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Abstract 

How does cognition represent musical properties? Even with our growing understanding of the 

cognitive neuroscience of music (Abbott, 2002; Peretz and Zatorre, 2003; Peretz and Zatorre, 

2005; Zatorre and McGill, 2005), the answer to this question remains unclear. One method for 

conceiving possible representations is to use artificial neural networks, which can provide 

biologically plausible models of cognition (Rumelhart and McClelland, 1986; Bechtel and 

Abrahamsen, 2002; Enquist and Ghirlanda, 2005). One could train networks to solve musical 

problems, (Todd and Loy, 1991; Griffith and Todd, 1999) and then study how these networks 

encode musical properties. However, researchers rarely conduct detailed examinations of network 

structure(Dawson, 2009, 2013, 2018) because networks are difficult to interpret, and because it is 

assumed that networks capture informal or subsymbolic properties (Smolensky, 1988; McCloskey, 

1991; Bharucha, 1999). Within this thesis, we explore the relations between network connection 

weights and discrete Fourier phase spaces used to represent musical sets (Amiot, 2016; Callender, 

2007; Quinn, 2006, 2007; Yust, 2016), and how these networks use Fourier components to 

differentiate between different sets of musical entities. That networks discover Fourier phase 

spaces indicates that these spaces have an important role to play outside of formal music theory.  
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Chapter 1 : Exploring Music Through Artificial Neural Networks and 

Fourier Phase Spaces 

 

Introduction 

Musical experience is complex because it is composed of many different interconnected 

characteristics. Krumhansl (1990) notes musical experience combines objective musical properties 

(such as frequency, interval structure) with subjective properties (the listener’s perception of pitch 

and perception). As a result, to study musical cognition one must decide what materials to use 

(e.g., Western tonal music or other forms of tonality), what aspects of musical experience to study 

(e.g., harmony, rhythm, pitch perception) and what methodology to employ (e.g., isolated stimuli 

vs complete musical works, human participants vs computational models, task of pitch 

discrimination vs pitch fit in a context). 

This thesis uses artificial neural networks to study the identification and classification of 

musical entities from Western tonal music. Artificial neural networks (ANNs) have been used to 

study a wide variety of problems in many different fields. The use of ANNs to study a particular 

topic, musical cognition, is growing in popularity. Connectionist cognitive scientists interested in 

music train artificial neural networks to solve musical tasks in order to understand the 

“[...]processes and representations involved in music perception, production, comprehension and 

composition” and to “capture musical behaviour in an artificial system” (Griffith & Todd, 1999). 

Additionally, connectionists often believe networks capture informal aspects of musical creation 
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and experience, properties not explained by formal theories of Western tonality (Todd & Loy, 

1991). 

Many kinds of networks have been trained to perform a variety of musical tasks. These tasks 

include pitch and harmony perception, detecting musical meter and rhythm, and composing new 

music (ibid.). However, because the internal structure of these networks is rarely examined, little 

is known about how networks process stimuli, or how networks can provide insight into the 

algorithms or brain structures underlying human musical cognition (Dawson, 2018). 

In Connectionist representations of tonal music, Dawson (2018) extends the connectionist 

exploration of music. He analyzes the internal structure of trained networks to understand how 

they convert stimuli into responses. Dawson uses networks to study several different musical tasks. 

These tasks all use different collections of the twelve Western pitch-classes. To understand 

Dawson’s approach, I must first introduce some basic elements of music theory to describe such 

tasks. I must then introduce some basic properties of ANNs. Finally, I must relate properties of 

ANNs to ideas from a mathematical approach to music, musical set theory. To begin, I introduce 

basic elements of music theory. 

Elements of Music Theory 

This thesis involves training ANNs on tasks related to Western tonal music. Musical pitch 

provides the foundation for Western tonal music. More complex musical entities, like scales or 

chords, are created by combining different musical pitches. In Western music, each pitch 

corresponds to a different musical note, as illustrated in Figure 1-1 provided below 
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1-1 Top: Keyboard highlighting the 12 notes of the western tonal system.. Bottom: Keyboard showing multiple instances of a 

note across octaves 

A traditional piano has 88 keys. Each key, when pressed, plays a note. Each note is associated 

with a sound wave oscillating at a specific frequency, measured in cycles per second or Hertz (Hz). 

This is the note’s fundamental frequency, and determines how high or low the note’s pitch is 

experienced. As the fundamental frequency increases, so too does our experience of how high the 

note is. For instance, the A below middle C on the piano (the note A3) has a frequency of 220hz. 

The A that is an octave higher (A4) has a frequency of 440 Hz. 

In Western music, pitches that are nearest neighbours are separated by a musical distance of 

one semitone. For example, in Figure 1-1, the keys E and F are adjacent to one another, so F is one 

semitone higher than E. Similarly, C# is one semitone higher than C. On a modern piano, when 

one note is a semitone higher than another, then the difference between the frequencies of the two 

notes is 27 Hz. For instance, middle C on a piano has a frequency of 262 Hz, while the note a 

semitone higher (C#) has a frequency of 289 Hz. 
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The distance between two particular pitches, measured in semitones, is called an interval. 

Western music is based on twelve different intervals. The smallest is 0 semitones (the distance 

between a pitch and itself), and the largest is 12 semitones. Each interval is also given a name. For 

instance, an interval of 0 semitones is called perfect unison, while an interval of 12 semitones is 

called a perfect octave. The basic intervals of Western music are provided in Table 1-1: 

Semitones Between Pitches Interval Name 

0 Perfect Unison 

1 Minor Second 

2 Major Second 

3 Minor Third 

4 Major Third 

5 Perfect Fourth 

6 Tritone 

7 Perfect Fifth 

8 Minor Sixth 

9 Major Sixth 

10 Minor Seventh 

11 Major Seventh 

12 Perfect Octave 
Table 1-1The thirteen possible distances between pitches that can be used to create interval cycles. 

In Figure 1-1 above, there are 12 different note names given to the keys in the upper part of the 

figure. These names are repeated to name the next 12 keys on the piano. Notes that are an octave 

apart (piano keys separated by 12 semitones) are given the same name. This is illustrated in the 

lower part of the figure, which shows different keys separated by an octave all being given the 

name C. Giving the same name to pitches separated by an octave is known as octave equivalence. 

Octave equivalence assigns different pitches to the same pitch-class. For instance, all of the 

different Cs in the figure (C2, C3, C4, etc) belong to the pitch-class C. Western music uses only 

12 different pitch-classes: C, C#, D, D#, E, F, F#, G, G#, A, A# and B. When music theory is 

applied to Western tonal music, it expresses formal regularities in terms of pitch-classes. 
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We can now define a more complex musical entity: the chord. A chord is a collection of pitch-

classes separated by particular intervals. One basic chord is called a triad, and is composed of three 

different pitch-classes. The relationship between these pitch-classes determines triad type. For 

instance, one type is the major triad. The lowest pitch-class in a major triad is the root, or starting 

note. The next pitch-class in a major triad is a major third above the root (four semitones higher). 

The last pitch-class in a major triad is a perfect fifth (seven semitones) higher than the root. For 

example, the C major triad consists of the pitch-classes C, E and G. 

A more complex musical entity is a scale. A scale is a subset (typically 7) of the 12 different 

pitch-classes of the Western system. When ordered from lowest to highest in pitch, we refer to 

each element of a scale by its position. So the first pitch-class is the first degree, or root, the second 

pitch-class is the second degree, the third is the third degree and so on. 

There are different types of scales. Each type is defined the interval distances between adjacent 

scale degrees. For example, the C major scale has a semitone between its third and fourth degrees, 

while C minor has semitones between its second and third, as well as between its fifth and sixth, 

degrees., as shown in Table 1-2 below. 

 Scale Degree 

 I II III IV V VI VII 

Scale  ←Tone→ ←Tone→ ←Tone→ 

C Major C D E F G A B 

 ←Tone→ ← Semitone→ ←Tone→  

 

 
  ← Semitone→ ←Tone→ ←Tone→  

C Minor C D D# F G G# A#  

 ←Tone→ ←Tone→ ← Semitone→   

Table 1-2 Table shows two scales, C Major (top) and C Minor(bottom). Besides having different collections of notes, these 

scales have different interval structures. 

Musical Set Theory 
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The previous section introduced examples of musical entities like chords and scales. In general, 

any musical entity can be described as a collection of pitch-classes. A powerful description of any 

such collection is called a pitch-class set or PC set (Forte, 1973). PC sets are mathematical sets 

which formally describe musical entities. 

A PC set represents a collection of pitch-classes as a set of integers. Forte uses a standard 

convention to translate the twelve different pitch-classes into twelve different integers. C is coded 

as 0, C# as 1, D as 2 and so on. Alternatively, a musical entity can be represented as a different 

kind of set called a characteristic function (Amiot, 2016). A characteristic function is a set of 

twelve integers. Position in a characteristic function corresponds to pitch-class (i.e., position 0 

corresponds to C, position 1 corresponds to C#, etc.). The integer in each position indicates how 

many instances of a pitch-class are present in a musical entity. For example, for Forte the C major 

triad (C,E,G) becomes the pc-set (0,4,7) or the characteristic function (1,0,0,0,1,0,0,1,0,0,0,0). 

Forte performs mathematical operations on pitch-class sets to reveal similarities between musical 

objects that seem at first glance quite different. For instance, consider the characteristic function 

(1,0,0,0,1,0,0,1,0,0,0,0) and a different characteristic function (1,0,0,0,0,1,0,0,0,1,0,0). While the 

two sets have some similarities (e.g., each has one instance of three different pitch-classes), they 

have many differences. For example, there are differences in the pitch-classes that are present in 

both sets, and there are differences in how many absent pitch-classes exist between values of 1 in 

the set. Forte’s operations, however, can translate either of these vectors into an identical form. 

This is because the two characteristic functions represent different major triads – the C major and 

the F major triad, respectively. The sets are different because they represent different triads. 

However, they can be translated into one another because they belong to the same class (major 
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triad). Pitch-class set representations permit regularities to be discovered between sets that appear 

to be very different.  

Forte’s approach provides a language to think about classifying musical stimuli as solving set 

theoretical problems. Forte solves such problems using basic operations from mathematical set 

theory. Importantly, such set theoretic problems can also be solved by ANNs. The next section 

introduces ANNs, relating them to musical problems studied by set theorists. 

Artificial Neural Networks 

What is an ANN, and how can an ANN learn to classify musical sets? Qualitatively, an ANN 

can be defined as a set of processors, connected by weights, which learns to respond to a stimulus. 

Processors called input units represent stimuli, while processors called output units represent 

responses. This thesis is concerned with a particular kind of ANN called a multilayer perceptron, 

which is illustrated in Figure 1-2 below. This network includes a layer of intermediate processors 

called hidden units. Hidden units detect complex or higher-order regularities in input units; the 

features detected by hidden units then determine how output units will respond. 

  
Figure 1-2 Graphical representation of the multi-layered perceptron used. At the bottom we have input units for notes between 

C and B. Middle layer is the Hidden Unit Layer. At the top we have the output units, one for each kind of pattern presented to the 

network 
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A stimulus is presented to a network by activating each of its input units. We call the pattern of 

input unit activities the input vector. When activated, input units send signals to hidden units. Each 

signal sent is equal to the activity of the input unit multiplied by the weight of the connection 

through which the signal is sent. 

Presenting an input vector to a multilayer perceptron causes the hidden units to activate. Hidden 

units behave as follows: First, a hidden unit determines the total signal being received, called the 

net input. Net input is the sum of the scaled signals being received from the input units. 

Mathematically, net input is the dot product between the input vector and the vector representing 

the hidden unit’s connection weights. Second, a hidden unit converts net input into internal 

activity; activity in our networks ranges between 0 and 1. Activity is determined by passing net 

input into a nonlinear activation function. Later chapters describe networks which employ one of 

two such functions: a bell-shaped Gaussian activation function, or a sigmoid-shaped logistic 

activation function.  

When hidden units activate, signals are sent through another layer of weighted connections to 

the output units. Each output unit computes net input (the dot product between the vector of hidden 

unit activities and the vector of connection weights), and converts net input into activity with a 

nonlinear activation function. 

The stimulus-response mapping made by the Figure 1-2 network classifies stimuli into triad 

types. The network is presented a triad by activating three of its input units with a value of 1 

(indicating the three pitch-classes present in the triad) and by activating the other input units with 

a value of 0 (indicating the pitch-classes absent from the triad). For example, the C major triad, 

comprised of the notes C,E and G, is presented to the network as the input vector 

(1,0,0,0,1,0,0,1,0,0,0,0). To respond correctly to the stimulus, the Figure 1-2 network turns one 
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input unit on (activity near 1) and turns the remaining output units off (activity near 0). When 

presented the C major triad, the network should turn the output unit representing major triads on, 

and the other three output units off, as Figure 1-2 illustrates. How does an ANN like Figure 1-2 

respond correctly to different stimuli? Multilayer perceptrons learn to perform a desired stimulus-

response mapping. The connections in the Figure 1-2 network begin as small, random values, and 

are then modified by learning. Learning involves teaching the network with a training set, a 

collection of stimulus-response pairs. During learning, the network is presented a stimulus, causing 

the output units to activate. Error is computed by taking the difference between observed responses 

and the desired responses associated with the stimulus in the training set. Error is then used to 

modify the network’s connection weights to decrease network error (Rumelhart, Hinton, & 

Williams, 1986). Repeatedly presenting the training set, and using error to modify connection 

weights, reduces errors to each stimulus as much as possible. Learning is important because 

networks can discover new representations for stimulus-response mappings. Researchers do not 

insert ideas about representation into networks; networks uncover surprising representations on 

their own. 

