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Abstract  
 

 Inelastic material behavior is known to be able to enhance the fracture toughness of 

elastomers.  However, how to optimally exploit this toughening mechanism is still being 

investigated.  In this thesis a series of continuum models are developed to describe such inelastic 

behaviors, with the goal of gaining greater understanding of the fracture process which can then 

be exploited to produce tougher elastomers.  This is accomplished by relating the mechanical 

response of the macroscopic elastomer to the extension and rupture of the microscopic polymer 

chains which comprise the material.   

The peeling of a viscoelastic double cantilever beams by rupturing a layer of polymer chains 

along the plane of fracture was first investigated.  The fracture energy consists of two components: 

the adhesive fracture energy arising from interfacial bond rupture, and viscous dissipation within 

the bulk material. Faster crack propagation requires larger adhesive fracture energy whereas the 

rate-dependence of bulk viscous dissipation is non-monotonic. The coupling between bulk and 

adhesive behavior was found to be weak in this problem because the strain in the beam and the 

adhesive stress on the interface are perpendicular.   

Motivated by experimental observation of chain rupture in a large area surrounding crack 

tips, kinetic modeling of polymer chain scission was incorporated into the constitutive model of 

the bulk elastomer.  When the material is assumed to contain a distribution of chains with different 

lengths the model produces two important results during uniaxial loading.  First, the polydispersity 

causes the maximum stress to decrease because chains with different lengths attain their maximum 

force and rupture at different deformations. Second, progressive damage occurs in the material, 

which results in hysteresis between first loading and unloading under cyclic condition.  This 
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elastomeric damage model was subsequently applied to establish a constitutive relation for 

multinetwork elastomers.  These materials are synthesized by swelling a primary elastomeric 

network with filler network(s), a process which prestretches the chains of the network formed in 

the previous step(s).  The effect of such a process is captured by basing the strain energy of the 

material on the combined effect of swelling and subsequent deformation of the completed 

multinetwork elastomers.  The model provides a good match to experimental data on uniaxial 

extension, including cyclic loading, for a variety of prestretches. 

The relationship between the force applied on a chain and its extension plays an important 

role in the mechanical properties of elastomers. Classical models for the chain force-extension 

relationship are too stiff at large extension due to the lack of consideration of bond deformation on 

the polymer chains backbone.  A new model was developed to correct this, which is accomplished 

by considering free energy contributions from not only the configurational entropy, but also bond 

stretching and bond angle distortion.  The model was also extended to include the consideration 

of active polymer chains containing mechanophores or molecules which have reactions that are 

triggered by mechanical force.   
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Chapter 1. Introduction 

Elastomers are frequently utilized in polymeric industry as well as in biomaterials. To 

predict the load bearing capacity of these materials numerous models have been developed to study 

the fracture of elastomeric materials. Greater insight into the toughness of the material obtained 

from fracture modeling can allow for improved design of components made from these materials. 

The goal of this research is to predict the macroscopic response of elastomeric materials by 

considering microscopic processes within the materials. This will be accomplished through 

theoretical modeling and comparison of the model predictions with experimental data. 

One of these microscopic processes is the rate dependent scission (rupture) of chains within 

a network of cross-linked polymer chains. In a previous model, a microscopic description of an 

interface was presented [1-3] where the chains bridging the interface rupture according to certain 

kinetics. The bulk material in this model, however, was assumed to be elastic. This is a significant 

shortcoming since recent experimental works have been able to map the rupture of polymer chains 

[4] in a large area surrounding crack tips and this large damage causes the fracture toughness of 

the material to significantly exceed that of the interface.  It is therefore important to develop models 

that account for both interfacial chain rupture [1-3] and damage in the bulk material [5].  This 

thesis contains a sequence of works in this direction. Chapters 2 to 6 each is a standalone 

publication (published or to be submitted) which contains its own introduction, nomenclature and 

conclusion. A compiled list of references is also provided at the end of the thesis.  Supporting 

Information for each chapter is provided in the appendices. 

The project began with simple cases where a fundamental understanding of the essential 

physics behind coupled bulk and interfacial dissipation can be gained.  First, a kinetic interfacial 

model [1-3] was introduced into a simple double cantilever beam (DCB) with a linear viscoelastic 

bulk dissipation mechanism [6, 7]. Chapter 2 is a paper published in the International Journal of 

Solids and Structures [6] where the rate dependent coupling between bulk viscoelastic relaxation 

and interfacial bond rupture is investigated for DCB peeling.  Chapter 3 is a paper published in the 

International Journal of Fracture [7], where an extension of the model presented in Chapter 2 is 

conducted to incorporate a more realistic polymer chain force-extension relationship and allow for 

the possibility of interface healing.   

Next, more complicated geometries were investigated.  Motivated by recent experimental 

data which mapped the rupture of polymer chains [4] in a larger area surrounding a crack tip, it 
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became apparent that the assumption of scission only occurring along an infinitesimally thin 

fracture interface was untrue for many tough elastomers.  Therefore, the underlying physics of the 

kinetic interfacial model [1-3, 6, 7] was extended to create a framework for implementing material 

damage due to scission into the bulk [5]. The modeling results were able to capture some 

interesting experimental observations, which is presented in Chapter 4 and was published in 

Extreme Mechanics Letters.     

To validate the effectiveness of the framework presented in Chapter 4, the model was 

extended to Multinetwork Elastomers (MNE), a new class of material where filler elastomer(s) are 

introduced into an existing elastomer to prestretch the chains of the original material [4].  These 

prestretched chains, because they occupy only a small percentage of the MNE volume, can 

dissipate energy over a large region before the MNE fails, enhancing the fracture toughness.  This 

model is presented in Chapter 5 and will be submitted for publication soon.  The development of 

such model which accurately describes the mechanical response of MNEs allows for rapid 

systematic study to optimize controllable parameters in the materials design, such as prestretch 

and original network volume fraction, to maximize fracture toughness.  During the development 

of this MNE model it was found that existing models for polymer chain elasticity [9], which are 

based on configuration entropy, were inadequate for reproducing the behavior of the highly 

stretched chains near rupture. Thus a model which accounts for not only configuration entropy but 

the deformation of bonds on the backbone of a polymer chain was developed this model is 

presented in Chapter 6 and will be submitted for publication soon.   
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Chapter 2. Rate Dependent Fracture of a Double Cantilever 

beam with Combined Bulk and Interfacial Dissipation1 

 

Abstract 

The energy required to fracture viscoelastic media is known to depend on the rate of crack 

propagation.  In this work, crack propagation, driven by applied moments¸ in an idealized model 

of a viscoelastic double cantilever beam (DCB) is studied. Rate dependency is taken into account 

through a standard linear solid viscoelastic model for the bulk material, and an adhesive zone 

model describing bond rupture kinetics for the polymer chains which bridge the interface. 

Attractive van der Waals (vdW) forces are also taken into account within the adhesive zone. The 

apparent energy release rate consists of two parts: the energy to overcome adhesion on the interface 

as well as viscous dissipation in the bulk. The adhesive energy in rupturing polymer chains 

increases as crack propagation speed increases. Relaxation of the bulk material causes viscous 

dissipation as stored strain energy is lost. For a beam of fixed length this dissipation was found to 

be negligible at high and low rates of crack propagation. Between these two limits there is a critical 

crack propagation speed where viscous dissipation is maximized.   

  

                                                            
1 A version of this chapter has been published. Reprinted with permission from Lavoie, S. R.; 

Long, R. Tang, T. “Rate dependent fracture of a double cantilever beam with combined bulk and 

interfacial dissipation” Int. J. Solids. Struc. (2015) 75-76: 277-286.  

https://doi.org/10.1016/j.ijsolstr.2015.08.020 Copyright 2015 Elsevier 

https://doi.org/10.1016/j.ijsolstr.2015.08.020
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2.1. Introduction 

The failure of polymeric materials is a phenomenon frequently encountered in a wide range 

of technological applications. Many of these materials display viscoelastic properties upon 

mechanical loading. However, the fracture mechanics of viscoelastic materials has yet to be fully 

understood [8].  Numerous experimental studies have found that the energy required to fracture 

polymeric materials depends on the rate of fracture [2, 3, 8, 10].  The work needed to propagate a 

crack at constant speed is often found to increase as the speed is increased [1, 8]. A similar 

phenomenon has also been observed for viscoelastic adhesives. Gent and Schultz found that the 

energy needed to peel viscoelastic rubbery adhesives was strongly dependent on the rate of peeling 

[11, 12] had similar findings.  The adhesive failure of amorphous rubber adhered to a rigid 

substrate was studied by Andrews and Kinloch [13] who found that the energy required to detach 

the rubber consisted of two components: the intrinsic failure energy and the energy dissipated 

viscoelastically. Their results when reduced to a reference temperature using the Williams-Landel-

Ferry (WLF) equation [14] yielded a single master curve, reminiscent of the time-temperature 

superposition for the relaxation modulus of viscoelastic materials.  It is generally accepted that the 

energy supplied to propagate a crack at a constant speed must be sufficient to overcome energy 

dissipation in the bulk polymer [8, 15, 16] as well as the adhesive or cohesive energy on the crack 

interface [1¸2, 3, 15], henceforth referred to as the fracture energy.   

 Several theoretical efforts have been made to quantify viscous dissipation in the bulk 

material.  Xu et al. [15] and Hui et al. [17] studied the peeling of a viscoelastic double cantilever 

beam (DCB) as well as an infinite viscoelastic solid with small scale yielding.  In both cases the 

viscoelastic material was modelled as a standard linear solid [15, 17].  Chen et al [18] and Gao and 

Su [19] studied peeling of viscoelastic Bernouli-Euler beams using linear viscoelastic models 

which use the Boltzmann superposition integral.  More sophisticated models which consider 

microstructural changes brought about by scission and reforming of polymer networks have been 

proposed [20, 21]. These models can provide a more accurate description of viscoelastic polymers, 

especially under finite deformation, but would also add significant complexity to the problem.   

There have also been works seeking to model interfacial phenomena for crack propagation 

in polymeric materials.  Xu et al. [15] and Hui et al [17] used a simple Dugdale-Barenblatt cohesive 

zone model with a constant cohesive stress, and a Newtonian fluid model with a cut-off stress to 
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describe the cohesive interaction in their works.  Lake and Thomas studied the failure of vulcanized 

rubber and concluded that the fracture energy was amplified by the number of monomer units on 

the chains bridging the crack [10]. However, the Lake-Thomas theory did not explain why the 

fracture energy is rate dependent, and Chaudhury [2] proposed that this rate dependency is related 

to chemical kinetic processes at the interface. To quantify the kinetics of such interfacial processes, 

Chaudhury [2] introduced a kinetic equation, with the Lake and Thomas amplification factor 

incorporated, to study the dissociation of bonds bridging two interfaces as they were separated.  

This rate equation was later applied to a crack with an idealized wedge-shaped opening profile (3), 

and further to more realistic crack opening profiles [1]. This approach differs from traditional rate-

independent models where the criterion for interface separation is based on a critical energy release 

rate or cohesive stress. An overview of the historical application of chemical kinetics to interfacial 

problems and further justification for the use of kinetic equations in fracture problems was given 

by Chaudhury [2].  

 The works cited above all made excellent contributions to advancing the field.  However, 

in his review of several experiments, Gent [8] concluded that rate dependency of the apparent 

energy release rate should result from a combined effect of both interfacial and bulk properties.  

The conclusion that the interfacial model must also be rate dependent was reached by Rahulkumar 

et al. [22] after attempting to match finite element results to experimental data for peel tests. 

Among the prior theoretical works several have considered basic bulk viscoelastic models [15, 

17], however the adhesive zone models used in these works were too simplistic.  On the other 

hand, none of the prior works that captured rupture kinetics of the polymer chains bridging a crack 

have considered bulk viscoelastic behavior [1, 2, 3]. The goal of this work is to develop a simple 

model which takes into account both bulk viscoelasticity and rate dependent rupture of polymer 

chains across the interface. We will accomplish this by considering steady state crack propagation 

in a simple viscoelastic DCB geometry which was used by [15]. The crack will be reinforced by 

an adhesive zone with polymer chains which undergo rate dependent breakage following the 

kinetics previously presented in the literature [1, 2, 3].  

The structure of the paper is as follows. The mathematical formulation of our model is 

presented in Section 2.2.  The numerical methods used to solve the equations are described in 
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Section 2.3. Numerical results are presented and discussed in Section 2.4.  Conclusions are given 

in Section 2.5.   

 

2.2. Formulation 

The problem studied in this work is the rate dependent fracture of a viscoelastic material, 

represented by a DCB as shown in Figure 3.4a).  Here the applied moments M∞ cause a crack to 

propagate in a steady state at speed V, and separates the DCB into two identical beams. The 

rightmost point in the fully bonded portion (no separation) of the DCB is referred to as the adhesive 

zone tip.  An adhesive zone is introduced to the right of the adhesive zone tip, within this zone 

stresses from both van der Waals (vdW) attractions and the stretch of polymer chains resist the 

separation of the two beams (see Figure 3.4a)).  As one moves away from the adhesive zone tip 

(to the right) eventually stretched chains will rupture, which will reduce the density of chains 

bridging the crack tip and cause the adhesive stress to decrease. A suitable criterion will be 

specified later to define the crack tip as the leftmost point where these stresses vanish.  The region 

between the adhesive zone tip and the crack tip is the adhesive zone.  X-Y is a fixed coordinate 

system and x-y is a coordinate system which is attached to the adhesive zone tip and translates at 

constant speed V with the crack.  The crack opening  depends on position x.  Because the two 

beams are assumed to be identical, the system is symmetrical about line o1-o2 which is the crack 

interface. Our goal is to calculate the energy required to propagate the crack at a given speed V. 

This energy consists of work required to overcome attractions in the adhesive zone, and energy 

dissipated by viscoelastic processes in the bulk material.  
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Figure 2.1: a) Schematic of the viscoelastic DCB studied in this work.  The representative polymer 

chains shown in this figure are not meant to indicate the chains are disabled at some positions and 

enables at others. The density of chains is smaller for larger x. The crack-tip is the point where 

the bond density first becomes zero. b) free body diagram of a section of the upper beam within 

the adhesive zone.   

 

2.2.1. Viscoelastic Beam 

 

 Consider the free-body diagram of a section of the upper beam shown in Figure 3.4b). The 

beam is shown in a deflected state and is acted upon by a distributed adhesive stress f.  f consists 

of contributions from polymer chains which bridge the crack interface and vdW attractions. An 

imaginary cut is made in the beam at x to reveal the two internal loads acting on the beam: a shear 
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force S, and a bending moment M. At point O there is a reaction shear force So. Xu et al. [15] 

formulated a differential equation for the deflection of a viscoelastic DCB:  

3

3

2

2

22 dx

dIVE

dx

dIE
VSM oo

o


   , (2.1) 

where I is the moment of inertia of the beams’ cross section.  The derivatives in the equation are 

with respect to x instead of time t because under steady state condition, the transformation 

dxVddtd //   can be introduced using the translating coordinate system x-y fixed to the adhesive 

zone tip.  Eq. (2.1) is based on a standard linear viscoelastic solid model, which for a uniaxial 

stress state reduces to the following stress-strain relation  
ooo EE   , where oE  is 

the instantaneous or unrelaxed modulus, E  is the infinite time or relaxed modulus, o  is the bulk 

relaxation time,  is stress,  is strain and the overhead dot (   , ) indicates differentiation with 

respect to time [15].   

 

2.2.2. Rate Dependent Chain Rupture 

 

The two beams are bridged by polymer chains. Kinetic equations can be written to model 

the rupture of bonds on the polymer chains; rupture of any one bond on a chain’s backbone 

prevents it from bridging the crack. When a tensile force (F) is applied to a chemical bond it 

decreases the activation energy of bond dissociation [2], and hence increases the probability of 

bond rupture. The number of chains bridging the two surfaces can be obtained from the solution 

of an equation governing the kinetics of bond rupture [2] 

TkF

b
b Be

n

dx

d
V

/









, (2.2) 

  ob  0  (2.3) 

In Eq. (2.2), b is the number of chains that cross a unit area of the interface, n is the number of 

bonds per polymer chain, is the bond activation length, F is the tensile force acting on each chain, 

kB is the Boltzman constant, T is the absolute temperature and - is the characteristic time of bond 

dissociation which depends on the activation energy for bond dissociation [2]. In particular, 
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Tkeh B

TkE

P
Ba /

/
 , where hp is Plank’s constant; larger vibration energy of molecules at higher 

temperature allows more rapid passage over the activation energy (Ea) barrier and leads to faster 

dissociation. The right hand side of Eq. (2.2) is the rate of chain dissociation. Theoretically, there 

can also be a term responsible for chain association, but it is typically assumed to be considerably 

smaller than the chain dissociation rate and has been neglected [2]. Eq. (2.2) is accompanied by a 

boundary condition Eq. (2.3) which states that at x = 0, where the crack opening is zero and the 

chains are not stretched, no chains are broken. o is the chain density for perfectly bonded interface.  

The original kinetic equation [2] is expressed in term of time derivative of b, which has been 

converted to a derivative with respect to position by using a steady-state assumption and a 

coordinate transformation ( dxVddtd //  ) from the fixed X-Y system to the translating x-y 

system with velocity V (see Figure 3.4a)).  The tensile force acting on each chain, F, can be related 

to the extension of the polymer chains bridging the crack interface.  Although the force-extension 

relationship is usually not linear [3], we will adopt an assumption from the literature where the 

chains are assumed to be linear springs [1, 2]), i.e., skF  , where ks is the average spring stiffness 

defined from 2/2

0
cs

L

s LkdkU
c

   . Here U is the work required to stretch the chain from its 

unstressed configuration to its contour length Lc. Defining the average spring stiffness in this way 

ensures that the work U to stretch the linear chain is equal to that for its nonlinear counterpart.  

 The distributed load acting on the beams,  

ce
W

Ff
c

vdW
b





/
 , (2.4) 

is made up of two components: the adhesive stress from polymer chains Fb ( the force acting on 

each chain, F, times the density of chains b), and the attractive vdW stress cvdW
ceW 

/
/

 

where c  is a characteristic decay length and vdWW  is the work of adhesion due to vdW 

attractions. The inclusion of the vdW component of the adhesive stress was shown to be necessary 

in order to have a well-defined adhesive zone tip [1]. This exponential function for vdW attractions 

is an approximation which has been chosen for mathematical convenience.  It is well-known that 

dispersion forces decay much slower than the exponential function [1]. However, provided that 

the vdW region is much smaller than the chain bridging region, it is expected, and demonstrated 
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later in this work, that fracture problems are insensitive to the form of the vdW interaction potential 

as long as it produces the same work of adhesion [1].   

 

2.2.3. Non-dimensionalized Boundary Value Problem 

 The viscoelastic beam model introduced in section 2.2.1 and the rate-dependent interface 

model described in section 2.2.2 are combined to study the steady-state crack propagation in the 

DCB.  The interface and beam models are coupled through the stretch of interfacial polymer chains 

and the resulting forces acting on the beams.  Balance of the distributed load f on the interface with 

the internal shear forces S and moment M, shown in Figure 3.4b) [23]¸ leads to a system of ordinary 

differential equations (ODEs) and boundary conditions (BCs). Through the formulation 16 

parameters have been identified which define the rate of crack propagation, geometry and 

properties of the bulk and interfacial models: V, n, -, , kB, T, o, o, Eo, E∞, I, Lc, U, WvdW, c, and 

D. All of these parameters have been introduced in previous sections except the last one which is 

the out-of-plane depth of the beam. To reduce the number of parameters and simplify the ensuing 

discussion we introduce the following non-dimensional parameters.   
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(2.5) 

The physical meanings of the variables from Eq. (2.5) are summarized in Table 2.1.   

After nondimensionalization using Eq. (2.5), the bond dissociation equation, Eq. (2.2)-(2.3), 

becomes 
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LF

b
b e

Vdx

d  *
*
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*




,  (2.6) 

1)0(* b , (2.7) 

and the polymer chain force-stretch relationship, becomes 
*** 2 UF  . Similarly, introduction of 

the parameters in Eq. (2.5) into the beam equation gives 

3*

*3
*

2*

*2
***

dx

d
V

dx

d
SVM E


  .  (2.8) 

The balance of the shear force with the distributed load leads to 

** /

*

*
***

*

*

ce
W

Ff
dx

dS

c

vdW
b






 , (2.9) 

and the bending moment is related to the shear force by 

*

*

*

S
dx

dM
 . (2.10) 

Eq. (2.8)-(2.10) contain two first order ODEs and one third order ODE, and should be 

accompanied by five BCs. Firstly, on the left of the adhesive zone at x = 0, the crack opening is 

identically zero therefore the slope and deflection at the adhesive zone tip will be zero or  

  00*  ,   00
*

*


dx

d
. (2.11) 

Secondly, the steady-state assumption implies that the beams experience a sudden loading at the 

adhesive zone tip.  As a result the material at the adhesive zone tip can be treated as elastic with 

the unrelaxed or instantaneous modulus. Using the j-integral [25, 26, 27, 28] both the moment and 

curvature at the adhesive zone tip are found to be zero,  

  00* M ,   00
2*

*2


dx

d 
. (2.12) 

In Appendix 1.1 we present an alternative approach where the vdW attractions are not explicitly 

included in f* but are accounted for at the adhesive zone tip by using nonzero curvature and 

moment conditions obtained from the j-integral.  This approach represents the limit as the vdW 

decay length c approaches zero.  Physically it is less realistic but results in a simpler model.  It is 



12 

also explained in Appendix 1.1 that if all sources of adhesive attraction are considered explicitly 

in the adhesive stress f* then the moment and curvature at the adhesive zone tip must be zero.  

 

Table 2.1: Description of Non-dimensional Parameters 

Category Parameter Description of Non-dimensional Parameter 

Position-

Dependent 

Variables  

*x  position  

*

b  
bond density 

*  
crack opening  

*F  force on a single polymer chain 

*f  distributed load on the interface 

*S  
shear force 

*M  bending moment 

Governing 

Parameters 

*V  crack propagation speed 

*U  energy of a polymer chain when stretched to its full contour 

length 

E  ratio of relaxed to unrelaxed Young’s modulus in the standard 

linear solid viscoelastic model 

  
ratio of relaxation times of bulk and chain dissociation 

L  ratio of activation length to contour length 

*

c  vdW decay length 

*

vdWW  vdW work of adhesion 

Fracture 

Energies 

(Desired 

Output) 

G* fracture energy 

*

adG  adhesive fracture energy; describing interfacial dissipation 

*

visG  viscous fracture energy; describing bulk dissipation 
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BCs far from the adhesive zone tip require more discussion. It is expected that, as the crack 

opening increases from the adhesive zone tip, the chains will undergo greater stretch and hence 

faster dissociation as indicated by Eq. (2.6); eventually the low bond density will cause f* on the 

interface to be negligible. On the other hand, the decrease in force is continuous and f* will 

approach but never actually reach zero.  To resolve the dilemma of not having a clearly defined 

crack tip, we introduce the adhesive zone length L*. Ideally this length would be defined so that 

f*(x* = L*) reduces below some tolerance; however, f* can have a local minimum (data not shown), 

as the decay of the vdW portion can be stronger than the increase of the chain portion (stretching) 

for small openings.  This local minimum makes such a criteria undesirable; therefore the following 

criteria was implemented 

*** )( bb L   and *

,

** )( vdWcrL   . (2.13) 

Here the first condition ensures that at L* the bond density and hence the adhesive stress from 

polymer chains has decreased below a desired tolerance.  The second condition ensures that at L* 

the crack has opened sufficiently far such that the work done by the vdW attractions is sufficiently 

close to the vdW work of adhesion.  The critical vdW opening, *

,vdWcr , is a constant which depends 

on 
*

c .  If, for example, we require the work done by vdW attractions to be least 99% of 
*

vdWW  then 

**

, 605.4 cvdWcr   .  In Appendix 1.2 we explore a number of different criteria for determining 

L* and found that the value of L* can change considerably depending on what criteria is used. 

However, the fracture energies were found to be insensitive to the criteria.  In light of the definition 

of L* above, the traction outside of the adhesive zone is negligible.  Therefore, from Eq. (2.9) the 

shear force must be constant and since only a moment, M∞
*, is applied at the far field, the constant 

must be zero, i.e.  

0)( ** LS . (2.14) 

Similarly, from Eq. (2.10), outside of the adhesive zone the moment must be constant and equal 

to the far field value, M∞
*; therefore the necessary moment for crack propagation at a given speed 

V* can be evaluated from  *** LMM  .  
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2.2.4. Fracture Energies 

Eq. (2.6) - (2.14) constitute a boundary value problem that can be solved to compute the 

crack opening profile and adhesive zone length; however, a few additional steps are required to 

extract the energy release rate.  The apparent energy release rate for crack growth, G*, can be 

obtained from the work done by the applied moment to advance a unit area of the crack, after 

subtracting a strain energy correction due to the translating coordinate system (see Appendix 1.3) 

2*

*2*
**

2
)(

dx

dM
xG

 . (2.15) 

Eq. (2.15) is valid outside of the adhesive zone (x* > L*) where S* = 0 and 
**

 MM , however G* 

still depends on position because viscoelastic dissipation still occurs in the bulk material outside 

of the adhesive zone.  The simple loading condition outside of the adhesive zone allows for an 

explicit expression for d2*/dx*2 to be derived from Eq. (2.8)  

 









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







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*2
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*2

2*

*2 **

*

* dx

d
e

dx

d

dx

d

dx

d Lx
V

L

E 


.  (2.16) 

Here d2*/dx*2(L*) is known from the solution within the adhesive zone. At infinity the beams are 

fully relaxed; therefore, d2*/dx*2(∞) can be evaluated by assuming the beam were elastic with the 

infinite time modulus  

E

M

dx

d



 *

2*

*2





 . (2.17) 

Together with (2.16) and (2.17), the energy release rate can be evaluated from (2.15) at any given 

position x* outside the adhesive zone.  

The energy release rate as calculated above can also be expressed as 

***

visad GGG   (2.18) 

where Gad
* is the work per unit area done by tractions within the adhesive zone, and Gvis

* is the 

viscous dissipation in the beam per unit area of crack advancement.  Gad
* can be calculated using 

the definition of work for a non-constant force 
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 
*

0

***

0

***

**

vdW

L

bad WdFdfG  
 

 , (2.19) 

where we have separated the contributions to Gad
* into components from polymer chains and vdW 

attractions.  Since the traction is negligible outside of the adhesive zone the integration does not 

need to extend to  greater than the crack opening displacement (COD),  ** L .  The viscous 

dissipation Gvis
* is obtained from Eq. (2.18) with G* evaluated from Eq. (2.15) and Gad

* evaluated 

from Eq. (2.19). Note that the energy of both beams’ has been taken into account in the above 

equations.   

 

2.3. Numerical Methods 

To solve Eq. (2.6) and (2.8)-(2.10) a shooting method is used.  First the value of )0(*S  is 

guessed, which converts the boundary value problem into an initial value problem with initial 

conditions Eq. (2.7), (2.11) and (2.12). A solution for {b
*(x*), S*(x*), M*(x*), *(x*), ** / dxd  and 

2**2 / dxd  } is found by integrating Eq. (2.6) and (2.8)-(2.10) using a 4th order Runge-Kutta 

method with adaptive step size control [24].  f*(x*) is calculated from Eq. (2.9) and the adhesive 

zone length L* is determined from Eq. (2.13). After L* is determined, the shear force at L* is 

checked to satisfy Eq. (2.14).  If it is not satisfied within some small tolerance, a new guess for 

)0(*S is made and the procedure repeats until Eq. (2.14) is satisfied.   

The adhesive zone length can be sensitive to the criteria used in its definition (Eq. (2.13)), 

which was confirmed in Appendix 1.2 using results obtained from several different criteria. 

However Gad
* was found to be the same for all criteria.  This insensitivity allows us to present 

below the results obtained from a single criterion.  The nontrivial results and discussion on L* are 

given only in Appendix 1.4 so as not to distract from the main objectives of this work.   

In addition, because bulk viscous dissipation within the beam can continue beyond the 

adhesive zone, the two energy release rates Gvis
* and G* depend on the position x* where they are 

evaluated and Gvis
* can greatly exceed the adhesive fracture energy if the beam length approaches 

infinity. Practically, it is more realistic to consider DCBs of finite length for evaluating these 

energies. We used several fixed beam lengths to compute the fracture energies, all of which are 
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larger than the adhesive zone length. In section 2.4 below we present representative results with a 

fixed beam length at x* = 1 which is of the same order of magnitude as the largest adhesive zone 

length obtained with different combination of parameters used in this work.  Other cases, including 

x* = ∞¸ have been presented in Appendix 1.5.   

 

2.4. Results and Discussion 

 Even in the normalized form there are still seven parameters which govern the rate 

dependent fracture: V*, E, L, U*, 
*

vdWW  and c
*. Among these, V* and  can be identified as the 

most essential parameters since V* is the normalized crack propagation speed while  captures the 

ratio of the relaxation times of the two sources of dissipation (bulk vs. interfacial). Therefore we 

vary V* and over many orders of magnitude (10-10 to 1010 for V* and 10-5 to 103 for ), based on 

reported values of physical parameters [1, 2, 3].  The remaining parameters are fixed at physically 

reasonable values. For E, we will consider both an elastic case E = 1, and a representative 

viscoelastic case where E = 0.01 [15].  The activation length  has been reported as 0.1 nm [29] 

for some biopolymers, and for n = 150 the contour length Lc has been reported to be 45 nm [2, 3], 

thus a representative value of L = 0.02222 will be used. A representative value of U* = 2850 was 

found by numerically integrating experimental data from the work of Ghatak et al. [3] to find U, 

and assuming standard ambient temperature and pressure (SATP) so that T = 298 K.  Choosing a 

work of adhesion from dispersion forces of about WvdW = 50 mJ/m2 from Tang et al. [30], and a 

bond density o = 2.5x1018 from Ghatak et al. [3]  gives, at SATP, WvdW
* = 5.  The vdW decay 

length is obtained from 
*

vdWW  and by assuming a vdW stress of about 2MPa so that c
* = 0.02.  A 

sensitivity study for several values of c
* is presented in Appendix 1.6.   

With the above parameters, below we first study the rate-dependent fracture of an elastic DCB 

where bulk dissipation is absent (Section 2.4.1). This section is intended to elucidate the rate-

dependent interfacial behavior before introducing the complexity of bulk viscoelastic behavior.  In 

Section 2.4.2 we introduce bulk viscoelasticity in order to see the combined bulk and interfacial 

dissipation.   
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2.4.1. Elastic DCB 

 

Consider the case of an elastic DCB, which can be obtained by setting E = 1.  This 

simplification removes viscous dissipation from the bulk. Therefore rate dependency will only 

come from interfacial bond dissociation.  Studying this case will allow us to directly address the 

interfacial rate dependence so that later when we introduce bulk viscoelasticity it will be easier to 

identify the contributions from each rate-dependent process. Returning to Eq. (2.6) it is clear that 

the two parameters V* and  can be grouped into a single parameter 
/

*V . Also for the elastic 

DCB Eq. (2.8) can be replaced with 
2**2* / dxdM  ; hence V* and  do not appear individually 

in the formulation.  Therefore, we will obtain results by varying 
/

*V  over a large range of values.   

First consider Figure. 2.2a) where the COD, *(L*), is shown on the y-axis and 
/

*V  is 

shown on the x-axis.  At low 
/

*V  the crack opening is constant and there is no rate dependence.  

At high speed the COD appears to grow logarithmically.  To understand these results, we note that 

when 
/

*V  is small the dissociation reaction, governed by Eq. (2.6), proceeds rapidly.  Since the 

bonds dissociate so quickly the chains bridging the interface are not significantly stretched before 

the chain density becomes negligible. Hence, for small 
/

*V  the adhesive stress primarily comes 

from vdW attractions, represented by the last term in Eq. (2.9), which only depends on the crack 

opening and not on the rate of fracture. This is why there is no rate dependence at low speed as 

observed in Figure. 2.2a), and the constant COD value at small 
/

*V  corresponds to the critical 

vdW opening 092.0605.4 *
,

*  cvdWcr   for the parameters used here.  At a critical 
/

*V (≈ 

0.03 in Figure. 2.2a)), the COD starts to exhibit rate dependent behavior.  This transition occurs 

because the dissociation reaction in Eq. (2.6) slows down when /
*V  increases so that when the 

COD reaches the critical vdW opening there is still a considerable number of chains bridging the 

interface. As a result, the location of the crack tip is now determined by the kinetics of bond rupture 

for the polymer chains.  Further increases in /
*V  result in even greater chain stretch, and 

therefore crack opening, before dissociation.  This phenomenon causes the rate dependency seen 

in Figure. 2.2a). It should be noted that until now we have only discussed how 
/

*V  in Eq. (2.6) 
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affects bond dissociation; however it is important to understand that bond dissociation is coupled 

to the beams deflection through the exponential term in Eq. (2.6).  While an increase in 
/

*V  

slows down bond dissociation and allows for increased chain stretch, this stretch increases the 

tensile force on each chain and each bond therein, leading to an increase in the rate of bond 

dissociation.  This feedback limits the increase of the COD to be logarithmic, as seen in Figure. 

2.2a).   

Having noted that COD increases with 
/

*V  and greater COD implies that the chains 

have more stored energy, it is now of interest to consider the energy required to propagate a crack.  

For an elastic beam there is no bulk viscous dissipation so the only energy component is Gad
* 

which is shown in Figure. 2.2b) as a function of 
/

*V ; the embedded figure contains the same 

Gad
* only plotted against the COD data from Figure. 2.2a). As established during the discussion of 

Figure. 2.2a), for slow crack propagation the fracture is governed by the vdW attractions.  The 

crack tip is located where the COD reaches the critical vdW opening, and within the adhesive zone 

the adhesive stress due to chain stretching is negligibly small. Hence, Gad
* is equal to 

*

vdWW  at low 

speed, as shown in Figure. 2.2b).  As 
/

*V  is increased the rate of bond dissociation decreases 

and allows the chains, on average, to reach a greater stretch and store more energy before 

dissociating.  Since all of the energy stored in the chains is lost when the bonds dissociate, the 

larger 
/

*V  causes Gad
* to increase; physically this means that a greater moment M∞

* will be 

needed to propagate the crack. Although the energy dissipated by chains continuously increases as 

/
*V  is increased, Gad

* remains approximately constant at 
*

vdWW  for 
/

*V  < 0.02, which indicates 

that this energy needed to dissociate chain bonds remains negligible for a large range of slow crack 

propagation speeds.   
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Figure. 2.2: Plots for a) crack opening displacement, *(L*), and b) adhesive fracture energy, Gad
*, 

obtained by varying V*/ while holding the other governing parameters fixed at U* = 2850, E = 

1, L=0.0022222, c
* =0.02 and *

vdWW  = 5.  The embedded figure in b) plots Gad
* against the *(L*) 

result from a) and the dotted line represents the analytical result based on a “reverse-step” 

distribution for the bond density.   
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It is of interest to study in detail how 
/

*V  impacts the bond density and adhesive stress 

within the adhesive zone, which is shown in Figure 2.3.  In Figure 2.3a), the bond density is shown 

in the y-axis and position relative to the adhesive zone tip is shown on the x-axis.  Four curves are 

shown each for a different value of 
/

*V .  In all cases, the bond density starts at 1 and decreases 

with position.  For the lowest 
/

*V  value (0.01), the bond density decays exponentially.  As 

/
*V  is increased the distribution increasingly resembles a reverse step where all of the bonds 

remain unbroken until the edge of the adhesive zone where all bonds break at once.  To best 

understand this behavior it should be discussed in conjunction with Figure 2.3b) where the crack 

opening is plotted as a function of the position.  In all cases the crack opening starts at zero and 

increases with position.  Furthermore, at the same * */x L , the magnitude of * increases as /
*V  

is increased.  Consider the case of /
*V  = 0.01.  The crack opening in Figure 2.3b) is very small 

throughout the adhesive zone. As a result the exponential term in Eq. (2.6) is negligible, so the 

bond density is expected to decay exponentially which is confirmed in Figure 2.3a).  Extending 

this idea, for any 
/

*V , at the beginning of the adhesive zone the crack opening is small; thus 

initially the exponential term in Eq. (2.6) can be neglected.  In a semilog plot, such as Figure 2.3a), 

the initial slope of the bond density curves should be */V , and hence higher values of 
/

*V  

have an initial slope closer to zero.  Further from the adhesive zone tip where higher openings are 

reached, the chain stretch decreases the activation energy and accelerates the bond dissociation 

process.  This acceleration is more significant for larger 
/

*V . These two features, i.e., near zero 

initial slope and accelerated bond dissociation at higher openings, result in the bond density 

distribution approaching a reverse step distribution as 
/

*V  becomes large.  In the extreme case 

of /
*V , an exact reverse step distribution is expected, and the same distribution exists for 

the so-called “rate independent” fracture [1], which was elucidated by considering the limit as the 

absolute temperature goes to zero. A consequence of the bond density distribution within the 

adhesive zone resembling a reverse step is that the adhesive stress, f*, when plotted against the 

opening  ** x , will increasingly resemble a saw tooth as 
/

*V  becomes large.  The adhesive 

stress vs. crack opening for different 
/

*V  can be seen in Figure 2.3c).  At * = 0 the stress 
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contributed by the chains is zero and the stress from vdW attractions is maximum. As the opening 

increases the vdW attractions decay, and each polymer chain is stretched so that the force F* acting 

on it increases. The chain stress is ** Fb , while the chain force F* always increases with crack 

opening, the chain density *

b  always decreases.  This causes the adhesive stress to first increase 

with *  but eventually drop due to the rupture of polymer chain bonds.   

Based on the above observations, an interesting result for Gad
* can be obtained for the 

extreme case of /
*V . In this limit, the bond density distribution is a reverse step function. 

Because the polymer chains remain intact within the adhesive zone, the distance over which the 

vdW stress is non-negligible is expected to be considerably smaller than the size of the adhesive 

zone. Therefore, as shown in Appendix 1.7, using the reverse step distribution for *

b  and 

assuming 0* c give a linear saw tooth distribution for the adhesive stress: 
**** 2)(  Uf   up to 

* *( )L .  Gad
* can then be derived in a closed form:      *2****

vdWRSad WLUG    where  
RSadG*  is the 

adhesive fracture energy based on the reverse step bond density distribution.   
RSadG*  is plotted 

(dotted line) against the COD  ** L  in the embedded figure in Figure. 2.2b).  Clearly the results 

of *

adG  converge to  
RSadG*  when 

/
*V and hence  ** L  is large.  The COD  * *L  in Figure. 

2.2a) shows logarithmic dependence on 
/

*V  at high speed, which can be written as

    /ln *** VL  ,   and   being constants.  Introducing this results into  
RSadG*  gives the 

following expression  

     *2*** /ln vdWRSad WVUG   , (2.20) 

which is in agreement with the high speed dependency of G on V,   2ln~ VG , previously 

reported in the literature [2, 3, 1] for fracture in elastic medium with rate-dependent interfacial 

process. 

