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Abstract

This thesis employs two sets of stated preference data to investigate the transferability
of nonmarket benefits across regions. It focuses on two aspects: benefit estimation with
multiple sources of heterogeneity and statistical and economic significance tests for benefit
transfers.

A heterogeneous multinomial logit model and a random coefficient multinomial probit
model are developed and applied to the two data sets. It is found that accounting for the
heterogeneity in choice data not only improves the model’s goodness of fit but also affects
benefit calculations. While the explicit formula for benefit calculation is derived in the
heterogeneous model, the benefit measures are simulated in the random coefficient model.
The random coefficient model also provides the best goodness of fit and benefit
transferabilities.

Based on the benefits calculated from the random coefficient probit model, transfers
are examined using two nonparametric procedures: the Mann-Whitney test and the
convolutions approach. It is suggested that most of benefits generated from the “true” and
transferred models are transferable statistically at a 10% level.

A test procedure for the economic significance of benefit transfer is also developed.
Two indicators, the probability of making incorrect decisions and the expected benefit of
benefit transfer, are used for the test of the economic significance of benefit transfer. For a
specific case study, it is found that the possibility of making an incorrect decisions is

reasonablely low when benefit transfer is applied.
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Chapter 1. Introduction

Benefits of environmental changes are measured by comparing an existing known
level of environmental services with some specified hypothetical alternative where the
environmental services have been changed. The concept of the benefit of environmental good
and service changes is a natural extension of the compensating or equivalent variation of
marketed goods and services. In recent years, demand models suitable for the estimation of
non-market benefit values have been developed. This has enabled economists to use the
concept of Hicksian surplus for the valuation of environmental goods and services.
Monetarily quantified benefit measures provide an important tool for natural resource
management and policy analysis.

Motivated by both intensive resource management and assorted legislative and
juridical mandates, public and private agencies have expended considerable resources in order
to quantify the economic consequences of altering service flows and stocks of non-marketed
features of the natural environment. It is expected that the demand for non-market valuation
will continue to increase.

The increasing demand for non-market valuation of environmental assets as well as
financial constraints on researchers has brought about the idea of using benefit transfers as
a time-saving and cost-effective alternative to environmental valuation. The term benefit
transfer aptly captures its objective: transfer the estimated economic value of environmental

quality changes from one site to a second site. In the case of natural resource and



environmental policies and projects, benefit transfer involves transferring value estimates from
a “study site” to a “policy site” where sites can vary across geographic space and/or time. For
example, benefits of improving moose habitat in Newfoundland may be estimated by using
a model from a study that estimated the benefits of improving moose habitat in Alberta.
The demand for benefit transfer applications by public policy makers and resource
management agencies is expected to increase in the future for three interrelated reasons.
First, primary data collection on a site-by-site basis is expensive. Second, agencies face
considerable uncertainty regarding continued budget support for primary data collection and
valuation model development. Third, primary data collection is time consuming, often taking
one or more years to complete a study. Policy or management decision makers require
inexpensive benefit estimates in a timely manner. Benefit transfer offers an opportunity to

meet this need.

1.1 Background on Benefit Transfer

While the objective of benefit transfer is straightforward, conceptual discussions as
to what is a benefit transfer application have been ongoing for several years. Boyle and
Bergstrom (1992) described benefit transfer as the transfer of existing estimates of non-
market values to a new study that is different from the study for which the values were
originally estimated. In their opinion, benefit transfer is simply the application of secondary
data to a new policy issue. McConnell (1992) defined benefit transfer as a process by which
researchers take recreational demand models or other models that are estimated for one site

or region and apply them to another site or region. Smith (1992) suggested the process of a
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benefit transfer involves focusing on measuring (in dollars) how much the people affected by
some policy will gain from it. He states that benefit transfer is not a forecast, and usually does
not attempt to predict other exogenous influences on people’s behaviour. Instead, a
predefined set of conditions is assumed to characterize the nonpolicy variables, and thus
benefit estimates are derived by focusing on the effects of the conditions assumed to be
changed by the policy. Atkinson et al. (1992) defined benefit transfer by confronting the
policy maker’s choice: in considering a demand for yet another site-specific environmental
improvement, policy makers must decide whether to extrapolate the results of benefit
assessments done elsewhere or to commission a new assessment study. Luken et al. (1992)
view the process of benefit transfers as a limit-setting process: we use these existing studies
only to suggest some likely limits on willingness to pay.

To summarize, benefit transfer is an application of a data set, and its estimated model,
that were developed for one particular use to a quite distinct alternative application. Thus the
process of a benefit transfer is recognized to be potentially less than ideal.

Implicit in all of the above is the notion that benefit transfers are valid under well-
defined conditions. However, there is a so-called impossibility philosophy toward benefit
transfer. This philosophy states that benefit transfer is impossible. Consider the transfer of a
value estimate at site A to a similar issue at site B. Those who adhere to the impossibility
philosophy have two major points (Boyle and Bergstrom, 1992): first, the levels of common
technical attributes of site A and site B are different and some attributes might occur at one
site and not at the other; and secondly, there may exist some unobserved social and economic

heterogeneity across individuals and between site A and site B. The potential sources of error



in benefit transfer could be commodity measurement error, population characteristic
measurement error, welfare change measurement error, physio economic linkages
measurement error, and estimation procedure and judgment error. Proponents of this
philosophy would argue that these potential errors may result in different values at each of
the sites, so benefit transfer is impossible. The retort of the pragmatist might be that we
simply need to learn whether and how these differences actually affect values, and if they do,
whether the differences are large and how might one statistically control for these differing
effects.

Regardless of the conceptual arguments, researchers have proceeded to evaluate the
viability and the methodologies of benefit transfers. In recent years, a number of studies have
been conducted to test empirically the feasibility of benefit transfer. Parsons and Kealy (1994)
used revealed preference data of lake recreation in the state of Wisconsin to test the viability
of benefit transfer in a Random Utility Model (RUM). They found that the estimated models
were significantly different in the statistical test, but the benefit transfer had considerable
accuracy. These results are not surprising because some significantly different coefficients in
their models have little impact on benefit calculation or work to offset one another. However,
it has to be recognized that the base of benefit transfer is model transferability, and that a
good benefit transfer from poorly transferable models is by chance.

Downing and Ozuna (1996) introduced an experiment designed to test the reliability
of the benefit function transfer approach using contingent valuation methods. Using data
collected from anglers surveyed across eight contiguous Texas Guif Coast bay regions over

three distinct time periods, they tested function transferability by using dummy variables to



represent different regions and time periods. They tested benefit transferability by computing
benefit confidence intervals. Their results are the opposite of Parson and Kealy’s. In Downing
and Ozuna’s study, most of the contingent valuation functions were transferable because the
dummy variables were insignificant, but the computed benefits were significantly different.
However, the question in their study is “how large is large” economically in the determination
of the significance of the coefficients of the dummies. The authors did not provide the
estimates of the contingent valuation functions. It is possible that the magnitude of some
estimated dummy coefficients are quite high but insignificant statistically. As a result, function
transferability was accepted but benefit transferability was rejected.

Loomis (1992) introduced an approach that involves an application of travel cost
demand equations and contingent valuation benefit functions from existing sites to the new
site to test the assumptions of benefit transfer from recreation sites in one state to another
state for the same recreation activity. In Loomis (1992) the equality of demand coefficients
for ocean sport salmon fishing in Oregon versus Washington and for freshwater steelhead
fishing in Oregon versus Idaho is rejected. Thus transfer of either demand equations or
average benefits per trip is likely to be in error.

Based on a large number of previous non-market valuation studies, Desvouges,
Naughton and Parsons (1992) investigated the problems encountered in using existing studies
to measure the benefits of water quality improvements and proposed criteria for selecting
transfer studies. They indicated that although benefit transfer may offer promise, the fact that
existing studies were not designed for transfer places severe limitations on the current

effectiveness of transfer. Their general recommendations for how benefit transfer might be



improved are: (1) focusing on multisite models; (2) comparing the estimates of the same basic
structure derived from different geographic areas; (3) using quality measures that are relevant
to policy decisions; (4) selecting explanatory variables where possible that have measures
readily available in current regional data bases.

Smith (1992) illustrated the need for guidelines in deciding when benefit transfer
methods can be used to value changes in environmental resources. He recommends that four
research directions would contribute to the knowledge base of benefit transfer: (1) continue
to develop theory that links contingent valuation studies to consumer behaviour, (2) develop
criteria that will standardize the description of key components of the valuation process such
as the commodity and geographic description, (3) continue to explore the use of meta-
analysis, and (4) begin a process of specifying a protocol for benefit transfers.

McConnell (1992) examined the methodology of a benefit transfer by forming an
analytical model based on preferences. He suggested that one cannot separate the benefit
estimation process from the benefit transfer process because potential errors arise in both
demand estimation and benefit estimation. Brookshire and Neill (1992) shared the same idea
with McConnell. They argued, that since the development of the methodologies and
conceptual framework for non-market valuation is not complete, rigorous empirical studies
and advancements in non-market valuation theory are needed in order to find a “home” for
benefit transfer. The above literature suggests that benefit transfer is a new concept in
environmental valuation and that studies on both benefit transfer theory and methods have just

begun.



1.2 Benefit Transfer in Practice

Despite the recognized limitations of benefit transfer, the technique is widely used in
practice. In the United States, benefit transfer has been used by government agencies to
facilitate benefit-cost analysis of public policies and projects affecting natural resources. For
water resource management, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation,
U.S. Natural Resources Conservation Service, and the Tennessee Valley Authority
recommended benefit transfer techniques for measuring recreation benefits (U.S. Water
Resources Council, 1983; Vincent et al,. 1986; Henderson and Allen, 1994). For forest and
rangeland resources managed by the U.S. Forest Service, benefit transfer is used to estimate
forest commodity benefits (including recreation benefits) in the National Forest program and
planning process at national, regional and local levels (U.S. Forest Service, 1990). A well-
known application of benefit transfer is the U.S. Forest Services [1987] development of RPA
(Resource Planning Act) values for individual national forests to use in their long-range
planning processes to meet the requirements of the National Forest Management Act. The
U.S. Army Corps of Engineers also developed a regional demand model used to transfer
recreational benefits from one Corps reservoir to another.

The U.S. Department of Commerce, National Oceanic and Atmospheric
Administration (NOAA) recently issued its Final Rule for natural resource damage
assessments covered under the U.S. Oil Pollution Act of 1990 (NOAA, 1996). This Final
Rule allows for the use of benefit transfer techniques after the following three factors are
carefully considered: “the comparability of the users and of the natural resource and/or service
being valued in the initial studies and the transfer context; the comparability of the change in
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quality or quantity of natural resources and/or services in the initial study and in the transfer
context ( where relevant); and the quality of the studies being transferred” (Federal Register,
January S, 1996, p 499).

Benefit transfer techniques are also widely used in Canada to assess both minor and
major policy decisions by Environment Canada. The relatively few primary studies undertaken
in Canada require analysts to rely, in part, on U.S. studies for benefit transfer. Formal validity
tests have not been undertaken to determine the transferability of values from U.S. sites to
Canadian sites.

Recognizing the need for a “non-market valuation library”, Environment Canada in
collaboration with the U.S. Environmental Protection Agency and leading North American
experts are developing a benefit transfer database: the Environmental Valuation Reference

Inventory™ (EVRI™ ). The EVRI™ will provide a useful data base for future benefit

transfers.

1.3 Issues in Benefit Transfer

Benefit transfer has been discussed extensively in the environmental evaluation
literature and used widely in natural resource management and policy making practice. Yet,
there is little research on the validity of benefit transfer or on the circumstances in which it is
appropriate. Several issues that need to be addressed include the following.

First, the benefit transfer process and benefit estimation process cannot be separated
from each other. A good benefit transfer application is based on high quality valuation studies.

There are two general conditions, one theoretical and one practical, for benefit transfer. The



theoretical condition is that the underlying behavioural process described by the demand
model is the same in the study site as in the policy site. If this condition does not hold (if, for
example, people in one context are utility maximizers and people in another context are
satisfiers), benefits will not be transferable. However, if this condition does hold, a further
practical condition for benefit transfer is that the model be well-specified and that the data
used to estimate it are such that the model describes the underlying behavioural process. In
benefit transferability tests, the practical condition is a maintained hypothesis, and the
theoretical condition is the hypothesis to be tested. This requires that the study to be
transferred be well done.

Second, dealing with individual heterogeneity is a significant problem in benefit
estimation and transfer. In benefit estimation, unmeasured, household (individual) specific
factors may influence household (individual) behaviour. Even with the specification of
demographic and social variables, households (individuals) may differ in their responses to
prices and environmental attributes. Failure to control for such heterogeneity is likely to yield
biased and inconsistent mode! estimates, and more importantly, biased benefit estimates.

Third, benefit transferability is not satisfactorily described as a dichotomous property.
Rather, it is appropriate to consider the degree of transferability of the estimated benefits.
This has an important implication for transferability tests. The commonly used difference of
means test not only has serious statistical problems but also only provides a Yes or No
answer. Thus, measures that describe transferability in continuous terms should be
developed.

Fourth, because benefit transfer is an application of a data set and its estimated model



that were developed for one specific use to a distinct alternative application, it is inevitable
that there may be an error (or a difference) between the “true” and transferred benefit. The
questions then are: Is this error (difference) large enough to affect a policymaker’s decision?
How important is the error (difference) in a policymaker’s decision? These are questions of

the economic significance of benefit transfer.

1.4 Study Objectives

This study is designed to investigate the above issues by employing non-market
random utility models and stated preference data. The general purpose of this study is to
answer the following three questions: (1) Are benefit transfers valid and reliable? (2) How
can the process of accomplishing benefit transfers be improved? (3) What is the economic
significance of benefit transfers? Since benefit transferability and benefit estimation cannot be
separated, the first two questions are considered jointly.

The specific objectives of this study are:

1. To develop and estimate the random utility models which can account for
observable and unobservable multiple sources of heterogeneity.

2. To calculate/simulate consistent benefit estimates from the developed and estimated
random utility models.

3. To evaluate/test benefit transferability using advanced statistical techniques.

4. To investigate the economic significance of benefit transfer in simulated policy
settings.

This thesis mainly focuses on the empirical aspects of non-market valuation. It tries

10



to provide several significant contributions to this academic field. First, heterogenous
multinomial logit models and random coefficient probit models are developed and used to
deal with multiple sources of heterogeneity in individual choice data, in order to obtain
consistent benefit estimates. Secondly, the compensating variation of environmental changes
are derived or simulated for the heterogenous and random coefficient models. Thirdly, several
nonparametric procedures are used to compare two simulated benefit distributions. This
provides an appropriate method of statistically testing the reliability of benefit transfers.
Fourthly, the economic significance of benefit transfer is investigated by solving a

policymaker’s decision problem and examining a specific case study.

1.5 The Organization of the Study

This study could be seen as a scientific experiment in which two data sets are
collected: one at a study side and the other at a policy site. Assume that the model estimated
from policy site data is the “true” model of the policy site, and the model estimated from the
study site data is the transferred model. For a given policy or project at the policy site, the
benefits are calculated from both the “true” model and transferred model. Benefits calculated
from the true model are referred to as the “true” benefits and benefits calculated from the
transferred model are referred to as the transferred benefits. The statistical and economic
significance of the difference between the “true” and transferred benefits are then evaluated.

The study plan of this thesis is demonstrated in Figure 1. This thesis contains two
major parts: consistent benefit estimation with multiple sources of heterogeneity, and the

statistical and economic significance of benefit transfers.

11



The remainder of this thesis is organized as follows. In Chapter 2, the basic random
utility model and benefit measurement are presented. In Chapter 3, the experimental design,
data collection procedures and survey design are discussed. Chapters 4 and 5 deal with
models with multiple sources of heterogeneity. Various random utility models are developed,
estimated and compared. The purpose is to obtain consistent benefit estimates. Chapter 4
discusses heterogenous multinomial logjt models and benefit calculations. Chapter 5 develops
the random coefficient probit models and the benefit simulation approach. Chapter 6 and
Chapter 7 examine, respectively, the statistical and economic significance of benefit transfers.
The final chapter contains a discussion of the models and transferability tests and discusses

some extensions.
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Chapter 2. The Random Utility Model of Choice and

Benefit Estimation

2.1 Introduction

Since the late 1970s, muitiple choice (discrete choice) models have been widely used
in transportation, marketing and non-market valuation. Although they have different names
in different disciplines, the underlying assumptions and theoretical setting are the same.

In these models, individual decision problems are modelled in terms of multiattribute
choice systems that link objective measures of the attributes of alternatives to observed
choices. Such systems assume that the process of choice can be described by three
fundamental component relations (Meyer and Johnson, 1995, p180): (1) The valuation rules
that map objective measures of alternative attributes to their perceived attractiveness; (2) The
integration rules that map perceptions of the attractiveness of a site attributes to overall
impressions of the attractiveness of the site; and (3) The choice or behavioural rules that
map overall impressions to overt behaviours, most commonly choices. Meyer and Johnson
(1995, p181) find support for three major generalizations about the form of consumer
decision processes: (1) Attribute valuation are a non-linear, reference-point dependent
function of objective product attributes; (2) The algebraic integration rule which best
describes how valuations are integrated into overall valuations is multiplicative-multilinear;
and (3) Overall valuations of an option are linked to choices by a function which recognizes

the proximity or similarity of the option to others in the choice set.
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In the transportation literature, multiple choice models are usually called discrete
choice or random utility models and have been widely applied to analyse the travel mode of
the urban commuter (see Ben-Akiva and Lerman 1985, Hensher 1986, and McFadden 1974).
In the marketing literature, these models are usually used as Multinominal Logit models to
represent choice among alternatives (see Punj and Staelin 1978, Flath and Leonard 1979,
Gensch and Recker 1979, Jones and Zufryden 1980, 1981, 1982, Guadagni and Little 1983,
Carpenter and Lehamann 1985, Lattin 1985, and Bucklin and Lattin 1986).

In environmental valuation this type of model is usually called a random utility model
(RUM) and has been widely used to model recreational demand. Studies by Admowicz
(1994), Adamowicz, Louviere and Williams (1994), Adamowicz, Jennings and Coyne (1990),
Bockstael, Hanemann and Strand (1984), Coyne and Admowicz (1992), Hellerstien and
Mendelsohn (1993), Luckert and Adamowicz (1993), Morey, Rowe and Watson (1993),
Stynes and Peterson (1984) and Yen and Admowicz (1994) have illustrated the range of
applications and types of random utility models. The prevalence of such studies suggest that
the basic structure of RUM is well established.

Compared to conventional demand models, RUMs provide quite a different structure
in which to model recreation demand, a structure that focuses attention on the choice among
substitute sites for any given recreational trip. Thus it is especially suitable when substitution
among quality differentiated sites characterizes the problem. Because site characteristics are
instrumental in explaining how individuals allocate their trips across sites, RUMs have been
used chiefly to value changes in the specific characteristics of the site, such as catch rates or

water quality. Moreover, they are also capable of valuing the losses from eliminating a site,
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or the benefit of introducing a new site.

