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Chronic systemic inflammatory conditions, such as atherosclerosis, diabetes and obesity are associated
with increased risk of stroke, which suggests that systemic inflammation may contribute to the develop-
ment of stroke in humans. The hypothesis that systemic inflammation may induce brain pathology can be
tested in animals, and this was the key objective of the present study. First, we assessed inflammatory
changes in the brain in rodent models of chronic, systemic inflammation. PET imaging revealed increased
microglia activation in the brain of JCR-LA (corpulent) rats, which develop atherosclerosis and obesity,
compared to the control lean strain. Immunostaining against Iba1 confirmed reactive microgliosis in
these animals. An atherogenic diet in apolipoprotein E knock-out (ApoE�/�) mice induced microglial acti-
vation in the brain parenchyma within 8 weeks and increased expression of vascular adhesion molecules.
Focal lipid deposition and neuroinflammation in periventricular and cortical areas and profound recruit-
ment of activated myeloid phagocytes, T cells and granulocytes into the choroid plexus were also
observed. In a small, preliminary study, patients at risk of stroke (multiple risk factors for stroke, with
chronically elevated C-reactive protein, but negative MRI for brain pathology) exhibited increased inflam-
mation in the brain, as indicated by PET imaging. These findings show that brain inflammation occurs in
animals, and tentatively in humans, harbouring risk factors for stroke associated with elevated systemic
inflammation. Thus a ‘‘primed’’ inflammatory environment in the brain may exist in individuals at risk of
stroke and this can be adequately recapitulated in appropriate co-morbid animal models.

� 2011 Elsevier Inc. Open access under CC BY license. 
1. Introduction

Clinical and experimental evidence implicates inflammation in
multiple phases of stroke aetiology and pathology (Allan et al.,
Sciences, University of Man-
13 9PT, UK. Fax: +44 (0) 161

. Allan).
VS, University of Edinburgh,

 license. 
2005; Amor et al., 2010; Denes et al., 2010a,b; McColl et al.,
2009; Muir et al., 2007). Several of the risk factors for stroke, such
as atherosclerosis, hypertension and diabetes/obesity are triggered
and/or propagated by dysregulated systemic inflammatory pro-
cesses (Dandona et al., 2004; Ross, 1999; Savoia and Schiffrin,
2006). Markers of elevated systemic inflammation are associated
with increased stroke risk and brain lesions detected by magnetic
resonance imaging (MRI) (Fornage et al., 2008; van Dijk et al., 2005).
Like other statins, rosuvastatin, has multiple anti-inflammatory
properties. It reduces cerebrovascular events in patients without
hyperlipidemia but with raised C-reactive protein (CRP) levels
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(Ridker et al., 2008). Angiotensin-converting enzyme (ACE) inhibi-
tors can lower median CRP levels and result in better long-term out-
come in stroke patients, after controlling for confounding variables
and concomitant treatments (Di Napoli and Papa, 2003). Similarly,
aspirin or other anti-platelet treatments are used prophylactically
in patients at risk, but it is still unclear whether their beneficial
properties are due to anti-aggregation effects or to a combination
of anti-platelet and anti-inflammatory effects (Franks et al., 2010).
Therefore, although inflammation-driven co-morbidities are com-
mon and aetiologically important in stroke patients, exactly how
systemic inflammation contributes to risk of stroke and to other neu-
rological conditions remains to be determined.

Despite the almost ubiquitous nature of co-morbidities preced-
ing stroke, there has been a relative paucity of studies incorporating
these in experimental stroke research. This may have contributed to
the lack of successful translation for a number of potential stroke
treatments identified in pre-clinical studies (Endres et al., 2008;
Fisher et al., 2009). One reason for the failure of translation may
be that underlying inflammation associated with atherosclerotic
risk factors modifies the mechanisms of post-ischaemic brain dam-
age, including the type, magnitude and kinetics of the damaging
processes. In support of this, we and others have shown that the ex-
tent of brain injury is exacerbated, and mechanisms of damage al-
tered and/or aggravated, when experimental stroke is induced in
animals with hypertension, diabetes, obesity or acute/chronic
infection/inflammation (Coyle, 1984; Denes et al., 2010a,b; McColl
et al., 2007; Terao et al., 2008; Vannucci et al., 2001). However, it is
unclear whether co-morbid stroke risk factors can drive brain
inflammation and induce a ‘‘primed’’ inflammatory state in the
brain prior to a cerebrovascular event.

