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Abstract. Despite many studies on edge influence in forests, there is no common method for estimating

distance of edge influence (DEI, ¼ edge width). We introduce a new randomization method (RTEI) for

estimating DEI that tests the significance of edge influence compared to the reference forest. Using artificial

datasets we compared DEI as estimated by nine different methods and examined effects of sampling

design and the nature of the edge response. DEI estimates varied widely among methods; parametric,

randomization and curve-fitting analyses produced the lowest, intermediate and greatest values,

respectively. Sampling design and the nature of the edge response affected estimates of DEI differently

among methods. RTEI was the only method that was generally invariable to sampling design while being

sensitive to variation in the reference ecosystem but not at the edge. A standard method of quantifying DEI

is important for comparing edge responses among different studies for conservation research.
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INTRODUCTION

The prevalence and ecological importance of
edges (the interface between different ecosystem
types) in forested landscapes is widely acknowl-
edged (Harper et al. 2005). Negative consequenc-
es, such as forest degradation and the loss of
biodiversity in fragmented landscapes, have led
to much interest in edges in landscape ecology
and conservation biology. However, at present
there is no universally accepted method for
quantifying the distance of edge influence
(DEI), which is defined as the distance from the
edge towards the interior forest over which a
given variable is found to be significantly
different from the interior forest. There is wide

variation in reported DEI. For example, DEI
values greater than 100 m have been reported in
several studies (e.g., Laurance et al. 1998, Chen et
al. 1992), while others have found that DEI is less
than 15 m for similar response variables in the
same ecosystems (e.g., Williams-Linera 1990,
Nelson and Halpern 2005). Although DEI is
expected to vary among response variables and
forest types, the method used for the statistical
quantification of DEI may also contribute to this
variation. The effect of the method of analysis on
DEI has rarely been considered. To our knowl-
edge, there are no published studies that have
compared different methods for measuring the
statistical or ecological significance of edge
influence. Quantification of DEI is important for
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comparing edge influence for different response
variables and among studies in order to under-
stand the ecological importance of edge influ-
ence.

The distance of edge influence, also known as
edge width, has been estimated using many
different analytical methods that can be summa-
rized into four groups: parametric, non-paramet-
ric, curve-fitting and randomization. Parametric
statistical analyses include analysis of variance
(ANOVA) in which distance is the independent
variable and post hoc comparisons are used to
determine the set of distances that are signifi-
cantly different from the reference or interior
forest (distances furthest away from the edge)
(Wales 1972, Ferreira and Laurance 1997, Gel-
hausen et al. 2000, Oosterhoorn and Kappelle
2000, MacQuarrie and Lacroix 2003). The other
commonly-used parametric analysis involves
paired t-tests between different distances from
the edge (Brothers 1993, Oliveira et al. 2004).
Since parametric tests require assumptions that
may not be met by ecological data, other
researchers have used non-parametric equiva-
lents to these tests including Kruskal-Wallis
followed by Dunn’s post-hoc test (MacQuarrie
and Lacroix 2003) or by modal distance (Matlack
1994), and Wilcoxon Rank Sum tests (Brothers
1993, Euskirchen et al. 2001). For curve-fitting
techniques, curves describing an exponential rise
or fall to an asymptote (which is equivalent to the
reference or interior forest) are usually fit to the
data and the DEI is then defined as the distance
at which the curve reaches 2/3 of the difference
between the edge and the interior (Chen et al.
1992) or where the curve intersects the 95%
confidence interval of the interior forest asymp-
tote (Laurance et al. 1998). Williams-Linera (1990)
and Toms and Lesperance (2003) used piecewise
linear regression and defined the DEI as the
breakpoint in the curve. Randomization tests are
becoming increasingly popular for different
types of spatial analyses (e.g., Perry and Dixon
2002, Fagan et al. 2003, Lichstein 2007). A
randomization technique used for estimating
the DEI, the critical values approach (Harper
and Macdonald 2001), considered the confidence
interval (critical values) of interior forest values
determined using randomization. It is unclear
how the differences among analytical approaches
affect the estimation of DEI. In order to compare

ecological responses at edges among different
studies, forest types or response variables, it is
imperative to understand how the method of
analysis affects the estimation of DEI.

We developed an analytical approach to
estimate DEI that incorporates quantification of
the inherent variability for a given distance from
the edge and in reference or interior forest. We
then compared this method to others using
artificial datasets. Our objectives were to intro-
duce a new randomization method to estimate
DEI and to compare different methodological
approaches to estimating DEI as affected by
variation in sampling design and the nature of
the edge response (direction and shape of the
response with distances from the edge).

METHODS

Our proposed new method for estimating
distance of edge influence (DEI), the randomiza-
tion test of edge influence (RTEI), is a modifica-
tion of our previous Critical Values Approach
(Harper and Macdonald 2001). The RTEI method
includes randomization of the values at the edge
as well as the values in the reference ecosystem
(e.g., interior forest). This method can be used for
sampling designs that include plots in the
reference ecosystem that are either associated
with or independent from plots at or near the
edge (blocking vs. no blocking). We then
compare the RTEI method with other common
methods from the literature. For this, we con-
structed 102 artificial data sets in which we
varied aspects of the sampling design and
characteristics of the edge-to-interior transition.
We analyzed these artificial data sets using nine
different analytical methods and compared the
resulting DEI values.

Description of the RTEI method
The conceptual basis for the RTEI method is to

test the significance of the magnitude of edge
influence (MEI) for different distances from the
edge using randomization tests of the data at a
given distance from the edge and in the reference
(i.e., ‘interior’) forest. We use a standardized
form of MEI (Harper et al. 2005):

MEI ¼ �e� �r

�eþ �r
ð1Þ
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where ē is the average of the response variable at
a given distance from the edge and r̄ is the
average of the reference data set. MEI varies
between �1 and þ1 and MEI is 0 when the
average value at the edge is identical to the
average value in the reference area. MEI has the
advantage that it standardizes edge influence
across variables with widely varying scales of
measurement. Following testing of MEI at each
distance from the edge, we then estimate DEI as
the set of distances over which MEI is signifi-
cantly different than zero.

A key component of our method is the
designation of a reference system, which re-
searchers can choose based on their question of
interest. For example, forest structure at lake-
shore edges could be compared to the adjacent
interior riparian forest or to the more distant
upland interior forest (Harper and Macdonald
2001). Although it may be difficult to predict a
priori whether or not reference plots are influ-
enced by edges, researchers could select possi-
bilities based on results of similar studies and
knowledge of the ecosystem. Site availability
limitations may also mean that the reference
system is not entirely unaffected by edge
influence.