What is the relationship between a network like Figure 1-2 and musical set theory? First, the 

input vector used to represent a network’s stimulus is identical to a characteristic function. For 

instance, to present the C major triad to the Figure 1-2 network, the C major triad’s characteristic 

function defines the input vector. Second, after training, the Figure 1-2 network will produce the 

same response to different stimuli. For example, it will turn the major triad output unit on when 

presented either the C major triad or the F major triad, even though there are many differences 

between the input vectors for these two stimuli as was briefly noted above. This means the Figure 
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1-2 network can be described as performing the same task accomplished by Forte when he uses 

set theoretical operations: translating different pitch-class sets into a common category. 

Interpreting Musical Networks 

How do ANNs solve problems studied by musical set theory? To answer this question, one 

must study the internal structure of ANNs trained to solve such problems. Dawson 

(2018)investigates the structure of his networks in order to discover how ANNs represent musical 

properties. Dawson reports his discovery of many regularities in his musical networks, and argues 

these regularities, while formal, are surprising. He proposes that ANNs solve musical problems in 

a very different manner than the operations of traditional theories: “An artificial neural network 

can discover a completely different method – an alien or novel music theory – that generates the 

same input/output relationships as are defined by Western music theory” (Dawson, 2018, p. 4). 

One such novel musical representation is what Dawson calls a strange circle. A strange circle 

occurs when different pitches or different pitch-classes are treated as being identical by a hidden 

unit in a network. Furthermore, there is a specific relationship – defined by musical intervals – 

determining which pitch-classes belong to the same strange circle. 

Dawson’s notion of a strange circle begins with a basic notion from traditional music theory, 

the interval cycle (Susanni & Antokoletz, 2012) An interval cycle is a cyclic representation of 

pitch-classes in which adjacent pitch-classes are a specific interval apart. One example is 

illustrated in Figure 1-3. In the top part of the figure, the distance between C and E is four semitones 

or a major third. The bottom part of the figure shows that the same distance is found from E to G#. 

However, if one moves a major third from G#, then one returns to the start of the cycle (C). In 

other words, C, E, and G# all belong to the same interval cycle of a major third. 

 



11 

 

 

Figure 1-3 Top: Keyboard highlighting notes C and E, which are 4 semitones apart. 

 

There are three other interval cycles based on the interval of a major third; each is created by 

starting on a different piano key (C#, or D, or D#) and moving to the next piano key a major third 

to the left. The four different interval cycles of a major third are illustrated in Figure 1-4 below. 

 

 

Figure 1-4 Interval cycles that form from different starting points within the octave, if one advances along the keyboard in 

intervals of 4 semitones. 
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Dawson’s strange circles arise from his discovery that hidden units in a musical ANN assign 

the same connection weight to pitch-classes that belong to the same interval cycle. Figure 5 

illustrates an example set of connection weights (Dawson, 2018, p. 187); Dawson interprets these 

weights in terms of strange circles based upon the major third. The bars in this figure represent the 

weights from 12 different input units (like those from Figure 1-2 earlier) to one hidden unit. Note 

that pitch-classes belonging to the same interval cycle in Figure 1-4 are assigned nearly identical 

connection weights in Figure 5. For Dawson, this means the hidden units treats pitch-classes from 

the same Figure 1- 4 interval cycle as belonging to the same class. 

  

Figure 1-5 Weights from input units representing notes, and a hidden unit within the network. Note how a cycle repeats: first 

a small weight with a positive sign (A#), then a large weight of a positive sign(B). Then a weight similar size as A#, but with an 

opposit 

 

Dawson (2018) interprets many ANNs trained on different musical tasks, and discovers hidden 

units using strange circle representations in almost all of them. These strange circles are not limited 

to the interval of a major third. Dawson also discovers strange circles based on intervals of a major 

second, a minor third, and a tritone. Dawson considers each strange circle representation as 
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representing an alternative to traditional Western music theory. He adopts this position because 

Western music theory is founded upon the assumption that there exist twelve distinct pitch-classes 

as was discussed earlier. A hidden unit that encodes a strange circle behaves as if there are fewer 

basic pitch-classes. For example, a hidden unit that represents strange circles of major thirds 

(Figure 1-5) behaves as if there are only four different basic pitch-classes. 

However, a different approach to musical set theory seems strongly related to the strange circles 

reported by Dawson (2018). There is a growing interest in performing the discrete Fourier 

transform (DFT) on pitch-class sets, and then using components of the DFT to explore 

relationships between different musical entities. The next section introduces this approach in 

musical set theory, and shows there is a strong relationship between it and the strange circles 

reported by Dawson In other words, Dawson’s networks might be more strongly related to Western 

music theory – and less alien -- than he expected. 

Fourier Components and Strange Circles  

There are many accounts of the Fourier transform in the context of musical set theory (Amiot, 

2016; Callender, 2007; Lewin, 2001; Quinn, 2006, 2007) but one of the more comprehensible is 

Yust’s explanation using phase spaces (Yust, 2016). Fourier decomposition is a mathematical 

technique used to describe periodic functions in terms of simpler components (Tolstov, 1962). 

Looking at Figure 1- 6 we can see a complex wave in black, and, in colors, the simpler components 

(cosine functions) that when summed yield that complex wave.  
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Figure 1-6 A complex signal (blue) decomposed into two simpler periodic functions by Fourier analysis (red and green). 

 

The Fourier transform is extremely useful for analyzing the structure of musical sets (Amiot, 

2016; Callender, 2007). Yust (2016) uses one dimensional phase spaces to serve as the simpler 

components into which more complex signals (characteristic functions) are decomposed. Each 

phase space is generated by arranging pitch-classes in particular locations around a clock as 

illustrated in Figure 1- 7.  
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Figure 1-7 Yust’s (2016) six different Fourier phase spaces. 

 

How are phase spaces used to obtain the Discrete Fourier Transform (DFT) of a pitch-class set? 

One performs what Yust (2016) calls circular averaging. In circular averaging, one first extends 

a vector from the center of the circle to each of the location of a pitch-class on the circle for each 

pitch-class in the set. Figure 1-8 illustrates this for the C major triad (C,E,G) in each of the six 

phase spaces. That is on each phase space there are three vectors that have been created (one each 

for C, E and G). Then one sums these vectors together by placing them end to end. The dashed 

lines in Figure 1-8 represent the sum of the three vectors for each phase space. The orientation of 

a vector sum is the position of the pitch-class set on a phase space (i.e., the phase of the pitch class 

set in that space), while the length of the vector is its magnitude (i.e., the amount that the phase is 

to be weighted when used to reconstruct signals).  
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Figure 1-8 Circular averaging of the C major triad as performed by Yust (2016) 

 

To fully recover a pitch-class set from phase spaces, an axis is drawn in corresponding phase 

for that phase space, and then project each pitch-class onto that axis to obtain the cosine function 

for that phase space (Figure 1-9). Cosine functions of each phase space are then weighted by their 

magnitude and added.  

 

Figure 1-9 Phase space projections are determined from the vectors that result from circular averaging.  
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The relationship between Fourier theories of music and Dawson’s strange circles raises a few 

questions: Are hidden unit spaces finding phase spaces? If so, are the phase spaces being used to 

distinguish families of pitch-class sets? How are they being employed and how does the network 

arrive at that solution? and what is the relation between phase spaces and pitch-class set families? 

How many phase spaces would be needed to distinguish pitch-class set families? The questions 

are explored in this thesis, which investigates the relationship between network structure and 

Fourier components. 

Conclusion 

The aim of this thesis is to study how ANNs classify musical entities. The basic methodology 

involves training networks to solve musical problems, and then interpreting their internal structure 

in order to understand how these networks work. This thesis extends Dawson’s (2018) notion of 

strange circles by exploring whether network structures can be described in terms of Fourier 

components related to the DFT of musical sets. If such descriptions are possible, then a strong 

relationship between ANNs and musical set theory will be established. Furthermore, if such 

descriptions are possible, then Fourier components like Yust’s phase space projections become 

potential, biologically plausible, representations for musical cognition. Chapter 2 of this thesis 

examines 3 different multilayered perceptrons with Gaussian activation functions (value unit 

networks), each trained on a particular musical classification problem: a triad classifying, interval 

measure and scale mode classifying. Even though these networks differ in their task or stimulus 

encoding, we find that there is a correspondence between network structures and Fourier phase 

spaces. 

Having established that Fourier phase spaces are being used by value unit networks, Chapter 3 

tests if these phase spaces are also captured by networks whose processors employ a different 
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activation function. Several multilayered perceptrons with logistic activation functions were 

trained to classify triads. Chapter 3 also shows how one property of the logistic activation function 

can be used to describe ‘sympathetic vibration’ in these networks. For these networks, sympathetic 

vibration occurs when the similarity between the Fourier structure of a hidden unit and a stimulus 

increases, causing increased hidden unit activity. We describe how such sympathetic vibration is 

used by ANNs to generate correct responses. Chapter 4 provides closing remarks and discusses 

further directions in which to take this research. I argue that in order to inform cognitive science, 

researchers need to look inside the models that are being built. While many researchers are 

interested in studying music with artificial neural networks (Griffith & Todd, 1999; Todd & Loy, 

1991) they do so expecting to capture informal properties of music (Bharucha, 1999). As a result, 

they rarely look inside their networks. In our exploration of the internal structure of networks, we 

will find some very formal properties of music. Because these formal properties are found in 

ANNs, they are plausible candidates for representations used in musical cognition. ANNs become 

a medium to provide rich links between musical cognition and modern music theory. 
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Chapter 2 : Artificial Neural Networks Solve Musical Problems With 

Fourier Phase Spaces 

Note: A version of this chapter has been published: Dawson, M.R.W., Perez, A., & Sylvestre, S. (2020). 

Artificial neural networks solve musical problems with Fourier phase spaces. Scientific Reports, 10(1), 

7151. doi: 10.1038/s41598-020-64229-4. 

 

Abstract 

How does the brain represent musical properties? Even with our growing understanding of 

the cognitive neuroscience of music (Abbott, 2002; Peretz and Zatorre, 2003; Peretz and Zatorre, 

2005; Zatorre and McGill, 2005), the answer to this question remains unclear. One method for 

conceiving possible representations is to use artificial neural networks, which can provide 

biologically plausible models of cognition (Rumelhart and McClelland, 1986; Bechtel and 

Abrahamsen, 2002; Enquist and Ghirlanda, 2005). One could train networks to solve musical 

problems, (Todd and Loy, 1991; Griffith and Todd, 1999) and then study how these networks 

encode musical properties. However, researchers rarely conduct detailed examinations of network 

structure(Dawson, 2009, 2013, 2018) because networks are difficult to interpret, and because it is 

assumed that networks capture informal or subsymbolic properties (Smolensky, 1988; McCloskey, 

1991; Bharucha, 1999). Here we report very high correlations between network connection 

weights and discrete Fourier phase spaces used to represent musical sets (Amiot, 2016; Callender, 

2007; Quinn, 2006, 2007; Yust, 2016). This is remarkable because there is no clear mathematical 

relationship between network learning rules and discrete Fourier analysis (Rumelhart, Hinton et 

al., 1986; Dawson and Schopflocher, 1992; Amiot, 2016). That networks discover Fourier phase 

spaces indicates that these spaces have an important role to play outside of formal music theory. 
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Finding phase spaces in networks raises the strong possibility that Fourier components are possible 

codes for musical cognition. 

Introduction 

A main goal of studying musical cognition is identifying musical representations. Researchers 

seek musical representations by conducting psychological experiments, (Sloboda, 1985; 

Krumhansl, 1990; Deutsch, 1999) or by using the methods of cognitive neuroscience (Abbott, 

2002; Peretz and Zatorre, 2003; Peretz and Zatorre, 2005; Zatorre and McGill, 2005). However, 

the nature of musical representations is still unclear (Zatorre and McGill, 2005). 

A different method for generating new ideas about musical representations involves training 

artificial neural networks (ANNs). An ANN is a brain-like system of processors (analogous to 

neurons). Processors convert incoming signals into activity that is then sent to other processors via 

weighted connections (analogous to synapses). ANNs learn to convert stimuli into correct 

responses by modifying connection weights (Rumelhart, Hinton et al., 1986; Dawson and 

Schopflocher, 1992). Many researchers train ANNs to solve musical problems (Todd and Loy, 

1991; Griffith and Todd, 1999; Dawson, 2018). While one could examine network structures to 

discover new musical representations (Dawson, 2018), this approach is rarely taken. It is widely 

assumed that ANNs are difficult to interpret because they capture subsymbolic properties 

(Smolensky, 1988; McCloskey, 1991; Bharucha, 1999). Indeed, some music researchers are 

attracted to ANNs because they assume their networks capture important properties that cannot be 

formalized (Bharucha, 1999). 