 



22 

 

Figure 2.3: Plots for a) bond density b
*, b) crack opening * and c) adhesive stress f*. In each 

figure each curve represents a different value of V*/.  Note that horizontal axis in b) and c) are 

x*/L*, where the adhesive zone length L* for different curves would be different.  Results were 

obtained while holding the following governing parameters fixed: U* = 2850, E = 1, 

L=0.0022222, 
*

vdWW  = 5 and c = 0.02.   
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2.4.2. Viscoelastic DCB 

 Now we consider results where bulk viscoelasticity is included by setting E = 0.01.  V* is 

varied over a wide range of values and this process is repeated for five different values of . As a 

complement to Figure. 2.2a) we first plot the COD against 
/

*V  in Figure 2.4.  According to the 

normalization, Eq. (2.5), 
/

*V  is independent of the bulk relaxation time . The result is 

remarkably similar in behavior to Figure. 2.2a), only this time there are different lines 

corresponding to different values of  the ratio of bulk relaxation time over the characteristic 

time for chain dissociation. With this choice of x-axes, the curves for different  nearly collapse 

which suggests that  primarily functions as a speed shift in Eq. (2.6).  Only minor differences 

can be observed for a limited range of 
/

*V .  This region has been enlarged in the embedded 

figure.  The interfacial kinetics is coupled to beam deformation through the adhesive tractions from 

the polymer chains, yet compared with the elastic beam, Figure. 2.2a), and over several orders of 

magnitude of  we observe only small differences.  These differences are due to relaxation of the 

beams’ effective modulus, and will be discussed later.  Distributions of bond density and adhesive 

stress for a representative viscoelastic beam are shown in Appendix 1.8.   

Although the influence of bulk viscoelasticity on COD appears to be minimal, when we 

consider the work needed to propagate the crack, G*, bulk viscoelasticity is much more important.  

For a viscoelastic beam, there is dissipation within the beam which can increase for longer beams 

as mentioned previously.  Here we have chosen to evaluate G* at x* = 1, which corresponds to a 

DCB with a fixed length that is larger than, but on the same order of magnitude as, the adhesive 

zone length L*.  In Figure 2.5a) the results for G*(1) are plotted against 
/

*V .  In the embedded 

figure the same G*(1) data is plotted against V*.  As in Figure 2.4 each curve represents a different 

value of .  The main graph bears some resemblance to Figure. 2.2b) but now the behavior is non-

monotonic with each curve peaking at a different value of 
/

*V .  As Figure 2.5a) is not trivial to 

understand, we decompose G* according to Eq. (2.18) and discuss the two components: Gad
*, 

shown in Figure 2.5b), and Gvis
*, shown in Figure 2.5c).   

Starting with Figure 2.5b), where Gad
* is plotted on the y-axis and 

/
*V  is shown on the x-

axis. In the embedded figure the same Gad
* data is plotted against V*.  Unlike G*, outside of the 

adhesive zone there will be no further contributions to Gad
* so the result of Gad

* is independent of 
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the chosen beam length.  First by comparing Figure 2.5a) and Figure 2.5b) the contribution from 

Gad
* is significant. In addition, very much like the COD, not only does the behavior of Gad

* closely 

resemble what was seen for the elastic case (Figure. 2.2b)), but all the curves corresponding to 

different  nearly collapse onto a master curve with only slight differences observed for a limited 

range of /
*V . This implies that changing  primarily acts like an effective speed shift in the 

bond dissociation equation, Eq. (2.6).  does not appear in the beam equation, Eq. (2.8), and the 

fact that the speed is not shifted by  in the beam equation suggests that bulk viscoelasticity seems 

to have only a second-order impact on bond dissociation and the adhesive portion of the fracture 

energy.  We will return to these second order effects, seen in Figure 2.4 and Figure 2.5b), after we 

examine the viscous portion of G*.   

 

 

Figure 2.4: Crack opening displacement, *(L*), plotted against V*/.  This plot was obtained by 

varying V* while keeping  fixed at the five values shown in the legend. The other governing 

parameters were held fixed at U* = 2850, E = 1, L=0.0022222, and 
*

vdWW  = 5.  The embedded 

figure is zoomed in on the region around V*/ = 1 to better show details.  
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Figure 2.5: Plots for a) total fracture energy G*(1), b) adhesive fracture energy Gad
* and c) viscous 

dissipation Gvis
*(1), plotted against V*/.  These plots were obtained by varying V* while keeping 

 fixed at the five values shown in the legend. The other governing parameters were held fixed at 

U* = 2850, E = 1, L=0.0022222, and 
*

vdWW  = 5.  Embedded figures shows the same data plotted 

against normalized crack propagation speed V*.   
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 Consider the portion of G* from bulk viscous dissipation shown in Figure 2.5c). Here 

Gvis
*(1) is shown on the y-axis, 

/
*V  is shown on the x-axis and each curve represents a different 

value of . Gvis
* comes from the beam viscoelasticity, which is governed by Eq. (2.8) where  

does not appear. Hence  does not directly impact the results of Gvis
*, and the normalized crack 

speed V* would be a more suitable choice for the x-axis as shown in the inset of Figure 2.5c).  The 

behavior of Gvis
*(1) is as follows. It approaches zero for both small and large V*.  Between these 

two limits there is a maximum, with the lowest values of  achieving the highest peak.  These 

peaks are higher since V*/ is larger and so is the associated crack opening (Figure 2.4) which 

results is greater deformation and hence dissipation.  Comparing Figure 2.5c) and Figure 2.5a), it 

is clear that the peaks in Figure 2.5a) are caused by viscous dissipation.  

To understand the viscous dissipation we make an analogy to an elastic beam and define a 

local effective modulus E* so that   2**2**** /)( dxdxExM  .  Like G* and Gvis
* the effective 

modulus varies with position so to compare with G* (1) we have plotted E*(1) on the y-axis and V* 

on the x-axis in Figure 2.6a).  The behavior is simple: at low V*, E*(1) = E, and as V* is increased 

there is a transition to another plateau at high V* where E*(1) = 1.  Physically this transition means 

that when the crack propagates slowly there is sufficient time for the beam to fully relax and the 

modulus decays to the infinite time value.  When the crack propagates rapidly, within the fixed 

length under consideration, the beam has not yet had sufficient time to relax at all so the effective 

modulus is still the zero time modulus.  Between these two extremes there is a viscoelastic 

transition.  Comparing Figure 2.6a) and Figure 2.5c) it is clear that this transition occurs over the 

same speed range as the nonzero Gvis
*.  To explain the behavior observed in Figure 2.5c), consider 

that as the beams deflect to open the crack they acquire strain energy from the work done by 

applied moments.  However as the effective modulus of the beams relaxes, the strain energy stored 

in the beams is reduced even with a fixed deflection.  This difference in strain energy is lost as 

viscous dissipation.  At low speed negligible energy is lost because the beams relax to the infinite 

time modulus before there is any deflection or stored strain energy.  Conversely at high crack 

propagation speed the beams deflect and have stored strain energy, however here the beams have 

not yet relaxed so viscous dissipation is again negligible.  A consequence of this is that at high 

speed within the adhesive zone the beam is essentially elastic.  Therefore, at very large 
/

*V , Gad
* 



27 

and G*(1) approach  
RSadG*

 which was discussed earlier for the elastic beam and shown in the 

inset of Figure. 2.2b).   

Interestingly, for = 10 two peaks in Gvis
*(1) can be seen in Figure 2.5c).  The first peak 

can be attributed to the transition of E* as discussed above. The second peak appears as V* exceeds 

the critical value where the COD begins to increase above vdWcr ,
*  (Figure 2.4).  The increased 

COD and beam deformation causes higher dissipation before eventually the unrelaxed limit shown 

in Figure 2.6 is reached.  This second increase in dissipation also results in the asymmetry visible 

for  = 0.1 and 0.001 in Figure 2.6c).   

 One interesting observation made from Figure 2.6 is that there is little difference between 

the E*(1) curves for different values of .  Pending a thorough explanation for this, we will use 

the E* data in Figure 2.6 to discuss the slight deviations between the curves for different  seen in 

Figure 2.4 and Figure 2.5b).  In Eq. (2.6) changing  is equivalent to a speed shift, however  

does not appear in the beam equation (Eq. (2.8)).  If we consider the actual speed V* rather than 

the shifted speed /
*V , as in the embedded figure in Figure 2.5b), at the same /

*V we observe 

that curves for smaller  would be translated to lower speed. Since at lower V* the effective 

modulus of the beam is smaller which lowers its flexural rigidity, the beam provides less resistance 

to crack opening. As a result, at the same 
/

*V , for smaller  and hence smaller V* the effective 

modulus is lower and therefore, the crack opening is slightly larger, as seen in Figure 2.4. Since 

the chains have been stretched slightly more Gad
* is also slightly larger as seen in the embedded 

figure of Figure 2.5b).  In Appendix 1.9 we discuss the relaxation of E* outside of the adhesive 

zone and the length of the dissipative zone relative to the adhesive zone.  
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Figure 2.6: Effective Young’s modulus, E*(1), plotted against V*.  These plots were obtained by 

varying V* while keeping  fixed at the five values shown in the legend. The other governing 

parameters were held fixed at U* = 2850, E = 1, L=0.0022222, and 
*

vdWW  = 5.   

 

So far we have qualitatively explained the results of our model and have taken several 

steps, either through literature comparison (see Appendix 1.10) or by examining limits, to verify 

that a correct numerical solution to the governing equations has been obtained.  Qualitatively our 

results match several other works in the literature.  For example for a viscoelastic beam of fixed 

length it has been reported that Gvis is zero at high and low speed and has a critical speed where it 

is maximum [15], much like what was observed in Figure 2.6b). It has been experimentally 

observed that G increases with crack propagation speed [8], and Gad displays this same character 

(Figure 2.5b)). However, introducing coupled bulk and interfacial rate-dependence allows the 

model to explain or predict behavior not previously possible. For example, Figure 12 of [3] 

reported the rate dependency of fracture energy of silicone elastomers against an acrylic pressure-

sensitive adhesive from rolling contact experiments. The fracture energy was shown to be 

significantly enhanced by introducing small amounts of H-bonding groups to increase the 
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interfacial relaxation time without substantially increasing the surface energy. In addition, the 

fracture energy changed from nearly rate-independent to strongly rate-dependent upon the addition 

of H-bonding groups on the interface. In terms of our model the addition of H-bonding groups 

would be described by an increase in -, which in turn leads to a decrease in .  Consulting the 

inset of Fig. 5c) where the bulk viscous dissipation is plotted against the crack speed, as  

decreases from 10 to 0.001, the peak Gvis
*(1) value increases from approximately 60 to 8000; on a 

linear scale the former would appear rather rate insensitive in comparison to the latter case.  This 

observation is qualitatively similar to the experimental observation of [3]. Because our model has 

two characteristic time scales (one for bulk relaxation, and another for bond dissociation), an 

effective speed shift in Gad can be created by varying the ratio of these two relaxation times.  

Furthermore, the coupling of bulk and interfacial rate dependence resulted in complex non-

monotonic behaviors of G for finite sized beams (Figure 2.5a)).  This behavior has the potential to 

offer much more flexibility in designing adhesive of a desired strength.  

 Often in viscoelastic fracture experiments the fracture energy G is expressed in the 

following form [3, 8, 11, 13, 15, 22] 

 )(1 VfWG o  , (2.21) 

where oW  is the thermodynamic work of adhesion for separating the two surfaces under 

equilibrium conditions [3] (also referred to as the intrinsic strength [13], and )(Vf  represents the 

increase in fracture energy for finite rates of crack propagation.  The function )(Vf  has been 

described as the energy dissipated in the material at the propagating crack tip [13], the 

enhancement in strength when the adhesive is imperfectly elastic [11], or the energy expended in 

irreversible processes [8]. However it is not fully understood which physical processes this 

function represents [8]. It has been shown that the function depends not only on the 

micromechanical properties of the interface and viscoelastic properties of the bulk material but 

also on the specimen dimensions [15].  In addition it has been proposed that the micromechanical 

properties of the interface must also be rate dependent [22], as is the case in the model presented 

in this work where interface kinetics are considered. To connect the results of our model to Eq. 

(2.21), we note that in our model as V approaches zero 
vdWo WW  . It then follows that 

  vdWvdW WWGVf /)(   which can be obtained by vertically shifting and scaling Figure 2.5a).  



30 

The fact that 
vdWo WW   as V  0 implies that to separate the two beams under equilibrium 

condition, one only needs to overcome the vdW attractions, while no energy is needed to break the 

polymer chains.  

To explain this seemingly unrealistic result consider Eq. (2.6) where it can be seen that even 

if the force F* on each chain is zero, the bond dissociation rate will be non-zero (i.e., the chain will 

break) unless the speed is very high. This implies that given enough time all bonds in the material 

would dissociate under zero load, which may be unphysical. This deficiency is directly due to the 

interfacial model we adopted in Eq. (2.6) which has been used in the literature several times [1, 2 

3]. Rate equations have been written with the addition of a bond association term [2; 3], however 

this term was assumed to be negligible.  While it is true that bond association quickly becomes 

negligible as the crack opens, at low speed very small crack openings were observed and bond 

reforming can play an important role.  Taking this into account can increase the bond density and 

Gad
* at low speed.   

To address another limitation of the present work, recall that the normalized crack opening 

was defined as 
cL/*    where Lc is the contour length of the polymer chain.  Given this definition 

physically within the adhesive zone we should have 10 *  .  However, the COD was observed 

to be near 4.5 at high speed in Figure. 2.2a) and Figure 2.4. In other words, the model allows the 

crack to open too far at high speeds and this will over-predict Gad
* in these cases.  The source of 

this deficiency is likely the linearized force-extension relationship of the polymer chain as 

proposed in the literature [2, 3].  The notion of a nonlinear chain model has been explored [1, 3].  

Tensile experiments on polymer chains show a force extension curve which is very flat for most 

of the extension but increases rapidly before the chain is fully stretched and fails [3].  Taking into 

account this behavior should have two important effects on the model presented. First, the chain 

forces F* at extensions near * = 1 would be much higher and through Eq. (2.6) would cause the 

chains to break before * =1.  Secondly, at low extensions the force acting on the chain would be 

much less, which combined with bond reforming would prevent the chain density from going to 

zero at small crack openings when the crack propagation speed is small.   

Finally, it was observed that changing  over several orders of magnitude only created small 

changes in the effective modulus.  A possible reason is the bulk viscoelastic beam model we have 
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adopted.  For a viscoelastic beam there is only one stress component and it is in the axial direction 

which is perpendicular to the direction of the extension of polymer chains.  That is, there is no 

viscoelastic relaxation of the material in the direction of chain extension.  Therefore, we expect 

that implementing higher dimensional continuum viscoelastic models could lead to stronger 

coupling between the bulk and interfacial rate processes and is a subject of future research. 

2.5. Conclusion 

In this work, the rate dependent fracture of a viscoelastic double cantilever beam (DCB) is 

studied.  Two sources of rate dependence were considered.  The beam itself was assumed to be a 

standard linear solid and an interfacial adhesion model describing the kinetics of breaking polymer 

chains was used.  Within the adhesive zone, van der Waals (vdW) attractions were also considered. 

Seven nondimensional parameters governing the fracture of the DCB were identified, among 

which the impact of the V* (normalized crack propagation speed) and  (ratio of bulk relaxation 

time to bond dissociation relaxation time) on the energy required to propagate the crack were 

discussed in detail. The apparent energy release rate G*is made up of two components: the energy 

needed to overcome adhesion (Gad
*), and viscous dissipation within the bulk material (Gvis

*). Gad
* 

increases with crack propagation speed, whereas Gvis
* is negligible for both small and large crack 

propagation speeds and has a maximum value at an intermediate V*. The net result from the two 

dissipation mechanisms is that G* varies non-monotonically with the crack propagation speed. A 

closed-form scaling relation between G* and V* was derived for very fast crack propagation. The 

relaxation time ratio  was shown to primarily function as a speed shift in affecting Gad
*.  
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2.6. Nomenclature 

Note Non-dimensional parameters are summarized in Table 2.1 

 Crack opening 

c  is a characteristic decay length 

D Depth of beam 

  is strain 

E Young’s Modulus 

oE   the instantaneous or unrelaxed modulus 

E  is the infinite time or relaxed modulus 

Ea activation energy  

f Distributed adhesive stress 

)(Vf  increase in fracture energy for finite rates of crack propagation 

F  is the tensile force acting on each chain 

G Fracture energy 

hp  is Plank’s constant 

I Area moment of inertia 

kB  is the Boltzmann constant 

ks  is the average spring stiffness 

 is the bond activation length 

Lc. contour length 

 Bending Moment 

n  is the number of bonds per polymer chain 

  stress 

S Shear force 

b  is the number of chains that cross a unit area of the interface 

o  is the chain density for perfectly bonded interface 

o   is the bulk relaxation time 

-  is the characteristic time of bond dissociation 

t time 

T  is the absolute temperature 

U  is the work required to stretch the chain from its unstressed 

configuration to its contour length 

V Crack propagation speed 

vdWW  is the work of adhesion due to vdW attractions 

oW   is the thermodynamic work of adhesion for separating the two 

surfaces under equilibrium conditions 

x, y Coordinates translating with crack tip 

X, Y Fixed Coordinates 
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Chapter 3. An Adhesive Zone Model for Polymeric 

Interfaces2 

Abstract  

In this work we develop an adhesive zone model for polymeric interfaces, which describes the 

kinetics of dissociation and association of polymer chains bridging the interface. Compared with 

previous works on interfacial bond rupture, our adhesive zone model includes two novel features: 

possibility of bond reforming and a highly nonlinear force-extension relationship for the polymer 

chain motivated by previous experimental measurements.  The absence of these two features was 

demonstrated in an earlier work to cause unphysical crack propagation under zero load as well as 

overextension of the chains beyond their full contour length. Using the rate dependent crack 

propagation in a double cantilever beam, which may be elastic or viscoelastic, as an example, the 

new adhesive zone model is shown to correct the unphysical results obtained earlier. Specifically, 

it leads to a significantly increased adhesive fracture energy, i.e., the energy per unit area required 

to rupture the chains on the interface, for slow crack propagation, owing to the ability to achieve a 

dynamic equilibrium of bond dissociation and association. Furthermore, the nonlinear chain model 

predicts a near-catastrophic decrease in chain density as the finite extensibility limit is approached. 

This results in an adhesive fracture energy which is orders of magnitude smaller than that predicted 

by the linear chain model for fast crack propagation. Although the adhesive zone model has only 

been applied to a double cantilever beam in this work, it is a generic model for polymeric interface, 

and can be implemented in finite element models to simulate fracture in bulk polymers in general. 

  

                                                            
2 A version of this chapter has been published. Reprinted with permission from Lavoie, S. R.; 

Long, R. Tang, T. “An adhesive zone model for polymeric interfaces” Int J Fract (2016) 197: 169. 

https://doi.org/10.1007/s10704-016-0073-2 Copyright 2016 Springer 

https://doi.org/10.1007/s10704-016-0073-2


34 

3.1. Introduction 

The fracture of polymeric materials typically exhibits rate-dependent characteristics [16], which, 

at the molecular level, involves reorientation of macromolecules as well as the stretching and 

scission of bonds or crosslinks on polymer chains [2]. These molecular processes can lead to 

significant rate-dependence of the macroscopic fracture behavior which is not yet fully understood 

[8].  For example, previous experiments suggest that the energy needed to fracture polymeric 

materials depends on the rate of mechanical loading and can be correlated to the speed of crack 

propagation [2, 3, 8, 10]: the fracture energy increases with crack propagation speed [1, 8].  

Experiments on rubber adhesives lead to the conclusion that the apparent fracture energy consists 

of the intrinsic fracture energy (thermodynamic work of adhesion for equilibrium separation of 

two surfaces)[ 11, 13] and additional energy dissipation which can be further divided into 

dissipation components in the bulk material [8, 15, 16] and in rupturing bonds which bridge the 

crack interface [1, 2, 3, 15].  

Bulk dissipation in viscoelastic materials has been considered in several theoretical works. The 

standard linear solid model has been applied to analyze the debonding of a double cantilever beam 

(DCB) [15] and fracture of an infinite viscoelastic solid [17]. Newer models can account for 

additional rate dependent microscopic mechanisms such as scission and reforming of polymer 

networks [20, 21].  The bulk dissipation is found to be proportional to the thermodynamic work of 

adhesion [3]. Although such an approach is useful in decoupling bulk and interfacial processes, it 

was proposed by Rahulkumar et al [22] that a rate dependent interfacial model was needed to 

match computational and experimental results for the peeling of polybutadiene elastomer sheets.   

Several approaches have been taken to develop a model which captures the interfacial rate 

dependence in viscoelastic fracture mechanics. For example, an adhesive zone model was 

implemented based upon a Newtonian fluid in which the crack opens when the normal traction on 

the interface exceeds a cut-off value [15, 17]. Chaudhury [2] proposed a different approach where 

a rate equation was written to describe the dissociation kinetics of bonds bridging an interface 

following the theoretical framework proposed by Bell [31]. This framework was originally 

developed for kinetic association and dissociation of ligands and receptors in cell adhesion and the 

concept of mechanochemistry (i.e., mechanical activation of covalent bonds) [32] was introduced 

to capture the effect of mechanical forces on the chemical kinetics. The interfacial rate equation 

proposed by Chaudhury [2] has been applied to cases with different crack opening profiles, 
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including a wedge-like linear profile [3], more realistic profiles based on linear elasticity [1], and 

crack profiles determined from elastic or viscoelastic beams [6]. It must be noted that the general 

form of the rate equation proposed by Chaudhury [2] also included a term for bond association 

between two polymer chain fragments, however this term was neglected to create a special case of 

the kinetic model; similarly in all previous adhesive zone models bond reforming has been 

neglected [1, 3, 6].  

At first glance, the neglect of bond reforming is reasonable, as the rate of reforming polymer 

fragments quickly diminishes as the stress on the interface increases. However, when the rate 

equation without bond reforming was applied to the fracture of a standard linear solid (viscoelastic) 

DCB [6], it was found that complete bond dissociation can occur, if given enough time, without a 

tensile force applied on the polymer chains. As a result, in the limit of very slow crack propagation, 

the polymer chains would rupture even under zero stress and hence the intrinsic failure energy of 

the material would only be due to van der Waals (vdW) attractions, in contradiction to previous 

observations [13]. We believe this unphysical result is exactly due to the lack of bond reforming 

in the rate equation, which becomes comparably important to bond dissociation at low crack 

propagation speed. Therefore, a step towards being able to more accurately describe the fracture 

of polymeric media requires an adhesive zone model which can predict dynamic association and 

dissociation of bonds for polymer chains under a tensile load.  The practical applications of such 

a model would extend beyond fracture mechanics, and bears the potential to be used for self-

healing materials [33]. As will be described in this paper, when two separate surfaces are placed 

in contact, the model could predict an increase in bond density towards an equilibrium value along 

the interface—effectively joining the materials.   

Another important issue to be addressed in this work is the force-extension relationship of the 

polymer chains bridging the interface. Such a relationship is necessary in order to couple the rate 

equation of the chains to the crack profile. In the past, for the sake of mathematical convenience, 

the force on a chain has been assumed to be linearly proportional to the chain extension. A direct 

consequence of the linear model is that for high crack propagation speeds the crack opening 

displacement predicted could significantly exceed the contour length of the chain bridging the 

fracture plane [6], which is unphysical. To overcome this deficiency, we propose that the chains 

can stiffen significantly near its full extension, which is described by a highly nonlinear force-

extension relationship.  
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This paper proceeds as follows. An adhesive zone model incorporating bond dissociation and 

nonlinear chain behavior is presented in section 3.2.  We demonstrate the application of this 

adhesive zone model for elastic and viscoelastic DCB geometry in section 3.3.  Conclusions are 

given in section 3.4.   

3.2. The Adhesive Zone Model 

3.2.1. Rate Equation 

Classical stress or energy based fracture criteria cannot explain why the fracture energy is rate 

dependent and this phenomenon has typically been attributed to bulk viscoelasticity [13, 11]. On 

the other hand, subsequent studies showed that chemical kinetic processes at the interface may 

also play a role [2, 3, 1].  Reaction rate theory has been used to model the breaking of bonds in 

cellular adhesion [31], and in dynamic rupture of individual polymer chains [29]. Our starting 

point will be the rate equation for bond rupture proposed by Chaudhury [2]  

 

 bo

TkE

b

TkFb BcB ee
n

dt

d









// 1




.   (3.1) 

where b and o - b are the number of polymer chains in the bonded and unbonded states per unit 

area of the interface, respectively. o is the total number of chains per unit area on the interface. 

  and   are the characteristic times of bond dissociation and association respectively.  F is the 

tensile force applied to a bond, Ec is the elastic spring energy required to stretch two relaxed 

(unstressed) polymer chain fragments on opposite sides of the interface so that they make contact, 

n is the average number of bonds per polymer chain,  is the activation length of the bond (0.1-

3nm for some biopolymers [2]), kB is the Boltzmann constant, and T is temperature in Kelvin.  The 

two terms on the right hand side are respectively the rates of dissociation and association. The rate 

of dissociation is multiplied by the Lake and Thomas [10] amplification factor, n, which appears 

because all bonds on the chain are stretched however only one bond needs to dissociate for the 

chain to be ruptured. The rate of dissociation of a single bond is proportional to 


/
/ TkF Be , i.e. it 

is accelerated when a tensile force acts on the bond.  - is given by [2] Tkeh B

TkE

P
Ba /

/
 where 

hP is the Planck’s constant, and Ea is the activation energy of bond dissociation.  By combining 

the above expressions it can be seen that the factor F effectively causes a decrease in the 
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activation energy for bond dissociation and hence an increase in the dissociation rate. It should be 

noted that kinetic model presented above is based on the transition state theory of Eyring [3]; 

however, it has been shown that the tensile force F can alter  [29].  There are more advanced 

models which consider dissociation as a diffusion process [3, 34, 35] and can overcome this 

shortcoming.  However, these models are more complex and involve many parameters whose 

values yet need to be obtained from experiments, so the authors will defer their use for future 

research.    

The rate of association term is proportional to 

 // TkE Bce . Because contact is required before 

association, Ec effectively increases the activation energy of association.  Under zero load and at 

zero surface separation, the number of intact chains crossing a unit area, 0b , can be obtained by 

considering equilibrium where dtd b / , F and Ec all vanish, which gives the following expression 

   /1/0 nob .  (3.2) 

0b  will be hereafter referred to as “the initial bond density”, i.e., bond density before any surface 

separation. It is an effective measure of the relative magnitude of bond association and dissociation 

rates: high initial bond density corresponds to relatively large bond association rate and/or small 

bond dissociation rate.   

Past works on rate dependent fracture using Eq. (3.1) have typically neglected the bond 

reforming term [1, 2, 3, 6]. This is based on the assumption that as mechanical stress is applied 

and the interface separates, the rate of association quickly becomes negligible in comparison to the 

rate of dissociation. However, the primary problem which stems from this simplifying assumption 

is that for the case of equilibrium, or infinitely slow, crack propagation the polymer chains provide 

no resistance.  In the rate dependent fracture of viscoelastic materials the fracture energy G is often 

expressed by the following relationship [3, 8, 11, 13, 15] 

  VWG o  1
 (3.3) 

where oW  is the equilibrium fracture energy or “intrinsic strength” of the material and  V  

represents the rate dependent increase in fracture energy due to dissipative processes.  Without the 

consideration of bond reforming, Eq. (3.1) reduces to 

      TkEF

PB

TkF

b
BaB ehTnknedtd

//
///ln



 
  , which suggests that even under zero force (F 
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= 0), b will decrease leading to spontaneous rupture of all the polymer chains crossing an interface 

(if given enough time). In other words, when the crack propagation is infinitely slow (V approaches 

0), without reforming the polymer chains do not contribute to the intrinsic strength oW , which is 

unphysical. 

3.2.2. Nonlinear force-extension relationship 

The force applied to each bond, F, and the energy required to stretch two polymer fragments to 

contact, Ec, can be obtained from the force-extension relationship for the polymer chains.  In the 

literature, the force-extension relationship was often assumed to be linear [2] so that the chains 

behave as linear springs [1, 2, 3] skF  .  However, experiments on single polymer chains [3] 

have shown that the force-extension relationship is highly nonlinear.  For low extension the chain 

elongation corresponds primarily to uncoiling of the polymer chain, and elasticity of the chain 

originates from change in the configurational entropy. However, once the chain length approaches 

the contour length (Lc), which represents the length of the polymer chain when fully extended, 

additional extension requires bonds on the polymer chain to be stretched, resulting in much higher 

stiffness. Obviously a linear spring model is not able to capture such stiffening behavior, and the 

choice of a linear model was purely for the ease of mathematical analysis.  To extract the “effective 

stiffness”, ks, of the linear chain model, the usual approaches include obtaining the value as a fitting 

parameter to match experimental fracture energy vs crack propagation speed data [2], or matching 

 
0

cL

F d   to U, which is the work done on the chain in stretching it to its contour length [1] and 

can be determined from experiments.  A direct result of this approach is that the effective stiffness 

of the linear spring is an overestimate at small stretch and an underestimate at large stretch. 

Therefore, a very small interfacial separation will cause the effective activation energy for bond 

dissociation to significantly decrease and that for bond association to significantly increase.  

Consequently, bond association quickly becomes negligible for a linear polymer chain model.  

Conversely for large interfacial separation, the lack of stiffening can lead to unrealistic chain 

extensions larger than the full contour length.   

To provide a more accurate description of the force-extension relationship, we start with 

experimental work which has shown that a persistence chain model [3] provides an excellent 

representation of the nonlinear force-extension relationship for individual polymer chains up to a 

fractional extension of 90%:  
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(3.4a) 

where  is the extension of the chain, usually taken to be the interfacial separation between the two 

surfaces. P is the persistence length, which is related to the contour length by 2
c

L nA nP   with 

A ≈ 2P [36] being the Kuhn length of the polymer. The persistence chain model is only valid for  

less than 90% of the contour length.  For 9.0/ cL  we will approximate the force-extension 

relationship as a quadratic function of cL/ . The quadratic function is the simplest function that 

allows us to satisfy three conditions we deemed necessary.  The first two are continuity of force 

and “stiffness”, ddFk / , at 9.0/ cL .  A previous work [1] using a linear function 

beyond 90% extension did not match the stiffness at 9.0/ cL  and resulted in an unphysical 

kink in the force-extension curve. For the third condition we match the energy of the chain when 

stretched to its contour length to U as defined earlier. The quadratic function that satisfies these 3 

conditions was found to be:  
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(3.4b) 

An example of the nonlinear force-extension relationship, given by Eq. (3.4) and presented in a 

normalized form, is shown in Figure 3.1.  The experimental data by Ghatak et al. [3] for extensions 

above 90% are also presented in Figure 3.1, which shows good agreement; Eq. (3.4a) is known to 

be a good fit for experimental data [3] so to prevent cluttering of Figure 3.1 experimental data 

from its range of applicability is not shown. To understand the magnitude of the change in the 

chain stiffness, consider the chain stiffness at zero extension, cBo PLTkddFk 2/3)0(/    and 

compare it with the chain stiffness at 9.0/ cL , ocBc kPLTkLk 334/501)9.0(  .  Up to 90% 

extension, the stiffness has increased by a factor of 334 and will continue to increase, more rapidly, 

as / cL  exceeds 0.9.  
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Figure 3.1: Normalized polymer chain tensile force F* = FLc/kBT plotted against normalized extension * = /Lc, for 

linear and nonlinear chain models.  Experimental data was taken from Ghatak et al. [3] where n = 150. U* = U/kBT is 

determined to be 2850 by using data from Ghatak et al. [3]  

 

 The elastic energy required to stretch two polymer chain fragments from their relaxed state 

to form contact, Ec, can be determined from  

    


dFEc  0 ,  
(3.5) 

using the force-extension relationship given in Eq. (3.4) or the linear counterpart. To understand 

this equation, firstly we note that the relaxed state corresponds to extension of zero, whereas the 

state at which bond reforming occurs corresponds to extension of . Secondly, although this 

equation appears to be written for the extension of a single chain, the same result can be obtained 

if the extensions of two separate chain segments are considered. In that case, the separation  

should be divided and assigned to the two chain segments in proportional to their contour lengths, 

and the force F would be same for the two chains. 
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 With the rate equation and force-extension relationship described in sections 3.2.1 and 

3.2.2, the adhesive zone model is furnished and can be applied to study surface separation and 

crack propagation.  

3.2.3. Application to equilibrium surface separation 

Consider two surfaces that are initially bonded and then separated in a very slow (quasi-static) 

manner so that at each interfacial separation  they can be considered as in equilibrium. We now 

apply the adhesive zone model introduced above to the interface and study this separation process. 

Inclusion of bond reforming in Eq. (3.1) allows for the chain density to approach a dynamic 

equilibrium value  be  at each interfacial separation (= chain extension) , when the rates of 

bond association and dissociation are in balance; i.e. 0/  dtd b  in Eq. (3.1).  As the chain 

extension increases the tensile force applied to each bond increases the rate of dissociation and 

decreases that of association. Therefore, as the chain extension is increased the equilibrium 

density, shown in Figure 3.2a) in the normalized form, decreases from the initial value 
*

0b  at zero 

opening and after a certain point becomes negligible.   

Shown in Figure 3.2a) are results using both the nonlinear chain model (bold) and linear chain 

model (thin lines) with constant stiffness determined from the approach discussed in section 3.2.2.  

The behavior is qualitatively similar but quantitatively different. For the nonlinear chain model the 

equilibrium density becomes negligible when the fractional extension of the chain, *, exceeds 

~0.16. Whereas for the linear chain model, the density becomes negligible at a much lower * 

(~0.05).  For these small extensions the linear chain model has a much higher stiffness which 

results in significantly higher chain tension (Figure 3.1). This causes the shift in activation energies 

(decrease in effective activation energy for bond dissociation and increase in effective activation 

energy for bond association) to be more dramatic for the linear chain model which leads to a more 

rapid decrease in the equilibrium chain density as the chain extension increases.   

The adhesive stress from the chains can be calculated from Fbch  , namely the product of 

the chain density and the tensile force in each chain, for the case of equilibrium separation this 

stress is plotted against separation in Figure 3.2b).  Here we see that stress is zero at zero separation 

(since the chains are unstretched) however as the separation increases the stress increases, reaches 

a maximum and then decreases to zero.  The decrease is caused by the rupture of chains shown in 

Figure 3.2a).  For the range of extensions shown in Figure 3.2b) the linear chain model has a larger 
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spring stiffness (slope of Figure 3.1), which results in a faster increase in stress as well as a larger 

peak stress.   

A second source of adhesive stress is from the vdW attractions.  Numerous forms have been 

used in the literature to model vdW interactions, however, for fracture of polymeric interfaces the 

vdW interactions are considered to have a much smaller zone of action than the polymer chains. 

Under such a situation, the detailed form of the vdW interaction has been shown to be unimportant 

as long as the maximum stress and the work of adhesion are similar [1].  Therefore, a simple form 

for the vdW component of the adhesive stress will be used: cec

 /  where 
c  is a characteristic 

decay length, and 
c  is the maximum vdW stress.  Note that the vdW attractions are rate 

independent and depend only on the surface separation .  Combining the two components gives 

the following expression for the total adhesive stress 

ceF cbad

 /
 . (3.6) 

The maximum vdW stress 
c  can be replaced by 

cvdWc W  / by recognizing that the vdW work 

of adhesion follows from 
cccvdW deW c  

 




0

/ .  

Now consider the process of separating the two surfaces slowly from  = 0 to  → ∞ where they 

no longer interact. Energy is required for this process to break the polymer chains on the interface 

and overcome vdW attractions between the two surfaces. The intrinsic strength of the interface can 

be calculated from 





0

vdWbeo WFdW 
,   

(3.7) 

where 



0

Fdbe
 would be the area under curves in Figure 3.2b). In other words, the existence of 

equilibrium bond density allows for the polymer chains to contribute to the intrinsic strength and 

enhance the fracture energy for slow surface separation.  The intrinsic strength, in normalized 

form, is shown in Figure 3.2c) as a function of the normalized initial chain density 
*

0b . Here we 

see that increasing 
*

0b , which corresponds to faster bond association and/or slower bond 

dissociation, results in higher intrinsic strength.  In addition, the nonlinear chain model gives larger 

intrinsic strength than that of the linear chain model.  However, the difference is small since that 
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the higher stiffness of linear chain model at small surface separation compensates for its lower 

chain density.   

 While we have applied the adhesive zone model to equilibrium surface separation, the same 

can be done to model the joining of two surfaces in self-healing materials. In surface separation 

problems, initially the interface has zero opening and the bond density is given by Eq. (3.2). 

Whereas for interface healing, the two surfaces are brought into contact with zero initial bond 

density. Over time the bond density will increase according to the kinetics of Eq. (3.1), and 

ultimately reach the zero separation equilibrium value (Eq. (3.2)) if left long enough. Applying 

conditions such as heat can alter the activation energies for bond association and dissociation 

which may result in faster healing kinetics; for example decreasing the activation energy for 

association will decrease the association time constant,  , and from Eq. (3.1) result in a faster rate 

of increase in bond density.  
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Figure 3.2: a) Normalized polymer chain density under equilibrium, be
* = be/o, plotted against * = /Lc, for 

different initial bonded density, b0
*. b) Normalized equilibrium adhesive stress from polymer chains, ch

*= ch 

Lc/kBTo, plotted against * = /Lc, for different initial bonded density, b0
* = b0/o. The thick curves represent results 

from the nonlinear chain model and the thin lines represent results from the linear chain model. c) Normalized intrinsic 

strength Wo
* = Wo/kBTo plotted against initial bonded density b0

* = b0/o. These plots were generated by varying 

extension * while holding the other governing parameters fixed at U* =U/kBT= 2850, L=Lc= 2.222 x 10-3, n = 150 

(for nonlinear models), and WvdW
* = WvdW/kBTo = 5 [6]  
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3.2.4. Application to dynamic surface separation 

When the adhesive zone model is applied to very slow surface separation as in section 3.2.3, 

there is sufficient time to reach equilibrium for each separation . However, for fast surface 

separation the system falls out of equilibrium and the kinetic term dtd b /  in Eq. (3.1), describing 

the change in chain density, will have an important impact.  The decrease in chain density is 

accelerated by the activation energy shift ( TkF B/  in Eq. (3.1)).  In addition, unlike equilibrium, 

for fast separation bond association will be negligible due to the large activation energy needed to 

stretch and rejoin two ruptured chain segments.  Figure. 3.3a) shows the chain density plotted 

against separation for several values of surface separation speed, v.  Compared with equilibrium 

surface separation, where the chain density drops rapidly from its initial value with increasing 

opening and becomes negligible before the fractional extension reaches 20% (see Figure 3.2a)). 

Under the opposite limit of rapid crack growth the chain density will remain close to constant for 

some openings (e.g., beyond 80% extension when v* =vLc/- = 100) and then catastrophically 

decrease once a certain opening is reached (Figure. 3.3a)) [6].  The bonds are able to survive to 

larger chain extension at higher speed because at a given chain extension the bond dissociation 

reaction proceeds at a certain rate.  For faster separation a given extension will be reached in less 

time which will allow for fewer bonds to dissociate.   