The RTEI method is appropriate for a sampling
design that consists of edge (‘treatment’) data
collected at different distances from the edge
along multiple replicate transects established
perpendicular to edges (the ‘edge treatment’
data) along with data collected within the
designated reference system. When the data
collection sites in the reference forest are spatially
paired with each edge transect, the RTEI method
with blocking should be used. Blocking is most
commonly done by having the reference data
collected along the same transects as the edge
data but at distances far enough from the edge to
be considered the reference ‘interior’ condition.
Alternatively, an unblocked design might be
used in which reference data are collected at a
variety of locations in the reference ecosystem
without any particular spatial association with
the edge transects.

Use of the RTEI method was first introduced in
Mascarúa-López et al. (2006) as an updated
version of the critical values approach (CVA,
Harper and Macdonald 2001, 2002). The CVA
method compared the mean value at the edge to

critical values based on randomization of refer-
ence data; however, this method does not
account for the range of variation among sample
locations at a given distance from the edge and in
some instances might lead to Type I error. The
RTEI method compares the mean difference
between reference values and values at a given
distance from the edge to a distribution of
differences created by randomizing the entire
data set (reference values and values for a given
distance from the edge). The null hypothesis is
that MEI is 0, i.e., there is no difference in the
value of a response variable between a given
distance from the edge and the reference forest.

The RTEI analysis is done separately for each
response variable and for each distance d from
the edge. The sampling design is x sample points
at distance d from the edge and y reference
sample points; x is usually the number of
transects perpendicular to the edge. When there
is blocking, we consider z as the number of
reference sample points for each transect (y¼ x3

z). The RTEI method proceeds as follows:

1. Calculation of the observed magnitude of
edge influence: Calculate observed MEI at
distance d using the samples for the edge
and for the reference forest (Observed MEI).

2. Calculation of randomized MEI:

a. Without blocking: Create a data set that
includes all edge data at distance d and all
reference data for a total sample size of x
þ y. Randomly select x values from the
entire data set. Calculate MEI using these
x values as the ‘edge’ sample and the
remaining y values as the ‘reference’
sample (Randomized MEI). This is equiv-
alent to randomly rearranging your sam-
ple points on the landscape (x of the
possible x þ y sample points randomly
become the ‘‘edge’’ sample).

b. With blocking: Create a data set for each
transect that includes the edge sample
point at distance d and all reference
sample points for that transect for a total
of 1 þ z sample points, then randomly
select one of these to be the ‘edge’ sample
point. Calculate MEI (Randomized MEI)
using the randomly selected ‘edge’ sample
points from each transect as the ‘edge’
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sample with the remaining sample points
as the ‘reference’ sample. This is equiva-
lent to randomly rearranging your sample
points within a transect (one of the 1 þ z
possible sample points from each transect
becomes the ‘‘edge’’ sample point). Be-
cause randomization is done within each
transect (block), the transect is the exper-
imental unit. Thus multiple sample points
in the ‘reference’ forest for a given
transect are effectively dealt with as sub-
samples.

3. Repeat step 2 many times. We use 5000
permutations which is the recommended
minimum number for randomization tests
at a significance level of 1% (Crowley 1992).
This creates a distribution of 5000 Random-
ized MEIs.

4. Determine the percentile of the Observed
MEI within the distribution of the Random-
ized MEIs. The p-value is equal to this
percentile for a one-tailed test, or to two
times this percentile for a two-tailed test.

5. If the p-value is lower than the pre-defined
significant level (a), then reject the null
hypothesis and conclude that MEI is signif-
icantly different than zero at distance d (i.e.,
the population mean value of the response
variable at distance d from the edge is
significantly different than the population
mean value in the reference system).

The steps are repeated for the other distances
from the edge. DEI is then estimated as the set of
distances over which MEI is significant.

We recommend using exact permutation (all
possible permutations) when the sample size is
low such that the maximum possible number of
permutations is less than the number desired.
The maximum number of permutations with no
blocking is (xþ y)!/(x!y!) and with blocking is (1þ
z)x. In this case, for steps 2 and 3 above, all
possible combinations of x and y sample points
from the entire data set (step 2a) or of 1 þ z
sample points from each transect (step 2b) are
used to construct the distribution of randomized
MEIs.

Comparison of DEI methods using artificial data
sets

Artificial data sets were constructed to com-
pare values of DEI as estimated using RTEI and
other common methods. The sampling design
was a blocked design that could be analyzed
using any of the methods and which consisted of
values at different distances from the edge along
transects where distances equal to or greater than
100 m from the edge were assumed to be in the
reference forest. We varied parameters of the
sampling design including number of transects,
edge distances and number of reference sample
points per transect as well as the spacing of
distances from the edge (Table 1; the artificial
datasets are described in Appendix A). We also
altered parameters that affect the nature of the
edge response as follows: positive vs. negative
edge influence; the pattern of response with
distance from the edge (linear, non-monotonic,
abrupt, exponential rise to a maximum for
negative edge influence or exponential decay to
a minimum for positive edge influence); the
variation among replicate edge sample points at
a given distance from the edge; the variation
among reference sample points within a transect;
and the variation among transects for the
reference sample points (average of the subsam-
ples per transect when there were multiple
reference sample points per transect). The mean
value of the hypothetical variable was 50 in the
reference area for all datasets and either 90 or 10
right at the edge (or at 20 m for the non-
monotonic transition pattern) for positive and
negative edge influence, respectively. While
varying aspects of the sampling design options
and edge characteristics one at a time, the
following standards were most often used:
positive edge influence with exponential decay
to a minimum, 10 transects, 7 distances concen-
trated at the edge, 3 or 5 reference subsamples
associated with each edge transect and moderate
variation among transects for edge and reference
sample points and among reference forest sub-
samples within a transect.