Here we undertook a translational study to determine if risk
factors for stroke, which involve chronic systemic inflammation,
also induce brain inflammation in rodents and humans. We show
that brain inflammation is present in rats and mice harbouring sys-
temic vascular and/or metabolic disease and that analogous
changes may be present in patients with clinical risk factors and
evidence of systemic inflammation, as indicated by a raised con-
centration of circulating CRP.
2. Materials and methods

2.1. Pre-clinical studies

These studies were performed on (JCR:LA-cp) (cp/cp) corpulent
rats, which are obese, atherosclerotic and insulin resistant and
ApoE-deficient (ApoE�/�) mice fed an atherogenic diet, which exhi-
bit severe atherosclerosis.

Animals were allowed free access to food and water and were
maintained under temperature, humidity and light-controlled con-
ditions. All animal procedures adhered to the UK Animals (Scien-
tific Procedures) Act (1986).

Corpulent and lean heterozygous control rats (+/?), obtained
from an established breeding colony at The University of Alberta,
Edmonton, Canada (Mangat et al., 2007); were subject to PET scan-
ning using specific translocator protein (TSPO; formerly known as
peripheral benzodiazepine receptor) radiotracers [18F]DPA-714, at
9 (average body weight; +/?: 411 ± 14 g; cp/cp: 720 ± 22 g), 12 (+/
?: 438 ± 18 g; cp/cp: 918 ± 33 g) (n = 4 per group) and 15 months
of age (+/?: 452 ± 15 g, n = 4; cp/cp: 0.979 ± 0.054 kg, n = 3).

Experiments were carried out in male ApoE�/� (JAX 2052,
Jackson Laboratories, USA) and C57BL/6 control mice (Jackson Lab-
oratories, USA) bred in-house at the University of Sheffield. Mice
aged 8 weeks were fed normal chow (4.3% fat, 0.02% cholesterol)
or a high fat/high cholate (Paigen; 18.5% fat, 0.9% cholesterol, 0.5%
cholate, 0.26% sodium) diet (Special Diet Services, UK) for 8 weeks.
2.1.1. Positron emission tomography
Rats were anaesthetised by isoflurane inhalation (induction, 5%;

maintenance, 2–2.5%) in oxygen. [18F]DPA-714, a specific tracer for
the TSPO (Boutin et al., 2008; Chauveau et al., 2009) was synthesised
(James et al., 2008), and injected intravenously in the tail vein as a
bolus (10.8–19.8 MBq, 0.03–2.79 nmol). Respiration and tempera-
ture was monitored throughout using a pressure sensitive pad and
rectal probe, Model 1025L interface and PC-SAM software (SA
Instruments, NJ, USA). Body temperature was maintained at
37 ± 0.5 �C by use of a heating pad and the heating and fan module
connected to the rectal probe via the interface and controlled by
the PC-SAM software. Whole-body images were acquired in list-
mode with a non-rotating 16-module quad-HIDAC PET camera
(Oxford Positron Systems, UK) for 1 h (Hastings et al., 2007). The
list-mode data were reconstructed directly into 5 min time-frame
images (without resorting to histogramming) via the one-
pass-list-mode-expectation maximisation (OPL-EM) algorithm
(Reader et al., 2002) with one iteration of 16 sub-sets into images of
dimensions 1202 (transaxially) � 240 (axially) with isotropic
1 mm3 voxels. Absolute calibrationof the images was achieved by ref-
erence to a [22Na] source imaged in the field of view in each scan. This
had been validated with a uniformly filled mouse-sized [18F] phan-
tom imaged over 2 h. Dynamic images were calibrated in kBq/cm�3.

Images were segmented using the Local Means Analysis method
and the organ mean Time Activity Curves were corrected for Partial
Volume Effect using the Geometric Transfer Matrix (GTM) method
with a selection of 20% of the organ voxels (GTM20) (Maroy et al.,
2008a,b). The segmentation method extracts regions with homo-
geneous TACs, as required by the GTM20 method. The latter was
designed to be more robust than the original GTM method to seg-
mentation errors through the automated selection of adequate
voxels in the segmented organs. Both methods were applied using
the BrainVisa and Anatomist framework. For more accurate quan-
tification and illustration purposes, PET images were co-registered
with the rat MRI template (Schwarz et al., 2006), generously pro-
vided by GlaxoSmithKline (Verona, Italy). Automatic segmentation
of PET images revealed 1–2 regions of interest (ROI) with different
[18F]DPA-714 (low and high) uptake in the brain of both the lean
and corpulent rats. These ROIs were used to compare the geno-
types and the different ages.