The impact of the survival of chains to larger separations on the adhesive stress can be seen in 

Figure. 3.3b). Unlike Figure 3.2b) the stresses in Figure. 3.3b) contain contributions from both the 

chains and vdW attractions. The vdW attractions decay with separation and result in the initial 

decrease in adhesive stress observed at small extension Figure. 3.3b).  Recall that under 

equilibrium separation the continuous decrease in chain density combined with the increase in 

polymer chain tension with separation created a non-monotonic adhesive stress from the polymer 

chains (Figure 3.2b)).  At low speed the rate dependent adhesive stress due to chains approaches 

the equilibrium result.  As the speed of separation increases more polymer chains will survive to 

larger extensions and hence the adhesive stress at the same extension becomes larger.  As pointed 

out above, in the high speed limit the chain density remains close to constant and then 

catastrophically decreases. Therefore, before the catastrophic decrease occurs, the adhesive stress 

distribution would resemble the polymer chain force-extension relationship shown in Figure 3.1. 

This is followed by a sharp decrease in the adhesive stress due to the loss of bridging chains. With 
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increasing separation speed, the plateau region in Figure. 3.3a) extends to larger *, and as a result, 

the location of the peak adhesive stress in Figure. 3.3b) shifts to the right. The overall increased 

magnitude of adhesive stress and the larger range of *for which the adhesive stress is non-zero 

will lead to larger energy dissipated on the interface when it is separated at higher speed.  

The adhesive fracture energy, Gad, is calculated by determining the work done by the adhesive 

stress, ad, or  

vdWbadad WdFdG  



00

. (3.8) 

Eq. (3.8) differs from the intrinsic strength Eq. (3.7) in that the bond density b  depends on the 

rate of separation rather than being 
be , the value at infinitely slow separation.  Gad therefore is 

rate dependent and can be much larger than the intrinsic strength. Numerically, it is impossible to 

integrate the adhesive stress to infinity, so a cut-off value is usually introduced for * beyond which 

the adhesive stress is negligible.   

Figure. 3.3 also shows the comparison between the linear and nonlinear chain models. Similar 

to equilibrium surface separation, the two models give different results for fast separation.  Since 

F increases rapidly at openings near Lc for the nonlinear chain model (Figure 3.1), so does the rate 

of chain rupture as chain extensions approach the contour length, and at higher separation speeds 

the peak stress will occur at a normalized separation which approaches 1 (for example vLc/- = 10 

and 100 in Figure. 3.3b)).  Whereas for the linear chain model the stiffness does not increase and 

increasing vLc/- always creates a significant increase in the interface separation where the peak 

stress occurs.   
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Figure. 3.3: a) Normalized polymer chain density bo plotted against normalized extension * = /Lc and b) 

Normalized adhesive stress adLc/kBTo plotted against normalized extension * = /Lc, for different normalized 

separation speeds vLc/-.  These plots were generated, using the adhesive zone model with bond reforming, by varying 

extension /Lc
 while holding the other governing parameters fixed at b0

* =b0o = 0.9, U* =U/kBT= 2850, L=Lc= 

2.222 x 10-3, n = 150, c/Lc = 0.02 and WvdW
* = WvdW/kBTo = 5. Thick lines are for nonlinear chain model and thin 

lines are for linear chain model  
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3.3. Example: Double Cantilever Beam  

To demonstrate the use of the adhesive zone model in fracture, we consider the steady-state 

propagation of a crack at a constant speed V which splits a material into the DCB shown in Figure 

3.4. The crack propagation is driven by moments M∞ applied on the two identical beams, which 

may be elastic or viscoelastic, each with moment of inertia I and depth D into the page. Their 

separation is resisted by tension in the stretched polymer chains and van der Waals (vdW) 

attractions, described by the adhesive zone model presented in section 2. The same physical 

problem was studied in an earlier work [6], but without the consideration of bond reforming or a 

nonlinear force-extension relationship for the chains. Therefore, comparison to the previous results 

will allow us to address the advantages of the new adhesive zone model and how it will impact the 

fracture behavior.  

The adhesive zone begins at the adhesive zone tip (point O) and extends till the crack tip where 

the magnitude of the tractions decrease below a prescribed tolerance. The so-determined effective 

adhesive zone length will be denoted by L. The work needed to propagate the crack must be 

sufficient to overcome these adhesive tractions and in the case of a viscoelastic beam bulk 

dissipation as well. Analysis will be conducted within a translating coordinate system (x-y) at the 

adhesive zone tip, which moves at speed V relative to a fixed coordinate system (X-Y).  Taking 

advantage of the steady-state assumption, the vertical distance  between the beams depends only 

on position x, and the transformation, dxVddtd //  , within the translating coordinate 

system can be applied. The problem possesses symmetry about the crack interface (line o1-o2) so 

that the analysis only needs to be done on one of the beams.  
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Figure 3.4: Schematic of the DCB debonding problem  

 

The beams are modeled as either linearly elastic or viscoelastic; in the latter case a standard 

linear solid model is adopted where the Young’s modulus decays from an instantaneous value of 

Eo to a long term value of E∞ according to a relaxation time o.  The linearly elastic beams can be 

regarded as a special case of viscoelastic beams with Eo = E∞. For viscoelastic beams with the 

adhesive zone model described in section 3.2 there are 18 independent governing parameters.  In 

Appendix 2.1, nondimensional variables and governing equations are presented.  The associated 

non-dimensionalized boundary conditions to complete the boundary value problem are given in 

Appendix 2.2.  This nondimensionalization reduced the number of governing parameters from 18 

to the following 9:  
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(3.9) 

The physical interpretations of the parameters shown in Eq. (3.9) are respectively: normalized 

crack propagation speed, ratio of long term to instantaneous modulus for the viscoelastic beam, 
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ratio of bulk relaxation time to interfacial bond dissociation time, ratio of bond activation length 

to contour length of a polymer chain, normalized rupture energy of a polymer chain, number of 

Kuhn lengths per polymer chain, normalized equilibrium areal density of load bearing polymer 

chains at zero crack opening (capturing association kinetics, see Eq. (5)), normalized vdW decay 

length, and normalized vdW work of adhesion.  In addition there are several nondimensional 

quantities that will be calculated from the analysis  
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, (3.10) 

which are respectively the normalized adhesive zone length, normalized chain extension 

(separation between beams), normalized fracture energy, normalized adhesive portion of fracture 

energy, and normalized bulk viscous dissipation portion of fracture energy.  The energy required 

to propagate a unit crack area, G* after normalization, in a viscoelastic material consists of two 

contributions: the energy needed to overcome adhesive attractions on the interface, Gad
*, and the 

viscous energy dissipation within the bulk material, Gvis
*, or 

***

visad GGG 
. (3.11) 

G* can be directly determined from the results of the analysis using 2**2*** /5.0)( dxdMxG   

[6].  Gad
* is evaluated from Eq. (3.8) and the bulk dissipation, Gvis

*, is obtained indirectly by 

subtracting Gad
* from G* according to Eq. (3.11).  The numerical procedure used to solve the 

boundary value problem is described in Appendix 2.3.   

The discussion below is divided into two main sections.  In Section 3.1 we apply the adhesive 

zone model to an elastic DCB and, by comparison to models without bond reforming and nonlinear 

chain elasticity [6], the effect of these two features is evaluated. In Section 3.2 we apply the 

adhesive zone model to a viscoelastic beam in order to investigate the coupling between interfacial 

and bulk rate dependent behaviors.   

3.3.1. Elastic Beam 

3.3.1.1. Effect of Bond Reforming and Nonlinear Chain Model 

To address the effect of bond reforming and nonlinear force-extension relationship in the new 

adhesive zone model, we first consider elastic beams where bulk viscous dissipation is absent. For 

comparison we have solved four cases where: (i) the linear chain model is used without bond 
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reforming, studied previously [6] (ii) the nonlinear chain model is used without bond reforming 

(iii) the linear chain model is used with bond reforming and (iv) the complete adhesive model with 

both the nonlinear chain model and bond reforming. Figure 3.5 shows the results obtained from 

the four models, generated by varying /
*V , which is independent of bulk relaxation time, over 

a wide range while keeping the other governing parameters fixed.  The crack opening displacement 

(COD), *(L*), and adhesive fracture energy, Gad
*, are plotted against /

*V  in Figure 3.5a) and 

Figure 3.5b) respectively.  The COD represents the distance between the two beams at the edge of 

the adhesive zone which indicates the maximum polymer chain extension reached within the 

adhesive zone.   

In the COD results, Figure 3.5a), starting from small /
*V  we see that all the curves are 

horizontal which indicates rate independence. As /
*V  is increased there is a rapid increase in 

*(L*).  Afterwards, the slope of COD versus /
*V  becomes smaller.  Having observed the 

general rate dependent characteristics of the COD, we can now discuss how bond reforming and a 

nonlinear force-extension relationship impact the results.  For small /
*V  the rate independence 

of COD indicates that the tractions in the adhesive zone primarily consists of vdW interactions (in 

absence of bond reforming), and the additional tension in the chains under equilibrium (if 

reforming is considered).  Except for the case with both nonlinear chain and bond reforming, which 

has a low-speed plateau value of 0.27, the other three cases all have a smaller plateau COD value 

of 0.092. If the chains were completely removed from the adhesive zone model leaving only the 

vdW attraction, the adhesive stress would become negligible at a COD value of 0.092. This is easy 

to understand for cases (i) and (ii) as without bond reforming, at small /
*V  the contribution 

from chains is negligible.  The difference between cases (iii) and (iv), both having bond reforming 

and hence chains in dynamic equilibrium for small /
*V , can be explained using Figure 3.2a). 

With the linear chain model the equilibrium chain density becomes negligible when * ≈ 0.05, less 

than the COD if only the vdW attractions were present (0.092). That is, the adhesive zone is still 

governed by vdW when the chains are linear, even if bond reforming is included. While for the 

nonlinear chain model the equilibrium chain density is still significant at 0.092 which means that 

when the vdW attraction becomes negligible, there is still considerable traction on the interface 

coming from the chains. In other words, the length of the adhesive zone is determined by the 
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chains, which results in the larger COD at small /
*V  observed for case (iv) alone in Figure 

3.5a).   

Clearly, bond reforming and then nonlinear chain model both affect the fracture behavior at 

small propagation speed. However, it is important to note that bond reforming kinetics are only 

important for small /
*V . At larger /

*V , the CODs are much larger as seen in Figure 3.5a); 

consequently the energy to activate bond association becomes so large that the rate of chain 

reforming is negligible over most of the adhesive zone.  This is why the curves with and without 

bond reforming are indistinguishable at large /
*V , if the same polymer chain force-extension 

relationship is used. There is, however, considerable difference between the models using linear 

and nonlinear chain models. To explain, we note that in addition to negligible association, an 

increase in crack propagation speed relative to the relaxation time for bond dissociation results in 

insufficient time for the chain density to decrease to the equilibrium value.  Therefore, for faster 

crack propagation the adhesive zone is dominated by the kinetics of chain rupture, which allows 

the chains to stretch farther before rupturing as compared to the equilibrium state discussed in 

Section 3.2.3. These greater levels of stretch create a feedback effect by increasing the tensile force 

on each chain which accelerates the rate of rupture (Eq. (3.1)).  It is due to this feedback that we 

see a significant difference between results from linear and nonlinear chain models at large /
*V

. As shown in Figure 3.1 the tensile force for the nonlinear polymer chain is much larger than that 

of the linear polymer chain for large chain extensions.  In the adhesive zone model this feature 

results in catastrophic rupture of polymer chains when the fractional extension approaches one 

(fully extended chains), which is why the COD in Figure 3.5a) levels to one, that is, the limiting 

COD value where the chain extension is equal to its contour length, at large /
*V . For the linear 

chain model the stiffness does not increase and the crack opening can reach unphysical levels 

above the value of one (Figure 3.5a)).   

Now consider the adhesive fracture energy results shown in Figure 3.5b).  For this figure the 

beams are elastic so Gad
* represents the total fracture energy.  Qualitatively the Gad

* results bear 

many similarities to that of the COD.  Starting from small /
*V  the curves are almost horizontal, 

indicating rate independence. Larger /
*V  results in a rapid increase in Gad

* and the slope 

decreases with subsequent increases in /
*V . Physically, the same process previously described 
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when discussing the COD can also be used to understand the results for adhesive fracture energy.  

First consider small /
*V , where the scenario of intrinsic strength presented in Figure 3.2c) is 

applicable.  With reforming the polymer chains contribute to the intrinsic strength and the fracture 

energy is higher. For example the adhesive fracture energy for the nonlinear chain model is Gad
* 

= 7.21 with bond reforming and for both chain models Gad
* = WvdW

*= 5 without bond reforming. 

Comparing the fracture energies for linear and nonlinear chain models with reforming at small 

/
*V  we see a slight increase in Gad

* from 6.95 to 7.21 when the nonlinear chain model is 

introduced.  The increase is much smaller in comparison to the increase in COD as seen in Figure 

3.5a). This is because although the crack opening is much smaller for the linear chain model, it is 

partly compensated by the chains having higher stiffness.  At large /
*V  bond reforming is 

negligible and therefore similar to Figure. 3.3a), the adhesive fracture energy is only affected by 

the chain model. The nonlinear chain model causes a catastrophic decrease in chain density when 

the fractional extension of polymer chains approaches the contour length, which leads to 

significantly smaller adhesive fracture energy (Figure 3.5b)).   
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Figure 3.5: Plots for a) crack opening displacement, *(L*), and b) adhesive fracture energy, Gad
*, obtained by varying 

V*/ while holding the other governing parameters fixed at U* = 2850, E = 1, L= 2.222 x 10-3, b0
* = 0.9 (for reforming 

models), n = 150 (for nonlinear models), c
* = 0.02 and WvdW

* = 5.  Each curve in these figures represents a different 

use of bond reforming/no reforming and linear/nonlinear chain models as indicated in the legend   

 

3.3.1.2. Effect of Initial Bond Density 

The initial bond density, 
*

0b , is an effective measure of the characteristic bond association time 

 : high initial bond density means that the bond association rate is large relative to the bond 

dissociation rate (Eq. (3.2)).  Similar to what was done in Section 3.3.1.1 we have plotted COD 
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and adhesive fracture energy against /
*V  in Figure 3.6. However, in Figure 3.6 all results are 

for the nonlinear chain model with bond reforming and each curve represents a different value of 

*

0b .  The COD is shown in Figure 3.6a).  It was established in Section 3.3.1.1 that at large /
*V  

bond reforming is negligible.  Therefore, it is not surprising that at large /
*V  the COD for all 

*

0b  are coincident.  However, at low /
*V  higher initial bond densities result in higher COD.  

In the limit of low /
*V  the polymer chains exist in dynamic equilibrium, and the equilibrium 

bond density is shown in Figure 3.2a).  Clearly for higher initial bond densities, the enhanced 

association reaction rate allows for a larger bond density at all crack openings.  Therefore, a larger 

crack opening is achieved before the load on the crack becomes negligible.   

Although 
*

0b  was varied to represent changes in the rate of bond association relative to 

dissociation, changing this value also affects the initial density of load bearing chains before the 

crack opens.  Therefore, since there are more bonded chains which need to be ruptured, it is 

expected that larger 
*

0b  will result in larger Gad
*.  Furthermore, to glean insight into how the 

kinetics change when the initial bond density is changed, the average amount of work done to 

rupture one chain would be of interest; this information can be obtained from a plot of 

  *

0

** / bvdWad WG   vs. /
*V  which is shown in Figure 3.6b). For large /

*V  bond association is 

negligible so again all curves are coincident. The low speed limit is more interesting and we can 

see that not only does larger 
*

0b  increase Gad
*, relative to the initial chain density more work is 

done in rupturing one chain.  To explain, after rupturing and dissipating their stored energy, for 

larger 
*

0b , chains are more likely to associate and form new chains and bridge the crack. These 

new chains must be ruptured again in order for the crack to propagate, leading to a higher value of 

average adhesive fracture energy per chain.   
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Figure 3.6: Plots for a) crack opening displacement, *(L*), and b) portion of adhesive fracture energy due to polymer 

chains normalized by initial bond density, (Gad
*- WvdW

*)/b0
*, obtained by varying V*/ while holding the other 

governing parameters fixed at U* = 2850, E = 1, L= 2.222 x 10-3, n = 150, c
* = 0.02 and WvdW

* = 5.  Each curve in 

these figures represents a different initial bond density b0
* as indicated in the legend 
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3.3.2. Viscoelastic Beam 

When a viscoelastic beam model is used, the applied mechanical work needs to overcome the 

adhesive tractions as well as bulk viscoelastic dissipation. The amount of viscoelastic dissipation 

will depend on the length of the beam which we consider; long beams will tend to have more 

dissipation [6 supporting material].  For the following analysis we consider a beam with a fixed 

normalized length,   1/2
4/12*  cooB ILEDTkLL .  Both bond reforming and nonlinear force-

extension relationship are considered in the calculations. The apparent energy release rate G*(1), 

including both sources, is plotted in Figure 3.7a), the adhesive portion Gad
* in Figure 3.7b) and the 

bulk dissipation Gvis
*(1) in Figure 3.7c).  The qualitative features of these results are very similar 

to the results for a linear chain model without bond reforming [6] so we will first briefly describe 

them without in depth discussion.  In these figures each curve represents a different value of  , 

the ratio of bulk relaxation time to the relaxation time for bond dissociation on the interface. In 

Figure 3.7a) and b) the x-axis is /
*V  and each figure contains an inset where the axis has been 

changed to V*. The change in axis from V* to /
*V  represents a horizontal shift caused by 

different values of  ; decreasing   effectively slows chain dissociation which results in larger 

chain stretch before dissociation and therefore greater Gad
* and G*(1).  When shown on /

*V  

axes Gad
* in the viscoelastic case looks strikingly similar to Gad

* for the elastic case shown in 

Figure 3.6b). This means the interfacial rate-dependence, at least in the DCB model, does not 

depend strongly on bulk viscoelastic effects.  The contribution of Gad
* to G*(1) is apparent in 

comparing Figure 3.7a) and Figure 3.7b): G*(1) is equal to the intrinsic strength at small /
*V , 

followed by a rapid increase as /
*V  is increased, and finally a slower rate of increase at large 

/
*V . However, each curve in Figure 3.7a) also has a local maximum which is due to the second 

contribution to G*(1), namely Gvis
*(1), plotted against V* in Figure 3.7c).  At both low and high V* 

the value of Gvis
*(1) approaches zero asymptotically and between these two extremes there is a 

maximum.  The value of this maximum depends on   with the smallest values of   achieving 

the largest Gvis
*(1) peak.   
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Figure 3.7 Plots for a) fracture energy, G*(1), b) adhesive fracture energy, Gad
*, and c) viscous dissipation, Gvis

*(1), 

plotted against V* and/or V*/.  These plots were obtained by varying V* while keeping  fixed at the five values 

shown in the legend. The other governing parameters were held fixed at U* = 2850, E = 0.01, L= 2.222 x 10-3, n = 

150, b0
* = 0.9, c

* = 0.02 and WvdW
* = 5.  The figure embedded in b) shows fracture energy, G*, plotted against 

normalized crack propagation speed V*  
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A detailed explanation as to why Gvis
*(1) tends to zero in both limits has been previously 

presented in Lavoie et al. [6] for the linear chain model without reforming, and is also applicable 

to this case. Consider that the viscoelastic beam is made of three zones: starting from the adhesive 

zone tip the glassy (unrelaxed zone), the dissipative (viscoelastic) zone and the rubbery (relaxed) 

zone [6].  Gvis
*(1) is generated within the dissipative zone where the beam relaxes. For small V* 

the glassy and dissipative zones are negligibly small which results in negligible Gvis
*(1). Increasing 

V* causes both the glassy and dissipative zones to expand.  Eventually within a finite sized beam 

the rubbery zone will no longer exist and subsequent increases in V* will cause the glassy zone to 

expand and the dissipative zone to shrink.  Further increase in V* can cause the dissipative zone to 

vanish in the DCB, and Gvis
*(1) reduces to zero again.  Such non-monotonic bulk dissipation and 

was also observed for finite sized specimens by Xu et al. [15]. 

Although the above qualitative behavior was also observed with an adhesive zone model that 

lacks bond reforming and nonlinear force-extension relationship for the polymer chains, 

quantitatively the peak Gvis
*(1) values are substantially lower in the present work. For example 

with a linear chain model the peak dissipation for 
510  was ≈ 24500 [6] whereas for the 

nonlinear chain model the peak value is ≈ 4000, six times smaller. Very much like the large 

difference in Gad
* between the two models, described in Section 3.3.1.1, this difference can be 

attributed to the fact that at these values of   the nonlinear chain model leads to significantly 

smaller crack openings at moderate to large crack propagation speeds where the peaks in Gvis
*(1) 

are located, and the smaller deformation results in smaller viscous dissipation. The impact of bond 

reforming on Gvis
*(1) is small (data not shown) since it is only important for small /

*V  where 

Gvis
*(1) is insignificant.   

The introduction of the bond reforming term in the kinetic equation (Eq. (3.1)) allows for the 

existence of equilibrium bond density, and the prediction of the intrinsic strength of the material 

Wo which depends on the properties of the polymer chains.  The adhesive zone model can also 

predict the function (V) in Eq. (3.3).  Note that the rate dependence (V) here are caused by 

physical processes in both the bulk material and on the interface; a plot of (V) is not shown since 

it would appear nearly identical in shape to Figure 3.7a).  By comparing the inset of Figure 3.7b) 

and Figure 3.7c) it can be seen that the peak bulk dissipation Gvis
*(1) is correlated to Gad

*: at a 

given V*; larger Gad
* results in larger Gvis

*(1). This observation should be compared with that of 
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Andrews and Kinloch [13] who noted that viscoelastic dissipation was found to be proportional to 

the intrinsic energy, since stronger interfaces can allow larger bulk deformation before crack 

propagation and hence larger viscoelastic dissipation. In our case, Figure 3.7, all curves have the 

same intrinsic strength (Figure 3.2c)), however the adhesive fracture energy is rate-dependent. We 

find that at a particular rate the viscoelastic dissipation is related to the adhesive energy rather than 

the intrinsic value at the limit of infinitely slow rate.  Such behavior reinforces the hypothesis of 

Rahulkumar et al. [22]: simulations with a rate-independent adhesive zone model failed to generate 

enough rate dependency to match experimental data, the authors concluded that a rate dependent 

adhesive zone model was necessary.  

3.4. Conclusion 

An adhesive zone model which considers association and dissociation of nonlinear polymer 

chains was developed for understanding rate-dependent fracture of viscoelastic polymeric 

materials.  Since association of bonds between polymer chain fragments is included, this model 

can also be used for simulations of self-healing materials.  This adhesive zone model was 

implemented in an elastic and viscoelastic double cantilever beam (DCB) to study rate dependent 

crack propagation.  Compared with prior adhesive zone models this version produces several 

important qualitative differences in the results.  The first difference is that the inclusion of bond 

reforming allows the model to predict dynamic equilibrium and an intrinsic material strength 

which depends on the polymer chains; this intrinsic strength is the fracture energy for extremely 

slow crack propagation.  The second important difference occurs for high rates of crack 

propagation, relative to the relaxation time for bond dissociation, where the chains bridging the 

crack interface achieve stretch levels close to their contour length. In this case, the chain reforming 

kinetics becomes negligible; however, implementing a nonlinear chain model causes catastrophic 

dissociation of chain bonds as the contour length of the chain is approached.  This feature predicts 

adhesive fracture energies several orders of magnitude smaller than those from the linear chain 

model which predicts unphysical crack openings in excess of the contour length.  This significant 

decrease in crack opening also results in a substantial decrease in the amount of bulk dissipation 

in viscoelastic material.  

Considering the difference mentioned above, the rate-dependency of the adhesive fracture 

energy (from interfacial dissipation) resembles a step-function, with a low-speed plateau followed 

by a rapid increase and much slower rate of increase at fast crack propagation.  The bulk viscous 
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dissipation has a maximum at an intermediate speed and the peak value is correlated with the 

magnitude of the adhesive fracture energy.   

 Although in this article we only applied the adhesive zone model to separation of rigid 

surfaces and a simple double-cantilever beam (one-dimensional), it can also be applied to cracks 

in two or three dimensional solids where interfacial tractions can lead to complex multi-axial 

deformation state in the solid.  However, care must be taken in such a situation because loads able 

to stretch chains along the interface to the point where they rupture rapidly will necessarily result 

in large deformations within the vicinity of the interface.  Such deformation must be captured using 

finite strain kinematics where it is important to note that the true area of the interface will depend 

on the bulk deformation which must be taken into account when determining the stress.  In 

addition, the adhesive zone model presented pertains only to normal separation of cracks and 

therefore is applicable to Mode-I cracks. Extension is needed if Mode-II, Mode-III or mixed mode 

cracks are to be studied.   
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3.5. Nomenclature 

Note Non-dimensional parameters are summarized in Table A2.1 

 Kuhn length 

 Crack opening 

c  is a characteristic decay length 

D Depth of beam 

  is strain 

E Young’s Modulus 

oE   the instantaneous or unrelaxed modulus 

E  is the infinite time or relaxed modulus 

Ea activation energy  

Ec  is the elastic spring energy required to stretch two relaxed (unstressed) polymer 

chain fragments on opposite sides of the interface so that they make contact 

f Distributed adhesive stress 

)(V  increase in fracture energy for finite rates of crack propagation 

F  is the tensile force acting on each chain 

G Fracture energy 

Gad Adhesive Fracture Energy 

Gvis Viscous Fracture Energy 

hp  is Plank’s constant 

I Area moment of inertia 

kB  is the Boltzmann constant 

ks  is the average spring stiffness 

 is the bond activation length 

Lc. contour length 

 Bending Moment 

n  is the number of bonds per polymer chain 

P Persistence Length 

  stress 

c  Maximum vdW stress 

ad  Adhesive stress 

S Shear force 

b  is the number of chains that cross a unit area of the interface 

o  is the chain density for perfectly bonded interface 

0b   the initial bond density 

o   is the bulk relaxation time 

-  is the characteristic time of bond dissociation 

  is the characteristic time of bond association 

t time 

T  is the absolute temperature 
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U  is the work required to stretch the chain from its unstressed configuration to its 

contour length 

V Crack propagation speed 

vdWW  is the work of adhesion due to vdW attractions 

oW   is the thermodynamic work of adhesion for separating the two surfaces under 

equilibrium conditions 

x, y Coordinates translating with crack tip 

X, Y Fixed Coordinates 
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Chapter 4. A rate-dependent damage model for elastomers 

at large strain3 

 

Abstract 

The ability to predict rate and deformation dependent damage in elastomers is important for 

many applications.  To model the rate dependent damage processes we introduce chain scission, 

predicted using concepts of mechanochemistry, into hyperelastic constitutive models (Arruda-

Boyce as an example).  The result is a model capable of handling large strain and rate dependent 

damage. Additionally, polydispersity is incorporated by considering a distribution of chain lengths, 

which gives the model the capability to predict progressive material damage. To demonstrate the 

application of the model, uniaxial tensile deformation with constant extension rates is examined. 

The tensile stress is found to first reach a peak and then decrease due to scission, and faster rates 

of deformation result in larger peak stress.  Under cyclic loading the polydispersity results in 

progressive material damage which mirrors the Mullins effect at high deformation rates. In 

addition, the damage model predicts interesting rate-dependent behavior, such as significant 

hysteresis during unloading and reloading, as the loading rate is decreased.  Finally, the model is 

shown to be capable of fitting experimental data for a variety of materials.   

  

                                                            
3 A version of this chapter has been published. Reprinted with permission from Lavoie, S. R.; 

Long, R. Tang, T. “A rate dependent damage model for elastomers at large strain” Ext. Mech. Let. 

(2015) September 2016: 114-124: 277-286.  https://doi.org/10.1016/j.eml.2016.05.016 Copyright 

2016 Elsevier 

https://doi.org/10.1016/j.eml.2016.05.016
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4.1. Introduction 

The ability to predict rate and deformation dependent damage in elastomers is important for 

many applications. It has been long observed that elastomers exhibit rate dependent fracture 

behavior which is not yet fully understood [8]. Although, much of this rate dependence can be 

attributed to viscoelasticity [8], modeling attempts have been unsuccessful in fully capturing this 

effect by only accounting for viscoelasticity while using rate independent damage models [22]. In 

addition rate dependence of fracture energy has also been observed in materials which are 

essentially elastic [37]. Another contributing factor to this rate dependency is the rupture kinetics 

of the polymer chains [2, 3] or “scission”. A rate dependent damage model is important for the 

development of predictive theories in soft polymer fracture and his process has been modeled using 

rate equations derived from the concepts of “Mechanochemistry” [32] to predict the rate of rupture 

of covalent bonds, which bridge an interface, under tensile stress [2, 3].  This theory has previously 

been implemented in cohesive zone modeling which results in a traction-separation relationship 

for the interface [1, 2, 3, 6].  However, the nonlinear nature of the relationship between the force 

applied on a polymer chain and the consequent chain extension [3] can lead to large tractions that 

exceed the material’s shear modulus by orders of magnitude [38], a well-known feature of soft 

materials [39].  This presents a difficulty for analysis since such high magnitude of stress will 

generate strains well beyond the range of applicability of linear analysis. This difficultly could be 

addressed by pairing the cohesive zone model with a hyperelastic model capable of 

accommodating finite strain and there are many such models [40].  However, more recent 

experiments where rupture events are mapped using light emitting photophores [4] have shown 

that scission is not necessarily localized to a fracture plane as is assumed in cohesive zone 

modeling, but can also occur in the bulk material adjacent to the fracture plane. This observation 

indicates that it is necessary to consider bulk damage even if the fracture behavior of elastomers 

is of the primary interest. This is especially relevant for a new class of adaptable polymers with 

dynamic bonds [41] that can break and reform. Such polymers exhibit rate dependent bulk damage 

behavior under monotonic loading governed by the molecular kinetics of the dynamic bonds.  

Theoretical understanding of the mechanical behaviors of adaptable polymers requires models that 

are capable of connecting the kinetic event of bond breaking to macroscopic mechanics and 

addressing the potential coupling between mechanical stress and bond breaking kinetics.   
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There are numerous models in the literature which consider damage of elastomers.  A classical 

family of these models consider the Mullin’s effect, see for example Ogden and Roxburgh [42]; 

these models have damage functions and parameters which depend on the maximum deformation 

previously experienced by the material and as a result are rate independent.  The concept of energy 

limiters [43] has been used to generate softening hyperelastic models which mimic the mechanical 

response of elastomers undergoing damage, however, these models cannot generate rate 

dependence without considering viscoelasticity [43]. Another family of models treats damage as a 

rate dependent process where the volume fraction of undamaged material evolves temporally 

instead of being determined by deformation [21, 44, 45]. These models have been utilized to 

describe elastomers undergoing chain scission as reviewed by Wineman [21]. A model which 

combines the effects of deformation and chain scission kinetics has also been proposed [46].  In 

all these damage theories, either rate dependent or independent, the actual stress sustained by the 

damaged elastomer network is calculated by multiplying the volume fraction of undamaged 

material and the stress in the undamaged virgin network under the same deformation as the 

damaged network.  This approach provides a link between material damage and the degraded 

mechanical property, but it does require a damage function with either deformation or time as the 

controlling variable. Such damage functions are determined empirically in most existing models 

thus far. Damage models that are directly derived from microscopic physical processes (i.e. chain 

scission) have not been fully explored, which is the focus of this work.  

In this study, we develop a theoretical framework where concepts of mechanochemistry [32] 

are used to introduce rate dependent damage into elastomer constitutive models.  Specifically, we 

establish a procedure to incorporate rate-dependent scission predicted from mechanochemistry 

into certain hyperelastic constitutive models by calculating a decrease in the volumetric density of 

load bearing chains. To demonstrate the procedure we adopt the familiar Arruda-Boyce 

constitutive model [9], and a simple scission rate equation [2, 3].  In order to illustrate the 

application of the model, we present and explain the rate-dependent mechanical response produced 

by this model under uniaxial extension and cyclic uniaxial extension. The model is also shown to 

have the capability of matching experimental data for a variety of elastomers with different 

microstructures.  

This paper proceeds as follows. Theoretical details of the proposed model are presented in 

Section 4.2.  Application of the model to two examples, uniaxial tension and cyclic uniaxial 
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loading, are presented in Sections 4.3.1 and 4.3.2, respectively. Applying the model to match 

experimental data is given in Section 3.3 and Limitations and Future Perspectives are discussed in 

Section 3.4.  Conclusions are given in Section 4.4.   

4.2. Theoretical Framework  

4.2.1. Damage Model 

The theory of mechanochemistry [32] has been used to capture the effect of mechanical forces 

on the rate of dissociation of bonds and hence scission of polymer chains. It has been used to 

predict the strength of adhesives [1,2,3,6,7] based on a rate equation that calculates the areal 

density of surviving polymer chains across an interface. This rate-equation is adjusted for 

volumetric scission of chains as follows 

TkFLm Bae
Nn

dt

dN /






,  (4.1) 

where N is the number of surviving chains per unit volume,  and 
aL  are fixed parameters 

respectively representing the relaxation time and activation length for bond dissociation, F is the 

tensile force on a polymer chain, kB is the Boltzmann constant and T is the absolute temperature.  

The number of monomers per chain, nm, appears here since rupture of a single bond on the chain’s 

backbone is sufficient to break the chain – this is known as the Lake-Thomas effect [10].  Without 

considering the Lake-Thomas effect Eq. (4.1) is similar to the mechanochemistry equations used 

to predict the activation of mechanophores embedded in viscous rubbery networks [47] and 

elastomer networks [48]. While these models predict rates of mechanophore activation in a similar 

way to what we propose for rates of scission, one important difference is that the activation of 

mechanophores does not alter the mechanical property of the polymer through the introduction of 

material damage. 

Previous works have shown that it may not always be a good assumption that the activation 

length in Eq. (4.1), 
aL , is constant [3, 47].  For example, Silberstein et al. [47] used atomistic 

simulations to calculate the activation energy values at two different levels of chain force and use 

a linear function to determine 
aL , whereas Ghatak et al. [3] used a more sophisticated rate equation 

which is based upon Kramers’ rather than Eyring’s transition state theory.  In either approach 
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additional data must be specified, and for simplicity we will adopt a constant 
aL  to demonstrate 

the incorporation of mechanochemistry in the damage model. 

Isotropic damage models exist in the literature for deformation induced microstructural changes 

[20] and scission in elastomers [21] where the undamaged stress of the material is multiplied by 

the remaining volume fraction b of the original material.  In this spirit we introduce     oNtNtb /  

as the surviving fraction of chains at time t, where No is the number of original chains per unit 

volume in the undamaged material. The variable b has a value of 1 in the undamaged material and 

rate dependent scission processes cause it to decrease. However, rather than directly multiply b 

with the undamaged stress to predict the stress as in Rajagopal and Wineman [20], we will 

introduce b into the strain energy density of the material.  Specifically, for any hyperelastic model 

that is based on a polymer chain force-extension relationship, this relationship can be integrated to 

obtain the free energy stored in a chain, and multiplying this energy with the number of chains per 

unit volume gives a strain energy density oU ; there are several examples of this type of model in 

the literature [9,49]. Clearly, without damage oU  would be proportional to No. To introduce 

damage, we replace No by N(t) so that the strain energy density is in the form of 
obUU  , where 

the undamaged strain energy is multiplied by a damage variable. This form is consistent with other 

models in the literature such as those describing the Mullins effect in elastomers [40, 42].  

In constructing the undamaged strain energy density function oU , it’s generally assumed that 

the polymer chains have a single length [9,49]. However, in reality polymers are polydisperse, i.e. 

there is a distribution of chain lengths within the material.  When considering Eq. (4.1) we can 

infer that polymer chains will break rapidly when the tensile force on the chains becomes large. If 

there is only a single chain length, all chains experiencing the same deformation will have the same 

tensile force and the material can transition from undamaged state to catastrophic failure within a 

small deformation range. This is inconsistent with experimental observation [4] that scission 

occurs over a larger range of deformations.  Introducing a distribution of chain lengths allows for 

the model to accommodate this observation since chains of different lengths will experience 

different tensile forces for the same macroscopic deformation.  Polydispersity has been previously 

combined with the Arruda-Boyce hyperelastic model [48]. However, because chain scission was 

not considered, singular stresses will occur when the shortest polymer chains reach their critical 
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extension. By allowing the chains to rupture, polydispersity can be applied over a larger range of 

deformation.  To include polydispersity we introduce a distribution of polymer chain lengths and 

determine the total strain energy from the sum of the contributions of each chain length:  

    )1()(,,
1

, 


JptnUtnbU
M

i

iioii B .  (4.2) 

where     oiiii NtnNtnb /,,   are the surviving number of chains of the ith length divided by the 

initial number of chains in the material, and  )(,, tnU iio B  are the undamaged strain energy density 

associated with ith chain length. ni is a measure of the length of the chain, which depends on the 

chain model used; for a freely jointed chain it represents the number of Kuhn segments per chain 

[9]. 
T

FFB   is the left Cauchy-Green deformation tensor [40], where F  is the deformation 

gradient [64]. M represents the number of possible chain lengths, J is the determinant of the 

deformation gradient, and p is a Lagrange multiplier to enforce incompressibility.  Note that 

incompressibility is a common assumption for many elastomers since the bulk modulus is often 

much larger that the shear modulus and hence can sustain finite strains without noticeable volume 

changes [40]. The total surviving chain fraction is given by    



M

i

iit tnbtb
1

,  such that   10 tb .   

The mechanochemistry equation (Eq. (4.1)) can now be rewritten for the chain fraction, bi, 

leading to a system of equations for chains of each length 

TkFLiimi Biae
bn

dt

db /,


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

.  (4.3) 

where Fi is the force acting on a polymer chain of the ith length, and nm,i is the number of monomers 

in a chain of the ith length. If we take M = 1 (i.e., imposing a single chain length) then Eq. (4.3) 

reduces to Eq. (4.1) (with     oto NtbNtbN  1
).  

Alternative methods to compute the damage variable bt are available in literature and it is worth 

comparing several of them to Eq. (4.3). Wineman and Min [45] and Wineman [21] suggest that, 

within a range of deformation, scission is independent of deformation and write 

   oot tbtb /exp  . Differentiation with respect to time gives 
ott bdtdb //   which agrees 

with Eq. (4.3) if 
m

TkFL

o ne Ba /
/

 , that is, if the deformation is fixed so that the force on 



70 

individual polymer chains is constant, e.g. in stress relaxation. This relationship can also 

approximately agree with Eq. (4.3) if the deformation is such that the fractional extension of 

polymer chains is small. A typical nonlinear polymer chain force extension relationship is shown 

in Figure 4.1 (to be discussed later), where for small fractional extension the slope is small and the 

tensile force changes slowly with extension. When the deformation is in this regime, in Eq. (4.3) 

1
/


TkFL Biae  is approximately constant; hence dtdbi /  is nearly independent of deformation, as in 

the relationship proposed by Wineman and Min [45]. Shaw et al. [44] have shown, from stress 

relaxation experiments at high temperature, that bt can be well represented by 

   l

l

l

lt ttb  /exp
max

1




 where l  are constant coefficients,   TkTRQh Bgll //exp  are 

characteristic times, h is Planck’s constant, Rg is the gas constant, and Ql is an activation energy. 