For comparison to the RTEI method (with and
without blocking), we chose seven different
published methods used to estimate DEI for
vegetation data using one-dimensional data
collected along transects for a total of nine types
of analysis. Although the artificial data sets
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followed a blocked sampling design we analyzed
them with RTEI both with and without blocking
to determine if including blocking in the analysis
affects the results. Three analyses use randomi-
zation tests: (1) RTEI with blocking, (2) RTEI
without blocking and (3) CVA (described above,
Harper and Macdonald 2001). We wrote an Add-
In in Excel using VisualBasic to conduct the
analyses for RTEI. We used the program in
Harper and Macdonald (2001) for CVA. For all
randomization methods we used 5000 permuta-
tions. We also included two analyses based on
parametric tests: (4) ANOVA with post hoc
Tukey comparisons (Wales 1972, Ferreira and
Laurance 1997, Oosterhoorn and Kappelle 2000,
MacQuarrie and Lacroix 2003); and (5) paired t-
tests in which each value at a given distance from
the edge was compared with the average of
reference values paired along the same transect
(Brothers 1993, Oliveira et al. 2004). For the
ANOVA, distance was the independent variable
and reference subsamples were considered those
to be at distances of 100 m or greater from the
edge; we determined edge influence to be
significant for a given distance if the sample of
values at that distance was significantly different
from more than half of the reference distances.

(6) Wilcoxon Rank Sum tests were also conduct-
ed in which each value at a given distance from
the edge was paired with the average of reference
values for the same transect (Brothers 1993,
Euskirchen et al. 2001). Parametric and nonpara-
metric analyses were conducted using SPSS 15.0
for Windows (SPSS Inc. 2006). The last three
analyses were all curve-fitting techniques for
which we used SigmaPlot version 10.0 (Systat
Software Inc. 2006). For (7) piecewise regression
(Williams-Linera 1990, Toms and Lesperance
2003), two and three-segment regressions were
fit to the data; three-piece regression was used
only if the addition of the third term was
significant. DEI was considered to be the break-
point between two pieces or a zone between two
breakpoints in a three-piece regression. Expo-
nential curves were used for (8) exponential 2/3
rule (Chen et al. 1992) in which DEI is the
distance at which the value was 2/3 of the
difference between the value right at the edge
(0 m) and the value at the sampling distance
furthest from the edge, and (9) exponential with
CI intersection (Laurance et al. 1998), in which
DEI is the distance at which the curve intersects
the 95% CI of all the reference data. For these
exponential curve-fitting methods, we attempted

Table 1. Description and options for parameters of the sampling design and the nature of the edge response that

were varied in the artificial data sets used in the study.

Parameters Description Options

Sampling design
No. transects No. transects perpendicular to the edge 3, 5, 7, 10, 15, 20
No. edge distances No. distances from the edge sampled along each transect 1, 3, 5, 7, 10
Distance spacing Spacing of distances from the edge sampled along each

transect
equal, concentrated at
edge, gap in middle*

No. reference subsamples No. subsamples per transect in the reference forest� 1, 3, 5
Nature of the edge response

Type of edge influence Direction of magnitude of edge influence positive, negative
Transition pattern Pattern of the trend along the edge-to-reference gradient linear, non-monotonic,

abrupt, exponential�
Edge variation Variation among transects at each distance from the edge none, moderate, high§
Subsample reference variation Variation among subsamples in the reference forest for each

transect
none, moderate, high§

Sample reference variation Variation among transects in the reference forest values
(mean of the subsamples)

none, moderate, high§

Note: Details for each of the 102 artificial datasets are in Appendix A.
*Distances are concentrated at and away from the edge, the gap consists of no distances sampled between 20 and 50 m.
�These would be located along the same transects as the edge samples for a blocked design, but could be anywhere if there is

no blocking.
�Linear: gradient from a hypothetical value of 90 at 0 m to a value of 50 at 60 m then level at 50 thereafter; non-monotonic:

value of 60 at 0 m, linear increase to a maximum value of 90 at 20 m, then linear decline to 50 at 60 m then level at 50; abrupt:
value of 90 from 0 m to 30 m then immediate change to a value of 50 and level at 50 thereafter; exponential: exponential decay
for positive edge influence: y¼ 50þ 40e�0.05x, exponential rise to maximum for negative edge influence: y¼ 10þ 40(1� e�0.05x),
for both reaching 95% of difference between edge and reference at 60 m; always the mirror image for negative edge influence.

§None: all values the same, moderate: coefficient of variation¼ 25, high: coefficient of variation ¼ 50.
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to fit three different curves to each data set:

y ¼ y0 þ ae�bx ð2Þ

y ¼ y0=ð1þ ae�bxÞ ð3Þ

y ¼ y0 þ að1� e�bxÞ ð4Þ

where x is the distance from the edge, y is the
response variable, y0 is the intercept or fitted
value at the edge and a and b are constants. All
these equations result in an asymptote with
infinite distance from the edge. We chose the
curve with the highest R2 value or Eq. 2 if there
was a tie. A significance level of a ¼ 0.05 was
used for all analyses.

RESULTS

RTEI method
Estimates of DEI from the application of the

RTEI method ranged from not significant to 60 m
and varied with both sampling design and
nature of the edge response (Appendix B). DEIs
calculated using the blocking vs. no blocking
RTEI method were usually the same or the
estimate with blocking was sometimes slightly
lower. Exact permutation was only appropriate
(there were less than 5000 permutations possible)
for eight data sets with the blocking method
(data sets 15, 16, 29, 30, 43, 44, 57, 58) and three
with the no blocking method (2, 3, 15). Usually (8
of 11 data sets) DEI estimates with exact
permutation were slightly lower than compara-
ble results with 5000 randomized permutations.

Sampling design affected DEI estimates, in-
cluding an apparent increase in DEI with the
number of transects up to a threshold of about
seven or ten transects (Fig. 1). The threshold
number of transects was less when there were
more reference subsamples (Fig. 1A) or when
there was less variation among reference sub-
samples (Fig. 1B). When there was no variation
among reference subsamples, DEI estimates were
the same regardless of the number of transects
for the blocked analysis method (Fig. 1B), but
varied unpredictably with number of transects
when the analysis method with no blocking was
used (Fig. 1C). The DEI estimate decreased with
the number of reference subsamples only when
there were fewer than ten transects (Fig. 1A). The
number of distances being sampled did not

appear to affect the DEI estimate as long as the

distances sampled extended beyond the DEI

(Appendix B). Two distance spacings, equal and

concentrated, yielded identical DEI estimates.

