‘l) .

In fact, it is not very difficult to show that w? in (99) can be replaced by w®.
However, there is still room for improvement. It is well known that if one wants
to characterize approximation properties of a function f in terms of its moduli
of smoothness, then this characterization should involve either w™(f, A, (x)) or
w?(f,n~!) (or equivalent quantities). Thus, in a sense, “exact” estimates for

algebraic polynomial approximation are those in terms of the above mentioned
quantities.

The following theorem is the main result of this chapter.

Theorem 40 Let f € C[—1,1] change signT > 1 times at —1 <y, < ... <y, <
1, and let § := ming<i<r |Yi+1 — ¥i|, where yo := —1 and y,4y := 1. Then there
ezists a constant C, = C\(r,§) such that for each n > C, there is a polynomial
P, € I1,,, copositive with f, satisfying

(100) If = Pall < C(r)wi(f,n7").
Theorem 40 implies
Theorem 40’ Let f be the same as in Theorem 40. Then for each n > 0 in the

caser >3, andn > 2 if r =1 or 2, there is a polynomial P, € II,, copositive
with f, such that

“f - Pﬂ” < C(T‘, 5) w?a(fvn_l )

where 07! :=1.

An immediate consequence of Theorem(s) 40(40’) and converse theorems in terms
of the Ditzian-Totik moduli ([3], [8]) is the following result.

Corollary 41 Let0 < o < 3, and let a function f € C[—1, 1] change signr < co
times in [—1,1]. Then

(101) Ed(f) = O(n™*) & EO(f,r) = O(n™),
where Ea(f) = inf |If = pull and ED(fir) = _inf ] = pall
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5.2 Notations and auxiliary results

Suppose f € C{—1,1] satisfies the conditions of Theorem 40, i.e., it changes sign
1<r <ootimesat —1 <y <...<y, <1l. Also, let n be fixed and sufficiently
large. If y; € L), 1 = 1,2,...,7, then it is convenient to denote

’ . ",
Y := Ti(i)y+1y Y = Tji(i)~2,

L = [y}, ¥7] := Ligy+1 Y Lin Y L)1 = [Ti(+1, Tici) -2l

anu

2 7 2
Then 5/3h;¢) < |L| = 2{Yi] < Thji), ¢ =1,...,r and, therefore,
II,‘ ~ ly,l ~ hj(,') ~ An(l‘) forxeZ.

_ roa o
Y; = {y.-}-y, y,+y,] for:=1,2,...,r.

Throughout the chapter Kj, i > 1 denote constants which are independent of
f and n and remain fixed everywhere in the proofs.

While proving Theorem 40 we will need to smooth the function f which
is only assumed to be continuous on [—1,1]. The idea to consider a smooth
approximation instead of the original function is very well known. It is frequently
used in different areas of approximation theory. In particular, the construction
of such an approximation is crucial in the proofs of theorems on the equivalence
of K -functionals and the appropriate moduli of smoothness (see [1], [3] and [7],
for exainple). There are numercus approaches to this problem. Thus, it is often
convenient first to extend the function to a larger interval preserving some of its
smoothness characteristics. In particular, this idea was employed in the proof of
the main lemma ia [4]. In our proof we will avoid the problems of smoothing
and extending f (though, this approach is possible) simply by considering an
algebraic polynomial which sufficiently approximates f and satisfies some extra
conditions (in fact, the polynomial of best approximation to f in C[—1, 1] will do).
Then, we will modify this polynomial near the points of sign change obtaining
a smooth piecewise polynomial approximation f, with controlled first and third
derivatives. The following lemma is crucial for the proof of Theorem 40.

Lemma 42 Let f be the same as in Theorem {0. Then for each n > 48~! there
exists u function f, € C3{—1,1], copositive with f in Y := U_,);, such that

(102) i — fall S CEWE(fon71),
(103) (@) fr' (@) < Ki(r)n® w3 (f,n71)
and

(104) \An(z) fr(2)| = W(fin ) forzeY.
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Proof Let n > 457! and index 1 < i < r be fixed. For x € I; we set f‘ to be
the polynomial of degree < 2 which vanishes at y;:

r . T —Yi yn
ft(x) Y=y {y:, ft(y )+ vi — fx(y.)} »

where f:(y!) and fi(y?) are chosen so that

fiy) = 60w (f,n " )sgn(f(¥i)), i 1f(y)] < 603(f.n"),
A Fyh), otherwise.

and
Flul) = { 60w (f,n sgn(f(¥), i [f(¥)] < 60w (S, 1),
P f, otherwise.