To account for the differences (�2-fold) in body-weight between
lean and corpulent rats, we expressed all uptake values as standard-
ised uptake value (SUV) (i.e. percentage of injected dose per cubic
centimetre corrected for body weight: %ID � kg/cm3). Until now the
problem of comparing obese and lean animals or patients, and using
SUV, has been mainly applied to [18F]fluoro-deoxy-glucose PET
imaging. However, considering the controversial literature on SUV,
and the fact it has been reported that correcting for the absolute
body-weight was likely to over-compensate for the difference
(Boellaard, 2009; Keyes, 1995; Sugawara et al., 1999) we have used
a slightly different approach. Indeed, the over-compensation of SUV
is due to the fact that it assumes that the excess of weight mainly due
to adipose tissue has the same metabolic activity than the rest of the
body (Keyes, 1995; Sugawara et al., 1999), and therefore that corpu-
lent rats have a metabolic activity twice that observed in lean con-
trols. To the contrary, we considered that correcting for the lean
body-weight was likely to under-compensate since it assumes that
the excess of adipose tissue is completely inert (Keyes, 1995). Both
assumptions being wrong, we decided to adjust the body-weight
to calculate the SUV according to Kleiber laws (Kleiber, 1947), in
which the metabolic activity is proportional to a factor equal to
m0.74 (m being the body-weight in g of the animal).

2.1.2. Tissue processing
Under terminal anesthesia, mice and rats were perfused

transcardially with saline followed by 4% paraformaldehyde
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(PFA; Sigma, UK). Brains were removed and postfixed in 4% PFA at
4 �C for 24 h. Brains were subjected to cryoprotection in
phosphate-buffered saline containing 20% sucrose for 24 h. Five
alternate sets of 20 lm (mice) or 30 lm (rats) thick coronal brain
sections were cut on a sledge microtome (Bright series 8000;
Bright Instruments, Huntingdon, UK). All sections were collected
into an antifreeze solution (containing 30% ethylene glycol (Sigma,
UK) and 20% glycerol (Fisher, UK) in phosphate-buffered saline)
and stored at �20 �C until processing.

2.1.3. Immunohistochemistry
Immunohistochemistry was performed on free-floating brain

sections. Endogenous peroxidise activity was blocked with 0.3%
hydrogen peroxide (Sigma) in dH2O and sections were treated with
2% normal serum (Vector Laboratories, Burlingame, CA) for 1 h at
room temperature. Sections were incubated overnight in antibody
diluent (0.1 M PBS + 0.3 % Triton X-100, Sigma) using the following
primary antibodies: goat anti-mouse VCAM-1 1:250 (R&D Systems,
UK), goat anti-mouse ICAM-1 1:250 (R&D Systems, UK), goat anti-
mouse Iba1 1:500 (Abcam, UK), rabbit anti-Iba1 (Wako Chemicals,
Germany) and rat anti-mouse CD45 1:250 (Serotec, UK). Sections
were then incubated in appropriate biotinylated secondary anti-
body for 1 h (rabbit anti-goat 1:1000 and rabbit anti-rat 1:750,
Vector Laboratories, UK). Sections were then incubated in Vecta-
stain ABC solution (Vector laboratories, UK) and colour was devel-
oped by nickel enhanced diaminobenzidine (50 mg/ml) incubation
(Vector Laboratories, UK). Sections were mounted onto gelatine
coated slides, dehydrated and coverslipped using Depex (Fisher,
UK). Images were collected on an Axiocam colour CCD camera
(Zeiss, Germany) upright microscope using 20� and 60� objectives
and captured using a Coolsnap ES camera (Photometrics) through
Axiovision software (Zeiss, Germany).

2.1.4. Immunofluorescence
Double or triple immunofluorescence was performed on free-

floating brain sections. After blocking in 2% normal donkey serum
(Vector Laboratories) sections were incubated overnight at 4 �C in
primary antibodies: rat anti-mouse CD45 1:200 (Serotec, UK), goat
anti-mouse VCAM-1 1:250 (R&D Systems), goat anti-mouse ICAM-
1 1:250 (R&D Systems), rat anti-CD3 (Serotec), goat anti-Iba1
(Abcam, UK), rabbit anti-Iba1 (Wako Chemicals, Germany) and
rabbit anti-neutrophil serum (SJC), kindly provided by Drs. Daniel
Anthony and Sandra Campbell, University of Oxford (Anthony
et al., 1998). The antigens were visualised with the adequate
fluorochrome-conjugated (Alexa 594 1:750 or Alexa 488 1:500,
Molecular Probes) secondary donkey antisera or with biotinylated
secondary antibodies followed by streptavidin Alexa 350 conju-
gate, for 2 h at room temperature. Sections were mounted onto
gelatin-coated slides and cover-slipped Vectashield mounting
medium containing diamidinophenylindole (Vector Laboratories,
Burlingame, CA).