However, when the spacing of distances includ-

ed a gap in the middle of the transect the DEI

Fig. 1. Estimates of DEI using the RTEI method as a

function of the number of transects for: (A) different

numbers of reference subsamples per transect for RTEI

with blocking, (B) different levels of variation among

subsamples of the reference forest for RTEI with

blocking and (C) different levels of subsample refer-

ence variation for RTEI with no blocking. All DEIs

presented start at 0 m. In (A) there was no significant

DEI when there was only one reference subsample and

3 transects. Comparable results for no blocking as for

(A) were only slightly different and can be found in

Appendix B.
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estimate was always 20 m regardless of the
transition pattern (Fig. 2).

In terms of the nature of the edge response,
positive vs. negative edge influence sometimes
resulted in slightly different DEI estimates,
usually for the non-monotonic transition pattern
(Appendix B). For equal and concentrated
sampling designs, non-monotonic and linear
response patterns yielded the highest DEI esti-
mates, followed by abrupt and then exponential.
Estimates of DEI were influenced by the amount
of variation among sample points at the edge and
in the reference area (Fig. 3). With more edge
variation among transects at a given edge
distance, DEI estimates were generally lower,
but only when variation among reference sub-
samples or among transects for the reference
sample points was high or when there was no
reference variation. Overall, higher variation
among reference subsamples within a transect
or transects for the reference sample points
resulted in lower estimates of DEI. These trends
were much more pronounced when there were
fewer reference sample points (Appendix B).

Comparison of methods
In general the RTEI methods (blocked and

unblocked) resulted in moderate to low estimates
of DEI compared to other methods while the
curve-fitting techniques resulted in the highest

estimates of DEI (Table 2). The parametric and
nonparametric methods tended to result in lower
estimates of DEI than other methods. The DEI
estimates produced by the CVA method were
mostly intermediate in value. Estimates usually
differed among methods by 30–60 m but the
range was greater than 100 m for some data sets
(Appendix B).

DEI estimates were greater for the RTEI
method than for other methods when there was
no variation at the edge or in the reference data
but were relatively low when there was high
subsample reference variation. The CVA method
always resulted in the greatest estimates of DEI
when there was no subsample reference varia-
tion. Most of the DEI estimates for the ANOVA
method were the lowest. Paired t-tests were
usually ranked low to intermediate with rela-
tively high estimates when the edge response
pattern was linear and there was equal spacing of
relatively few edge distances. DEI estimates from
Wilcoxon tests ranked similar to those for t-tests
but with relatively high estimates when there
were few edge distances or no variation among
transects in the reference forest, and low esti-
mates with variation among transects at the edge
or in the reference forest. Both the piecewise
regression and exponential CI methods had most
DEI estimates ranked very high. The exponential
2/3 rule method gave slightly lower estimates of

Fig. 2. Estimates of DEI using RTEI for different spacing of sample points along the transect (equal,

concentrated and gap in middle) and for different transition patterns (linear, non-monotonic, abrupt,

exponential). The hatched area indicates that DEI starts at 5 m rather than 0 m. Results were for the same for

the RTEI method with blocking as for the method with no blocking except that the DEI estimate for non-

monotonic for gap in middle for blocking started at 0 m rather than 5 m.
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DEI than these two methods, with most rankings
of intermediate to high. Many of the lower DEI
estimates for these methods occurred when the
transition pattern was linear with equal sampling
distances.

Although the RTEI, CVA, Wilcoxon and
exponential 2/3 rule methods worked well, we
encountered some problems conducting the
analyses for the other methods. Neither para-
metric method worked when there was no edge

or sample reference variation. Following a
significant ANOVA, the pairwise Tukey tests
were sometimes not significant or they showed a
significant difference between the edge and some
reference distances (.100 m) but not others. For
piecewise regressions, DEI estimates could not be
provided for one dataset because there was no
convergence; similarly many three-piece regres-
sions did not converge. For some other datasets
the breakpoints were not significant. Although
exponential curves could always be fit, when
there was no reference variation the CI was
infinitely small and did not intersect the asymp-
totic exponential curve; in these cases there could
be no defined DEI for the exponential CI method.

The methods behaved differently as we mod-
ified the parameters of the sampling design
(Table 3). With an increasing number of transects,
DEI increased to a threshold for some methods,
but remained unchanged for others. Although
DEI estimates were generally lower with one or
three edge distances, DEI continued to increase
with more edge distances only for the CVA
method. Most methods exhibited little change in
DEI estimates for different distance spacings, but
the estimates for piecewise regression and the
exponential CI methods were more variable with
different distance spacings when there was a
non-monotonic transition pattern. For the final
sampling design parameter of the number of
reference subsamples, DEI estimates were gener-
ally unaffected. However, DEI appeared to
increase with more reference subsamples for the
RTEI method when there was high edge varia-
tion and for the exponential CI method. DEI
estimates were also more variable among analy-
ses with different numbers of reference subsam-
ples for ANOVA and piecewise regression when
there was high or no sample reference variation,
respectively. For CVA, DEI estimates were
always greatest when there was only one
reference sample point per transect.

The different methods were also influenced
differently by varying the nature of the edge
response. DEI estimates were generally similar
for positive vs. negative edge influence for all
methods except for the two exponential methods
for which estimated DEI was sometimes very
different (1–4 m compared with 39–76 m, Table
3). Estimated DEI varied with the transition
pattern (shape) of the edge response with the

Fig. 3. Estimates of DEI using RTEI for different

levels of sample reference variation and edge variation

for (A) no, (B) moderate and (C) high subsample

reference variation. Results are presented for the RTEI

method with blocking, results for the no blocking

method were only slightly different and can be found

in Appendix B.
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Table 2. Frequency distribution of ranks for DEI estimates for the 102 artificial

datasets using different methods as well as the number of times the method

produced a non-significant result (ns), was not applicable (N/A, DEI could not be

estimated) or produced a DEI estimate that did not start at zero (other).

Rank
RTEI

blocking
RTEI no
blocking CVA ANOVA

Paired
t-tests

Wilcoxon
tests

Piecewise
regression

Exp. 2/3
rule

Exp.
CI

1 2 2 28 0 0 3 24 1 48
2 1 1 1 0 1 3 58 5 34
3 8 5 18 1 3 2 11 56 10
4 36 30 50 12 25 21 0 28 2
5 39 39 4 4 19 20 2 4 1
6 8 16 0 2 11 10 0 3 0
7 2 2 0 2 26 22 0 3 1
8 0 0 1 4 1 9 0 2 0
9 0 1 0 45 0 1 0 0 0
ns 2 1 0 21 1 4 4 0 0
N/A 0 0 0 5 5 0 1 0 6
other 4 5 0 6 10 7 2 0 0

Notes: DEI estimates were ranked from the highest with a rank of 1 to the lowest; ties were
given the same rank. Values in the table are the number of artificial data sets for which a given
method was given a specific rank. Exp.¼ exponential.