(If f(y:) =0, e.g., then _sgn(f(yi)) equals the sign of f on (yi—1,yi).)

Since f; € II,, and f,(y,) and fi(y") have opposite signs, then the only zero of
f: in T; is y;. Hence, f; is copositive with f in Z;. Also, the first derivative of f;

Zr _ 2 yx_yi 2z — yi — yi' F(u
1) = = = f'(y )+ (¥ — vy — y.‘)f'(J')

is a linear function, and

f-:_,(yi+y£) __ S a7 (yz+y‘> fily?y
2 y_yl yt —Yi

are of the same sign, which implies that f! does not change sign in )i, and for

any = € Vi
(105) Fl 2 minfl7 (B8] |7 (252}
{m(y,)l Al

yi —y Yt~y )

> s ™ (O e
> Aa(@)'e(finh).
Now we will show that
(106) fi(z) = f(@)| £ Cuiy(fin7!), z € L.
We use the fact that
(107) |f(z) — L(z, I £ Cuwi(f,n™"), z el
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where

z—y [z—yi T —yf
L(I, f) = L(I, fs yg",yia y:l) = y:; — y: {y:/ — y:f(yzl) + mf(y:)

is the Lagrange polynomial of degree < 2, which interpolates f at y!, y; and y!.
Inequality (107) is an analog of Whitney’s inequality for Ditzian-Totik moduli
and can be found in I. A. Shevchuk {8, Lemma 18.2}, for example.

Using (107) and the above presentations of fi(z) and L(z, f) we write for
zeZ;

|filx) = f) < 1fi(z) = L=z, HI + |L(=, f) — f(=)]

(z — yi)(z — ¥i) r A "
< (yg,_yé)(yz,_yi)lﬂ(y,) £
(a:—y,-)(:z:——y,f') F oty _ ' w3 n-!
Lo = w) ¥ |7ty — S| + € 3™
< Cuwp(f,n™),

and (106) is proved. 3

At this stage it is worth mentioning that the ability to construct a function fi
for which (105) and (106) hold determines the possibility to obtain the estimates
in terms of the thiz:d moduias of smoothness in Theorem 40. For instance, if
we could find a polvnomia! §; of degree < 3, copositive with f in T, and such
that inequalities (165) and ;i06) held with w} instead of w}, then we would be

able to replace wfz in Theorem 40 by w;. However, because of Theorem N, the

creation of such §; is impossible in general. Function fi is the best of what one
can construct. At the same time, if we add some conditions on the behavior of f
near the points of sign change, then estimate (100) can be improved.

Now, let us continue with the proof of the lemma.

1t is well known (see [3, Theorems 7.2.1 and 7.3.1}, for example) that there

exists a polynomial Q(z) of degree < n (the polynomial of best approximation
to f in C[—1, 1] will do) satisfying

(108) If ~ QN £ Cwy(fin—1)
and
(109) lp(2Q" (=}l £ Cn®wi(fin—1).
Now, we define the piecewise polynomial function S(z) as follows:
S(z) :=
( 1? if$¢U::=II;,
0, ifz e U, ),
r ’ /
/\‘i/ o \3( Yty 3d , if r Yity; —
T %ﬂ:)/z(y y (B —yPdy, ifzely, 5], i=1,...,7,
1. _ vityl\3 . i+y! .
Xl R —wPdy, e R =1
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where normalizing constants X; and A; are chosen so that S is a continuous
function, i.e.,

')

-1
Y, ’
A = f _ )3 3(1)
((My:)/z(y Y (75 y)>dy

” -1
-~ v, . "
i = ( J (y — 52t — y)ﬂdy) :
(w+v')/2

Moreover, it is easy to see that not only S is continuous, but also S € (*[-1, 1].
Finally, the function f,(z) such that

fulz) = { (Q(2) = fil2)S(2) + filz), iz €L,
" ‘ Q(z), otherwise.

is copositive with f in Y = U7_;);, and the inequalities (102)-(104) are satisfied.