2.2 Random Utility of Choice

A major accomplishment of econometric research in recent years has been the
development of statistical models suitable for the analysis of discrete choices. This has enabled
economists to study behavioural relationships involving purely qualitative variables that are
not amenable to conventional regression techniques.

The basic structure of RUM was developed by McFadden (1974). Suppose that an

individual » faces a choice set C,. Define the utility of choice (site) 7 as

[Jinzllin(yn-pm ’ Ql 4 Zn . B) + ein i€ CJ (2-1)

where V,, is the systematic (or explainable) portion of the utility function and €,, is an

error term associated with joint random variation across both individuals and alternatives. The
indirect utility ¥, is a function of the income available to the individual n, ¥, , the price
for individual 7 to access site i, P, , a vector of characteristics of sitei, {, , anda
vector of individual specific variables Z, . €, can have either an omitted variable or
random utility interpretation. €, is a known number for individual n, but a random number
for the econometric investigator. #is a set of coefficients to be estimated. With additive
errors, individual » chooses site iif V, + €, >V, + €, . The utility U, is ordinal

n

utility. Individual consumer selects an alternative which has highest utility in the whole choice
15



set.

Model (2.1) has different names, depending on the assumptions on the distribution of
the errors. If the errors are assumed to be independent and identically distributed Gumbel
variates, the model becomes the commonly used Multinomial Logit (MNL) model; When
there is a general pattern of dependence among alternatives, model (2.1) is referred to as the
Generalized Extreme Value (GEV) model; if the errors are assumed to have a mutivariate
normal distribution, the model is called a Multinomial Probit (MNP) model. The more
restrictive the assumption on the distribution of the errors, the easier to estimate the model
becomes. Among these models the MNL model is the easiest to be estimated, and the
estimation of MNP model is quite burdensome and thus rarely used.

In the MNL model, the cumulative distribution function (cdf) of an individual error

term is

F(e,,<€)=exp(-e **) 2.2)

where >0 is a scalar. This cdf impliesthat V(e ) = =%/(6u?) . Assume the vector of
explanatory variables X, = (v,-p,, , O, » Z,). The probability that a randomly observed
individual n chooses alternative i from choice set C, is

p - _=PWbX,)

Jee,

Because p in the above equation can not be identified, one must estimate the product (up).
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The associated likelihood function for a sample of N individuals and ./ alternative sites is

N J J
L=TI1I1 exp(,) /,{1 exp(V,)I" 24)

n=] i=1

where ¢ - | if individual n chooses site i and ;" = 0 otherwise. Maximizing L

produces the maximum likelihood estimates of uf.

An important disadvantage of this MNL model is the well-known independence of
irrelevant alternatives (IIA). Under IIA, introduction of a new choice leaves the relative odds
of choosing among existing alternatives unaltered. This property requires that all choices be
perceived as distinct and independent, i.e., that the errors in estimating the utility associated
with each alternative be uncorrelated.

A partial solution to ITA is to use a GEV model. The most commonly used form of
GEV model is the Nested Multinomial Logit (NMNL) model. The NMNL models allow
alternatives to be grouped in a manner that allows the choice of alternatives to be correlated
within, though not between, groups. Suppose individual hunters make the site choice in two
stages: whether to hunt or not and where to hunt. Assuming that errors in model (2.1)
follow a generalized extreme value distribution, the probability of individual n choosing site
iis

e V-"-[zjep-e V-/"-]‘-’l

p,(i, m)=p (ilm)+p (m)= 2.5)

Ekem [ij.e v“/¢g]¢k

where D, are the choices in subsets m (D, =not hunting, D, =site 1, site 2, .... siteJ ); m
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are the subsets (m=1, 2); V,, is the utility associated with hunting at site j in subset

(mode) m. «, is a parameter that measures the degree of substitution between the various
subsets (modes). The coefficient @ is referred to variously as the “inclusive value
coefficient” or the “dissimilarity parameter.” When «_ =1 for all m, the probability

expression (2.5) collapses to the standard multinomial logit probability, where the IIA
property holds between all alternatives. Full information maximum likelihood estimation of
the coefficients is accomplished by defining the log likelihood function as the product over

a sample of individuals of the probability expressed in equation (2.5):

L =1]]»,, (2.6)

One appealing alternative to MNL and NMNL model is the multinomial probit model,
in which the residuals in the random utility model have a multivariate normal distribution.

Consider the case of three alternatives: U, =V}, +€, ; U, =V, +¢, ;
and U,, = V;, + €, . Assume that the residuals ( €,, €,, €;, ) have a trivariate

normal distribution with mean vector zero and covariance matrix I given by

Z=lo, 0 0y 2.7)

Consider the probability that the first altenative will be chosen. This is
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AU,>U,, U,>0,) =HKe,-€,<V,-V,,6, -€,<V, -

Vi)

Write My =€, ~€, , M =6,-€, ,and V3=V, -V, , then 1,

and 7,, have a bivariate normal distribution with covariance matrix

of+a;-—2¢112 of-ow-ouw23

Q =
1 2_ o . 02+03-0
170137030 1%03703

Thus the probability that alternative / will be chosen is given by

iz VB

PQ) = f fﬂ'\zvﬂsl)‘mu‘"\n

(2.8)

(29)

where f ( My; , Ny, ) has abivariate normal distribution with covariance matrix Q , and

mean vector zero. The probabilities P(2) and P(3) can be similarly calculated.

With J alternatives, the multinomial probit model ends up with J-/ integrals. For J>5

the estimation could be very costly and almost impractical. Two alternative methods have

been suggested for approximating MNP choice probabilities at moderate cost. The most

popular method is the approximation based on the formulas developed by Clark (1961), and

applied by Daganzo, et al (1977) to MNP estimation. This method approximates the

distribution of the maximum of the normal variates with that of a normal variate. It is good

for nonnegatively correlated variates of equal variances, but is poor for negative correlations

or unequal variances.

The second method is a Monte Carlo method used by Lerman and Manski (1982)
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and McFadden (1989). It starts with given values of V, and draws vectors

(€ ,€, .., € ) froma multivariate normal distribution, and the frequency with

which utility is maximized at alternative i is recorded. What this procedure amounts to is a
search procedure on both the ¥, and the covariance matrix of the errors Z. Even this can be
computationally cumbersome.

More recently Geweke (1992), Hajivassiliou (1993), Hajivassiliou and Ruud (1993)
and Keane (1994) (GHK) have made great advances in designing simulators, and applying
them in MNP estimation. The GHK method simulates the choice probabilities by the smooth
recursive sampling methods. Based on the root mean squared error criterion, Hajivassiliou,
McFadden, and Ruud (1992) show that the GHK simulator is unambiguously the most
reliable method for simulating normal probabilities, compared to twelve other simulators
considered. Borsh-Supan and Hajivassiliou (1993) also compare the GHK simulator with the
frequency simulator and Stern’s simulator, and show that the GHK simulator generates
substantially smaller variance than the others.

While various approximation and Monte Carlo methods provide practicable tools for
MNP estimation, the best way to estimate MNP is to do the multiple integrations if the
computation is tractable. It is found that even GHK is not an unbiased simulator of the log
likelihood contribution /n( P ;) and under certain conditions the simulated maximum
likelihood for an MNP model is inconsistent (Hajivassiliou and Ruud, 1993).

Among the above models, MNL and NMNL have been commonly used in marketing,
transportation and environmental valuation. The MNP model is rarely used due to its
computational burden. All of these models assume homogenous preferences by individuals
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(observations). In Chapters 4 and 5 random utility models with multiple sources of

heterogeneity will be developed and applied, based on the models described above.

2.3 Benefit Estimation in Random Utility Models

For environmental valuation, the final product is the estimate of benefit. Benefit
estimation in random utility models parallels that of compensating variation (CV) in
continuous demand functions. Once the indirect utility function ¥, is estimated, the
compensating variation of a change in any explanatory variable(s) can be obtained following
Small and Rosen (1981) and Hanemann (1982).

First, assume that an individual’s utility function is in deterministic form, i.e., itis
known without error by the investigator. With discrete choice, an individual’s utility

maximization problem can be described by the following:

Maximize U = Ux, ,...,, X; , 4, ..., 47 » 2)
ST :
p;x+tz=y (2.10)
x; x; =0 all i+
x=(1,0 j=1,.T

J
This individual consumer has a twice-differentiable, quasi-concave, increasing utility function
U defined over the commodities x,, x,, .., X, and z, where z is taken as the numeraire.
In addition, the consumer’s utility depends on some other variables, q,,q,, -.., Q ¢, Which
she/he takes as exogenous; these are, for example, quality attributes of the non-numeraire

goods. The consumer chooses (%, z) so as to maximize U.
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Once oneofthe  X; (=1, ..., T) has been selected the quantity of z is fixed because

of the budget constraint. Constraint 1 is a budget constraint; constraint 2 describes the

discreteness of the consumer choices, which means the X, G=1, ..., I) are mutually

exclusive in consumption; constraint 3 means x; (j=/, ..., T) can be purchased in one unit

or not be consumed at all. The above model represents a purely qualitative utility maximizing
choice.
It is convenient, but not essential, to make the additional assumption about the utility

function in (2.10) that

x,=0-3u/dg=0 j=1.,T (2.11)

i.e., the attributes of goods do not matter to consumers unless that good is actually
consumed.
Suppose that the consumer has chosen good j. Her/his utility conditional on this

decision is denoted by U;, given by

U = U(,...0, 1 ,0,..,0, ¢, y-p) = V(4 , y-P) (2.12)

where p; is the price of good j and y is the consumer’s income. The consumer’s demand

function for good j can be written as

X 9. 5) =L if V(q,,y-P)2V(q, ,y-p) Jor all i%j
=0 otherwise

(2.13)
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Substitution of these demand functions into the utility function yields the unconditional
indirect utility function

o, q, y) = max[V(q,, y-P,), ---» V{4p Y-P1)} (2.14)

This function measures the utility achieved by the maximizing consumer when confronted
with given price, attributes and income. Accordingly, it can be employed to construct
mionetary measures of the welfare effects of a change in these variables(Hanemann, 1982).
By analogy to standard welfare theory, the compensating variation for a change from (p, q°)

to (p, q*) is defined by

V@, q', y+ov) = Vp, 4°, ») (2.15)

where CV represents compensating variation of quality changes from q° to q* . This equation
provides a base for welfare calculation under deterministic discrete choice.

As has been shown in the discussion of the discrete choice model, the random utility
model contains some components that are unobservable to the econometric investigator and

are treated as random variables. The utility function in this case can be written as

Uk, g, 2, €) = u(x, q, 2) + &g, (2.16)

where £ ;is 1 if x;>0, and 0 otherwise. Substituting (2.16) into (2.10) and then solving yields
a set of ordinary demand functions and an indirect utility function; these parallel those
developed in the deterministic case, except that they involve a random component from the

point of view of the econometric investigator.
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Suppose that the consumer has selected good j. Conditional on this decision her/his

utility is

U=V4yp) +¢ JL .. T @-17)

The ordinary demand function is

X 9.5 € =1 if V(g,yp) +€2V(q;,y-p) +€; for all i%j
=0 otherwise

(2.18)

Substituting the ordinary demand functions into the utility function (2.16) yields the

unconditional indirect utility function

p, q, y, €) = max[V,(q,, y-P,) +€;, --» V{dp Y-Pp) *+€;] (2.19)

Again, V(p,q,y, €) Iisthe utlity attained by the maximizing consumer when

confronted with (¢, p,y) .Thisisaknown number for the consumer, but for the
econometric investigator it is a random number. It is natural for the investigator to focus on
the mean of the distribution of this random variable. Consequently, the unconditional indirect
utility function is evaluated as

p, q, y) =ETVp, q, y, €)]

2.20
=E(max{V,(q,, y-P,) *€;, --» VAdp Y-P;) +€7]) (2.20)

Equation (2.20) can be used to calculate welfare effects of changes in the choice set as shown

24



in (2.15). As will be shown, under some assumptions on the distribution of the errors and on
the functional form of the indirect utility, the compensating variation (CV) has a closed form
solution. However, for some models such as the MNP, the CV calculation could be very
complicated and some simulation and numerical techniques are needed to solve for CV.
Equation (2.20) provides the theoretical structure of benefit calculation within RUMs.
However, the calculation could be much more complicated in an empirical study, especially
in the random utility models with heterogeneity incorporated. Chapter 4 and 5 will develop

the empirical benefit estimates in different random utility models.
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Chapter 3. The Stated Preference Approach
and Survey Data

3.1 The Stated Preference Approach

This study employs two stated preference recreational hunting data sets: one from a
study site and the other from a policy site. These two data sets form the base for our
experiment and allow us to realize the objectives.

The stated preference approach is a kind of experimental analysis of choice in which
an individual is asked to indicate her/his preference or to choose one alternative among a set
of hypothetical combinations of attributes that define services and products. Compared with
commonly used revealed preference (RP) methods, SP approaches have certain advantages.
First, the SP approach uses generated alternatives that can elicit preferences for new (non-
existing) alternatives, while RP analysis uses actual alternatives in which responses to non-
existing alternatives are not observable. Second, in SP analysis, there is no measurement error
of the attributes; multicollinearity can be avoided by experimental design; and the range of
attribute levels can be extended. Third, the SP approach prespecifies the choice set, while the
choice set in RP analysis is ambiguous in many cases. Fourth, in terms of the number of
responses in SP analysis, repetitive questioning is easily implemented, while, in RP
approaches, it is difficult to obtain multiple responses from an individual. Fifth, various

response formats (e.g., choose one, ranking, rating, matching) can be used in SP analysis,
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while in the RP approach, the preference information available is “choice”. However, SP
approach has its disadvantages. A commonly voiced criticism of SP data is that because it is
not based on real market behaviour, it may not reflect the current distribution of choices.
Models based on SP data may not be appropriate for predicting behaviour if the amount of
residual unexplained variation in the SP choice data differs from the amount of residual
variation in actual (RP) choices. Recognizing the shortcoming of both SP and RP data, a
rescaling approach have been applied to combine SP and RP choice data in order to improve
the estimates (see, for example, Adamowicz, et al., 1997 and 1994).

For benefit transfer, the potential advantages of SP methods over RP methods are that
SP analysis can avoid the problems associated with the selection of choice sets, and the
problem of the differential technical attributes between the transfer site and the policy site. If
an activity can be broken down into its attribute components, and if models can be
appropriately “segmented” to account for different types of users, the stated preference
approach may provide a broad enough response surface to allow for accurate benefit transfer
calculations (Adamowicz, Boxall, Louviere and Williams. 1994:19).

Stated preference (SP) analysis has a long history in the marketing and transport
literature. It is generally well accepted as a method for eliciting consumer responses to multi-
attribute stimuli. While the use of SP techniques in environmental valuation is relatively
recent, there have been a few noteworthy examples. Lareau and Rae (1988) studied the value
of odour reductions using a type of SP model. They asked individuals to rank alternative
combinations of odour contact numbers and increased household costs. Rae (1983) employed

SP type techniques in the analysis of benefits from air quality improvements. Mackenzie
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(1993) has employed SP type techniques to examine tradeoffs between attributes of
recreational hunting experiences. Mackenzie compares a variety of SP methods and illustrates
how many of these techniques can be designed to correspond with the Random Utility Model.
Opaluch et al. (1993) employed pairwise choices in an SP framework to analyse hazardous
waste siting decisions. Viscusi et al. (1991) employed SP type techniques in analysing health
risk trade offs. Goodman (1989) examines housing attributes in a SP framework. Adamowicz
et al., (1994) employed a choice experiment design to value the impact of a water resource
development. This model was constructed to examine recreational site choice.

While the SP approach has several advantages in discrete choice modelling and has
been widely used in practice, the process is fairly complicated and certain procedures must
be followed. There is a substantial literature on designing SP experiments (Louviere, 1988,
Hensher, 1994). Following Hensher (1994), the steps in an experiment can be summarized
as follows.

Step 1, Identification of the set of attributes that need to be considered as sources of
influence on a consumer’s choice.

This step requires a decision on which attributes need to be included in the
experimental design and which are to be excluded. This step is quite crucial for SP analysis.
If too many attributes are included in the design, the experiment will be too large to handle,
and, more importantly, the number of questions needed to be answered by each respondent
will be quite large. This may result in a low return rate and accuracy. On the other hand, if
some important attributes are missed, there will be no useful information provided by the

study. Two things are recommended in this step: First, identifying and including the most
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important attributes of the commodities and the attributes closely related to policy; second,
partitioning the other attributes into generic groups. In practice, the set of attributes is usualily
identified by focus group discussions combined with the researcher’s experience.

Step 2, Selection of the measurement unit for each attribute.

In most cases the measurement unit for an attribute is unambiguous. However for
some qualitative or generic attributes such as forest activity on site, the measurement units
are not well-specified. The common practice is to define an ordinal scale, e.g., high, medium
and low. In this case, the analyst should describe precisely what each level represents.

Step 3, Specification of the number and magnitudes of attribute levels.

For existing attributes, attribute levels should be chosen within the range of current
experience. When new alternatives are being evaluated, making the attribute levels believable
(and deliverable) becomes a primary consideration. The number of levels for each attribute
is decided by the overall complexity of the design. This involves consideration of the
combinations of attribute levels generated, the manner in which they are exposed to a
respondent, the need to investigate non-linearity, and the extent to which interaction effects
between pairs of attributes may be important.

Step 4, Statistical design.

Statistical design involves the compilation of the attribute levels into an experiment.
This requires the design of both the “product”descriptions and the choice sets into which
these descriptions are placed to satisfy the statistical assumption and properties of various
probabilistic discrete choice models. A statistical design could be a full factorial design or a

fractional factorial design. A full factorial design contains descriptions of all possible
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alternatives, enabling one to independently estimate the statistical effects of each attribute on
the choice response. In practice the full number of combinations is impractical to evaluate,
and so a fractional factorial design is constructed. In designing a fractorial experiment, the
analyst has to assume that certain interaction effects among the attributes are not statistically
significant. This is a very reasonable maintained hypothesis for a large number of possible
interactions. The most common fractional factorial design is a main effects plan. Main effects
plans assume that individuals process information in a strictly additive way, such that there
are no significant interactions between attributes. A main effects plan does enable the analyst
to define linear and high-order dimensions for each attribute. A large number of construction
techniques, such as varying choice set double conditional designs, a fixed choice set double
conditional design and a fixed choice set design, are now available in practice. They are
known to be able to produce designs that satisfy the properties of the models and permit the
identification of a wide range of model forms utility specifications (Batsell and Louviere 1991;
Louviere 1994; Bunch, Louviere and Anderson 1994).

Step S, Translation of the experimental design into a set of questions and showcards
for execution in the data collection phase.

The experimental design must be translated from a set of orthogonal or near-
orthogonal design attribute levels into real information for respondents to comprehend and
to which to respond. Where there are a large number of replications, it is popular to block or
randomise the experiment in such away that subsets of the respondents are asked to respond
to either a fixed subset or random subset in a way that ensures that all replications have equal

representation.
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Step 6, Model estimation.
As a last step of a SP analysis, RUMs are estimated to represent individual’s stated
preference. In this step, an appropriate estimation procedure is selected, depending on the

metric of the response variable and the level of aggregation of the data for modelling.