Table 3. Summary of how DEI estimates varied in relation to the different aspects of the sampling design and

nature of the edge response, as determined by analysis of 102 artificial datasets by different methods.

Aspect RTEI* CVA ANOVA
Paired
t-tests

Wilcoxon
tests

Piecewise
regression Exp. 2/3 rule Exp. CI

Sampling design
No. tr� I � 7 tr N I � 15 tr I � 15 tr I � 15 tr N N I
No. edge dist L . 1 dist I L . 3 dist L . 1 dist L . 1 dist L . 1 dist L . 3 dist L . 3 dist
Distance
spacing

L L L L L L but
V for nm

L L but V
for nm

No. ref
subsamples

N but I
for high
edge var�

greater
for 1

L but V
for high
sample

ref var

N N� L but V
for no
sample
ref var

N I

Nature of the
edge response

Type
(�ve vs. þve)

L N� L� L L L V V

Transition
pattern§

a , e
, l ¼ n

a ¼ e
, l ¼ n

e , l
, a ¼ n

e , l
, a ¼ n

e , l
¼ a , n

e , a
, l , n

e , l
, a , n

e , l
, a , n

Edge var N� but D
for no
ref var

N� D D D N N L

Subsample
ref var

D D V N N� L but I
for no
sample
ref var

L D�

Sample ref
var

D N� D� D D V but N
for no
ss ref var

N but L for
high ss
ref var

D�

Notes: We assessed trends in individual parameters while keeping other aspects of the sampling design and nature of the
edge response constant. N¼no change, I¼ increase, D¼decrease, L¼ little change, V¼ variable; the latter two indicate change
in no consistent direction, little change and variable indicate that the difference between estimates was less or more than the
interval between sampled distances, respectively. See the Results and Table 1 for further information. Other abbreviations are as
follows: dist ¼ distances, exp. ¼ exponential, ref ¼ reference, sam¼ sample, ss ¼ sub-sample, tr ¼ transects, var ¼ variation.

*Trends for the RTEI method with no blocking. These were usually the same as with blocking.
�Results presented for 5 reference subsamples and moderate subsample reference variation.
�General trend that has one or two exceptions.
§Results presented for concentrated distance sampling; l ¼ linear, n ¼ non-monotonic, a ¼ abrupt, e ¼ exponential.
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lowest values almost always for the exponential
transition pattern and the highest values always
for the non-monotonic pattern; results did not
vary much among different methods.

DEI estimates were affected by the amount of
variation among the edge and reference sample
points and these effects differed among methods.
Increasing variation among edge sample points
had little or no change in DEI for the random-
ization methods and the curve-fitting methods
(except for the RTEI method when there was no
reference variation), but decreased DEI estimates
for the parametric and non-parametric methods.
Only the RTEI and exponential CI methods
resulted in DEI estimates that decreased with
variation among reference subsamples and
among transects for the reference forest. Esti-
mates produced by CVA decreased with greater
variation among reference subsamples and those
produced by the parametric and nonparametric
methods decreased with greater variation among
transects for the reference forest.

DISCUSSION

The estimate of DEI can greatly depend on the
method of analysis. Different methods for esti-
mating DEI produced very different results for
the same data; estimates were highest for curve-
fitting methods, lowest for parametric and non-
parametric methods and intermediate for ran-
domization methods. This is consistent with
results found by Harper et al. (2005) with the
largest DEI estimates produced by the exponen-
tial CI (Laurance et al. 1998) or a similar method
(Burton 2002) and some of the smallest estimates
determined using CVA (Harper and Macdonald
2002), ANOVA (Burke and Nol 1998, Sizer and
Tanner 1999, Rheault et al. 2003) or Wilcoxon
tests (Euskirchen et al. 2001). Overall, our results
suggest that some of the differences in DEI
among studies may actually be due to the
method of analysis; however, regional differences
and differences in edge characteristics are obvi-
ously also contributing factors.

An ideal method for assessing edge influence
should provide consistent DEI estimates for
different sampling approaches but reflect differ-
ences in the nature of the edge response. RTEI
and the exponential 2/3 rule method produced
the most consistent DEI estimates with variable

sampling designs with at least 7 transects (with
moderate subsample reference variation) and 3
edge distances. DEI estimates produced by other
methods were directly related to the number of
edge distances sampled, required at least 15
transects before DEI estimates stabilized, were
highly variable for a non-monotonic transition
pattern or increased with an increasing number
of reference subsamples. Therefore, the results of
DEI in studies that use these other methods
depend on the sampling design. As for the nature
of the edge response, DEI should ideally be
consistent with different levels of edge variation
but sensitive to reference variation since the
significance of edge influence should be assessed
within a context of inherent variation in the
reference forest. Only RTEI and exponential CI
followed this pattern most of the time.

Overall, RTEI was the only method for
estimating DEI that was generally invariable
with sampling design and was sensitive to
reference variation but not edge variation. DEI
estimates obtained using the RTEI method were
relatively consistent as long as sampling included
7–15 or more edge transects (depending on the
level of subsample reference variation, see
Results) with sampling at 3 or more distances
from the edge that extend beyond the expected
DEI. However, one exception is that more
reference subsamples seem to be needed if there
is high edge variation. The only situation where
DEI estimates produced by RTEI were not
consistent with increasing edge variation was
when there was no variation among transects for
the reference forest or no variation among
subsamples on a given reference transect, a very
unlikely situation in field studies.

The RTEI method is very flexible and can be
used for blocked or unblocked sampling designs
and allows for the incorporation of any type of
reference system desired. The RTEI method was
also one of the methods able to detect a non-
monotonic transition pattern by estimating a DEI
that did not start at zero. Although not shown
here, RTEI can also accommodate sampling
across the edge into both adjacent ecosystems
as advocated by Ewers and Didham (2006), and
can be used to test the significance of edge
influence in comparison with both adjacent
ecosystems as references (Burley et al. 2010).
We plan to expand the RTEI method into a suite
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of methods that will include different options
such as comparing different edge types and
responses at different times since edge creation
and a test for the interaction of edge influence
(Harper and Macdonald 2002, Harper et al. 2004,
2007).