Indeed, f, coincides with f; on Y and, hence, it is copositive with f in Y,
and (104) holds. Also, § € C3[—1,1] and S(z) = 1,z ¢ U[_,Z; imply that [, is
in C3[—1,1]. Inequality (102) follows from (106), (108) and thc observation that
for every fixed z € Z; \ V;  fa(z) is a convex combination of Q(z) and fi(x)
(since 0 < S(z) < 1).

To prove the remaining inequality (103) we need the following well known
Kolmogorov type inequality (see, e.g., [1] or [8]):

(110) 19 M@t < € ((6—a) g llpee) + (b= @)™ Nl n) -
geCla,bland 0 < v <.

and

For z € [y}, E'L'-tﬂk], t=1,...,r (forx € [y—'—ﬁ*—,yl’] considerations are similar,
for z € U, T; (103) follows from (109), and for z € Y it is trivial), using the fact
that p(z) ~ nA,(z) ~ n|L| for x € I;, we have

lp(2)? f(z)| < Cr3IT® S 1QW(z) — FN (=) ISP ()] .

v=0

Applying (110) for |QW)(z) — f,-(")(z)l and Markov’s inequality for |SG~*)(r)]|,
together with (106), (108) and (i09), we obtain

lo(z)* £/ ()]
3 ~ .
< e ILP Y (ILP™IQ™ Nz + I1ZI71IQ — fillz.) |TI S|z,

v=0

< Cnsw,i(f,n—l).

This completes the proof of (103). »

The following lemma is due to I. A. Shevchuk (8, Theorem 18.2]. It will be
used to construct a polynomial approximant to f, established in Lemma 42.
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Lemma P If g € C™[—1,1] is such that |(1 — 22)™2 ¢™N(z)| < M, z € [-1,1],
then for every n > m — 1 there ezists a polynomial q.(g) € 11, satisfying

(111) lg — gn(g)ll < CMn™™,
and
(112) IAn(:r)” (g(")(z) - ,(,")(g,a:))l <CMn™™,0<v<mf2.

Corollary 43 If g € C3[—1,1] is such that |(1 — 22)32g"(z)| < M, z € [-1,1],
1<y <...<y <1andd:=minicicr1 |Yir1—Y:l, then for everyn > C(r,9)
there ezists a polynomial p,(g) € IL,, which interpolates g at y1,...,yr and such
that

(113) g — Pa(g)ll < Ka(r,8)Mn~2,
and
(114) AL (z) (&' (z) — Palg, ) | < K3(r)Mn™>.

Proof Let g, € I, satisfy (111) and (112) with m =3 and v = 1. Then the
polynomial p.{(g, z), given by

Pn(9,2) := qu(x) + L(Z,9 — Gns Y15 -+ -1Y=)

interpolates g at yi,...,yr and satisfies (113) and (114). Indeed,

g — pal)ll < llg — anli + IL(z, 9 — @ns Y15 - - - ¥l S Cllg — gafl S CMn™3,

which is the inequality (113). Inequality (114) is valid since

AA(2) (¢'(z) — Pulg, 2D |l
< NAa(@)d'(2) = gu(@)I + 207 I L' (2,9 = gns Y15 - - -5 ¥

Or—1,(p _
< omn + T Dog gl < oMn
for sufficiently large n (n > C8'~"). The proof of the corollary is complete.
]

Proposition 44 For every yi, ¢ = 1,...,r there erists an increasing polyno-
mial T,(yi,t) of degree < n, copositive with sgn(x — y;) in [—1,1], satisfying
Tu(yi, —1) = —1, Ta(yi, 1) = 1, and such that

. 2
(115) isgn(z — y:) — Tu(yir )| < K4 (lx - ifiygn(yﬁ '
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Proof Let index 7 = 1,...,r and integer n be fixed. It is known (see, e.g.,
[8, Lemma 17.2]) that for every N = Cn € N there exist increasing polynomials
TN(y,,:z:) and TN(y z) of degree < N such that Tn(yl, —1) = Tn(y?, —1) = —1,
Ta(yl, 1) = Tn(y!, 1) = 1, and satisfying

o . And '
(116) lsgn(z — v;) TN(yr’z)‘SI‘S(1x—y.’-l+A~(uI")

and 2

7 2 n - AN(y{’) )
117 sgn(z —y!) —Twn(y],z)| < K L )
( ) l g ( Y ) N(y )l 5 (!I — y?‘ + »ﬁf\.’(!l:')

Now, we choose N to be sufficiently large, say, N := [2y/K5 + l]n. Then, the
following inequalities hold

~ - AN(y{) 2
4 y;’ yi 2 1 - A ( 7 : ’
w( ) *\yi — ¥l + An(y)

e [(An(yi)
21 I‘(A('))

2
> 1——4K5<—— >0

and, :nilarly,

TN(yg 1y1) < -1 4 KS ( . AN(y:’) : >2
yi —vi+ An(y!)