In reality most materials have a spectrum of characteristic times, hence the summation in the model 

of Shaw et al [44].  The characteristic time was further modified by Wineman and Shaw [46], for 

temperature and shear induced scission in elastomers, to    TkTRQQh Bgll //exp    where Q 

represents the potential energy change associated with the application of stress. There are many 

similarities between this expression and Eq. (4.3), since   is based on an activation energy [2] 

similar to 
lQ , and FLa  is effectively an activation energy decrease caused by the work of the 

tensile force acting on bonds, similar to Q . One important difference is the exponential decay, 

   l

l

l

lt ttb  /exp
max

1




, as suggested by Wineman and Shaw [46]. In Eq. (4.3) if M = 1 then 

1// tt bdtdb  , and if 1  is constant this relationship can be integrated to give an exponential 

decay. However if 1  depends on time, as it would for non-constant deformation after the 

introduction of Q , the integration to determine  tbt  will not give the suggested exponential 

decay. Therefore, although altering l  using Q  as in Wineman and Shaw [46] works well for 

stress relaxation where Q  is a constant, in general there is a stronger physical basis to calculate 

tb  by numerically integrating rate equations such as Eq. (4.3).   

Another difference between our model and that of Wineman and Shaw [46] is that Eq. (4.3) has 

only a single characteristic time but a number of different lengths. Consider stress relaxation, as in 
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the experiments of Shaw et al [44], for a polydisperse elastomer. It is not difficult to imagine that 

polymer chains of different lengths will have different fractional extensions (Eq. (4.9) to be 

discussed later) and be subjected to different tensile forces (Eq. (4.7) to be discussed later). The 

physical interpretation of Eq. (4.3) is that the dissociation characteristic time is shifted by the 

tensile forces acting on each bond. In other words, if we express Eq. (4.3) in the form of 

distmt bndtdb //  , where 
dis  is an effective dissociation characteristic time, then 

TkFL

dis
Bae

/

 . Therefore in a polydisperse network the distribution in the tensile force F results 

in a spectrum of effective characteristic times even though the constant   has a single value. 

Finally, the form suggested by Wineman and Shaw [46] states  IF:P  


Q  where   is the 

molar volume, and P  is the Piola-Kirchhoff stress tensor which differs from TkFL Ba /  in Eq. 

(4.3). In Eq. (4.3) mechanochemistry theory [32] provides a simple physically motivated form for 

this term in elastomers.   

4.2.2. Stress and Dissipation 

Consider the balance of power per unit volume 

dt

dD

dt

dU

dt

dW int ,  (4.4) 

where dW/dt is the rate of work, dU/dt is the rate of change of strain energy and dtdD /int  is the 

rate of internal dissipation.  Substituting Eq. (4.2) into Eq. (4.4) expressions for the stress and 

internal dissipation can be obtained (see details in Appendix 3.1).  The stress can be determined 

from 
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where σ  is the Cauchy stress tensor.  Using Eq. (4.3) the rate of dissipation is given by 
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For simple homogenous deformations, such as uniaxial extension described in the following 

section,  tB  can be easily prescribed.  Knowing  tB  and the relationship between the 

deformations of the chain and the bulk (typically given as part of the constitutive model), Eq. (4.3) 
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must be solved to obtain )(tbi
, finally the stress and dissipation rate can be obtained from Eqs. 

(4.5) and (4.6). In cases where  tB  is not known a priori (e.g., under load control), Eq. (4.3) is 

coupled to Eq. (4.5) and the equilibrium equations for stress, which results in a system of coupled 

partial differential equations to be solved in an initial-boundary value problem. 

4.2.3. Coupling with Arruda-Boyce Constitutive Model 

In the following we discuss how to incorporate the damage model introduced above into 

constitutive models for isotropic elastomers.  While the procedure is applicable for any 

hyperelastic models based on a polymer chain force-extension relationship, the Arruda-Boyce 

constitutive model [9] will be used as an example. This model is based upon Langevin chain 

statistics [9] for which the tensile force on a polymer chain is given by 


A

Tk
F B ,  (4.7) 

where A is the Kuhn length of the polymer chains, is the inverse Langevin function defined so 

that 1coth/  cLr , nALc   is the contour length of the polymer chains, n is the number of 

Kuhn segments per polymer chain. The force extension relationship is given by Eq. (4.7) and 

plotted against 
cLr /  in Figure 4.1.  The stiffness of the chain, i.e., slope of the force-extension 

curve, dramatically increases as the fractional extension approaches unity. Integrating Eq. (4.7) 

with respect to extension gives the stored energy in a single chain and multiplying by No, the 

number of load bearing polymer chains per unit volume (of undamaged material), gives the strain 

energy density for the undamaged material [9] 
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where c is a constant to ensure that the strain energy is zero at undeformed state.  Information is 

needed to relate the chain extension to the bulk deformation B . This is accomplished using the 

affine network model where the deformation of each chain is assumed to be the same as the 

macroscopic deformation of the solid [50].  For the freely jointed chain model this assumption 

gives [9]  
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 
n

I

L

r

c 3
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 ,  (4.9) 

where  B1I  is the first invariant or trace of B . When the material is undeformed, IB  , where I  

is the identity tensor, so that 31 I , and   2/1/  nLr
ic

.  The constant c in Eq. (4.8) can therefore 

be obtained as   ioioioiii nnc ,,,

2/1
sinh/ln  


 where 

io,  is implicitly given by the 

relationship     1

,,

2/1 coth/
  ioioic nLr  .  In the presence of polydispersity, replacing n 

with each chain length ni, Eq. (4.7) provides the force, Fi, for use in Eq. (4.3), and Eq. (4.8) 

provides the strain energy density for use in Eq. (4.5).   

 

Figure 4.1. Polymer chain force, F, vs fractional extension, r/Lc for the Langevin chain used in the 

Arruda-Boyce constitutive model (Eq. (4.7)). A = 0.3nm [3], T = 293 K.   

 

4.2.4. Application to Uniaxial Extension 

The model as presented thus far would be valid for general deformation; however, to 

demonstrate the model we will focus on a uniaxial deformation state.  A schematic of a uniaxial 

deformation is shown in Figure 4.2a) where  is the stretch in the form of 

Rt1 ,  (4.10) 

with t being time and R being the rate of stretch.  
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Details for the determination of stress are given in the Appendix 3.2; here we provide a brief 

summary of the procedure.  Incompressibility requires that   1det  ttJ F  which allows for 

the determination of the unknown transverse stretch t . The stress can be evaluated from Eq. (4.5). 

In uniaxial extension there is only one non-zero stress component and the Lagrange multiplier p is 

specified to make the other components zero.  The tensor notation is therefore removed and the 

stress given below refers to the stress in the direction of extension.  Using Eq. (4.5) we get 
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which is the true or Cauchy stress and can be converted to the nominal or the first Piola-Kirchhoff 

stress using 

1P . (4.12) 

It is of interest to evaluate the total energy dissipated in stretching a sample till all chains are 

ruptured. This is accomplished by integrating Eq. (4.4) with respect to time,  

UWD int
, (4.13) 

where      tUUtUU  0  is the change in strain energy per unit volume and 

 






11

PddW . 

Material damage is often demonstrated by using cyclic loading and examining hysteresis in the 

stress between the initial loading and unloading [42].  The behavior of the damage model will also 

be demonstrated using a cyclic loading pattern as shown in Figure 4.2b).  Here we load and unload 

the sample at a constant rate i.e. Rdtd /  during loading and Rdtd /  during unloading.  

After each cycle the maximum stretch reached is increased.   
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Figure 4.2. a) Schematic of uniaxial deformation where an undeformed sample is stretched axially 

and unrestrained laterally. b) Example of constant rate cyclic stretching studied in this work; 

amplitude increases by 1 after each cycle.   

 

 

To simplify the analysis and discussion we introduce the following non-dimensional parameters 
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(4.14) 

All stresses and energy densities have been normalized with the quantity TkN Bo  which is 

proportional to the initial shear modulus of the material [40]. The governing parameters for this 

model are: 
L , ratio of bond dissociation activation length to Kuhn length; R*, normalized rate of 

separation; ni, number of Kuhn segments for the ith chain length; and nR, number of monomers per 

Kuhn length. The stresses 
*  and *P , surviving chain fraction(s) 

ib  and the dissipation *

intD  are 

desired outputs. As for the numerical values of the governing parameters used in the next section, 

nR has been set equal to 1, La has been reported as 0.1nm [29], and A for poly(dimethylsiloxane) 

is approximately 0.3nm [1] which gives 3/1L  and is used in the next section. For different 

monomer lengths and bond types L  could vary and we have performed calculations for other 

ratios between 0.1 and 0.5 (results not shown).  Different values of L  give qualitatively similar 

results with some quantitative differences where larger L  enhances the rate of scission. Since 

physical considerations restrict the range for L  to be small (La should be on the order of a bond 

length [2]), its influence is not discussed in this work. Different from L , R* can vary over many 

orders of magnitude. In a laboratory setting the rate of stretching R could be on the order of 

1/seconds to 1/hours, while in applications elastomeric components could be in service for years 

and be subjected to slowly changing loads.  The characteristic time for bond dissociation can also 

vary over a large range, for example it was reported as 1013 sec [2] for poly(dimethylsiloxane)  and 

high temperature stress relaxation experiments for natural rubber had characteristic times on the 

order of 10-2 sec to 106 sec [44]. Putting these numbers together gives an R* range of 10-10 to 1013.  

For the sake of demonstration we have chosen a range of R* from 5x102 to 5x105 which 

demonstrates both quantitatively and qualitatively the rate dependence of scission. Finally, for the 

last governing parameter ni, we have started with a Maxwell-Botzmann distribution [51], fMB(n), 

with an average chain length of 17.5. Each bi(t = 0) is determined from bi(t = 0) = fMB(ni)n (Figure 

4.3), where n is the width of the numerical bin used to discretize the Maxwell-Boltzmann 

Distribution. By neglecting (numerically) the tails once the probability dropped below a threshold, 
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the actual average of the distribution is found to be  



m

i

iiavg tbnn
1

42.170 .  A relatively short 

average chain length has been chosen for the distributions to give fast numerical calculations; 

however once the basic features of the results predicted by the model are understood the extension 

to predict the results for longer average chain lengths or other distributions should be 

straightforward.  Two cases will be considered: the polydisperse case which uses the distribution 

of chain lengths (DCL) shown in Figure 4.3, and the case where M = 1 and a single chain length 

(SCL) is chosen to be the average value (17.42) of the distribution in Figure 4.3.   

 

Figure 4.3. Distribution of polymer chain length (bi) used in this work, based on a Maxwell 

Boltzmann distribution [51] with average chain length.  Tails were neglected once the value was 

less than a tolerance and average chain length of numerical approximation is navg = 17.42.   

 

Introducing the parameters from Eq. (4.14) into Eqs. (4.3) and (4.11) gives 
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The surviving chain fraction(s), bi, are calculated by numerically solving Eqs. (4.15) using the 4th 

order Runge-Kutta method with adaptive step size control [24]. The inverse Langevin function 

value is obtained using the Newton-Raphson method. Stresses and strain energy can be directly 

evaluated once bi and i  are known at each .  Dissipation and work can be obtained by integration 

of the data (non-dimensional versions of Eqs. (4.6) and (S11) in the Appendix 3) using the 

trapezoid rule.   

4.3. Results and Discussion 

4.3.1. Uniaxial Extension 

In Figure 4.4a) the surviving chain fraction, bt, is plotted against stretch , for SCL (black 

curves) and DCL (blue curves) models. For each model four different rates R* were used, and the 

results are represented with different line styles. Initially, the material is unstretched and 

undamaged, i.e.  = 1 and bt = 1. Then the material is stretched with a constant normalized stretch 

rate R* until bt = 0; however, the way in which bt proceeds from 1 to 0 depends on the model and 

rate of stretching. From Eq. (4.15), slower stretching rates result in more negative initial slope, i.e., 

the chain fraction will decrease more rapidly with stretch. This is because bond rupture is an 

irreversible process and slower stretching implies that more time has passed in reaching a given 

stretch, which allows more bonds to overcome the energy barrier for dissociation leading to more 

ruptured chains.  For SCL as the stretching rate R* is increased the curves increasingly resemble a 

reverse step. Here all chains rupture when the stretch reaches a critical value where the chains 

approach the fully extended state with extremely large chain tension. For DCL there is no longer 

a single critical chain extension where all chains in the material catastrophically rupture. Rather, 

shorter chains will reach their critical extension first and rupture at lower stretch.  As the stretch 

continues to increase longer chains will reach their critical extension and rupture. This behavior 

results in the progressive decrease in surviving chain fractions observed for DCL in Figure 4.4a).   

The nominal stress P* is plotted against the stretch in Figure 4.4b).  As in Figure 4.4a) there are 

curves for both SCL and DCL at four stretching rates. Here we see that at a stretch of unity the 

stress is zero, further stretching causes the stress to increase and reach a maximum. Finally the 

stress decreases to zero as all chains are ruptured.  At small stretches ( < 4) SCL and DCL predict 

similar stresses.  For intermediate stretches (4 < < 7) the DCL stress increases more gradually 

and reaches a lower peak in comparison to SCL. This is because for a distribution of chain lengths, 
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at a given stretch, only a small fraction of chains will approach their fully extended state. For larger 

stretches (> 7), the SCL stress decreases catastrophically, while the decline is gradual for DCL, 

since the distribution results in more gradual scission of chains seen in Figure 4.4a). If we compare 

the curves at different stretching rates we can see that faster stretching results in higher peak 

stresses.  To explain, consider the kinetics in Eqs. (4.15). At higher rates R*, on average a polymer 

chain will survive to a larger extension before rupture, as seen in Figure 4.4a).  This additional 

extension results in larger polymer chain forces and therefore larger stresses.   
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Figure 4.4. Plots for a) surviving chain fraction, bt, and b) nominal stress, P*, obtained by varying 

the stretch  while holding L = 1/3, navg = 17.42 for the SCL model (black) and ni from Figure 4.3 

for the DCL model (blue).  Each curve in these figures represents a different use of the SCL/DCL 

model and four different stretching rates as indicated in the legend.   
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In Figure 4.5a) we plot the work, internal dissipation and change in strain energy against the 

stretch.  This data corresponds to R* = 5000 in Figure 4.4. The work W* represents the area under 

the stress-stretch curves shown in Figure 4.4b). Both the work and the internal dissipation are 

monotonically increasing functions.  However, the change in strain energy is non-monotonic: it 

first increases, reaches a peak and decreases afterwards. This behavior is caused by two competing 

effects: increased deformation which results in higher elastic energy in the chains and decrease in 

chain density due to scission. At low stretches the work is efficiently transformed into strain energy 

and dissipation is negligible. At larger stretches the rate of scission, dbi/dt, increases and by Eq. 

(4.6) the dissipation becomes non-negligible; coinciding with this we can see that the rate of 

increase in strain energy becomes less than that of the work (this is clearer for DCL).  As the 

stretches further increase, the rate of scission continues to rise, which causes the strain energy to 

decline. This decline implies that the rate of dissipation can be greater than the rate of work which 

is evident by comparing slopes of curves in Figure 4.5a).  It is interesting to note that when 

comparing SCL and DCL the work and dissipation both achieve close to the same maximum 

values.  To examine if this is true at other rates, the total dissipation (in rupturing all chains) is 

shown in Figure 4.5b) for the four stretch rates R* presented in Figure 4.4. Much like the peak 

stresses in Figure 4.4b) the total dissipation increases with increasing stretch rate because at faster 

stretch rates on average the polymer chains will have greater stretch and will release more energy 

when they rupture.  Interestingly, although the stress-stretch curves are drastically different, there 

is very little difference in dissipation between the SCL and DCL models.   
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Figure 4.5. a) Plots of the work done on the sample W*, energy dissipated Dint*, and change in 

strain energy U* vs. the stretch  obtained by varying the stretch  while holding the stretch rate 

R* = 5 x 103, L = 1/3, navg = 17.42 in SCL model (black) and ni from Figure 4.3 for the distribution 

model (DCL, blue).  Each curve in these figures represents a different energy quantity obtained 

using either SCL or DCL model as indicated in the legend. b) Plots of the total Dissipation (Dint*), 

vs. rate of stretching R*, in stretching the sample until all chains are ruptured. The two curves 

represent the two chain models (SCL and DCL) as indicated in the legend. 
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4.3.2. Cyclic Loading 

With the DCL model, shorter chains fail first and progressively longer chains fail with 

continued stretching.  The failure of these chains damages the material so it is of interest to see 

how the material behaves under cyclic loading. Results for bt (Figure 4.6a),c),e),g)) and 

engineering stress (Figure 4.6b),d),f),h)), under cyclic uniaxial loading, are plotted against stretch 

for the four values of R* in Figure 4.4. All results are obtained using the DCL model. Loading is 

shown in blue and unloading is shown in black. Since in some cases the unloading and reloading 

curves are nearly coincident, it is constructive to consider a typical unloading/reloading cycle for 

R* = 5x105, ABC in Figure 4.6a)-b). At point A the sample has reached the maximum stretch 

for the current cycle. Damage has occurred due to the loading history, and we can see from Figure 

4.6a) that bt has reduced to 0.6 (i.e. 60% surviving chains).  During unloading along the black 

curve from A to B, negligible additional scission occurs and bt remains constant (horizontal curve 

in Figure 4.6a)) till point B, where the sample becomes unstretched and has zero stress.  Since 

from A to B, the material is already damaged (bt = 0.6) and weaker compared with the original 

undamaged material, there is stress hysteresis in Figure 4.6b) between the black curve (unloading) 

from A to B and the blue curve representing initial loading to point A.  During reloading from B 

to C up to the point where the stretch at A ( = 6) is reached there is negligible additional scission, 

bt is still constant and the unloading and reloading stress curves are coincident in Figure 4.6b). On 

curve BC once the stretch at A is exceeded ( > 6) further damage occurs (decline in bt in Figure 

4.6a)), since now we are exceeding the previous maximum stretch and causing progressively 

longer chains to rupture due to reaching their critical extension.  If we compare Figure 4.6a)-b) 

with the R* = 5x105 (DCL) data in Figure 4.4a)-b) we can see that the envelopes are nearly 

identical.  For this stretching rate the amount of scission is controlled by the maximum previous 

stretch in the material; this behavior closely resembles that of the classical Mullins effect [42] in 

elastomers. For R* = 5x104 the results are shown in Figure 4.6c)-d) and the behavior is qualitatively 

very similar to that of the faster case. Like Figure 4.4b), the peak stress in the envelope is smaller 

for slower stretching. There is also a subtle difference between the unloading and reloading curves 

which is visible as a slightly smaller stress when the reloading reaches the previous maximum 

stretch (most visible in the stress Figure 4.6d) at = 7 or 8).  This difference becomes more 

pronounced in Figure 4.6e)-f), as the stretch rate is further decreased to R* = 5000.  At this 

relatively slow stretch rate a small amount of scission is evident from A to B in Figure 4.6e); most 
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of which occurs during the initial phase of the unloading where stretch is highest.  Upon reloading 

from B to C scission also becomes noticeable once the stretch at A is approached, and as a result 

when we return to the stretch at A ( = 6) on the reloading curve the stress is slightly lower (Figure 

4.6f)).  Finally, at the slowest stretch rate considered here, R* = 500 shown in Figure 4.6g)-h), 

scission is prevalent along the entire loading history, and significant hysteresis is observed during 

both unloading and reloading. The peaks stress and the stretch at which all chains rupture (i.e. 

complete damage) are also significantly decreased. 
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Figure 4.6: a), c), e), g) surviving chain fraction, bt, and b),d),d),h) nominal stress, P*, obtained 

by varying the stretch  cyclically while holding L = 1/3.  Loading and unloading curves are 

indicated in the legend.  a),b) are for a stretch rate of R* = 5 x 105. c), d) are for a stretch rate of 

R* = 5 x 104. e), f) are for a stretch rate of R* = 5 x 103. g),h) are for a stretch rate of R* = 5 x 

102. 
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4.3.3. Comparison with Experiments 

In this section we demonstrate how the presented model can be applied to match experimental 

data for a variety of materials While this model has a strong physical interpretation when applied 

to unfilled elastomers, its usage should not be limited to this single type of material, and can be 

extended to other types of elastomers which may have damage mechanisms other than chain 

scission. In these cases it should be thought of as a phenomenological model which, compared 

with other phenomenological models that may exist, has the advantage of being able to predict rate 

dependent damage.   

The first comparison we present is for the uniaxial extension test of an abdominal aortic 

aneurysm [52].  The comparison is given in Figure 4.7 where it can be seen that the theory is able 

to provide a good fit to the data.  The same data were also fitted with an energy limiter model [52], 

so it is prudent to discuss the key differences between our model and the energy limiter model. 

The energy limiter approach is a softening hyperelastic model; it generates a stress vs. stretch 

relationship which mimics that of an elastomer undergoing damage.  However, being a softening 

hyperelastic model there is no dissipation and during unloading the material would exactly follow 

the loading path backwards. The model presented in the present work has well defined positive 

dissipation (Eq. (4.6)), which allows for the prediction of the hysteresis between loading and 

unloading as demonstrated in Figure 4.6. The energy limiter model also has a parameter m which 

controls the sharpness of the transition to material instability [53]. Small values of m (m = 1) 

qualitatively resemble the DCL result in Figure 4.4b) while as m is increased the results 

qualitatively approach the SCL results in Figure 4.4b).  The model can phenomenologically 

capture rate dependent damage if the limiting strain energy were set to be dependent on the 

deformation rate; however this approach may be challenging to implement for cases with spatially 

nonuniform deformations or deformation rates that vary over time.    
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Figure 4.7: True stress (N/cm2) vs stretch showing the comparison between theory and 

experimental data for the uniaxial extension of an abdominal aortic aneurysm.  Experimental data 

taken from Volokh and Vorp [52]. Fit was obtained by setting NokBT = 11.32 N/cm2, R* = 5 x 104, 

L = 1/3, chain length distribution was a shifted Maxwell-Boltzmann distribution (see Appendix 

3.4) with average chain length = 1.65 and no = 1.2.   

 Under cyclic loading we have observed that the mechanical response predicted by our 

model at fast stretching rates is qualitatively similar to that of the Mullins’ effect in filled 

elastomers.  It is possible to adjust the parameters in the model to obtain good agreement with 

cyclic uniaxial extension experimental data where the Mullins’ effect is prominent (Figure 4.8).  

The experimental data has been taken from [54] for GR-S tread vulcanizate.  Since the damage in 

filled elastomers is generally thought to be rate independent and only depend on the previous 

maximum stretch of the material, we adjust the kinetic parameters to make the rate-dependent 

model approach the rate independent limit (accomplished by choosing a fast deformation rate R* 

= 5 x 104).   
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Figure 4.8: True stress (N/cm2) vs stretch showing the comparison between theory and experimental data for cyclic loading of a 

GR-S tread vulcanizate.  Experimental data taken from Mullins and Tobin [54].  Fit was obtained by setting NokBT = 63.77 N/cm2, 

R* = 5 x 104, L = 0.04, chain length distribution was a shifted Maxwell-Boltzmann distribution (see Appendix 3.4) with average 

chain length = 12.2 and no = 1.   

 

 The third comparison we make is with the cyclic loading of a triple network (TN) elastomer 

[4].  In the TN elastomer the chains of the first network are prestretched when the second and third 

networks are added.  Due to the nonlinear feature of a polymer chain force extension relationship, 

the force of a prestretched chain will decrease more rapidly when deformation is decreased.  To 

capture this behavior we alter the deformation gradient used in the evaluation of stress to account 
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for prestretch; this procedure is described in Appendix 3.3.  The second and third networks are 

neglected in the derivation and the chain length distribution of the first network is tuned to match 

the experimental data.  Similar to what was done for the filled elastomer data we obtain reasonable 

agreement with the experimental data as shown in Figure 4.9.  The primary discrepancy between 

the model and the experimental data is that the experimental data has noticeably lower stress during 

the low stretch portion of unloading.  This discrepancy could be reduced with a constitutive model 

that explicitly considers the stress contribution resulting from the second and third networks.   

 

 

Figure 4.9: True stress (MPa) vs stretch showing the comparison between theory and 

experimental data for the cyclic loading of a TN elastomer.  Experimental data taken from Fig 4C 

of Ducrot et al. [4].  Fit was obtained by setting NokBT = 0.132 MPa, R* = 5 x 104, L = 0.05, 

chain length distribution is shown in Figure A3.1 in the Appendix.   
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Through the three comparisons above, we have demonstrated that the model can provide good 

fit to experimental data in absence of rate dependency. However, it should be emphasized that the 

most novel feature of the model is the capability of predicting rate dependent mechanical behaviors 

of elastomers. No comparison is made here with experimental data involving rate dependency 

because in reality the mechanical responses of elastomers have additional sources of rate 

dependence, such as viscoelasticity. To compare the model with experimental data which also 

exhibits viscoelasticity, ongoing work will be to couple our model with existing viscoelastic 

models.  In addition, recently there has been an increase in research into the use of dynamic bonds 

to create structurally dynamic polymers [41].  In this type of material it is very important to have 

a rate dependent damage model.  For example in the transient networks studied by Meng et al [55] 

a higher peak stress was observed for faster deformation rates; which is in qualitative agreement 

with the results of our model shown in Figure 4.4b).  We will not attempt to match experimental 

data for this class of materials as these materials also exhibit features such as rearrangement of 

crosslinks and reforming of physical bonds [55] which is beyond the scope of this work.   

 

4.3.4. Limitations and Future Considerations 

A damage model was developed to incorporate rate dependent scission into constitutive models 

for isotropic elastomers undergoing large deformation. While we used the Arruda-Boyce 

constitutive model [9] as an example, it can be used with any constitutive model which is based 

upon a polymer chain force extension relationship and a volumetric density of polymer chains. 

The polymer chain force plays an important role in the rate of scission. Upon reviewing the results 

it is clear that in many cases the vast majority of polymer chains rupture at large chain extensions 

(close to being fully extended) where there is a singularity in the force-extension relationship. One 

limitation is that the tensile force on the chain, which is determined from configurational entropy 

[9] of a freely jointed (but inextensible) chain, is not entirely accurate when the chain approaches 

fully extended state.  If a force extension relationship which can capture the transition from 

entropic to enthalpic (stretching of bonds, deformation of bond angles) deformation is used it could 

quantitatively impact the results and increase the rate-dependency of the dissipation.   

Although one of the motivating factors for the development of the model was fracture of 

elastomers for the examples presented here, to demonstrate the model, we have assumed that the 
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deformation and all damage remain homogenous throughout the entire process until all chains have 

been ruptured.  In reality this would not be possible as small defects will cause unstable localized 

damage which would result in premature failure of the sample as observed in the experiments [4, 

52].  Our damage model is applicable to general inhomogeneous deformations, and can describe 

localized damage when implemented in a computational model with defined defect geometry.  As 

such, one area of our ongoing research is to apply the damage model to rate dependent crack 

initiation and propagation in viscoelastic elastomers. The use of a continuum model with damage 

will eliminate the need for a cohesive zone model.  Allowing for damage in the vicinity of the 

crack tip should provide physical insight into the processes occurring in this area.  

4.4. Conclusion 

A model which considers scission in elastomers was developed to study rate-dependent damage 

under large deformation.  The model was demonstrated using uniaxial extension with constant 

strain rates and cyclic loading for the Arruda-Boyce hyperelastic model. Adding scission allows 

for the prediction of rate dependent maximum stress, with faster deformations reaching higher 

maximum stresses.  One feature of the model, the consideration of polydispersity (distribution of 

chain lengths), results in progressive damage during stretching as scission gradually occurs in 

chains of increasing length. The model has allowed for the prediction of a variety of interesting 

behaviors under cyclic loading. For fast stretching the damage due to scission is completely 

controlled by the maximum previous stretch. Negligible scission occurs during unloading a 

reloading until the previous maximum stretch is exceeded.  This behavior closely resembles the 

ideal Mullins effect in rubbers.  As the stretching rate is decreased, the rate dependency of chain 

rupture causes the amount of scission during unloading and reloading cycles to increase, 

accompanied by greater hysteresis.   
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4.5. Nomenclature 

Note non-dimensional variables are given in Eq. (4.14) 

A Kuhn length 

 tb  Surviving chain fraction 

 tnb ii ,  Surviving chain fraction for chain of length in  

T
FFB   is the left Cauchy-Green deformation tensor 

  Inverse Langevin Function 

intD  Dissipation per unit volume 

F   is the deformation gradient 

F  is the tensile force on a polymer chain 

 B1I  1st Invariant of B  

J   is the determinant of the deformation gradient 

kB  is the Boltzmann constant 

aL  activation length  

  Stretch 

t  Transverse stretch 

N Volumetric Density of load bearing chains 

oN  Initial Volumetric Density of load bearing chains 

nm The number of monomers per chain 

ni  is a measure of the length of the chain 

p  is a Lagrange multiplier to enforce incompressibility 

P Uniaxial extension 1st Piola Kirchoff stress component 

r Polymer chain end to end length 

R Stretch Rate 

σ  is the Cauchy stress tensor 

  Uniaxial extension Cauchy stress component 

  relaxation time for bond dissociation 
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T  is the absolute temperature 

t time 

U  Strain energy density 

oU  Undamaged Strain energy density 

W Work per unit volume 
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Chapter 5. A continuum model for progressive damage in 

tough multinetwork elastomers 

 

Abstract 

Recently a class of multinetwork elastomers (MNEs) was developed by swelling a primary 

polymer network with monomers that are subsequently polymerized to form filler networks. Such 

MNEs were reported to possess remarkable stiffness and fracture toughness while maintaining the 

ability to sustain large deformation as found in simple elastomers.  The enhancement in toughness 

is attained by prestretching the chains of the primary network through the introduction of one or 

more filler network(s), thereby promoting energy dissipation through chain scission in the primary 

network.  In this work, a model to capture the mechanical response of MNEs was developed, and 

validated with experimental data.  Prestrech of the polymer chains is incorporated into the model 

by basing the strain energy of the material on the combined effect of swelling and subsequent 

deformation of the completed MNE.  The primary network is modeled as a polydisperse network 

of breakable polymer chains with nonlinear chain elasticity, while the filler networks are modeled 

using the generalized neo-Hookean model.  Although the primary network occupies only a small 

fraction of the material volume, the model shows that it contributes the majority of the stress.  

Finally, the hysteresis during cyclic loading was found to correlate with the accumulation of 

damage in the primary network during each cycle.   
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5.1. Introduction 

Elastomers are widely utilized in many industrial and biomedical applications due to their 

ability to undergo large and reversible deformations.  In most of these applications, from traditional 

industrial applications (e.g. tires) to emerging technologies (e.g. soft robotics and stretchable 

electronics), elastomeric components are required to sustain certain levels of mechanical loading. 

Therefore, it is desirable to design elastomers with high fracture toughness to enhance their load 

carrying capabilities.  The first theory describing the intrinsic or threshold fracture of elastomers 

(in the absence of viscoelastic dissipation) was presented by Lake and Thomas [10], which states 

that all bonds on a polymer strand between two crosslinks must be stretched to the breaking point 

before one bond ultimately fails.  Thus, the energy to rupture a single polymer strand should scale 

linearly with the length of the strand l. As a result, the intrinsic fracture energy, estimated by 

multiplying the energy to rupture a single chain with the areal density of polymer chains across 

the fracture plane (~ l−1/2), scales with the square root of the average chain length (i.e. ~ l1/2).   A 

consequence of this mechanism is that any attempt to increase the stiffness of an elastomer, by 

increasing the density of crosslinks and thereby decreasing the average chain length, will also 

make the elastomer more brittle with a decreased intrinsic toughness. This trade-off between 

stiffness and toughness has been observed in many experimental data [56, 57].   

Another route to improve the fracture resistance of materials is to introduce bulk energy 

dissipation mechanisms, which can lead to the formation of a dissipation zone surrounding a crack 

[72]. The dissipation zone can prevent the energetic driving force for crack growth, supplied by 

external loading, from being fully delivered to the crack tip, which enhances the apparent fracture 

toughness without changing the intrinsic toughness. This is the underlying mechanism for 

toughness enhancement in filled elastomers [42, 54] where chains can attach and detach from filler 

particles embedded in the elastomer to dissipate energy, in viscoelastic elastomers[8] where 

molecular friction provides dissipation, and in interpenetrating networks where dissipation is 

introduced through the damage of sacrificial networks [58, 59].  The last strategy, i.e. 

interpenetrating networks, has been implemented in numerous gel systems [58-62], but was only 

realized in elastomers very recently [4], where a variable fraction of prestretched chains can be 

built into the elastomer network to control the extent of chain rupture and energy dissipation.   
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 Such interpenetrating multinetwork elastomers (MNEs), as described by Ducrot et al. [4], 

were created by first forming a crosslinked elastomer, i.e., the “primary” network.  This elastomer 

was then swollen using a solution containing monomers, during which chains of the primary 

network were stretched.  These monomers were then polymerized in place to form a ‘filler’ 

network embedded in the primary network.  This procedure was repeated to introduce additional 

filler networks and further stretch the chains in the primary network.  To monitor the extent of 

damage, bond rupture in the primary network around a crack tip was mapped by introducing light 

emitting photophores into the network. It was hypothesized that the prestretched primary network 

makes the dominant contribution to stress, while the filler networks mainly serve to prevent large 

cracks from forming [4].  Validation of this hypothesis, however, is still difficult within the 

experimental instrumentation. Also, a systematic study of how physical parameters, such as degree 

of crosslinking and prestretch, impact macroscopic mechanical and fracture behaviors is necessary 

to optimize the stiffness and toughness of the MNEs, which is challenging with these types of 

time-consuming experiments.  Hence, there is a need to develop quantitative models which can 

describe the mechanical response of this new class of materials.  Such models will allow for an 

investigation of the relative contributions of each network to the stress.  Implementation of such 

models in finite element analysis will allow for a systematic study of the impact of MNE 

parameters on the fracture toughness, e.g. how the size of the damage zone around crack tip 

depends on bulk material properties.   

 One model has been recently presented for this class of material [63] which is based upon 

the Mullins effect.  In this work, we develop another constitutive model for the MNEs which differs 

from the previous model in that it considers the physic of polymer chains in the network.  Hence 

all parameters which describe the model have a physical interpretation, which allows for greater 

insight into how changes to the design of the material will impact the mechanical response.  

Prestretch of polymer chains is introduced by accounting for the network dilation caused by 

swelling. Hence each network in the MNE is assigned a unique relaxed state and the respective 

strain energies are calculated based on different deformations.  Because the primary network 

contains a much higher density of crosslinks and the chains are more severely prestretched than 

the filler networks, different material models are used to quantify the strain energy contribution 

from each network.  For the primary network the strain energy is based upon a chain elasticity 

model that couples configurational entropy with deformation of bonds on the backbone of the 
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polymer chain.  On the other hand, the filler networks which contain relatively long and loosely 

crosslinked chains are modeled using a generalized neo-Hookean model [65]. Progressive damage 

in the primary network is captured using a kinetic model describing chain rupture, while chain 

rupture in the filler networks is neglected. 

 The paper proceeds as follows. The experimental procedures to synthesize MNEs and the 

subsequent uniaxial tensile testing method are given in Section 5.2.  Formulation of the model is 

presented in Section 5.3 which is divided to present the combined kinematics of swelling and MNE 

deformation in Section 5.3.1, and the material models in Section 5.3.2.  In Section 5.4, the model 

is applied to uniaxial extension and is compared with experimental data.  Conclusions are given in 

Section 5.5.   

 

5.2. Material and experimental methods 

5.2.1. Reactants 

The monomer ethyl acrylate (EA) and the crosslinker 1,4-butanediol diacrylate (BDA) were 

purified over a column of activated alumina to remove the inhibitor. The UV initiator, 2-hydroxy-

2-methylpropiophenone (HMP) was used as received. Ethyl acetate was used as the solvent. All 

reagents were purchased from Sigma Aldrich. 

5.2.2. Synthesis 

The synthesis of the MNEs was carried out in a glove box (Mbraun Unilab) under nitrogen 

atmosphere to avoid side reactions with oxygen in the air. Before introduction into the glove box, 

every reagent and solvent were bubbled with nitrogen for 45 minutes to remove the dissolved 

oxygen. The reaction was triggered by UV light (Vilbert Lourmat lamp, model VL-215.L, focused 

on 365 nm). The UV power was kept low (10 μW/cm²) to create slow polymerization.  

The preparation of MNEs is carried out in the following waytarting from monomers, a first 

network (i.e. the primary network) is synthesised, and then multiple steps of swelling and 

polymerization are conducted to create a multiple network.  

5.2.3. Synthesis of the primary network 
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The primary network was prepared from a solution in ethyl acetate consisting of: EA the monomer 

(50 wt %), BDA the crosslinker (1.45 mol % relative to monomer) and HMP the UV initiator (1 

mol % relative to monomer). The solution was cast in a 1 mm thick glass mold and the reaction 

was initiated by UV for 2 hours. After synthesis, the sample was washed and dried to remove 

unreacted species and free chains as described in [4, 66]. This single network (SN) is then fully 

dried under vacuum at 80 °C. 

5.2.4. Preparation of MNEs with a controlled swelling of the primary 

network  

The synthesis method previously described in [4, 66] has been adapted to obtain a larger range 

of swelling states of the primary network. The primary network was swollen to equilibrium in a 

bath composed of monomer and solvent. At equilibrium, a swollen piece of the network was 

removed from the bath, sealed between PET sheets, and tightened between glass plates. Then a 

second polymerization, in a similar manner to that of the primary network, was conducted.  Then 

the sample was dried under vacuum at 80 °Cover night to remove the solvent. The resulting 

material is a double network (DN) elastomer, and its synthesis procedure is schematically depicted 

in Figure 5.1. This procedure can be then repeated multiple times leading to the creation of a triple 

network (TN), a quadruple network (QN) and so on, with different volume fractions of each 

network.  
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Figure 5.1: Schematics of the synthesis procedure of a double network MNE 

 

5.2.5. Characterization of the synthesized materials 

To characterize the composition of synthesized MNEs, the mass of a sample is carefully 

measured after each step. Assuming that (i) all networks have the same density and (ii) the swelling 

of the networks is isotropic, the prestretch of the primary network 0  can be quantified using the 

measured masses as follows 

3

0

11 1


 

N

N
m

m
,   (5.1) 

where 
1

N  is the volume fraction of the primary network in an MNE consisting of N networks, 1m  

is the mass of the SN sample, and 
Nm  is the mass of the MNE sample.  
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5.2.6. Mechanical Tests 

 

Mechanical tests were performed on a standard tensile Instron machine (model 5565) using a 100 

N load cell. A video extensometer gave a local measurement of the stretch λ = L/L0 where L0 is 

the initial length and L is the corresponding deformed length. The relative uncertainty of the 

measurements given by the load cell and the video extensometer are respectively 0.1 % in the 

range of 0 to 100 N and 0.11 % at the full scale of 120 mm. Specimens were cut into a dumbbell 

shape using a normalized cutter (central part: length 20 mm, cross-section 4 mm and thickness 0.6 

– 2.5 mm depending on the sample). Uniaxial tensile tests from small to large strain were 

performed at a constant 500 µm.s-1 crosshead velocity and the typical stretch rate on the central 

part of the sample was around �̇� = 0.04 s-1.  

