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CHAPTER 1

GENERAL INTRODUCTION*

I-A) INTRODUCTION TO TYPE 1 DIABETES MELLITUS

Type 1, insulin dependent diabetes is a complex and, as yet, little understood
disease that affects millions worldwide. The disorder, which is characterized by juvenile
onset of severe insulin deficiency due to loss of pancreatic islet cells, is believed to be
caused by a combination of both genetic and environmental factors (1, 2) and persists
throughout the life of an afflicted individual. Long term complications associated with
type 1 diabetes are severe and result from fluctuating glycemia levels (3). These consist
of problems including hypertension (4), nephropathies (5, 6), neuropathies (7), and
retinopathies (8) and often lead to early mortality in these patients (9).

The pathophysiology of type 1 diabetes has been attributed to an autoimmune
disorder whereby the insulin producing B-cells of the pancreas are selectively destroyed,
likely due to the perceived immunogenicity of self-antigens present on the surface of
these cells (10). Treatment of the disease thus stems from the need to replace circulating
insulin that have been lost as well as prevent the development of potentially lethal
ketoacidosis (11). The discovery and purification of insulin in 1921 by Banting and Best
has provided a treatment that has remained the clinical standard, and daily injections of
exogenous insulin have allowed patients with type 1 diabetes to live long and relatively
normal lives. Results from the Diabetes Control and Complications Trial (12)

demonstrated that intensive insulin therapy and strict blood glucose monitoring can

* A version of this chapter has been published: Street et al. 2004 Curr. Topics in Dev. Biol.
58:111-136.
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control glycemic fluctuations and limit diabetes related complications. However, the
increased risk of severe hypoglycemia as well as problems with patient compliance to
intensive injection regimens means that even the best case scenario of exogenous insulin
therapy does not afford the glycemic control provided by a normally functioning
pancreas.

In an attempt to better control glycemia levels, transplantation of the whole
pancreas has been performed with successful outcome. These transplants can provide
stable and continuous normoglycemia (13), and combined kidney-pancreas transplant can
be effective in diabetic patients manifesting end-stage renal disease. However, the
morbidity and mortality rates owing to the extreme invasiveness of the procedure, the
need for lifelong immunosuppression, and the complicated nature of the surgery limit the
usefulness of pancreas transplantation to only the most severe cases of type 1 diabetes.
The advantages and disadvantages of both insulin injections and whole pancreas
transplantation has led to the concept of transplantation of only the pancreatic endocrine

cells within the islets of Langerhans.

I-B) Islet transplantation: Success with limitations

Another therapeutic alternative for people with type 1 diabetes is the
transplantation of isolated pancreatic islets to achieve insulin independence. The
separation of endocrine islets from surrounding exocrine tissue was first attempted by
microdissection in 1964 (14) and was later improved on by Lacy and Kostianovsky (15)
who used intraductal distention with collagenase followed by mechanical and enzymatic

disruption to isolate rat islets. This general protocol of collagenase digestion is still in use
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for human islet isolation, with the added step of islet purification achieved by
centrifugation on ficoll gradients (16). Figure 1 depicts islets within intact human
pancreatic biopsies (A) and in a purified clinical islet preparation (B). The procedure of
islet transplantation, although successful initially in small animal models (17, 18), proved
to be difficult in humans. The main reason for this is the difficulty in obtaining islet-
enriched preparations from the more fibrous human pancreas (19). In results reported by
the International Islet Transplant Registry (20), over 267 islet transplants were performed
between 1990 and 1998, however only 12.4% of these resulted in insulin independence

for periods of 1 week or more.

Figure 1-1: Insulin immunostaining and hematoxylin counterstain to show the presence
of islets of Langerhans in human pancreatic biopsies (A) and purified clinical human islet

grafts (B) (magnification: 200X).

In 2000, Shapiro and co-workers in Edmonton, Canada reported a 100% success

rate in achieving insulin independence through islet transplantation in 7 long-term
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diabetic patients (21). Reasons for the dramatically increased success rate included a new
immunosuppressive regimen excluding islet toxic glucocorticoids and the transplant of at
least 10,000 islet equivalents per kilogram body weight. In recent follow up studies on
the Edmonton Protocol (22, 23), a total of 12/15 (80%) of patients maintained insulin
independence beyond one year post-transplant with minimal side effects. However,
although clinically successful, the widespread use of islet transplantation for treatment of
type 1 diabetes has been limited by several major factors. First of all, the risks associated
with the lifelong immunosuppression required to prevent graft rejection may outweigh
those associated with daily insulin therapy in all but the most severe cases of diabetes.
Secondly, the reliance on imperfect isolation techniques and limited availability of
cadaveric donor organs has resulted in an extreme shortage of transplantable islets. For
this reason, there is a need to find an alternative source of islets, either as a supplement to

or replacement for the small number available from cadaveric donor organs.

I-C) Alternative sources of transplantable islets

An inadequate supply of islet tissue represents a major obstacle to the widespread
implementation of islet transplantation. One possibility for an alternative source of islets
involves a xenogeneic supply, whereby islets from another species could be used for
transplantation to humans. In this regard, porcine islets are the most attractive alternative
due to physiological similarities between pigs and humans as well as the fact that porcine
insulin differs from human insulin by only one amino acid (24). The extreme difficulty,
however, of isolating viable adult porcine islets (25, 26) has hampered progress in this

area. To circumvent this problem, methods have also been developed for the isolation and
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in vitro maintenance of neonatal porcine pancreatic cells (27) and evidence suggests that
this immature tissue can develop into functional endocrine cells both in vivo (28) and in
vitro (29). Even using this tissue, however, the problem of hyperacute rejection (28),
continuing controversy over transfer of endogenous porcine viruses to the human genome
(30), and general public stigma over the use of animal organs for transplant have impeded
the progress of this method as a clinical alternative.

There also exist several cell-based approaches to generate an abundant supply of
islets or B-cells. The use of gene therapy and advanced transfection techniques to
bioengineer suitable primary cells or cell lines has been used to create insulin-producing
tissue (31, 32, 33). These studies, however, are plagued with problems relating to clinical
applicability. For example, techniques for the reliable delivery of genes are lacking and
sustained expression has been elusive (34). Furthermore, it will prove exceedingly
difficult to re-create all of the required biological machinery to allow for insulin
synthesis, release, and glucose responsiveness in a cell not predisposed to these processes
(35). For these reasons, as well as issues involving immune rejection and the
tumourogenic risk of transplanting cell lines, these approaches remain far from providing
an answer to the problem of islet availability.

