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ABSTRACT

A relaxation scheme is developed for the maximum entropy method and applied to
the Bayesian restoration of images. The scheme invoives optimizing a system by
controlling its states in sequence, using specific parameter strategies. The results evolve
directly from the funciional analysis of a stationary point equation derived from the
Bayesian-based entropy optimization functional. The convergence behaviour of the system
is characterized in terms of its state-entropy. Given a degraded input image and the
degradation parameter(s), the relaxation scheme performs restoration using a numerical
algorithm. For inputs degraded by Gaussian noise, it is shown that the specification of
noise variance is not necessary. Using a set of criteria, the algorithm estimates the control
parameters adaptively to minimize the influence of the strength of the external constraints
upon the system. The algorithm also aliows the user to specify a parameter to control the
speed of convergence. Test studies with worst case examples demonstrate an expected
behaviour of the algorithm along with the performance figures showing an improvement
between 58% and 87% over the constrained least squares approach. In a specific test study,
the ME relaxation algorithm is oberved to simulate the psycho-physical characteristics of
Mach bands in biological visual systems. Analytical studies reveal the underlying
mechanism similar to Mach's non-linear biological visual model but differs by its
response-dependent basis. Test studies show new prospects for the ME method in edge
detection and enhancement applications. Motivated by the results, parallelization of the
restoration algorithm is attempted using two concepts of parallelism: instruction and image
domain partitioning. The domain patitioning parallelism is approached with the aim of
realizing 2 VLSI implementation based on dedicated parallel architectures. Initial
implementation studies have been conducted using Myrias parallel computers, which are
general purpose, MIMD (mutiple instruction and multiple data stream) computers.The
performance studies show optimum efficiencies of 91% with 16 processors for convolution
algorithm and 78.4% with 8 processors for the maximum entropy deconvolution al gorithm

using the relaxation scheme.



PREFACE

The term 'entropy’, coined from a Greek word meaning 'transformation’, has its
origins in the field of physical thermodynamics. Today, many areas of science and
engineering, ranging from optics and digital communication to modern expert and artificial
intelligence systems refer to the term. The intriguing aspect of this growth is the common
link through plogp and logp functional forms (p stands for a probability distribution). The
origin of this link resides in C. E. Shannon's celebrated work in digital communication.
His work demonstrated the unique and special properties of plogp form (named as
‘entropy’ by Shannon) leading to its formulation as a measure of uncertainty in probability
distributions. The significance of the uniqueness properties of the form was soon realized
in many areas of science and engineering, which led to the wide spread use of entropy
concepts. This thesis intends to explore and contribute to the understanding and the
usefulness of the entropy concepts in image processing.

The entropy concepts in general show a long history of developments in the
scientific domain which is outlined in chapter 1. The maximum entropy (ME) method, as
the name implies, makes use of entropy maximization concepts for certain types of
scientific problems. The method, with growing number of applications and conceptual
developments, is subject to many different interpretations and criticisms. As a
conscquence, the foundation of the method tends to remain obscured and poorly
understood. In chapter 2, the method as applied to images is investigated for its
foundations from the view points of information theoretic, Bayesian and physical and
statistical approaches. The practical advancements of the method are also investigated to
make an assessement on the present status of the method.

One of the major obstacles facing the ME method in Image processing applications
is understood to be due to its computational complexity. The complexity arises from two

factors. Computationally, the method involves & non-linear constrained optimization



problem tu obtain a solution. Obtaining an optimal solution is a standargd difficulty of any
optimization problem. A general convincing algorithm with proven convergence
characteristics has not yet emerged for the method. The second complexity factor arises

from the high dimensionality of the images and the tediousness of the computations

themselves. In technical terms, the algorithmic time complexities are as high as O(n?), with

n typically ranging from 256 x 256 to 1024 x 1024.

Starting from first principles, a procedure is derived, analysed for its merits and
computational difficulties, and developed into a practical form. In this approach, the ME
solution is found to be the result of controlling the states of a system characterized by their
entropies. The convergence mechanism of the scheme are evaluated from the analysis
results of the scheme. Chapter 3 gives full details of the different stages of design and
development. The other complexity factor arising from high dimensionality is a
fundamental problem of implementation. The use of parallel processing schemes become
indispensable to meet the massive and high-speed computing requirements over large
problem sizes. Besides, the study constitutes an exploration phase for the design of
dedicated VLSI implementation architectures. Chapter 7 explores the possibilities of
parallelizing the developed algorithm using instruction parallelism and domain partitioning
concepts. Performance results obtained using Myrias parallel computers are reported.