Images were collected on an Olympus BX51 upright microscope
using 40� and 60� objectives and captured using a Coolsnap ES
camera (Photometrics, UK) through MetaVue Software (Molecular
Devices, UK). Specific band pass filter sets for DAPI, FITC and Texas
red were used to prevent bleed through from one channel to the
next.

2.1.5. Quantitative analysis
All quantitative analysis was performed under blinded condi-

tions and confirmed by at least two independent researchers.
VCAM-positive blood vessels were counted in three random fields
of view for each section (typically 8–10) containing rostro-caudal
cerebral cortex. A score for the whole brain was obtained by aver-
aging individual counts and this was expressed as positive blood
vessels per mm2.
Activated microglia were identified as showing: (1) increased
Iba1 immunopositivity, (2) enlarged and/or amoeboid cell body,
(3) complete or partial loss of thin, elongated processes. Round
shaped, small Iba1-positive cells with leucocyte morphology were
not counted. Regions analysed for microglial activation were also
stained with mouse anti-rat CD68 (corpulent rats) and rat anti-
mouse CD45 (mice) to assess the number of parenchymal macro-
phages and other leucocytes. Activated microglia were counted
throughout the striatum and expressed as activated microglia per
mm2.

Fluorescently labelled CD45 positive cells were counted in two
randomly selected fields of view of the caudal choroid plexus
(�1.82 mm from Bregma) and the lateral ventricle (�1.58 mm
from Bregma). The choroid plexus and ventricular ependyma were
visualised by using VCAM immunofluorescence.

2.1.6. Histology
After CD45 immunohistochemistry (see above) sections were

rinsed in dH2O and incubated in 60% v/v isopropanol/dH2O
(Fischer, UK) for 2 min. Sections were transferred to Oil red O
(ORO; Sigma, UK) (0.05% w/v ORO/99% isopropanol) for 15 min,
rinsed in 60% v/v isopronanol, rinsed in dH2O and coverslipped
with an aqueous glycerol jelly mount (7.7% w/v Gelatine (BDH,
UK) and 54% glycerol in water). Haematoxylin & Eosin (H&E) stain-
ing was performed on mounted brain sections. Following staining
sections were dehydrated and cover-slipped with Depex mounting
medium.

2.1.7. Statistical analysis
Quantitative analysis of data was performed in a blinded

manner. PET image quantifications were analysed using Mann–
Whitney for comparison between lean and corpulent animals
and for comparing 9 vs 15 and 9 vs 12 month age groups. Because
the same group of animals was scanned at 12 and 15 months of
age, a non-parametric paired Wilcoxon test was used to compare
these two groups.

Quantitative data from immunohistochemical and immunoflu-
orescence studies were analysed by one- or two-way analysis of
variance (ANOVA) followed by post-hoc Bonferroni’s correction.
All data are expressed as mean ± SD. Statistical significance is re-
ported at the 0.05 level.

2.2. Clinical study

2.2.1. Patients
This small, preliminary study was undertaken to assess cerebral

inflammation in humans with multiple risk factors for stroke, but
no evidence of cerebral damage, in order to investigate the rele-
vance of our experimental findings in a translational context.
One hundred and twenty-one subjects were screened, and rigorous
criteria were applied to identify patients at risk of stroke, while
excluding patients with existing brain pathology. Subjects were
deemed eligible if having multiple (three or more) risk factors for
stroke, and/or established arterial disease (hypertension, dyslipi-
demia, atrial fibrillation, left ventricular hypertrophy, ischaemic
heart disease, diabetes mellitus, peripheral vascular disease, caro-
tid disease and smoking), and CRP >3 mg/L on two separate occa-
sions. All subjects underwent MRI scans to exclude any
intracranial pathology, and subjects with a history of a previous
cerebrovascular event were not involved in the study. MR scans
were reviewed by neuroradiologists. Only four patients fulfilled
all inclusion criteria and were subjected to PET imaging to assess
microglial activation in the brain (see below). Age matched control
participants were chosen on the basis of having two or fewer major
vascular risk factors and plasma CRP 61 mg/L (see Table 1). All par-
ticipants were also screened to exclude cognitive impairment and a



Table 1
Clinical study group characteristics.