5.2.7. Set of materials 

 

Mechanical properties of the MNE can be influenced by several factors [4]: (i) number of 

networks, (ii) type of monomers used in each network, (iii) type of crosslinker, (iv) concentration 

of crosslinker, and (v) degree of swelling which can be changed by adding a certain amount of 

solvent to the solution of monomers.  In this work, results from our theoretical modeling will be 

compared with experiments on MNEs in which all networks are comprised of Ethyl Acrylate (EA) 

but with different crosslinker concentrations and prestretches in the primary network. To be 

consistent with existing report [67], we use the following notation to denote different MNEs: 

EAeX(Y)EA 

EA: ethyl acrylate, monomer of the primary network 

e: ethyl acetate has been used for the synthesis 

X: mol % of crosslinker used for the synthesis of primary network  

(Y): Y=λ0, prestretch of the primary network  

EA: ethyl acetate, monomer of filler networks.  
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A summary of the experimental datasets used in this work is given in Table 5.1.  A tag is added to 

each elastomer for a simplified notation as well as to indicate the number of networks. We will be 

referring to these tags when comparing the modeling results with experiments later. From the base 

SN elastomer three DN elastomers (DN1-3), with different pre-stretches, are created by controlling 

the ratio of monomer to solvent during swelling. Three TN elastomers, with different pre-stretches, 

are synthesised from the DN elastomers; e.g. TN1 is synthesised from DN1.  Measurements were 

also taken for the filler network alone (F), where the crosslinker concentration (0.01 mol%) is 145 

times less than that used in forming the primary network. Finally additional DN and TN data were 

extracted from Ducrot et al [4], DNP and TNP, where the synthesis procedure was similar to that 

of DN3 and TN3 with the exception that a photophore, chemiluminescent crosslinker 

bis(adamantly)-1,2-dioxetane bisacrylate, was used in place of BDA.   

Table 5.1: Set of MNEs Investigated 

Sample name λ0 SN wt% 

 1100 N  

Type of 

network 

Number of 

polymerization 

steps 

Tag 

EAe1.45(1) 1 100 SN 1 SN 

EAe1.45(1.32)EA 1.32 42.0 DN 2 DN1 

EAe1.45(1.51)EA 1.51 29.2 DN 2 DN2 

EAe1.45(1.68)EA 1.68 20.5 DN 2 DN3 

EAe1.45(2.18)EA 2.18 9.52 TN 3 TN1 

EAe1.45(2.41)EA 2.41 7.39 TN 3 TN2 

EAe1.45(2.55)EA 2.55 6.06 TN 3 TN3 

EAe0.01(1) 1 100 Filler 1 F 

EAe1.45(1.48)EA [4] 1.48 30.8 DN 2 DNP 

EAe1.45(2.72)EA [4] 2.72 4.97 TN 3 TNP 
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5.3. Model  

5.3.1. Kinematics 

5.3.1.1. Swelling 

We number the networks by the order i ( Ni 1 ) in which they were added to the 

material, where N is the total number of networks which comprise the material: for a SN N = 1, 

for a DN N = 2, and for a TN N = 3.  Each swelling operation is denoted using the index j which 

runs from 1 to a maximum value of N−1.  It is assumed that the swelling is isotropic so that the 

deformation gradient that maps the network before swelling to its new configuration after swelling 

is in the form of  

  IIΦ sjsjj J 
3/1

,  (5.2) 

where sj  is the isotropic stretch during the jth swelling,  3det sjjsjJ  Φ  is the volume ratio 

before and after the jth swelling, and I  is the second order identity tensor.  The relaxed 

configuration of each filler network, i.e. the configuration just after this very filler network was 

polymerized inside the material, will be used as the reference configuration of the filler network 

from which we measure its deformation.  After the jth swelling we obtain a MNE, and if the 

configuration at this point is set to be the reference configuration of the MNE, the deformation 

gradient that maps the ith network from its relaxed configuration to the reference configuration of 

the MNE after the jth swelling is  

  IIΦΦ 
















 



j
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j
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k

i

j J 
3/1

,  (5.3) 

where  notation indicates multiplication.  For example, consider a TN elastomer just formed (N 

= 3, j = 2), the total swelling deformation gradients are given by 12

1

2 ΦΦΦ   for the primary 

network, 2

2

2 ΦΦ   for the second network, and IΦ 
3

2  for the third network.  Note that the  

notation returns 1 for an empty product, e.g. for a SN elastomer IIΦ 







 



0

1

1

1

k

sk .  Using Eq. 

(5.3) we can define the ratio between the volume of the ith network after the jth swelling and its 

volume when it is first introduced:  
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det Φ .  (5.4) 

In writing the constitutive relationship for this material the contribution from each network 

will be considered; hence it is necessary to determine the volume fraction of each network that 

makes up the total MNE volume.  The volume fraction that the ith network occupies in the material 

when it is first introduced (j = i − 1) is given by  

   11

1
1

1

1






 iJ is

i


 (5.5) 

which can be explained as follows. After introduction of the ith network with the ( 1i  )th swelling, 

the volume of the MNE is increased by a factor of  1isJ . Assuming all the original material 

remains intact after swelling, the volume fraction of the original material after this swelling 

becomes   
1

1s i
J




.  Since the newly introduced filler network occupies the remaining volume, its 

volume fraction is given by   
1

1
1

s i
J




 .  Similarly, subsequent introduction of additional filler 

networks with the jth swelling causes the volume fraction of the existing networks to be divided 

by a factor of sjJ .  Therefore, if we extend this idea the volume fraction of the ith network when 

N networks are present (j = N − 1), denoted by 
i

N , is obtained by dividing the initial volume 

fraction 
i  by  

i

NsJ 1   

 
i

Ns

i

i

N
J 1




 ,  (5.6) 

where  
i

NsJ 1  is given by Eq. (5.4). Note that Eq. (5.1) is a special case of Eq. (5.6).  

5.3.1.2. Deformation 

If the MNE, after all swelling operations ( 1 Nj ), is then mechanically deformed, the 

deformation gradient which maps the reference (i.e. relaxed) configuration of the ith network to the 

current configuration when N networks are present is given by  

 
i

N

i

N 1 ΦFF , (5.7) 
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where F  is the deformation gradient that maps the MNE configuration after all swelling to its 

deformed configuration.  Eq. (5.7) can be understood by considering the example of a TN 

elastomer for which a schematic of the deformation gradient is shown in Figure 5.2.  Four 

configurations are shown: A when the primary network is formed, B after the primary network has 

been swollen by a filler network, C after the DN material in configuration B has been swollen by 

an additional filler network to create a TN, and D after the TN elastomer in configuration C has 

been mechanically deformed.  A is the relaxed configuration for the primary network, B is the 

relaxed configuration for the second network, and C is the relaxed configuration for the third 

network.  C also represents the reference configuration for the completed TN elastomer relative to 

which subsequent mechanical deformations are measured.   
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Figure 5.2: Deformation map for a TN elastomer showing reference configurations for the 1st (A),  

2nd (B), 3rd (C) networks and the deformed configuration (D).  The deformation gradients which 

relate these configuratiolns are shown schematically.   

 

Spatial forms of constitutive relations are often written in terms of the invariants of the left 

Cauchy-Green deformation tensor defined as 
TT

BFFB   [68].  Since the swelling pre-deforms 
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the material we introduce the left Cauchy-Green deformation tensor for each network i, denoted 

by 
i

NB , which captures both swelling and post-swelling deformation:  

          BFFΦFΦFFFB
3/2

1

2
1

11

i

Ns

T
N

ik

sk

Ti

N

i

N

Ti

N

i

N

i

N J 





 







  . (5.8) 

The first, second and third invariants of 
i

NB are respectively given by 
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and 
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where 
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In many cases the deformation of the completed MNE can be assumed to be incompressible so 

that   1det F .  In this case  
i

Ns

i

N JJ 1 . 

 

5.3.2. Constitutive Model 

The total strain energy per unit volume of the MNE is assumed to be the sum of the 

contributions from each network (  i

N

i
NU B ) weighted by its volume fraction (

i

N ), or 
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 .  (5.13) 

If we assume that the completed MNE is incompressible under further deformation, the Cauchy 

stress can be computed as follows (see Appendix 4.1) 
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where p is a Lagrange multiplier used to satisfy incompressibility and 
i

Nσ  represents the 

contribution to the Cauchy stress from network i and is given by 

 
IB

B

B
σ

ii

Ni

N

i

N

i

ii

N p
U N





 2 .  (5.15) 

Here 



N

i

ipp
1

 and 
ip  is the contribution to the Lagrange multiplier from network i. Note that 

the determination of p  using boundary conditions must be based on Nσ  and not 
i

Nσ . For the case 

of uniaxial extension, it is possible to separate p  into contributions 
ip  from each network.   

 To complete the constitutive relation for the MNE, it is necessary to specify the strain 

energy density function  i

N

i
NU B  for each network. Since the properties of the first (and primary) 

network usually differ significantly from the filler networks added later, below we propose two 

different formulations of  i

N

i
NU B  for the primary and filler networks.  

5.3.2.1. Primary Network 

The primary network contains a relatively high density of crosslinks. Also, based on 

experimental measurements with photophores [4] many chains in this network can be ruptured in 

the bulk material before crack propagation.  Therefore, a constitutive model is needed to capture 

the nonlinear response of polymer chains as they are stretched and ultimately break.  In addition, 

because damage was observed over a range of strains the model must contain a feature which 

allows the chains to reach critical extensions and break at different times.  This has been 

accomplished in several ways in the literature: polydispersity or a distribution of chain lengths [5] 

results in shorter chains breaking before longer chains; a distribution of initial end-to-end distance 

of the chains results in initially more stretched chains breaking before more coiled chains [69]; and 

different orientations of the chains relative to the principal deformation direction lead to chains 

aligned with the deformation breaking before unaligned chains [47, 70] .  Although in real 

materials all the previously mentioned effects may be present, we will focus on polydispersity of 

chain lengths.  It should be noted that in this work the distribution of chain lengths is estimated 

based on experimental measurements of chain rupture in Section 5.4, which effectively captures 

all effects that contribute to chain breakage at different extensions.   Based on the above 

considerations, for the primary network we propose a strain energy potential in the following form 
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      KchKKKN dNrENNrbNfU 



1

***

max

1 , ,  (5.16) 

where, TkB  ,   is volumetric density of chains (before any swelling), Bk  is the Boltzmann 

constant, T is the absolute temperature, KN  is the number of Kuhn segments in a polymer chain 

between crosslinks (i.e. representing the chain length), and  KNf  is a probability density 

function which describes the distribution of chain lengths and satisfies   1
1




KK dNNf . 

oK ANrr /*   is the fractional chain extension, where r is the end-to-end distance of the polymer 

chain and
oA  is the Kuhn length of the polymer chain.  KNrb ,*

max  are a set of damage functions 

that depend on the chain-length (NK) and will be described later. 
*

maxr is the maximum fractional 

extension a chain has reached in its deformation history, and     TkrErE Bchch /***  is the 

nondimensional chain energy to be discussed next. The integration in Eq. (5.16) accounts for the 

total contribution of all chain lengths to the strain energy.  More details on the derivation of this 

type of strain energy potential can be found in the following reference [5].   

Using the “8-chain” model by Arruda and Boyce [9], the following expression can be 

written to relate the chain extension *r  to  1

1 NBI  

 
K

N

oK N

I

AN

r
r

3

1

1* B
 .  (5.17) 

Introducing a dimensionless chain force as     TkrFArF Bo chch /***  , the dimensionless polymer 

chain energy needed in Eq. (5.16) is calculated from 

    *****

*

*

drrFrE

r

r

ch

o

ch ,  (5.18) 

where Ko Nr /1*   is the fractional extension of the chain under load-free condition (   3
1

1 NI B

).  We have chosen to start this integration at *

or  rather than zero to enforce the zero-strain energy 

condition at the load-free state where   3
1

1 NI B ; this choice introduces a constant into the strain 

energy density and has no impact on the stress predicted by the model.  
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The kinematic assumption (Eq. (5.17)) implies that the strain energy density depends only 

on  1

1 NI B .  One may argue that during swelling there is a large volume change which implies the 

third invariant  1

3 NI B  changes, and for this reason the strain energy can also depend on  1

3 NI B .  

In fact, such a term has often been included in the strain energy function when modeling swelling. 

For example, Hong et al. include a term  




 1

3ln NI B  for the primary network [75] when 

modeling a double network hydrogel.  On the other hand, this term has been the subject of some 

controversy in the literature [76] and the discussion remains inconclusive [77]; nevertheless, the 

effect of such a term is shown to be rather small in most practical cases [77].  Furthermore, in this 

work we focus on the deformation of a pre-swollen MNE that remains incompressible during post-

swelling deformation, in which case  1

3 NI B  will be constant, and whether the  1

3 NI B  dependency 

is included in the strain energy density function will not impact our results.   

Since 1

NU  depends only on  1

1 NI B , we can write 
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Thus, to evaluate the stress in Eq. (5.14) the derivative of the strain energy potential is needed, 

which can be calculated by  

  
 

     
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1

1

1

1 ,

6



B

B
.  (5.19) 

There are several models in the literature which can be used to obtain  ** rFch  or  ** rEch  

[3, 9, 71]; one of the most commonly used models is the Arruda-Boyce model [9].  However, the 

 ** rFch  relationship adopted in the Arruda-Boyce model is based on a freely jointed chain model 

with Langevin statistics, where the chain is inextensible and there is a singularity in chain force 

when 1* r . This singular behavior allows only a very small fraction of the chains to experience 

large forces at any time, which limits the maximum stress that is obtainable.  On the contrary, the 

novel microstructure of the MNE leverages prestretch via swelling to create many chains in the 

primary network that are subjected to large tensile forces and can rupture during the deformation.  
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These large tensile forces are sufficient to deform bonds and elongate chains, as discussed in a 

recent work [73].  Therefore, the Arruda-Boyce or any inextensible model based purely on entropic 

elasticity will not be suitable for this type of material.  Here we use a chain force relationship 

which we derived that are to be reported in a separate paper [74]  

 

      9.09.0684369.0262389.0501
20

513

9.02
2

1
1

2

1
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




rrrrF

rrrF

ch

ch

.  (5.20) 

This relationship was developed by minimizing the free energy of a polymer chain consisting of 

configurational entropy and bond deformation energy.  Bond deformation is negligible at low 

extensions and entropic model is used for 9.0* r , while at larger deformations a polynomial 

function for the chain force is used based on fitting numerical results for PEA [74].   

 Last, we comment on the damage functions b, which represent the fractions of chains that 

remain intact and are dependent on the number of Kuhn lengths KN  in the chain.  b equals 1 for 

undamaged material and decreases as chains are ruptured. The rupture of polymer chains can be 

modeled using rate dependent nonlinear ordinary differential equations [, 3, 5] where the rate of 

chain scission depends on the force acting on the bonds in the polymer chain.  On the other hand, 

it was found that [5] if the deformation speed was sufficiently high the damage was nearly rate 

independent. Extension rates used in the experiment of Ducrot et al fall into this regime and the 

material exhibited negligible rate dependence [4].  In this work, we focus on this regime and 

approximate the damage functions by rate-independent functions in the form of  KNrb ,*

max . These 

damage functions have been obtained in [74] by numerically solving the rate equations at a given 

stretch rate in the rate-independent regime, and they are summarized in Appendix 4.2.  Since the 

chain rupture is irreversible, during loading (as *

maxr  increases) b decreases, whereas upon 

unloading when the chain end-to-end distance  becomes smaller than , the value of b cannot 

increase. 

5.3.2.2. Filler Networks 

When the filler networks (i > 1) are formed the concentration of the crosslinker used is 

approximately 145 times less than that in the primary network [4]. This results in much longer 

chain lengths between crosslinks in the filler networks. Since the chains in these networks have 

*r
*

maxr
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less (or even no) prestretch compared with the chains in the primary network and hence do not 

experience large fractional extensions, it is plausible to assume that they remain intact (i.e. no 

rupture) during deformation and their strain stiffening is insignificant.  With this consideration, a 

neo-Hookean material model, which is based on Gaussian freely jointed chains with a linear force 

extension relationship [77], would seem to be a good choice to represent the filler networks.  

However, because these networks are so lightly crosslinked, physical entanglements create a strain 

softening effect at small deformations [4] which cannot be captured by the neo-Hookean model. 

This softening effect is well described by a molecular model by Rubinstein and Panyukov [78], 

but it is not straightforward to convert the molecular model into a continuum model for general 

3D deformations. Instead, we will use the generalized neo-Hookean constitutive model [65] for 

the individual filler networks to phenomenologically capture the softening effect: 

       131
2

11 
Fni
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N

i

N I
n

IU BB


, i > 1 (5.21) 

where F  is the shear modulus and Fn  is an additional parameter which controls the shape of

  1

ii

NNU I B .  Note that a 3rd parameter from the generalized neo-Hookean model [65] was 

omitted to minimize the number of parameters that are introduced into the MNE model.  Like the 

primary network, the strain energy for each filler network depends only on the first invariant, i.e.

 i

NI B1 , thus as before to evaluate the stress in Eq. (5.14) the derivative of the strain energy 

potential is obtained 
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, i > 1.  (5.22) 

 

5.4. Application of the Model 

Below we will use the model established above to predict the mechanical response of MNEs 

under uniaxial loading conditions and compare the results with experimental data. Assuming that 

the networks contribute independently to the total stress, parameters pertaining to the filler 

networks will be extracted from available data for these networks alone. Chain length distribution 

in the primary network will be estimated based on data for DN and TN elastomers with light 

emitting photophores embedded in the primary network. Finally, comparison will be made to 
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uniaxial extension and cyclic loading experiments conducted [67] for a variety of MNEs (SN, DN 

and TN) where the prestretch caused by the first swelling was varied.   

Before we proceed, it will be beneficial to specialize the general constitutive model for 

uniaxial extension.  The left Cauchy-Green deformation tensor in this case is given by 

33

1

22

1

11

2
eeeeeeB    ,  (5.23) 

where   is the stretch of the sample and ie  are orthogonal unit vectors forming the basis of the 

deformed configuration.  Using Eq. (5.8) and the fact that the strain energy potentials depend only 

on  i

NI B1 , Eq.(5.14) can be rewritten as follows  
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In uniaxial extension, Nσ  only has one nonzero component which we denote as 
N .  Requiring 

the other stress components to be zero gives the Lagrange multiplier p.  Substituting Eq. (5.23) 

into Eq. (5.24), we can obtain an expression for 
N   
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where the stress contribution from each network is given by 
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Note that the stress contribution of each network individually satisfies the uniaxial extension 

boundary conditions (transverse stress components being zero) as does the total stress of the MNE.   

We will extensively compare predictions from the model with experimental data, which 

without processing, will be the nominal (engineering) stress.  For uniaxial extension, the 

engineering stress can be related to the Cauchy (or true stress) as follows 



 N

NP  ,   (5.27) 

similarly,  /i

N

i

NP  . 
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5.4.1. Extracting Parameters for the Filler Network 

Experiments were conducted on the filler networks alone to determine the parameters F  

and Fn  in Eq. (5.21).  The stress for a single filler network alone, FP , can be evaluated from Eqs. 

(5.25) and (5.27) by setting 2N , 01  , and 12  . The experimental data and the best fit are 

shown in Figure 5.3.   

 

Figure 5.3: Engineering stress plotted against stretch for uniaxial extension of the filler network.  

The model with parameters 8325.0Fn  and MPaF 2.0  was found to provide a good fit to the 

experimental data.  The drop in stress at the end of the experimental data occurs because the 

sample fails.   

5.4.2. Distribution of Chain Lengths in Primary Network 

 

Several specialized experiments were conducted for MNEs where photophores were used to 

crosslink chains in the primary network [4].  These photophores emit light when they rupture, and 

the recorded light intensity provides a means to estimate the distribution of polymer chain lengths 

in the primary network.  Specifically, when photophores are added to the chains they create weaker 
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links.  If we assume that the rate of chain rupture is proportional to the rate of photophore rupture, 

the chain length distribution can be correlated to the measured light emission data.   

To see this, note that the recorded light intensity was integrated over the sample [4].  

Assuming that the elastomer is transparent, so light produced by scission throughout the volume 

can all be collected, then the light emission intensity can be expressed as 
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where l  is a proportionality constant which relates light intensity to photophore rupture,   is the 

volumetric density of chains which is proportional to the density of photophores, t is time, 
ND  is 

the thickness of the sample after the (N – 1)th swelling, and S is the area of the sample perpendicular 

to the thickness direction.  Under homogeneous deformation during uniaxial extension, Eq. (5.28) 

can be rewritten as follows 
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where 
l l NV    and SDV NN   is the constant volume of the sample.  To evaluate   dtrdb /*  
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where
   

    BBB
1

3/21

1

*

max

1

1

*

max

1

1

*

max

22 IJ

r

I

r

dI

dr

NsNN 

  and 
 

    23/21

1

1

1 22 

  


Ns
N J

d

dI B
 are 

respectively obtained from Eq. (5.17) and Eqs. (5.9) and (5.23), *

max/ drdb  is known based on the 

damage functions presented in Appendix 4.2, and dtd /  is the speed of stretching from the 

experiment.  If *r  does not exceed its previous maximum value, no additional damage will occur 

and Eq. (5.30) should be taken to be zero.   

In general, the rupture of bonds follows certain kinetics and will not occur at the same 

extension even for chains of the same length. However, the damage will be concentrated near the 

vicinity of highest extension. This allows us to simplify Eq. (5.30) by approximating 
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 **
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*

max/ pkrrdrdb    where   is the Dirac delta distribution and 
*

pkr  is the extension at 

which the peak value of *

max/ drdb  occurs (see Appendix 4.2).  Introducing this approximation and 

Eq. (5.30) into Eq. (5.29) gives  
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where     2*1

1

* 3/ pkNpkK rIrN B .  Based on Eq. (31), the experimentally measured light emission data 

was converted into a chain length distribution, as shown in Figure 4. A probability distribution 

function in the form of Eq. (5.32) was found to provide a good fit for the chain length distribution 

measured from light emission data (see Figure 5.4) 
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where minN  is the minimum number of load bearing Kuhn segments present in the material, fa  

and fb  control the shape of the probability function, and Af is used to ensure the normalization 

requirement   1
1




KK dNNf  is satisfied.  fa , fb , and minN  are the three parameters extracted 

from the fitting.  In Figure 5.4, light emission data are not available for large chain lengths since 

the material already failed, so the fitting curve is a smooth extrapolation of the measured data.   
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Figure 5.4: Chain length distribution estimated by fitting light emission data.  6min N , 1.1fa , 

105.0fb .  Light emission experimental data from Ducrot et al [4] are converted to chain length 

probability using Eq.(5.31).   

 

5.4.3. Uniaxial Extension of MNE 

Model prediction will be compared with two groups of experiments: MNEs with and without 

photophore.  The chain length distribution from Figure 5.4 was applied directly to the MNE with 

photophore. Whereas for the MNE without photophore, the same form of distribution (Eq. (5.32)) 

was used but the parameters minN , fa  and fb  were slightly different from those in Figure 5.4. The 

same tuned distribution was used for all the experiments without photophore, which involved 

several data sets with different pre-stretches.   
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5.4.3.1. With Photophore 

For the experiments on MNEs with photophores [4], i.e., DNP and TNP from Table 5.1, the 

prestretches of the networks are 48.11 s  and 72.221 ss  , respectively.   in Eq. (5.16) is 

related to the volumetric density of chains in the primary network before any swelling, and is a 

fitting parameter since no SN data was available for MNE with photophores.  When used with the 

chain length distribution in Figure 5.4, it was found that MPa264.0  and a slightly adjusted 

value of 54.11 s  provided the best fit to the experimental data for both DN and TN elastomers 

while 72.221 ss   was held fixed so that 77.12 s . The comparisons are shown in Figure 5.5, 

where the model reproduces all the key features observed in the DN and TN data.  For example, 

the model correctly predicts the small initial slope observed in the stress-stretch curve for both the 

DN and TN; the slope is small in this region because no chains are sufficiently stretched to create 

large forces.  With further stretching the shortest chains become highly stretched to cause an upturn 

in the stress, which is observed in both the model and the experimental data.  Finally, for the TN 

with further stretching damage accumulates and causes a second inflection point after which the 

stress-stretch curve levels off.  This phenomenon is not observed in the DN because the material 

fails before sufficient damage can occur.   

It is of interest to calculate the extension of individual chains under the bulk deformation. 

Because there is a distribution of different chain lengths in the primary network, these chains are 

subjected to different extensions at the same bulk deformation. The chain extension as a function 

of the number of Kuhn segments (i.e. chain length) are shown in Figure 5.6, for the chains in the 

primary network of the SN, DN and TN elastomers. Results are shown for two different bulk 

stretches: 1 , corresponding to undeformed elastomers, and 2 . Both swelling (from SN to 

DN and then to TN) and additional bulk deformation (from 1  to 2 ) increase the fractional 

extension, and their impacts are more significant for chains with shorter length. For the TN with 

2  the large fractional extensions for small NK have caused material damage. To quantify the 

damage, we define the following quantity  

    KKKN dNNrbNfb 



1

*

max , , (5.33) 
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which represents the fraction of surviving load bearing chains in the primary of an MNE with a 

total of N networks.  The evolution of damage for the TN elastomer is presented in Figure 5.7a).  

No damage is observed until a sufficient stretch (above 1.5) is reached that causes the shortest 

chains to break.  Afterwards 3b  steadily decreases with additional stretching as more chains are 

ruptured. 
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Figure 5.5  Engineering stress plotted against stretch for uniaxial extension of (a) double network 

elastomer, (b) triple network elastomer.  The following prestretches 54.11 s , 77.12 s  and 

parameter MPa264.0  were found to give good agreement with the experimental data.  

Experimental data from Ducrot et al [4].   
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Figure 5.6 Fractional extension plotted against number of Kuhn segments for individual chains in 

the primary network of SN, DN and TN elastomers.   

 

Using the two prestretches and Eqs. (5.4) to (5.6), the volume fractions of each network can be 

calculated to be: for the DN elastomer 274.01

2  , 726.02

2  ; for the TN elastomer 05.01

3  , 

13.02

3  , and 82.03

3  . The prevailing hypothesis with these materials is that the chains in the 

primary network (i = 1) control the stress whereas the subsequent filler networks prevent large 

cracks from forming [4].  To test this hypothesis for the TN elastomer we compared the 

contribution of each network to the total stress which is presented in Figure 5.7b).  In agreement 

with the hypothesis, the primary network provides most of the stress (
1

3P ), while the contributions 

of the filler networks (
2

3P , 
3

3P ) are almost negligible although they occupy an estimated 94% of 

the material volume.   
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Figure 5.7: (a) The evolution of damage in the primary network of the TN elastomer is shown by 

plotting the surviving chain fraction (b3) against stretch.  (b) Contribution from each network to 

the engineering stress of a TN elastomer under uniaxial extension, plotted against stretch.     
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5.4.3.2. Without Photophore 

For the MNEs without photophores, we consider three datasets, with different swelling 

ratios, which were formed from the same original SN.  The stress-stretch curve for the SN is shown 

in Figure 5.8, and matching the initial slope provides MPa215.0  which will be used for the 

primary network in all the MNEs.  In each case experimental measurements of thickness, 

percentage of primary network (based on weight), stretch and stress are available.  Measurements 

of sample thickness and weight (Table 5.2) can be used to estimate the prestretch of the networks.  

Here %SN is the percentage of weight of the primary network obtained by weighing the sample 

before and after swelling. Since the primary and filler networks are comprised of the same 

monomers, it is reasonable to assume that all the networks have the same density.  This allows the 

measurement to be directly converted to volume fractions, i.e., % SN = 
1100 N , which can then be 

used to determine sjJ  using Eqs. (5.4) and (5.6).  sjJ can also be calculated using  31 / jjsj DDJ 

, and the values obtained from the two different approaches can be slightly different, see 

comparison in Table 5.3.  For this reason, and due to variations observed in samples with the same 

crosslink density and swelling (see Appendix 4.4), we allow a small amount of tunability in the 

chosen values of sjJ , tabulated in Table 5.3, to ensure that key features in the mechanical response 

are properly captured.  Finally, other intermediate swelling variables calculated from 
1sJ  and 

2sJ  

are tabulated in Table 5.4.   

 

Figure 5.8: Engineering stress plotted against stretch for uniaxial extension of SN elastomer.  

Experimental data and model fit (with MPa215.0 ) are shown.   
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Table 5.2: Swelling Data for the 3 datasets.   

Before Swelling After 1st Swelling After 2nd Swelling 

Sample % 

SN 

D0 

(mm) 

Sample %SN 

 

D1 (mm) Sample %SN 

 

D2 (mm) 

SN 100 0.74 DN1 42 0.97 TN1 9.52 1.6 

SN 100 0.74 DN2 29.17 1.13 TN2 7.39 1.79 

SN 100 0.74 DN3 20.55 1.27 TN3 6.07 1.84 

 

Table 5.3: Swelling Ratios Estimated by two approaches and the final Chosen values.  DN and TN 

in each dataset share the same 
1sJ values while 

2sJ values are only applicable to TN samples.  

Sample 

Estimate using Di Estimate Using %SN Value Used 

1sJ  
2sJ  

1sJ  
2sJ  

1sJ  
2sJ  

DN1/TN1 2.25 4.49 2.38 4.41 2.41 4.13 

DN2/TN2 3.56 3.97 3.43 3.95 3.65 3.33 

DN3/TN3 5.05 3.04 4.87 3.39 5.36 2.74 

 

Table 5.4: Calculated Swelling Parameters. DN and TN in each dataset share the same 1

1sJ values 

while 1

2sJ  and 2

2sJ  values are only applicable to TN samples. 
1

2  and 2

2 are volume fractions in 

DN samples, whereas 1

3 , 2

3  and 3

3  are for TN samples.  

Sample 
1

1sJ  1

2sJ  2

2sJ  1

2  2

2  
1

3  2

3  3

3  

DN1/TN1 2.41 9.94 4.13 0.42 0.58 0.10 0.14 0.76 

DN2/TN2 3.65 12.17 3.33 0.27 0.73 0.08 0.23 0.70 

DN3/TN3 5.36 14.71 2.74 0.19 0.81 0.07 0.29 0.64 
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 When no photophores are incorporated into the polymer network there is no light emission 

data from which the chain length distribution can be extracted.  However, since these MNEs use 

the same density of crosslinker in the primary network (EAe1.45) the expected distribution will be 

similar to that of the network with photophores.  Using the same form of the distribution (Eq. 

(5.32)), the values of 2.6min N , 6.0fa , and 18.0fb  are determined based on generating the 

best fit to the stress-stretch data for all DN and TN elastomers (6 independent samples), which 

only differ slightly from those in Figure 5.4.    

The results of the fitting are shown for the three datasets in Figure 5.9, Figure 5.10, and Figure 

5.11 respectively.  Each figure shows a comparison between predicted and measured stress-stretch 

relations for DN and TN elastomers.  The model is in reasonable agreement with the experimental 

data in all cases.  A direct comparison between the stresses and damage predicted by our model 

for the three datasets is presented in Figure 5.12, which illustrates the effect of prestretch on the 

mechanical response.  In Figure 5.12 a) the stresses are presented for three DN elastomers. DN3, 

which has the largest prestrech (Table 5.2), exhibits an upturn in stress at the smallest stretch. As 

the prestretch is decreased, the stress upturn occurs at larger stretches.  Similar conclusions can be 

drawn from the TN data in Figure 5.12b).  A comparison between the damage evolutions for the 

three TNs is shown in Figure 5.12c), where damage begins to occur at lower stretches for MNE 

with larger prestretches.   
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Figure 5.9 Engineering stress plotted against stretch for uniaxial extension of (a) DN elastomer 

(b) TN elastomer.  Experimental data (from dataset DN1/TN1) and model fit are shown.   
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Figure 5.10 Engineering stress plotted against stretch for uniaxial extension of (a) DN elastomer 

(b) TN elastomer.  Experimental data (from the dataset DN2/TN2) and model fit are shown.   
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Figure 5.11 Engineering stress plotted against stretch for uniaxial extension of (a) DN elastomer 

(b) TN elastomer.  Experimental data (from dataset dataset DN2/TN3) and model fit are shown.   
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Figure 5.12: Model predictions for (a) engineering stress vs. stretch for DN elastomers; (b) 

engineering stress vs. stretch for TN elastomers; and (c) the evolution of damage (surviving chain 

fraction b3 vs. stretch) for TN elastomers; all under uniaxial extension.  Each subfigure contains 

three curves corresponding to the three different datasets. 
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5.4.4. Cyclic Loading of MNE 

The experimental data presented in Ducrot et al [4] for the MNE with photophores was for 

cyclic loading.  It is interesting to apply the model under cyclic uniaxial extension to see how the 

unloading curves compare with the experimental data; as well studying cyclic loading further 

elucidates how the evolution of damage impacts the mechanical response of the MNE.   

Consider the constant rate cyclic loading pattern shown in Figure 5.13a) where the amplitude 

of loading is increased after each cycle.  In the experiments, three identical cycles were first 

performed before the amplitude was increased [4]; however, no noticeable change occurred in the 

2nd and 3rd cycles so they have been omitted here to simplify the presentation of the numerical 

results.  Engineering stress is plotted against stretch in Figure 5.13b), where loading and unloading 

curves are shown for both model prediction and experimental data.  Similarly, the evolution of the 

damage variable is shown in Figure 5.13c).  It is important to note that the loading envelope in the 

experiment (blue symbols) correspond to those in Figure 5.5b) and all the fitting parameters in the 

model remain unchanged from those used to obtain the fit in Figure 5.5b). No additional fitting 

was performed for the unloading branches.  

To understand these results, consider the path A-O1-A-B-O2 in Figure 5.13c).  Suppose the 

material has been loaded to reach the stretch at A for the first time.  In reaching point A some 

damage has occurred as can be seen in Figure 5.13c) where b3 = 0.72 < 1 at point A.  When the 

material is then unloaded from A to O1 it follows the lower “damaged” unloading path (red, A-O) 

in Figure 5.13b) rather than the higher “undamaged” loading path (blue).  From A to O1 in Figure 

5.13c) we follow a horizontal curve because the damage variable depends on the maximum stretch 

in the history of the deformation (in this case the stretch at point A) instead of the current stretch.  

During the subsequent reloading O1-A-B, from O1-A we retrace the same path as during unloading 

since the stretch has not exceeded its previous maximum value (at point A) so no additional 

damage occurs.  From A-B stretching the sample further establishes a new maximum stretch, and 

thus the damage evolves as seen in Figure 5.13c) where the damage variable decreases from 0.72 

at point A to 0.49 at point B.  This damage results in a decrease in the slope of the stress-stretch 

curve in Figure 5.13b) at the transition (point A) from reload to additional stretch.  Similarly, when 

we unload after reaching point B we follow the lower unloading path (red, B-O) and again the 

damage variable remains constant during unload.   
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Figure 5.13: (a) Stretch plotted against deformation progress for constant rate cyclic loading 

where amplitude is increased after each cycle.  (b) Engineering stress plotted against stretch for 

cyclic uniaxial extension of TN elastomer.  All parameters in the model are identical to those 

presented in section 5.4.3.1. Experimental data from Ducrot et al [4].  (c) The evolution of damage 

is shown by plotting the surviving chain fraction (b3) against stretch. 
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The cycle O-A-B-O in Figure 5.13b), included in the path we previously described, forms a 

hysteresis loop, and the area enclosed in this loop, 
cycle

cyc PdD int , has the physical interpretation 

of energy dissipation. The hysteresis during cyclic uniaxial extension was found to correlate, to 

some extent, with the size of damage zone in fracture experiments [4], and hence is an important 

quantity to examine in attempt to increase the fracture toughness of the material.  In Ducrot et al. 

[4] this hysteresis was compared with the cumulative light emitted, whereas in our work, an 

analogous quantity would be the change in damage variable during a cycle  

    dtdNNrbNfb
cycle

KKK

cyc

 



1

*

max3 , . (5.34) 

An expression for the rate of energy dissipation in our model 

      KchKKK dNrENNrbNfD 



1

***

max

1

int ,   was obtained in the Appendix 4.1, so cycDint
 can be 

determined by either integrating 
intD  over a cycle or by using 

cycle

cyc PdD int  : 

        



cyclecycle

KchKKK

cyc PddtdNrENNrbNfD 
1

***

max

1

int , . (5.35) 

The numerical results for cycb3  and cycDint
 are presented in Figure 5.14, for cycles 2-5 from Figure 

5.13.  In Ducrot et al [4] the cumulative light was found to vary with the mechanical hysteresis by 

a power of 0.75, while in Figure 5.14 a power of 0.63 provides a good fit which is in reasonable 

agreement with experiments.   
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Figure 5.14: Decrease in damage variable per cycle plotted against energy dissipated per cycle. 

Symbols are from integration of numerical results obtained from the model. Dashed line is a linear 

fit to the model prediction, on the log-log scale.    

 

5.4.5. Further Discussion 

While our model predictions have shown good agreement with experiments, there are some 

discrepancies that warrant further discussion. First, in the uniaxial extension results in Figure 5.9, 

Figure 5.10, and Figure 5.11 for the TN elastomer, the model seems to overestimate the stress 

when the sample is about to break.  A possible explanation for this is the potential material 

inhomogeneity not considered in the model.  When we apply the model to an idealized uniaxial 

extension, the deformation is assumed to be perfectly homogenous, which is certainly not valid 

when the sample fails.  Localized damage which grows near a pre-existing defect may also impact 

the overall stress of the specimen at the stretches leading up to failure. There is evidence to support 

this hypothesis in the TN light emission data [4]. Specifically, there is a peak in the light emission 
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after which the intensity decreases with further stretching.  In obtaining the chain length 

distribution from the light emission data (Figure 5.4), a distribution with a single peak was used, 

because it was assumed that a single damage mechanism occurs within the material. However, the 

experimental data also showed slightly increased light emission intensity near failure which may 

indicate the possibility of additional damage mechanisms such as inhomogeneous deformation and 

localized damage around defects. This over-estimation does not exist in the DN data because the 

DN elastomers are expected to have lower fracture toughness, evidenced by the experiments of 

Ducrot et al. [4] where the damage zone in the area surrounding a crack tip [4] is much smaller in 

the DN elastomers than the TN elastomers.  The lower fracture toughness could result in a more 

brittle failure once damage localizes at a defect; in this case, we do not anticipate a reduction in 

stress growth near the failure point.   

Another discrepancy between the model and the experimental results lies in the unloading 

curves in Figure 5.13b), where the stress predicted by the model can be noticeably lower than 

measured stress.  To elucidate this point we compute the unstretched Young’s modulus (see 

Appendix 4.1 for definition), i.e., the Young’s modulus evaluated at  = 1. The ratio between the 

value at the beginning of cycle i (i>1),  
i

N

oE , and that before the first cycle  
1

N

oE  is evaluated and 

plotted in Figure 5.15 against the maximum stretch max reached in that cycle.  Here the loss of 

chains (Figure 5.13c)) translates to a reduction in Young’s modulus.  A plot similar to Figure 5.15 

was presented in the Supporting Material of Ducrot et al [4], for a similar TN elastomer without 

photophores. In that work, after a maximum stretch of max = 2.4 was reached in the cycle the 

unstretched Young’s modulus decreased by approximately 20%; from Figure 5.15 at max = 2.4 

the modulus decreases by approximately 50%.  This suggests the possibility that the model over 

predicts the rupture of chains.  There are several potential explanations for the discrepancy. Firstly, 

one of the assumptions made in the model is that the contribution of each network to the stress is 

independent.  While this may be a reasonable first-order approximation in modeling these 

materials, due to chain entanglements and a small degree of transfer reactions (e.g., the (n+1)th 

network reacting chemically with the n networks previously formed), it is likely that damage in 

the primary network will result in dissipation in the filler networks and these additional dissipation 

mechanisms may have some impact on the Young’s modulus.  An evidence of this is the small 

amount of residual strain observed in the experimental data [4], where after damage the material 
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did not completely recover its initial configuration.  A second possibility could be the existence of 

critical pathways in the primary network along which the rupture of bonds can result in the 

relaxation of many chains in the primary network. In this case the damage would not be isotropic 

and homogenous as is assumed in this model.  In fact, stretching pre-deformed samples 

perpendicular to the direction of initial deformation has yielded some light emissions [79] 

indicating that damage is not entirely isotropic.  A third and related possibility is the coupling 

between chains in the primary network. There is no direct experimental evidence for this, but in 

an existing model [80] the rupture of chains was considered to effectively remove crosslinks and 

increase the length of existing chains in the material.  Finally, the specific chain force relationship 

(Eq. (5.20)) is used for both loading and unloading.  During loading the stress is dominated by 

chains with forces in the bond stretching regime.  However, during unloading this is no longer 

true, and the force on the polymer chain can depend on its bending flexibility [71] which was not 

considered in Eq. (5.20).   