Musical set theory provides a quite different, formal, approach to studying music (Forte, 1973; 

Lewin, 2007; Schuijer, 2008). It converts the twelve different Western pitch-classes (C, C#, D, 

D#, E, F, F#, G, G#, A, A#, B) into integers using the convention C = 0, C# = 1, and so on. Musical 
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entities such as intervals, scales, or triads are combinations of pitch-classes that can be represented 

as musical sets. For instance, using this scheme the C major triad (C, E and G) becomes the set (0, 

4, 7). Mathematical operations on musical sets uncover striking similarities between musical 

entities that otherwise seem quite dissimilar(Forte, 1973). Musical objects can also be encoded as 

ordered sets of twelve integers; the integer code of pitch-classes defines the order, while set 

members represent the number of each pitch-class present. Thus, the C major triad becomes (1, 0, 

0, 0, 1, 0, 0, 1, 0, 0, 0, 0). Theorists find important musical regularities by decomposing such sets 

with the discrete Fourier transform (DFT) (Quinn, 2006; Callender, 2007; Quinn, 2007; Amiot, 

2016; Yust, 2016). 

Schuijer notes that critics worry that musical set theory is too formal to capture important 

informal characteristics (Schuijer, 2008). If ANNs capture informal musical properties (Bharucha, 

1999), then we would expect that they are unrelated to musical set theory. Nevertheless, here we 

show striking relationships between networks and the discrete Fourier analysis of musical sets. 

An Example Network 

Figure 2-1A depicts an ANN for measuring the interval distance, in semitones, between pairs 

of pitch-classes. For instance, the pitch-classes C and G are separated by either 4 or 5 semitones 

depending on whether one measures distance clockwise or counterclockwise after arranging pitch-

classes in a circle (Figure 2-1B). The network is trained on 66 different pairs of pitch-classes using 

standard procedures (Dawson, 2018). To learn to respond correctly to each stimulus, the ANN 

requires four hidden units, each using a Gaussian activation function, to detect higher-order 

stimulus properties. Four hidden units is the minimum number that is required for the network to 

solve this problem. Previous research has shown that using the Gaussian activation function, and 

focusing on units that are limited to the minimum number of hidden units required, increases the 
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likelihood that the internal structure of a trained network can be understood (Dawson, 2009; 

Dawson, 2018). A trained network’s connection weights from the input units to each hidden unit 

are plotted in Figures 1C-1F. 

 

 

Figure 2-1 (A) An ANN for measuring distances between pairs of pitch-classes. Stimuli are presented by activating two input 

units; 1A illustrates presenting C and G. The ANN learns to activate the output units that measure (as in (B)) the distances 

between the two pitch-classes by processing signals from four hidden units. All output and hidden units employ a Gaussian 

activation function f(net) = e-π(net-µ)2 that ranges between 0 and 1; net is the processor’s incoming signal, and µ is the function’s 
mean. Weights are modified by a variant of the generalized delta rule (Dawson and Schopflocher, 1992). The bar plots (1C-1F) 

depict the weights of connections between input units and each hidden unit after training ends. 

 

These connection weights show formal, but qualitative, musical properties (Dawson, 2018). 

For example, Processor H1’s weights (Figure 2-1C) reveal tritone balance: two pitch-classes 

separated by a tritone (i.e., six semitones, such as C and F#, C# and G, etc.) are assigned weights 

equal in magnitude, but opposite in sign. Thus, the second six bars in Figure 2-1C are produced 
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by inverting the graph’s first six bars. Tritone balance is also true of H3 and H4 (Figures 1E, 1F). 

H2 reveals tritone equivalence, in which pitch-classes a tritone apart are assigned the same 

connection weights (Figure 2-1C). H2 also divides pitch-classes into two interval cycles in which 

adjacent members are separated by two semitones (e.g., once cycle is C, D, E, F#, G# and B). 

Members of one cycle are assigned a negative connection weight, while members of the other are 

assigned a positive weight. 

Crucially, Figures 1C-1F also suggest that weights are related to musical DFT components. 

Figure 2-2 presents the six Fourier phase spaces used to analyze musical sets by Yust (2016). Each 

phase space places the twelve pitch-classes at particular positions around a clock face whose center 

is (0, 0). If one plots the y-position on the clock of each pitch-class in the order C, C#, D, and so 

on, a cosine function is produced. Phase spaces differ from one another with respect to cosine 

frequency. The first phase space has a frequency of 1, the second has a frequency of 2, and so on. 

Yust uses these phase spaces to perform a Fourier decomposition of a musical set as follows: For 

each phase space, vectors are drawn from the phase space origin to each pitch-class that is present 

in the set. These vectors are then added. The orientation of the resultant vector represents the phase 

of the phase space’s cosine function; the length of the resultant vector represents the magnitude of 

the cosine function. To generate Fourier components for reconstructing a musical set, an oriented 

arrow is drawn to bisect the phase space; the orientation is that of the resultant vector for that phase 

space. Yust then projects each pitch-class onto the arrow and measures the distance from the 

projection to the phase space’s origin (see the Figure 2-2 bar graphs). When these projections are 

weighted by the magnitudes of the resultant vectors, the original musical set can be reconstructed. 
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Importantly, the qualitative structure of the phase space projections in Figure 2-2 is similar to 

Figures 1C – 1F. For example, tritone equivalence is true of the bar graphs for phase spaces Ph2, 

Ph4, and Ph6, while tritone balance is true of Ph1, Ph3, and Ph5. 

 

Figure 2-2 The six Fourier phase spaces, Ph1, Ph2, and so on used by Yust (2016). Each space represents the twelve pitch-
classes on a clock face. (A) Phase space Ph1. The arrow, pointing at 0 o’clock, indicates a phase of 0. Solid lines denote projections 

from the pitch-class locations on the clock to the arrow. (B) Distances between each projection in (A) and the center of the phase 

space. Distances towards the arrowhead are positive. (C, D) Ph2 and its projection distances. (E, F) Ph3 and its projection 

distances. (G, H) Ph4 and its projection distances. (I, J) Ph5 and its projection distances. (K, L) Ph6 and its projection distances. 
The projection distance graphs show that each phase space represents a cosine function, and that the difference between phase 

spaces is the frequency of this function. Ph1 has a frequency of 1, Ph2 has a frequency of 2, and so on. Musical sets can be 

reconstructed by adjusting the phase of each component, weighting them and summing them together. 

 

Is there a stronger, quantitative, relationship between hidden unit weights and Fourier phase 

spaces? To answer this question, we fit each set of hidden unit weights to each of six Fourier phase 

spaces. We rotated each phase space’s arrow to the position yielding the highest correlation 

between weights and projection distances. After finding the best-fitting phase, we used regression 

to predict weights from the distances in order to scale distances to match weights most closely. 
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Figure 2-3 illustrates the results of this analysis for the Figure 2-1 ANN; there is a high correlation 

between each set of weights and a phase space, with r ranging from 0.97 to 0.99. 

 

Figure 2-3. The results of fitting Fourier phase spaces to hidden unit weights for the Figure 2-1 network. (A) The weights for 

processor H1 are best fit by Ph3 (see Figure 2-2) with a phase of 2.47 (r = 0.97). (B) The relationship between H1 connection 

weights and projected distances after scaling the distances by 1.33. Projection distances are measured as described in Figure 2-2. 
(C) H2 weights are best fit by Ph6 with a phase of 3.87 (r = 0.97). (D) H2 weights and projected distances scaled by 2.02. (E) H3 

weights are best fit by Ph5 with a phase of 1.43 (r = 0.99). (F) The relationship between H3 weights and projected distances scaled 

by 0.774. (G) H4 weights are best fit by Ph1 with a phase of 7.63 (r = 0.98). (H) H4 weights and projected distances scaled by 

1.25. 

 

Results From Other Networks 

This result is replicated by other networks that learn to solve the same problem. We trained 

20 different ANNs to measure intervals, with each network starting from a random weight 

configuration. Across 80 different hidden units (i.e., the 4 hidden units for each network), the 

average correlation between weights and the best-fitting phase space was 0.945 (S.D. = 0.056). In 

a second set of simulations, we trained 20 different ANNs to classify scales (seven different pitch-
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classes) as belonging to one of seven different scale modes. Networks required five hidden units 

to classify 84 stimuli. Again, we found a very high correlation between one phase space and the 

connection weights of each of the 100 sets of hidden unit weights of these networks (mean = 0.881, 

S.D. = 0.131). In a third set of simulations, we trained 20 different networks to classify triplets of 

pitch-classes into four different triad types. These networks required three hidden units to classify 

48 stimuli. Each of the 60 hidden units from these networks had a high correlation between their 

connection weights and a single phase space. 

Figure 2-4 presents the mean correlation between connection weights and phase spaces for all 

of the simulations described above. For each condition, six different mean correlations were 

computed: the average correlation with the best fitting phase space, the average correlation with 

the next best fitting phase space, and so on. Figure 2-4 reveals that on average a hidden unit’s 

connection weights are highly related to a single Fourier phase space. The average correlation 

between the weights and the best fitting phase space is striking higher than is the average 

correlation between the weights and the second best fitting phase space. That the standard errors 

of adjacent bars in Figure 2-4 do not overlap indicates that the difference between them is 

statistically different. Dependent t-tests confirm this result for all comparisons. For example, when 

all problems are combined the mean correlation for the best fitting phase space (0.91) is 

significantly higher than the mean correlation for the next best fitting phase space (mean = 0.28; t 

= 33.819, DF = 239, p < 2.2e-16). Similarly, the means for the same two bars for mode network 

problems (0.88 vs 0.31) are significantly different t = 15.123, DF = 99, p < 2.2e-16).  
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Figure 2-4. The mean correlations between hidden unit weights and Fourier phase space projections, with standard errors. 
The ‘All Problems’ data is based upon 240 different hidden units. The ‘Interval’, ‘Mode’, and ‘Triad’ data is based upon 80, 100, 

and 60 hidden units respectively. For each hidden unit, six different correlations were calculated, one for each phase space. The 

correlations were then ordered from the best fit to the worst fit, as is reflected in the six different bars presented for each problem 

type. 

 

Discussion 

How do ANNs solve musical problems with the phase spaces they discover? Networks create 

a hidden unit space that codes each stimulus as a point whose coordinates are the hidden unit 

activities that it causes (Dawson, 2018). Gaussian output units carve this hidden unit space into 

decision regions with two parallel, narrowly separated, planes. To turn an output unit on, a point 

must lie between its planes. The network learns to position similar stimuli between the same 

planes, permitting an output unit to respond to them (and not to others). In music theory, Fourier 
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components represent rich properties of musical objects, such as the complete set of musical 

intervals spanned by a set of pitch-classes (Quinn, 2006; Callender, 2007; Quinn, 2007; Amiot, 

2016; Yust, 2016). Hidden unit activity represents the similarity between a phase space and a 

stimulus. Thus, when musical stimuli are arranged in hidden unit space, their positions are 

determined by their intervallic structure, which is explicitly encoded by Fourier phase spaces: the 

hidden unit weights.   

That ANNs discover discrete Fourier phase spaces is surprising because there is no obvious 

mathematical relationship between network training and computing the DFT. For instance, the 

DFT of a musical set requires correlating it with a various cosine and sine functions of different 

frequencies (Amiot, 2016). In contrast, ANNs are modified by small, iterative weight changes 

designed to reduce network response error (Rumelhart, Hinton et al., 1986; Dawson and 

Schopflocher, 1992). Furthermore, the DFT is computed for individual musical entities. In 

contrast, our ANNs are trained with multiple stimuli; the phase spaces they discover are applied 

to every stimulus. 

The discovery of discrete Fourier phase spaces in musical ANNs emphasizes the importance 

of conducting detailed examinations of networks (Dawson, 2018). It also reveals that these spaces 

have an important role to play beyond formal music theory. ANNs can generate new, biologically 

plausible, proposals about mental representation (Rumelhart and McClelland, 1986; Smolensky, 

1988; Bechtel and Abrahamsen, 2002; Dawson, 2004). If basic learning rules for ANNs discover 

Fourier phase spaces, then this strongly suggests that such spaces are possible representations for 

musical cognition. Finding these representations in ANNs raises the possibility that Fourier phase 

spaces can bridge the cognitive psychology of music with its cognitive neuroscience (Tillmann, 

Bharucha et al., 2003) 
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Chapter 3 : Artificial Neural Networks Use ‘Sympathetic Vibration’ To 

Classify Musical Triads 

 

Note: A version of this chapter is currently under editorial review:  Perez, A.I., Ma, H.L., and Dawson 

M.R.W. (Under editorial review). Artificial Neural Networks Use ‘Sympathetic Vibration’ To Classify 

Musical Triads. Cognitive Science, under review (10,796 words, submitted June 14, 2021). 

 

Abstract 

How does the brain represent musical properties? One method for conceiving representations 

is to use artificial neural networks, which can provide biologically plausible models of cognition. 