3.2 Survey Data

Following the above procedure, two SP recreational moose hunting data sets, one for
Alberta and the other for Saskatchewan, were collected by member of the Department of
Rural Economy, University of Alberta, and the Canadian Forest Service, respectively. The
data collection processes for the two data sets were similar. We use the Alberta SP data to
briefly explain this process. The details about the Alberta survey can be found in the project
report by Mcleod, Boxall, Adamowicz, Williams and Louviere (1993), and the details about
the Saskatchewan survey can be found in the report by MacNab and Mcfarlane (1997).

First, a set of attributes was identified from focus group discussion with hunters and
the researchers’ knowledge of hunting. In early October 1992, a meeting was held with a
group of moose hunters. Most of these individuals were resource management specialists or
biologists with high levels of knowledge about moose and forestry. They were also highly
experienced moose hunters and all had hunted moose in the study area. In this meeting the
researchers, in conjunction with focus group participants, developed a list of hunting
attributes for this SP study. This list included the following attributes:

- size and condition of moose populations;

- access within the hunting area both in terms of availability and quality of roads;
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- congestion;

- direct presence of forest industry operations.

The distance to the site was chosen to represent travel cost.

Secondly, the levels of each attribute were designed to represent the variations in the
real situation of the Wildlife Management Units (WMU) in the moose hunting regions of
Alberta.

Combining the information provided by focus group discussion and the real situation

in Alberta, attribute levels are constructed as follows.
1. Evidence of the Size of Moose Populations - seeing or hearing moose or seeing fresh sign
such as tracks, browse or droppings.

A. Less than one moose per day

B. 1 to 2 moose per day

C. 3 moose per day

D. 4 moose per day
2. Access within hunting Ares - trail, cutlines or seismic lines.

A_ Foot access only

B. ATV or 2-wheel drive vehicles required

C. 4-wheel drive vehicles required
3. Levels of Congestion - encountering (seeing and/or hearing) other hunters during the
course of a hunting day.

A. No hunters

B. Other hunters on foot
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C. Other hunters on ATV or other vehicles
4. Quality of Roads

A_ Paved surfaces

B. Gravel or dirt, essentially non-paved surfaces
S. Presence of Forest Industry Operations

A. Evidence of logging

B. No evidence of logging
6. Distance from Home to the Hunting Site

A 50Km

B. 150 Km

C.250Km

D. 350 Km

The attributes and the levels are summarised in Table 1.

Thirdly, an experimental design was constructed based on the attributes and levels

described in Table 1. The hunters decision problem was conceptualized as one in which they

were offered a choice between pairs of competing Wildlife Management Unit (WMU)

descriptions, and given the option of choosing to hunt in one of the described WMUs or to

choose not to go moose hunting at all. The design problem involves selecting a sample of

WMU profile pairs from the universe of pairs. The Alberta design, for example, was given

by a (22x4%)x(2*x4*)x(2 versions) factorial, i.e., treating left- and right-hand pairs as a

composite set of attributes and levels. As discussed by Louviere and Woodworth (1983), the

necessary and sufficient conditions to estimate the parameters of McFadden’s (1975) Mother
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Table 1. Attributes and Levels Used in the Stated Preference Experiments

Attributes Levels Rating
Moose Evidence of <1 moose per day 1
Population Evidence of 1-2 moose per day 2
Evidence of 3-4 moose per day 3
Evidence of more than 4 moose per day 4
Hunter Encounters with no other hunters Cong 1
Congestion Encounters with others on foot Cong 2
Encounters with others on ATV or other vehicles Cong 3
Hunter No trails, cutlines or seismic lines Acc3
Access Old trails, passable with ATV or 2 WD vehicle Acc2
Newer trails, passable with 4 WD vehicle Accl
Forestry Evidence of recent forestry activity 1
Activity No evidence of recent forestry activity -1
Road Quality Mostly paved, some gravel or dirt 1
Mostly gravel or dirt, some paved -1
Distance 50km
to sites 150 km
250 km

350 km

34



Logit model can be satisfied by selecting the smallest, orthogonal main effects design from
this larger factorial to create the WMU profiles and pairs simultaneously. The smallest
orthogonal main effects design consists of 32 pairs, which were blocked into two sets of 16
pairs each using a two-level blocking factor added to the design for that purpose.

Fourthly, a questionnaire was constructed. The questionnaire consisted of five parts:
i) a trip log outlining all moose hunting trips taken during the 1992 season; ii) a section
gathering opinions on hunters’ perception of various WMU characteristics such as distance,
road quality, access, presence of other hunters, forestry activity, and moose populations; ii)
a contingent behaviour question where individuals were asked whether or not they would be
willing to travel extra distances to get to a specific WMU if the moose populations in this area
were increased; iv) a site choice section where hunters were asked to trade off combinations
of attributes within 16 sets of two hypothetical sites; and v) a section collecting information
on hunting equipment, preferences and demographic information such as age, income and
hunting experience. Sections ii to v of the survey were randomized to allow testing of section
ordering bias. Further details of the sampling process and descriptive statistics can be found
in McLeod et al. (1993). Since we focus on the random utility models, the most important
component of the questionnaire for this thesis is number iv, the choice of hunting site. An
example of this part of the survey is displayed in Figure 2.

Fifth, survey interviews were conducted. Samples of Alberta hunters were selected
from Alberta Fish and Wildlife records. Some socioeconomic characteristics of the sample can
be summarized as follows: the sample mean age was 39.4 years; the oldest individual in the

sample was 73 years of age; the hunters had an average of about 20 years of hunting
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experience and about 16 years of moose hunting experience; about half of those surveyed had
completed high school, with 34% reporting some post secondary training; most of the sample
reported incomes in the ranges of $20,000-$60,000. The socioeconomic characteristics of
the Saskatchewan samples are similar to that of the Alberta sample: over 80% of the
Saskatchewan respondents were in the age group of 30 -59; about 70% of the respondents
reported incomes in the ranges $20,000-$60,000; about 45% respondents had completed high
school, with 36% reporting some post secondary training. The similarity in socioeconomic
characteristics may provide a good base for testing benefit transfer.

The Alberta hunters were telephoned and asked to attend a meeting in their town. Of
the 422 hunters who were telephoned, 312 confirmed that they would attend the sessions. Of
the 312, 271 (87%) actually attended the sessions and 266 completed the survey. There were
8 sessions with group sizes ranging from 20 to 55. The returning rate for the survey was
64.3% (271/422).

A similar survey was conducted in Saskatchewan. Instead of organizing interview
sessions for hunters, the Saskatchewan survey was conducted by mail, with 375 individuals

in Saskatchewan completing the survey.
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Chapter 4. Benefit Transfer Using Heterogenous

Multinomial Logit Models

4.1 Introduction

One major difficulty in benefit estimation and transfer is to account for heterogeneity
in the choice model. Failure to control for heterogeneity will yield biased and inconsistent
parameter estimates, and, more importantly, biased and inconsistent benefit estimates and
transfers.

The use of logit models to represent individual choice among alternatives in
marketing, transportation and non-market valuation literature has been growing since the late
1970s (e.g., in marketing literature, Guadagni and Little 1983; Louviere and Woodworth
1983; Kamakura and Russel 1989; Gensch 1985; in transportation literature, Ben-Akiva and
Lerman 1985, Hensher 1986, and McFadden 1974; in non-market valuation, Admowicz,
1994; Adamowicz, Louviere and Williams. 1994; Adamowicz, Jennings and Coyne, 1990;
Bockstael, Hanemann and Strand, 1984; Coyne and Admowicz, 1992). While the application
of the multinomial logit model has been widespread, research on proper control for
heterogeneity has been limited.

Heterogeneity has a long tradition of importance in consumer choice models, starting
with the controversy between Kuehn (1962) and Frank (1962). However, the long tradition

of modelling heterogeneity begun by Morrison (1966) has yet to be incorporated into logit
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models. It has been found that not accounting for heterogeneity when estimating logit models
on panel data will lead to biased parameter estimates. Chamberlin (1978, 1980) has shown
that severe estimation bias exists in commonly used multinomial models when grouped data
are used. Horowitz (1981) has shown in a simulation study that while the estimation bias
Chamberlain reports is not too severe in practice for the model parameters, there is severe
estimation bias in the estimation of the probabilities of choice.

The possibility of the existence of heterogeneity is quite high in non-market
environmental valuation, especially when stated preference data are used. Since only a limited
number of attributes (variables) can be included in stated preference experimental design,
some alternative-specific and household (individual)-specific variables could be omitted.
These unmeasured factors may create some variations in individuals’ choice behaviour.

While Adamowicz (1994) developed a rational dynamic model to partially account
for heterogeneity in muitinomial logit models, only recently, marketing researchers have
focused on possible ways of specifying and estimating variations across individuals in
multinomial logit models.

In this chapter of the thesis, both a heterogeneous multinomial logit (HMNL) model
and a general-purpose estimation procedure are developed. This HMNL model is capable of
dealing with multiple sources of heterogeneity in choice data. The calculation of the benefit
in HMNL model is also derived.

The remainder of this chapter is organized as follows. In part 2, the heterogeneity in
the multinomial logit model is discussed and a HMNL is developed. The benefit calculation

formula for the HMNL is derived in part 3, followed by model estimation. Model and benefit
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transferability are evaluated in Part 5. The final part contains the conclusions.

4.2 Heterogeneity in the Multinomial Logit Model

The original formulation of the multinomial logit model is attributed to Luce (1959).
Suppose that individual »n faces m choices. Define the utility of alternative i to
be U, =V, +e, b where V, isthe systematic (or explainable) portion of the utility
function and e,, is an error term. €, is assumed to be independently and identically
Gumbel-distributed with a location parameter 1, and a scale parameter u>0.

The probability of individual 7 choosing alternative 1 is

P() =PrV,, +e, 2 mx(V, +e,]
1 I . 4.1)
Define
U, = Tmax W + ) @42
From the property of Gumbel distribution U,’ is distributed as
U - G(inF e
n = G(=InLe"™ ) 4.3)

T

where p = ®/0,V6 isascalefactor. U, canalsobewrittenas U, = ¥, +e, , where

ye = Ly
" Zz @4.9)

and e, ~ GO, pu) .
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Since

P(1) =PrV, +e, 2V, +e,)

L ) L2 (4'5)
=P’[(Vn +en) -(Kn *eln)sol
by the property of Gumbel distribution,
nv;
P() = 1 - e ™
1+’ R, M
_ e"Vin _ etV 4.6)
eFVlu + exp(]niel‘%) iell’"’.

J=2 J=1

If we assume the indirect utility functiontobe ¥V, = BX,, , Equation (4.6) becomes

wAX,,
uix, @.7n

[}

P =
e

M.

-,
1l
o

Expression (4.7) differs from most published versions of the multinomial logit model by the
addition of an imbedded scaler constant p. The scale factor p is known to be inversely related

to the variance, B = /0,6 , but cannot be identified in any particular model because of

the confounding with the vector of indirect utility parameters. Ben-Akiva and Lerman (1985)
show that. as the variance approaches infinity, the scale factor approaches zero, causing the
multinomial logit model to predict equal probabilities for all choices. Conversely, as variance
goes to zero, p approaches infinity, causing the multinomial logit model to predict

deterministically to the choice with the highest explainable utility.
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Since o, = V6/ur = 0.248/p , heterogeneity could be represented by different

scale factors. For example, if the source of heterogeneity within a sample is some individual-
specific demographic or social-economic variable, s, then a scale function x=u(s) could be

specified to account for the heterogeneity. Substituting the scale function into (4.7) yields

NRX,,
P(1) = e”
(4.8)

Parameter estimates of both indirect utility function and scale function are obtained by

maximizing the following log likelihood function

"0) 0 ¢
L= 3% S AR
n m;fm ( z e"(-' (4.9)
JeC,

where £, is the observed choice frequency for alternative @ and individual ». In this
heterogenous multinomial logit model, heterogeneity is incorporated into the likelihood
function as a scale function. Under this specification the parameters of the indirect utility
function, B, are assumed to be the same within the sample, while the variance is allowed to
be different across different groups of the sample.

Recent studies suggest that accounting for the differences in the scale factors is
crucial. For example, Adamowicz, Louviere and Williams (1994) found that accounting for
scale differences between revealed and stated preference data led to superior model fits, once
separate data sources were pooled and rescaled. Swait and Ben-Akiva (1986) and Salomon
and Ben-Akiva (1983) suggest improvements in the RUM choice models from appropriate
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a priori segmentation that accounts for variance heterogeneity and, therefore, scale difference.

For a homogeneous data set, the scale factor y remains constant and confounded with
P, the parameter vector of the indirect utility function. In this case, the scale factor p cannot
be identified from the product uf.

For a heterogeneous data set, however, a set of relative scale factors can be identified.
Only relative scale factors are estimable in model (4.9) since u(s) cannot be separated from
P. The following example explains how a scale factor function is constructed. Assume
heterogeneity is associated with an individual’s education, and education is categorized into
4 levels. Three dummies, S,, S,, and S,, could be used to represent the last three levels. The

scale factor function then can be constructed as  uis) = exp( @S, +U,S, +0L,S, ) ,

with the scale factor for the individuals at the first education level being normalized as 1
(¢’ = 1). The three relative scale factors for the individuals at the last three education levels
can be estimated by substituting u(s) into model (4.9), as long as the number of observations
in each group is sufficient.

Heterogeneity is also testable in model (4.9). If, for example, a, is not significantly
different from 0, the individuals with the first and third education level are homogeneous.

One must note that the HMNL model is different from the commonly used MNL
model constructed by adding the vector of variables, s, into indirect utility functions. Under
HMNL model specification, the consumer’s preferences are assumed to be same, but
heterogeneity exists within the choice data.

Incorporating heterogeneity into the commonly used multinomial logit model
not only is very important for choice model estimation, but also has important
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implications for benefit estimation in environmental valuation. In the next section, we

show that the relative scale factor becomes a part of the benefit calculation formula.

4.3 Benefit Calculation in the Heterogenous MNL model

The formula for benefit calculation in the heterogeneous MNL model can be derived
based on Hanemann (1982). Assume the consumer’s indirect utility function for visiting site

jis V,=ry-p) + BX} + € , wherey is the individual’s income, p is travel cost and

X is a vector of environmental attributes. Using (2.20), the individual’s indirect utility

function can be written as

VX, y-p) = E(max[BX, - rp, + €, ..,BX, -m,+€,]) +rv (4.10)

If heterogeneity is assumed to exist and expressed as a scale factor function u(s) ,

then € ~ GIM;, u(s)] . By the property of Gumbel distribution, the following

distribution can be derived.
max[BXl -, vt €, .., BXA(”Z’M* EM]
4.11
- Gl—InZe M5 | (o) @i
HE)
and thus
E(max[ﬂxl -, tE€, .., pXM = Pyt € ])
4.12)

= ._l_[nze WXy Y
u(s) n(s)
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where y =0.5772 is a constant.

Substituting (4.12) into (4.10) and using the identity

VX, y-p ) = VXY, y-p+CV') (4.13)

gives the individual’s benefit of the environmental changes from X° to X' as

CV = —L_ [InZe™ @Y - ope® @) | @.14)
ucs) r 7 J .

This formula is different from the one commonly used in the literature; as the benefit
measure now becomes a function of some prespecified social and/or demographic
variables. One must note that since, as shown in (4.10), an expected value is used to
calculate an individual’s indirect utility function, scale factors (variances) can be
expected to enter into the formula of benefit calculation.

An implication of (4.14) for benefit transferability evaluation is that not only
the transferability of the consumer’s preference but also the variations of the
preferences are tested. It is quite possible that the underlying choice processes are the
same between the policy site and study site, but one is noisier than the other. It is very
important for researchers to identify the sources of heterogeneity within choice data
and use heterogeneous models to account for it.

Now we apply the HMNL and equation (4.14) to the stated preference data,
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and evaluate benefit transferability between Alberta and Saskatchewan.

4.4 Model Estimation

Based on the p?>! and the parameter significance of the two provincial models,

hunters’ indirect utility functions for both provinces are specified as

V, = q, + BX, j=0,1,2 (4.15)

where j = 0 is the nonhunting alternative and j = 1, 2 are the two hunting alternatives (see

Figure2),thevector X = ( P, , LnM, , ACC, , ACC,, , CON, , CON,, , FOREST,) *

is a vector of explanatory variables. A detailed definition of each variable follows: P, = travel
cost of alternative j, calculated by travel distance (km) multiplied by travel cost per km; LnM,
= log of moose population (evidence of the number of moose per day); 4CC, = hunter access
level of alternative j, with ACC ,; = newer trails, passable with 4 WD vehicle and ACC , =
newer trails, passable with ATV and 2 WD vehicle; CON ; = hunter congestion of alternative
J, with CON ,; = no encounters with other hunters and CO), = encounters with other

hunters on foot; and FOREST, =forestry activity at site j. Another attribute, road quality,

is excluded from the model because it is not significant in either provincial models. Attributes

1. p? i one of the goodness-of-fit measure for discrete choice models. It is definedss 1 - <L(f)/<2(0)
See Ben-Akiva and Lerman (1987) for details.

2.The variable y-P, becomes P, in the model estimsation because y is given for a specific individual and thus will
not affect the coeflicient estimation.
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ACC, CON and FOREST are effects coded® rather than dummy coded because dummy coding
incorporates the base category into the intercept while effects coding avoids this by making
the parameter value for the base equal to the negative sum of the parameter values for the
categories. Admowicz, Louviere and Williams (1994) discussed the rationale for using effects
codes rather than dummy codes in discrete choice models. A nonhunting alternative is
included as a choice and modelled as an alternative specific constant e, (plus zero attribute
levels for the other variables).

In each provincial sample, several demographic, social and economic variables such
as education, residence and income were collected. After estimating several HMNL models,
heterogeneity is found to be associated with residence. A scale factor function is then

specifiedas y = e*® , whereDis a dummy variable with D = O for rural hunters and

D=1 for urban hunters. In this specification, the scale factor for rural hunters is

normalized as p=e?=1, and the relative scale factor for urban hunters is

p, = e* . Thelog likelihood function for each province is then specified as

€2 (a,+pX)

L=3 Zf In(——uo—
! s, aec;fm ( N e‘w (Go’ﬂx)) (4.16)
C,

where i=1 for the Alberta sample and i=2 for the Saskatchewan sample.

3. Effects codes are an alternative to dummy variables for qualitative attributes. If an attribute has 4 levels, the first
three levels are coded as dummy variables (3 columns in the design matrix) and 4th is coded -1 for each column.
The result is that the coefficient on the 4th is the negative sum of the coefficients on the 3 other levels. The
coeflicients can be interpreted directly as the impact of that level of the sttribute on utility.
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If homogeneity is assumed between the data sets of rural and urban hunters,
the dummy variable D is excluded from (4.16), and the model becomes the traditional
multinomial logit (TMNL) model. To compare with the HMNL models, two
provincial TMNL models without heterogeneity specification are also estimated.