 

Figure 5.15: Evolution of unstretched Young’s modulus at the beginning of cycle i, (i>1) 

normalized by the unstretched modulus of a fresh sample, as a function of maximum elongation 

previously achieved by the sample.   
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Finally, we estimate the force and energy required to cause the rupture of a chain from the 

cyclic loading data in Figure 5.13. When a bond breaks we define the average force [81], 

  ochBch AdbrFTkF /

1

0

**

 , and the average chain energy  

1

0

** dbrENTkE chKBch
. For the data 

in Figure 5.13b) the following values are obtained: nNFch 95.1~  and 

molkJEch /20001000  depending on the chain length. The force value is comparable to 

single chain pulling experiments for polymer chains [82], while the energy requires more 

discussion.  The dissociation energy of the photophore bond was reported to be 150kJ/mol [4], 

which seems to be one order of magnitude smaller than the 
chE  value obtained here. However, 

it is incorrect to make such a direct comparison, for several reasons explained below.  Firstly, the 

bonds break via a transition state which is altered by the external force [79]. The result of this is 

that the energy that the bond will be excited to when it breaks can be significantly less than the 

dissociation energy.  Secondly, when a bond on a polymer chain is ruptured the energy of the entire 

chain is dissipated [10] which includes the deformation of all the bonds.  The shortest chains in 

the model had 6.5 Kuhn segments for PEA we can then equate this to ~78 bonds [74]. Using 

1000 /chE kJ mol  and if all the bonds in a shortest chain are excited to approximately the same 

energy this implies ~13 kJ/mol for each bond which is approximately 8.5% of the dissociation 

energy. Clough et al. [79] have found that typical C-C bonds store 15-18% of the dissociation 

energy before rupture, which is certainly of the same order of magnitude as was estimated for the 

dioxetane bond in the photophore.   

The model developed in this work provides a method to systematically study how prestretch 

impacts the mechanical response and damage evolution of a MNE.  It is also instrumental to the 

design of MNE with optimized fracture toughness. Implementing the model into finite element 

simulations will allow us to explore a wide range of problems involving stress concentration and 

crack propagation, since this class of material can generate large damage zones [4] locally.  It is 

therefore of interest to systematically investigate how the different prestretches will impact the 

size of the damage zone around cracks and the overall fracture toughness.  In experiments it was 

observed that when a third swelling operation was performed to generate quadruple network 

elastomers, necking occurred in the sample and no increase in fracture toughness compared with 

TN elastomer. Mechanism of this phenomenon is unclear and can be investigated with this model. 
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However, to predict toughness it will be necessary to extend the model presented to consider failure 

of the filler networks.   

 

5.5. Conclusion 

A continuum model is developed to capture the mechanical response of multinetwork 

elastomers synthesized by introducing filler network(s) into an existing primary network. The 

swelling process prestretches the chains of the network formed in the previous step; such prestretch 

is incorporated into the model by basing the strain energy of each network on the combined 

deformation caused by swelling and post-swelling deformation of the completed MNE.  Because 

the chains in the heavily crosslinked primary network undergo the greatest amount of prestretch 

and often break during the deformation, separate material models are used for the primary and 

filler networks.  The primary network is modeled as a polydisperse network of breakable polymer 

chains with nonlinear chain elasticity, while the filler networks are modeled using the generalized 

neo-Hookean model.  With a few fitting parameters, this model provides a good match to the 

uniaxial extension, including cyclic loading, experimental data.  Although the primary network 

only occupies a small volume fraction of the MNE, it contributes to the majority of the stress as 

confirmed by the model.  It was found that a larger prestretch of the primary network causes the 

MNE to exhibit strain stiffening effect at a smaller stretch, and the damage due to chain rupture 

initiates at lower stretches.  Finally, the hysteresis of the stress-stretch curve during cyclic loading 

is found to correlate to the accumulation of damage during the cycle.   
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5.6. Nomenclature 

S Area of sample in plane of view Dimension 

oA  Initial Kuhn length of polymer chain [L] 

l  Proportionality constant to relate light intensity to bond rupture [M][L][T]-2 

fA  Parameter in chain length probability density function - 

fa  Parameter in chain length probability density function - 

fb  Parameter in chain length probability density function - 

b Damage evolution function - 

Nb  Surviving chain fraction - 

l  Proportionality constant to relate light emission to damage 

evolution 

[M][L][T]-2 

B  Left Cauchy-Green deformation tensor for mechanical 

deformation of MNE 

- 

i

NB  Left Cauchy-Green Deformation tensor of multinetwork 

elastomer with N networks, with respect to the reference 

configuration of network i. Takes into account both deformation 

by swelling and mechanically deformation by deformation 

gradient F .   

- 

ke  Unit vector in k direction - 

*

chE  Nondimensional Helmholtz free Energy of stretched polymer 

chain 

- 

chF  Tensile force acting on polymer chain [M][L][T]-2 

*
chF  Nondimensional Tensile force acting on polymer chain - 

jΦ  Deformation gradient for jth swelling operation - 

i

jΦ  Deformation gradient after j swelling operations with respect to 

the reference configuration of network i.   

- 
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F  Deformation gradient applied to completed MNE by mechanical 

loading.   

- 

i

NF  Deformation gradient of MNE with N networks, with respect to 

the reference configuration of network i. Takes into account both 

deformation by swelling and mechanically deformation by 

deformation gradient F .   

- 

f  Probability density function for chain length - 

mF  Contribution of chain length PDF for bin m.   - 

g Arbitrary function - 

I  2nd order Identity tensor - 

 i

NI B1  First invariant of 
i

NB  - 

 i

NI B2  Second invariant of  - 

 i

NI B3  Third invariant of  - 

i Identifies network - 

j Identifies swelling operation - 

sjJ  Ratio of volume after to volume before jth swelling operation - 

i

sjJ  ratio of the volume of the material after j swelling operations to 

the volume of the material when the ith network was introduced 

- 

i

NJ  ratio of the volume of the material when network i was introduced 

to its current volume (with N networks) 

- 

Bk  Boltzmann constant [M][L]2[T]-2[]-1 

  Stretch associated with uniaxial extension - 

sj  Isotropic stretch associated with jth swelling operation (ratio of 

thickness after to before jth swelling operation) 

- 

o  Isotropic stretch of 1st network due to swelling  

LI Light emission intensity [M][L][T]-3 

M Number of chain length bins - 

m Identifies chain length bin - 

i

NB

i

NB
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im  Mass of ith network [M] 

Nm  Mass of multinetwork elastomer with N networks [M] 

Fn  Parameter in constitutive model for filler networks. - 

N Number of networks - 

KN  Number of Kuhn length is a polymer chain - 

minN  Minimum number of Kuhn segments in chain length probability 

density function 

- 

mKN ,  Average number of Kuhn lengths per chain or bin m - 

mKN ,  number of Kuhn lengths per chain at start of bin m - 

1, mKN  number of Kuhn lengths per chain at end of bin m - 

p  Lagrange multiplier [M][L]-1[T]-2 

ip  Lagrange multiplier for network i [M][L]-1[T]-2 

r End to end distance of polymer chain [L] 

*r  Fractional extension of polymer chain - 

*

maxr  Maximum achieved fractional extension of a polymer chain 

during deformation history 

- 

*

pkr  Fractional extension where peak rate of bond rupture occurs - 

NP  Nonzero engineering stress component for MNE with N networks, 

under uniaxial extension 

[M][L]-1[T]-2 

i

NP  Nonzero engineering stress component for network i for MNE 

with N networks, under uniaxial extension 

[M][L]-1[T]-2 

i  Volume fraction that network i occupied in the material when it 

was first introduced 

- 

i

N  Volume fraction of network i in a multinetwork elastomer with N 

networks 

- 

Nσ  Cauchy stress tensor for MNE with N networks [M][L]-1[T]-2 

i

Nσ  Cauchy stress tensor for network i in MNE with N networks [M][L]-1[T]-2 
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N  Nonzero true stress component for MNE with N networks, under 

uniaxial extension 

[M][L]-1[T]-2 

i

N  Nonzero true stress component for network i for MNE with N 

networks, under uniaxial extension 

[M][L]-1[T]-2 

jD  Thickness of sample after j - 1 swelling operations [L] 

t time [T] 

  TkB  , parameter in constitutive model for 1st network.  

Related to shear modulus.   

[M][L]-1[T]-2 

F  Parameter in constitutive model for filler networks.  Related to 

shear modulus 

[M][L]-1[T]-2 

NU  Strain energy density of multinetwork elastomer with N networks [M][L]-1[T]-2 

 i

N

iU B  Strain energy density for network i in a multinetwork elastomer 

with N networks, if the network were to occupy the entire material 

when introduced.   

[M][L]-1[T]-2 

T Absolute temperature [] 

  Volumetric density of load bearing chains in reference 

configuration of material.   

[L]-3 

m  Volumetric density of load bearing chains in reference 

configuration of material in bin m.   

[L]-3 

jV  Volume of sample after j - 1 swelling operations [L]3 

  



141 

Chapter 6. Modeling Active Breakable Polymer Chains 

 

Abstract 
The force-extension relationship of single polymer chains is an essential component underlying 

the development of macroscopic constitutive models for elastomers.  In this work, we present a 

model that extends the range of accuracy of classical entropic force-extension models by 

accounting for the energy of bond deformation on the backbone of the polymer chain.  Emphasis 

is placed on reducing the number of fitting parameters, by extensively utilizing molecular 

parameters tabulated in the literature.  In addition, an extension of the model is made to include 

the effects of mechanophores: molecules which react under the application of a mechanical force. 

This has given the model the capability of predicting mechanophore reaction as well as chain 

scission.    The model is applied, and compared to experimental data, in a range of scenarios: 

reproducing the measured PDMS force-extension relationship, calculating the rate dependent 

fracture energy of PDMS films, and predicting force extensions relationships with a plateau caused 

by unfolding of mechanophore domains.  For the last example it was demonstrated that this type 

of chain has the potential to be utilized to design elastomers with substantially enhanced strength 

and toughness.   
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6.1. Introduction  

The force extension relationship for a polymer chain is often utilized in constitutive models 

for elastomers [5, 9, 71] to capture the nonlinear mechanical behaviors at large deformations.  

Classically, polymer chain elasticity has been modeled by considering the change in entropy, e.g., 

the freely jointed chain model [9] or the wormlike chain model [3].  Because these models only 

consider entropy, they exhibit a limiting extension where the chain force becomes singular, and 

make unreliable predictions for extension near this singularity.  However, for problems where 

chains are stretched and eventually break, such as fracture, chain force-extension relationships 

which are accurate in the large extension range are needed.  There have been efforts along this 

direction in the literature.  The elastic freely jointed chain model is an extension of the freely 

jointed chain model which considers the links to be springs [82].  Recently, another model has 

been presented where the energy is minimized for the chain which consists of entropy and the 

deformation of bonds [83].   

In fracture problems it is also desirable to be able to predict the rupture of chains to predict 

damage in the vicinity of the cracks.  Previously chain rupture has been predicted by using a critical 

bond deformation energy [83], or by solving rate equations where the rate of scission is enhanced 

by the tensile force acting on a polymer chain [3, 2, 1]; the latter is able to predict rate dependence 

of fracture phenomena important in elastomers [1].  Finally there have been strong interests 

towards the development of active polymer chains containing mechanophores, which could 

respond to mechanical force by changing color [47¸48], emitting light upon rupture [4], or 

increasing in length [84-88].   

In this work, we aim at developing a comprehensive model that considers several aspects on 

a polymer chains: its entropic elasticity, bond deformation on the backbone, kinetics of bond 

scission, and activation of mechanophores embedded in the chain. Parameters in the model are 

largely molecular parameters (e.g. Kuhn length, number of bonds) already available in literature, 

and additional parameters required for fitting are minimal. The model allows us to generate force-

extension relationships that compare very well with experimental data for a large range of 

extension. It also enables the evaluation of the rate-dependent fracture energy of a polymeric 

interface, which agrees well with experiments.   
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Using this model, we also demonstrate how certain types of active polymer chains with 

mechanophores can be used to enhance the theoretical maximum stress and toughness at the 

continuum level.   

The paper proceeds as follows.  The formulation of the model is given in Section 6.2 with the 

generalization to include mechanophores discussed in Section 6.2.4.  Results are presented in 

Section 6.3 which is divided to present, the force extension relationship for the simple chain in 

Section 6.3.1, scission of the simple chain in Section 6.3.2, the impact of mechanophores on 

scission in Section 6.3.3, and the effect of chains that can increase length upon activation in Section 

6.3.4.  Conclusions are given in in Section 6.4.  

 

6.2. Model 

6.2.1. Chain models based on entropic elasticity 

 There are numerous models in the literature [3¸ 9, 71] which relate the tensile force on a 

polymer chain to its fractional extension.  An implicit assumption in these models is the chain 

being inextensible in that the contour length, length of the fully extended chain, is a constant. The 

fractional extension is defined as the ratio between the chain’s end-to-end distance and the constant 

contour length. Since these chains are inextensible the force arises mainly due to the decrease in 

configurational entropy caused by increasing the end to end distance.  For example, in the 

persistence chain model [3], a chain is idealized as KN  Kuhn segments each with Kuhn length 

A  [50] so that the contour length is given by ANL Kc  .  The chain force-extension relationship 

given by this model is 

 

  









 *2*

4

1
1

4

1
rr

P

Tk
F B

,  (6.1) 

where F is the tensile force acting on the polymer chain, 2/AP   [3] is the persistence length, 

Bk  is the Boltzmann constant and T is the absolute temperature.  The fractional extension in this 

equation is 



144 

cL

r
r *

,  (6.2) 

where r is the end to end distance.   

The relationship in Eq. (6.1) is in good agreement with experimental data for fractional 

extension less than 0.9 [3]. Above this extension, Eq. (6.1) predicts that the force increases sharply 

and approaches infinity as r* approaches unity (entropic locking extension), which is much higher 

than that observed in the experiments of single chain extension [3]. In this regime (r* > 0.9), chain 

force relationships based on entropic elasticity do not work well due to the breakdown of 

inextensibility assumption.  In reality when r* approaches one the chain will be subjected to forces 

large enough to significantly deform the bonds on the chain’s backbone.  Deformation of the bonds 

will allow the end to end distance, r, to continue increasing beyond cL .  This behavior will cause 

the force to increase more gradually rather than being singular as in the entropic elasticity model.   

6.2.2. Polymer chain with deformable bonds 

Consider the stretching of a polymer chain, for which a schematic is shown in Figure 6.1.  

Comparing Figure 6.1a) and c) as the end to end distance increases from its initial value 
2

oR , 

there will be less possible configurations the chain can assume which causes a decrease in entropy.  

Meanwhile if we compare the bonds on the chain backbone shown in Figure 6.1b) and d) the tensile 

force acting on the chain causes the bonds to stretch from their initial length lo to l, and the bond 

angle to decrease from initial value o to ; both leading to the increase of contour length.  If we 

consider the geometry in Figure 6.1b) the contour length of the chain can also be written in terms 

of the bond length and angle [50]:  











2
cos


lnANL bKc ,  (6.3) 

where 
bn  is the number of bonds on the chain backbone. Assuming that the number of Kuhn 

segments KN  remains constant, Eq. (6.3) allows us to establish a relationship that determines how 

the deformation of bonds will impact the Kuhn length and cause it to increase from its initial length 

oA  (= 0
0 cos

2

b

K

n
l

N

 
 
 

) to the current value of   
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
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a) b)

c) d)
F
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Figure 6.1: a) Polymer chain before stretching b) backbone bonds on polymer chain before 

stretching c) polymer chain after stretching d) backbone bonds on polymer chain after stretching.   
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In order to model the deformation of bonds on the chain backbone as the chain is stretched, 

we assume that the total Helmholtz free energy of the polymer chain, measured relative to a 

completely relaxed configuration, consists of three components 

 benstrbentch EEnEE  ,  (6.5) 

where, entE  is the change in free energy arising from the decrease in configuration entropy as the 

chain is straightened, strE  is the change in internal energy (per bond) due to bond stretching, and 

benE  is the change in internal energy (per bond) due to deformation of bond angles.   

The first component in Eq. (6.5), entE , is obtained by integration of Eq. (6.1) as follows 

    












2**1***

2

1
1

2

1
rrrTNkdrFANdrFrE KBKent

.  (6.6) 

It should be noted that the relationship presented in Eqs. (6.1) and (6.6) is merely one example of 

entropic chain elasticity, while the methods discussed in this work could be applied to any other 

relationships. For example in the Appendix we also present relationships based upon Gaussian 

chains statistics [93] and Langevin chain statistics [9].  Here entE  is written in terms of the 

fractional extension of the deformed chain i.e. 1/*  ANrr K . Later we will show that it is more 

convenient to define a second fractional extension in terms of the initial Kuhn length, 

oKo ANrr /*  . The stretching of bonds is assumed to follow a Morse potential [89], with the 

energy given by  

   11
2


 os ll

estr eDE
 ,  (6.7) 

where eD  is the dissociation energy of a bond, oll   is the change in length of the bond from its 

equilibrium value, and s  is a constant which controls the width of the potential.  The Morse 

potential is used because it has a relatively simple functional form and, unlike a harmonic function, 

it well captures the energetics of a chemical bond from its equilibrium position to dissociation 

[89].  The tensile force acting on a bond can be obtained by taking the derivative of the potential 

as follows.   

     osos llll

se
str

str eeD
l

E
F









 12 .  (6.8) 
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For illustration Eq. (6.7) and (6.8), in non-dimensional form, are shown in Figure 6.2.  It can be 

seen that strF  has a peak value of 2/sepk DF   which occurs at soll /2lnmax  . This peak force 

corresponds to the maximum force that a bond on the chain can sustain before rupture, although 

in reality the chain can break much sooner.  strF , the tensile force on a bond, should be 

distinguished from the tensile force acting on the chain, F. The relation between the two quantities 

will be derived later.   

 

 

Figure 6.2: a) Morse potential for bond stretching b) Force obtained from the Morse potential.  

Orange lines mark the location of the peak value for strF , and the corresponding value for
strE .  
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The deformation of a bond angle is assumed to be governed by the following potential [89] 

    42
1

2

1
  osexicoben kkE ,  (6.9) 

where  o  is the change in bond angle from its equilibrium position, and k  and sexick  are 

constants.  The bending moment can be obtained from this potential as follows  

    4
31 


 




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M .  (6.10) 

 Although the energies in Eq. (6.5) are individually defined by Eqs. (6.6), (6.7), and (6.9), 

constraints are needed to determine compatible values of *r , l  and  .  Specifically, if the chain’s 

end-to-end distance r is fixed, l and  should be such that the Helmholtz free energy is minimized.  

Since at fixed r,    
, ,

/ /ch ch chr r l
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which leads to 
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which leads to  
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Using these two conditions, the tensile force acting on the polymer chain, assuming constant 

temperature, can now calculated from 
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6.2.3. Bond and Chain Parameters for Common Polymers 

To use Eqs. (6.7) and (6.9) four constants need to be known.  Typical values have been 

obtained from the literature for C-C and Si-O bonds (Table 6.1), which are common for the 

backbone bonds in many elastomeric materials.   

Table 6.1: Values of constants in bond potential for common elastomer backbone bonds 

Bond Type C-C [89] Si-O [90] 

eD  (J) 
1910031.6   19107   

s ( m/1010 ) 2.625 2 

k  (J/rad2) 
19109   191042.1215.3   

sexick  (rad-4) 0.754 0 (potential used did not have sexick ) 

 

It is also desirable to obtain the chain parameters 
ol , o , 

oA , and the number of bonds per 

Kuhn segments Kb Nn /  using existing data. Typical values for the Kuhn length, 
oA , and molecular 

weight of a Kuhn segment, 
KM , are summarized in Table 6.2 for a variety of polymers. To 

determine the ratio 
Kb Nn / , we express the molecular weight of a chain in two different ways:

bbKKch MnMNM  , where 
bM  is the average molecular weight per backbone bond which can 

be calculated by dividing the molecular weight of the repeat monomer unit mM  by the number of 

backbone bonds per repeat unit 
mn . For example, consider PDMS where the repeat unit structure 

is   nOCHSi ][
23   and it has a molecular weight of g/mol17.74mM .  The monomer has three 

backbone bonds, however two bonds are shared with adjacent monomers so these two bonds are 

only counted as one towards 
mn  which gives 2mn .  Therefore, g/mol08.37/  mmb nMM . 

Finally, the ratio /b Kn N , denoted by  ,  can be determined by 

b K m

K m

n M n

N M
   .  (6.14) 
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To determine the equilibrium bond angle o , consider the mean square end to end distance 

for a free chain (without external loading applied), which can be expressed in two ways [50]: 

222

oboKo lnCANR  , where C  is the long chain asymptotic limit of Flory’s characteristic 

ratio, and its values are available in the literature [50, 91] (Table 6.2).  This leads to the following 

relation:   22

obKoK lnCNAN  . According to Eq. (6.3), the contour length of a free chain is 

 cos / 2K o b o oN A n l  . Combining the two results we arrive at the following expression 
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(6.15) 

Since   can be obtained from Eq. ((6.14)), this relation allows for the computation of 0 .  Finally, 

with all other parameters determined, Eq. (6.4) can be applied to a free chain, cos
2

b o
o o

K

n
A l

N

 
  

 

, to calculate the equilibrium bond length.  The calculated chain parameters are shown in Table 

6.3.   

Table 6.2: Tabular data used to define chain parameters for a variety of common polymers.   

Polymer Monomer Structure 
C  

oA

(Å) 

KM  

(g/mol) 

MM  

(g/mol) 

mn  
  

(g/cm3) 

Poly(dimethyl 

siloxane) (PDMS) 

[50] 

  nOCHSi ][
23   6.8 13 381 74.17 2 0.895 

Polypropylene (PP) 

[50] 

  nCHCHCH ][ 32   5.9 11 180 42.08 2 0.791 

Polyethylene (PE) 

[50] 
nCHCH ][ 22   7.4 14 150 28.05 2 0.784 

Poly(methyl 

methacrylate) 

(PMMA) [50] 

   nCOOCHCHCCH ][ 332 

 

9.0 17 655 100.12 2 1.13 

Atactic Polystyrene 

(PS) [50] 

  nHCCHCH ][ 562   9.5 18 720 104.1 2 0.969 

Poly(methyl acrylate) 

(PMA) [91] 

  nCOOCHCHCH ][ 32   7.91 14.7 494.6 86.09 2 1.22 

Poly(ethyl acrylate) 

(PEA) [91] 

  nCHCOOCHCHCH ][ 322 

 

9.76 18.1 710.1 100.1 2 1.13 
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Table 6.3: Derived Polymer chain parameters.   

Polymer 

K

b

N

n
 

o (degree) ol  (Å) 

Poly(dimethyl siloxane) 

(PDMS) 
10.27 71.11 1.56 

Polypropylene (PP) 8.47 66.85 1.56 

Polyethylene (PE) 10.70 67.43 1.57 

Poly(methyl methacrylate) 

(PMMA) 
13.08 67.92 1.57 

Atactic Polystyrene (PS) 13.83 68.07 1.57 

Poly(methyl acrylate) (PMA) 11.49 67.86 1.54 

Poly(ethyl acrylate) (PEA) 14.18 67.91 1.54 

 

6.2.4. Active Chains with Mechanophores 

Recently there have been strong interests into embedding mechanophores, molecules in 

which mechanical force can trigger a reaction, onto polymer chains to produce active materials 

capable of emitting light [4], changing color [47, 48], or relieving stress [87].  For example, it was 

shown that with the addition of certain mechanophores, sufficiently large tensile force caused 

conversion of monomers on the chains backbone to longer monomers [84-88], which led to a 

plateau in the chain force-extension relationship. The theory presented above can be modified to 

describe such systems.   

 For these polymer chains the backbone structure is more complicated so Eq. (6.5) must be 

modified to include additional contributions to the chain energy due to mechanophores.  If we 

consider a chain that has 1n  mechanophore units in the unconverted state and 2n  mechanophore 

units in the converted state, then the chain energy can be written as  

  2211 EnEnEEnEE benstrbent  ,  (6.16) 

where 1E  and 2E  are the energies of one unit in the unconverted and converted stares respectively.  

Before any force has been applied 02 n .  If we denote the lengths of the unconverted and 

converted units as 1l  and 2l  respectively, where 12 ll  , the contour length of the chain will be 

given by 
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Note that unless bnn 1  the tabulated values discussed in the last section cannot be used to 

determine 
oA . Instead the Kuhn length is defined as follows 
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and  0 0 1 1cos / 2 /o b KA n l n l N     where no force is applied on the chain and no 

mechanophores are triggered. The force acting on each mechanophore unit can be obtained by 

taking the derivative of the potential with respect to the length of the unit:  

1

1
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F  ,  (6.19) 
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 As before constraints are needed for the compatible values of 
*r , l ,  , 1l  and 2l .  

Specifically, if the chain end-to-end distance r is fixed, l ,  , 1l  and 2l  should be such that the 

free energy is minimized.  In particular, Eqs. (6.11) and (6.12) still hold, whereas two more 

constraints are imposed:  
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which leads to 

*

21 FrFFFMP  ,  (6.21) 

where we have denoted the force acting on the mechanophore units to be FMP.   

Consider an example where the mechanophores upon external loading undergo a reaction 

in which their lengths increase by approximately 16% [84].  In this material the entire polymer 

chain is made of mechanophores, so effectively 0bn  in Eq. (6.16).  1E  and 2E  in Eq. (6.16)  

have been represented by quadratic functions [84] and are shown in Figure 6.3a). The forces 

calculated from Eqs. (6.19) and (6.20) are shown in Figure 6.3b).  Here points A ( nml o 948.01  ) 

and B ( nml o 099.12  ) mark the lengths for the unconverted and converted mechnophore units, 

respectively, at which they experience zero force.  The dashed line connecting C to D is a 

hypothetical transition, from the unconverted to the converted states, which occurs at a force of 

2nN. According to Eq. (6.21) the force remains constant during this transition.   
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Figure 6.3 a) Energies of unconverted and converted mechanophore units proposed in [84].  E1 corresponds to cis-syn-CL-gCFC 

repeating unit   2

111 99.7352.14036.6678/ llmolkJE   where 1l  is in Angstrom.  E2 corresponds to 2-fluro-3-

chloro-alkene (Z isomer) repeating unit   2

222 85.799.175416.9652/ llmolkJE   where 2l  is in Angstrom.  b) 

Force vs. length obtained by taking the derivative of E1 and E2.   
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6.2.5. Reaction Kinetics 

The bonds on a polymer chain backbone can dissociate, and in some cases can re-associate, 

with certain reaction rates. Such reactions rates are influenced by the application of external force. 

For instance, some models propose that the activation energy for bond dissociation is decreased 

proportionally by the application of an external force with the activation length being a constant 

controlling the decrease [1¸2, 3,].  A refinement to this model is the cusp model where mechanical 

force alters the position of the reactants which changes the activation length [81¸85].  In this model, 

the reaction rate k can be written as [81, 82, 85] 
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where ok  is a constant controlling the reaction rate, ‡G  is the activation energy of the transition 

state, 
‡x  is the activation length of the transition state and f  is the mechanical force. Eq. (6.22) 

predicts a critical force [82] where the reaction rate becomes singular: 

‡

‡2

x

G
fcrit


 .  (6.23) 

The reaction rate equation in Eq. (6.22) can be applied to describe the rupture of regular 

polymer bonds [81, 82], as well as the transition of mechanophores from shorter to longer lengths 

[84, 85]. Firstly, if we denote the fraction of surviving regular bonds (i.e., not mechanophore) as 

Pb  then the following expression can be used to predict the scission of these bonds[1, 2, 3, 5] 

 strPb
P Fkbn

dt

db


.  
(6.24) 

To predict the rate of mechanophore reaction, we denote the unreacted fraction of mechanophores 

as MPb  and write the following expression 

MPbnn 01  ,  (6.25) 

 MPbnn  102 ,  (6.26) 

where  010  tnn .  The mechanophore reaction will be governed by 
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      MPRMPMPMP
MP FkbFkbn

dt

db
 10

,  
(6.27) 

where  MPR Fk  denotes the rate of reverse reaction where the mechanophores transition from long 

to short lengths.   strFk ,  MPFk  and  MPR Fk  will be governed by different constants ( ok , ‡G

, ‡x ).  In addition,  MPR Fk  would need to have a different functional form than Eq. (6.22) because 

the reverse reaction is altered by mechanical force differently that the forward reaction [47, 48]. In 

this work we focus on cases where the forward reaction dominates (i.e., mechanopore elongation 

upon tensile force) and the reverse reaction is negligible (   0MPR Fk ) in Eq. (6.27)).  There is 

one more important point to make regarding  strFk  and  MPFk .  In the literature these reaction 

rates have typically been predicted by using the polymer chain force F [1, 2, 3, 5, 81, 82, 84, 85].  

However, because the model presented in this work provides the force acting on bonds in the 

polymer chain backbone 
strF  and the force acting on the mechanophore MPF  separately, more 

physical force measures can be used in predicting the reaction rates.   

Now consider a polymer chain and denote its surviving chain fraction as b, and the effective 

force it carries is defined as 

bFFeff  .  (6.28) 

b can be related to Pb  and MPb  above. In a simple polymer chain (no mechanophores)  

Pbb  .  (6.29) 

However, if the chain also contains mechanophores which rupture after reaction, then  

PMPbbb  ,  (6.30) 

where Pb  is predicted by Eq. (6.24) and MPb  is predicted by Eq. (6.27) with 0Rk .   

There are three special cases involving mechanophores for which the above equations can 

be simplified.  The first case is the bis(adamantyl)-1,2-dioxetane bisacrylate mechanophores used 

to crosslink elastomers [4]. In this case the reacted state is a dissociated bond, i.e., 02 E , 2l  

and they do not need to be considered in Eqs. (6.16) and (6.17).  Furthermore, because the 



157 

mechanophore is a crosslinker, there is a mechanophore on either end of the chain so 21 n .  Since 

bnn 1  it is a reasonable approximation to use equations from 6.2.1 to 6.2.3 rather than the more 

general equations presented on section 6.2.4.  Surviving chain fraction for this case is given by by 

Eq. (6.30).  This case is examined in section 6.3.3.   

 The second case is the activation of a mechanophore which does not produce any change 

in mechanical properties.  This feature can be reproduced by letting 21 EE  , and 21 ll  .  In this 

case MPb  could indicate quantities such as color change.  This case has been previously explored 

in the literature [47, 48].   

 The third case is the activation of a mechanophore which increase the contour length of the 

polymer chain.  In particular, in section 6.3.4 we consider the polymer chain constructed entirely 

of these mechanophores [84] and hence 0bn .  The transition is reported to be permanent [86] 

so 0Rk .   

6.2.6. Solution Procedure 

The desired output is to find the force-extension relationship (F vs. 
* /o K or r N A ),  *

oP rb

, and in some cases  *

oMP rb .  Eqs. (6.24) and (6.27) are solved using a Runge-Kutta method with 

adaptive step-size control [24] to obtain  *

orb  and  *

oMP rb  where  *

or  is increased in each step.  

During each step it is necessary to solve for several intermediate variables by simultaneously 

solving multiple equations.  For a simple polymer chain (no mechanophores) Eqs. (6.1)-(6.4), 

(6.8), (6.10)-(6.12)  are solved to obtain F, Lc, A, l,  , Fst, M and r*.  If mechanophores are present, 

then Eqs. (6.1)-(6.2), (6.8), (6.10)-(6.12), (6.17)-(6.21) are solved to obtain F, Lc, A, l,  , Fst, M, 

r*, l1, l2, and FMP.   

While the procedure above is relatively efficient, there are certain applications, such as 

finite element simulation using a constitutive model based on the present single chain theory, 

implementation of this numerical procedure at many points in the material would be 

computationally costly. For this reason, we have also used curve fitting to provide simple yet 

accurate representations for the solutions to F, b , and dtdb /  in terms of 
* /o K or r N A  for several 

polymers. A summary of the fitting procedure and results is given in the Appendix.  The variable 
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*

or , the fractional extension with respect to the initial Kuhn length, has been chosen for all fitted 

function because it can be related to the first invariant of the left Cauchy Green deformation tensor 

of the bulk material,  BI1  [9], which can be computed from a finite element program.   

 

6.3. Results 

The results are presented in several sections.  For PDMS we compare the predicted chain 

force and rate dependent damage with experimental measurements in Sections 6.3.1 and 6.3.2 

respectively.  In Section 6.3.3 we compare the damage of PEA chains that have different lengths, 

with and without crosslinking mechanophores.  Finally in Section 6.3.4 we compare the predicted 

chain force with experimental data for an active chain made entirely of mechanophore units that 

increase in length upon activation. It will be demonstrated how this type of chain could lead to 

improved mechanical properties in polydispearse elastomers.  Necessary molecular parameters are 

taken from Table 6.1 and Table 6.2. 

 

6.3.1. Simple Chain without bond scission 

To illustrate how chain force and bond deformation change as the fractional extension ( *

or

) is increased, several relevant quantities for a PDMS chain have been plotted in Figure 6.4.  In 

Figure 6.4a) the force acting on the chain F (blue) and the force acting on the bonds Fstr (red) are 

plotted.  As expected from Eq. (6.11) F is slightly larger than Fstr.  In addition, for this polymer 

the maximum extension of the entropic model 1* or  is exceeded.  The deformation of bond length 

(blue) and angles (red) as a function of *

or  are shown in Figure 6.4b).  As expected when the force 

is small the deformation of bonds is negligible indicating the force is determined primarily by 

entropy.  However, once a fractional extension of about 9.0* or  is reached sufficient force is 

present to cause significant bonds deformation.  After this point *r  changes from increasing 

linearly with *

or  to asymptotically approaching a value of 1 as shown in Figure 6.4c).  This feature 

prevents the force singularity that occurs at 1* or  in purely entropic models.   
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Figure 6.4 a) Comparison of the tensile force acting on the chain with the tensile force acting on the 

bonds in the chain.  b) Bond stretch and bond deformation angle plotted against 
*

or .  c) 
*r  plotted 

against 
*

or .  The parameters used in generating these graphs are for PDMS (Table 6.2)  and Si-

O bond (Table 6.1) 
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Without the consideration of damage, the force-extension relationship for PDMS chain is 

shown in Figure 6.5a) (blue).  Also shown in this figure is the relationship based purely on entropic 

elasticity (yellow) (Eq. (6.1) ).  Clearly, the deformation of bonds makes the force-extension 

relationship considerably softer for 9.0* or .  In [3], single chain extension data were presented 

for PDMS, and the entropic chain model was found to be able to fit the data only up to 
* 0.9or  . 

To see if the model established here performs better in describing the force-extension relationship, 

the same experimental data are also shown in Figure 6.5a). This data was obtained from atomic 

force microscopy (AFM) measurements which, in the raw form, is force vs. end to end distance. 

When attempting to fit the data using the entropic model, two fitting parameters are used: the Kuhn 

length which impacts the force magnitude predicted (Eq. (6.1)), and the contour length which 

impacts the fractional extension.  The Kuhn length obtained using this method is often much 

smaller than the tabulated values; for example, 0.3 nm as determined in [3] versus 1.3 nm tabulated 

in [50].  In our model, the tabulated value for the Kuhn length (1.3 nm for PDMS) is directly used 

and the only fitting parameter is the contour length.  To produce a good fit between our model and 

experimental data a contour length shorter than that in Ghatak et al [3] is needed, so we have scaled 

up their reported fractional extensions by a factor of 1.085 in Figure 6.5a).  
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Figure 6.5: Comparison of the force-extension relationship from the entropic elasticity model Eq. 

(6.1), with the prediction by the model presented in this work and AFM experimental data for a 

single polymer chain [3].  The parameters used in generating these graphs are for PDMS (Table 

6.2) and Si-O bond (Table 6.1) 

 

6.3.2. Simple Chain with Bond Scission 

To illustrate the scission of PDMS chains and its rate dependence, we calculate the 

surviving chain fraction b for a number of extension rates (V) presented in Chaudhury et al. [2].  

The following parameters were found to provide a good fit to the experimental data in Chaudhury 

et. al. [2] (to be discussed in conjunction with Figure 6.7): 13101 ok , JG 19‡ 10125.1  , 

and mx 9‡ 1009.0  .  Here ok  and 
‡x  are close to the values used in the model of Chaudhury 

[2] while 
‡G  is chosen so that the critical force on the polymer chain would be close to the critical 

value reported in the literature [82]. With these kinetic parameters the surviving chain fraction b 

and the effective force are shown in Figure 6.6 for four different extension rates.  Increasing the 

extension rate causes the damage to shift to higher fractional extensions (see Figure 6.6a)); and 
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this translates to an increase in the peak effective force (see Figure 6.6b)).  On the other hand, as 

the extension rate increases the maximum extension approach an asymptotic limit (black dotted 

line) because the forces on bonds in the chain approach the critical force Eq. (6.23). This is 

particularly evident in the purple curves in Figure 6.6 which correspond to the highest extension 

rate.   
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Figure 6.6 a) Surviving chain fraction of polymer chain, b, plotted against fractional extension ro* for 4 different 

chain extension rates.  b) Effective force Feff* = bF* =bFAo/kBT plotted against fractional extension ro* for 4 different 

chain extension rates.  The parameters used in generating these graphs are for PDMS (Table 6.2), Si-O bond (Table 

6.1), Temperature T = 298 K, 
13101 ok , JG 19‡ 10125.1  , and mx 9‡ 1009.0  .   
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The model also allows us to determine the fracture energy of a PDMS interface (G), which 

can be computed as follows [1] 

**

oBoK drbFTkNdrFG   ,  (6.31) 

where   is the areal density of load bearing polymer chains and 
o  is the initial areal density of 

load bearing polymer chains prior to any applied load. This fracture energy was measured as a 

function of different interface separation speeds (V) in Chaudhury [2], and the experimental data 

(blue) are compared with predictions made by the model (red) in Figure 6.7.  Here the contour 

length of the chain (Lc = 16.3nm, equivalent to nb = 129) and 2181028.5  mo
 are parameters 

used to fit the experimental data.  The model has reasonably reproduced the experimental data and 

captured the increased energy needed to rupture polymer chains at higher speed.   

 

Figure 6.7: Frature energy G plotted agaist interface spearationspeed V.  Experiemtnal data and  model prediction are compared. 