Our previous work studied networks whose processors used the Gaussian activation function, and 

discovered very high correlations between network connection weights and discrete Fourier phase 

spaces used to represent musical sets. The current research studies triad classification in networks 

whose processors use the more typical logistic activation function. Again, we discover Fourier 

components represented by connection weights. We then take advantage of a property of the 

logistic monotonicity, to determine hidden unit activity reflects the similarity between the Fourier 

structure of the hidden unit and of a stimulus. Metaphorically, hidden unit activity reflects 

‘sympathetic vibration’ between network and stimulus structures. Finally, we examine an example 

network to determine how ‘sympathetic vibrations’ are used to classify triads. We discover the 

network uses coarse coding in which individual hidden units are poor triad classifiers, but provide 

some evidence in favor of one classification over another. Output units combine and weight this 

evidence to determine a correct response to each stimulus. Our results indicate musical networks 

may often represent Fourier properties of music, as such representations are evident in networks 

which use radically different activation functions. Network use of Fourier phase spaces indicates 
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these spaces have an important role to play beyond formal music theory. Finding phase spaces in 

networks indicates Fourier components are possible codes for musical cognition. 

Introduction 

Musical cognition aims to identify musical representations. Many cognitive psychologists 

seek musical representations by experimenting on human listeners (Deutsch, 1999; Krumhansl, 

1990; Sloboda, 1985). Cognitive neuroscience methods have also been employed (Abbott, 2002; 

Peretz & Zatorre, 2003, 2005; Zatorre & McGill, 2005). The cognitive neuroscience of music 

raises a new question: how does the brain represent musical properties? Answers to this question 

remain elusive (Zatorre & McGill, 2005). 

One approach to discover how the brain might represent musical properties uses artificial neural 

networks (ANNs). An ANN is a brain-like computer model of processors (analogous to neurons). 

ANNs transform stimuli into responses (Rumelhart & McClelland, 1986). Processors convert 

incoming signals into activity, and send activity to other processors via weighted connections 

(analogous to synapses). A growing number of researchers explore musical cognition using ANNs 

(Dawson, 2018; Griffith & Todd, 1999; Todd & Loy, 1991). 

In this manuscript, we investigate musical representations by studying the ANN illustrated in 

Figure 3-1. This network, a multilayer perceptron (Rumelhart, Hinton, & Williams, 1986), 

classifies stimuli (musical triads) into four triad types. A triad is presented by activating (turning 

on or off) the ANN’s input units. Input units send activities to hidden units; connection weights 

scale each signal. Hidden units sum their received signals (i.e., calculate net input), and then 

convert net input into internal activity. Hidden unit activities represent higher-order stimulus 

features and send signals about stimulus features to output units. Output units convert hidden unit 
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signals into activity, again by transforming net inputs into activities. Figure 3-1 network classifies 

a triad by turning on one output unit and turning off the other three. 

 

Figure 3-1. An example multilayer perceptron for classifying triads. 

 

Many researchers favor using ANNs because they learn to perform a desired stimulus-response 

mapping. The connections in the Figure 3-1 network begin as small, random values, and are then 

modified by learning. Learning involves teaching the network with a training set, a collection of 

stimulus-response pairs. During learning, the network is presented a stimulus, causing the output 

units to activate. Error is computed by taking the difference between observed responses and the 

desired responses associated with the stimulus in the training set. Error is then used to modify the 

network’s connection weights to decrease network error (Rumelhart et al., 1986). Repeatedly 

presenting the training set, and using error to modify connection weights, reduces errors to each 

stimulus as much as possible. Crucially, networks can learn new representations for cognitive 
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phenomena. Researchers do not insert ideas about representation into networks; networks uncover 

surprising representations on their own. 

To understand musical representations discovered by ANNs, one must examine the networks’ 

inner structures – connection weights, features detected by hidden units, and so on (Dawson, 

2018). Without understanding network structure, ANNs cannot inform cognitive theory, yet 

researchers do not often interpret musical ANNs (McCloskey, 1991; Seidenberg, 1993). ANNs are 

popular in musical cognition because many researchers believe networks capture informal musical 

properties (Bharucha, 1999), and have little interest in investigating whether ANNs represent 

formal properties. 

However, musical ANNs discover rich, surprising, formal representations (Dawson, 2018; 

Dawson, Perez, & Sylvestre, 2020). For example, connection weights from input units to hidden 

units (Figure 3-1) often represent musical properties using discrete Fourier transform (DFT) 

components. In this paper, we determine whether this result extends to different networks, and 

investigate how such representations mediate musical decisions. Before describing our research, 

we introduce using the DFT to describe musical sets. 

Musical Sets and Fourier Phase Spaces 

One formal approach for studying music represents musical entities as mathematical sets (Forte, 

1973; Lewin, 2007; Schuijer, 2008). Set theorists convert the twelve different Western pitch-

classes (C, C#, D, D#, E, F, F#, G, G#, A, A#, B) into integers using the convention C = 0, C# = 

1, and so on. For example, using this scheme the C major triad (C, E and G) becomes the set (0, 4, 

7). An alternate C major set representation is (1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0), a representation called 

a pitch-class set or pc-set. A pc-set is an ordered set; the position in the set corresponds to each 

pitch-class’s integer code of pitch-classes (C in position 1, C# in position 2, etc.); set members 
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represent the number of each pitch-class present in an entity. Mathematical operations on musical 

sets uncover striking similarities between musical entities that otherwise seem dissimilar. 

One such operation is the discrete Fourier transform (DFT). The DFT converts a complex signal 

into a set of simpler components. Each component is a cosine of a particular frequency, magnitude, 

and phase. Performing DFT on a pc-set delivers twelve different cosines, each represented by a 

complex number (Amiot, 2016). The real and imaginary parts of the complex number define the 

cosine’s magnitude and phase. Adding together the cosines delivered by the DFT recreates the 

original pc-set. Fourier representations permit numerous musical relationships to be formalized 

(Amiot, 2016; Quinn, 2006, 2007; Yust, 2016, 2017a, 2019). 

This paper employs Yust’s method to determine a pc-set’s DFT (Yust, 2016). Yust uses six 

different phase spaces (Ph1, Ph2, etc.). Ph1 represents a cosine with 1 Hz frequency, Ph2 represents 

a cosine with 2 Hz frequency, and so on. A clock face represents each phase space; pitch-classes 

are arranged around the clock according to the space’s frequency (see Figure 3-2). The 

arrangements of pitch-classes causes each phase space to represent different harmonic qualities. 

Hanson describes our experience of tone combinations as being sensitive to a small number of 

combination types. The members of each type consist of sounds predominantly composed of one 

basic interval (e.g., mostly perfect fifths, mostly minor thirds, etc.) (Hanson, 1960). Each category 

proposed by Hanson is most closely associated with one of the six phase spaces (Quinn, 2006, 

2007). For instance, musical entities consisting mostly of perfect fifths are best described by Ph5. 

Yust (2016) describes the DFT as follows: Each pitch-class in a pc-set defines a vector from 

the clock’s center to the pitch-class position in a phase space. Figure 3-2 illustrates this for the C 

major triad; each phase space contains three vectors (dashed arrows) representing the triad’s three 

components (C, E, and G). The solid arrows in Figure 3-2 represent the sum of the three vectors. 
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A vector sum’s direction indicates a cosine’s phase; a vector sum’s length indicates the cosine’s 

magnitude. Yust’s method is formally equivalent to Amiot’s (Yust, 2016, 2017b). For instance, 

the vector sum’s x and y coordinates correspond, respectively, to the imaginary and real parts of 

the complex number representing a Fourier component. Similarly, each phase space is used twice 

when during set reconstruction, because each space is identical to two components delivered by 

Amiot’s DFT procedure. 

 

 Figure 3-2 Using Yust’s (2016) phase spaces to perform the DFT of the C major triad. Dashed arrows represent vector 

components of the triad. Solid arrows represent the vector sums of triad components. 

 

Yust (2016) uses vector sums (see Figure 3-2) to determine what cosine components to combine 

to reproduce the original pc-set. Yust constructs a diameter through a phase space (dashed arrows 

in Figure 3); the diameter’s orientation is identical to the vector sum’s direction in the space. Yust 

then projects each pitch-class from its position on the clock face to the diameter (solid lines in 
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Figure 3-3). Yust then determines the distance from the clock’s center, along the diameter, to each 

projection. A positive distance is from the center in the direction of the arrow on the dashed line; 

otherwise, the distance is negative (see Figure 3-3). The twelve distances define the phase space 

projections for a phase space. The phase space projections plotted in Figure 3-3 represent 

discretely sampled cosines. The original pc-set is reconstructed by summing the six sets of phase 

space projections together, after weighting them. 

 

Figure 3-3 Two examples of converting vector sums into phase space projections. The two dashed arrows are diameters 

pointing in directions of Figure 3-2 vector sums. The solid lines represent projections of pitch-classes to the diameter. The 

histograms indicate phase space projections: distances from the center of the circle along the diameter. 

 

Our paper focuses on phase space projections. Our previous research trained multilayer 

perceptrons to judge pc-sets, and examined the connections from input units to hidden units in 

these networks. We discovered connection weights represent phase space projections (Dawson et 

al., 2020). We now examine whether different kinds of networks also represent phase space 
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projections, and determine how phase space projections can mediate musical judgments, like 

classifying triads. 

Rationale For Current Research 

Figure 3-1 illustrates a general architecture, the multilayer perceptron. However, different kinds 

of multilayer perceptrons use different processing units. Processing units convert net input into 

internal activity by using a mathematical equation called an activation function. Different 

processing units use different activation functions; different activation functions cause dramatic 

changes in processor behavior. ANNs constructed from different processors often discover 

qualitatively different representations for converting stimuli into responses (Dawson, Berkeley, 

Medler, & Schopflocher, 1994; Shamanski & Dawson, 1994). 

One kind of processor is the value unit (Ballard, 1986). A value unit activates to a very narrow 

range of net inputs; if net input falls outside this range (too high or too low), then a value unit does 

not respond. Retinal receptors, tuned to a narrow range of light wavelengths, provide biological 

analogue. In an ANN, a value unit uses the bell-shaped Gaussian equation as the activation 

function (Dawson, 1990). In the equation, net represents net input, and µ is the mean of the 

Gaussian. When net input equals µ, the equation generates a maximum activity of 1. In Figure 3-

4A µ equals 0. 
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Figure 3-4. Two examples of different activation functions used by processors in multilayer perceptrons. (A) The bell-shaped 
activation function of a value unit, defined by the Gaussian equation. (B) the sigmoid-shaped activation function of an integration 

device, defined by the logistic equation. 

 

 An integration device uses a different activation function (Ballard, 1986). An integration 

device is not tuned to a narrow net input range, like a value unit, but instead responds 

monotonically: increased net input causes increased activity. Ballard describes motor neurons as 

example integration devices. While the relationship between integration device activity and net 

input is monotonic, it is not linear. Typically, integration devices ‘squash’ net input into a range 

between 0 and 1 by using a sigmoid-shaped activation function. One popular activation function 

for an integration device is the logistic equation (Rumelhart et al., 1986). The logistic function is 

illustrated in Figure 3-4B, along with its equation. In the equation, net represents net input, and θ 

is the bias of the equation. Bias is analogous to a neuron’s threshold. When net input equals θ, the 

equation generates activity of 0.5. In Figure 3-4B θ is equal to 0. 
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Our research interprets ANN structure. Value unit networks offer multiple advantages for this 

purpose. Value unit networks usually require fewer hidden units to solve classification problems 

(Dawson, 1990, 2004); network interpretation is also aided by some emergent properties not 

exhibited by integration devices (Berkeley, Dawson, Medler, Schopflocher, & Hornsby, 1995). 

For these reasons, our previous work on interpreting musical ANNs used value unit networks 

(Dawson, 2018). However, researchers who use ANNs to study musical cognition rarely use value 

units; integration device networks are the norm (Griffith & Todd, 1999; Todd & Loy, 1991). To 

connect our methodology to the broader musical ANN literature, we must also interpret integration 

device networks. 

In particular, we need to determine whether integration device networks also represent phase 

space projections. If phase space projections are only discovered by value units, then such a 

representation must be due to the Gaussian activation function. However, if integration devices 

also discover phase space projections, then these projections are likely not processor dependent, 

but instead reflect important stimulus properties. 

Furthermore, while our previous research identified phase space projections in value unit 

networks, we did not investigate how networks use such projections to make musical judgments. 

The monotonic nature of an integration device’s activation function offers advantages to such an 

investigation, provided integration device networks also represent phase space projections. A 

monotonic activation function like the logistic means hidden unit activity can be interpreted as 

measuring similarity between hidden unit and stimulus structure. If hidden units represent phase 

space projections, it stands to reason the similarity being measured is between the Fourier 

structures represented by hidden unit weights and similar stimulus properties. 
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To foreshadow our results, we train networks (Figure 3-1) to classify musical triads, using 

integration devices as hidden and output processors. After training, we examine connection 

weights, and discover integration devices also represent phase space projections. We then use the 

logistic function’s monotonicity to describe hidden unit activity as ‘sympathetic vibration’: a 

stimulus with Fourier structure more similar to the Fourier structure represented by a hidden unit’s 

weights produces higher hidden unit activity. Finally, we determine how output units use 

‘sympathetic vibration’ to classify musical triads. 