GAUSS Maximum Likelihood 4.0 is employed for model estimation. The
secant algorithm is set to be of the BFGS (Broyden, Fletcher, Goldfarb, and Shanno) method
and the convergence tolerance for the gradient of estimated coefficients is set to be 0.00001.
The HMNL model estimation results are presented in Table 2 and the TMNL model
estimation results are in Table 3.

The results suggest that the HMNL specification improves the model’s goodness of
fit. In the Alberta model the HMNL specification increases the p? from 0.258 to 0.265, and
in Saskatchewan model it increases the p? from 0.217 to 0.244. Moreover, both scale
factors are statistically significant at a 95% level, which supports the existence of
heterogeneity between urban and rural hunters within the two provinces.

As shown in Table 2, almost all parameters in the two HMNL models are statistically
significant at a 95% level. As expected, the coefficient on travel cost is negative and
significant, and the coefficient on moose population is positive and significant. The congestion
level is an important factor in a hunter’s decision, since the congestion level with no other
hunters is positive and significant. Hunters also prefer easy access to sites since both ACC,
and ACC, are positive and significant. A somewhat surprising result is that forestry activity
is a positive factor in hunter’s site choice. This may be explained by the fact that forestry

activities often improve habitat for moose.
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Table 2. Maximum Likelihood Estimates of the HMNL? Models

Coefficient t-value for

Variables' Saskatchewan Model Alberta Model B.-B.

Cost -0.0199 -0.0253 281
(12.88) (22.13)

Cong 1 0.4283 0.5922 331
(15.36) (14.49)

Cong 2 -0.0217 -0.1421 2.94
(1.39) (3.76)

Accl 0.1862 0.0802 2.16
(5.90) 2.19)

Acc 2 0.0740 0.1967 2.46
(2.26) (5.29)

Forestry 0.1983 0.0695 3.59
(8.91) (2.48)

Moose 1.5313 1.5028 0.26
(16.95) (25.41)

Scale (u=e*) 0.946* 0.844 0.16
(2.18)° (1.95)

Log likelihood -5471.4 -3461.9

p? 0.244 0.265
Choice Occasions 6000 4256

1. Attributes ACC, CON snd Forestry sre effects coded. ACC 1 = newer trails, passable with 4 WD vehicle and
ACC 2 =newer trails, passable with ATV and 2 WD vehicle; CON I = encounters with no other hunter and CON2
= encounters with other hunters on foot; Forestry = evidence of forestry activity within 5 to 10 years.

2. HMNL model refers to heterogeneous multinomial logit model.

3. Numbers in parentheses are asymptotic ¢ -statistics.

4. Scale factor i calculated from €.

5.Asymptotic ¢ -statistics for the coefficient on the dummies.
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Table 3. Maximum Likelihood Estimates of the TMNL Models

Coefficient t-value for

Variables Saskatchewan Model Alberta Model B, -B,

Cost <0.0163 -0.0245 441
(10.91) (22.23)

Cong 1 0.4266 0.5922 3.06
(14.36) (14.46)

Cong 2 0.0063 -0.1379 3.88
(1.12) (3.76)

Accl 0.1588 0.0800 1.92
(5.91) (2.59)

Acc 2 0.0725 0.1947 2.25
(1.97) (4.865)

Forestry 0.2022 0.0678 3.27
(8.13) (2.08)

Moose 1.4238 1.4692 0.44
(16.78) (26.34)

Log likelihood -5512.2 -3471.5

p? 0.217 0.258
Choice Occasions 6000 4256

1. Attributes ACC, CON and Forestry are effects coded. ACC 1 = newer trails, passable with 4 WD vehicle and
ACC 2 = pewer trails, passable with ATV and 2 WD vehicle; CON ] = encounters with no other hunter and CON2
= encounters with other hunters on foot; Forestry= evidence of forestry activity within 5 to 10 years.

2. TMNL model refers to traditional multinomial logit model.

3. Numbers in parentheses are asymptotic ¢ -statistics.
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4.5 Model and Benefit Transferability Evaluations

Before benefit transferability is evaluated, model transferability between the two
provinces is tested. The first test of model transferability is a test of the null hypothesis that
the individual coefficients of the two models are the same. For two normal distributions, the
null hypothesis that the difference in distribution means equals zero is tested using the classic

difference formula

__B. -8B
z= W z ~ N, 1) “4.17)

where Z is the test statistic, and B, and B, are the estimated individual coefficients of the
Alberta and Saskatchewan model, respectively. The test results for the two HMNL models
are presented in the last column of Table 2. The results show that while the coefficients on
Ln(M) and the scale factors are not statistically different between the two HMNL models, all
other coefficients are statistically different at a 5% level.

The second test is of the null hypothesis that the set of coefficients for the
Saskatchewan model is the same as the set of coefficients for the Alberta model. The

likelihood ratio test is constructed as

LR=-2[L@®) - L] (4.18)

where LB, is the log likelihood of Alberta model evaluated at B, , the coefficients of

Saskatchewan model; L (B) is the log likelihood of Alberta model. LR is x distributed
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with degrees of freedom equal to the number of model parameters. For the two HMNL
models the calculated LR = 478.9 {-2 (-3701.60 + 3701.06)}. The probability of exceeding
this ratio is less than 1%, so the null hypothesis that the sets of coefficients are the same is
strongly rejected.

The same tests are also conducted for the two TMNL models. The results are similar
to those of HMNL models. In individual coefficient tests, all coeficients of the transferred
model except that on Ln(M) are statistically different from those of the “true model”. The
calculated LR =351.9 {-2(-3647.4+3471.5)}, which also suggests that the null hypothesis
is strongly rejected.

Both statistical tests reject the transferability between the “true” and the transferred
models, based on a 95% statistical significance level. However, it is important to carefully
interpret these tests of statistical significance. As McCloskey and Ziiliak (1996) point out,
statistical significance and economic significance must be distinguished from each other. A
difference can be significant for science or policy and yet be insignificant statistically, and
similarly, a statistically significant difference may be insignificant for science and policy. In
benefit transfer, economic significance could be interpreted as the percentage difference
between the transferred benefit and “true” benefit. Thus, an individual coefficient of a
transferred model may be statistically different from that of the “true” model, but not
economically different. There are two factors that must be considered when economic and
statistical significance are discussed. First, it is quite possible that the magnitudes of two
statistically different coefficients are very close. For example, a coefficient of 0.65 with a

standard error of 0.0001 is statistically different from a coefficient of 0.64 with standard error
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of 0.0002, but they may not be significantly different economically when benefits are
calculated. Second, as shown in Equation (4.14), different coefficients have been given
different weights in benefit caiculation.

Assume that Alberta is the policy site and Saskatchewan is the study site. We now
evaluate benefit transferability across the two provinces, that is, evaluate the null hypothesis
H: B@,X)=BP,X) , where B@B,X) is the transferred benefit

calculated from the Saskatchewan model and Alberta policy changes, and B(B,, X)) s
the true benefit calculated from the Alberta (the “true”) model and Alberta policy changes.
In the region of Alberta examined in this study, there are 14 relevant Wildlife Management
Units for recreational moose hunting (see Mcleod et al. for details). Suppose that the
proposed policy change will eliminate WMU 346. The benefit of this environmental change
is calculated. A representative consumer (hunter) is selected as shown in Table 4. Using the
estimated models, the perceived attribute levels for the 14 WMUs ( see Table 4), and equation
(4.14), the benefits of hunting per trip are calculated in Table 5. Confidence intervals for the
mean per trip benefits are also included in Table 5. The standard errors are computed using
the Krinsky and Robb (1986) draw procedure. For each model we randomly drew 100
parameter vectors from a multivarate normal distribution with means and a variance-
covariance matrix estimated in the logit model. Those draws were used to compute 100 per
trip values. The standard error from that distribution was used to calculate the confidence
intervals. The minimum and maximum values are also reported. The resuits show that the
transferred benefits of both rural and urban hunters are larger than the true benefits. While the

transferred benefit for rural hunters is significantly higher than the true benefit (26% higher),

52



Table 4. Objective Attribute Levels of Alberta WMUs

Moose Access Congestion  Forestry Distance
WMU Population Activity (Km)
337 2 accl cong3 1 87.3
338 3 accl cong3 -1 726
340 2 acc2 cong3 1 96.5
342 1 acc2 cong3 1 101.9
344 1 acc2 cong3 1 1612
346 3 acc2 cong3 1 93.9
348 4 accl cong3 -1 338
350 2 acc2 cong3 1 322
352 1 acc2 cong3 1 90.7
354 2 acc2 cong3 1 108.8
356 2 accl cong3 1 235.1
437 2 acc2 cong2 1 128.6
438 2 accl cong3 1 141.8
439 1 acc2 cong3 -1 489
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Table 5. Benefit Estimates from True and Transferred Models (Dollar/Trip)

Deviation from
Models Mean Min. Max. 95%CI True Benefit' (%)
True Alberta HMNL
Rural -544 -6.72 -3.67 [-6.59,-3.84]
Urban -6.07 -7.44 -4.17 [-1.32,-4.38]
True Alberta TMNL -557 -6.74 -391 [-6.46,-4.53]
Transferred HMNL
Rural -684 -8.12 -398 [-8.04,-4.13] 25.7%
Urban 693 -826 -575 [-8.17,-5.96] 14.1%
Transferred TMNL -824 -10.33 -6.92 [-9.89, -6.83] 47.8%

1. The confidence interval is calculated using the Krinsky-Robb procedure.
2. The deviation from true model is calculated as [cv//cv'-1], where c and ¢ represent, respectively, the transferred
and the true benefit.
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transferred benefit for urban hunters is closer to the true value (14% higher).

Benefit transferability using the traditional MNL models is also evaluated. The
results reveal that using the traditional MNL model specification yields poorer benefit
transfer. The transferred benefit is 48% larger than the “true” benefit. The HMNL model

improves benefit transferability in our experiment (Table 5).

4.6 Conclusions

Two goals have been accomplished to this point. First, a heterogeneous muitinominal
logit model and its benefit calculation have been developed. Second, this new model has been
applied to evaluate benefit transferability across regions. It has been shown that, since the
variance of choice is a part of the benefit formula, properly controlling for heterogeneity in
choice data is particularly important when a choice model is used in environmental valuation.
It is also suggested, by comparing the HMNL and TMNL models, that the heterogeneous
specification improves the model’s goodness of fit. The developed HMNL model is capable
of accounting for heterogeneity in choice data.

Using the HMNL model, a SP moose hunting experiment is designed to evaluate
benefit transferability between Alberta and Saskatchewan. The results show that, even with
an assumption of homogeneous preference, hunter’s benefits could differ due to the
heterogeneity in choice data. Between the two provinces, the benefit difference for rural
hunters is quite high (26%), while that for urban hunters is much closer (14% difference).
Using the HMNL model to account for heterogeneity has improved benefit transfer in our
experiment.
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The developed HMNL model is capable of dealing with multiple sources of
heterogeneity, once these sources are identified and the data are available. However, the
sources of heterogeneity in choice data may not be pre-identified and the data may not be

available for the researchers. In this case, more advanced techniques are needed. The next

chapter develops such a model.
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Chapter 5. Benefit Transfer Using Random Coefficient
Multinomial Probit Models

5.1 Introduction

In the previous chapter, a heterogeneous multinomial logit (HMNL) model was
developed and applied to benefit transferability evaluation. This model is an advancement of
the basic structure of the commonly used multiple choice logit model. It is capable of
partially accounting for heterogeneity within choice data. However, this heterogeneous
multinomial logit model still has some undesirable properties. These undesirable properties
may result in bias in benefit estimation and transferability evaluation.

First, the well known Independence of Irrelevant Alternatives (IIA) still maintained
by the heterogeneous multinomial model restricts the pattern of substitution across
alternatives and thus makes the model less likely to reflect reality. The odds ratio between

any two alternatives, say P(i|X,Z)/P(jiX,Z) , takes the form of
explV, X, , -V, (X, 2)] , which is independent of the attributes or even the existence

of any alternative other than i and j. This implies that, if a new alternative were introduced,
all the choice probabilities would be reduced in the same proportion. This is surely

unreasonable as a general property of a choice model: one would expect P(j | X, Z) to be

affected by an amount dependent on the degree to which the individual regards the new
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alternative as a substitute for alternative j. Moreover, the importance of the IIA property is
not confined to applications involving the forecasting of demand for new alternatives: for
example, it implies a very restrictive pattern of elasticities of P(j | X, Z) with respect to

the attributes X ;. Differentiation of log[P(j | X, Z)] Wwith respectto logX, for anyi=j

reveals
O IPGX . D) _ _py, 7 20 D)
3 inX, PGX , Z) 3 X CR))

This elasticity is dependent only on choice i, and not on j. All choice probabilities share a
uniform set of cross-elasticities. This imposes a severe restriction on the type of substitution
responses that can be modelled successfully.

Second, the heterogeneous multinomial logit model can account for heterogeneity
within choice data only if the sources of heterogeneity are observable, that is, in order to
apply the HMNL model, the sources of heterogeneity need to be identified first. However,
in many cases the sources of heterogeneity in choice data could be unobservable. Many
unmeasured, individual-specific factors may influence an individual’s choice behaviour. Even
with the specification of demographic and social variables, individuals may differ in their
responses to travel cost and environmental attributes. If there are multiple unobservable
sources of heterogeneity, the previously developed HMNL model will yield biased and
inconsistent model parameters and benefit estimates.

A random coefficient multinomial probit (RCMP) model is developed and applied in

this chapter, in response to the above two problems. The RCMP model is an appealing
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alternative to account for the heterogeneities and release the restrictive IIA assumption in the
MNL model. It can account for heterogeneity by specifying a random component for each
coefficient of the indirect utility function and release the ITA restriction by allowing a general
covariance matrix for the errors in the indirect utility function.

This chapter is organized as follows. In part 2 , the RCMP model is developed and
the way it accounts for heterogeneity is discussed. Part 3 provides the techniques for RCMP
model estimation and identification. The procedure of benefit simulation is presented in Part
4, followed by empirical model estimation and testing. Part 6 includes benefit simulation and

transferability evaluation. The final part contains concluding remarks.

5.2 The RCMP model and Heterogeneity in Choice Data

The random utility model of recreational choice is often specified as

U'=vy0"-p")+Xp+¢ (52)

where p;” is the travel cost to site j for individual n; y " is the income of individual
n; X, is a vector of environmental quality attributes of alternative j; y and p are the
constant preference parameters; and ¢;" is an error term associated with joint random
variation across both individuals and altemmatives. The commonly used MNL model
assumes that ¢" follows the type I extreme value distribution, and that y and P are
constant over individuals.

The RCMP model incorporates heterogeneous preferences into (5.2) in two
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ways. First, it specifies a perception error for each individual. In this specification,
consumers are allowed to perceive the attributes of alternatives differently. For
example, in a recreational site choice model, the environmental site quality variables
X, in the model specification are often measured as technical numbers or indices by
the environmental management agency or researcher. These numbers or indices may
vary across sites, but not individuals. However, when individual choice is modelled,
perception errors have to be considered. By taking a trip to site j, the perceived site

quality Z, (X') can be different from the number (indices) X for different

individuals. The RCMP model reflects this perception variation by specifying

zZ" =X+, 5:3)

where 1" allows perception error for individual n. The perceived attributes Z; are
the “real” attributes in the choice decision of individual n, but they are not observable

by researchers. Substituting the “real” attributes Z" into (5.2) results in

U'=y0"-p")+X (1 +7n")B +¢

5.4
SO -5 ) X B+ X (B + € ¢4

The second way to reflect heterogeneous preferences is to specify a varying

term for the respondents’ tastes for site attributes. To reflect the varying tastes for the
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site attributes across individuals, one can specify a random parameter model
p* = B + 8" , where P is the “average” taste, and & " is the individual specific
taste variation. The heterogeneous taste or heterogeneous marginal utility of the site

attribute can then be accommodated into the indirect utility function (5.2) as

U'=y0"-p")+X B + €
=Y0"-p" )+ X B+ X8 +¢

(5.5)
With pn®= 6", model (5.4) and (5.5) are identical. The two interpretations,
varying perception and varying taste, are econometrically indistinguishable in the
RCMP model. Both of them could be seen as a form of heterogeneity within choice
data (Chen and Cosslett, 1996).
Since the deviations of each individual’s utility function fn* or & are
unobservable to the econometric investigator, Equation (5.4) and (5.5) are rewritten'

as:

U=Yy-p)+XPp +e¢ where e, = X3 + € (5.6)

where there are J alternatives and k attributes, X;is J by k. If the preferences and the

errors are distributed multivariate normal, then the following are distributed

! Hereafter, the superscript n is omitted to simplify the notation in this part.
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multivariate normal, with the indicated mean and covariance matrix.

B~MVNB,Z,), Z,€ R where f=p+8
€ ~MVNO,Z), Z &Y

, CN))
e, ~-MVNO,Q), Q=XZX +3, Qe@®

U-~-M/NXB,Q), Q=XZX +Z, Qe&

Equation (5.6) and (5.7) constitute the RCMP model. With a random component for
each coefficient of the individual’s indirect utility function, every individual could
have a different utility function. Thus, the RCMP model is capable of handling
multiple sources of heterogeneity. Moreover, since the random components are
assigned to the coefficients of the attributes, there is no need for investigators to
obtain additional data and identify the sources of heterogeneity in choice data. So, the
RCMP model is capable of accounting for unobservable multiple sources of

heterogeneity in choice data.

5.3 RCMP Model Estimation and Identification

Although the advantages of the RCMP model have been known for some time,
it has rarely been used in practice. This is mainly because the estimation of the RCMP
model involves numerical integration of a multiple dimensional multivariate normal

density function. This, combined with the necessity of using an iterative technique to
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maximize the likelihood function, has made the application of the RCMP essentially
impractible. However, with the development of computational capacity and various
approximation and simulation techniques, estimation of the RCMP has become
feasible. It can be expected that, instead of continuing to apply the MNL model, more
and more applications of the RCMP model will emerge in the marketing,
transportation and environmental literature.

To estimate the parameters in (5.6), the common practice is to assume that &
and € are independently distributed. Each of them is assumed to follow a multivariate
normal distribution with € ~ N(0, 3_) and 6 ~ N(0, Z ;). When I ;= diag( 0’5

, ..., 0°g), the covariance matrix for e is givenby = .= Z, + Z,,, where

2 2
€n Oc,,
s =|. : : (5.8)
2 2
- %

and
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Zowe - DO

2, =| - : . (5.9)

?:k":wa‘Jk B X J

The correlation across alternatives can be introduced in two ways in this specification.
One is due to the varying taste or perception errors for site quality with X , 0%, x
Xy * 0forj = j’. The other is due to the correlations. contained in € with o® ;. * 0
for j=j.