Among the most promising and most actively researched alternative islet sources
is the use of embryonic or adult stem cells. The ability to isolate and expand progenitor
cells that may subsequently be differentiated into pancreatic endocrine cells will
represent a major advancement in the fields of islet transplantation and type 1 diabetes.
Advantages to this approach include the possibility of propagating an unlimited number

of cells that already possess the ability to become fully functioning endocrine tissue, as
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well as elimination of the aforementioned problems associated with xenotransplantation.
Furthermore, the potential use of adult stem cells offers the advantage of an autologous
model whereby a patient’s own cells can be used, thereby circumventing immune
rejection. Similarly, embryonic stem cells (ES cells) in an undifferentiated state have
been proposed to be undefined immunologically and programmable by the recipient’s
own immune system as “self” tissue. The main drawback to the use of stem cells in islet
transplantation at this time is simply that techniques to identify and subsequently
differentiate stem cells to the islet endocrine phenotype are lacking. For this reason, the
focus of this Introduction is to provide a comprehensive summary of research on both ES
cells and adult stem cells that is centered towards the generation of an unlimited supply
of insulin producing cells. Specific issues relating to the maintenance and differentiation
of insulin producing cells from ES cell lines will be addressed. In addition, progress and
considerations in the identification of adult islet precursor cells will be discussed in detail

with a focus on potential locations for this elusive population.

I-D) Differentiation of embryonic stem cells into insulin-producing cells

The derivation of pluripotent stem cell lines from cells of the inner cell mass of a
developing blastocyst has provided the potential for in vitro growth of virtually any
somatic tissue type. Indeed, it has been shown that a variety of cellular phenotypes,
including heart, brain, muscle, endocrine, and hematopoietic cells can arise from ES cell
cultures. Protocols for establishment and maintenance of ES cell lines were created over
20 years ago using murine cells (36, 37), and many studies to this day still utilize mouse

ES cells for the characterization of ES cell physiology and the development of
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differentiation protocols. In addition to significant advances with mouse ES cells, an
important milestone was achieved in 1998 with the derivation of the first human ES cell
lines by Thomson and co-workers (38). Although differences have been defined between
mousc and human ES cells with respect to surface antigen expression, morphology, and
culture requirements (39), both are derived in similar ways and exhibit similar
differentiation characteristics. Culture conditions for both typically involve the
maintenance of single, undifferentiated cells (characterized by expression of markers
such as Oct4) followed by the formation of cellular aggregates (embryoid bodies), before
the induction of cellular differentiation (38, 40). Initial protocols required the use of
murine fibroblast feeder layers, complicating the issue of clinical feasibility in humans
due to xenogeneic exposure, however newer methods require only conditioned media and
defined growth factors (41), allowing the future possibility for transplantation to humans.
Overall, the observation that mouse and human ES cells can be expanded indefinitely in
an undifferentiated state and possess the inherent ability to develop into pancreatic islet
endocrine cells suggests that these cells may be a potential source of transplantable tissue
for type 1 diabetics. Furthermore, using techniques such as somatic cell nuclear transfer
(42), ES cells could be created from a patient’s own cells eliminating the possibility of
immunorejection after islet differentiation and transplant.

One of the major limitations in ES cell research, however, is the inability to
produce well-controlled, directed differentiation into specific tissue types. When cultured
in suspension, these cells form embryoid bodies that have been shown to contain partially
differentiated cells of all three embryonic germ layers (mesoderm, endoderm, ectoderm)

(43). This heterogenous differentiation poses difficulties when attempting to create a
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large number of pancreatic islet cells. For this reason, specific culture conditions and
growth factors have been utilized in an attempt to attain a more controlled, homogenous
differentiation process. A study by Schuldiner and co-workers (44) analyzed the effects
of certain growth factors on ES cell differentiation. While it was found that specific
growth factors such as EGF and TGF-f could direct a percentage of cells towards a
certain lineage, none were effective at producing homogenous cultures of a specific
celtular phenotype. Importantly, it was also shown that the addition of nerve growth
factor induced expression of some endodermal genes in these cultures, including the islet
developmental transcription factor PDX-1. Although these results were promising, the
problems with spontaneous differentiation were indicative of the difficulties still
experienced today using ES cell lines.

One study that indicated the possible development of pancreatic islets from mouse
ES cells and spurred a worldwide outbreak of subsequent research was that Qf McKay
and co-workers (45). The protocol described in this study involved the production of an
enriched cell population from murine ES embryoid bodies expressing the central nervous
system precursor marker nestin through the use of serum free media, followed by
expansion with basic fibroblast growth factor (bFGF). Differentiation involved
withdrawal of bFGF and supplementation with B27 and nicotinamide to induce a
pancreatic endocrine phenotype. Using these techniques, the authors reported the
appearance of cells containing insulin as well as the other islet hormones glucagon,
somatostatin, and pancreatic polypeptide. Expression of other markers of differentiated B-
cells, such as PDX-1, glucose transporter-2 and islet amyloid polypeptide was also seen

in these islet-like structures. Functional assessment showed some degree of glucose

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



stimulated insulin secretion, although these cells contained far less insulin than a native
B-cell and were not able to correct hyperglycemia when transplanted into diabetic mice.
Interestingly, although a significant amount of research is now being based on this study,
recent reports have questioned these findings (46). In particular, as the media used during
the differentiation process was supplemented with extremely high concentrations of
insulin, it has been proposed that insulin immunoreactivity in these cells is related to
uptake from the media and not from endogenous synthesis. This proposal is supported by:
i) lack of insulin mRNA by PCR, ii) absence of the proinsulin cleavage product c-
peptide, iii) absence of secretory granules by electron microscopy, and iv) lack of activity
from an introduced insulin promoter-driven GFP gene in subsequent experiments using
the same protocol. Although controversy now exists over the significance of resuits
reported by the McKay group, several labs continue to use similar techniques with
improved analysis methods in an attempt to create a homogenous islet population from
ES cells.