Method 

Task 

We know, from previous research, that value unit networks discover phase space projections 

when learning to classify musical stimuli. We wish to determine if the same is true for integration 

device networks by training integration device networks on a problem previously studied using 

value unit networks: classifying triads. In the triad classification task, we present a network a triad 

– a stimulus comprised of three different pitch-classes. The network learns to classify the stimulus 

as belonging to one of four different triad types: major, minor, diminished, or augmented. 

Network Architecture 

We train multilayer perceptrons to classify triads (Figure 3-1). Each network has twelve input 

units to represent a stimulus; each input unit represents the presence of a pitch-class. We present a 

stimulus to the network by turning on the three input units representing the three pitch-classes 

included in a triad; all other input units are turned off. Each network uses eight hidden units to 

detect higher-order stimulus properties to permit the network to classify each stimulus. Each 

hidden unit is an integration device. Each network uses four output units to represent triad type; 

again, all output units are integration devices. 
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We train a network to generate the correct response to each triad in the training set. When a 

triad is presented, the network should turn on the output unit representing the triad’s type, and 

should also turn off the other three output units. This is illustrated in Figure 3-1. The grey shading 

indicates the input units representing the pitch-classes C, E and G have been presented (i.e., the C 

major triad). It also indicates the network correctly activates the output unit representing a major 

triad, and correctly turns off the other three output units. 

We chose the Figure 3-1 architecture after conducting numerous pilot simulations, following 

our standard methodology (Dawson, 2018). Pilot simulations determine various parameter values 

(e.g., learning rate) as well as the minimum number of hidden units required to reliably train 

networks to classify triads. Our pilot simulations indicated the simplest integration device network 

required eight hidden units to learn the triad classification task. 

Training Set 

The training set consists of 48 different triads: 12 different major triads, 12 different minor 

triads, 12 different diminished triads, and 12 different augmented triads. We create these stimuli 

by taking each of the 12 possible pitch-classes in Western music as a tonic for each of the four 

different triad types. 

Table 3-1 shows the 48 stimuli. The numbers in the pitch-class columns of Table 3-1 indicate 

whether an input unit turned on (activity = 1) or off (activity = 0) when the triad is presented to a 

network. Also, we use enharmonic notation to represent the tonic and other components of each 

triad, as is standard practice in musical set theory. 

Table 3-1 

Table 3-1. The representation of each triad in the training set. Each pitch-class representation column is associated with an input unit of the 

Figure 3-1 network. In each row provides input unit activity. 1 indicates an input unit is ‘on’ and 0 indicates an input unit is ‘off’. 

  Pitch-Class Representation 

Type Tonic C C# D D# E F F# G G# A A# B 

Augmented 

C 1 0 0 0 1 0 0 0 1 0 0 0 

E 1 0 0 0 1 0 0 0 1 0 0 0 

G# 1 0 0 0 1 0 0 0 1 0 0 0 

B 0 0 0 1 0 0 0 1 0 0 0 1 
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D# 0 0 0 1 0 0 0 1 0 0 0 1 

G 0 0 0 1 0 0 0 1 0 0 0 1 

A# 0 0 1 0 0 0 1 0 0 0 1 0 

D 0 0 1 0 0 0 1 0 0 0 1 0 

F# 0 0 1 0 0 0 1 0 0 0 1 0 

A 0 1 0 0 0 1 0 0 0 1 0 0 

C# 0 1 0 0 0 1 0 0 0 1 0 0 

F 0 1 0 0 0 1 0 0 0 1 0 0 

Diminished 

A 1 0 0 1 0 0 0 0 0 1 0 0 

C 1 0 0 1 0 0 1 0 0 0 0 0 

D# 0 0 0 1 0 0 1 0 0 1 0 0 

F# 1 0 0 0 0 0 1 0 0 1 0 0 

A# 0 1 0 0 1 0 0 0 0 0 1 0 

C# 0 1 0 0 1 0 0 1 0 0 0 0 

E 0 0 0 0 1 0 0 1 0 0 1 0 

G 0 1 0 0 0 0 0 1 0 0 1 0 

B 0 0 1 0 0 1 0 0 0 0 0 1 

D 0 0 1 0 0 1 0 0 1 0 0 0 

F 0 0 0 0 0 1 0 0 1 0 0 1 

G# 0 0 1 0 0 0 0 0 1 0 0 1 

Major 

A# 0 0 1 0 0 1 0 0 0 0 1 0 

C# 0 1 0 0 0 1 0 0 1 0 0 0 

E 0 0 0 0 1 0 0 0 1 0 0 1 

G 0 0 1 0 0 0 0 1 0 0 0 1 

B 0 0 0 1 0 0 1 0 0 0 0 1 

D 0 0 1 0 0 0 1 0 0 1 0 0 

F 1 0 0 0 0 1 0 0 0 1 0 0 

G# 1 0 0 1 0 0 0 0 1 0 0 0 

A 0 1 0 0 1 0 0 0 0 1 0 0 

C 1 0 0 0 1 0 0 1 0 0 0 0 

D# 0 0 0 1 0 0 0 1 0 0 1 0 

F# 0 1 0 0 0 0 1 0 0 0 1 0 

Minor 

A# 0 1 0 0 0 1 0 0 0 0 1 0 

C# 0 1 0 0 1 0 0 0 1 0 0 0 

E 0 0 0 0 1 0 0 1 0 0 0 1 

G 0 0 1 0 0 0 0 1 0 0 1 0 

B 0 0 1 0 0 0 1 0 0 0 0 1 

D 0 0 1 0 0 1 0 0 0 1 0 0 

F 1 0 0 0 0 1 0 0 1 0 0 0 

G# 0 0 0 1 0 0 0 0 1 0 0 1 

A 1 0 0 0 1 0 0 0 0 1 0 0 

C 1 0 0 1 0 0 0 1 0 0 0 0 

D# 0 0 0 1 0 0 1 0 0 0 1 0 

F# 0 1 0 0 0 0 1 0 0 1 0 0 

 

Table 3-1 reveals the relationship between our stimuli and musical set theory. The numbers in 

Table 3-1 indicate whether input units are turned on or off. However, each row can also be 

interpreted as a triad’s pc-set. Later we use the pc-set for each stimulus to determine its Fourier 

structure, and link this structure to like structure represented by hidden units. 

Training 

We use the generalized delta rule to train networks to solve the triad classification problem 

(Rumelhart et al., 1986). We initialize all connection weights in a network to a random value 

between -0.1 and 0.1 before training began. The bias of each processor – the value of θ in the 
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logistic equation – is held at 0 throughout training. We use a 0.1 learning rate to train networks. 

Our pilot simulations indicated the settings we adopted would train our networks to classify triads. 

Training proceeds as follows: we present a stimulus, causing a network to respond. We use the 

generalized delta rule to modify connection weights based on response error (Rumelhart et al., 

1986). We then repeat this procedure for the next stimulus. We present stimuli in an epoch-by-

epoch fashion, as is our standard practice (Dawson, 2004, 2005). One epoch involves training a 

network once on each stimulus in the training set. We randomize stimulus order before each epoch. 

We train a network until it converges upon a solution to the triad classification problem. We define 

a converged network as one generating a ‘hit’ for each output unit for each stimulus in the training 

set. We define a ‘hit’ as output activity 0.9 or higher when the desired response is 1, or as output 

activity 0.1 or lower when the desired response is 0. 

We train 20 different networks; because connection weights are randomized prior to training, 

each network is a different ‘subject’ in our study. At issue is whether each network discovers phase 

space projections. Each network solves the triad classification problem. On average, convergence 

occurs after 16,5302.2 epochs. The slowest network required 39,509 epochs; the fastest network 

required 4,888 epochs. 

Results 

We present our results as follows: First, we report all trained networks represent phase space 

projections in hidden unit connection weights. Second, we describe hidden unit activity as 

‘sympathetic vibration’ between the Fourier structures of the unit and a stimulus. We then interpret 

an example network to determine how sets of ‘sympathetic vibrations’ are used to classify triads. 

Discovering Phase Space Projections 
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Do our integration device networks represent phase space projections in order to classify triads? 

To answer this question, we fit phase space projections from each phase space to each hidden 

unit’s connection weights, a method used in our previous research (Dawson et al., 2020). For each 

phase space, we begin with a diameter pointed to 0 o’clock. We determine the phase space 

projections to this diameter, and correlate them with a hidden unit’s weights. We then rotate the 

diameter clockwise by one degree, and repeat the process. We use this procedure to find the 

diameter providing the best fit (i.e., the highest correlation) with the weights. We repeat this 

process to find the best fit between the projections of the next phase space to the same connection 

weights. In other words, we find the best fitting phase space projections from each of the six phases 

spaces to one hidden unit’s connections. We then repeat this process for the next hidden unit. 

Table 3-2 summarizes our results for all hidden units from all networks. We find a very high 

correlation between each hidden unit’s connection weights and phase space projections from one 

phase space. Across all 160 hidden units in our networks, correlations involving the best-fitting 

phase space range from a maximum of 1.00 to a minimum of 0.49. The average correlation 

involving the phase space projections from the next best fitting phase space is much lower, ranging 

from a maximum of 0.64 to a minimum of 0.01. The Table 3-2 results are quite similar to previous 

results obtained for value unit networks (e.g., Dawson et al., 2020, Figure 3-4). Clearly, integration 

device networks discover phase space projections. 

Table 3-2 

The mean values of the best fits between hidden unit weights and phase space projections for six phase spaces, with standard 

deviations provided in parentheses. Fit is the correlation between phase space projections and connection weights. 

Best Fit 2nd Best Fit 3rd Best Fit 4th Best Fit 5th Best Fit Worst Fit 

0.83 
(0.13) 

0.35 
(0.17) 

0.25 
(0.13) 

0.16 
(0.11) 

0.11 
(0.08) 

0.07 
(0.07) 
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We also perform the DFT on each set of connection weights to be compared to our fitted phase 

spaces. A DFT of connection weights provides information not provided by our fitting 

methodology (i.e., real and imaginary components) which we use later. Table 3 summarizes our 

results; it is analogous to Table 3-2, but replaces the notion of ‘best fitting phase space’ with ‘phase 

space of highest magnitude’. The magnitudes in Table 3-3 are strikingly similar to fit values in 

Table 3-2: just as the average best fit in Table 3-2 is roughly twice the value of the next best fit, 

the average highest magnitude in Table 3-3 is roughly twice the value of the next highest 

magnitude. 

Table 3-3 

The mean magnitudes of the Fourier components for six phase spaces, with standard deviations provided in parentheses. 

Highest 

Magnitude 

2nd Highest 

Magnitude 

3rd Highest 

Magnitude 

4th Highest 

Magnitude 

5th Highest 

Magnitude 

Lowest 

Magnitude 

55.87 

(11.05) 

23.53 

(13.00) 

16.36 

(9.96) 

10.77 

(8.23) 

7.41 

(6.74) 

4.88 

(5.62) 

 

The similarities between Tables 2 and 3 suggest our fitting methodology produces similar phase 

space projections to the components delivered by the DFT of connection weights. We can test this 

hypothesis by comparing the differently obtained phase space projections. For all 160 hidden units, 

we correlate the phase space projections obtained by our fitting procedure with the corresponding 

DFT phase space projections. The mean correlation is nearly perfect (r = 0.97, SD = 0.04). Similar 

results are obtained when we correlate the six fit values from our fitting procedure to the 

corresponding magnitudes delivered by the DFT (mean r = 0.98, SD = 0.03). The excellent fits 

between phase space projections and hidden unit weights (Table 3-2), as well as the strong 

relationship between these fitted projections and the fitted projections obtained from a DFT of the 

connection weights, clearly indicate the hidden units in our integration device networks represent 

Fourier properties. 
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Discovering phase space projections in integration device networks permits us to explore issues 

neglected in our previous research. How do integration device networks use phase space 

projections to classify triads? We answer this question in two stages. First, we describe hidden unit 

activity as ‘sympathetic vibration’ due to similarity between the Fourier structure of a hidden unit 

and a presented triad. Second, we explore how the output units use sets of ‘sympathetic vibrations’ 

to determine triad type. 

Hidden Unit Activity As ‘Sympathetic Vibration’ 

External vibrations can cause a passive body to vibrate. Such sympathetic vibration arises from 

harmonic similarity between the body and the stimulus. Here we propose a similar, metaphorical, 

account of our networks. A hidden unit represents phase space projections with its connection 

weights. We propose hidden unit activity reflects the similarity between the unit’s phase space 

structure and the stimulus’s phase space structure. As this similarity increases, so too does hidden 

unit activity, due to the monotonic nature of the logistic equation. Metaphorically, activity 

represents a hidden unit’s ‘sympathetic vibration’ to a stimulus. 

A hidden unit’s net input is the sum of the weighted signals received from input units. 