Now, the probability that individual n selects alternative j is given by the

MNP model:

PGV B, ¥, y-p, .2y Eo X)=Prob(U, > U, for all jem]

] f f f f SV, . S)du, ... du,

uJ=-- U=~ "J'l=-. u]’l=-- U=

(5.10)

where
VAB, ¥, y-p, X) = XB+Y(y-p)
20(26’ ze’ X) = 216 *+ Ee

and ¢(u[Vy, Z,) is the multivariate normal density function with mean 7, and



covariance I, .Since E, and I_ are assumed to be positive definite, it is

straightforward to show that = , (T 5 ,Z,, X) is also positive definite. This is desirable
for establishing regularity conditions for the above integration (Daganzo, 1979).
One of the difficulties associated with (5.10) is that it requires the evaluation
of a multivariate integral, which does not have a closed form solution. The usual first
step is to reduce the dimension of the integral from J to J-/ using the transformation
discussed by Bunch (1991). For a multinomial choice problem, it is equivalent to

write the choice probabilities in utility levels or in utility differences, i.e.,

Prob ( Unj >U, , for all j+m)
(5.11)
=Prob (U, -U,, >0, Jor all j+*m)

Thus it is possible to reduce the dimension of the integral in Equation (5.10) from J
to J-1 by using some prespecified differencing matrix.

To simplify the problem, assume that the model has only three choices for

each individual. To compute P(j| V,;, X,) , the differencing matrices a;= % can then

be defined as®

-110 0 -10 10 -1 5.12)
A, = = = -
1 -1 01 %2710 211 o1 -1

2See Daganzo (1979) and Bunch (1991) for more detailed discussions.
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Using these differencing matrices, the choice probabilities can be transformed into utility

differences. For example, the probability of choosing alternative 1 becomes

Prob (1) = Prob ( Z = a,U < 0)

(5.13)
=Prob (U, -U, <0,U, -U, <0)
The transformation Z = A,U applied to (5.10) gives
PV,B, Y, y-p. 0.2 3E,, I, X)=Prob([U, -U, <0, j=i] = ®(OV, I,
where
(5.14)

V, = 8V, = sXBYO-P)] = aXB + aY(-P)
I, = AIS‘A{ = 8 (X3 X I)A{ +A‘EeA,~T

whereZ, V, € R, T e RFVD  and @(.) is the cumulative distribution function for the
(3-1) dimensional multivariate normal distribution. For a choice model with 3 alternatives,
®(.) becomes the cumulative distribution of the bivariate normal density. For a choice model
with 4 alternatives, ®() becomes the cumulative distribution of the trivariate normal density.

Using maximum likelihood procedures, for a data set with the number of choices J<5,
one should be able to actually calculate the multivariate integral and estimate the indirect
utility function. However, for a data set with J>35, direct computation of the multivariate
integral is infeasible. Simulation or approximation methods have to be used.

Another problem in RCMP model estimation is the identification of the covariance

matrix %, . X  is composed of two separate parts; the covariance matrix of



preferences, Z, , and the covariance matrix of alternative specific errors, I,

Theoretically I, is fully identifiable with sufficient data observations. However, X . can

not be fully identified. There are J(J+1)/2 parameters in Z . , but only J(J-1)/2 of them are
identifiable (Daganzo, 1979). Bunch (1991) gives an in depth discussion of the identification
of £ ..He also recommends some matrix specifications for it. In most applications,
researchers have specified either Z, or Z ., but not both of them. Whether the researcher
specifies T , or T, the number of parameters in the covariance matrix proliferate extremely
quickly with increasing numbers of alternatives or explanatory variables. Thus it is important
to consider parameterizations that limit the number of covariance parameters. One such
specification was suggested by Hausman and Wise (1978). They assume that the random
coefficients are uncorrelated, and that the alternative specific errors are independently
distributed, that is, the off-diagonal elements in both = , and Z  are assumed to be 0. This

is a reasonable assumption, especially when the number of parameters is large.

5.4 Benefit Estimation in the RCMP Models

Benefit estimation in the RCMP model does not have a closed form. Simulation
techniques are required. Applying the indirect utility function (5.6) to the commonly used

expected maximum utility formula (2.20) yields
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o, X° y) = E(Np, X°, ¥, €))

= yy + E(max[-yp, + X[P+e,, . —YP, + X;B+e)))
(5.15)

Mo, X', y+CN=E(Wp, X', y+CV, e))
= y(+CV) + E(max[-yp, + X\P+e,, ... -YP, + X;B+e)))

where X° and X! are, respectively, the site attributes before and after environmental changes,
and CV is compensating variation. The benefit of environmental changes can then be
estimated from V(p , X°,y) = V(p, X!, y+CV) as

cv = -L (Emax(-1p, + X\Be, .. -Yp, + X}B+e)))
Y (5.16)

- E(max(-Yp, + X\ +e,, ..., -Yp, + X;B+e,]))

Since the errors e are of a very complex form, a closed form for CV does not exist. A
simulation method can be used to solve for CV. As the first step, the expected maximum
utility needs to be simulated. Chen and Cosslett (1996) constructed a frequency simulator to

estimate the expected maximum utility

M

U =~

1 &2 7 " ’
"= g2 ,)."1("’!' + pX, +¢)) NIyp, + BX, +¢/>Yp, + BX, +¢, , ¥V 11 (5.17)

x

where R is the number of replications, and I[A] is an indicator, with I[A] = 1, if A is true, and
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I[A] = 0 otherwise. Their practical procedure is described as the following 5 steps:
| (1) Consider the model in (5.6). Let the covariance matrix of a
representative observation in the sample be £ ., Compute the Cholesky
decomposition Z, =LL’ , where L is the lower triangular matrix. Then one

can have e =L , where 1} has an independent standard normal distribution
n ~ N, ).

(2) For replication r, draw a vector ¥ from the normal random
variables n, and thus e” = Ly

(3) Compute the utility U” =yp + BX + & for all alternatives.
Let U be the maximum utility of all the alternatives for replication r.

(4) Repeat steps 2 and 3 for replicationsr =1, ..., R, and take the
average U, = (I/R)ZU’ .Chen and Cosslett showed that this simulated
expected maximum utility U, is unbiased.

(5) Substituting T, into (5.16) gives the simulated benefit
function:

U.xY - U X%
-Y

crxX'x°) = (5.18)

5.5 RCMP Model Estimation Results
The RCMP model estimation technique is used to estimate the parameters of an
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individual’s utility function while allowing for unobserved heterogeneity. The individual’s

utility function is specified as follows:

U= ez

@ + ZP +u'

where (5.19)
uj"=216"+e}' j=012
Brop

where j =0 is the nonhunting alternative; and Z, = {P,, LnM;, ACC,, , ACC,, ,CON, ,CON ,,
FOREST}} is a vector of explanatory variables. A detailed definition of each variable follows:
P,=travel cost of alternative j; LnM; = log of moose population (evidence of the number of
moose per day); ACC ;= hunter access level of alternative j; CON; = hunter congestion of
alternative j; and FOREST ;= forest activity at site j. Attributes ACC, CON and FOREST
are effects coded rather than dummy coded because dummy coding incorporates the base
category into the intercept, while effects coding avoids this by making the parameter value
for the base equal to the negative sum of the parameter values for the categories.

Using the two data sets discussed in Chapter 3, four models are estimated. For each
data set, an independent probit model and a RCMP model are estimated. Since the
independent probit model assumes that there is no heterogeneity in preferences, and that the
alternative specific errors are iid N(0,1), it should behave very closely to the MNL model
(which has the property of ITA). The important difference between the RCMP and the MNL

models is not the choice between normal versus type I extreme value errors, but independent
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versus correlated errors.

All four models are estimated by GAUSS Maximum Likelihood 4.0. The secant
algorithm is set to be of the BFGS (Broyden, Fletcher, Goldfarb, and Shanno) method and
the convergence tolerance for the gradient of estimated coefficients is set to be 0.00001. Since
there are only 3 choices in the SP data sets, the probability functions are constructed as a
cumulative distribution of the bivariate normal density, using the transformation from (5.12)
to (5.14). Then a GAUSS maximum likelihood program is developed to estimate the
parameters. Unlike other approximation or simulation techniques, this procedure should
produce unbiased and asymptotically efficient and consistent estimators.

The covariance matrix of the errors term for the three alternative independent probit

models (with no preference heterogeneity) is

Q = Z2Z/ +3, = Z[0)Z, + o’ (5.20)

where I is a 3 by 3 identity matrix. After scaling o to unity, this independent probit model
should be very similar to the MNL model with the exception that the MNL model parameter
estimates are scaled by the standard deviation of the Gumbel distribution, 1t/6"> .

Tables 6 and 7 present the estimation results of the independent multinomial probit
(IMNP) models of Alberta and Saskatchewan samples. The estimates of MNL models for the
two samples are also presented in Table 6 and Table 7, in order to compare the IMNP and
MNL models. After re-scaling the parameter estimates of the IMNP models by w/6'2, it can
be seen that the estimated MNL model and the IMNP model are quite similar. Most of the

parameter estimates are fairly close to each other.
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Table 6. Maximum Likelihood Estimates of the MNL and

IMNP Models, Alberta
Coeflicient Re-scaled

Variables IMNP MNL IMNP

Constant -0.7005 -0.8979 -0.8966
(8.13) (11.51)

Cost -0.0211 -0.0245 -0.0270
(15.78) (22.23)

Cong 1 0.4597 0.5922 0.5885
(9.66) (14.46)

Cong 2 -0.1111 -0.1379 -0.1422
(2.67) (3.76)

Accl 0.0642 0.0800 0.0821
(1.72) (2.59)

Acc?2 0.1473 0.1947 0.1886
(3.19) (4.86)

Forestry 0.0522 0.0678 0.0668
(1.90) (2.08)

Moose 1.1398 1.4692 1.4590
(18.39) (26.34)

Log likelihood -1515.9 -3471.5

Choice Occasions 4256 4256

1. MNL model refers to traditional multinomial logit model and IMNP refers independent mutinomial probit model.
2. Numbers in parentheses are ¢ -statistics.
3 Parameters of the re-scaled IMNP model are rescaled by ®/6'2 for comparison with the MNL model.
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Table 7. Maximum Likelihood Estimates of the MNL and

IMNP Models, Saskatchewan
Coefficient Re-scaled

Variables IMNP MNL IMNP

Constant 0.1059 0.1228 0.1355
(1.87) (1.89)

Cost -0.0137 -0.0163 -0.0175
(8.03) (10.91)

Cong 1 0.3724 0.4266 0.4766
(12.38) (14.36)

Cong 2 0.0051 0.0063 0.0065
(2.52) (1.12)

Accl 0.1143 0.1588 0.1463
(6.42) (5.91)

Acc 2 0.0571 0.0725 0.0731
(3.52) (1.97)

Forestry 0.1490 0.2022 0.1910
(2.87) (8.13)

Moose 1.0922 1.4238 1.3981
(17.30) (16.78)

Log likelihood -2581.3 -5512.2

Choice Occasions 6000 6000

1.MNL model refers to traditional muitinomial logit model and IMNP refers independent mutinomial probit model.
2. Numbers in parentheses are ¢ -statistics.
3 Parameters of the re-scaled IMNP model are rescaled by =/6'? for comparison with the MNL model.
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The log likelihood values of IMNP models increase dramatically due to the change of
distribution assumption for €. For the Alberta model, the log likelihood value increases from
-3471.5 (MNL model) to -1515.9. For the Saskatchewan model, the log likelihood value
increases from -5512.2 to -2581.3. These indicate that the normal distribution fits the data
sets better than the extreme value distribution. This finding is different from those of previous
studies. For example, using Michigan recreational fishing data, Chen and Cosslett (1996)
found that the log likelihood value of an IMNP model was smaller than that of a MNL model.
Layton (1996) used a stated preference data of public preferences for Superfund hazardous
waste site cleanup and found that the two models (MNL and IMNP) produce almost the same
log likelihood values.

The multinomial probit model presented in (5.6) is extremely flexible. The most
general model that can be estimated would consist of two separate covariance matrices, one
for the random coefficients Z ,, and one for the alternative specific random errors Z _ (subject
to the identification restrictions discussed early). Here we focus on the random coefficient
model, both because preferences are likely to be heterogeneous, and because the random
coefficients model offers a clear approach to parsimoniously modelling shared unobservables
in the choice data. Following Hauseman and Wise (1978), we consider a model that allows
each of the k preference parameters to be independently normally distributed, each with their

own variance. This specification with the normalization @, = 1 imposed® is

3 As we discussed under model identification, s more general model with o6, * 0 for j #j can be
estimated if we have enough data observations to recover the (J(J-1))/2 number of parameters in the covariance
matrix Z .

74



Q=252 +3

where

0 p, ClI CI2 All Al2 F, M,
Z =10 p, C21 C22 A2] A22 F, M,
10 0 0 0 0 00

Lﬁooooooo'

000 0 0 0 0O (5.22)

00050 0 0 00

000G, 0 0 00
%=looo od 00 o0

000 0 0 ¢ 0 O

000 0 0 O0 o0

.00000000,%,‘

s =D

m

where @, p, cl, c2, Al, A2, F, M stand for non-hunting alternative constant, travel cost,
congestion 1, congestion 2, access 1, access 2, forestry activity and log moose population,
respectively. The coefficient of travel cost is not specified as a random variable

o, =0 for two reasons: (1) since the travel cost is already site specific and individual

specific, specifying the coefficient as a random number is not likely to be as important as that
for site attributes; and (2) specifying the coefficient of the travel cost as a random variable
makes the benefit calculation untractable. This specification avoids the proliferation of

covariance terms that are associated with the full specification. One should note that although
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Table 8. Maximum Likelihood Estimates of the RCMP Models,
Alberta and Saskatchewan
Alberta Model Saskatchewan Model
Variables Coefficient _ t - Statistics Coefficient  t - Statistics
Constant -2.5440 2.93 -2.7416 2.07
Cost -0.0568 5.79 -0.0523 3.29
Cong 1 1.4941 4.02 1.2524 2.54
Cong 2 -0.3326 2.38 -0.4141 3.20
Accl 0.2741 1.96 0.2324 1.82
Acc2 0.4867 3.04 0.4905 2.11
Forestry 0.0567 0.48 0.0660 1.32
Moose 3.9066 443 3.6711 3.89
g, 3.1615 1.61 5.1769 2.50
g, 1.4679 0.99 1.9405 1.98
g, 1.2376 0.83 1.8856 1.06
O, 1.5206 2.32 2.0483 2.36
O, 1.2457 0.83 1.4176 1.88
O 0.8966 244 1.5109 1.83
Oy 3.3330 2.08 43211 4.29
Log likelihood -1497.6 -2379.6
4256 6000

Choice Occasions
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the B coefficients are independently distributed, the errors are not, and therefore this model
is not subject to the ITA assumption.

Table 8 reports the parameter estimates for the two RCMP models: one for Alberta
and one for Saskatchewan. Almost all coefficients in the two models are significant at a 0.05
level. Travel cost and moose population are the two most significant factors in hunter’s site
choice. Hunters in both provinces prefer less congestion and better access. Forestry activity
is a positive but insignificant factor in moose hunting. It is noticed that since the IMNP model
and RCMP model have different covariance structures, comparison of the parameter estimates
between the two models is not as straightforward as the comparison between the IMNP and
the MNL models. However, compared to the IMNP models, one can find that both RCMP
models have higher log likelihood function values. For the Alberta sample, the log likelihood
value increases from -1515.9 (IMNP model) to -1497.6 (RCMP model); and for the
Saskatchewan sample, the log likelihood function value increases from -2581.3 (IMNP
model) to -2379.6 (RCMP model). The higher log likelihood values of the two RCMP models
suggest that the RCMP specification fits the two data sets better than the IMNP specification.
These also could be seen as an indication of the existence of heterogeneous preferences within
the two choice data sets.

The results in Table 8 also reveal significant variation in hunters’ tastes (preferences)
over hunting demand. In the Alberta model, 0,,, 0;, 0, are significant at a 0.05 level. This
indicates that Alberta hunters have significant heterogeneous preferences for access, forestry
activity and moose populations. In the Saskatchewan model, all varying components but o,

are significant at a 0.05 level. This suggest that Saskatchewan hunters have much more
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variations in their preferences.

The most important and interesting finding comes from the comparison between the
two RCMP models. The constant or average parts ( fY ) of the indirect utility functions are
very close in the two provinces, while varying or heterogeneous parts ( X ) are significantly
different from each other. Comparing the varying parameters os , one can find that all the os
in the Saskatchewan model are much higher than those in Alberta model. This finding may
have important implications in the evaluation of benefit transferability. It is quite possible
that, since the so-called “intrinsic” indirect utility functions are similar in the two provinces,
benefits may be more transferable after removing the heterogeneous preference component.

In the next part, benefit transferability is evaluated.

5.6 Benefit Transferability Evaluation

Following the procedure presented in Part 5.4, benefits are simulated for different
policy scenarios. Again, assume Alberta is the policy site and Saskatchewan is the study site.
We now evaluate benefit transferability across the two provinces, that is, evaluate the nuil
hypothesis Hy: B(B,, Q, (X,, B, ), X,) =B(B,, Q, (X,, B, ), X)), where BB, , @, (X, B, ), X))
is the transferred benefit calculated from the Saskatchewan model and Alberta policy changes,
and B@,, Q, (X,, B, ), X)) is the true benefit calculated from the Alberta (the “true”) model
and Alberta policy changes.

In the region of Alberta examined in this study, there are 14 relevant Wildlife
Management Units for recreational moose hunting (see Mcleod et al. for details). They are

WMU?337, 338, 340, 342, 344, 346, 348, 350, 352, 354, 356, 437, 438, and 439. The
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objective attribute levels of these WMUS, along with the distances to these WMUs for a
representative hunter, are listed in Table 4. Using the data in Table 4*, the “true” and
transferred benefits of 8 policy scenarios are simulated. These scenarios are:

Scenario 1: closing WMU337.

Scenario 2: closing WMU?338.

Scenario 3: closing WMU340.

Scenario 4: closing WMU344.

Scenario §: closing WMU348.

Scenario 6: increasing moose population in WMU344 from 1 to 3.

Scenario 7: reducing moose population in WMU348 from 4 to 1.

Scenario 8: reducing the congestion level of WMU348 from cong3 to congl.

Benefit simulation for these 8 policy scenarios could be grouped into two categories:
closing a site or changing a site attribute. For scenario 1 to S, benefit is expressed as

max(U, , U, , ..., Uy )max(U, , .., Uy, Uy s s Upy)
-Y

v, = (5.23)

and for scenario 6 to 8, the benefits are calculated as

4. Two items should be noted when the data in Table 4 are used to simulate benefits. (1) Instead of using objective
levels of attributes, perceived levels of the attributes in the WMUs could be used since the information on the
perceptions of attributes of the WMUs was also collected. However, the objective levels are used here for two
reasons: first, preliminary analysis (McLeod, et al, 1993) suggests a reasonable degree of correlation between
objective and perceived measures; second, the RCMP model has considered perception errors among hunters.
(2)Although the selection of hunter’s distances to sites will have no impact on Qs since there is no varying
component assigned to travel cost, it does affect the “intrinsic” utility. As a result, the selection of the distances

will affect benefit transferability. A randomly sclected representative hunter in Alberta is used in this study.
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oy - max, ..., UX", .., Uy)-max(U, , ... UXY, .., U,)
1 -Y

(5.24)
For the first category (Scenario 1 to 5), benefits are simulated using the following

procedure: (1) calculate the “intrinsic” utility ( A% ) for all the 14 WMUs; (2) simulate the

varying utility @AY by employing the step 1 and step 2 in Part 5.4; (3) calculate the

individual’s utility U, -fx + fix, ; (4)calculate Up = max(U) for j=1, ., 14 and
U, = max(U) for j=l,.,j-1,j+1,.,14 ; and (5) calculate benefits using (5.23).