At risk subjects
(n = 4)

Control participants
(n = 4)

Mean age in years [range] 63 [58–72] 64 [58–68]
Sex M:F 3:1 1:3
Number of risk factors [range] 3–4 1–2
Mean CRP at screening [range] 9.15 [2.99–13.26] 0.76 [0.55–1.00]
Mean interleukin-6 at

screening [range]
12.00 [1.98–33.40] 2.46 [1.10–3.61]

Mean CRP at PET [range] 11.93 [8.98–15.73] 1.56 [1.18–2.05]
Mean interleukin-6 at

PET [range]
10.55 [3.70–25.00] 4.79 [1.00–8.08]
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telephone consultation was used to exclude symptoms of acute
infection prior to PET scanning. All participants gave written in-
formed consent.
2.2.2. Positron emission tomography
Participants underwent MRI scans on a 3 T Philips Achieva sys-

tem using a T1 weighted inversion recovery SENSE sequence for
co-registration of PET images and to exclude visible evidence of
stroke. PET studies were performed on a high resolution research
tomograph (CTI/Siemens). [11C](R)-PK11195 (TSPO ligand) was
used to assess microglial activation in the brain. Following a
6 min transmission scan, [11C](R)-PK11195 was injected as a slow
bolus over 20 s and data were acquired during a 60 min emission
scan. The injected radioactivity dose was 465 ± 121 MBq and radio-
chemical purity was always greater than 98.9%. The injected mass
of cold (R)-PK11195 was 2.4 ± 1.0 lg. Binding potential (BPND)
images were generated using the simplified reference tissue model
and a supervised clustering algorithm was used to extract a refer-
ence tissue input function (Turkheimer et al., 2007). The study was
approved by the local research and ethics committee.
3. Results

3.1. PET imaging reveals neuroinflammation in cp/cp JCR-LA cp rats

There was no significant difference in microglial activation as
determined by PET imaging between lean and corpulent rats at
9 months of age (Fig. 1A). By 12 months of age, microglial activa-
tion was increased significantly in the brains of the corpulent rats
in the ROI with the lowest tracer uptake (+35%, Fig. 1B). [18F]DPA-
714 uptake increased further in 15 month old animals (+32% and
+53% in low and high uptake ROI respectively; Fig. 1C). We also ob-
served a trend for an increase in neuroinflammation with age in
both lean and corpulent animals, although this was significant only
in the corpulent in the low uptake ROI when comparing 15 with
9 month old animals (+28%, P < 0.05, Fig. 1C). Although the
[18F]DPA-714 uptake was increased by a similar magnitude (+29
to 33%, Fig. 1B and C) between 12 and 15 months in the corpulent
rats, the differences were not significant. In reference organs,
known to express high level of TSPO (heart, lungs and kidneys),
there were no significant differences between lean and corpulent
rats (Supplementary Fig. 1).
3.2. Immunohistochemical evidence of microglial activation in rodents
with peripheral disease

Immunohistochemistry revealed activated microglial cells in
the brains of 15 month old corpulent rats (Fig. 2A). We found no
activated microglial cells in the brains of corpulent rats aged
9 months or in heterozygous (lean) rats at any age (9–15 months)
examined.
In ApoE�/� mice fed Paigen diet Iba1 immunohistochemistry re-
vealed activated microglial cells (Fig. 2B). Microglia displaying
thickened processes and increased levels of Iba1 were observed
in multiple brain regions such as the cerebral cortex, striatum,
hypothalamus, periventricular areas and meninges. Chow or
Paigen-diet fed C57BL/6 control mice and chow-fed ApoE�/� mice
lacked activated brain microglia.

3.3. Atherogenic mice develop vascular inflammation and leucocyte
infiltration in the brain

C57BL/6 or ApoE�/� mice fed a chow diet did not show elevated
vascular ICAM or VCAM expression in the brain. A trend for in-
creased vascular ICAM and VCAM expression was observed in
C57BL/6 mice fed the Paigen diet (not significant). In contrast, ICAM
and VCAM expression was significantly augmented in ApoE�/�mice
on the Paigen diet (Fig. 3A and B). Increased VCAM staining was
present mainly on medium sized or large blood vessels in the cere-
bral cortex, striatum, thalamus and hippocampus. Quantitative
analysis of VCAM immunohistochemistry revealed significantly
stronger staining in Paigen fed groups compared to chow diet
(P < 0.01, data not shown). Post-hoc comparison revealed signifi-
cant differences between ApoE�/� chow and Paigen fed animals
(Fig. 3C), but not in C57BL/6 mice, indicating that diet-induced
pro-inflammatory changes are augmented in ApoE�/� mice.