The use of a standard method for quantifying
DEI will allow for comparisons of DEI among
response variables, ecosystems, edge types and
studies. Quantification of DEI is important for
understanding the ecological importance of edge
influence; determining which response variables
have higher or lower DEI could provide insight
into processes at edges. Understanding the
ecological effects of edges in different ecosystems
will assist in determining which ones are more
sensitive to edge creation and landscape frag-
mentation. In addition, a consistent method of
estimating DEI is necessary for quantifying the
area of edge influence for different regions and
different scenarios of landscape pattern for
conservation planning. The variation in DEI
estimates due to the analysis has important
implications for conservation. For example, the
range of DEI estimates (15–67 m) from dataset 79
(which has moderate edge and reference varia-
tion) would result in an area unaffected by edge
influence ranging from 76 to 95% for a circular
100 ha forest remnant (using the Core-Area
Model, Laurance 1991) and a width of unaffected
forest from 0 to 90 m for a 120 m wide corridor.

We advocate using our RTEI method as a
standard method. We realize that the choice of
method can also be personal preference or may
depend on the specific objectives or sampling
design. The parametric and nonparametric meth-
ods should only be used with at least 15 transects
and caution should be used when comparing
DEI estimates for data sets with different
amounts of edge variation. We do not recom-
mend using curve-fitting methods since DEI
estimates are sensitive to either variation in the
reference data or the sampling design. The large
difference in DEI estimates for positive vs.
negative edge influence for the exponential
methods is also a concern. Without a common
method for analysis, comparisons among differ-
ent studies are inadvisable. At the very least,
researchers should acknowledge that their choice
of method is a factor affecting their estimate of
DEI.
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APPENDIX A

Table A1. Description of the 102 artificial datasets

including parameters for sampling design as ex-

plained in Table 1.

No.
No.

transects Distances from the edge*
No. reference
subsamples�

1 3 0, 5, 10, 15, 20, 40, 60 1
2 5 0, 5, 10, 15, 20, 40, 60 1
3 7 0, 5, 10, 15, 20, 40, 60 1
4 10 0, 5, 10, 15, 20, 40, 60 1
5 15 0, 5, 10, 15, 20, 40, 60 1
6 20 0, 5, 10, 15, 20, 40, 60 1
7 10 0, 5, 10, 15, 20, 40, 60 1
8 10 0, 5, 10, 15, 20, 40, 60 1
9 10 0, 5, 10, 15, 20, 40, 60 1
10 10 0, 5, 10, 15, 20, 40, 60 1
11 10 0, 5, 10, 15, 20, 40, 60 1
12 10 0, 5, 10, 15, 20, 40, 60 1
13 10 0, 5, 10, 15, 20, 40, 60 1
14 10 0, 5, 10, 15, 20, 40, 60 1
15 3 0, 5, 10, 15, 20, 40, 60 3
16 5 0, 5, 10, 15, 20, 40, 60 3
17 7 0, 5, 10, 15, 20, 40, 60 3
18 10 0, 5, 10, 15, 20, 40, 60 3
19 15 0, 5, 10, 15, 20, 40, 60 3
20 20 0, 5, 10, 15, 20, 40, 60 3
21 10 0, 5, 10, 15, 20, 40, 60 3
22 10 0, 5, 10, 15, 20, 40, 60 3
23 10 0, 5, 10, 15, 20, 40, 60 3
24 10 0, 5, 10, 15, 20, 40, 60 3
25 10 0, 5, 10, 15, 20, 40, 60 3
26 10 0, 5, 10, 15, 20, 40, 60 3
27 10 0, 5, 10, 15, 20, 40, 60 3
28 10 0, 5, 10, 15, 20, 40, 60 3
29 3 0, 5, 10, 15, 20, 40, 60 5
30 5 0, 5, 10, 15, 20, 40, 60 5
31 7 0, 5, 10, 15, 20, 40, 60 5
32 10 0, 5, 10, 15, 20, 40, 60 5
33 15 0, 5, 10, 15, 20, 40, 60 5
34 20 0, 5, 10, 15, 20, 40, 60 5
35 10 0, 5, 10, 15, 20, 40, 60 5
36 10 0, 5, 10, 15, 20, 40, 60 5
37 10 0, 5, 10, 15, 20, 40, 60 5
38 10 0, 5, 10, 15, 20, 40, 60 5
39 10 0, 5, 10, 15, 20, 40, 60 5
40 10 0, 5, 10, 15, 20, 40, 60 5
41 10 0, 5, 10, 15, 20, 40, 60 5
42 10 0, 5, 10, 15, 20, 40, 60 5
43 3 0, 5, 10, 15, 20, 40, 60 5
44 5 0, 5, 10, 15, 20, 40, 60 5
45 7 0, 5, 10, 15, 20, 40, 60 5
46 10 0, 5, 10, 15, 20, 40, 60 5
47 15 0, 5, 10, 15, 20, 40, 60 5
48 20 0, 5, 10, 15, 20, 40, 60 5
49 10 0, 5, 10, 15, 20, 40, 60 5
50 10 0, 5, 10, 15, 20, 40, 60 5
51 10 0, 5, 10, 15, 20, 40, 60 5

Table A1. Continued.

No.
No.