The parameters used in generating these graphs are for PDMS (Table 6.2) and Si-O bond (Table 6.1).  Lc = 16.3nm and 

2181028.5  mo
 were found to provide a good fit for the experimental data.   
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6.3.3. Effect of Mechanophores on Chain Scission 

 

 Figure 6.8a) shows the surviving chain fraction for 3 PEA chains (containing no 

mechanophores) of different chain lengths (i.e., different number of Kuhn segments NK). The 

corresponding non-dimensional effective force, TkAFF Boeffeff /*  , is shown in Figure 6.8b).  Here 

a constant stretch rate of 10171.0  s  is applied in all cases, and Eqs. (6.24) and (6.27) can be 

transformed to eliminate time dependence under the constant rate (see Appendix for details).  

Longer chains are observed to rupture at shorter extension since there are more bonds and hence 

more potential failure points.   Depending on the chain length, the peak of the effective force is 

between 2 and 3nN.  The maximum extension, at which all bonds break, exceeds the entropic 

locking extension by 10-12%.   

The same calculations are repeated for a polymer chain crosslinked with weaker 

mechanophore bonds.  In this example the mechanophores with dissociation energy of 150kJ/mol, 

much lower than that of C-C bonds (350 kJ/mol), were used as crosslinker [4].  The surviving 

chain fraction for 3 different chain lengths (NK) is shown in Figure 6.9a), and the corresponding 

effective force is shown in Figure 6.9b).  Here because scission is dominated by the rupture of 

mechanophores the difference between different chain lengths is nearly negligible.  Compared 

with the case without mechanophores (Figure 6.8) the peak force is less, between 1.5 and 2 nN; as 

well the maximum extension is reduced and only exceeds the entropic locking extension by about 

5%.   
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Figure 6.8 a) Surviving chain fraction, b, plotted against fractional extension ro* for 3 different chain 

lengths.  b) Effective force Feff* = bF* =bFAo/kBT plotted against fractional extension ro* for 4 

different chain lengths.  The parameters used in generating these graphs are for PEA (Table 6.2), 

C-C bond (Table 6.1), Temperature T = 298 K, stretch rate 10171.0  s , 9105 ok , 

JG 21‡ 1040  , and mx 9‡ 10021.0   these values are based upon the PDMS values in the 

literature [82] however, these have been calibrated in another model, for which the publication is 

forthcoming,  to match experimental stress magnitudes in multinetwork elastomers  .   
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Figure 6.9 With a mechanophore on each end of the chain a) Surviving chain fraction, b, plotted 

against fractional extension ro* for 4 different chain lengths.  b) Effective force Feff* = bF* 

=bFAo/kBT plotted against fractional extension ro* for 3 different chain lengths.  The parameters 

used in generating these graphs are for PEA (Table 6.2), C-C bond (Table 6.1), Temperature T = 

298 K, stretch rate 10171.0  s  9105 ok , JG 21‡ 1040  , and mx 9‡ 10021.0  .  For 

the mechanopohore 
6102 ok , JG 21‡ 1020  , and mx 9‡ 10021.0     
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6.3.4. Chains composed of mechanophores with elongation reaction 

 

Finally we examine the situation where a polymer chain is composed entirely of 

mechanopore units that, upon activation, increase their length. Using the potentials E1 (syn-CL-

gCFC) and E2 (2-fluro-3-chloro-alkene (Z isomer)) from Wang et al. [84].  , the unreacted fraction 

bMP and the predicted force are plotted against *

or  in Figure 6.10.  In Figure 6.10a), bMP initially 

stays at a constant value of 1 until the force, shown in Figure 6.10b), becomes sufficient for the 

mechanophores to react. Once this occurs bMP drops smoothly to zero as all of the mechanophores 

react.  The reaction of mechanophores increases the contour length of the polymer chain; therefore 

larger increases in *

or  are need to increase the force. This creates a region in Figure 6.10b) where 

the increase of force with *

or significantly slows down.  Experimental data from Wang et al. [84] 

is also shown in Figure 6.10b), which can be well fitted by the present model with

JG 21‡ 1032  , nmx 025.0‡  , 
15108  sko , nmLc 745 , 300nm/s separation velocity 

[84] this corresponds to 402.0/* dtdro
.  Also shown for reference in Figure 6.10b) are the force 

for a purely entropic chain, as well as the forces for a 100% unreacted chain and a 100% reacted 

chain.  The latter two can be calculated from the numerical solution of the reacting chain as 

follows.  Once FMP is known for the reacting chain Eqs. (6.20) and (6.1) are solved for 
*r  and F 

where the Kuhn length in Eq. (6.1) is replaced with  

K
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for the 100% unreacted chain and 
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for the 100% reacted chain.   
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Figure 6.10: a) Unreacted mechanophore fraction vs 
*

or ,  b) Chain force vs 
*

or .  Comparison is made between the force predicted 

by the model (yellow line) and the experimental data [84] (red x).  Also shown is the force predicted by using a purely entropic 

model (blue), the model if all mechanophorse are unreacted (purple), and the model if all mechanphores are reacted (green).  

402.0/* dtdro
. .  

 

The force extension relationship, with a plateau, shown in Figure 6.10b) has the potential to be 

used to design elastomers with improved properties such as enhanced fracture toughness and 

ultimate stress.  To illustrate this we will estimate the stress in a material consisting of many chains 

of different length as was done in Lavoie et al. [5]. For computation efficiency the curves in Figure 

6.10b) are fitted with analytical functions and details of the fitting are given in the Appendix.  Of 

interest is to compare how the different force-extension relationships, with the same surviving 
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chain fraction, Appendix, )(Fb , will impact the stress this is done for the cases of an entropic 

chain, a reacting chain with reaction kinetics and a 100% unreacted chain; the resulting effective 

forces are shown in Figure 6.11.  In each case the mean break force [81] defined as 

 

1

0

** dbrF
A

Tk
F o

o

B

b
,  (6.34) 

is the same because )(Fb  is the same in each case.   

The stress in a bulk polymer can be calculated from a chain force-extension relationship 

by following the procedure from Lavoie et al [5] where the strain energy is given by 

  kchK dNbENwU 



1

.  (6.35) 

Here ch  is the volumetric density of polymer chains and  KNw  is a probability distribution 

function describing the number of chains which have KN  Kuhn segments.  For the case of uniaxial 

extensions the fractional extension will be given by [9] 

Ko Nr 3/)2( 12*   ,  (6.36) 

where   is the stretch, and the stress can be written as [5]   
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where TkBch   is the shear modulus when 0* or .  The stress, normalized by  , is plotted in 

Figure 6.12a) against the stretch.  An overall surviving chain fraction which considers the weighted 

contribution of all chain lengths can be defined as follows [5]   

    KKoKt dNNrbNwb ,*

1




 ,  (6.38) 

and it is plotted in Figure 6.12b).  Comparing the three curves in Figure 6.12a) and Figure 6.12b) 

shows that the reacting mechanophores lead to the largest stress followed by the unreacting 

mechanophores, while the entropic chain produces the lowest stress.  Similarly, chains with higher 

stress have higher surviving chain fraction in Figure 6.12b).  The ability for the chain to prevent 

failure by increases in length allows more chains, of different lengths, to have higher force at any 
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given stretch which increases the maximum stress.  To quantify this effect we define force 

efficiency as 

     
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Where the numerator is the Kuhn average force defined as 

     
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.  (6.40) 

The force efficiency is plotted in Figure 6.12c) and correlates well to the stress magnitude due to 

the similarity in definition.  However, what is interesting about the efficiency is the magnitude 

provides a direct measure of how well the elastomer is able to distribute load between all chains.   

 

Figure 6.11: Effective force vs 
*

or . The same surviving chain fraction )(Fb  is applied to each of the three polymer chains (i) a 

fully entropic chain (ii) a chain where the mechanophore cannot react and (iii) a chain where mechanophore can react.   
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Figure 6.12 a) Nondimensional stress vs stretch b) Surviving chain fraction vs stretch c) Force efficiency vs stretch.  In each subfigure 

three curves are shown each corresponds to a different force relationship from Figure 6.11.  The following probability distribution 

function has been used to describe chain lengths     2.612.0exp)2.6(0239.0 8.0  KKK NNNw [5].   
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 A few comments are warranted to put Figure 6.12 into perspective.  Firstly, Figure 6.12a) 

suggests that the stress can be three orders of magnitude larger than   which far exceeds anything 

that has been observed. For example for the single network elastomers presented in Ducrot et al 

[4] the true stress at break is of the same order of magnitude as the Young’s modulus; whereas 

data for latex rubber show a true stress at break that is two orders of magnitude greater than 

[92]. The discrepancy in magnitude is most likely due to the fact that real materials contain defects, 

which lead to stress concentrations, localized damage, and failure much earlier than what is shown 

in Figure 6.12 a).  If a stress concertation is present in experiments, the maximum local stress may 

be much higher than the maximum measured stress because this large stress only occupies a small 

fraction of the materials volume.  Furthermore, the effect of the nonlinear force-extension 

relationship often cannot be seen in elastomer experimental data. For example in the single 

network data presented in Ducrot et al [4], only a small fraction of the material’s volume has chains 

with high force when the sample fails.  In these types of brittle elastomers designing the material 

with special polymer chains is unlikely to yield a significant improvement in properties.  However, 

special manufacturing techniques have been used to dramatically enhance the toughness of brittle 

elastomers [4]. In particular, in multinetwork elastomers a primary network is prestretched by 

introducing filler networks.  Prestretched chains are able to break in a large fraction of the material 

while the filler networks prevent large crack from forming [4].  In this type of material it stands to 

reason that using special polymer chains in the primary network could lead to a significant 

enhancement to the maximum stress and toughness.   

 

6.4. Conclusion 

A model is developed to predict force extension relationships for polymer chains by 

minimizing the free energy containing contributions from the configurational entropy and the 

energies for deformation of bonds on the polymer chain’s backbone.  Parameters in this model are 

largely molecular parameters available in the literature, and hence the number of parameters 

needed from fitting experimental data is minimal.  Compared with classical entropic chain models 

the behavior is significantly softer at large extension, owing to the ability of the bonds to deform.  

The model is subsequently extended to include the consideration of active polymer chains 

containing mechanophores.  It is demonstrated that the cusp model can be used in conjunction with 
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the chain model to predict rates of chain rupture and mechanophore reaction.   In particular the 

model is able to reproduce the rate dependent fracture energy needed to advance a crack in PDMS, 

as well as the plateau in force extension relationship caused by mechanophores that increase the 

contour length of the chain when subjected to sufficient tensile force.  By implementing the force 

extension relationship developed here into a simple constitutive model, it is shown that this type 

of active chain has the potential to significantly improve the maximum stress and toughness that 

elastomers can achieve.   
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6.5. Nomenclature 

oA  Initial Kuhn Length 

A  Kuhn length 

ia  Fitting parameters for chain damage 

  Parameter in Maxwell Boltzmann Distribution 

b Surviving chain fraction 

B  left Cauchy green deformation tensor 

1 , 
2  Fitting parameter in scission equations 

s  Constant which controls width of Morse potential 

C  Asymptotic value of Flory’s characteristic ratio 

ic  Fitting parameters for chain force curve fit 

id  Fitting parameters for activation energy curve fit 

eD  Bond dissociation energy 

E  Energy of polymer chain 

aE  Activation energy for bond dissociation 

aoE  Activation energy for unstreatched bond 

entE  Entropic component of polymer chain energy 

strE  Energy of a single stretched bond on polymer chain backbone 

benE  Energy of a single deformed bond angle on polymer chain backbone 

F Tensile force acting on polymer chain 

*F  Nondimensional polymer chain force  

effF  Effective tensile force with consideration of ruptured polymer chains 

*

effF  Nondimensional effective force 

maxF  Maximum bond force possible in Morse potential 

strF  Tensile force acting on individual bonds in the chain 

Ph  Plank’s constant 
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 BI1
 1st invariant of the left Cauchy green deformation tensor of the bulk 

material 

Bk  Boltzmann Constant 

k , sexick  Bending constants 

  Uniaxial extension stretch 

  Uniaxial extension stretch rate 

lo Initial bond length 

l Bond length 

al  Activation length of a bond 

cL  Contour length of polymer chain 

maxl  Bond length required to reach peak of activation energy barrier 

M Bending moment acting on bonds 

bM  Average molecular weight per backbone bond 

chM  Molecular weight of chain 

KM  Molecular weight of Kuhn segment 

mM  Molecular weight of a single monomer (repeat unit) 

bn  Number of backbone bonds on polymer chain 

mn  Number of backbone bonds per repeat monomer unit 

mpn  Average number of mechanophores embedded on each polymer chain 

KN  Number of Kuhn segments on polymer chain 

P  Persistence length of polymer chain 

o Initial bond angle 

 Bond angle 

  Density of polymer  

r  Polymer chain end to end distance 

*r  True Fractional Extension of polymer chain 

*

or  Fractional extension of polymer chain relative to initial contour length 
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*

max,or  Fractional extension where surviving chain fraction becomes negligible 

*

, peakor  Fractional extension where peak rate of scission occurs 

2

oR  Mean square end to end distance of polymer chain (before stretch) 

eng  Engineering stress 

T  Temperature 

t time 

ch  Volumetric Density of Polymer Chains 
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Chapter 7. Conclusion and Future Work 

 

A greater understanding of the fracture process in inelastic elastomers, gained through 

fracture modelling, can lead to insights that subsequently allow for the design of tough materials 

which resist crack propagation.  With the goal of developing tools to simulate crack initiation and 

propagation in inelastic elastomers, several models were developed in this thesis to determine the 

force on a stretched polymer chain, how the chain breaks and how this information can be used to 

predict the behavior of bulk materials as well as interfacial separation.  

The first set of studies were conducted to investigate the peeling of viscoelastic double 

cantilever beams where an interfacial adhesive model describing the kinetics of breaking polymer 

chains controlled the separation of the two beams.  This problem was solved using both linear and 

nonlinear polymer chain force-extension relationships.  The apparent energy release rate consists 

of two components: the adhesive fracture energy due to dissipation on the interface, and viscous 

dissipation within the bulk material. Faster rates of peeling result in larger adhesive fracture energy 

whereas the rate-dependence of bulk viscous dissipation is non-monotonic.  Although the peak 

magnitude of the viscous dissipation scales with the magnitude of the adhesive fracture energy, 

varying the ratio of bulk relaxation time and bond rupture time over several orders of magnitude 

resulted in very small changes in the effective modulus, crack opening displacement, and adhesive 

fracture energy.  The likely explanation for this weak coupling is the fact that the beams’ strain is 

perpendicular to the adhesive stress produced by the interfacial polymer chains.   

Recognizing that experimental mapping of bond rupture events in elastomers has shown that 

chain scission can occur in a large area surrounding a crack, the kinetics of polymer chain breaking 

was extended from only on the interface to the constitutive model for the bulk material.  With such 

model a cohesive zone is not needed to predict material failure, and higher deformation rate was 

found to result in larger maximum stresses.  Adjusting the model to consider polydispersity, a 

distribution of chain lengths, decreases the maximum stress because the chains of different lengths 

attain their maximum force at different time and rupture gradually.  This results in the capability 

of the model to predict progressive damage. An example of this is that the stress-stretch 

relationship under cyclic loading, with increasing amplitude after each cycle, exhibits hysteresis 

between loading of undamaged material and unloading of the damage material, which resembles 
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the Mullin’s effect in filled elastomers.  This characteristic is important since a strong connection 

between hysteresis and enhanced fracture toughness has been found in the literature.   

The developed elastomer damage model provided an important component to study a new 

class of tough multinetwork elastomers.  These materials are synthesized by swelling a primary 

elastomeric network with filler network(s), a process which prestretches the chains of the network 

formed in the previous step(s).  Because the chains in the primary network often rupture during 

deformation, the elastomer damage model is applied to the primary network.  The filler networks 

are subjected to less or negligible damage, and hence are represented by a simpler generalized neo-

Hookean model.  Pre-stretch of the chains is incorporated into the model by basing the strain 

energy of the material on the combined effect of swelling and subsequent deformation of the 

completed multinetwork elastomers.  Based on this model, the primary network contributes the 

majority of the stress, while only occupying a small volume fraction.  The model provides a good 

match to experimental data of multinetwork elastomers under uniaxial extension, including cyclic 

loading, for a variety of prestretches.   

A key element in modeling mechanics of elastomers is the relationship between the force 

applied on a chain and its extension. Classical models for the chain force-extension relationship 

are far too stiff at large extension because they do not account for the deformation of bonds on the 

chains backbone.  To overcome this deficiency, a new model was developed by minimizing the 

free energy containing contributions from the configurational entropy, bond stretch and bond angle 

deformation.  The model was additionally extended to include the consideration of active polymer 

chains containing mechanophores.  Of particular interest is the application of the model to chains 

that can increase their contour length when subjected to sufficient tensile force. The model well 

reproduces the experimental observation of a plateau in the chain force extension relationship 

when the chain length increases.  Implementing such force extension relationship into a simple 

constitutive model, it is shown that this type of active chain has the potential to significantly 

increase the maximum stress and toughness that elastomers can achieve.   

 The models presented in Chapters 4 and 5 are being implemented as User Material 

subroutines within Abaqus, a commercial finite element analysis software package, and will be 

used to study large deformation crack initiation and propagation.  Such analysis should provide 

new insights into the fracture process for tough inelastic elastomers.  Of particular interest are 
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several questions (i) by what mechanism does stress-stretch hysteresis enhance fracture toughness, 

(ii) how do the shape of the stress-stretch curve and damage evolution impact the size of the 

damage zone around a crack rip, (iii) how much does crack tip blunting contribute to the 

enhancement of fracture toughness, and (iv) are the assumptions made to experimentally estimate 

fracture energies accurate for inelastic elastomers.  Answering these questions will allow for 

grating insight into the failure of elastomers that will facilitate the design of tougher elastomers.   
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Appendix 1. Supporting Material for Chapter 2 

Appendix 1.1. Alternative treatment for van der Waals 

attraction 

 

If c  is small and the van der Waals (vdW) attractions become negligible long before the end of 

the adhesive zone, then the vdW stress can be taken into account by a linear bending moment 

boundary condition.  To show this, consider the limit as 0c  then the material on which vdW 

attractions act will be in an unrelaxed state.  Therefore, the material infinitely close to the adhesive 

zone tip can be treated as elastic with modulus Eo and the “J-integral” [25, 27] can be applied along 

a closed path Γ enclosing the adhesive zone tip to obtain a moment boundary condition.  For quasi-

static crack propagation in a linear elastic solid, the J-integral has been shown to be independent 

of path Γ and equal to the work of adhesion which is the energy required to advance a unit area of 

crack [26].  If the path Γ is chosen to be infinitely close to the adhesive zone tip then there is no 

contribution from the chains and the work of adhesion will be from vdW attractions only (denoted 

by 
vdWW ). A J-integral formulation for adhesion of a Bernoulli Euler beam to a substrate has been 

presented by Glassmaker and Hui [26]. Several small adjustments can be made to this result to 

apply it to our case.  First, we do not consider large beam deflections therefore 22 //2 dxddsd    

where   is the angle between the beam’s deformed neutral axis and undeformed neutral axis and 

s is an arc length parameter.  Second we consider the strain energy from two beams. Finally we 

consider beams of width D rather than of unit width.  With these three modifications the following 

relationship can be obtained from the results of Glassmaker and Hui [26]  

 
IE

DW

dx

d

o

vdW20
2

2




.   (A1.1) 

Since the material is unrelaxed at the adhesive zone tip we can also write 

  IDEW
dx

dIE
M ovdW

o  0
2

)0(
2

2
.   (A1.2) 

Finally, in normalized form (see normalization in the main text, Eq. (2.5)) the moment boundary 

condition is 
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    *

2*

*2
* 200 vdWW

dx

d
M 


. (A1.3) 

Note that if the vdW attractions are explicitly considered in the adhesive stress then there is no 

work needed in opening the adhesive zone tip.  In this case it would follow from Eq. (A1.3) that 

the moment and curvature at the adhesive zone tip are both zero.   

 

Appendix 1.2. Impact of Numerical criteria on L* and G* 

 

Numerical criteria to define the crack tip can be introduced based on adhesive stress or bond 

density.  When the adhesive stress is dominated by polymer chains, criteria based on bond density 

and adhesive stress are very similar ( *** Ff b ).However, when both vdW attractions and 

polymer chains contribute to 
*f , the adhesive stress can have a local minimum (data not shown) 

and care must be taken to ensure that the chosen criteria will not predict an incorrect crack tip 

around this minimum. In addition, when the adhesive zone is dominated by vdW attractions the 

criteria based on bond density requires a second condition to ensure that the crack opening 

displacement (COD) * *( )L  is sufficiently large for the work done by the vdW attractions to 

approach 
*

vdWW .  

In the main text, the criteria used to determine the effective adhesive zone length has been 

specified as:   *** 605.4 cL    and (   0000001.0**  Lb
 or   0/ *2**2  Ldxd b ).  The first 

condition requires a sufficient COD so that the work done by vdW attractions is >99% of WvdW.  

The second condition pertains to requiring the chain density to be negligible outside the adhesive 

zone.  The condition   0/ *2**2  Ldxd b  serves as an escape because at high speed the step size 

given by the adaptive step size control [24] will approach 0 near L* and the numerical program 

would not be able to terminate the calculation under such conditions.   

To evaluate the impact of changing the criteria we compared elastic DCB results generated 

from the seven criteria shown in Table A1.1 Note that Criteria 7 was adopted in the main text. 

Results for L* are shown in Figure A1.1a) for a range of V*/.  It is clear from Figure A1.1a) that 

at low speed the adhesive zone length is highly dependent on the criteria used.  For this reason we 
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have not presented results for L* in the main text (instead a brief discussion is given in Appendix 

1.4).  Although the adhesive zone length changes considerably depending on the criteria used, the 

adhesive fracture energy, shown in Figure A1.1b), does not.  The difference between the adhesive 

fracture energy calculated using different criteria is negligible.  Therefore as long as the tolerance 

is sufficiently small to ensure there will be no more contribution to Gad
* past L* any criteria can be 

used. It should be noted that criteria based on bond density was shown to be computationally more 

effective than criteria based on adhesive stress.   

 

Table A1.1: Different L* criteria evaluated 

Criteria # Criteria 

1   *** 605.4 cL    and   01.0** Lf  

2   *** 605.4 cL    and   001.0** Lf  

3   *** 605.4 cL    and   0005.0** Lf  

4   *** 605.4 cL    and   0001.0**  Lb  

5   *** 605.4 cL    and   00001.0**  Lb  

6   *** 605.4 cL    and   000001.0**  Lb  

7   *** 605.4 cL    and (   0000001.0**  Lb  or   0/ *2**2  Ldxd b ) 
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Figure A1.1: Plots for a) adhesive zone length, L* and b) adhesive fracture energy Gad
* obtained by varying V*/ while holding the 

other governing parameters fixed at U* = 2850, E = 1, L=0.0022222, c
* = 0.02 and WvdW

* = 5.  Each curve in these figures 

represents a different criterion as indicated in the legend and Table A.    
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Appendix 1.3. Strain Energy Correction for Fracture Energy 

Consider the work needed to be done by the applied moment M  to advance a unit area of the 

crack. We have used a translating coordinate system to make the problem steady within the 

adhesive zone.  However, M  is applied outside of the adhesive zone (according to the definition 

of adhesive zone in the main text).  A strain energy correction needs to be introduced in the 

evaluation of energy release rate, since the fracture energy was evaluated at a fixed point xM in the 

translating coordinate system, and this point would translate with the adhesive zone tip as the crack 

propagates in a steady-state manner.  This scenario can be thought of as if the moment M  is 

applied at xM and translates with the adhesive zone tip. During this process, the strain energy stored 

in the beam segment on the right of xM would be released.  Therefore, the work by the applied 

moment M  at a fixed location xM (in the translating coordinate system) to advance a unit area of 

crack consists of three parts 

sevisad GGGW   (A1.4) 

where W is the work to advance a unit area of crack and Gse is the increase in strain energy per 

unit crack advancement due to the translation of xM.  We will formulate a correction to remove Gse 

from the fracture energy.  The total work W can be evaluated from the work of the applied moment 

on the two beams in the DCB or  

 MxMWD    . (A1.5) 

We define an effective Young’s modulus at position xM outside of the adhesive zone so that  

   
2

MM xIxE
M

 


. (A1.6) 

For the viscoelastic model used E(xM) will be in the range   oM ExEE  .  Consider the change 

in strain energy at xM for an elastic DCB with modulus E(xM). The portion of strain energy that 

would be released from an elastic beam due to the translation of the applied load is given by 

  2

1 2 W

IxDE

M

dx

dU

D
G

Mx

se
se

M

  , (A1.7) 

where dUse is the elastic strain energy of the two beam segments (one on each beam) each of length 

dx, and Eqs. (A1.5) and (A1.6) have been used.  Even though the beam is viscoelastic, we have 
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calculated dUse assuming that locally at xM the beam is elastic with an effective modulus of E(xM). 

To isolate the energy release rate contributions from adhesion and viscous dissipation, we subtract 

Gse and define the energy release rate as follows 

visadse GG
W

GWG 
2

. (A1.8) 

Here G can be directly evaluated from  

 
D

xM
G M

2

 
  . (A1.9) 

As long as the moment is applied in a region where the beams are fully relaxed (  EE ), the 

results can be made sufficiently close to the case where the moment were to be applied at infinity 

and 

 
2


 



IE
M . (A1.10) 

It then follows that 

 
IDE

M
G




2

. (A1.11) 
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Appendix 1.4. Results and Discussion on the Effective 

Adhesive Zone length 

 

Here we present numerical results for the adhesive zone length L* and discuss how it depends 

on the crack propagation speed and chain rupture kinetics for both elastic and viscoelastic beams. 

For all the results in this section, the criterion used to determine L* is criteria 7 from Appendix 1.2.  

First, consider the simplest case of an elastic beam where there is no bulk dissipation.  In Figure 

A1.2a) the adhesive zone length L* is plotted against V*/. At slow rates of crack propagation the 

adhesive zone length remains fixed.  Once a critical speed is reached the adhesive zone length 

sharply increases.  However, with further increases in speed the adhesive zone length reaches a 

maximum and begins to decrease.  Ultimately the adhesive zone length asymptotically approaches 

a constant value (0.26 in this case, details discussed in Appendix 1.7) as V* tends to infinity.   

To understand the L* behavior in Figure A1.2a) it is important to recognize that the adhesive 

zone could be controlled by either the vdW attractions or by the polymer chains. Typically at small 

V*/ the vdW attractions control L* whereas at higher speed the polymer chains control L*. The 

transition to polymer-chain dominated regime occurs when there is sufficient remaining polymer 

chains as the COD reaches the critical vdW opening. The critical vdW opening is a constant 

dependent on c
* and it must be reached before the remaining work that can be done by vdW 

attractions (on the interface beyond the critical vdW opening) becomes negligible.  

Kinetic polymer chain scission causes two competing effects which impact the adhesive zone 

length.  Firstly increasing V*/ results in less time for chains to break as the crack propagates and 

hence the chains can survive longer along the adhesive zone, which tends to increase the adhesive 

zone length.  Secondly, the accompanied survival of chains to larger openings results in larger 

adhesive stress.  It will be discussed later that larger integral of the adhesive stress   
0

***

*
0

L
dxfS  

causes the crack opening to increase more rapidly with respect to position, which tends to decrease 

the adhesive zone length. The first effect can be seen in Figure A1.2b) where COD is plotted 

against V*/. For the second effect consider that the shear force at the adhesive zone tip, 
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  
0

***

*
0

L
dxfS , provides a representation of the integral contribution of the adhesive stress in the 

adhesive zone.  0*S  is plotted against V*/ in Figure A1.2c).  0*S  is dominated by vdW 

attractions for slow crack propagation, and decreases (increases in magnitude) due to the prolonged 

survival of polymer chains at larger V*/. The shear force distribution within the adhesive zone 

is a negative, monotonic increasing function; therefore as  0*S  increases its magnitude with V*/, 

the shear force over the entire adhesive zone becomes larger in magnitude as well.  From Eq. (8) 

in the main text the increased shear force magnitude at larger V*/ will cause * to increase more 

rapidly with x*.  Accelerated increase of * with respect to x* will tend to decrease the adhesive 

zone length by either causing the vdW critical opening to be reached sooner and by increasing the 

extension of polymer chains which accelerates their rupture.   

The competition between survival of polymer chains to larger openings and accelerated 

increase in * result in the non-monotonic L* behavior observed in Figure A1.2a). The former 

effect dominates at lower V*/ and increases L*, while the latter effect dominates at higher V*/ 

and causes L* to decrease. As crack propagation speed tends to infinity the two effects come into 

balance and the adhesive zone length approaches a constant value (0.26 in the present case).   
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Figure A1.2: Plots for the a) adhesive zone length L* b) COD *(L*) c) reaction shear S*(0) obtained by varying V*/while holding 

the other governing parameters fixed at U* = 2850, E = 1, L=0.0022222, c
* = 0.02 and WvdW

* = 5.  
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The adhesive zone length, COD and reaction shear force are shown for a viscoelastic DCB (E 

= 0.01) in Figure A1.3. The main difference here is that the x-axes are now V* rather than V*/, 

and each curve represents a different value of .  As discussed in the main text the behavior of the 

kinetic chain rupture equation (Eq. (2.6) in the main text) is determined by V*/. Therefore when 

results primarily determined by this equation, such as COD, are plotted on V* axis the results for 

different values of  will be shifted horizontally; i.e.  acts as a speed shift. The adhesive zone 

length results shown in Figure A1.3a) are very similar to those shown in Figure A1.2a) for an 

elastic DCB but with the speed shift discussed above, as the local maxima all occur at roughly the 

same V*/. In addition to the behavior described for the elastic beam there is also a superimposed 

increase in L* from about V* = 10-4 to 1, and the local maxima can occur before or after this 

increase.  This increase in L* is caused by effective stiffening of the DCB as the material will be 

less relaxed at higher rates of crack propagation.  Since the unrelaxed material has a higher flexural 

rigidity, it resists opening and results in a larger L* as seen in Figure A1.3a). This is the same 

reason why if we compare the five curves in Figure A1.3a), when the local maximum in L* occurs 

at a higher V*, the peak value is larger.  The elastic case shown in Figure A1.2 was solved using 

the unrelaxed modulus so in the high speed limit the results in Figure A1.2a) and Figure A1.3a) 

both converge to the same limit (0.26).  The COD results, shown in Figure A1.3b), also display 

the same behavior as what was seen in Figure A1.2a), only shifted horizontally for each .  Finally 

the reaction shear force, shown in Figure A1.3c), is also similar to Figure A1.2c), but overall the 

magnitude of the reaction shear force in Figure A1.2c) is lower for small V*/ due to the relaxed 

material.   
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Figure A1.3: Plots for the a) adhesive zone length L* b) COD *(L*) and c) reaction shear S*(0) obtained by varying V*
while holding 

the other governing parameters fixed at U* = 2850, E = 0.01, L=0.0022222, c
* = 0.02 and WvdW

* = 5.  Each curve in these figures 

represents a different  as indicated in the legend.    
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Appendix 1.5. Dependence of Fracture Energy on xM
* 

 

In Eq. (A1.5) we defined the location where the moment 
*

M  is applied, xM
*. A different choice 

of xM
* represents a different beam length.  In this section results for G* and Gvis

* are presented for 

xM
* = 0.5, 1, 2, 100 and infinity, respectively in Figure A1.5, Figure A1.6, Figure A1.7, Figure 

A1.8 and Figure A1.9. Since xM
* is outside of the adhesive zone, Gad

*, presented in Figure A1.4, 

is insensitive to xM
*. As G* is the sum of Gvis

* and Gad
*, only the Gvis

* results will be discussed; 

however results for G* are provided for reference. In the main text Gvis
* was described to be 

negligible in both the low and high speed limits and have a peak value between these two limits. 

From Figure A1.5, Figure A1.6, Figure A1.7, Figure A1.8 and Figure A1.9, it can be seen that as 

xM
* is increased the peak dissipation occurs at larger V*. For xM

* at infinity there is no noticeable 

peak in Figure A1.9b) since it would occur at infinite V*.  In the main text, it has been explained 

that as crack propagation speed is increased, there is less time for the bulk material to relax; this 

leads to an increase in the effective modulus at each point within the beam, which is what causes 

the non-monotonic dependence of Gvis
* on V* for a finite sized beams.  Similarly, the peak in Gvis

* 

shifts to higher V* for longer beams because for larger xM
* faster crack propagation is needed to 

see the same level of increase in the effective modulus throughout the beam. Comparing Figure 

A1.5, Figure A1.6, Figure A1.7 and Figure A1.8 also shows that at a given V* where Gvis
* is not 

negligible, Gvis
* will increase as xM

* is increased due to the extra dissipation from the additional 

length of beam.   
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Figure A1.4: Plots for the adhesive fracture energy Gad
* obtained by varying V* while holding the other governing parameters fixed 

at U* = 2850, E = 0.01, L=0.0022222, c
* = 0.02 and WvdW

* = 5.  Each curve in these figures represents a different  as indicated 

in the legend.   
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Figure A1.5: Plots for a) fracture energy G*(0.5) and b) viscous dissipation Gvis
*(0.5) obtained by varying V* while holding the other 

governing parameters fixed at U* = 2850, E = 0.01, L=0.0022222, c
* = 0.02 and WvdW

* = 5.  Each curve in these figures represents 

a different  as indicated in the legend.   
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Figure A1.6: Plots for a) fracture energy G*(1) and b) viscous dissipation Gvis
*(1) obtained by varying V* while holding the other 

governing parameters fixed at U* = 2850, E = 0.01, L=0.0022222, c
* = 0.02 and WvdW

* = 5.  Each curve in these figures represents 

a different  as indicated in the legend.   
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Figure A1.7: Plots for a) fracture energy G*(2) and b) viscous dissipation Gvis
*(2) obtained by varying V* while holding the other 

governing parameters fixed at U* = 2850, E = 0.01, L=0.0022222, c
* = 0.02 and WvdW

* = 5.  Each curve in these figures represents 

a different  as indicated in the legend.   
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Figure A1.8: Plots for a) fracture energy G*(100) and b) viscous dissipation Gvis
*(100) obtained by varying V* while holding the other 

governing parameters fixed at U* = 2850, E = 0.01, L=0.0022222, c
* = 0.02 and WvdW

* = 5.  Each curve in these figures represents 

a different  as indicated in the legend.   
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Figure A1.9: Plots for a) fracture energy G*(∞) and b) viscous dissipation Gvis
*(∞) obtained by varying V* while holding the other 

governing parameters fixed at U* = 2850, E = 0.01, L=0.0022222, c
* = 0.02 and WvdW

* = 5.  Each curve in these figures represents 

a different  as indicated in the legend.    
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Appendix 1.6. Effect of vdW Decay Length  

 

In light of the vdW critical opening criteria from Appendix 1.2, the use of smaller values of c
* 

can reduce the size of the adhesive zone.  In addition the “c
* = 0” treatment (Appendix 1.1) 

replaces the nonlinear vdW attraction with non-zero but linear moment boundary condition; 

therefore this approach can simplify the calculation if it can predict acceptable fracture energies 

when compared with the explicit vdW adhesive stress model. Below we discuss the effect of this 

vdW decay length.  

Results for a viscoelastic beam with E = 0.01 and  = 0.001 are shown in Figure. A1.10.  In 

Figure. A1.10a) the COD *(L*) is plotted against crack propagation speed V*. Since at low speed 

the COD is controlled by the critical vdW opening, we see different low speed plateau values of 

the COD for c
* = 0.02 and 0.2. The curve corresponding to c

* = 0, when a moment boundary 

condition was used (see Appendix 1.1), behaves differently at low speed. For c
* = 0 all vdW 

attractions are taken into account in the boundary condition so the adhesive zone will always be 

controlled by chains, which means that there will be no low speed plateau.  At high speed all of 

the results collapse onto a single curve, indicating that fracture is governed by the chains and is 

insensitive to the vdW decay length.  The fracture energy is plotted against crack propagation 

speed in Figure. A1.10b) and similarly the results collapse at high speeds.  This observation agrees 

with a well-known result that the solutions of fracture problems are insensitive to the form of the 

interaction potentials provided that the maximum stress and the work of adhesion are chosen to be 

approximately the same for these potentials [1].  At high speed the maximum stress is determined 

by the chains and any of the vdW treatments will give the same work of adhesion.  Finally the 

effective modulus, plotted against V* in Figure. A1.10c), appears to be independent of c
*.  

However at low speed the value of G* associated with c
* = 0 is several orders of magnitude 

larger than the other two and is not equal to the vdW adhesion energy. The reason for this 

discrepancy is that the moment boundary condition presented in section S1 is based on the 

condition that the length over which vdW attractions are important must be negligible compared 

to the adhesive zone length.  At low speed the adhesive zone length is very small so this condition 

is not satisfied. The much higher G* value for c
* = 0 at low speed is caused by an increase in 
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viscous dissipation and we will briefly explain it.  In this case for slow crack propagation, the 

adhesive stress (only contributed by the chains) is negligible and therefore 0**  Sf  and the 

moment is constant given by Eq. (A1.3) everywhere.  At the adhesive zone tip the curvature is 

given by Eq. (A1.3), however immediately after the adhesive zone tip the material instantly relaxes 

and since the moment is constant the curvature increases to EvdWWdxd  /2/ *2**2  .  The work 

needed to create this large increase in curvature brings the low speed G* value to (using Eq. (A1.9))  

 
E

vdW
c

W
VG




*
*** 0,0  . (A1.12) 

We have used 5* vdWW  and 01.0E  for which Eq.(A1.12) predicts 500* G , in agreement 

with the 0* V  limit for c
* = 0 in Figure. A1.10b). However, it should be emphasized that since 

the c
* = 0 treatment violates its own assumption, this result is invalid and does not explain any 

physical phenomenon. Rather it is an interpretation of the numerical behavior observed in Figure. 

A1.10b).   
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Figure. A1.10: Plots for (a) COD *(L*), (b) fracture energy G*(1) and (c) effective Young’s Modulus E*(1) obtained by varying V* 

while holding the other governing parameters fixed at U* = 2850, E = 0.01, L=0.0022222,  = 0.001 and WvdW
* = 5.  Each curve in 

these figures represents a different c
* as indicated in the legend.    
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Appendix 1.7. Analytical Solution for fast crack propagation 

speed 

 

For fast crack propagation speeds we point out two observations.  First within the adhesive 

zone the beam was completely unrelaxed or E* = 1 and can be treated as elastic.  Second the bond 

density distribution approached a reverse step (as shown in Figure 2.3a) of the main text) i.e. 