For the second category |, Un = max(U, X%) for j=1, .., 14 and

Up = max(U; ") for j=1, ., 14

The simulated benefits for the 8 policy scenarios are reported in Table 9. The results
in Table 9 suggest that the benefits of most of the policy scenarios are reasonablely close
between the “true” model and the transferred model. For example, for policy scenarios 2, S,
7 and 8, the deviations of the transferred benefits from the “true” benefits are less than 10%.
This number is much smaller than that in the previous chapter where the heterogeneous MNL
and the traditional MNL were used. It is suggested that the varying parameter specification
improves benefit transferability.

It is found that the simulated benefit distributions have very large variances. The
standard errors of the “true” (transferred) benefits for policy scenarios 1 to 8 are, respectively,
2.27(3.18),3.14 (3.72), 1.58 (1.86), 0.82 (1.41), 21.35 (24.65), 18.55 (22.50), 18.45 (19.62)

and 35.37 (38.34). For all policy scenarios, transferred benefits are more variable than the
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Table 9. Benefit Estimates from the True and Transferred RCMP Models

Policy Scenarios Mean Min. Max. Deviation’
Scenario 1

True Model -0.280 -39.76 0

Transferred Model -0.527 45210 0 85.2%
Scenario 2

True Model -0.573 -45.54 0

Transferred Model -0.577 -55.01 0 0.7%
Scenario 3

True Model -0.137 -36.67 0

Transferred Model -0.160 -35.35 0 16.7%
Scenario 4

True Model -0.071 -18.25 0

Transferred Model -0.141 -22.94 0 98.5%
Scenario §

True Model -13.844 -120.17 0

Transferred Model -14357 -136.13 0 3.7%
Scenario 6

True Model 3.267 -79.76 99.00

Transferred Model 4.009 -105.96 118.50 22.7%
Scenario 7

True Model -13.126 -80.94 18.30

Transferred Model -12.787 -90.39 2248 -2.5%
Scenario 8

True Model 33.78 -31.99 145.73

Transferred Model 29.82 -4701 167.45 -3.9%

¢ The deviation is calculated as [ev/cv/ -1], where ¢ and ¢ represent, respectively, the transfer model and the true model.
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Table 10. Simulated Benefits of Eliminating a Site and Probability of Visiting

the Site
Policy Scenarios Mean Benefit Probability (%)
Site WMU 337
True Model -0.280 2.7
Transferred Model -0.527 44
Site WMU 338
True Model -0.573 5.0
Transferred Model -0.577 4.7
Site WMU 340
True Model -0.137 16
Transferred Model -0.160 1.3
Site WMU 344
True Model -0.071 1.0
Transferred Model -0.141 1.6
Site WMU 348
True Model -13.844 46.6
Transferred Model -14.357 38.5
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¢” benefits. This reflects the fact that the transferred model has more significant variation
than the “true” model.

The simulated impacts of scenario 1 to § are actually truncated distributions. The
maximum welfare is always zero. This is due to the way CV is simulated. If, in a replication,
the site that is going to be eliminated is not chosen, CV will be zero. Thus, the maximum
impacts of eliminating a site are zero. It is interesting to explore the relationship between the
probability of visiting a site and the cost of removing access to the site. Theoretically, it is
expected that the higher the probability, the larger the cost. The results presented in Table 10
reflect this theory. The probability of hunting in WMU 348 is the highest, at 46.6%. The loss
of eliminating this site is the largest, $13.84 per trip. It is also found that the simulated

probabilities between the “true” and transferred models are very close.

§.7 Conclusion

This chapter has employed an econometric model to account for individual
heterogenous preferences of recreational demand. An estimation procedure has been
developed for the stated preference data. The empirical results of the random coefficient
probit models have revealed significant variation among individual preferences. The methods
applied in this chapter are important because they are currently tractable and allow the
modelling of flexible correlation structures. It is expected that random coefficient probit
model will become important in analysing individual choice models.

By comparing the independent model and the random coefficient model, one can see

that the varying parameter specification improves the model’s goodness of fit. The
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specification can be important because in many cases the explanatory variables such as the site
attributes, are measured by a set of numbers that do not vary across individuals. The concern
is whether the constant parameters of the indirect utility function can adequately explain each
individual’s taste or perception of site quality. From the estimation results, the random
coefficient specification provides a significant improvement over the constant parameter
specification.

A frequency simulator is also employed in this chapter to calculate the benefits of
different environmental changes. The results show that benefits to the representative
consumer have much larger variation after the heterogenous preferences are accounted for.
The simulated “true” and transferred benefits are very close in the random coefficient probit
models, compared to those in the previous chapter. It is also found that the calculated benefits
are consistent with the simulated probabilities, that is, the higher the probability of visiting the

site, the larger the loss of eliminating the site.
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Chapter 6 Statistical Tests for Benefit Transferability

Using Nonparametric Procedures

6.1 Introduction

In Chapter S5, the “true” and transferred benefits of eight policy scenarios are
simulated. It is shown that, when the random parameter multinomial probit model is employed
to account for heterogeneous preferences, benefits of environmental change could be
approximately simulated as a random series. The means, maximums and minimums of these
empirical distributions are given in Chapter 5. Benefit transferability can be evaluated by
comparing the means of the “true” and transferred benefit distributions. These evaluations are
quite preliminary, and more rigorous statistics are required to test for benefit transferability.

To test benefit transferability is to test the similarity of the underlying distributions.
Unfortunately, there is little theoretical foundation for defining the underlying distributions
of the simulated random series. These random series can only be seen as the samples of some
unknown distributions. For this purpose, comparison of the means of two unknown
distributions is definitely not a rigorous test, because it is quite possible that two significantly
different distributions can have identical means. Nonparametric or distribution-free
procedures are required.

This chapter employs nonparametric procedures to test benefit transferability across

regions, using the simulated samples of the empirical benefits from Chapter 5. Two
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nonparametric procedures, the Mann-Whitney test and the method of convolutions approach,
are used to evaluate the significance of the difference of the empirical distributions. The
question asked here is: Is the difference of the two distributions of point estimates

BB, Q& B). X,] - BB, QK B). X] significantly different from zero? Here,

B@, 9, B). X) is the transferred benefit distribution simulated from the

Saskatchewan model and the Alberta policy changes, and BB, Q,(X,. 8), X] i the true
benefit distribution simulated from the Alberta (“true”) model and Alberta policy changes.

The Mann-Whitney test is a frequently used nonparametric test that is equivalent to
another well-known test, the Wilcoxon sum-of-ranks test. The Mann-Whitney test is simple
to use for any size samples, and tables of the exact null distribution are widely available. The
large-sample approximation is quite adequate for most practical purposes (Breiman, 1973).

The convolutions approach is based on the method of convolutions. This technique
is used in mathematics and statistics to calculate the distribution of a sum of random variables
and series (Feller, 1957; Mood, Graybill, and Boes, 1974). Based on this technique, Poe,
Severance-Lossin and Welsh (1994) developed a statistical test for :he difference of simulated
distributions. They demonstrated that the classic parametric method that invokes a normality
assumption is generally not appropriate for evaluating differences in simulated distributions.
They argued that, because the convolution formula provides an exact statistical test of the
difference of empirical distributions, it is preferable to the parametric normality based classic
tests.

Since each of these two tests has advantages over the other, both of them will be used.
Given the widespread use of resampling or simulation techniques in welfare measures,
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elasticities and flexibilities, economies of size, and non-market values, it can be expected that
nonparametric methods will be used more frequently in applied economics.

This chapter is organized into 4 sections. The second section briefly reviews and
evaluates some commonly used parametric and nonparametric tests for underlying
distributions. Section 3 presents the theoretical foundation of the empirical convolutions
approach and uses a simple distribution to demonstrate the test procedure. The final section

presents test results.

6.2 Methods of Testing for Underlying Distributions

The problem of deciding whether a number of samples come from the same underlying
distribution is a fundamental and frequent problem in statistics. The problem could be stated
as follows: Given a number of samples from different populations, decide whether the
populations have the same distribution. Precisely, suppose x; ..., x, is a sample drawn from
one underlying distribution and y,,..., ¥. a8 sample drawn, independently of the first, from
some other underlying distribution, how can these data be used to decide whether the two
underlying distributions are the same? In statistics, various methods have been developed to
solve this problem. These methods can be divided into two categories: parametric tests and

nonparametric tests.

1. Parametric Test
The entire body of parametric techniques is based on fairly specific assumptions
regarding the nature of the underlying population distribution; usually its form and some
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parameter values must be stated. Given a set of assumptions, certain test statistics can be
developed. As long as the assumptions themselves can be substantiated, the conclusions
reached using these techniques are valid.

The most commonly used parametric test for underlying distributions is the student
t test. Assume there is a sample x;,...., x, from one distribution P, and an independent sample

Y1+ Va from another distribution P, . Suppose further that P, ~ N, , L)

and P, ~ N(u, , 0°) . Let H;, i, be the sample means, and examine the difference
A, ~ Ay _ Under H: M =My, #H; — i, has mean zero. The student 7 test is

constructed as follows:

t= 6.1)

where Sdis the standard deviation of the difference #; ~ H, . The degrees of freedom (df)
equals n+m-2 in this case. Comparison of the calculated | t | and the critical | t’ | provides the
test result. If |t| < |t" |, H, can not be rejected at a given significance level, and if |t |>

|t°], Hy isrejected. Sdis calculated as

Sd = [ S} (in + Um)]'?
where

g D8] + 1%
P n+m-2

62)




In order to apply the classic 7 test, one must assume O, = O, . If these variances are
not equal, the 7 test can exhibit serious problems (Feller, 1957). Since equality of variances
is probably not a safe assumption in simulation or resampling, an old but reliable approximate
solution, the Welch confidence interval, is recommended by Law and Kelton (1982), instead
of using the classic 7 test.

Assume two normal distributions with unequal and unknown variances. The Welch

confidence interval is constructed as follows:

By - ) % 1 1-an O + OJm)"2

where ©3)
©@%n + 83/m)?

g @ mp(n-1) + (33/m)*(m-1)

Since the degrees of freedom will not, in general, be an integer, interpolation in the
t tables will probably be necessary. If the confidence interval contains zero, the null hypothesis
H,: #; = Wy can not be rejected.

The above parametric test is surprisingly robust. It maintains its stated level
accurately even if the underlying distributions are not exactly normal (Breiman, 1973). The
larger the sample size, the more robust it is, and the two-sided test is more robust than the
one-sided.

However, as Poe et al. demonstrated, the normal distribution assumption may not be
appropriate for simulated distributions in most cases. In this study, objections to the normality

assumption occur at both a theoretical and empirical level. First, due to the structure of the
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multiple choice model, the distributions of consumer’s benefits from some environmental
changes are truncated. For example, the welfare distributions of eliminating a hunting site in
policy scenarios 1 to 5 (Chapter S) are theoretically truncated at 0. Consumers (hunters) will
never get positive welfare from the elimination of a hunting site.

Second, the simulated empirical distributions do not support the normality assumption.
Figures 3 to 10 present the probability density functions (pdf) of the simulated true and
transferred benefit distributions. From the shapes of these pdfs, one should not conclude that
the simulated points are samples drawn from normal distributions. To actually test the
normality assumption, a Wald statistic is constructed for each empirical distribution. Under

the hypothesis of normality, the test statistic would be

(bz - 3)2

b
W=n[-3l-+ 54 ] ~ Q)

where
(6.4)

b, = skewness coefficient = Ak - 971
Var{x])**

b, = kurtosis coefficient = He - 99
Var{x])?

The normality test results are reported in Table 11. All calculated Wald statistics are
much larger than the S percent critical value 5.99. Thus, the mull hypothesis is rejected
and none of the empirical distributions could be treated as a sample for a normal

distribution.



Table 11. Wald Statistic’ of the Normality Test for the Simulated Empirical
True and Transferred Benefit Distributions

Scenario True Models Transferred Models
Scenario 1 17388.2 15428.8

Scenario 2 13267.7 17405.6

Scenario 3 51899 4319.9

Scenario 4 12504.6 147923

Scenario 5 738 1103

Scenario 6 17.6 17.7

Scenario 7 235 35.5

Scenario 8 16.7 149

* The § percent critical value from the Chi-squared table for two degrees of freedom is 5.99, so all empirical distributions do
depart significantly from normality.
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In applied economics, many researchers employ simulation techniques because they
capture the inherent nonlinearities of the functions of the parameters used to calculate the
desired point estimate. It seems rather counter-intuitive to impose arbitrary assumptions such
as normality when one of the primary advantages of the simulation method is to avoid
unnecessary parametric restrictions. In practice, it remains an empirical question if the
“approximately normal” condition holds for simulated economic variables. For example, while
Dorfman, Kling and Sexton (1990), and Krinsky and Robb (1991) found that Taylor’s
approximations and normality assumptions closely approximate the simulated elasticity
confidence intervals, Green, Hahn and Rocke (1987), and Anderson and Thursby (1986)
found such equivalence to hold only under restrictive conditions. Non parametric techniques

provide an altemative set of tests when the underlying distributions are unknown.

2. Nonparametric Tests

Nonparametric techniques have (certain) desirable properties that hold under relatively
mild assumptions regarding the underlying population from which the data are obtained. In
particular, nonparametric procedures forego the traditional assumption that the underlying
populations are normal. Although at first glance most nonparametric procedures seem to
sacrifice too much of the basic information in the samples, theoretical investigations have
shown that this is not the case. More often than not, the nonparametric procedures are only
slightly less efficient than their normal theory competitors when the underlying populations
are normal, and they can be mildly and wildly more efficient than these competitors when the

underlying populations are not normal (Hollander and Wolfe, 1973).
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There are several nonparametric tests. The often used median test and Mann-Whitney
test are discussed below.

The median test generally is not very efficient, but can be computed very easily.
Assume n+m is even, and let v be the median of the combined sample x; ..., X,, Y1, V-
Let N be the number of x,,..., x, that are less than v. If the two samples come from the same
distribution, then N should be around n/2. for a two-sided test, the hypothesis of
homogeneity is accepted if N is neither too large nor too small. If one is testing against the
one-sided alternative that the distribution underlying the x values has generally larger
outcomes, then the hypothesis is accepted if N is not too small -- and analogously for testing
against the alternatives that the y values are generally larger. For sufficiently large sample

sizes, N has an approximately normal distribution with

EM =2, W= ) 6.5)

4 n+m-1

This test could be extended to test k£ samples. The advantage of this median test is that
it is very easy to calculate. The drawback of this test is that its efficiency is not up to par,
when used in the normal case and compared to the student 7 test (Breiman, 1973).

The Mann-Whitney (Mann and Whitney, 1947) test is the most commonly used
nonparametric test for underlying distributions. It is used to test H,: two different samples are
drawn from the same distributions. The Mann-Whitney test is based on the idea that the
particular pattern exhibited when m.X random variables and nY random variables are arranged
together in increasing order of magnitude provides information about the relationship between

their populations. The Mann-Whitney criterion is based on the magnitudes of the Ys in
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relation to the Xs. A sample pattern of arrangement where most of the Y’ are greater than
most of the X, or vice versa, would be evidence against a random mixing and thus tends to
discredit the nuil hypothesis of identical distributions. It does not require the samples to be
drawn from normal distributions and works well when the sample size is small.

The Mann-Whitney test is performed in 5 steps:

(1) Combine two samples into a single group and keep track of which sample each
point comes from;

(2) Sort the combined data list from smallest to largest;

(3) Assign each point in the list a number corresponding to its position in the data list;

(4) Add the rank from each sample;

(5) Calculate the test statistics as follows:

where
R, = total rank of sample 1 (6.6)

_ nn+m+1)

U
r 2

nm(n + m + l)]m

% = 12

The calculated Z is compared to the critical value from the standard normal
distribution to give the test result.

The above expression of the Mann-Whitney statistic does not allow for the possibility
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of ties across the sample. If, however, there exist ties among samples, the modified definition
of the Mann-Whitney statistic is

z = Ur - EUHy) ~ N, 1)
[Var(UjH))"

where

2D,

Jsl

U, =

i

n
=1
L ¥ x>y 6.7)
D,={0 i x =y,
-1 0f <y

EUJHY) =0
i(t? - ti)

_mnN + 1), il
Var(UrHy) 12 i NV - 1)]

Here ¢ denotes the multiplicity of a tie and the sum is extended over all sets of 7 ties.
Lehmenn (1975) shows that the normal approximation is supported by a limit theory, which
states that the null distribution of Z tends to the standard normal distribution provided both

m and n tend to infinity and max(d, /N, d,/N, ..., d,/N) is bounded away from 1 as N-o .

The Mann-Whitney test is a frequently used nonparametric test that is equivalent to
another well-known test, the Wilcoxon sum-of-ranks test. The test is simple to use for any
size samples, and tables of the exact null distribution are widely available. The large-sample
approximation is quite adequate for most practical purposes, and corrections for ties can be
incorporated in the test statistic. The test has been found to perform particularly well as a test

for equal means (or medians), since it is especially sensitive to differences in location. For our
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purpose, this test is quite appropriate for the tests of the benefit distributions of scenarios 6

to 8. However, due to the precondition gmMax[dlﬂV, d/N, . d/Nl»1 , thistest may

not be appropriate for the tests of benefit distributions of scenarios 1 to 5. Since the benefit
distributions of scenarios 1 to S are truncated at zero, it is possible for them to have a fairly
large proportion of zeros. In this case, the calculated Z will not be standard-normally
distributed, and the Mann-Whitney test cannot be used. A more general distribution-free

nonparametric test based on the convolutions approach can be used in this case.

6.3 Convolutions Approach

Another test is based on the method of convolutions and presented by Poe,
Severance-Lossin and Welsh (1994). The convolutions approach is used in mathematics and
statistics to calculate the distribution of a sum of random variables and series. The following
discussion is heavily drawn from Poe, Severance-Lossin and Welsh (1994).

Assume that two independent random variables, X and Y, have respective probability

density functions f(¥) and £ .Define V=X-Y to be another random variable. The

probability of the event V=v is defined as the union of all the possible combinations of x and
y that result in X-Y=v. For continuous functions f(X) and £(Y), the probability density

function of Vis explicitly given as
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£0) = [fx-) fiwts
T 6.8)
= [0 110y

Using only the far right-hand side of (6.8), the corresponding cumulative distribution
Fy(v=x-y=v") is

Fo0) = [fio)
- 6.9)

= [ [1v+9) fio)bes

In empirical applications with discrete observations, both f,{) and £() have no explicit
solutions but can be numerically approximated in discrete manner. Using max(.) and min(.)

to replace the infinites, the dimensions of (6.9) can be reduced substantially. Imposing finite

width windows (A ) upon the continuum of the values associated with X and Y, the

approximate cumulative empirical distribution of F(v’) is given by

vo

Fp%) = Y Y f0P) fiPayav (6.10)
min(E-y) min(y)

where min(.) and max(.) denote minimum and maximum convoluted values, and “/” indicates
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that the distributions or values are a discrete approximation of a true underlying distribution
or value. Since the distribution of V=X-Y is generally unknown, an empirical approach to
estimating confidence intervals is needed. Adopting a percentile approach (Efron, 1982),
equation (6.10) can be directly applied to test the null hypothesis H, : V=X-¥=0, by
calculating the lower bound , L:_ (17) , and upper bound, fl,_a(f)) , of the 1-a

confidence intervals of V-

6.11)

The null hypothesis H,, : V=X-Y=0 cannot be rejected at the size « if the approximate 1-a
confidence interval of the convolution includes zero, and is rejected otherwise. Using the
convolutions approach, the approximate two-sided significance level of the difference of the

distributions is determined by 2F(0) if Ff0) s 05 , and 21 - Ff0)]

otherwise.