Since the McKay protocol for differentiation of nestin-positive mouse ES cells, a
number of other groups have reported the derivation of insulin-containing cells from
these cultures. A subsequent study, also utilizing murine ES cells, by Soria ef al. (47)
reported the generation of a relatively homogenous population of insulin-secreting cells
using a cell trapping technique. In this study, a transfected neomycin gene under control
of the insulin promoter was used to positively select insulin expressing ES cells and
subsequently develop a clonal population. Grown under appropriate conditions, these
cells were shown to contain significant amounts of insulin. Glucose induced insulin

release, however, was abnormal and, although implantation led to transient correction of
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hyperglycemia in diabetic mice, this effect could not be maintained for extended periods.
A study in 2001 by Assady et al. (48) was the first to report insulin production using
human ES cells. Using the H9 human ES cell line, it was shown by immunostaining that
a small percentage of differentiated embryoid body cells were positive for insulin and
that insulin levels increased in the media compared to undifferentiated cultures. The
expression of B-cell specific markers such as glucokinase and glucose transporter-2 was
also observed in differentiated cultures although it was not proven whether cells
expressing these markers were the same cells that stained positive for insulin. In addition
to these earlier studies, several other groups have recently used specific culture
supplements or gene transfection strategies to induce ES cells to insulin production. Hori
et al. (49) used an inhibitor of the intracellular signaling molecule phosphoinositide 3-
kinase to produce a population of insulin-containing cells from mouse ES cells. Insulin
content in these cultures was reported to be about 30 times greater than that using the
standard McKay protocol, although still only 10% of that seen in isolated islet
preparations. Furthermore, aggregates were shown to be similar in morphology to islets,
comprising predominately insulin-positive cells, some glucagon-positive cells, but no
somatostatin or pancreatic polypeptide containing cells. These differentiated cells were
also shown to improve the health of chemically induced diabetic mice, however their
large size precluded the transplantation of a sufficient quantity to fully correct
hyperglycemia. Another study by Wobus and co-workers (50) used electroporation to
transfect mouse ES cells with the islet/B-cell developmental transcription factors PDX-1
and Pax4 in an attempt to induce pancreatic endocrine differentiation. They observed that

Pax4 activation in nestin-positive embryoid bodies caused the induction of other
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transcription factors such as neurogenin 3, as well as an increase in insulin
immunoreactivity (about 60% postitive). Surprisingly, the authors do not address the
possibility that increased insulin immunoreactivity in transfected cultures over wildtype
cultures is due to increased cellular uptake from the media over controls as a result of
membrane damage from electroporation. Furthermore, although the authors report rescue
of experimentally induced diabetes in mice using these transfected cultures, the
transplantation protocol used was questionable because animals were only followed for a
relatively short time period of 14 days. Finally, a group from Belgium recently reported
that the transition of mouse ES cells into insulin-containing cells using established
protocols does not require the transcription factor HNF-6 (51). The authors used ES cells
generated from HNF-6 knockout mice to reproduce the results obtained by McKay and

-others. The significance of this study is that normal $-cell development is absolutely
dependent on expression of HNF -0, showing that the mechanism of ES cell
differentiation in these experiments differs from that of natural islet formation during
development.

Overall, the progress toward generating clinically transplantable islets from ES
cells, although promising, has been hampered by fundamental biological hurdles
involving culture conditions and control of differentiation. Regulatory and ethical issues,
which are beyond the scope of this thesis but are comprehensively reviewed in other
manuscripts (52, 53), also provide an obstacle for the clinical use of human ES cells. It
should also be noted that the creation of a homogenous insulin producing, glucose-
responsive cell population from ES cells may not be sufficient to provide a source for

transplantation. The need to create a fully functional islet structure consisting of all four

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

endocrine cell types should be recognized by researchers and this should be the ultimate

goal of these experiments.

I-E) Identification of the elusive adult pancreatic stem cell

Another possible solution to the problem of islet supply is the use of stem cells
derived from adult tissues. The potential use of adult stem cells offers the advantage of an
autologous model in which a patient’s own cells could be used, thereby eliminating the
problem of graft rejection. The concept that stem cells exist in adult tissues was proposed
years ago, and they have subsequently been identified in a diverse range of tissues,
including liver, intestine, and skin. Recent advancements in adult stem cell research
include the 1solation and in vitro manipulation of neural (54, 55), hematopoietic (56), and
muscular (57) progenitor cells. The identification and exploitation of a pancreatic stem
cell or precursor cell, using similar techniques, would represent a significant
advancement for cell replacement therapy for type 1 diabetes.

Islet neogenesis and transplantation of adult pancreatic stem cells is a concept that
has attracted significant research attention. Figure 1-2 summarizes the possible cell
sources for the formation of new islet endocrine cells in the adult pancreas. Evidence of
continuous cell turnover in other organ systems (e.g. blood, intestine) throughout life
suggests that the proportion of endocrine cells in the pancreas may also undergo dynamic
changes in response to growth, development, and conditions such as pregnancy or
obesity. A study by Finegood et al. (58) proposed a mathematical model to estimate the
dynamics of B-cell turnover in the pancreas. According to this model, a balance is

maintained in the pancreas between the processes of cell division, growth, and death.
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Furthermore, the lifespan of an average B-cell was proposed to be variable depending on
replication rate but most likely from 1-3 months. This data would suggest that a
significant amount of cell turnover in the pancreas occurs throughout life. Furthermore,
studies involving experimentally induced pancreatic damage in animal models also
support the idea of a stem cell population. Partial pancreatectomy in rats has been shown
to result in islet regeneration and compensation for decreased circulating insulin levels
(59). Other modes of damage such as chemical destruction of islets using alloxan or
streptozotocin (60, 61), cellophane wrapping (62), ductal ligation (63), and exposure to
transient hyperglycemia (64, 65) have also been proven to result in pancreatic endocrine
cell regeneration. Although evidence exists that B-cells themselves may be induced to
replicate under certain conditions (66, 67), the level of islet turnover apparent in the
pancreas, as well as the fact that terminally differentiated cells do not normally undergo
active proliferation, suggests that islet neogenesis from a pancreatic precursor cell plays a

significant role in islet turnover.
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Figure 1-2: Overview of the possible sources of new islet cells in the adult pancreas.
Dynamic changes in the exocrine (acinar), ductal, and endocrine compartments allow
continuous islet turnover throughout life. Direct transdifferentiation or de-differentiation
of acinar cells to ductal phenotype may play a role in islet neogenesis. The role of ductal
epithelium has been well established in the creation of new islets however it has not been
elucidated whether all ductal cells possess this ability or whether specific sub-populations
(defined by protein/receptor expression) of islet progenitor cells exist within the ducts.
Finally, islets themselves most likely also contribute to maintenance of endocrine mass
through either proliferation of existing endocrine cells and/or differentiation of islet-

derived progenitors.