 









.,0

,,1
**

**

**

Lx

Lx
xb

  (A1.13) 

Based on these two observations the governing equation inside the adhesive zone becomes linear:  

***

4*

*4

2 


Uf
dx

d
 . (A1.14) 

The corresponding boundary conditions are  
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(A1.15) 

    **
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*2
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,  (A1.16) 
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dx

d
LS


,  

(A1.17) 

where the vdW attractions have been represented using the moment boundary condition as 

presented in section S1. The general solution to Eq. (2.11) is  

               *

4

*

3

**

2

*

1

*** sincossinhsincoscosh xcxcxxcxcxx   ,  (S1.18) 

where 4 * 2/U .  Applying boundary conditions (A1.15)-(A1.16) gives 01 c , 32 cc  , 

2**

4 /  UWc ad
, and 

              ***2****

2

2 coscoshsincoshcossinh  MxxLLLLc  .  Therefore, the crack 

opening is given by 

              **2****

2

** sinsinhcossinhsincosh xxxxxxcx   ,  (A1.19) 
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where 2c  can be determined from 

   
        ****2

**22*

2
sincoshcossinh

coscosh

LLLL

xxM
c








  . (A1.20) 

Applying the final boundary condition, Eq. (A1.17), gives the following eigenvalue equation 

             0sincoshcossinhcoscosh2 ****2**

2  xxxxLLc  , (A1.21) 

which can be used to solve for L*.  In most cases we will have U*>>Wad
*, since it takes less energy 

to overcome vdW attractions than to break covalent bonds, so that 1  and Eq. (A1.21) can be 

simplified to give 

    0coscosh2 **

2 LLc  . (A1.22) 

Since only a trivial solution will result if 02 c  and hyperbolic cosine is always positive this 

condition can only be satisfied if   0cos * L .  Furthermore, the shape of the crack should not be 

oscillatory, therefore only the first eigenvalue ( 2/*  L ) is physical.  From this eigenvalue the 

adhesive zone length can be determined as 

4 *

*

8U
LRS


 , (A1.23) 

where the subscript RS indicates that this is the adhesive zone length associated with a reverse-

step bond density distribution.  This result can be compared with the adhesive zone length results 

shown in Figure Aa), Figure A1.2a), and Figure A1.3a) where it has been seen that at high speed, 

L* asymptotes to about 0.26; for U* =2850, 2557.0* RSL  which is in good agreement.   

Finally, based on the above results, the adhesive fracture energy at very high crack speed can 

be directly evaluated as follows 

 
 

  *2****

0

***

0

***

**

2 vdWvdW

L

RSad WLUWdUdfG  





. (A1.24) 

Based on the discussion from Appendix 1.2, in general L* and therefore  ** L  can depend on the 

criteria used in the definition of L*.  In principle this behavior may impact our ability to use Eq. 

(2.19) to validate our model, as was done in the main paper (Figure. 2.2b)). Fortunately at high 
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speed L* is insensitive to the numerical criteria (see Figure A1.1a).  In fact when 
*

adG  vs.  ** L  

is plotted on a log-log scale, as was done in the main text, we see our results become linear with 

the slope of 2 and approach Eq. (2.19) at high  ** L , which also corresponds to high speed.    
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Appendix 1.8. Adhesive Stress for Viscoelastic DCB 

 

In the main text we utilized the COD, bond density and adhesive stress distributions to aid the 

discussion of elastic beams.  In this section we present distributions for a viscoelastic beam with 

E = 0.01,  = 1, and several different crack propagation speeds.  The normalized bond density is 

plotted against position in Figure. A1.11a). Like the elastic case, for small V*/ the bond density 

experiences gradual decrease from the adhesive zone tip; while for large V*/ it first remains at 

one and drops off drastically near the end of the adhesive zone. The distribution of adhesive stress 

is shown in Figure. A1.11b). At the adhesive zone tip the normalized adhesive stress has a value 

of 250 which corresponds to the maximum vdW stress ( ** / cvdWW  ).  Moving away from the 

adhesive zone tip, the vdW stress decays while the tension in the polymer chains starts taking 

effect.  For V*/ = 0.01 the adhesive stress from polymer chains is negligible but in all other cases 

this adhesive stress persists longer than the vdW attractions and results in a larger adhesive zone. 

In addition, large values of V*/ lead to peaks in f*, which result from the increase in adhesive 

stress due to chain extension coupled with the rapid scission of chains shown in Figure. A1.11a). 

In general higher values of V*/ result in higher peaks in f* and a steeper decline in f* after the 

peak.  
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Figure. A1.11: Plots for a) bond density, b
*, and b) adhesive stress f* within the adhesive zone. In each figure each curve represents 

a different value of V*/. Results were obtained while holding the following governing parameters fixed at U* = 2850, E = 0.01, 

L=0.0022222, = 1, WvdW
* = 5 and c = 0.02 .   
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Appendix 1.9. Length of Dissipative Zone 

In Appendix 1.5 the fracture energies G* and Gvis
* were evaluated at different positions xM

* 

outside the adhesive zone and were shown to be sensitive to the choice of xM
*. This is because at 

xM
* the beam may not have fully relaxed.  In light of this observation it is of interest to define a 

dissipative zone length 
*

L  so that beyond 
*

L  the viscous dissipation becomes negligible. In the 

main text a solution was presented for the curvature outside of the adhesive zone (Eq. (2.16) in 

main text). Dividing 
*

M  by this expression gives the effective modulus as a function of position, 

which after simplifying and rearranging gives the position in terms of the effective modulus 
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where   EE *
 and  ** LE  is obtained from the solution within the adhesive zone. The length of 

the dissipation zone 
*

L  is defined so that  

 
 L

ELE







1

** ,  (A1.26) 

where 
L  is a tolerance which was chosen to be 0.001 in the following calculations. Eq. (A1.26) 

requires that the effective modulus has relaxed to the infinite-time modulus within some tolerance.  

By substituting Eq. (A1.26) into Eq. (A1.25) we obtain  

     LE

E

LE
V

LL 


ln/1ln **
*

** 
.  (A1.27) 

Results for the ratio 
** / LL  are shown in Figure. A1.12.  This ratio stays at 1 for slow crack 

propagation speed which implies that the DCB has relaxed to within the tolerance of Eq. (A1.26) 

at the crack tip.  At higher speeds the DCB will not become fully relaxed until some distance past 

the crack tip.  This distance increases as crack propagation speed is increased. At high speeds the 

dissipative zone can be several orders of magnitude larger than the adhesive zone length.  Note 

that these results are sensitive to the tolerance chosen.  If a smaller tolerance 
L  is used then the 

magnitude of 
*

L  with increase however the qualitative behavior will remain the same.  
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Figure. A1.12: Plots for the ratio of dissipative zone length to adhesive zone length ** / LL
 obtained by varying V* while holding 

the other governing parameters fixed at U* = 2850, E = 0.01, L=0.0022222, c
* = 0.02 and WvdW

* = 5.  Each curve in these figures 

represents a different  as indicated in the legend.    
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Appendix 1.10. Model Validation Using Constant Adhesive 

Stress 

Another model has been previously presented in the literature [15] which studied constant 

speed crack propagation in a viscoelastic DCB but did not consider chain rupture kinetics.  Instead 

this model assumed constant stress within the adhesive zone, which can be easily implemented 

into our model. In addition, an analytical solution can be found for the energy release rate in this 

case. Therefore, examining this case can be a useful check to make sure that our numerical code 

is running correctly. To do so we must first adjust the model in [15] to use our normalization and 

to have crack propagation driven by an applied moment rather than an applied force.  For a constant 

adhesive stress 
c  the beam governing equations can be rewritten as follows 

c
dx

dS


*

*

, (A1.28) 

*

*

*

S
dx

dM
 , 

(A1.29) 
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These equations are accompanied by boundary conditions at the adhesive zone tip:  

  00*  ,   00
*

*


dx

d
,   00

2*

*2


dx

d 
,  * 0 0M  . 

(A1.31) 

In addition, the crack tip, and hence length of the adhesive zone is defined using a critical COD,  

  ***

cL   . (A1.32) 

When crack propagation is driven by a moment applied outside of the adhesive zone the shear 

force at the crack tip must be zero, i.e., 

0)( ** LS . (A1.33) 

Integrating Eqs. (A1.28) and (A1.29) yields 

*** xSS co  . (A1.34) 
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(A1.35) 

Applying the last boundary condition in Eq. (A1.31) and Eq. (A1.33) leads to 0* oM  and 

** LS co  .  Introducing Eqs. (A1.34) and (A1.35) into Eq. (A1.30) gives 
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Integrating Eq. (A1.36) twice gives 
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The first three boundary conditions in Eq. (A1.31) can be used to show that 021  cc . 

Therefore solving the first order linear ordinary differential equation (Eq. (A1.37)) gives, after 

simplification and application of first boundary condition in Eq. (A1.31) 
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) 

Introducing Eq. (A1.32) and 
** LS co   into Eq. (A1.38) gives after simplification 
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(A1.39) 

This equation can be solved iteratively to obtain L*.  Afterwards,  1*G  can be evaluated using 

Eq. (2.15) in the main text, with 2/2** LM c
 obtained from Eq. (A1.35) and the curvature is 

obtained by differentiating Eq. (A1.38).   

We implemented the same model in our code by making 
**

ccvdWW  . As before, 5* vdWW  

and 02.0* c  so 250c . Thus the adhesive stress is constant cf *
 and since we specify 

V* the applied moment is determined from the analysis. Finally 1.0E  was chosen and the result 



219 

from our code was compared against L* solved from Eq. (A1.39) and  1*G  calculated based on 

it.  The results for the adhesive zone length L*, shown in Figure. A1.13a), and for  1*G , shown 

in Figure. A1.13b), are found to be in good agreement.   
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Figure. A1.13: a) Plots for a) adhesive zone length L* and b) fracture energy G*(1) obtained by varying V* while holding the other 

governing parameters fixed at E = 0.1, c
* = 0.02 and WvdW

* = 5.  The solid curve represents the result calculated using Eq. (A1.39) 

and the dashed line is calculated using our numerical code.    
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Appendix 2. Supporting Material for Chapter 3 

 

The equations governing the coupled response of the kinetic bond rupture equation, nonlinear 

chain model and a viscoelastic beam model are presented here. More details for the formulation 

can be found in references [6, 15]. 

Appendix 2.1. Non-dimensionalization 

In dimensional form the governing equations have 18 parameters, which are needed to specify 

the geometry and properties of the beam, chains, and rate of fracture: V, n, -,+, , kB, T, o, o, 

Eo, E∞, I, Lc, P, U, WvdW, c, and D.  All these parameters are defined in the main text. To simplify 

the analysis we introduce the following nondimensionalization  
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(A2.1) 

The meanings of these variables are described in Table A2.1.  The normalization reduces the 

number of governing parameters from 18 to 9 as given in Eq. (3.11) of the main text.   

 After normalization the chain kinetic equation, Eq. (3.4) in the main text, becomes 
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where the association rate constant has been written in terms of the initial fraction of bonded 

chains.  Similarly, the polymer chain force-extension relationship, Eq. (3.6) in the main text, can 

be non-dimensionalized to  
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Eq. (A2.3) is shown graphically in Figure 3.1 of the main text. This relationship can be integrated 

to give the energy required to bring two polymer chain segments into contact for bond reforming 
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) 

 For the viscoelastic DCB, we will use the standard linear solid model as proposed in [15].  

In this model the effective Young’s modulus decays from an unrelaxed (short time) value, oE , to 

a relaxed (infinite time) value E  according to relaxation time o . This model can be applied to 

relate the shear force (S), the moment (M) and the opening displacement () in the viscoelastic 

DCB problem [6, 15], with the following result in the normalized form 
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The shear force and moment are related by the equilibrium condition  
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S
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and another equation can be written to relate the shear force to the distributed transverse load f 

[23],  
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The right side of Eq. (A2.7) represents the transverse load acting on each beam in the adhesive 

zone, which has two components: 
**Fb  is the product of the density of chains and the tensile force 

in each chain i.e. the adhesive stress due to the chains, and */* /
**

cvdW
ceW   is an approximation for 

the vdW attractions between the two beams.    
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Table A2.1. Description of Non-dimensional Parameters 

Category Parameter Description of Normalized Parameter Representative Values  for 

Simulations[6] 

Variables 

which 

change along 

beam 

*

b  bond density  

*x  position  

*  
opening, fractional extension  

*F  
chain force  

*

cE  
energy required to bring two polymer chain segments into 

contact for bond reforming 

 

*f  
transverse load  

*S  shear force  

*M  
bending moment  

Governing 

Parameters 

*V  crack propagation speed 10-10 to 1010 

*U  
work needed to stretch a polymer chain to its contour 

length 

2850 

E  
ratio of relaxed to unrelaxed Young’s modulus 0.01,1 (elastic) 

  ratio of relaxation times of bulk and bond dissociation 10-5 to 103 

L  
ratio of activation length to contour length 0.02222 

*

0b  Initial bond density 0.6-0.9 

*

c  normalized vdW decay length 0.02 

*

vdWW  
vdW work of adhesion 5 

Fracture 

Energies 

(Output) 

*G  
fracture energy  

*

adG  adhesive fracture energy  

*

visG  viscous fracture energy  
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Appendix 2.2. Boundary Conditions 

In Section 2.1 we introduced an expression to calculate the initial bond density 
*

0b  from the 

rate constants for the association and dissociation reactions. In the calculations, we will specify 

values for 
*

0b , which not only serves as a boundary condition,   *

0

* 0 bb  , but also specifies the 

rate constant for the association reaction (in terms of the rate constant for dissociation) though 

  *

0

*

0 /1/ bbn   .  

 All material ahead of the adhesive zone tip (x < 0) is undeformed and therefore, at the 

adhesive zone tip the slope and deflection of both beams will be zero i.e.,     00/0 ***  dxd .  

Furthermore for a steady state crack where the adhesive zone tip keeps moving, the modulus at the 

adhesive zone tip is equal to the instantaneous value, and the J-integral [94] from elasticity can be 

applied.  For crack propagation in an elastic solid the J-integral is equal to the energy release rate, 

which is zero at the adhesive zone tip since all the adhesive attractions occur on the right of the 

adhesive zone tip.  For a beam having zero J-integral at the adhesive zone tip implies that the 

curvature and moment must be zero [26, 28] or     00/0 2**2*  dxdM  .   

 As we move away from the adhesive zone tip in the direction of positive x, eventually the 

transverse load f must begin to decrease because: (1) the vdW attractions diminish with increased 

separation between the two beams and (2) the force from the polymer chains will also eventually 

decrease as more chains dissociate.  We will define the crack tip as the position, x* = L*, where the 

transverse adhesive load, f*, reduces below a sufficiently small tolerance or *** )( fLf  .  Then 

since the externally applied load consists only of a moment, 
*

M , it must be true that the shear 

force at the crack tip is zero, i.e. 0)( ** LS .  In our numerical analysis we will specify V*, and 

evaluate the external applied load, 
*

M , from  *** LMM 
.   

Appendix 2.3. Numerical Methods 

Eqs. (A2.2)-(A2.7) are solved using 4th order Runge-Kutta with adaptive step size control and a 

shooting method where )0(*S  is guessed and a solution within the adhesive zone is calculated.  If 

at the crack tip the shear force is not zero then a new guess for )0(*S is made until the crack tip 

criteria, 0)( ** LS , is satisfied within a tolerance.  The numerical solution is only obtained within 

the adhesive zone, outside which there is no load applied and analytical results for the beam 



225 

deformation can be easily obtained.  It is important to note that the viscous dissipation will often 

be present over a much larger region than the adhesive zone.  It follows that if we were to evaluate 

energies over a long beam, the behavior would be dominated by viscous dissipation and it may be 

difficult to distinguish the interesting features of the adhesive fracture energy.  Since the primary 

objective of this paper is to implement an improved adhesive zone model we will evaluate fracture 

energies at x* = 1, which is outside of the adhesive zone for all cases considered but on the same 

order of magnitude as the adhesive zone length.   

For very small /
*V , numerical solution of Eq. (A2.2) becomes extremely difficult due to 

round-off errors.  However, in this case if we multiply both sides of the equation by /
*V  and 

consider the limit as 0/* V  we obtain a simplified expression  
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 cL E
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bb ee
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(A2.8) 

which can be used to determine the density of polymer chains 
*

b .  The physical interpretation of 

this equation is that the crack propagates so slowly that bond association and dissociation can exist 

in dynamic equilibrium.  This nonlinear algebraic equation must still be solved numerically to find 

the bond density as a function of the separation.   

In the calculations presented in this work, 
*

b  was solved from Eq. (A2.2) for 001.0/* V , 

and from Eq. (A2.8) for 001.0/* V . The COD and adhesive fracture energy obtained using 

this “hybrid” approach are shown in Figure: A2.1, along with results obtained by solving Eq. 

(A2.2) alone (curves labeled with “Rate Equation”), and those obtained from Eq. (A2.8) alone 

(curves labeled with “Equilibrium”). The equilibrium solution represents a horizontal line. The 

hybrid solution is identical to the Rate Equation solution above roughly 001.0/* V , below 

which it transitions to the Equilibrium solution.  Below this point numerical solution of the Rate 

Equation becomes difficult and time consuming; however as can be seen in Figure: A2.1 the 

equilibrium equation produces acceptable results for these low speeds.   
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Figure: A2.1 Plots for a crack opening displacement, *(L*), and b adhesive fracture energy, Gad
*, obtained by varying 

V*/ while holding the other governing parameters fixed at U* = 2850, E = 1 (i.e. elastic beams), L=0.0022222, b0
* 

= 0.9, n = 150, c
* = 0.02 and WvdW

* = 5.  Each curve in these figures represents a different approach used to solve for 

the chain density: “Hybrid” means solved from Eq. (A2.2) for 001.0/* V , and from Eq. (A2.8) for 

001.0/* V ; “Equilibrium” means solved from Eq. (A2.8); “Rate Equation” means solved from Eq. (A2.2).   
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Appendix 3. Supporting Material for Chapter 4 

 

Appendix 3.1. Stress and Dissipation 

When evaluating the rate of work care must be taken to choose the correct work-conjugate 

deformation rate for the chosen stress tensor [40]. For Eq. (4.4) in the main text,   
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where W , U , intD , F ,  FdetJ , L ,   2/
T

LLD  , σ , 
T

J


 FσP  are respectively the work, 

strain energy, dissipation, deformation gradient tensor, its determinant, velocity gradient tensor, 

symmetric part of velocity gradient tensor, Cauchy stress, and 1st Piola-Kirchhoff stress. Here the 

overhead dot indicates differentiation with respect to time, and in component form 
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ijijBAB:A .  Because σ  is symmetric D:σL:σ  .  U can be evaluated by taking the 

appropriate derivatives of Eq. (4.2) in the main text as follows  

 
 

     





































M

i

ioi

M

i

io

i

M

i

ioi

M

i

io

i Ub
J

p
U

bUb
J

p
U

bU
1

,

1

1,

1

,

1

1,
:

2
:

2
BLBBLB

B

B
BBB

B

B T 

 

(A3.2) 

where 
TT

FFBB   and 
T

LBBLB  .  Further manipulations of Eq. (A3.2) gives  
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where I  is the 2nd order identity tensor and J = 1 for an incompressible material has been used in 

the last step.  Note that the last two expressions in Eq. (A3.3) are equivalent (owing to the 

symmetry of B ).  Comparing Eq. (A3.3) with Eq. (A3.1) two equivalent expressions for the stress 

can be extracted 
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Similarly from comparing Eq. (A3.3) with Eq. (A3.1)  the dissipation can be identified as 
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Note that the second law of thermodynamics is satisfied since 0ib  and 0, ioU .   

Many hyperelastic models only depend on the 1st invariant of B , 1I , in which case 
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For the Arruda-Boyce model (Eq. (4.8) in main text) we can evaluate  
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Appendix 3.2. Stress in uniaxial extension 

For uniaxial extension the deformation gradient is given by 

332211 EeEeEeF  tt   (A3.8) 

where  is the stretch, t is the transverse stretch, ei are bases in the deformed configuration and 

Ei are bases in the reference configuration. Note that the tensor product   is defined so that 

   cbacba   and      dacbdcba  .  If the elastomer is incompressible then its 

volume does not change during the deformation or   1det  ttJ F  which requires that 

2/1 t
.  Knowing this and Eq. (4.10) in the main text we can evaluate various tensors which 

describe the deformation 
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(A3.9) 

With these quantities we can evaluate the stress using Eqs. (A3.4), (A3.6), (A3.7) and (4.12) 
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Finally, the internal rate of work can be determined to be 
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Appendix 3.3. Modifying Model to Consider Prestretch 

In the main text we have used our model to fit the experimental data for cyclic loading of the triple 

network (TN) elastomer described in Ducrot et al. [4].  In this type of elastomer the first network 

is swollen which adds significant prestretch to the first network.  Because chain fractional 

extension plays an important role on the tensile force and hence the scission kinetics, we will 

modify the model to account for prestretch.  In Table S2 of the Supporting Material of Ducrot et 

al. [4] the change in thickness of the final EA0.5EAEA sample relative to the original network is 

2.5.  If we assume that transverse dimensions change by the same ratio we can calculate the volume 

change of the material   625.155.2
3
sJ .  Assume that the total deformation gradient can be 

decomposed into two parts (i) isotropic swelling,   IF
3/1

ss J , of the first network to create the 

TN elastomer and (ii) deformation gradient for uniaxial extension of the TN, mF , described by Eq. 

(A3.9).  Hence the total deformation gradient is given by  

   332211 EeEeEeFFF   2/12/13/1
sms J ,  (A3.12) 

and   msJ BB
3/2

  where mB  is given in Eq. (A3.9).  The first invariant of B  is then  

    /223/2

1  sJI .  (A3.13) 

The total B  and 1I  are used in Eq. (A3.4) and (A3.7) to evaluate the stress.  To fit the experimental 

data we have neglected the 2nd and 3rd networks and any coupled effects, and attempted to find a 

chain length distribution, shown in Figure A3.1, which provides a good fit.   
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Figure A3.1: Chain length distribution used to fit TN elastomer. Based on the distribution given in Eq. (A3.14) with ao = 25, af = 

1000, no = 6.5, nf = 63.  A is set to normalize the distribution so bt = 1.   

 To provide a good fit to the experimental data we used another distribution which as an 

exponential increase, followed by a possible plateau and then an exponential decrease as follows: 
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Appendix 3.4. Shifted Maxwell-Boltzmann Distribution 

The original Maxwell-Boltzmann distribution f(n) has zero probability for n 0  and is fully 

specified if the mean value n  is known.  However, for a polymer chain it is unphysical to have the 

number of Kuhn segments 1 .  Thus it is beneficial to introduce a second parameter 1on  which 

can be used to shift the distribution so that zero probability occurs at a different value.  The 

following is the resulting probability distribution   
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In this work when on  is not specified its value should be taken to be 1.   

  



232 

Appendix 4. Supporting Material for Chapter 5 

Appendix 4.1. Stress and Dissipation 

The stress and dissipation associated with Eq. (5.13) can be derived by using the second law of 

thermodynamics.  If we introduce a Lagrange multiplier into the strain energy function, we can 

rewrite Eq. (5.13) as follows 
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where 0)1( Jp  since this formulation will be restricted to an incompressible MNE ( 1J ).   

Consider the balance of power per unit volume  
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where W , NU , intD , F ,  FdetJ , L ,   2/
T

LLD  , σ , 
T

J


 FσP  are respectively the 

work, strain energy, dissipation, deformation gradient tensor, its determinant, velocity gradient 

tensor, symmetric part of velocity gradient tensor, Cauchy stress, and 1st Piola-Kirchhoff stress. 

Here the overhead dot indicates differentiation with respect to time, and in component form 
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Using   2///
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Further manipulations of Eq. (A4.4) gives  
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5) 

where I  is the 2nd order identity tensor.  Note that the last two expressions in Eq. (A4.5) are 

equivalent (owing to the symmetry of B ).  Comparing Eq. (A4.5) with Eq. (A4.2) two equivalent 

expressions for the stress can be extracted 
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Similarly, from comparing Eq. (A4.5) with Eq. (A4.2) the dissipation can be identified as 
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Note that the second law of thermodynamics is satisfied since   0,*

max KNrb  and all the other 

quantities in the equation are non-negative.   

Many hyperelastic models only depend on the 1st invariant of B , 1I , in which case 
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For this case we can also define the initial Young’s and shear modulus for the material.  Introducing 

Eq. (S8) into Eq. (S6), and setting J = 1 gives 
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Where Eq. Eq. (5.8) from the main text,    BB
3/2
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N J  , has been used.  The initial shear 
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where the initial Young’s modulus is 
N

o

N

o GE 3  due to incompressibility.   
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Appendix 4.2. Damage Evolution 

 

The damage evolution functions derivation is to be reported in a separate paper [74] where Weibull 

distributions where found to provide a reasonable fit for large deformation rates.  The functions 

given are as follows 
























 










 


 11

2

1

22

1

*

max

exp

c

cr

c

cr

c

FF

c

FF

c

c

dr

db
,  (A4.11) 
























 


1

2

exp1

c

cr

c

FF
b .  (A4.12) 

Note that Eq. (S11) represents the Weibull probability distribution function while Eq. (S12) 

represents the Weibull cumulative distribution function.  The constants crF , 1c , and 2c  depend on 

the material, the chain length and the chain extension rate.  For the MNE with photophore in the 

rate-independent regime  nNFcr 99.1  and 

2436.10138.0000174.0 2

1  KK NNc ,  (A4.13) 

314.229816.203019.0 2

2  KK NNc .  (A4.14) 

For the MNE without photophore in the rate independent regime  nNFcr 47.3  and 

6822.0053178.000034.0 2

1  KK NNc ,  (A4.15) 

8072.401.3329114.0 2

2  KK NNc .  (A4.16) 

Appendix 4.3. Numerical Methods 

The following method is used to evaluate the integration with respect to KN  in Eqs. (5.16), 

(5.19), and (5.29) in the main text.  The integration of the product of the probability density 

function,  KNf , and an arbitrary function  KNrg ,*  is evaluated by dividing the range of chain 

lengths into M bins and evaluating the following summation 
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     mKm

M

m

mKKK NrgFdNNrgNf ,
*

1 1

* ,, 




 , (A4.17) 

where  

     mKmKmKmKm NNNfNfF ,1,,1,5.0   , (A4.18) 

and mKN ,  is the average Kuhn length for chains in bin m defined as 

 mKmKmK NNN ,1,, 5.0  
. (A4.19) 

Here 1, mKN , and mKN ,  are the chain lengths at the endpoints of bin m.  

Appendix 4.4. Repeatability 

 

In determining fitting parameters to provide the best fit of the model to the experimental data, 

results were used from numerous experiments.  To examine how much the parameters may vary 

between different samples with a similar MNE structure, we did a comparison of 3 data sets of DN 

elastomers and 3 datasets of TN elastomers.  In each case the crosslink density is the same and the 

network is swollen with approximately the same monomer/solvent ratio.  The results are shown in 

Figure A4.1.  Here the yellow curves correspond to the data presented in Figure 5.9 (DN3/TN3).  

The red curves correspond to data from Fig 2. C of Ducrot et al [4] (DND2C/TND2C).  The red 

curves correspond to the MNE with photophore from Figure 5.5 (DNP/TNP).  Due to the presence 

of photophores it is expected that the blue curves would behave slightly differently. However, the 

variability between the red and yellow curves suggests possible variation in the prestretch and/or 

the chain length distribution between samples.  Nevertheless, in each measurement the initial shear 

modulus is relatively constant.   
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Figure A4.1:  Engineering Stress plotted against stretch for 3 MNEs.  a) DN elastomers b) TN elastomers.  The yellow curves 

correspond to the data presented in Figure 5.9 (DN3: EAe1.45(1.68)EA/TN3: EAe1.45(2.55)EA).  The red curves correspond to data 

from Fig 2. C of Ducrot et al [4] (DND2C: EAe1.45(1.71)EA/TND2C: EAe1.45(2.71)EA ).  The blue curves correspond to the MNE 

with photophore from Figure 5.5 (DNP: EAe1.45(1.48)EA/TNP: EAe1.45(2.72)EA ).   
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Appendix 5. Supporting Material for Chapter 6 

 

Appendix 5.1. Alternative Entropic Chain Energies 

 

In the literature, there are numerous models which present the entropic energy of a polymer chain 

which would be used in place of Eqs. (6.1) and (6.6).  For example, for a Gaussian chain the energy 

and force are given by the following expressions [93] 

 2*

2

3
rTNkE KBent  ,  (A5.1) 

*3 r
A

Tk
F B .  (A5.2) 

A second common model in from the literature which can be used in place of Eq. (6.1) and (6.6) 

is the Arruda-Boyce model [9] which is based on Langevin statistics.  In this model the entropic 

energy of a polymer chain is given by 
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sinh
ln*rTNkE KBent

,  (A5.3) 

where  *1 rL .  The chain force is given by 


A

Tk
F B .  (A5.4) 

 

Appendix 5.2. Chain Force Curve Fit 

To facilitate the implementation of the model in higher level numerical simulations (e.g., 

finite element), it is desirable to obtain curve fits for some of the quantities which are calculated 

by the model.  In Figure 6.4a) in the main text we can see that ** rro   for 9.0* or  hence 

reasonable accuracy can be obtained if bond deformation is neglected for this portion of the 

extension; hence we fit a polynomial function to the numerical data for the force extension 

relationship:  
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The expression for 9.0* or  is directly adopted from the entropic chain model (Eq. (6.1) in the 

main text) and ic ’s for 9.0* or  are fitting constants that depend on the polymer.  It was found 

that a third order polynomial provide a good fit to the data, this means that there are two unknown 

coefficients since the first two terms of Eq. (A5.5) do not involve undetermined constants because 

they were used to match the force and slope at 9.0* or .  An example of the fit (PEA) is shown 

in Figure A5.1 The curve fit constants used in generating Figure A5.1, as well as for the remainder 

of the polymers from Table 6.2, are presented in Table A 5.1.   

 

Figure A5.1: Comparison of the purely entropic chain force Eq. (6.1), with the chain force predicted by the model 

presented in this work and the polynomial curve fit for this force.  The parameters used in generating these graphs 

are for PEA (Table 6.2) and C-C bond (Table 6.1) 
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Table A 5.1: Polymer force curve fit constants 

Polymer c1 c2 

Poly(dimethyl siloxane) (PDMS) 2359.9 197560 

Polypropylene (PP) 14715 31514 

Polyethylene (PE)  19261 38669 

Poly(methyl methacrylate) (PMMA) 23633 46307 

Atactic Polystyrene (PS) 24895 49595 

Poly(methyl acrylate) (PMA) 20601 38346 

Poly(ethyl acrylate) (PEA) 25516 49636 

 

 

Appendix 5.3. Rate of Chain Extension Under Uniaxial Loading 

Eqs. (6.24) and (6.27) are rate equations and to solve for the surviving chain fraction 

integrations need to be done with respect to time. On the other hand, it is usually desired to 

establish the relationship between force and chain extension 
*

or . Therefore, it is more convenient 

to write dtdb /  as  

dt

dr

dr

db

dt

db o

o

*

*
 ,  (A5.6) 

which would enable integration with respect to 
*

or  rather than time.  Consider now a polymeric 

network under uniaxial extension at a constant rate. The rate of chain extension is not the same as 

the rate of loading on the bulk polymer. In fact, following the “8-chain” [9], dtdro /*
 can be 

evaluated as follows 
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dt

d

dt

dr 
,  (A5.7) 

Where  /22

1 I  is the first invariant of the Left-Cauchy Green deformation tensor, and   

is the uniaxial extension stretch. Eq. (A5.7) is plotted against   in Figure A5.2 where it can be 

seen that although the stretch rate of the material is constant the rate of chain extension is not 

constant.  However, the rate of chain extension does asymptotically approach a constant value.  
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Using Eq. (A5.7), we can solve Eqs. (6.24) and (6.27) using Runge-Kutta with adaptive stepsize 

control [24] to obtain the surviving chain fraction b for a given stretch rate  .   

 

Figure A5.2: Rate of increase in chain fractional extension during constant speed uniaxial extension.  
10171.0  s

.   

 

Appendix 5.4. Surviving Chain Fraction Curve Fit 

If it is needed to solve Eq. (6.24) at many points in a material, it can become very 

computationally expensive, therefore it is desirable to have a reasonably accurate curve fit to 

approximate the soliton.  The surviving chain fractions at each chain force is shown in Figure A5.3 

for 10171.0  s .  At forces corresponding to fractional extensions less than 0.9 the rate of 

scission is negligible.  With further increasing in force the surviving chain fraction smoothly 

decrease to zero.  The shape of Figure A5.3 somewhat resembles a Weibull distribution, so this 

distribution is made the base function for fitting the numerical results.  The fitting is broken up 

into several steps. First critstr fF   is evaluated from Eq. (6.23) then the maximum chain force, 
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maxF ,  is evaluated from Eqs. (6.1), (6.8), (6.10)-(6.12).  Then the surviving chain fraction is 

defined to be the following Weibull cumulative distribution function 
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The constants maxF , 1c , and 2c  depend on the material, temperature, the chain length and the chain 

extension rate.  For PEA at 298K, 10171.0  s , nNFcr 47.3  and  

6822.0053178.000034.0 2

1  KK NNc .  (A5.9) 

8072.401.3329114.0 2

2  KK NNc .   (A5.10) 

For PEA with photophores at 298K, 10171.0  s , nNFcr 99.1  and 

2436.10138.0000174.0 2

1  KK NNc .  (A5.11) 

314.229816.203019.0 2

2  KK NNc .   (A5.12) 
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Figure A5.3: Rate of change of surviving chain fraction with respect to time at each fractional extension for two 

different chain lengths and the associated curve fits.  The parameters used in generating these graphs are for PEA 

(Table 6.2), C-C bond (Table 6.1), Temperature T = 298 K, stretch rate 
10171.0  s  

9105 ok , 

JG 21‡ 1040  , and mx 9‡ 10021.0  .   

 

Appendix 5.5. Comparison of Different Polymers 

 

Because this chain model is based upon physical parameters, it can not only explain the 

behavior of existing material but also be used to make predictions in material design.  For example, 

let us consider polymers made of the monomers listed in Table 6.2 and the hypothetical scenario 

where the polymerization leads to the same molecular weight, molgMch /10000 , for all the 

chains. The effective force for each polymer is shown in Figure A5.4a).  The curves are somewhat 

similar since all have C-C backbone bonds with similar o  and ol   (Table 6.3).  At a given 

extension PP has the highest force, followed by PE and PMA because these polymers have lower 

Kuhn lengths ( oA Table 6.2) which causes larger entropic chain forces Eq. (6.1). To interpret the 
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differences in break force seen in Figure a) there is a trend where polymers with larger forces break 

relatively lower extensions.  However, there is a secondary effect which influences the break force 

when molgMch /10000  is held constant each polymer will have different numbers of Kuhn 

segments and backbone bonds as shown in Table A 5.2.  More backbone bonds provides more 

possible break locations and increase the rate of scission (Eq. (6.24)) which results in lower break 

forces.   

 

Table A 5.2: Calculated parameters for polymers with molgMch /10000  

Polymer NK nb 

ch  (m-3) 

(x1025) 

TkBch  

(MPa) 

Polypropylene (PP) 55.56 470.56 4.76 0.20 

Polyethylene (PE)  66.67 713.33 4.72 0.19 

Poly(methyl methacrylate) 

(PMMA) 15.27 199.69 6.81 0.28 

Atactic Polystyrene (PS) 13.89 192.08 5.84 0.24 

Poly(methyl acrylate) (PMA) 20.22 232.31 7.35 0.30 

Poly(ethyl acrylate) (PEA) 14.08 199.69 6.81 0.28 
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Figure A5.4: a) Effective forces vs fractional extension. b) Engineering stress eng  

polymers where the molecular weight of the polymer chain, molgMch /10000 , has been held constant.   
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It is desirable to understand how the properties of each polymer chain can translate into 

mechanical properties of the material.  Assuming the molecular weight of a polymer chain chM  

and the density of the material   are known the volumetric density of chains can be calculated 

from [50] 

av

ch

ch N
M


  ,  (A5.13) 

where avN  is Avogadro’s number.  For a uniaxial extension deformation, the engineering stress 

can be evaluated from [5] 
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If we fix molgMch /10000  we can evaluate KchK MMN / , ch  and eng  for each of the 8 

example polymers and the result is shown in Figure A5.4b).  Note that since the chain molecular 

weight is held fixed the chains pf polymers with lower Kuhn segment molecular weight 
KM  (Table 

6.2) are comprised of more Kuhn segments (Table A 5.2). Due to the “8-chain” assumption 

Ko NIr 3/1

*   for a given stretch and hence 
1I  these chains will have smaller 

*

or .  Therefore, 

chains with larger KN , such as PE, experience the upturn in force, and therefore stress, at larger 

stretch in Figure A5.4b).  In addition polymers with higher densities result in higher volumetric 

densities of chains, ch  (Table ), which along with the break forces shown in Figure A5.4a), 

fractional extension and stretch, scales the stress magnitude (Eq. (A5.14)).  For example comparing 

PEA and PS which show nearly identical behavior in Figure A5.4a), PEA has larger stress because 

ch  is larger.   

Note that the magnitude of the stress in Figure A5.4b) is much larger than anything that 

would be seen experimentally for these materials; it is important to understand that the results in 

Figure A5.4b) are an idealization for comparison between polymers.  In reality polymers are 

polydisperse, meaning that, while there may be an average chain molecular weight, the chains 

which make up the material have a distribution of lengths.  This implies that at a given stretch only 

a fraction of the total chains in the material would be at an extension which results in large forces; 

this also leads to a stress-stretch curve with progressive damage (more ductile), than the brittle 

failure shown in Figure A5.4b).  Secondly, this idealization assumes that the deformation and 
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scission are homogenous. In reality, small imperfection in samples result in stress concentrations, 

localized damage, proportion of cracks and failure at much lower stretches compared with Figure 

A5.4b).  Thirdly, it is assumed that the network is in a rubbery state where chains do not interfere 

each other and respond to macroscopic strain independently which is not true at room temperature 

for all of the polymers presented in Figure A5.4b); for example, PE has a glassy state a room 

temperature where chain mobility is severely reduced.  Fourthly, stress induced crystallization at 

large stretches is also not considered either.   

 

Appendix 5.6. Active Chain Curve Fit 

 

If chain force extension relationship from Figure 6.10b) needs to be at many points in a 

material, it can become very computationally expensive, therefore it is desirable to have a 

reasonably accurate curve fit to approximate the soliton.  This is accomplished by using a 

piecewise fit as follows 

 
 

 

 
 
  9.0

9.0

9.0

9.0
4

1
1

4

1
2

***

2

*

1

**

2

**

2

**

1

**

**

2

*

1

***

1

**2*

*

**





















oRo

oRoR

oRo

ooo

B

oo

o

rFFFrF

rFFFrF

rFFFrF

rrr

Tk

ArF
rF ,  (A5.15) 

where the force acting on the 100% unreacted chain is given by 
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the force acting on the 100% reacted chain is given by 
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and the force for the reacting portion of the force-extension relationship is given by 
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The piecewise fit from Eq. (A5.15), as well as the components, are compared with the 

corresponding model solutions in Figure A5.5.  In evaluating the curves in Figure 6.11, Eq. 

(A5.15), and (A5.16) were used in conjunction with the damage function Eq. (A5.8) where 
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nNF 6449.2max  , 216.271 c , and 312.12 c ; note that this surviving chain fraction function 

was prescribed.   

 

 

Figure A5.5: Comparison of the purely entropic chain force Eq. (6.1), with the chain force predicted by the model 

presented in this work, and the special cases for 100% reacted and 100% unreacted solutions.  Also shown are the 

curve fits to represent !00% unreacted, reacting, and 100% reacted portion of the force-extension curve.  The overall 

fit is a piecewise continuous curve that is made up of these three fits and the entropic model.   
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