We also investigated the possibility that diet-induced athero-
sclerosis was associated with leucocyte infiltration into the brain
parenchyma and ventricles, using immunofluorescent staining of
the common leucocyte antigen CD45. Microglial CD45 expression
was relatively dim throughout the brain and was well discrimi-
nated from that of bright and round shaped or elongated leuco-
cytes. Profound enrichment of ventricular leucocytes was found
in ApoE�/� mice fed with Paigen diet, and this was associated with
increased VCAM expression in the choroid plexus (Fig. 4A). Invasion
of the choroid plexus by CD45-positive cells was significantly ele-
vated in ApoE�/� animals on the Paigen diet compared to ApoE�/�

animals on normal diet, but this was not observed in C57BL/6 mice
fed with Paigen diet (Fig. 4B). In Paigen-fed ApoE�/�mice, CD45-po-
sitive cells were numerous in the choroid plexus of the lateral ven-
tricles from the fimbria hippocampi to the caudal areas of the
ventricle. Caudally, infiltration of ventricular-associated cells into
the surrounding parenchyma was also observed in ApoE�/� mice
(Fig. 4C). The size of the lateral ventricle was not significantly differ-
ent among experimental groups and no correlation between CD45-
positive cells and ventricle size was found in individual mice. The
choroid plexus was found to contain a number of different cell types
including granulocytes (identified by an anti-neutrophil serum, SJC)
and CD3-positive T cells (Fig. 4D). Granulocytes represented a
large proportion of the cells and were uniformly distributed along
the VCAM-positive areas of the choroid plexus, in partial overlap
with T cells. Activated microglia/macrophages lined the walls of
the caudal lateral ventricle, showed increased CD45 expression
(Fig. 4E).

3.4. Atherogenic diet results in focal lipid deposition and inflammation
in ApoE�/� mice

In peripheral tissues, particularly in large blood vessels, ApoE�/�

mice develop atherosclerotic plaques, as identified by lipid deposi-
tion, leucocyte infiltration and vascular stenosis (Stoll and
Bendszus, 2006; Zadelaar et al., 2007). However, it is not known
whether such focal vascular pathologies appear in the brain in
these animals or not. In 40% of the Paigen fed ApoE�/� mice, focal
pathologies were observed in the brain parenchyma (typically in
the hypothalamus, near the third ventricle). Oil red staining iden-
tified blood vessel-associated lipid deposition (Fig. 5A and B),



Fig. 1. Sum images (20–60 min post-injection; left panel) and respective quantification (graphs on the right panel) of [18F]DPA-714 uptake in the brain of lean (+/?) and
corpulent (cp/cp) rats at 9 (A), 12 (B) and 15 months (C) of age. � and � indicate a significant difference between lean and corpulent animals of the same age in respectively low
and high uptake regions of interest (P < 0.05, Mann–Whitney test). # indicates a significant difference between 9 (A) and 15 (B) months old animals (P < 0.05, Mann–Whitney
test). Data are expressed as and mean ± SD (filled symbols correspond to the respective image on the left panel).
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accompanied by microglial activation and leucocyte recruitment
(identified by H&E), as well as CD45 and Iba1 staining (Fig. 5C).
VCAM expression was increased focally around lipid rich areas
and also in the ipsilateral wall of the third ventricle, indicating
ongoing inflammatory responses in the brain (Fig. 5D).

3.5. PET imaging: pilot study reveals neuroinflammation in human
subjects with risk factors for stroke

Peripheral inflammatory markers increased in both groups of
subjects between screening and time of PET but remained higher
in the at risk group (Table 1). Visual inspection of the partici-
pants’ BPND maps revealed increased [11C](R)-PK11195 binding
in three of the subjects with increased risk factors (Fig. 6). The
distribution of the [11C](R)-PK11195 signal showed individual dif-
ferences and was seen across neocortical areas and other brain re-
gions, including the thalamus and brain stem. There was no
evidence of raised [11C](R)-PK11195 binding in periventricular
or deep white matter regions. There was no pattern of activity
in a particular vascular territory, as one might see with estab-
lished stroke. These preliminary results indicate that neocortical
inflammation is present in the brain of subjects with chronic



Fig. 2. Rodent models of atherosclerosis involve microglial activation in the brain. (A) Activated microglia as identified by increased Iba1 immunopositivity, thickened
processes and irregular cell bodies were seen in the striatum of 15 month old corpulent rats, but not in 9 month old animals. Aged corpulent rats had a significantly increased
number of activated microglia compared to young corpulent, or 15 month old heterozygous rats. (B) Activated, Iba1-positive microglia was numerous in ApoE�/� mice fed a
Paigen diet. Insets show representative images of microglial cells from the different groups of mice. Quantitative analysis revealed significantly more activated microglial cells
in the striatum of ApoE�/� mice fed a Paigen diet compared with ApoE�/� mice fed chow diet. ⁄P < 0.05. Scale bars: 200 and 10 lm (insets).