transects Distances from the edge*
No. reference
subsamples�

52 10 0, 5, 10, 15, 20, 40, 60 5
53 10 0, 5, 10, 15, 20, 40, 60 5
54 10 0, 5, 10, 15, 20, 40, 60 5
55 10 0, 5, 10, 15, 20, 40, 60 5
56 10 0, 5, 10, 15, 20, 40, 60 5
57 3 0, 5, 10, 15, 20, 40, 60 5
58 5 0, 5, 10, 15, 20, 40, 60 5
59 7 0, 5, 10, 15, 20, 40, 60 5
60 10 0, 5, 10, 15, 20, 40, 60 5
61 15 0, 5, 10, 15, 20, 40, 60 5
62 20 0, 5, 10, 15, 20, 40, 60 5
63 10 0, 5, 10, 15, 20, 40, 60 5
64 10 0, 5, 10, 15, 20, 40, 60 5
65 10 0, 5, 10, 15, 20, 40, 60 5
66 10 0, 5, 10, 15, 20, 40, 60 5
67 10 0, 5, 10, 15, 20, 40, 60 5
68 10 0, 5, 10, 15, 20, 40, 60 5
69 10 0, 5, 10, 15, 20, 40, 60 5
70 10 0, 5, 10, 15, 20, 40, 60 5
71 10 0 3
72 10 0, 33, 67 3
73 10 0, 20, 40, 60, 80 3
74 10 0, 15, 30, 45, 60, 75, 90 3
75 10 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 3
76 10 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 3
77 10 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 3
78 10 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 3
79 10 0, 5, 10, 15, 20, 30, 40, 50, 60, 80 3
80 10 0, 5, 10, 15, 20, 30, 40, 50, 60, 80 3
81 10 0, 5, 10, 15, 20, 30, 40, 50, 60, 80 3
82 10 0, 5, 10, 15, 20, 30, 40, 50, 60, 80 3
83 10 0, 5, 10, 15, 20, 50, 55, 60, 65, 70 3
84 10 0, 5, 10, 15, 20, 50, 55, 60, 65, 70 3
85 10 0, 5, 10, 15, 20, 50, 55, 60, 65, 70 3
86 10 0, 5, 10, 15, 20, 50, 55, 60, 65, 70 3
87 10 0 3
88 10 0, 33, 67 3
89 10 0, 20, 40, 60, 80 3
90 10 0, 15, 30, 45, 60, 75, 90 3
91 10 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 3
92 10 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 3
93 10 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 3
94 10 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 3
95 10 0, 5, 10, 15, 20, 30, 40, 50, 60, 80 3
96 10 0, 5, 10, 15, 20, 30, 40, 50, 60, 80 3
97 10 0, 5, 10, 15, 20, 30, 40, 50, 60, 80 3
98 10 0, 5, 10, 15, 20, 30, 40, 50, 60, 80 3
99 10 0, 5, 10, 15, 20, 50, 55, 60, 65, 70 3
100 10 0, 5, 10, 15, 20, 50, 55, 60, 65, 70 3
101 10 0, 5, 10, 15, 20, 50, 55, 60, 65, 70 3
102 10 0, 5, 10, 15, 20, 50, 55, 60, 65, 70 3

*Distances from the edge incorporates both the number of
sample points along the transect and their spacing.

�For curve-fitting methods, these were located at 100 m
from the edge for 1 distance, 100, 150 and 200 m from the
edge for 3 distances and 100, 150, 200, 250 and 300 m from the
edge for 5 distances.
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Table A2. Description of the 102 artificial datasets including parameters for nature of the edge response as

explained in Table 1.

No. Type of edge influence Transition pattern Edge variation Subsample reference variation Sample reference variation

1 positive exponential moderate none moderate
2 positive exponential moderate none moderate
3 positive exponential moderate none moderate
4 positive exponential moderate none moderate
5 positive exponential moderate none moderate
6 positive exponential moderate none moderate
7 positive exponential none none none
8 positive exponential moderate none none
9 positive exponential high none none
10 positive exponential none none moderate
11 positive exponential high none moderate
12 positive exponential none none high
13 positive exponential moderate none high
14 positive exponential high none high
15 positive exponential moderate moderate moderate
16 positive exponential moderate moderate moderate
17 positive exponential moderate moderate moderate
18 positive exponential moderate moderate moderate
19 positive exponential moderate moderate moderate
20 positive exponential moderate moderate moderate
21 positive exponential none moderate none
22 positive exponential moderate moderate none
23 positive exponential high moderate none
24 positive exponential none moderate moderate
25 positive exponential high moderate moderate
26 positive exponential none moderate high
27 positive exponential moderate moderate high
28 positive exponential high moderate high
29 positive exponential moderate none moderate
30 positive exponential moderate none moderate
31 positive exponential moderate none moderate
32 positive exponential moderate none moderate
33 positive exponential moderate none moderate
34 positive exponential moderate none moderate
35 positive exponential none none none
36 positive exponential moderate none none
37 positive exponential high none none
38 positive exponential none none moderate
39 positive exponential high none moderate
40 positive exponential none none high
41 positive exponential moderate none high
42 positive exponential high none high
43 positive exponential moderate moderate moderate
44 positive exponential moderate moderate moderate
45 positive exponential moderate moderate moderate
46 positive exponential moderate moderate moderate
47 positive exponential moderate moderate moderate
48 positive exponential moderate moderate moderate
49 positive exponential none moderate none
50 positive exponential moderate moderate none
51 positive exponential high moderate none
52 positive exponential none moderate moderate
53 positive exponential high moderate moderate
54 positive exponential none moderate high
55 positive exponential moderate moderate high
56 positive exponential high moderate high
57 positive exponential moderate high moderate
58 positive exponential moderate high moderate
59 positive exponential moderate high moderate
60 positive exponential moderate high moderate
61 positive exponential moderate high moderate
62 positive exponential moderate high moderate
63 positive exponential none high none
64 positive exponential moderate high none
65 positive exponential high high none
66 positive exponential none high moderate
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Table A2. Continued.

No. Type of edge influence Transition pattern Edge variation Subsample reference variation Sample reference variation

67 positive exponential high high moderate
68 positive exponential none high high
69 positive exponential moderate high high
70 positive exponential high high high
71 positive N/A moderate moderate moderate
72 positive linear moderate moderate moderate
73 positive linear moderate moderate moderate
74 positive linear moderate moderate moderate
75 positive linear moderate moderate moderate
76 positive exponential moderate moderate moderate
77 positive non-monotonic moderate moderate moderate
78 positive abrupt moderate moderate moderate
79 positive linear moderate moderate moderate
80 positive exponential moderate moderate moderate
81 positive non-monotonic moderate moderate moderate
82 positive abrupt moderate moderate moderate
83 positive linear moderate moderate moderate
84 positive exponential moderate moderate moderate
85 positive non-monotonic moderate moderate moderate
86 positive abrupt moderate moderate moderate
87 negative N/A moderate moderate moderate
88 negative linear moderate moderate moderate
89 negative linear moderate moderate moderate
90 negative linear moderate moderate moderate
91 negative linear moderate moderate moderate
92 negative exponential moderate moderate moderate
93 negative non-monotonic moderate moderate moderate
94 negative abrupt moderate moderate moderate
95 negative linear moderate moderate moderate
96 negative exponential moderate moderate moderate
97 negative non-monotonic moderate moderate moderate
98 negative abrupt moderate moderate moderate
99 negative linear moderate moderate moderate
100 negative exponential moderate moderate moderate
101 negative non-monotonic moderate moderate moderate
102 negative abrupt moderate moderate moderate
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APPENDIX B

Table B1. Estimated values for distance of edge influence (DEI in m from 0 m to the distance given, unless

otherwise indicated) results analyzed by different methods for the 102 artificial datasets.