Mathematically, net input is the inner product between a vector of weights and a vector of input 

unit activities. In linear algebra, the cosine of the angle between two vectors is their inner product 

divided by each vector’s length. We hypothesize a hidden unit’s ‘sympathetic vibration’ is related 

to such similarity between hidden unit and stimulus phases. As this angle becomes smaller, phases 

of the unit and the stimulus point in more similar directions, causing higher inner products. In turn, 

the logistic equation’s monotonicity means higher inner products produce higher hidden unit 

activities. 
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Figure 3-5 uses the F major triad to illustrate our hypothesis. In this figure, each clock face 

illustrates the highest magnitude phase space for one hidden unit in a network, as determined from 

the DFT of the unit’s connection weights. The dashed arrow represents the phase represented by 

the connection weights. The solid arrow represents the phase for the F major triad in the same 

space. We present two values beneath each clock face. One is the net input: the inner product 

between connection weights and input unit activities. The other is the cosine of the angle between 

the solid and dashed arrows (the angle indicated by θ in each clock). When the two arrows point 

in similar directions, both the net input and the cosine are high and positive. When the two arrows 

point in quite different directions, both the net input and the cosine are high and negative. For this 

example, the correlation between the eight net inputs and the corresponding cosines in Figure 3-5 

is 0.98. 

 

Figure 3-5. An illustration of the ‘sympathetic vibration’ hypothesis. Each circle represents the best fitting phase space for one 
of a network’s eight hidden units, and the dashed arrow represents the unit’s preferred phase for the space. The solid arrow 

represents the phase of the F major triad in the same space. The angle between the two arrows is represented by θ. The net input 

computed for each hidden unit, and the cosine of θ, are presented beneath each circle. 



51 

 

 

However, Figure 3-5 idealizes the relationship between a hidden unit and a stimulus. It assumes 

the relationship only involves one phase space. However, defining ‘sympathetic vibration’ with 

only one phase space causes problems. For instance, when triads have zero magnitudes in a phase 

space, such as augmented triads in Ph4, the comparison depicted in Figure 3-5 is impossible, 

because the solid arrow has zero length. Furthermore, while hidden unit weights typically have a 

high magnitude for one phase space, they also have nonzero magnitudes for other phase spaces 

(see Table 3-3). Therefore, hidden unit weights represent more complex harmonic structure 

involving multiple phase spaces. A better account of ‘sympathetic vibration’ must consider all 

phase spaces when measuring the similarity between hidden units and stimuli. 

To make this more complex comparison, we first perform Yust’s (2016) DFT on each triad. We 

then create a measure of similarity between hidden units and stimuli which considers all six phase 

spaces from the DFTs. As noted earlier, the DFT delivers the real and imaginary components of a 

complex number for each phase space. These two values provide a phase space’s phase and 

magnitude. We define the similarity between two DFTs as the correlation between their respective 

real and imaginary components. That is, we correlate the real and imaginary components (twelve 

numbers, two for each phase space) of a hidden unit’s DFT to the corresponding components of a 

triad’s DFT. 

We compute the similarity between each triad and each hidden unit for each network, producing 

7,680 comparisons. According to our ‘sympathetic vibration’ hypothesis, the higher the similarity, 

the higher the unit’s activity. To evaluate this hypothesis across all networks, we correlate our 

7,680 similarity measures with the corresponding activities produced in a hidden unit by a 

stimulus. The resulting correlation is 0.69. This supports our ‘sympathetic vibration’ hypothesis. 

As the similarity between phase space structures increases, so too does hidden unit activity. 
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It is remarkable the correlation between DFT similarity and hidden unit activity is as high as 

0.69. A network’s basic operation computes inner products between weights and input activities. 

The inner product most strongly relates to an operation involving phase space projections (Figure 

3-3) due to the strong relationship between projections and weights (Tables 3-2 and 3-3). Our use 

of real and imaginary components to measure similarity is far removed from operations involving 

phase space projections. Hidden unit activity is also removed from an inner product involving 

phase space projections, because activity is a logistic transformation of the inner product. 

Nevertheless, a strong relationship exists between DFT similarity and hidden unit activity.  

We have now established two important results. First, integration device networks represent 

phase space projections. Second, hidden unit activities reflect the similarity between Fourier 

components of hidden units and stimuli. We now examine how hidden unit activities are used to 

classify triads by exploring how a network’s output units convert hidden unit signals into correct 

responses. 

Coarse Coding In An Example Network 

Artificial neural networks can provide new ideas about representation. Coarse coding, detailed 

below, exemplifies a network-inspired representation. Below, we illustrate coarse coding in one 

example network to explain how the network converts ‘sympathetic vibrations’ into triad 

classifications. 

Our example network solved the triad classification problem after 5116 training epochs. Table 

3-4 provides the network’s connection weights from input units to hidden units. 

Table 3-4 

The connection weights from each input unit to each hidden unit for the network being analyzed. 

 Input Unit 

Hidden Unit C C# D D# E F F# G G# A A# B 

H1 -9.25 -1.25 13.48 -9.41 -1.19 13.80 -9.02 -1.13 14.15 -8.77 -1.10 13.88 

H2 -0.36 8.05 11.03 -2.50 -8.02 11.05 6.39 0.99 -1.88 6.46 8.92 -5.48 
H3 6.67 -3.53 0.20 7.96 6.47 -5.55 2.36 6.84 7.90 -5.28 -1.78 9.91 

H4 11.76 -5.76 -0.87 11.37 -6.44 -1.14 10.04 -6.74 -1.25 10.99 -5.70 -1.18 
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H5 6.76 6.68 -2.73 1.09 5.71 8.64 -2.61 -1.26 6.12 5.80 -2.42 1.40 
H6 -7.57 12.81 -0.67 -7.34 12.28 -0.61 -8.31 11.60 -0.65 -8.07 13.06 -0.52 

H7 11.38 -3.40 4.46 12.18 -4.53 4.18 12.13 -2.87 4.70 11.77 -4.08 4.45 

H8 -0.32 5.87 -6.58 -0.32 5.85 -6.55 -0.33 5.68 -6.63 -0.32 5.76 -6.25 

 

The connection weights in Table 3-4 determine hidden unit activity. When a stimulus is 

presented, each hidden unit calculates net input by computing the inner product of its connection 

weights (represented as a vector) with the input unit activities (represented as another vector). The 

hidden unit then transforms net input into activity using the logistic equation. Hidden unit activity 

becomes a signal to send onwards to output units. 

To illustrate, imagine presenting the C augmented triad to the network. For this stimulus, 

Hidden Unit 1’s net input is the inner product between the first row of Table 3-1 and the first row 

of Table 3-4. Algebraically, this inner product is ((-9.25 · 1) + (-1.25 · 0) + (13.48 · 0) + (-9.41 · 

0) + (-1.19 · 1) + (13.80 · 0) + (-9.02 · 0) + (-1.13 · 0) + (14.15 · 1) + (-8.77 · 0) + (-1.10 · 0) + 

(13.88 · 0)) = ((-9.25 · 1) + (-1.19 · 1) + (14.15 · 1)) = 3.71. Hidden Unit 1’s logistic equation 

transforms the net input, 3.71, into activity equal to 0.978. 

One could mechanically describe network behavior with equations for net input and for unit 

activity. In contrast, we aim to provide a more meaningful network description. What musical 

interpretation might we give to a hidden unit’s net input or activity? How does the network use 

this musical interpretation to classify triads? 

The connection weights in Table 3-4 make such a musical interpretation possible because they 

represent Fourier phase space projections. Table 3-5 provides the phase space from the DFT of 

each connection weight set (Table 3-4). Table 3-5 reveals five hidden units have the strongest 

relationship – the highest magnitude -- to phase space projections from Ph4 (H1, H4, H6, H7, H8). 

The other three have the strongest relationship to with phase space projections from Ph3 (H2, H3, 

H5). Though different hidden units most strongly related to the same phase space, this relationship 
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involves different phases (represented as clock settings), as shown by the phase values in Table 3-

5. The reason that different hidden units are most sensitive to the same phase space, but at different 

phases, will be detailed below. 

Table 3-5 

The Fourier phase space analysis for the network being interpreted. Each fit value is the correlation between a hidden unit’s 

connection weights and the best fitting phase for a phase space. The phase value is the clock setting for the best fitting phase. 

Cells highlighted in grey indicate the best fitting phase space for each hidden unit. 

Hidden 

Unit 

 
Ph1 Ph2 Ph3 Ph4 Ph5 Ph6 

H1 
Magnitude 1.50 0.17 0.57 80.70 0.51 0.08 

Phase 3.72 4.47 10.32 4.67 5.65 3.80 

H2 
Magnitude 0.66 11.06 48.97 4.75 17.56 2.50 

Phase 3.05 9.77 7.38 3.98 11.30 8.52 

H3 
Magnitude 1.10 4.30 44.01 4.14 8.08 11.47 

Phase 10.42 11.07 2.08 2.30 5.97 11.47 

H4 
Magnitude 3.14 0.85 0.87 61.26 1.89 0.00 

Phase 11.65 5.68 10.45 0.55 10.70 11.45 

H5 
Magnitude 2.69 4.24 33.00 4.08 3.51 11.51 

Phase 10.12 2.23 10.77 3.02 9.15 7.55 

H6 
Magnitude 2.34 1.28 0.38 71.15 1.99 0.25 

Phase 11.50 4.37 8.87 7.32 9.00 1.15 

H7 
Magnitude 1.06 2.52 1.53 54.01 0.75 2.26 

Phase 4.87 9.35 4.27 1.05 7.83 3.17 

H8 
Magnitude 0.42 0.45 0.11 42.58 0.46 0.35 

Phase 11.63 2.23 2.28 9.00 5.25 8.27 

 

In the example network, each hidden unit generates a ‘sympathetic vibration’ to a stimulus. 

‘Sympathetic vibration’ – realized as hidden unit activity -- represents the similarity between the 

Fourier components represented by a hidden unit and like components for describing the stimulus. 

Importantly, such ‘sympathetic vibration’ predicts an individual hidden unit will not accurately 

discriminate different kinds of triads from one another. Two reasons account for the poor 

discrimination of individual hidden units. 

First, triads belonging to the same type do not always share the same phase in a phase space, as 

illustrated in Figure 3-6. Figure 3-6 represents the phases of the 48 triads in the two highest 

magnitude phase spaces for our example network, Ph3 and Ph4. It reveals four different subtypes 

of augmented triads; each subtype has a different Ph3 phase. Similarly, major triads have three 

different subtypes; each subtype has a different Ph4 phase. Under ‘sympathetic vibration, two 
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triads belonging to the same type, but belonging to different subtypes must produce different 

activities in the same hidden unit, because they must have different similarities to the hidden unit’s 

phase structure. 

 

 

Figure 3-6. The phases for different types of triads in the two phase spaces (Ph3 and Ph4) to which hidden units in the example 
network are most sensitive. Phases are indicated by the directions of the solid arrows. When more than one arrow is present, 

different subsets of triads have different phases in the same space. The triads belonging to different subsets are detailed later in 

Table 3-8 

 

Second, Figure 3-6 also reveals different types of triads can produce similar activity in the same 

hidden unit because different triad types may have similar phase space structures. For example, 

different augmented triad subtypes and diminished triad subtypes have identical Ph3 phase 

components. As a result, some augmented triads produce similar activity in one hidden unit to the 

activity produced by some diminished triads. 
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In short, there are two reasons to expect an individual hidden unit’s activity cannot be used to 

discriminate triad type. We confirm this in Table 3-6, which summarizes hidden unit activities 

produced by different triads in the example network. We classify hidden unit activity as high if it 

is greater than 0.7, as low if it is less than 0.3, and as medium otherwise. We count the times each 

triad type produces such responses in each hidden unit. 

Table 3-6 

 The number of times each type of triad produces high, medium, or low activity in each 

hidden unit in the example network. 

Activity Type Triad Type Hidden Unit 

  H1 H2 H3 H4 H5 H6 H7 H8 

High Activity 

Aug 12 6 6 12 9 12 12 0 

Dim 4 12 12 4 12 4 8 4 

Maj 4 8 6 4 8 8 12 4 

Min 8 7 9 8 9 4 8 8 

Medium Activity 

Aug 0 0 3 0 0 0 0 0 

Dim 0 0 0 0 0 0 0 0 

Maj 0 0 0 0 2 0 0 0 

Min 0 0 0 0 0 0 0 0 

Low Activity 

Aug 0 6 3 0 3 0 0 12 

Dim 8 0 0 8 0 8 4 8 

Maj 8 4 6 8 2 4 0 8 

Min 4 5 3 4 3 8 4 4 

 

Table 3-6 demonstrates each hidden unit’s activity is, by itself, a poor predictor of triad type. 

For every hidden unit, high activity is produced by at least three different kinds of triads. 

Furthermore, different instances of the same triad type produce markedly different activities (i.e., 

high vs low) in the same hidden unit. For example, six major triads produce high activity in H3, 

but the other six major triads produce low activity in the same hidden unit. How does the network 

use these poor detectors to correctly respond? It does so by employing coarse coding. 

Coarse coding is a distributed representation (Hinton, 1986; Van Gelder, 1991). A distributed 

representation uses activity from several network components to represent a single concept. 
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Artificial neural networks use distributed representations when individual hidden unit activities do 

not accurately distinguish one concept from another (Churchland & Sejnowski, 1992; Hinton, 

McClelland, & Rumelhart, 1986). Even when individual hidden units are poor discriminators, their 

combined activities can accurately represent one concept when each hidden unit represents 

information from different perspectives. 