There is a substantial amount of evidence to support the hypothesis that islet
neogenesis in the mature pancreas occurs via cells in or associated with the ductal
epithelium. Ductal cells comprise about 5-10% of the normal pancreas and form the
transport network for release of digestive enzymes into the gut. These cells are

characteristically simple, undifferentiated, and hence lack specific identification markers
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such as those used for endocrine or exocrine cells. Despite this, ductal cells have been
phenotypically defined in human and animal models through expression patterns of
specific cytokeratin intermediate filament proteins. Ductal cells in both rat and human
pancreas as well as pancreatic cultures have been shown to express a variety of
cytokeratins; most prominently CK7 and CK19, in a reliable pattern (68, 69, 70). More
recently, the lectin cell surface protein Dolichus Biflorus Agglutinin (DBA) was also
proposed as a marker for ductal epithelium and was used to isolate a population of these
cells from a heterogenous pancreatic culture (71).

Evidence for elucidating the mechanisms of islet neogenesis in the adult pancreas
may result from the study of embryonic and fetal pancreatic development. It is known
that early pancreatic development from the endodermal bud progresses via “branching
morphogenesis” of cytokeratin expressing ductal structures (72, 73). Cells within these
structures eventually lose expression of cytokeratins and develop into both the endocrine
and exocrine compartments of the pancreas (72). In the adult pancreas, individual -cells
as well as intact islets have been observed in close association with cytokeratin-positive
ductal epithelium (74, 75). Transitional cells, expressing both insulin and CK19 have also
been described in adult human pancreatic sections (75). These data provide evidence that
pancreatic stem cells may be ductal in nature or reside in close association with ductal
epithelium.

Experimental evidence, both in vivo and in vitro, exists to support the theory that
islet neogenesis in the mature pancreas occurs from ductal cells. In 1991, it was shown
that the co-transplantation of adult rat pancreatic epithelium and fetal-derived

mesenchyme into the epididymal fat pad of rats resulted in the appearance of cells
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expressing both insulin and glucagon (76). This study provided evidence for the widely
held belief that factors released from surrounding mesenchymal tissues can induce
pancreatic islet differentiation. As discussed earlier, several models of pancreatic damage
have also shown the regeneration of islets in vivo from ductal cells. In particular, Wang et
al. (63) reported that ligation of the tail of the pancreas in rats resulted in a ductal to
endocrine transition via proliferation and subsequent differentiation of cytokeratin-
positive cells.

Specific culture conditions and in vitro manipulation of pancreatic ductal cells has
also been used to demonstrate that ductal tissue contains islet precursor cells. Bonner-
Weir et al. (77) cultured human ductal cells as a monolayer overlaid with Matrigel ™, and
observed the growth of “islet buds™ containing CK19 expressing as well as insulin-
positive cells. Moreover, these cultures demonstrated increased insulin content and some
degree of glucose-induced insulin secretion. In addition, a more recent study from
Heimberg and co-workers (78) showed that viral transduction of the early islet
developmental transcription factor neurogenin 3 in human ductal cell cultures could
initiate differentiation to B-cell phenotype. Although these studies show convincing
evidence that ductal cells contribute to islet neogenesis in the adult, the low proportions
of differentiating cells suggests that either the methods are as yet inefficient, or that only
a specific sub-population of ductal cells are true islet progenitors.

Several lines of evidence also suggest that a subpopulation of cells exist within
the pancreatic ducts that may be endocrine precursors. For example, ductal cells have
been shown to exhibit plasticity and are capable of expressing non-wildtype proteins

under abnormal conditions. The expression of PDX-1, for example, has been documented
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in pancreatic ductal cells. PDX-1 is a homeobox transcription factor expressed in all
pancreas-dedicated cells of the endoderm during early development (79). Over the course
of organogenesis, however, expression is gradually lost until only mature B-cells of the
adult pancreas express PDX-1 (80). It has been shown that PDX-1 is absolutely necessary
for proper pancreas formation, as mice that are homozygous fqr the null mutation are
born without a pancreas and die shortly thereafter (81). PDX-1 has been demonstrated to
be re-expressed in ductal cells of the mature pancreas under certain conditions. Leach and
co-workers (82) demonstrated the increased expression of PDX-1 in pre-malignant ductal
epithelium in the pancreas of transgenic mice overexpressing transforming growth factor-
alpha. Another study reported the increased expression of PDX-1 in rat ductal cells after
partial pancreatectomy (83). Furthermore, Heimberg ez al. (84) showed the presence of
PDX-1 in a significant proportion of human pancreatic ducts, although phosphorylation
patterns and complex formation was different than in mature B-cells. Pancreatic ductal
cells in culture have also been shown to re-express PDX-1, as they do transiently during
embryonic development. Non-endocrine pancreatic cultures derived from both rodent and
human pancreas, consisting of primarily ductal cells, showed increased levels of PDX-1
expression (85, 86). Results from our lab also suggest that the proportion of ductal celis
expressing PDX-1 after several days culture is donor-age dependent, with an increase
seen in young donors (<25 yrs) but not in older donors (unpublished observations). There
is also evidence to indicate that PDX-1 plays a role in islet neogenesis in the mature
pancreas. A recent study has shown that viral-mediated delivery of the PDX-1 gene into
mouse pancreas induced ductal cell proliferation and subsequent 8-cell neogenesis (87).

Moreover, as will be discussed in the next section, ectopic expression of PDX-1 in non-
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pancreatic tissues can also induce differentiation into islet-like cells (88, 89). This data
provide evidence that ductal cells in the mature pancreas that express PDX-1 may
potentially represent islet precursor cells. Interestingly, a recent study by Melton and co-
workers (90) utilized a Cre-LoxP cell lineage tracing system to show that, although all
pancreatic cells express PDX-1 very early in development, cells destined to b¢come ducts
are distinct from those destined for endocrine fate. Although this would seem to imply
that endocrine cells do not arise from ductal cells in the mature pancreas, it can be argued
that the ability of mature ductal cells to re-express PDX-1 indicates a reversion back to
early embryonic phenotype and possible lineage-switching capabilities.