Data
set

RTEI
blocking

RTEI no
blocking

Critical
values

approach ANOVA
Paired
t-tests

Wilcoxon
tests

Piecewise
regression

Exp.
2/3 rule

Exp.
with CI

1 ns ns 60 ns 40–40 ns 29 22 21
2 5 5 60 0 5 5 29 22 25
3 10 10 60 5 10 10 29 22 29
4 20 15 60 10 15 15 41 22 33
5 20 20 60 10 20 20 29 22 37
6 20 20 60 15 20 20 29 22 39
7 60 60 60 N/A N/A 60 41 22 no CI
8 20 40 60 10 20 20 41 22 no CI
9 5 5 60 ns 5 5 ns 22 no CI
10 20 20 60 20 20 20 41 22 33
11 5 0 60 ns 5 0 ns 22 33
12 15 15 60 20 15 10 41 22 19
13 10 10 60 5 10 10 41 22 19
14 0 0 60 ns 0 0 ns 22 19
15 5 5–5 20 ns 40–40 ns 30 22 27
16 10 15 20 0 5 5 30 22 32
17 15 15 20 5 10 10 30 22 35
18 20 20 20 5 15 15 30 22 38
19 20 20 20 10 20 20 30 22 42
20 20 20 40 15 20 20 41 22 45
21 20 20 20 N/A N/A 60 30 23 48
22 20 20 20 10 20 20 30 23 48
23 5 15 20 ns 5 5 30 23 48
24 20 20 20 20 20 20 30 22 38
25 15 15 20 ns 5 0 30 22 38
26 15 20 20 10 15 10 30 22 28
27 15 15 20 0 10 10 30 22 28
28 10 15 20 ns 0 0 30 22 28
29 20 40 60 ns 40–40 ns N/A 22 40
30 20 15 60 0 5 5 42 22 43
31 20 20 60 5 10 10 42 22 46
32 20 20 60 10 15 15 42 22 49
33 20 40 60 10 20 20 42 22 53
34 20 40 60 15 20 20 42 22 56
35 60 60 60 N/A N/A 60 42 22 no CI
36 40 40 60 10 20 20 42 22 no CI
37 20 20 60 ns 5 5 42 22 no CI
38 20 40 60 20 20 20 42 22 49
39 20 20 60 ns 5 0 42 22 49
40 15 20 60 5 15 10 42 22 36
41 15 20 60 0 10 10 42 22 36
42 15 20 60 ns 0 0 42 22 36
43 10 5 20 ns 40–40 ns 42 22 32
44 15 15 20 0 5 5 42 22 36
45 20 20 20 0 10 10 42 22 39
46 20 20 20 5 15 15 42 22 43
47 20 20 20 20 20 20 42 22 47
48 20 20 20 20 20 20 42 22 49
49 20 20 20 N/A N/A 60 106 23 51
50 20 20 20 15 20 20 106 23 51
51 20 20 20 ns 5 5 106 23 51
52 20 20 20 20 20 20 42 22 43
53 20 15 20 ns 5 0 42 22 43
54 15 20 20 15 15 15 30 22 34
55 15 20 20 10 10 10 30 22 34
56 10 15 20 ns 0 0 30 22 34
57 0 ns 5 ns 40–40 ns 30 21 22
58 5 5 10 ns 5 5 30 21 26
59 10 10 15 0 10 10 30 21 30
60 15 15 20 0 15 15 30 21 33
61 20 20 20 5 20 20 30 22 38
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Table B1. Continued.

Data
set

RTEI
blocking

RTEI no
blocking

Critical
values

approach ANOVA
Paired
t-tests

Wilcoxon
tests

Piecewise
regression

Exp.
2/3 rule

Exp.
with CI

62 20 20 20 10 20 20 42 22 41
63 15 15 20 N/A N/A 60 127 23 38
64 15 15 20 10 20 20 127 23 38
65 15 15 20 ns 5 5 127 23 38
66 15 15 20 5 20 20 30 21 33
67 10 10 20 ns 5 0 30 21 33
68 10 10 15 0 15 10 42 22 28
69 10 10 15 0 10 10 42 22 28
70 20 20 20 ns 0 0 42 22 28
71 0 0 0 0 0 0 ns 1 2
72 33 33 33 0 33 33 66 1 4
73 40 40 40 20 40 20 60 37 64
74 30 30 45 15 30 30 60 38 64
75 40 40 50 20 40 30 60 39 63
76 20 20 30 0 10 10 41 22 44
77 5–40 5–40 50 20–30 10–40 10–40 20–60 76 81
78 30 30 30 30 30 30 54 43 66
79 40 40 50 15 40 30 60 39 67
80 20 20 30 5 15 15 34 22 44
81 5–40 5–40 50 15–30 5–40 5–40 90 88 102
82 30 30 30 30 30 30 55 43 71
83 20 20 50 15 20 20 60 34 58
84 20 20 20 5 15 15 29 22 44
85 20 5–20 50 15–20 5–20 5–20 73 65 76
86 20 20 20 20 20 20 56 38 62
87 0 0 0 0 0 0 107 42 76
88 33 33 33 33 33 33 59 39 67
89 40 40 40 20 20 20 60 39 65
90 20 30 45 30 30 30 60 39 65
91 40 40 50 30 40 40 60 39 64
92 20 20 30 10 20 20 41 22 44
93 10–40 50 50 10–40 10–40 10–40 20–60 78 81
94 30 30 30 30 30 30 54 43 66
95 40 40 50 30 40 40 60 40 67
96 20 20 30 15 20 20 34 22 44
97 5–40 40 40 5–40 5–40 5–40 82 148 127
98 30 30 30 30 40 30 55 45 71
99 20 20 50 20 20 20 60 35 59
100 20 20 20 15 20 20 29 22 44
101 5–20 50 50 5–20 5–20 5–20 73 70 77
102 20 20 15 20 15 20 56 39 62

Notes: See Table 1 and Appendix A for the description of the artificial datasets and the methods section for the description of
the methods. ns¼no distances significantly different from the reference; N/A¼not applicable; exp.¼exponential. DEI could not
be calculated because the analysis did not work; see the text for details.
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