We illustrate the network’s coarse coding with a Venn diagram (Figure 3-7). Each oval in this 

figure represents a hidden unit’s state of activity (along the lines of Table 3-6). For example, in 

Figure 3-7 all triads in one oval produce high activity in H1, all triads in another reflects low 

activity in H2, and so on. Within each oval, we place the type (and subtype) of triads producing 

the oval’s activity state in the hidden unit. (Specific details about triad subtypes are provided in 

Table 3-8.) For instance, high activity in H1 is produced by Ph4 subtype 1 diminished triads, by 

Ph3 subtypes 1, 2, and 3 augmented triads, by Ph4 subtype 1 major triads, and by Ph4 subtypes 1 

and 3 minor triads. 

The ovals intersect one another in the middle of Figure 3-7. The intersection contains any triads 

found every oval. In Figure 3-7, we only find Ph4 subtype 1 in this intersection. Thus, combining 

the activity of each hidden unit uniquely identifies triad type, in this case particular minor triads. 

We can create analogous accounts for other patterns of hidden unit activities. In each account, the 

intersection reveals only one triad type. 
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Figure 3-7. Coarse coding in the example network. Each oval contains all triads that produce a Table 3-6 value of activity in 
a hidden unit. Triads are indicated in terms of type and subtype. For instance, ‘Aug 1’ indicates augmented triads of subtype 1 in 

Ph3, and ‘Min 1’ indicates minor triads of subtype 1 in Ph4, as detailed in Table 3-8. The intersection of the ovals indicates that 

the only triads which produce these eight values of hidden unit activities are minor triads of subtype 1 in Ph4. 

 

Figure 3-7 illustrates the essence of this network’s coarse coding. Each hidden unit is a poor 

triad discriminator, because different triad types cause similar activity in the unit, as shown by the 

diversity of triads belonging to each oval. However, combining all activities (i.e., intersecting the 

sets) reveals one triad type. 

Importantly, identifying the correct triad type using this method requires each hidden unit to 

have a different perspective on stimuli. To be more particular, for the intersection in Figure 3-7 to 

pick out one triad type, there must be different stimuli in different ovals. 

In our network, each hidden unit’s different perspective is reflected in its phase structure. Why 

are several hidden units in the network highly sensitive to the same phase space, but at a different 

phase (Table 3-5)? Such phase differences provide the different perspectives required by the coarse 
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coding illustrated in Figure 3-7. Different phases, for the same phase space, cause different 

activities to be produced in different hidden units by the same stimulus. 

Figure 3-7 represents a network’s response as arising from intersecting subsets. The network 

uses a different procedure to accomplish the same result. In this procedure, each output unit 

computes its own net input using the inner product between connection weights and hidden unit 

activities. Net input is then converted into output activity using the logistic activation function. In 

this network, the connection weight values convert patterns of hidden unit activity into correct 

output unit responses. In other words, when the network converts hidden unit activities into output 

unit activities, it does so via connection weights that deliver a result analogous to the set 

intersection illustrated in Figure 3-7. Let us briefly explore how the net inputs for the output units 

are functionally equivalent to intersecting sets. 

Table 3-7 presents the connection weights from each hidden unit to each output unit in our 

example network. When hidden units activate, they send a signal to each output unit, which then 

determine their net input. Net input is the inner product between an output unit’s weights (a unit’s 

row in Table 3-7) and the vector representing the eight hidden unit activities. Net input is then 

converted to output unit activity using the logistic equation. With the connection weights in Table 

3-7, presenting a triad will produce high output activity in one output unit, and low output activity 

in the other three. 

Table 3-7 

 Connection weights from hidden units to output units. 

 Connection Weights From Hidden Units To Each Output Unit 

 H1 H2 H3 H4 H5 H6 H7 H8 

Augmented 1.92 -6.67 -6.63 7.22 -5.22 7.31 -0.50 -1.51 

Major -9.44 -3.13 -3.36 -5.99 -1.86 4.99 13.54 -7.18 

Minor 7.79 -1.12 -1.04 4.93 -1.16 -9.51 -7.01 8.09 

Diminished -6.14 6.09 6.02 -8.01 4.06 -7.23 -4.73 -1.96 

 



60 

 

A positive connection weight makes a signal to an output unit excitatory, and increases net 

input. In contrast, a negative weight makes a signal to an output unit inhibitory, and decreases net 

input. With these two observations in mind, one can inspect Table 3-7 to determine an output unit’s 

‘ideal stimulus’ (Dawson, Kremer, & Gannon, 1994). The ideal stimulus produces the maximum 

net input for an output unit. To do so, the ideal stimulus requires the smallest activity in hidden 

units associated with negative connection weights, and the highest activities in hidden units 

associated with positive connection weights. For example, according to Table 3-7 the ideal major 

triad produces high activity in H6 and H7 and produces low activity in the other six hidden units. 

Similarly, the ideal minor triad produces high activity in H1, H4 and H8 and produces low activity 

in the other five hidden units. 

However, not every stimulus produces the ideal pattern of activity in the eight hidden units. We 

see this in Table 3-8, which presents the hidden unit activities produced by each triad subtype. 

Consider major triads belonging to Ph4 subtype 1. They produce undesirable, high activity in H1, 

while other major triad subtypes do not. Similarly, major triads belonging to Ph4 subtype 1 fail to 

produce desirable, high activity in H6, while the other two subtypes do. Similar observations can 

be made about the other triads. 

Table 3-8 

 The activity produced in each hidden unit by each triad subtype, along with the net input these produce in each output unit. Net inputs that cause output units to 

turn on are highlighted in grey. 

    Activity Produced In Each Hidden Unit Net Input To Each Output Unit 

Triad 

Type 

Ph3 

Subtype 

Ph4 

Subtype 
Tonics H1 H2 H3 H4 H5 H6 H7 H8 Aug Maj Min Dim 

Aug 1  C, E, G# 0.98 0.00 1.00 0.98 1.00 0.98 1.00 0.25 3.44 -3.67 -4.08 -16.10 

Aug 2  B, D#, G 0.97 0.00 1.00 0.97 0.77 0.98 1.00 0.29 4.39 -3.39 -3.58 -16.88 

Aug 3  A#, D, F# 0.97 1.00 0.69 0.97 0.00 0.98 1.00 0.24 3.96 -3.67 -3.92 -15.77 

Aug 4  A, C#, F 0.98 1.00 0.00 0.98 1.00 0.98 1.00 0.27 3.38 -3.60 -4.00 -16.09 

Dim 1 1 
A, C, D#, 

F# 
0.00 0.97 1.00 1.00 1.00 0.00 1.00 0.28 -12.03 -2.70 -3.13 2.74 

Dim 1 2 
A#, C#, E, 

G 
0.03 1.00 0.76 0.00 1.00 1.00 0.00 1.00 -11.07 -10.00 -4.26 5.38 

Dim 1 3 
B, D, F, 

G# 
1.00 1.00 0.99 0.04 1.00 0.14 1.00 0.00 -15.69 -3.75 -3.68 3.90 

Maj 3 1 
A#, C#, E, 

G 
1.00 0.00 1.00 0.00 1.00 1.00 0.99 0.00 -3.10 3.73 -10.84 -7.96 
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Maj 2 2 
B, D, F, 

G# 
0.01 0.01 1.00 1.00 1.00 0.00 1.00 0.00 -5.17 2.19 -4.19 -2.66 

Maj 4 3 
A, C, D#, 

F# 
0.00 0.00 1.00 0.20 1.00 1.00 0.98 1.00 -5.13 4.71 -9.53 -5.31 

Min 1 1 
A#, C#, E, 

G 
1.00 1.00 0.00 0.00 1.00 1.00 0.04 0.99 -4.17 -16.09 3.80 -5.33 

Min 1 2 
B, D, F, 

G# 
1.00 1.00 1.00 1.00 0.02 0.00 1.00 0.00 -4.76 -8.42 3.53 -6.68 

Min 1 3 
A, C, D#, 

F# 
0.00 0.13 1.00 1.00 1.00 0.03 1.00 1.00 -7.24 -5.05 3.32 -4.06 

 

Each output unit has an ideal pattern of hidden unit activities, and produces a maximum 

response to this pattern. However, because triads will generally not produce the ideal pattern, an 

output unit’s net input measures the similarity between the ideal pattern and hidden unit activities. 

With sufficiently high similarity, the output unit will turn on. The weights resulting from training 

(Tables 6 and 9) ensure a stimulus will always be most similar to the appropriate output unit’s 

ideal pattern, and more dissimilar to the other three ideal patterns. As a result, a stimulus will 

produce activity in the eight hidden units that produces positive net input for one output unit, and 

negative net input for the other three (see Table 3-8). The activity produced by a stimulus in each 

hidden unit is a piece of evidence used to determine triad type.  Single pieces of evidence are noisy 

(see our earlier discussion of Table 3-6). However, output unit responses depend on considering 

all the weighted evidence. Net input represents the accumulated, weighted evidence.  

We provide details about weighing the evidence in Table 3-8. Each row represents a type and 

subtype of triad; triads belonging to the same type and subtype have identical effects on hidden 

units. Beside each row are the net inputs produced by hidden unit activities. Each net input is the 

inner product of the row’s hidden unit activities with the appropriate set of connection weights 

from Table 3-8. For each row, net input is positive for the correct output unit, and is negative for 

the other three output units. When the logistic transforms each net input, the correct output unit 

will turn on while the other three will turn off. 
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Three general points to make about Table 3-8. First, the table illustrates that triad type emerges 

from a representation distributed over all eight hidden units. Output units turn on or off using the 

signals from all eight hidden units. No one hidden unit perfectly represents triad type. 

Second, calculating net input is functionally equivalent to intersecting the Venn diagram 

components in Figure 3-7. Each oval in Figure 3-7 asserts different triads produce particular levels 

of activity (i.e., values from Table 3-8) in each hidden unit. Figure 3-7 illustrates correct triad type 

as the intersection of these subsets. Analogously, each oval represents a hidden unit activity to be 

modified by a connection weight. Four different sets of weights, one for each output unit, are 

available. The weighted activities’ sum will identify the same triad type discovered at the 

intersection of the ovals. 

Third, Table 3-8 reveals not all same-type triads are equal, at least from the perspective of our 

network. For instance, while every augmented triad activates the augmented output unit, some 

augmented triads produce higher net inputs than others. For this network, augmented triads with 

the tonics of B, D# or G produce the highest net input in comparison to other augmented triads, 

and therefore are better examples of augmented triads. The other three triad types behave similarly. 

For this network, some triads are better examples than others because a) triads of the same type 

have different phases in the same phase space (Figure 3-6) and b) net input reflects the similarities 

between triad Fourier structures and hidden unit Fourier structures. In other words, differences in 

phases between same type produce differences in ‘sympathetic vibration’ in the same hidden units.  

Discussion 

How might brain-like systems represent music? Our previous work discovered value unit 

networks represent Fourier phase space projections. Our current goal was establishing whether 

such representations also exist in networks whose units employ the logistic activation function. 
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We trained 20 integration device networks to classify triads, and discovered phase space 

projections in their hidden unit weights. Phase space representations are not unique to value unit 

networks. 

A second goal was determining how ANNs use Fourier phase spaces to classify musical entities. 

We first determined hidden unit activities in musical integration device networks represent 

‘sympathetic vibrations’: as similarity between phase spaces represented by a hidden unit and a 

stimulus increases, so too does net input and hidden unit activity. We then analyzed an example 

network to determine how it used ‘sympathetic vibrations’ to respond. We discovered coarse 

coding in which individual hidden units are poor triad classifiers, but correct classifications result 

when hidden unit activities are combined as weighted evidence. Triad classification involves 

comparing hidden unit activities to an ideal pattern, which occurs when output units compute net 

input. Coarse coding succeeds because even when different hidden units are, most sensitive to the 

same phase space, phase space projections represented different phases of the space. Hidden units 

most sensitive to the same phase space, but at different phases, generate different activities to the 

same stimulus providing coarse coding’s foundation. 

Our results establish ANN phase space projections do not depend upon a particular activation 

function, the Gaussian. Discovering phase space projections in integration device networks 

demonstrates ANNs comprised of markedly different processors (Figure 3-4) use musical 

representations related to the DFT. Discovering similar representations in different network types 

indicates musical networks prefer to capture stimulus regularities describable as DFT properties. 

 Our results indicate musical Fourier representations have important roles beyond musical set 

theory. Historically, musical set theory has been criticized for being too abstract and too technical 

to account for musical experience (Schuijer, 2008). Lewin’s introduction of the DFT to musical 
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set theory (Lewin, 1959) only sketched his mathematical reasoning, “anticipating an outraged 

reaction at the introduction of ‘high-level’ mathematics to a music journal” (Amiot, 2016, p. VI). 

Recent research makes clear the power of the DFT to capture important relationships between 

musical entities, indicating its importance to music theory (Amiot, 2016; Quinn, 2006, 2007; Yust, 

2016, 2017a, 2019). Unsurprisingly, music theorists hope the importance of the DFT extends to 

theories of musical cognition. For example, Amiot (2016, p. 179) argues Fourier space “is closest 

to our perception of music […] since Fourier qualities seem to mirror exactly musical features 

processed by the human brain.” 