Although substantial evidénce suggests that islet progenitor or stem cells exist
within the pancreatic ducts, the identification and isolation of these has remained elusive.
As noted above, ductal cells that express PDX-1 are one possible candidate. In order to
further narrow the search for these precursors, it may be useful to look to other, more
extensively characterized tissue model systems. Adult stem cells have been identified in
tissues such as muscle (57), CNS (54, 55), and blood (56) and have been isolated based
on expression of characteristic cell surface proteins. Trk-A, the receptor for nerve growth
factor (NGF), for example, has been shown to be expressed in neurosphere-derived stem
cells and to be an effector of neural differentiation (91). This receptor has also been
shown to be expressed by hepatic stellate cells (92), which are involved in liver
remodeling and regeneration. Interestingly, Trk-A expression has also been described in
pancreatic cells. Miralles and co-workers (93) demonstrated its presence on pancreatic
exocrine AR42]J cells, and other studies have shown the ability of this cell line to

differentiate into insulin-producing cells (94). Moreover, it is also known that Trk-A is
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expressed on ductal-epithelial cells of the embryonic and fetal rat pancreas at specific
developmental stages (95), and that islet morphogenesis is reduced in the presence of
agents that reduce tyrosine kinase activity in this receptor (96). In the adult rat pancreas,
islet B-cells express NGF (97), and Teitelman et al. (98) showed that expression is
upregulated in response to pancreatic damage by streptozotocin treatment. This suggests
that cells expressing Trk-A in the mature pancreas may play a role in islet regeneration. It
is yet to be demonstrated whether a subpopulation of Trk-A-positive cells can be isolated
from the adult pancreas and what significance they have in islet neogenesis.

Other receptors or cell surface proteins may also be potential markers to identify
and isolate pancreatic stem cells. The hyaluronan receptor CD44 (HCAM) is a
glycoprotein molecule involved in cell attachment and cell-cell interactions (99). This
protein is expressed in normal pancreatic ducts (100, 101), and is upregulated in
metaplastic ductal cell adenocarcinomas (102). Furthermore, it has been proposed that
CD44 expression in hyperplastic ductal clusters is an indicator of de-differentiation. Data
from our lab (unpublished observations), also suggest that human ductal cells can initiate
CD44 expression in culture. CD44 expressing ductal cells, therefore, are another
possibility of a mature pancreatic progenitor cell. This receptor, however, 1s also
expressed in non-pancreatic cells (e.g. lymphocytes, mesenchymal cells) that may be
found in the pancreas and, as such, caution should be used when investigating its role in
islet formation. Hu et al. (103) recently reported the isolation of a proliferating
mesenchymal stem cell population from human fetal pancreas that expresses CD44 and

can be differentiated into osteogenic, chondrogenic, and adipogenic lineages. It remains
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to be seen whether these non-endodermal cells are capable of differentiation to a
pancreatic lineage.

Although pancreatic ductal cells are a probable source for adult pancreatic stem
cells, extensive research has been carried out to ascertain if other pancreatic cell types
play a role in the birth of new islets. Other potential stem cell markers have been
identified in the pancreas, and recent widespread interest in the phenomenon of
transdifferentiation of specialized cell types has opened new possibilities for involvement
of other cell types. Some non-ductal pancreatic candidates for islet precursors include
pancreatic small cells (104), exocrine/acinar cells (105), and cells that express the protein
nestin (106).

Nestin is an intermediate filament protein involved in cytoskeletal formation as
well as cellular re-arrangement to facilitate processes characteristic of undifferentiated
cells, such as migration and mitosis (107, 108). It has also been shown that nestin can be
used to identify multipotent cells in the adult CNS that are capable of differentiating
along several neural lineages (109-112). In the pancreas, nestin-positive cells have been
identified in murine (113), rat (106, 114), and human (115) islets and evidence suggests
that these cells can be induced to differentiate into islet endocrine cells (106, 115).
Controversy does exist, however, over the role of nestin-positive cells in islet neogenesis.
Several studies report that nestin is not expressed in endodermal pancreatic cells, but
rather in cells of mesenchymal origin (114, 116, 117). In contrast, other studies
demonstrate nestin expression in rat pancreatic cells and suggest that these are islet
precursors (106). Results from our lab (118) indicate that nestin is expressed

heterogeneously in both pancreatic and mesenchymal (ie. vasculature) tissues and that the
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majority of these cells are likely not islet precursors. For these reasons, although it cannot
be ruled out that nestin may play a functional role in islet differentiation, it is most likely
not a suitable marker on its own for pancreatic stem cells.

The potential role of pancreatic exocrine cells in islet neogenesis is also a matter
of debate. Several studies have reported the in vitro transdifferentiation of exocrine cells
into ductal-like cells that may then be capable of differentiation into endocrine cells.
Early studies by Delisle and Logsdon (119) and Hall and Lemoine (120) proposed that
acinar cells in long-term culture lose expression of digestive enzymes such as amylase
and begin to express cytokeratins and mucin antigens. Later studies also reported this
phenotypic transition in cultures of rat (85), hamster (121), and human (86, 122) non-
endocrine pancreatic tissue. Evidence to support the proposal for transdifferentiation,
however, is lacking in all of these studies and alternative explanations may be more
attractive. For example, selective cell death of exocrin;e cells and survival of the more
robust ductal cells may be the predominant mechanism at work in these cases. Due to the
stresses of collagenase digestion and purification during islet isolation, combined with the
fact that primary pancreatic cells do not normally flourish in culture, a substantial number
of exocrine cells (the predominant cell type) will die in the first days of culture. In these
studies, the observance that resulting ductal cultures re-express proteins such as PDX-1
(85, 86) is interpreted as evidence that exocrine cells, via a ductal intermediate, may act
as islet progenitors. Strong evidence for exocrine to ductal cell transdifferentiation,
however, must be provided before this can be considered a candidate pathway for islet
neogenesis. /n vivo studies have also proposed B-cell neogenesis via exocrine to ductal

transdifferentiation in an experimentally damaged pancreas model. Rooman et al. (105)
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infused gastrin into pancreatic duct ligated rats and observed a doubling in B-cell mass in
the ligated vs. unligated portion. This was interpreted as evidence that exocrine cells
under insult can convert to B-cell phenotype. The fact, however, that the weight of the
ligated half of the pancreas was significantly lower than the unligated half suggests again
that exocrine tissue may not survive, leaving ductal enriched tissue for subsequent
differentiation into islet tissue. Although exocrine to ductal transdifferentiation has never
been proven definitively, it also cannot be ruled out as a contributor to islet neogenesis in
the mature pancreas. Arguments both for and against pancreatic transdifferentiation have
been reviewed extensively (123, 124), and improved cell “tracking” techniques or clonal
analysis will eventually elucidate the contribution of this mechanism.