Fig. 3. Cerebrovascular activation occurs in the brain in association with peripheral atherosclerosis. Vascular activation was assessed in the cerebral cortex using
immunostaining to the adhesion molecules (A) ICAM and (B) VCAM. Unlike mice fed a chow diet, mice fed a Paigen diet showed an increased number of ICAM and VCAM-
positive blood vessels in the brain. (C) Quantitative analysis of VCAM-positive blood vessels in the cerebral cortex. Scale bars: 200 and 50 lm (inset).
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Fig. 4. Microglia/macrophages, granulocytes and T cells accumulate in the choroid plexus of the caudal lateral ventricle in response to peripheral atherosclerosis. (A) ApoE�/�

mice fed a Paigen diet show accumulation of CD45+ leucocytes (red) in the choroid plexus of the caudal lateral ventricle, which display increased VCAM (green)
immunopositivity. (B) Quantification of CD45+ leucocytes in the choroid plexus of the lateral ventricles. (C) CD45-positive cells, which are numerous in the choroid plexus,
also appear in the parenchyma (Oil red O counterstain) on both sides of the lateral ventricle (inset, arrowheads). (D) CD3 positive T cells (green) were found to accumulate in a
partially overlapping area with granulocytes, identified with an anti-neutrophil serum (SJC, red). (E) A population of microglia/macrophages (Iba1, red) shows increased CD45
immunopositivity (blue) in the caudal choroid plexus among other CD45-positive leucocytes (possibly granulocytes). ⁄P < 0.05. Scale bars: A; 200 lm; C; 100 lm; D; 10 lm
and E; 50 lm.
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systemic inflammation, which is consistent with our findings in
rodents with risk factors for stroke.
4. Discussion

Here we show that major risk factors for stroke such as athero-
sclerosis, hyperlipidemia and obesity, which involve chronic sys-
temic inflammation, are associated with brain inflammation in
relevant animal models and in a small cohort of humans, in the ab-
sence of any cerebrovascular events. These data suggest that sys-
temic inflammation can drive brain inflammation prior to stroke
presentation, leading to a ‘‘primed’’ inflammatory environment in
the brain.

We used PET imaging to identify microglial activation, because
these cells are early responders to pathological changes in the CNS
and microglial activation is a hallmark of multiple brain diseases in
patients and rodent models (Hanisch and Kettenmann, 2007;
Teeling and Perry, 2009). The advantage of assessing neuroinflam-
mation by in vivo PET imaging in rodents is that these measure-
ments are comparable with clinical imaging data, and is therefore
highly translatable to clinical settings. Both [11C]PK11195 and
[18F]DPA-714 bind to TSPO, but despite that [18F]DPA-714 has the
advantages of better signal to noise ratio (Chauveau et al., 2009)
and the longer half-life of [18F], which allow PET imaging of 2–3 ani-
mal per batch of tracer, [18F]DPA-714 is not yet available for clinical
use in our facilities. Corpulent rats exhibited focal areas of microg-
lial activation, as assessed by increased [18F]DPA-714 binding
in vivo. Increased TSPO-ligand binding was observed in various
brain areas, including periventricular regions and some subcortical
and cortical regions in the corpulent rats (Fig. 1B and C). Imaging
data correlated well with the immunohistochemistry findings,
which revealed an increase in the number of activated microglial
cells. In line with the experimental data, the presence of [11C](R)-
PK11195 binding indicated neuroinflammation in subjects with
multiple risk factors.