This approach can also be applied as a one tailed test. For example, assume a policy
maker wants to test whether the difference between the “true” and transferred benefits is less
than a given number v°. A null hypothesis H,: X-Y < v® can be tested. The significance level

of the difference is given by  £(0)

Poe, Severance-Lossin and Welsh (1994, p 914) presented a simple example to
demonstrate the application of the empirical convolution formula (6.10) and the suggested

statistical test for estimating the significance of the difference of two approximate empirical
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distributions. Suppose that the following two hypothetical distributions are approximated

from two random series.

Values -2 -1 0 1 2 3 4 5
£0) 000 000 000 000 010 040 040 0.10
£() 000 000 005 030 060 005 000 0.00

where £(.) and £(.) are the pdf of the random variable x and y respectively. We are interested
in evaluating the difference ( v=X-Y) between the two simple distributions. The first step is
the calculation of the probability density function at a given point v°. It is given by f(v°) =
3 [£(x) £(y)] forallx-y =V. Forexample, £, = £Q)0)+/;GV,()+@Y;2)+L(V;3)

= (0.1)(0.05) + (0.4)(0.3) +(0.4)(0.6) +(0.1)(0.05) =0.370. The calculated probability density

and cumulative density function are presented as follows:

Values -2 -1 0 1 2 3 4 ]
£0) 0.000 0.005 0.080 0.290 0.370 0.200 0.050 0.005
F() 0.000 0.005 0.085 0.375 0.745 0.945 0.995 1.000

Evaluating F (0) indicates that the distributions are different at a 17% (=2x0.085)% level.
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For large samples, the convolutions approach could be computationally costly. Poe,
Severance-Lossin and Welsh kindly provided us their program. Their GAUSS program for
performing a convolution of two vectors centres on the convolution (CONV) routine in
GAUSS. It is in 6 steps! : (1) Input matrices: two GAUSS (*.fmt) matrices that contain the
samples obtained from the simulations are read. (2) Determination of Interval (finite
Windows) size: The interval is the a in Equation (6.10). Selecting or determining the size of
the window is based on experience and “feel”, much like determining the range and intervals
to be considered in graphing a bar chart. The smaller the size, the more precise the
approximation, but the longer the computational time. (3) Specification of the Size for
Confidence Intervals: This section allows the user to choose the two-sided central confidence
intervals (1-a ) by specifying a size « . (4) Organize Bounds for Convolution: This section
reorders the matrices to conform to a large - small ordering, creating a pseudo data set by
rounding to the upper bound of the corresponding interval, and prints out bounds and
precision of the convolution. (5) Set up matrices for convolution: this section calculates
probability density functions and eliminates unneeded series of zeros below the lowest point
in which a non-zero probability is observed. (6) Conduct and Report the Convolution: this
section uses GAUSS CONV. It is the heart of the program. This section places upper and
lower limits on the convolution, and identifies and reports two-sided values of convolution
at zero and the upper and lower confidence bounds.

Both the Mann-Whitney and the Convolutions Approach are capable of testing two

1See Poe, G.L., M.P.Welsh and E.K.Lossin (1994) for details.
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random series. However, they are different in the statement of the null hypothesis. Assume
there are two samples, x,,..., X, generated from the “true” benefit B[B,, Q, (X,, B, ), X,], and
¥y 1es Yo generated from the transferred benefit B[R , Q (X, f ), X ]. The Mann-Whitney
test examines the null hypothesis, H,: *, . %, and % »- Y. are drawn from identical
populations, that is BG, 8., B), X] = B@,0,K,B).X] . The convolutions
approach tests the null hypothesis H, : X -Y = 0, that is B®, 8, B). X and

BB, QX B). X,] generate identical empirical distributions. Strictly speaking, the
convolutions approach is not a rigorous statistical test for distributions. But since our purpose
is to determine how different are the benefits generated from the “true” and transferred

models, this approach is appropriate.

6.4 Test Results and Discussion

The test results for the 8 policy scenarios are presented in Table 12. The tests based
on the convolutions approach are performed for all policy scenarios, while the Mann-Whitney
test is only performed for scenarios 6 to 8 due to its limitation in the situation of ties. When
the Mann-Whitney test is performed, Equation (6.7) is used to adjust the statistic for ties.

The following conclusions can be drawn from the test results in Table 12:

(1) The results of the test based on the convolutions approach suggests that, for policy

scenarios 2, 5, 6, 7 and 8, the null hypothesis: benefits are transferable across the two regions,

cannot be rejected. For example, in the test for scenario 8, (egyy =85.001, which means that

E(0) =100- a2 = 574995 , that is 57.5% of the X-Y is less than or equal to zero.
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Table 12. Statistical Test Results for Benefit Transferability

Policy Scenarios MW! O conv CI of Size o’
Scenario 1 4.266 [-8.530, -0.008]
Scenario 2 9.768 [-55.010, 45.54)
Scenario 3 3.173 [-0.190, 0.000]
Scenario 4 1.981 [-0.020, -0.000]
Scenario § 72.382 [-77.260, 66.760]
Scenario 6 1.921 99.189 [-59.760, 64.391]
Scenario 7 1.441 90.771 [-58.420, 55.250]
Scenario 8 7.847 85.001 [-104.32, 102.23]

1. Mann-Whitney Statistical Test
2. Significance level of the difference X-Y in the convolutions approach.
3. a=0.05.
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(2) The confidence interval of size ¢ is consistent with the significance level Q-

For all scenarios with a confidence interval containing zero, Oy are greater than S.

(3) Although the Mann-Whitney test results are consistent with those of the
convolution approach for scenarios 6 and 7, the Mann-Whitney test seems to be more
conservative than the convolutions approach. The Mann Whitney test rejects the null

hypothesis at a 15% level when the convolutions approach cannot.

(4) If the confidence interval of size 0 = 0.05 is used to judge benefit transferability,

we may conclude that the most of benefits generated from the two models are transferable.

We have discussed and applied two nonparametric tests for the purpose of testing
benefit transferability. The Mann-Whitney test has been used in statistics for quite a long time
and has been demonstrated to be a very efficient nonparametric test. Unfortunately, the null
hypothesis is not exactly the same as the one we want to test. Since the two benefit samples
are not directly generated from consumers but from two different models, the null hypothesis
of identical distributions (populations) is much more restrictive than the null hypothesis of X-
Y=0. Moreover, due to its limitation in dealing with a large number of ties, the Mann-Whitney
test is not capable of testing some empirical distributions in applied economics.

The test based on the convolutions approach provides a general-purpose tool of
testing two simulated empirical distributions. Although it may involve intensive computation
for widely dispersed distributions, it is easy to perform in some computing packages that offer
convolutions routines. However, the power and efficiency of this test are unknown. No

statistical theory provides a base to perform this test. Serious problems could result from
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several aspects. First, efficiency could be lost in approximating f(x), f(y) and £(0)
Second, since the shape of £, is unknown, the consistency of the approximated

confidence interval and significance level is in question.
Nevertheless, it should be reasonable to accept the approximations for our purpose.
We have applied different test procedures and find similar resuits. Our results suggest that

most of the benefits are transferrable from the study site to the policy site in our study.
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Chapter 7. Test for the Economic Significance of
Benefit Transfers

7.1 Imntroduction

Chapter 6 provided the nonparametric test results of benefit transfers. The tests
examine the statistical significance of the differences between the “true” and the transferred
benefits. However, it is extremely important for economists to carefully interpret these tests
of “statistical significance”. A statistical test can only deal with the question of whether a
difference appears to be a chance variation or not. It is not designed to see whether the
difference is important. Most importantly, economists would like to know whether the
difference is important in economics or policy. A test for whether the difference is important
in economic policy may be called the test of economic significance.

Statistical signiﬁcanée and economic significance are two different concepts. As
McCloskey and Ziliak (1996) point out, statistical significance and economic significance
must be distinguished from each other. A difference can be significant for science or policy
and yet be insignificant statistically, and similarly, a statistically significant difference may be
insignificant for science and policy. For example, a calculated “true” benefit of $5.65 with
a standard error of 0.0021 is statistically different from a transferred benefit of $5.55 with a
standard error of 0.001, but they may not be significantly different economically. On the other
hand, a “true” benefit of $2.65 with a standard error of 1.35 is not statistically significantly

different from a transferred benefit of $3.15 with a standard error of 1.55, but they may be
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significantly different economically. In economics this is a question of “How large is large”.

While the term “statistical significance” has been widely used in economics, economic
significance gets little attention. In many cases, statistical significance is used to decide
nearly everything. McCloskey and Ziiliak (1996: p102) write: “Using ambiguously the very
word “significance” implies there is no difference between economic significance and
statistical significance, that nothing or little else matters. Of the 96 (American Economic
Review) papers that use only the test of statistical significance as a criterion of importance at
its first use, 90 percent imply (or state) that it is decisive in an empirical argument, and 70
percent use the “significance” ambiguously. .... Only seven of 96 distinguish statistical
significance from economic or policy or scientific significance in the conclusions and
implications sections.”

In the previous chapter, the statistical significance of benefit transfer was tested,
asking the question: Is the difference B[B,, Q, (X,, B,), X,] - B[B,, Q, (X, B,), X.] ! of the
two distributions of point estimates significantly different from zero? In this chapter, the
economic significance of benefit transfer is tested by using policy simulations. The question
asked here is: How important is the difference B[B,, Q, (X,, B,), X.] - B[, O, (X,, B,), X.]
in a policy decision?

Benefit transfer is a method used by policy makers to estimate the benefit of a policy
or project. Its economic significance depends on how the transferred benefit affects the policy

maker’s decision, compared to the “true” benefit. Two issues are essential for policy makers

1.B[B,, Q, (X, B, X_] is the transferred benefit distribution simulated from the Saskatchewsn model and
Alberta policy changes, snd B[B, . Q, (X,. B, ), X,] is the true benefit distribution simulated from the Alberta
(the “truc™) model and Alberta policy changes.
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in benefit transfer. First, if' the transferred benefits are used, what is the probability of making
an incorrect decision? Second, if the transferred benefits are used, instead of undertaking a
new study to investigate the true benefit, what benefit can be expected? This chapter
investigates these two issues to answer the question: How important is the difference
B@, Q¢ B). X] - BB, QX B). X] in a policy decision? If, for example, the
probability of making an incorrect decision is very high, or the expected benefit is significantly
negative, the difference B0, 2, B). X - B@, QX, B). X] is very important in
policy decisions. The conditions for the difference 3@, 0., B), X] -
B@, 9, B), X to be economically significant are also investigated.

This chapter is organized as follows. The second part presents the policy maker’s
problem with respect to benefit transfer, and then from this problem, derives the calculations
of the probability of making an incorrect decision and the expected benefit of benefit transfer.
The third part actually calculates the probability and the expected benefit in a simulated policy
setting, using the calculated true and transferred benefits of chapter S. The final part contains

the summary and conclusions.

7.2 The Policymaker’s Problem in Benefit Transfer

Consider the policymaker’s problem with respect to benefit transfer. When an
environmental policy is evaluated, the policymaker needs to know the benefits and costs of
the policy. The benefits consist of two components: market benefits and non-market benefits.
By assuming both the cost and the market benefit are known, the policymaker focuses on the

calculation of the non-market benefit. She has two options: conduct new research to
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investigate the “true” benefit, or use a transferred benefit. If the first option is taken, the
“true” benefit is obtained. Then the policymaker makes the decision with full information and
there is no risk of making the incorrect decision. However, benefit assessments are costly and
time consuming. There are two types of cost associated with option 1: the money cost of the
benefit assessments, C,, and the value of the time needed for benefit assessments, C,. If the
benefit transfer option is taken, there will be no cost?, thatis, C,=C ,=0. However, there
exists a risk that the policymaker will make an incorrect decision, because the transferred
benefit and the true benefit may not be close enough.

The economic significance of benefit transfer can be expressed as the probability of
making an incorrect decision. To simplify the calculation of this probability, several
assumptions are made:

Assumption 1: All consumers are identical to the representative consumer,

and the per trip benefit is an exogenous variable. If the benefit per trip
is B, the aggregated benefit is nB, where n is the total number of trips.
Assumption 2: The calculated non-market benefit is the only non-market
benefit associated with the proposed policy (project). The cost and the
market revenue of the policy (project) are known and fixed as C and
R, respectively.

Assumption 3: The policymaker’s decision is made solely based on the total

benefits and costs. For example, if the total cost is larger than the total

2. This is an assumption made to simplify the analysis. However, benefit transfer can be costless in practice.
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benefit, the policy (project) will not be implemented, and vice-versa.

The incorrect decision is defined as: the policy or project is

implemented when the total cost is larger than the total benefit, or that

the policy or project is not implemented when the total benefit

is larger than the total cost.

Based on the above assumptions, there are four possible outcomes when the

transferred benefit is used. Assume B, is the true benefit and B, is the transferred benefit.

The four outcomes can be shown as follows:

nB,-C+R>0 nB,-C+R<0
nB,-C+R>0 Correct Decision Incorrect Decision
nB,-C+R<0 Incorrect Decision Correct Decision

There are two situations in which the policymaker will make the wrong decision: nB,

-C+R<0and nB,-C+R>0,0ornB,-C+R>0and nB, - C+R <0. In the other two

situations wherenB, - C+ R<0 and nB,-C +R<0,0ornB,-C+R>0and nB,-C+R >

0, the policymaker’s decision will be the same, no matter whether the true benefit or the

transferred benefit is used.

When the transferred benefit is used for the policy decision, the probability of making

an incorrect decision can be expressed as:
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P, =P, +P,=P(nB,-C +R>0,nB, -C +R<0)

(7.1)
+P(nB, -C +R<0,nB,-C+R>0)
and the probability of making the right decisionis -
P =P, +P =P(nB,-C+R>0,nB, -C+R>0)
(72)

+P(nB, -C +R<0,nB, -C +R<0)

Assume that the representative consumer’s “true” and transferred benefits are
normally and independently distributed® as B, ~ N(i,, 6), and B, ~ N(u, , 0,), respectively.

The probability P, can be calculated as

3. Considering the normality test results in Chapter 6, this is a restrictive assumption. However, it is necessary
for the simplification of the demonstration.
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P, =P(nB,-C+R> ,nB, -C+R<0)

n n
C-R C-R
B, - “H B - ~
=P(¢ "‘¢> n )P(.I p.!) n )
o, o, o, o,
- -R
Ry, Xy (13)
=P(Z> ) PE< ) = (1 - %) 9
where
C -R C-R
T Hg T H
Z n 2. n
1 od > 2 o' ’

®:2) =P(Zs<sz2), Z~N0O,1)

Similarly, the probabilities of the three other events could be calculated as:

P, = ®(z) (1 - 0(z))
P, = (1-9G) (1-9() (7.4)
P, = ©(z)0(,)

For any given set of C, R, and n, P,, P,, P, and P, can be calculated. The probability of
making an incorrect decision P,= P, + P, could be used as an indicator of the economic
significance of benefit transfer.

Another indicator for economic significance may be the expected benefit of benefit

transfer. The policymaker may want to consider what is the benefit of benefit transfer
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compared to investigating the true benefit. To calculated the expected benefit, four situations

need to be considered:

1.If nB,-C+R<0and nB,-C+R>0, the expected benefit from benefit transfer
isB, =Cy+C, + (oy, - C+R), where C,, +C, is the money saved by using benefit transfer,
and nB, - C + R is the money lost due to making an incorrect decision.

2.If nB,-C+R>0and nB, - C + R <0, the benefit from benefit transfer is B, =
C,, +C, - (o, - C +R), where C,, + C, is the money saved by using benefit transfer, and nB,
- C + R is the money lost due to making an incorrect decision.

3.If nB,-C+R<0and nB , - C+R <0, the benefit from benefit transfer is B; =
C,, + C,. There is no loss from making an incorrect decision in this case.

4.If nB,-C+R>0and nB, - C+R >0, the benefit from benefit transfer is B, =
C,, + C, . There is no loss from making an incorrect decision in this case.

The expected benefit then could be calculated as

E@B) = P,B, + P,B, + P,B; + P.B, (7.5)

If E(B) > 0, policymaker will benefit from benefit transfer, and if E(B) < 0, she will lose from
benefit transfer.

The two indicators: the probability of making an incorrect decision and the expected
benefit of benefit transfer, should provide sufficient information for testing the economic
significance of benefit transfer.

In addition to the two indicators, one condition may also be useful in the
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policymaker’s decision. If the policymaker wants to know under what conditions the
probability of making an incorrect decision is limited to 5%, the following formula could be

used:

005 =P, + P, = (1 - ®z)0() + (1 - 9())¥(z)
= ®(z) + ®(z,) - 20(z)P(z,)

where (7.6)
0@ = |—L_ e Tax
= (2m)'2

Since z, = (C - R)/n - p, /0, and z, = (C - R) - i1,/0, , a numerical solution for (C-R)/n could
be found by using specialized computer software, given p /o, and p/o,. The variable (C-R)/n

may be interpreted as per trip market cost of the policy.

7.3 Test for the Economic Significance of Benefit Transfer

Based on the methodology discussed above, this section actually tests the economic
significance of benefit transfer, using the results of Chapter 6. As the first step, two benefit
distributions, the benefit distribution of policy scenario 5 and the benefit distribution of policy

scenario 8, are simulated‘. To approximate normal distributions, batch means are used as the

4. Policy scenarios 5 and 8 are defined as the same as they were in Chapter 6. Policy scenario S is defined as:
climinating WMU348, and policy scenario 8 is defined as: reducing the congestion level of WMU348 from cong3

to congl.
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point estimates of the benefits. That is, the mean of each 1000 replications is used as one
point estimate, and 1000 means are simulated. It is suggested that nonnormality will not be
a problem if the number of batches is larger than 40 (Law, 1977). This batch mean technique
is consistent with the technique used in Chapter 6. The only difference is that the expected
benefit of each 1000 replications in Chapter 6 is treated as one point estimate.

The simulation results of the “true” and transferred benefit distributions of the policy

scenarios S and 8 are as follows:

Scenario 8 Scenario 5
True Benefit B, ~ N(30.72, 4.08) B, ~ N(-14.58, 0.67)
Transferred Benefit B, ~ N(24.04, 5.53) B, ~ N(-14.27, 0.76)

It can be seen that, while the difference between the “true” and transferred benefit of policy
scenario 5 is small, the difference between the “true” and transferred benefit of scenario 8
is relatively large. However, the importance of these differences are determined by the
probabilities of making an incorrect decision.