. (AN}
< .. ’ vt
< itk (An(y:')

n\2
Therefore, there exists 0 < a; < 1 such that

aiﬁ\'(yZa yt) + (1 - a‘-)'f,w(yg’, yi) = 0.
Now, let ; :
Tu(yi,z) := aiTn(yi, ) + (1 — o) Tn(y s x) -
Then T, is an increasing polynomial of degree < Cn such that T, (yi, %) = 0 (this
implies that T}, is copositive with sgn(y; —z)), and t. : jollowing inequalities hold:
jsgn(e — v) ~ Tulyis 2| ~
< Isen(z —ui) — sgn(z — ¥i)| + Isgn(z — vi) — Tn(yi, z)|
+|sgn(z — y:) — sgn(z — ¥i)| + lsgn(z — i) ~ T (!, z)l
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An(y:) )2 An(yl) )2
< C - +C :
- (Iz — ¥il + Aayi) (!z — il + An(yi)
” 2
+cv ( A”N(yt ) )
|z — vl + An(yl)
< C ﬂ(y") )2 .
- \lz — vl + An(y:)
The proof of the proposition is complete. =

The following result is a generalizaticn of [4, Lemma 1}].

Lemma 45 Let f be as in Theorem 40. If for n > 46~ there ezists pn € Iy,
copositive with f in Y = UL, );, then there is a polynomial P, € Hx,n, Ke =
Ks(r) which is copositive with f in [—~1,1] and such that

(118) If = Pall £ C(HISf — pall -
Sketch of the proof. The polynomial

Fix) = palz) + 27| f — pnllnHTN(ynw)

i=1

where N i sufiiciently large (N = {[18v/K4] + 1)r will do), and 7 = %1 is such

that sgn(’ IR 4 e sgn(x — y;), satisfies the assertion of the lemma. The
venﬁcatxox i 25is 1act lS 51mlla.r to the proof of [4, Lemma 1]. The only difference
is that instead of {y;i— 2n’ y,+ 5-) intervals V;,i = 1,...,7 are considered. Namely,

P.(z)f(z) = 0 in U_, V: since "both pn and 1, TN(y,) are copositive with f in
this set. Also, Pn(z)f(z) > 0 in [—1,1] \ UL, ; since nTIi_, Tn(yi, ) f(z) = €
and |[T:_; Tn(yi, )| = 277, Finally, (118) holds since |[Ti—=; Tn(yi, z)] < 1. ]

5.3 Copositive Polynomial Approximation

Proof of Theorem 40. The proof of Theorem 40 is based on a modification
of the ideas used by Y. Hu, D. Leviatan and X. M. Yu [4].

Let n > 46~! be fixed, and let N = N(n) > n be an inte,,r (we will prescribe

i:: . .act value later). Also, let f, € C3[—1,1] be a function which was described
in Lemma 42. Inequality (103) can be written as

N1 — 2232 f"(2)|| € M with M := Kn2wl(f,n—1).

It follows from Corollary 43 that there exists a polynomial px(fn,z) € IIn, which
interpolates f, at y1,-..,¥y- (i-e., pPN(fa,¥:) =0, =1,...,7), and such that

3
(119) 1o = v ()l < KK (3e) w2(Fin=1)
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and
(120) 1An(2) (fa(@) = B (fm ) I S KiKa () wb(fin=1).

We prescribe N to be such that K1A% (—1';‘,-)3 < 1 and A A (—;‘7)2 < 1 For

instance, v
N := Kin := ([(KIKQ)‘/‘*] + [2y/K1 R3] + 2) n.

It follows from (120) that for z € Y;,i = 1,...,r the following estimate is valid

@) = Pm )| < Kok g (5) w(in)

2
< Kok (B) i
< -;—A,,(:::)"l wg(f, n—1).