Finally, there also exists the possibility that islets themselves contain progenitor
cells that allow their prolonged survival and continual cellular turnover. It is known that,
along with the four endocrine cell types, islets contain other non-endocrine cells. For
example, ductal-like cells, expressing cytokeratins, can often be observed in the islet
periphery, and these cells may play a significant role in islet cell neogenesis.
Furthermore, the existence of “small cells” within pancreatic islets has been reported
(104). These cells are described as immature, small in size, and representing about 1% of
islet cells. These small cells also express all four endocrine hormones, as well as PDX-1,
synaptophysin, alpha-fetaprotein, and Bcl-2, and are able to secrete insulin in response to
glucose. Proliferation and differentiation, however, have yet to be demonstrated in these
cells and their role in islet formation is as yet uncertain. Guz and co-workers (125) also
report the existence of a progenitor cell in the islet itself. They observed cells co-

expressing both insulin and somatostatin in islets of pancreases exposed to streptozotocin
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and thereby propose these to be repopulating cells in the process of B-cell differentiation.
Although the concept of an intra-islet precursor is attractive, it remains a question
whether these structures have the capacity for the extensive cell replication required for

self-sustenance.

I-F) Existence of non-pancreatic islet progenitor cells

Given recent experimental findings demonstrating evidence for the existence of
multipotent adult stem cells that can give rise to several different tissue types (125), it is
reasonable to hypothesize that new islet cells may be derived from non-pancreatic
sources. Figure 1-3 summarizes the potential mechanisms for islet neogenesis from extra-
pancreatic sources. Firstly is the potential to induce cells of another organ system to
differentiate into islets via gene therapy or the induction of cellular transdifferentiation
using other manipulations. More receqtly, 1s the concept that self-renewing,
multipotential cells in adult tissues are independently capable of differentiation into islets.
This latter proposal represents a change from the view that every organ has its own
discrete population of committed progenitor cells, and that cell division and
differentiation act to gradually narrow a cell’s fate, eventually resulting in unipotency,
without the possibility of reversion or lineage-switching. In contrast, there is also the
concept that a universal, primitive stem cell persists to adulthood that could give rise to
all somatic cell types. Moreover, if true, these would have much the same potential as
embryonic stem cells, without the ethical and legal issues. Several reviews (127, 128)
have described adult stem cell plasticity and interconversion of tissue types. In this

section, the experimental evidence for pancreatic islet cell formation from other adult
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tissues will be addressed, with attention given to maintaining the distinction between cell

transdifferentiation and true adult stem cell differentiation.

Differentiated cell Tissue-specific Hultipotert adult
types of other progenitor celis progenilor cells
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Figure 1-3: Representation of possible extra-pancreatic sources for islet neogenesis and
mechanisms by which this could be achieved. Differentiated cell types of other tissues
can be manipulated using gene therapy to express insulin and other islet cell markers.
Similarily, tissue-specific committed progenitor cells (e.g. hepatic oval cells) have also
been genetically modified to adopt a B-cell-like phenotype. Finally, evidence suggests
that a population of multipotent stem cells may persist to adulthood that could be isolated

and induced to islet endocrine differentiation.

Several studies have proposed that terminally differentiated cells of another tissue
type can be induced into a B-cell phenotype, including the production and secretion of
insulin. Although this does not represent the identification of an islet progenitor cell,

success in this regard would be significant for the treatment of type 1 diabetes.
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Conversion of intestinal, hepatic, or other cell types requires some form of genetic
manipulation. Cheung et al. (30) were successful in engineering a gut K-cell line to
exhibit glucose-stimulated insulin release, and another study was able to induce insulin
expression in hepatocyte cell lines, myoblasts, and fibroblasts (31). As mentioned earlier,
however, these types of studies are limited by the inefficiency and instability of gene
transfection techniques, as well as the extreme difficulty in re-creating the complex
biological B-cell machinery.

Rather than attempting to specifically engineer a mature islet endocrine cell, it
may be more reasonable to use gene therapy to induce islet differentiation through
expression of transient developmental transcription factors. It is known that 8-cell
development occurs via a cascade of transcription factors, some of which are functional
in the mature B-cell and some of which act only over a short period to induce other
downstream genes in the pathway. In this regard, the fact that current
transfection/transduction techniques are unstable would not be detrimental so long as the
developmental pathway could be commenced by transient expression of upstream
initiators. To this end, other studies have examined the targeted expression of
developmental transcription factors to non-pancreatic cells in an attempt to induce islet
differentiation. Yoshida and co-workers (129) used plasmid lipofection to deliver the
PDX-1 gene into an intestinal derived cell line. Subsequently, they observed the
expression of several other downstream B-cell specific genes including amylin, Nkx6.1,
and glucokinase. They also demonstrated insulin expression and secretion upon
transplantation in a rat model, although these cells were not glucose responsive. Another

study, using transgenic Xenopus tadpoles, reported the transdifferentiation of developing
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liver cells to pancreatic endocrine and exocrine cells through directed expression of PDX-
1 (130). The authors showed that transient expression is sufficient to create ectopic
pancreatic tissue that persists after loss of the transgene. A similar study by Ferber ez al.
(89) directed PDX-1 expression to the livers of adult mice and showed an induction of
insulin production in sufficient amounts to correct hyperglycemia in chemically induced
diabetic animals. These studies demonstrate that some degree of transdifferentiation
between tissue types can be achieved experimentally. This may be of use in the treatment
of diabetes in the future, although it by no means implies that transdifferentiation occurs
naturally in an adult organism.

By an entirely different mechanism, it is possible that non-pancreatic adult stem
cells exist that are capable of giving rise to pancreatic islets. These may be stem cells
specific to other tissues or “universal” stem cell populations persisting from early
embryogenesis. It has been shown that, early in development, committed progenitor cells
exist that will form the mature organ systems. This fate determination depends on
specific cell signaling and gene expression and can be experimentally altered. For
example, activation of the gene Ptfla is critical in the decision of putative pancreatic
progenitors in the endodermal bud to form pancreatic cells as opposed to intestinal
progenitors (131). In the adult, hepatic oval stem cells have shown the ability in vitro to
express islet cell characteristics, including insulin secretion in response to glucose (132),
indicating a high degree of I;Iasticity. Furthermore, although the differentiation of
pancreatic islet cells from adult neural stem cells has not yet been demonstrated, the
similarities in developmental pathways and gene expression between islets and other

neuroendocrine cells suggests that this conversion may be possible.
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Finally, there is the potential that non-tissue specific multipotential cells persist to
adulthood that could give rise to all somatic cell types. Jiang and co-workers (126)
demonstrated the existence of these cells (named multipotent adult progenitor cells or
MAPCs) in bone marrow of mice and rats. These cells exhibited extensive proliferation,
and could be differentiated into cells with mesodermal, ectodermal, and endodermal
characteristics. This has raised the idea that islet neogenesis could be achieved using stem
cells derived from the bone marrow and recent evidence has been shown to support this
theory. Ianus et al. (132) performed an experiment in mice whereby male-derived bone
marrow cells, engineered to express GFP upon transcription of the insulin gene, were
transplanted into female recipients. At 4-6 weeks after transplantation, GFP-positive cells
were observed in pancreatic islets that also expressed the Y chromosome, confirming a
donor origin. Upon subsequent isolation, these cells were reported to express insulin, as
well as have other 3-cell characteristics, and were shown to secrete insulin in response to
increased glucose concentrations. The fact that donor-derived cells were observed in the
islets, and did exhibit transcriptional activity from the insulin gene, shows that non-
pancreatic adult stem cells may contribute to islet neogenesis in the mature pancreas.
Reproduction of these results along with further analysis will elucidate whether bone
marrow derived stem cells can in fact undergo B-cell differentiation and are a potential

source of islets for transplantation.