Recalling equation (7.1), (7.2) and (7.3), the probability of making an incorrect

decision could be written as
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P, =P, +P, = ¥(z) + ¥(z,) - 20)¥C)

where
C-R
n_ Ha
z, = — an
C-R
n - W
z, -

Given the distributions of the “true” and transferred benefits, P, is determined by (C - R)/n.
(C-R)/n could be interpreted as the per trip market cost of the policy or project. This number
is a key factor in determining the probability of making an incorrect decision when benefit
transfer is conducted. If, for example, this number is close to the “true” per trip non-market
benefit , , then a small deviation of the transferred benefit 1, from the “true” benefit will

lead to a high probability of making an incorrect decision. On the other hand, if

(C-Ryn » p, or (C-Ryn « g, , the difference between u, and K, may not be large
enough ta affect the policymaker’s decision. So, when the transferred benefit u, isusedto
replace the “true” benefit , , the smaller the value of | (C-R)/n - i, |, the higher the
possibility of making an incorrect decision; and the larger the value of | (C-R)Yn- #, |, the

lower the possibility of making an incorrect decision.
To calculate the probability of making an incorrect decision, (C-R)/n has to be known.
In order to have a better understanding of the relationship between the size of (C-R)/n and

the probability of making an incorrect decision, a variable is defined as
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C-R
n

Y= - B/K, (7.8)

Here y is the percentage deviation of the (C-R)/n from the “true” mean benefit. Again, the
larger the | y |, the lower the possibility of making an incorrect decision.

Rewrite (7.8) as -

ER-aenw (79)

Substituting (7.9) into (7.7) gives an equation describing the relationship between y and P,
the probability of making an incorrect decision.

Using the statistical software Splus, the relationship between y and P, is calculated.
The results for policy scenarios S and 8 are displayed in Table 13. For policy scenario 5,
benefit transfer is quite promising. As long as the per trip market cost (C-R)/n is 10% larger
or 10% less than the per trip benefit, the probability of making an incorrect decision is very
low, less than 2.5% and 7.9% respectively. The highest possibility of making an incorrect
decision is 35%, when the per trip market cost is 5% less than the “true” benefit. When the
per trip market cost (C-R)/n is 10% larger or 15% less than the “true” benefit, the probability
of making an incorrect decision is 0, that is, benefit transfer will result in the exactly same
decision as the “true” benefit.

For policy scenario 8, benefit transfer provides a less promising result. This is because
the difference between the “true” and transferred benefit is larger in scenario 8 than in

scenario 5. The highest possibility of making wrong decision is 63.3%, when the per trip
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Table 13. The Probabilities of Making an Incorrect Decision at Different Per Trip

Market Costs
Scenario 8 Scenario §
y Market Cost/Trip' P, Market Cost/Trip |
0.05 32.56 37.3% -15.31 20.0%
0.10 33.79 24.7% -16.04 2.5%
0.15 3533 12.8% -16.77 0.0%
0.20 36.86 7.5% -17.50 0.0%
0.30 3994 1.4% -18.95 0.0%
0.40 43.01 0.2% -20.41 0.0%
0.50 46.08 0.0% -21.87 0.0%
0.60 49.15 0.0% -23.33 0.0%
0.65 50.69 0.0% -24.06 0.0%
-0.05 29.18 60.7% -13.85 35.0%
-0.10 27.65 63.3% -13.12 7.9%
-0.15 26.11 60.8% -12.39 0.7%
-0.20 24.58 53.3% -11.66 0.0%
-0.30 21.50 32.7% -10.21 0.0%
-0.40 1843 15.6% -8.75 0.0%
-0.50 15.36 5.8% -7.29 0.0%
-0.60 12.29 1.6% -5.83 0.0%
-0.65 10.75 0.0% -5.10 0.0%

1. Market cost/trip is (C-R)/n. It is calculated as (1+y)p,, where p, =30.72 in Scenario 8 and -14.58 in
Scenario §.
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market cost is 10% less than the “true” benefit. However, when (C-R)/n is in the intervals [13,
-] and [43, +=)], the probability of making an incorrect decision is 0.

Using the software Splus, the relationships between y and P, for the two policy
scenarios are also presented in Figure 11 and 12. These figures are drawn by calculating 200
points of y and P, . The x-axis is y, the deviation of (C-R)/n from the mean benefit, and the
y-axis is P, , the probability of making an incorrect decision. Figure 11 is for policy scenario
S and Figure 12 for policy scenario 8.

Now, the problem is considered inversely. Assume that the probability of making an
incorrect decision is given. One can calculate the per trip market cost (C-R)/n or the
deviation y by using (7.6) and (7.8).

The mathematical software program MatLab is used for this task. Assume P, = 5%.
The solutions for y and (C-R)/n are obtained by solving (7.6) numerically. For policy scenario
5, ;= -8.6% ([C-RV/n=-15.81), and y,=9.1% ([C-R}/n=-12.95). For policy scenario
8, ;= -51.4% ([C-RVn=14.94), and y, =25.9% ([C-R)/n =38.68). The interpretations
of these numbers are as follows: For Scenario 5, the probability of making an incorrect
decision is less than 5%, as long as the per trip market cost (C-R)/n is less than -15.81 or
larger than 12.59. For Scenario 8, the probability of making an incorrect decision is less than
5%, as long as the per trip cost is less than 14.94 or larger than 38.68.

The second indicator of economic significance - policymaker’s benefit from benefit

transfer - is calculated using (7.5). The probabilities of the four events P, P,, P,, P, are

calculated by Splus. To be consistent with the first indicator, the same combinations of the

per trip market cost and benefit are assumed.
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Table 14. Policymaker’s Benefits from Benefit Transfer Under Different
Market Costs

Scenario 8 Scenario Sy

Expected Benefit Expected Benefit
0.05 C, +C,-0.4377n! Ca +C, -0.0385n
0.10 C.+C,-0.5738n C.+C, -0.0072n
0.15 C,. +C, - 0.5009n C.+C,-0.0011n
0.20 C.+C,-0.3431n Ca.+C,
0.30 C. +C,-0.0916n C. +C,
0.40 C.+C,-0.0123n CatC
0.50 C. +C,-0.0015n C.+C,
0.60 C. +C, - 0.0000n Cn +C,
-0.05 C, +C,-0.7229n C,+C,-0.1121n
-0.10 C, +C, - 1.5848n C. +C, -0.0758n
-0.15 C.+C,-2.7312n C, +C, -0.0139n
-0.20 C.+C,-2.9834n C. +C, - 0.0009n
-0.30 C.+C,-2.8652n C.tC,
-0.40 C. +C, - 1.8898n Ca +Cy
-0.50 C. +C, - 0.8896n Ca +Cy
-0.60 C.+C,-0.3077n C.+C,
-0.65 Ca+C,-0.1612n Co+C,

1. C_ and is C, arc the money cost and value of time of benefit investigation; n is the total number of

trips.
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Multiplying the calculated P, P,, P, P, by the benefits of different situations, the

policymaker’s benefit is calculated and presented in Table 14. These results are consistent
with the probabilities of making an incorrect decision. Theoretically, the highest expected
benefit from benefit transfer is C_ +C,, the sum of the money cost and the value of time of
doing benefit investigation. For Policy Scenario 8, when the per trip market cost is 60%
greater than the benefit, the expected benefit from benefit transfer is C, +C, . For Policy
Scenario 5, the highest expected benefits occur when the per trip cost is 20% larger or 30%
less than the benefit.

In general, the higher the probability of making an incorrect decision, the lower the
policymaker’s expected benefit from benefit transfer. However, since the expected loss also
depends on n, - C +R, it is possible that when the deviation y increases the expected benefit
decreases. For example, the expected benefit for Scenario 8 at y =10% is C,, +C, -0.5738n,
which is less than C,, +C, -0.4377n, the expected benefit at y =5%.

From the formula of expected benefit, it can be seen that given the per trip market
cost, the higher the money cost and the value of time of doing benefit investigation, the higher
the policymaker’s expected benefit from benefit transfer, and the larger the number of trips,

the lower the expected benefit.

7.3 Summary and Conclusions

It is important for economists to distinguish economic significance from statistical

significance. This chapter has developed and applied a method to test the economic
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significance of benefit transfer. Two indicators, the probability of making an incorrect decision
and the expected benefit of benefit transfer, are used to test the economic significance of
benefit transfer.

Applying the “true” and transferred benefits of Policy Scenarios 5 and 8, it is found
that the possibility of making an incorrect decision is reasonablely low when benefit transfer
is applied. For Policy Scenario 5, the probability of making an incorrect decision is lower than
5% when the per trip market cost is 10% higher or 15% lower than the per trip benefit. For
Policy Scenario 8, the probability of making an incorrect decision is less than 5% when the
per trip market cost is 20% higher or 50% lower than the per trip benefit. These conditions
are not very restrictive, considering the relative importance of nonmarket benefits in decision
making. In most practical policy issues, the market value of the policy (project) may be much
larger or smaller than the nonmarket benefit. In these cases, policymaking will gain from
benefit transfers.

The calculated expected benefits of benefit transfer are consistent with the probability
of making an incorrect decision. When the probability of making an incorrect decision is 0,
the expected benefit reaches the highest point C, + G. Also, the expected benefit is
positively related to the money cost and the value of time in benefit investigation.

Using specialised software, an equilibrium condition is also calculated. It is suggested
that for Policy Scenario 5, the probability of making an incorrect decision is less than 5%,
as long as the per trip market cost is in the interval [-» , -15.81] or [12.59, +=]; and for
Scenario 8, the probability of making an incorrect decision is less than 5%, as long as the per

trip cost is in the interval [-=, 14.94] or [38.68, +=].
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Since many of the policy parameters are unknown, all the calculations are made in a
simulated policy environment. Fortunately, with the aid of a variety of softwares, a range of
solutions is obtained.

This chapter has developed a procedure to examine the economic significance of
benefit transfers. It provides a tool for policymakers and managers to evaluate the feasibilities
of benefit transfers. The test results in this specific experiment show that benefit transfers are
quite promising. However, caution is required when these results are used in general
applications. More work needs to be done to increase the stock of studies before general

conclusions can be made.
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Chapter 8. Conclusions and Discussions

Motivated by both intensive resource management and assorted legislative and
juridical mandates, public and private agencies are continuing to expend considerable
resources to quantify economic consequences of altering service flows and stocks of non-
marketed features of the natural environment. The increasing demand for non-market
valuation of environmental assets has brought about the idea of using benefit transfer as a
time-saving and cost-effective alternative to environmental valuation. This thesis employs
two stated preference surveys to investigate the issues in benefit transfers. It focuses on three
aspects: benefit estimation with multiple sources of heterogeneity, statistical tests for benefit
transferability and economic significance test of benefit transfers.

One major problem in benefit estimation is heterogeneous preferences among
individuals. In order to obtain unbiased and consistent model and benefit estimates and thus
provide a sound base for benefit transferability tests, two models are developed to account
for multiple sources of heterogeneity in choice data. The first one is the heterogenous
multinomial logit model. This model accounts for heterogeneity by specifying a relative scale
factor for each group of individuals with specific characteristics. It is capable of dealing with
observable multiple sources of heterogeneity. The resuits of the applications of this model in
both the Alberta and the Saskatchewan data sets suggest that the heterogeneous model

specification improves the model’s goodness of fit, compared to the traditional multinomial
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logit model. The benefit calculation formula in the heterogeneous multinomial logit model is
also derived. It has been shown that since the variance of choice is a part of the benefit
formula, properly controlling for the heterogeneity in choice data is particularly important
when the model is used for environmental valuation. Using the heterogeneous multinomial
model to accounting for heterogeneity has improved benefit transfer in our experiment. For
the designed policy scenario, the deviations of the transferred benefits from the true benefit
decreased from 48% in the traditional multinomial logit model to 14% (urban ) and 26%
(niral) in the heterogeneous model.

The second model employed in this thesis is the random coefficient muitinomial probit
model. This model accounts for the heterogeneity in choice data in a more flexible way. It
accounts for multiple sources of heterogeneity by specifying a random component for each
coefficient of the indirect utility function and releases the IIA restriction by allowing a general
covariance matrix for the errors. Using GAUSS Maximum Likelihood 4.0, an estimation
procedure was developed for the stated preference data. The results of the random
coefficient probit models have revealed significant variation among individual preferences.
The most important and interesting finding is that the constant or average parts of the indirect
utility functions are very close between the “true” and transferred sites, while the varying or
heterogeneous parts are significantly different from each other. This finding implies that, since
the so-called “intrinsic” indirect utility functions are very similar, benefits are expected to be
more transferable after removing the heterogeneous preferences. It is also found that the

random coefficient multinomial probit model provides the best goodness of fit. The result of
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the comparison between the independent model and the random coefficient model suggests
that the random coefficient specification more adequately explains each individual’s taste or
perception of the site quality.

A consistent frequency simulator is employed to calculate the benefits of different
environmental changes. The results from the eight policy scenarios show that benefits of the
representative consumer have much larger variations after the heterogenous preferences are
accounted for. The simulated benefits are much more transferrable in the random coefficient
probit models than in those other models. It is also found that the calculated benefits are
consistent with the simulated probabilities, that is, the higher the probability of visiting the
site, the larger the loss of eliminating the site.

After obtaining the benefits from the random coefficient multinomial probit model, the
statistical and economic significance of benefit transfer are examined in Chapters 6 and 7.
Chapter 6 employs two nonparametric procedures, the Mann-Whitney test and the
convolutions approach, to test benefit transferability statistically. The tests based on the
convolutions approach are performed for all policy scenarios, while the Mann-Whitney test
is only performed for scenarios 6 to 8 due to its limitation in the situations of ties. The results
of the test based on the convolutions approach suggest that, for policy scenarios 2, 5, 6, 7 and
8, the null hypothesis: benefits are transferable across the two regions, cannot be rejected at
a 5% level. Although the Mann-Whitney test results are consistent with those of the
convolution approach for scenarios 6 and 7, the Mann-Whitney test seems to be more
conservative than the convolutions approach. The Mann Whitney test rejects the null

hypothesis at 15% level when the convolutions approach cannot. If the confidence interval
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of size 0 =0.05 is used to judge benefit transferability, it may be concluded that most of the

benefits generated from the two models are transferable statistically.

It is extremely important for economists to distinguish economic significance from
statistical significance. Chapter 7 has developed and applied a method to test the economic
significance of benefit transfer. Two indicators, the probability of making an incorrect decision
and the expected benefit of benefit transfer, are used for the test of economic significance of
benefit transfer.

Applying the “true” and transferred benefits of policy scenario S and 8 in a case study,
it is found that the possibility of making an incorrect decision is reasonablely low when benefit
transfer is applied. In this case for policy scenario 5, the probability of making an incorrect
decision is lower than 5% when the per trip market cost is 10% higher or 15% lower than the
per trip benefit. For policy scenario 8, the probability of making an incorrect decision is less
than 5% when the per trip market cost is 20% higher or 50% lower than the per trip benefit.

The calculated expected benefits of benefit transfer are consistent with the probability
of making an incorrect decision. When the probability of making an incorrect decision is 0,
the expected benefit reaches the highest point. It is also suggested that the expected benefit
is positively related to the money cost and the value of time of benefit investigation, but
negatively related to the total number of trips.

This thesis has provided a case study of benefit transfer and examined several
important issues in the application of benefit transfer. The following important
recommendations can be made from this study: (1) Benefit transfer can only be as accurate

as benefit estimates. More accurate benefit estimates are more transferable. In order to obtain
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more accurate benefit estimates, heterogeneous preferences need to be accounted for if the
computing capacity is available. If computing capacity is limited, scale factors (variances)
could be considered since they account for heterogeneity and may enhance benefit
calculations. (2) The more important the non-market value of a project (policy) in decision
making, the higher the risk of making an incorrect decision. Thus, more caution should be
used when applying benefit transfer to a project (policy) with a large non-market benefit
(cost) component. (3) Benefit transfer is not as simple as a transformation of a number or a
model. Doing benefit transfer correctly may in fact be quite costly in terms of time and effort.

This thesis has studied several important issues in benefit transfers. Several advanced
econometric and simulation techniques have been developed and applied. These techniques
are very important tools in the practical use of benefit transfers. However, in order to apply
benefit transfers in practices, more work has to be done. First, more nonmarket valuation
studies are needed to increase the availability of a stock of studies for consideration in the
benefit transfer area. The suggestion of Boyle and Bergstrom (1992) and Atkinson et al.
(1992) to build a nonmarket library may be a good solution. Second, the accuracy of the
transferred nonmarket studies is critical. Benefit transfers are only as accurate as the initial
studies. Further development of the existing knowledge base of both the models and benefit
calculations is required to increase accuracy. Third, systematic comparisons of multisite
models for different regions are needed to investigate the robustness of the benefit transfer
process. Finally, some updating techniques may be used to increase the accuracy of benefit

transfer when partial information about the policy site is available. In a previous study (Xu
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and Adamowicz, 1996), we find that Bayesian updating provides more transferrable benefits.
Ben-Akiva, Bolduc and Pene(1995) suggest a combined estimator approach to model
transferability and updating. They have shown that this estimator has superior accuracy, in
a mean square error sense, to an unbiased direct estimator whenever the transfer bias is

relatively small. This method is quite useful in practical benefit transfers.
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CHOICE OF MOOSE HUNTING SITE

In this section you will examine 16 different scenarios which offer you the choice of hunting
moose at two different sites or not bunting, Please assume that the two sites presented in each
scenario are the only sites that you can choose from for your next hunting trip. We want you to
indicate for each scenario which site you would choose, if either.

The enclosed information sheet entitled "Glossary of Terms" provides detailed information about
the terms used in this section of the survey.

1. Assuming that the following areas were the ONLY areas available, which one would you
choose on your next hunting trip, if either?

Features of Hunting Site A
50 kilometres

Site B

Mostly gravel or dirt,
some paved .

Newer trails, cutlines or
seismic lines, passable
with a 2WD vehicle

Neither Site
AorSiteB

Iwill NOT
£0 moose
hunting

No hunters, other than
those in my hunting
party, are encountered

Some evidence of
recent Jogging found in
the area

Evidence of less than 1
moose per day

Check ONE and only one box O a O

Please complete all 16 of the scenarios that follow. Missing any of these questions will not allow
us to properly analyze your choices!

Figure2 Example of the instrument used to gather stated preference data
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Figure 3. PDF of the True and Transferred Benefits for Policy Scenario 1.

PDF of the True and Transferred Benefits
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Figure 4. PDF of the True and Transferred Benefits for Policy Scenario 2.
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Figure 5. PDF of the True and Transferred Benefits for Policy Scenario 3.
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Figure 6. PDF of the True and Transferred Benefits for Policy Scenario 4.
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Figure 7. PDF of the True and Transferred Benefits for Policy Scenario 5.
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Figure 8. PDF of the True and Transferred Benefits for Policy Scenario 6.
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Figure 9. PDF of the True and Transferred Benefits for Policy Scenario 7.
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Figure 10. PDF of the True and Transferred Benefits for Policy Scenario 8.
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