Together with (104) this implies that sgn(pn(fa,x)) = sgn(fa(zx)), ¥ = UL .
In turn, it follows that pn(fa.) is copositive with f in Uj_,);, and also by (102)
and (119)

If = pn(FIM S WF = fall + 1fn = pv(fdil € Cuwp(fin—1).
Together with Lemma 45 this yields the assertion of Theorem 40 for n > Ky :=
46—1}\’6 (7, Kg = Kg(r, 5) m

Prosf of Theorem 40’ Clearly, we only have to prove Theorem 40’ for
0 < n < Kg. If »r > 3, then it is sufficient to choose

Pn(x) = L(m7f’y11°",yr) =0.

In this case denoting

-~ 2 ‘_—.—_——
L(w):=L(.’Itaf,—l,—l‘*'—r_ls-"’—l_*- r—1" )

we have for any z € [—1, 1]

If(x) - Pn(z)l = If(x)— %(za fayl,'--,yr)-l-
|f(z) — L(z) — L(z, f — L,yr, - -, y:)

2r-1p ”
= (15w - o,

Now using Whitney’s inequality we conclude that

S ng(fa Ks_l) S ng(fsn"l):
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where C = C(r, §).
In the cases r = 1 and r = 2 for 2 < n < Kj one should apply similar
consideration for the polynomials of the second degree P,(x) := L(z, f,—1,%1,1)

and P.(z) := L(z, f,—1,y1,¥2), respectively. The proof of Theorem 40’ is now
complete. =

5.4 Remarks

Remark 1. All the considerations will remain the same if f vanishes on some
subinterval(s), say, [ai, 8i] C [—1,1]. In this case, if [a;, 8:] is an interval of sign
change (i.e., if f(a; — €)f(B; + €) < 0 for small €), then it is sufficient to fix
any zo € {ai;5i] as a point of sign change. Thus, Theorem 40 is valid for any
f € C[-1, i] witk finitely many changes of sign. In fact, if f vanishes in all the
intervals of sign change, then Theorem 40(40’) can be considerably improved (see
the next remark}.

Remark 2. As we mentioned in the proof of Lemma 42, estimate (100) can
be improved if f satisfies extra conditions near the points of sign change. For
example, the following theorem is valid.

Theorem 46 Suppose f € C[—1,1] changes sign 1 < r < oo times in [~1,1]
and vanishes in the intervals of sign change, i.e., suppose that f(z} = 0,z €
Ui, [yi — 8,4 + 6] and f(yi — 8 —e) f(yi + i +€) <0 fori=1,...,7 and
all sufficiently small €. Let § := min{éy,...,6,} and m € N. Then the exists a
sequence of polynomials P, € I, copositive with f, such that

(121) ”f - Pn" < C(r,m,5) wg(fa n--l) .

Proof Theorem 46 can be proved using considerations similar to those in
the proof of Theorem 40. The most important difference which makes estimate

(121) possible, is that f; in the proof of Lemma 42 can be replaced by the linear
polynomial

) 60 w™ (f,n~" ,
@) = 2R (@ yagn s+ 6 +o)

+(y — z)sgnf(y:i — & —€)).

However, there is a trivial proof. For sufficiently large n € N, let P, € II,,
be the best approximant to f in C[—1,1]. Then ||f — Pn|| £ CwZ(f,n"!) and
f(2)Pa(z) = 0, z € Y := U, ), i.e, by the definition P, is copositive with f
in Y. Now, Lemma 45 implies that there exists a polynomial P,, coposiiive with
f in [—1, 1], such that

If = Pl £ ClIf = Pull £ Cuw(5in™Y).
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Another example of how the behavior of f near the points of sign change

determines the rate of copositive polynomial approximation, is the following the-
orem.

Theorem 47 Let f € C[—1,1] change signr > 1 timesat —1 <y; < ... < y, <
1, and let f(z) € Iy forz € [yi — 6i,yi +6i],i = 1,...,r. Then, for anym € N,
a sequence of polynomials P, € I1,,, copositive with f in [—1, 1], ezists such that

(121) holds with § := min{é;,...,6,}.

The proof of Theorem 47 is less trivial than that of Theorem 46. We omit
its details, and only mention that, again, the crucial idea is to replace f; in the
proof of Lemma 42 by a rapidly increasing or decreasing linear polynomial.
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