Microglial activation was also detected in several brain regions
in atherosclerotic ApoE�/� mice, indicating that neuroinflamma-
tion is likely to be a common link among animal models of chronic
systemic inflammatory diseases. Although the exact mechanism of
microglial activation needs to be further investigated, such ‘‘prim-
ing’’ of microglia in response to peripheral inflammatory changes
has important implications to multiple cerebrovascular diseases.
It is now established that microglia primed by central neurodegen-
eration or amyloidosis respond more vigorously to subsequent sys-
temic or central inflammatory insults. For example, in a murine



Fig. 5. Focal pathological changes are present in the brain in response to peripheral atherosclerosis. Haematoxylin & Eosin (H&E) staining (A) reveals vascular inflammation as
indicated by dilated blood vessels and inflammatory infiltrates in the hypothalamus adjacent to the third ventricle in Paigen fed ApoE�/� mice. Focal lipid deposition as
identified by Oil red O staining is observed in the vicinity of perivascular CD45-positive leucocytes (B). This is associated with an increase in the number of activated, Iba1-
positive microglia (C) recruitment of CD45+ cells (D, red) and focally upregulated VCAM immunostaining (D, green). VCAM expression is also seen in the ipsilateral wall of the
third ventricle but not in the contralateral part. Parallel brain sections from a representative brain are shown. ⁄P < 0.05. Scale bars: 100 and 12.5 lm. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this paper.)
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model of prion disease, intracerebral or systemic LPS challenge in-
duced augmented microglial activation and cytokine expression
compared to control mice (Cunningham et al., 2005). Our data indi-
cate that systemic influences are also capable of priming the
inflammatory response of the brain. The presence of activated
microglia and cerebrovascular inflammation may not only lead to
irreversible neuroinflammatory alterations in the brain, but proba-
bly contribute to outcome if an ischaemic event occurs. Given that
the vast majority of experimental stroke studies are undertaken in
‘normal’ animals with no underlying inflammation this might ex-
plain the lack of translation of potential treatments to the clinic.

We performed further characterisation of the vascular and cel-
lular response in the brain of C57BL/6 and ApoE�/�mice, to explore
the possible effects of atherogenic diet on neuroinflammation.
Although the atherogenic ‘‘Paigen’’ diet alone reportedly induces
inflammation in peripheral organs (Desai et al., 2008), we found
significant vascular activation or enrichment of CD45-positive cells
in the choroid plexus only in ApoE�/� mice fed the Paigen diet, not
in C57BL/6 mice. No sign of intraluminal plaques was observed in
cerebral blood vessels in our study, which is in line with a report
showing increased oxidative stress and endothelial dysfunction
in cerebral arterioles in high-fat fed ApoE�/� mice, but in the ab-
sence of atherosclerotic lesions (Kitayama et al., 2007).

Our results indicate that brain inflammation is associated with
chronic systemic inflammation, and an atherogenic diet further aug-
ments this process. In Paigen-fed ApoE�/�mice an increase in T lym-
phocytes in the choroid plexus at the areas of granulocyte
recruitment was seen. A recent report in experimental autoimmune



Fig. 6. [11C](R)-PK11195 binding potential (BPND) images are shown for all subjects and control participants. Images are displayed on each subject’s respective T1 MRI scan
normalised to the SPM5 T1 brain template. The value for each individual’s CRP at the time of PET scanning is also shown.
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encephalomyelitis highlights a key role of interleukin-17-producing
T helper cells in recruiting immune cells into the choroid plexus
(Reboldi et al., 2009). It is intriguing to speculate, therefore, that
our data also highlight the possibility that such a process may oc-
cur as a result of chronic systemic inflammation alone. Alterna-
tively, the brain inflammation may be driven by metabolic
disturbances alone without the need for systemic inflammation.

Some ApoE�/� mice fed a Paigen diet also displayed brain peri-
vascular areas with focal lipid deposition and with microglial and
vascular inflammation, similar to that seen in large peripheral
blood vessels in these mice (Stoll and Bendszus, 2006; Zadelaar
et al., 2007). Our data cannot confirm whether lipid deposition in
the brain is a trigger of focal inflammatory changes or only a con-
sequence of an ongoing inflammatory response. Nevertheless, we
show that atherogenic diet is associated with focal inflammatory
changes in the brain of animals that develop systemic vascular
disease.

In summary, we demonstrate that chronic systemic inflamma-
tory diseases, which are primary risk factors for stroke, are associ-
ated with inflammatory changes in the brain of rodents and
humans. Our data support the existence of a causal relationship be-
tween systemic inflammation and brain inflammation that may
contribute to stroke and other neurological disorders. An aug-
mented inflammatory environment in the brain of stroke-prone
individuals could aggravate post-ischaemic damage if stroke oc-
curs and further studies will address this issue. Our translational
approach has shown that appropriate co-morbid animal models
exist that replicate important aspects of the stroke-prone state in
humans, and that these co-morbid models could help facilitate
translation from experimental studies to the clinic by providing a
more realistic pre-clinical setting for testing novel therapies.
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