I-G) SUMMARY

With the recent advancements in islet transplantation, cell replacement therapy is

now a real alternative for the treatment of type 1 diabetes. Current limitations to this
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approach include the lack of a sufficient source of insulin-producing tissue in addition to
that available from cadaveric donors. The most promising solution to this problem is the
creation of pancreatic islets from embryonic or adult stem cells. The use of ES cells has
received much attention, and preliminary results indicated that islet-like structures could
be produced from these primitive cultures. However, limitations including difficulty in
controlling differentiation of ES cells have hampered progress, and researchers must
further understand fundamental ES cell biology before attempts can be made toward
clinical application. Moreover, in relation to type 1 diabetes these problems are further
amplified by the need to not only create one cell type, but to create a fully functioning,
multicellular islet containing all four endocrine cell types. This goal may prove
exceedingly difficult in vitro and may necessitate the use of in vivo animal models to
achieve a suitable environment for islet differentiation.

Islet neogenesis has been well documented in the adult pancreas, and the
existence of an adult pancreatic precursor cell is almost certain. As yet, however, these
cells have remained elusive, and debate continues over their identification and
significance. The greatest body of evidence suggests that these progenitors are associated
with pancreatic ductal epithelium, although it is not known whether all ductal cells
possess the capability for islet neogenesis or if subpopulations exist expressly for this
function. The identification of a pancreatic stem cell will represent a significant
advancement, and in this regard rigorous assessment will be necessary to confirm its
identity. For example, these cells should be capable of self-renewal, differentiation to all
endocrine cell types, and migration to form intact islet structures. Clonal analysis will

undoubtedly be necessary to confirm the potential of these cells. Alternatively, the
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possibility exists that more committed, unipotent islet precursor cells exist in the adult
pancreas. In this case, it must be assessed whether these are a static population, capable
of self-renewal, or produced from another cell type (ie. transdifferentiation or de-
differentiation). In addition, the development of protocols for the reliable in vitro
differentiation of these cells will be necessary for them to be useful in cell replacement
therapy.

Finally, there is the possibility that non-pancreatic cells may contribute to islet
neogenesis in the adult. Some evidence exists that closely related tissues, such as liver
and intestine, contain cells capable of “switching” to pancreatic phenotype under the
appropriate genetic direction. Recent studies have also proposed the existence of
multipotent adult stem cells that may give rise to multiple tissue types, and could be
involved in islet neogenesis. This emerging area, while promising, requires further
research and strict experimental protocols to rule out events such as cell fusion and
ensure the distinction between host and donor cells. Furthermore, it remains to be seen
whether these circulating stem cells contribute in meaningful amounts to specific tissues
or are an anomaly with no significant functional value.

In summary, although obstacles exist to the application of both ES and adult stem
cells in islet transplantation protocols, these represent the most promising alternative for
creating an abundant source of transplantable islets. As newer methods are developed for
the identification and manipulation of these cells, understanding will increase as to how
to use them to replace lost or damaged tissues. The creation of pancreatic islets from stem
cells in the future has the potential to benefit millions with type 1 diabetes, and alleviate

much of the cost and suffering associated with this disease.
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I-H) OBJECTIVES AND GENERAL OUTLINE OF THESIS

The primary objective of this thesis is to identify and induce differentiation from
an islet progenitor cell derived from the adult pancreas. A large body of evidence
suggests that these progenitor cells are associated with pancreatic ductal epithelium, and
therefore the focus of this work was placed on studying ductal cell populations from the
human pancreas in an attempt to elucidate a model for islet differentiation and to provide
further evidence for a ductal progenitor sub-population. If this can be accomplished, it is
foreseeable that a clinical application can be developed for the use of non-endocrine
pancreatic tissue that is normally discarded after islet purification.

Chapter 2 of this thesis provides a starting point for the remaining studies in that
we have elucidated a model for the derivation of a relatively pure ductal cell population
from non-endocrine human pancreatic digest. In this project, we have built upon previous
studies and developed a serum-free culture model that allows selective cell death of
acinar cells and preferential survival of the ductal component. These ductal populations
are necessary to carry out the remaining studies in this thesis, which build upon this
initial protocol in an attempt to induce islet differentiation. Furthermore, in this chapter,
we show that the developmental transcription factor PDX-1 can be induced in a
population of ductal cells after culture, and that the amount of PDX-1 expression is
donor-age specific. This result suggests that young donors may provide advantages in the
form of increased cell plasticity and differentiation potential.

In the next several chapters, we provide evidence that ductal cells can be induced
to islet lineage, as well as examine several candidate ductal subpopulations for progenitor

potential. In Chapter 3 a genetic approach was taken whereby human ductal cells were
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transduced with the developmental transcription factor neurogenin 3 to drive the -cell
differentiation process. It has been previously shown that this manipulation can result in
limited differentiation to insulin-producing phenotype in vitro, however we were not able
to reproduce these results in our lab. Instead, only partial differentiation was seen in vitro
and full B-cell differentiation was only observed in a novel in vivo protocol; in which
transduced cells were transplanted into the pancreas of chemically induced diabetic
animals. This study showed that with the proper manipulation adult human ductal cells
can undergo islet neogenesis, although, as in other studies of this kind, the limited
numbers of differentiating ductal cells suggests that either the process is inefficient or
that only a sub-population of ductal cells are islet progenitors.