Amiot’s (2016) intriguing claim that human brains process Fourier qualities of music requires 

empirical support. We believe discovering phase space projections in ANNs provides crucial 

evidence supporting his claim. Using ANNs to study cognition exploded in popularity because 

researchers believed networks provided biologically inspired or neuronally plausible models 

(McClelland & Rumelhart, 1986; Rumelhart & McClelland, 1986; Schneider, 1987). If the human 

brain processes Fourier qualities, then a biologically plausible representation of such qualities must 

exist. Finding phase space projections in ANNs raises the possibility that Fourier phase spaces can 

bridge the cognitive psychology of music with cognitive neuroscience (Tillmann, Bharucha, & 

Bigand, 2003). 

Still, ANNs’ ability to discover phase space projections is surprising. There is no clear 

mathematical relationship between network training and computing the DFT. Determining the 

DFT of a musical set requires correlating it with different frequencies of cosine and sine functions 

(Amiot, 2016). In contrast, small, iterative weight changes modify ANNs, reducing response error 

(Dawson & Schopflocher, 1992; Rumelhart et al., 1986). Remarkably, network training offers a 

unique technique for extracting Fourier properties from musical sets. 
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Discoveries made by music theorists guided our search for Fourier representations in ANNs. 

Had the importance of the DFT not already been established in music theory, we would probably 

not have sought Fourier phase spaces in our networks. However, we hope our networks might also 

inform music theory. For example, music theorists are interested in using Fourier components to 

create mathematical spaces which position similar musical entities closer to one another than 

dissimilar musical entities (Amiot, 2016; Quinn, 2006, 2007; Tymoczko, 2011; Yust, 2016). Our 

networks offer a new candidate for exploring musical spaces, because hidden unit activities 

produced by stimuli can be interpreted as locating a stimulus in a multidimensional space. In the 

networks described, a point represents each triad in an 8-dimensional space that reflects the triad’s 

relationship to eight different phase spaces. Distance relationships between triads in this space can 

be determined, and can be compared to distance relationships in other musical spaces that have 

been proposed. 

Critically, the potential implications emerging from discovering discrete Fourier phase spaces 

in musical ANNs are only possible when researchers make the effort to examine and interpret 

network structure (Dawson, 2018). Unfortunately, researchers who study ANNs rarely determine 

how networks represent solutions to problems (Dawson, 2009). Even though many researchers 

believe ANNs are important for capturing informal properties of music (Bharucha, 1999), it is 

important to realize networks can discover surprising, formal, musical regularities. By discovering 

Fourier phase spaces in our musical networks, we see rich links between formal music theory and 

musical cognition. However, to establish such links, one must examine the internal structure of 

trained networks. 
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Chapter 4 : Understanding music by understanding the networks 

Introduction 

This thesis used artificial neural networks to explore musical sets. Even though we do not 

usually experience music as musical sets, ANN’s can provide us some insight as to how certain 

properties of these sets might be represented or encoded by the brain.  

While many researchers use artificial neural networks to explore music, these researchers rarely 

focus on their networks’ internal structure, because they expect networks capture informal 

properties of music. But in order to inform cognitive science, we need to look inside networks to 

see what the networks are doing, their decision processes and internal representations. Dawson’s 

(2018) finding of strange circles serve as a good example of musical properties that might have 

gone unnoticed if he did not look inside his networks. More importantly, those strange circles were 

an important piece of evidence to support the claim that networks do also find and capture very 

formal properties of music. However, Dawson’s approach did not go far enough in exploring this 

particular discovery. With the aid of musical set theory, such as the one pioneered by Forte, we 

can further understand the formal properties of musical networks. 

What kind of formal musical properties do networks represent? In Chapter 1 we introduced 

some basic elements of formal music theory. We introduced notes, chords and scales, and different 

ways to group them in sets, according to musical rules. Music theory reveals the interval relation 

between the elements of musical sets is a key element in defining each type of musical entity. 

Music set theorist use set theory operations that allow them to uncover novel relations between 

musical elements. The Discrete Fourier Transform (DFT) in particular has been used to analyze 

interval structure and similarity between musical sets, because of how it allows us to explore 
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periodic phenomena. In particular, we used Yust’s approach which represented musical sets on 

phase spaces, that could be visualized as clocks. 

 
Figure 4-1. Yust Phase spaces, as shown in Chapter 1. 

 

Taking into account the striking resemblance between hidden unit structure in the form of 

strange circles and Yust’s phase spaces (see Chapters 2 and 3), we proceeded to explore the 

hypothesis that may be networks are using Fourier phase spaces in their decisions. Chapter 2 

explored three value unit networks, trained on different musical tasks: interval classification, scale 

mode classification, and triad classification. 

Having already identified the qualitative similarities between our hidden unit structure and 

Fourier phase spaces, we asked whether there is a quantitative relation between those 2.  

To test this, we fitted our weights to projections of pitch classes on phase spaces, a procedure 

detailed on chapter 2. We found that for each hidden unit, there was a particular phase space, at a 

particular phase, with a nearly perfect fit to the hidden unit structure. The same was true for our 

other two tasks. For all networks trained, across the different tasks, we found near perfect fits 

between hidden unit weights and Fourier phase spaces. 
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Figure 4-2 Plot of mean correlation between a Fourier phase space projections and hidden unit weights, as shown on chapter 

2. Note how for every problem tackled by the network on that chapter, there is a phase space that is highly correlated with the 

weights. 

 

Chapter 2 results demonstrate value unit networks use Fourier phase spaces to classify our 

musical sets. Is this true for networks using a different activation function? Moreover, how exactly 

are networks using these Fourier properties to make the decisions? To explore this, Chapter 3 

focused on musical networks that use a logistic activation function. If we find Fourier phase spaces 

in a network so fundamentally different, this strengthens our argument for the importance of 

Fourier phase spaces for music and musical cognition. 

Chapter 3 described training logistic networks to classify musical sets into four different kinds 

of triads. Once trained, we again fit Fourier phase spaces to hidden unit weights. Again, we found 

a high correlation between phase spaces and hidden unit structure, and so we confirmed that 

logistic unit networks, just as Gaussian networks, find Fourier phase spaces and use them to 

perform musical classifications 
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On chapter 3 we also present a further exploration into how networks used phase spaces to 

perform classify triads. Here, we noticed that hidden units were turning on to types of triads. But 

the activity elicited by a triad type was not always the same on a hidden unit. A closer look to HU 

activity by triad type, showed us that certain triads had very high activity on one unit, but they also 

had low activity on others, sometimes of opposite sign. This indicates logistic networks use coarse 

coding to classify triads. Closer examination of HU activities showed us that the network was 

using all its HU activities to make its decision.  

Directions For Future Research 

Overall, the results of Chapters 2 and 3 show, in different kinds of networks, and in different 

musical tasks, musical networks use Fourier phase spaces to encode musical properties and to 

classify musical stimuli. Chapters 2 and 3 illustrate how formal music theory can guide network 

interpretation: knowing ideas developed in music theory (i.e., Fourier phase spaces), we search for 

similar types of representations in musical networks. However, now we have discovered Fourier 

phases spaces within our networks, we can now plan future research in which network 

interpretations can guide formal music theory, as well as inspire new research on musical 

cognition. 

Network interpretations can offer new ideas to both music theory and musical cognition because 

our networks do not use Fourier phase spaces as they are used in musical set theory. In musical set 

theory, we compute a different DFT for each musical set, and we can then compare different 

musical entities by comparing their DFTs. However, our networks use the same Fourier phase 

space – the same hidden unit connection weights – to transform every musical stimulus. Indeed, 

because networks apply the same ‘Fourier analysis’ to each stimulus, networks discover novel 

ways to compare stimuli (e.g., the coarse coding detailed in Chapter 3). Our new understanding of 
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how networks use Fourier phase spaces inspires new approaches for comparing different musical 

entities, offering new ideas to music theory. Furthermore, because networks apply Fourier phase 

spaces in new ways, different similarity relationships between musical entities emerge, 

relationships which we can test with human participants. In general, if human musical cognition 

uses representations similar to those discovered in our networks, then we expect to predict 

behavioral regularities – for instance, judgments of similarity between stimuli – from network 

properties. To provide a concrete example of how network interpretations inform music theory 

and musical cognition, let us briefly consider one important topic in music theory: geometric 

relations between different musical entities. 

Many music theorists develop theories which place different musical entities in a geometric 

space (Krumhansl, 1990, 2005; Rings, 2011; Tymoczko, 2006, 2011, 2012). Similar entities are 

located nearer to one another, while dissimilar entities are located further apart. Musical 

geometries differ from one another in how similarity is defined. For instance, one theory might 

measure similarity by counting the number of pitch-classes shared by two different musical 

entities. A different theory could measure similarity by comparing the DFTs of two different 

musical entities. 

After defining a similarity measure, we can create a map to illustrate the spatial arrangement of 

musical entities. One approach to creating a map is to create a similarity matrix in which each row 

corresponds to a musical entity, each column also corresponds to a musical entity, and each entry 

in the matrix provides the measured similarity between two entities. One can then convert the 

similarity matrix into a map by analyzing the matrix with multidimensional scaling (MDS). 

We can illustrate this approach using different scale modes (one of the tasks reported in Chapter 

2) as musical entities. We measure the similarity between two different scale modes as the number 
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of pitch-classes shared by the musical sets representing two different scales. After measuring 

similarity between all possible pairs of scale modes, an MDS analysis of the similarity matrix 

produces a map like the one illustrated in Figure 4-3 

 
Figure 4-3  Plot representing the similarity relationship between each scale, on a three-dimensional space. 

The MDS map in Figure 4-3 plots all of the Dorian mode scales; each label corresponds to the 

root of a scale. Note the positions of the scales in the MDS plot arranges the roots around a circle 

of fifths. Dorian scales whose roots are closer together in the circle of fifths (Figure 4-4) are also 

closer together in the MDS plot. 
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Figure 4-4. Circle of fifths 

 

Importantly, our network interpretations provide a new way for measuring similarity between 

musical entities: the similarity of hidden unit activities produced in the network by two different 

musical entities. We can define similarity as the Euclidean distance between the vector of hidden 

unit activities produced by one entity and the vector of hidden unit activities produced by another. 

When MDS is applied to a similarity matrix based on this new matrix, a very different map of 

scales is produced (Figure 4-5). 

 
Figure 4-5. Three-dimensional map of the activity of our network, for the Dorian Scales.  
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 The organization of the scales in Figure 4-5 differs strikingly from the organization of the same 

scales in Figure 4-3. First, the Figure 4-5 scales are not arranged around the circle of fifths. Second, 

the organization of Figure 4-5 symmetric: the left side of the graph mirrors the right side. Third, 

pairs of scales occupy the same position in the graph: for example, F and B, or F# and C. Indeed, 

scales whose roots are a tritone apart are placed in identical positions by the MDS. Clearly, when 

similarity is measured in terms of hidden unit activities – which in turn are related to Fourier phase 

spaces – a very different musical space results when compared to a space based on shared pitch-

classes.  

By using network interpretations, we can create a new musical geometry for formal music 

theory. This theory raises new ideas to be studied by music theorists. For example, how might we 

formally express how two scale modes, with roots separated by a tritone, are equivalent? How 

might we formally describe the symmetric relationship between scales revealed in Figure 4-5? 

Answering such questions will be the focus of future research; we expect the answers will emerge 

from understanding how networks exploit Fourier phase spaces to classify musical stimuli. 

Another implication emerging from Figure 4-5, and its dramatic difference from Figure 4-3, 

concerns musical cognition. The two figures illustrate how different ideas about musical similarity 

lead to very different musical spaces. By hypothesis, we propose humans represent music in such 

a space (Krumhansl, 1990). But what space provides the foundation for human musical cognition? 

To answer this question, we need to collect data from human participants to generate similarity 

matrices (e.g., by having participants judge the similarity of pairs of musical entities). By 

performing MDS on human data, and by comparing the results to potential musical geometries 

(e.g., Figures 4-3 and 4-5), we can determine whether human musical cognition uses 
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representations similar to the Fourier phase spaces we discovered in our networks in Chapters 2 

and 3. 

Exploring musical geometry is not new, nor is using artificial neural networks to study musical 

tasks. However, we rarely see these two activities combined, because doing so requires one 

missing element: interpreting the structure of trained network. It is only when we look inside 

networks, and discover entities like Fourier phase spaces, that we can investigate new musical 

geometries inspired by network structure. 

Indeed, the main point of this thesis is to reveal the rich musical properties represented in 

artificial neural networks trained to solve musical problems. In Chapter 1 we saw most network 

studies of music are inspired by the goal of capturing musical properties which we cannot express 

formally. This goal, in turn, means researchers rarely explore the structure of musical networks, 

and certainly do not seek formal structures in such networks. However, Chapters 2 and 3 revealed 

musical networks build representations describable in the same formal terms used to describe the 

Fourier structure of musical sets. In addition, how networks use (formal) Fourier structure differs 

from how musical set theorists do (in particular, see the distributed representations detailed in 

Chapter 3). Thus, musical networks provide a bridge between formal mechanisms in musical set 

theory and potential representations for musical cognition. Importantly, though, this bridge only 

becomes available when we explore and detail the internal structure of trained musical networks. 
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