Chapters 4 and 5 are focused on the analysis of specific pancreatic cell
markers/receptors as indicators of an islet progenitor phenotype. In Chapter 4, two ductal
sub-populations were identified and analyzed, based on the expression of the cellular
receptors CD44 and Trk-A. It was shown that a significant number of human ductal cells
in culture express these receptors and that these populations express other genes that are
involved in islet neogenesis. Furthermore, it was shown that human B-cells express the
Trk-A receptor, as the vast majority of insulin expression in these preparations was in the
Trk-A positive cell populations. Chapter 5 examines the expression pattern of another
proposed islet precursor marker, nestin, in human pancreatic tissue and in clinical islet
graft samples. It is concluded that the heterogenous pattern of nestin expression in acinar,
ductal, islet, and menchymal cells precludes its use as an islet progenitor marker on its

own, although it cannot be ruled out that nestin may be expressed in progenitor cells.
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Finally, Chapter 6 of this thesis shifts focus to the analysis of human clinical islet
grafts, and whether the presence of ductal cells in these grafts has an effect on patient
metabolic outcome. In this study, more than 80 clinically transplanted islet grafts were
assessed over a four year period for phenotypic composition, mass, insulin content, and
function. These results were then used in an attempt to define a good predictor of
transplant outcome to improve transplant success rates. Although factors such as in vitro
function did not correlate with patient outcome, an important finding was made in that
patients receiving a greater number of ductal cells had better metabolic function in the
lfong term (>1 year post-transplant) indicating that islet neogenesis from transplanted
progenitor cells may prolong graft function. This finding provides further evidence that
ductal cells are in fact these progenitors, and that the presence of these cells in clinical
islet grafts may be beneficial to transplant outcome.

In summary, this thesis advances the understanding of adult pancreatic ductal
cells as a possible alternative source of islets for the cell-based treatment of type 1
diabetes. Several novel discoveries suggest that these cells have a substantial level of
plasticity, and may be induced to islet phenotype. Furthermore, these studies suggest the
need for a more detailed analysis of ductal cells as it is likely that only a sub-population
of these cells are in fact islet progenitors. If these sub-populations can be identified,
isolated, and expanded, the process of islet neogenesis will be much more efficient, and a
clinically relevant number of insulin-producing cells may be produced for

transplantation.
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CHAPTER II
ENRICHED HUMAN PANCREATIC DUCTAL CULTURES OBTAINED FROM
SELECTIVE DEATH OF ACINAR CELLS EXPRESS PANCREATIC AND

DUODENAL HOMEOBOX GENE-1 (PDX-1) AGE DEPENDENTLY*

I1I-A) INTRODUCTION

With recent advancements in islet isolation and immunosuppresive therapy (1-3),
islet transplantation is now an effective treatment for certain individuals with type 1
diabetes. Limiting this effectiveness, however, is the fact that it presently requires at least
10, 000 islet equivalents/kg to consistently achieve insulin independence (1-3)
necessitating the use of 2-3 donor organs for each recipient. For this reason, there exists
the need for an increased supply of functional insulin-producing tissue in order to make
islet transplantation a widespread treatment for patients with type 1 diabetes. Various
alternative sources of insulin-producing tissue have been proposed including porcine
tissue (4), engineered beta-cell lines (5), embryonic stem cells (6, 7), and pancreatic
ductal tissue (8, 9), each with its own limitations. It is believed that, in the adult pancreas,
cells of the ductal epithelium have the potential for differentiation to endocrine cells and
may be one source of islet neogenesis throughout life (8, 9). Bonner-Weir et al. reported
the development of human islets from a ductal-enriched population irn vitro (10), showing
this to be an effective source, however to date a clinically significant number of islets has

not been produced by this or similar methods.

* A version of this chapter has been accepted for publication in “The Reviews of Diabetic
Studies”
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The derivation of a ductal cell population through tissue culture of digested non-
endocrine pancreatic tissue has been accomplished in several in vitro models (11-14).
Culture of human and rat exocrine-enriched cell preparations has been proposed to result
in a conversion from a primarily amylase-expressing cell population into a cell
population that no longer expresses amylase but rather the ductal markers cytokeratin 7
and 19 (11-15). In other experiments, these ductal-like cells have been shown to be
capable of expressing early endocrine markers (14, 16) or to have the capability to
differentiate into rat B-cells in vivo (17). These results suggest that ductal cell populations
could potentially provide an abundant source of islets for transplant to type 1 diabetic
patients:.

Although transdifferentiation between phenotypes has been suggested as the
mechanism for the derivation of these ductal cell populations, it has not been proven
whether this actually occurs. We hypothesized that these cultures of predominately ductal
cells arise from selective cell death of the exocrine component and preferential survival
of the ductal population during tissue culture. To test this hypothesis, human pancreatic
cultures were analyzed for overall cell survival, levels of apoptosis, and the presence of
transitional cells (ie. expressing both acinar and ductal markers) indicating a phenotypic
intermediate between ductal and acinar. In addition, previous studies examining the
preparation of enriched ductal populations have utilized serum-supplemented media (11-
16) and it has been reported that for rat exocrine/ductal cultures to survive, serum must be
added to the culture medium (14). However, in order for islets created in the future from
these cultures to be used clinically to treat diabetes, a culture environment free of

xenoproteins will be desirable. Thus, in the present study, both serum-supplemented and
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novel, serum-free formulations were tested for efficiency in deriving an enriched
population of ductal cells. As it has been proposed that human pancreatic ductal cultures
obtained in this fashion may be used to create an abundant source of islets for
transplantation via differentiation of endocrine progenitors, preparations were also
analyzed for expression of genes involved in islet development and mature islet function.
The homeodomain transcription factor Pancreatic and Duodenal Homeobox
Gene-1 (PDX-1) is expressed in mature f3-cells ubiquitously (18) and has been proposed
to play a role in islet development both during embryonic organogenesis (19, 20) and to
affect islet turnover in the postnatal pancreas (21, 22). Furthermore, other studies have
shown that ectopic expression of PDX-1 in non-pancreatic cells is sufficient to induce
differentiation to an insulin-producing phenotype (23, 24). Since PDX-1 expression has
been previously reported in human ductal cell cultures (14, 16) we assessed the levels of
PDX-1 expression quantitatively with the hypothesis that cultures containing higher
numbers of PDX-1-positive ductal cells may exhibit greater plasticity and have a higher

potential for islet neogenesis.

II-B) MATERIALS AND METHODS
1. Tissue preparation and culture

Human donor pancreases were removed from cadaveric donors who had
previously given informed research consent and processed according to the protocols
described by this laboratory (1, 25). Briefly, organs were cold stored in University of
Wisconsin solution and perfused via the duct with the enzyme solution Liberase (Roche,

Indianapolis, USA). Once digested, islets were purified on continuous Ficoll gradients
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using the refrigerated Cobe 2991 (