The numerical and the functional behaviour characteristics of the relaxation scheme
are studied in chapter 4 using practical image examples. Comparative evaluations are made
wherever possible. Significant observations and inferences had become possible from these
test performances. Under specific test conditions, the ME estimation results showed
marked similarities with the psychophysical characteristics of the biological visual systems.
With carefully planned tests and analytical studies, evidences are collected and the results
are interpreted in chapter 5. As a part of this study, Mach's bioldgical model of visual
enhancement has been analysed in depth in chapter 6. The results show the possibility of

using the ME method for edge detection and enhancement applications.



The text contains many new terms, particularly in chapter 3, which are denoted by
bold styled characters. The terms under emphasis appear in italic font. The text also
contains terms within quotes, introduced for effectiveness. When referring to the methods
based on the concepts of entropy in general, the term 'methods' is used; its singular form
is used when the discussion centers around the specific maximization concept of entropy.
As far as possible, distinction is emphasized between the terms method, technique,
procedure, and an algorithm. Their respective meanings, as followed in this thesis are
outlined in Appendix-1.

The test studies reported in this thesis work were carried out under different
computing environments. The associated difficulties in terms of the migration of data and
programs have restricted the experimental studies to selected test samples. The choice of
test samples (imzges) have another restriction in terms of the available input-output
resources. Appendix-2 shows the various computing systems, input-output resources and

the migration paths followed in this thesis work.
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CHAPTER 1

INTRODUCTION

The origin of the entropy based methods dates back to the era of Bernoulli, Laplace,
Bayes and Gibbs, when attempts were made to solve problems of inversion by the
principle of insufficient reason and plausible reasoning approaches [1}, [2]. The concepts
were found useful in deriving equilibrium conditions in statistical mechanics and |
thermodynamics. The turning point occurred when C.E. Shannon introduced the concept
of entropy as a unique measure of uncertainty represented by a probability distribution in
transmitting messages over communication channels [3]. Contributions were made in the
analysis of channel capacity and efficiency of codes using this measure. The second
turning point evolved when E.T. Jaynes introduced the concept of maximizing the entropy
for general scientific inferences, which is the foundation for most of the current entropy
methods [4], [5]. His concept is based on Shannon's interpretation of entropy. A related
approach in information theory is referred to as minimum directed divergence, as minimum
discrimination information, or as cross-entropy minimization [6]. Although the history of
developments is quite long for the methods, their usefulness to practical applications was

not realized until the introduction of the entropy maximization concept.

1.1. The maximum entropy (ME) method - developments

The method based on the entropy maximization concept in its basic form involves
maximizing the entropy subject to the input data as constraints. From now on, the term
"entropy methods" will be replaced by the term "ME method". So far, the method has been
successfuily applied to two major application areas, namely, powerspectrum estimation and
image restoration and reconstruction. The application of the method to power spectrum

estimation by J. P. Burg, accounted for the side-lobe discrepancies associated with the



2
linear techniques [7). It was in this work that the consequences of the assumptions used in
linear techniques were realized for the first time. The method is relatively well-established
in spectrum estimation [8], [9], [10] compared to image processing. The usefuleness of
the ME method in image restoration was first established by R. Frieden. He showed that a
positive restoring formula logically arises from a statistical communication theory model of
image formation, and the most likely object implied by the image data obeys the principle of
ME [11]. In spectrum estimation, as well as image restoration, the improved resolution of
the results are commonly attributed to the 'inherent positivity' and the smoothness criteria
that are fulfilled by the ME estimates. Following Frieden's work, the ME method
supplemented with efficient noise reduction schemes was applied to many radio astronomy
applications of image reconstruction [12], [13], [14], [15]. In its subsequent applications in
image enhancement and restoration, the method has been reported to yield outputs that are
reliable and relatively free from artifacts [16], [17], [18], [19], [20]. Superior results have
been reported so far in areas such as computed tomography, X-ray, diffraction and
positron emission tomography, radiography, radio astronomy, optical deconvolution,
crystallographic diffraction imaging, NMR spectroscopy and forensic imaging. The
applications are scattered throughout the literature and a collection of it appears in some of
the references [16], [21]. The various developments have also led to the idea of the entropy
maximization as the only consistent variational technique [22], [23]. The current
applications attempt to make use of the prior knowledge incorporation features of the ME

method, particulariy in the fields of expert systems and neural networks [24], [25], [26],
[27].

1.2, Image processing and machine vision
In image processing, techniques are broadly classified as image restoration,
reconstruction, enhancement, coding and segmentation [28], [29], [30]. The need for

these techniques arises in many fields such as medical diagnostics, atmospheric remote
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sensing, radio astronomy and microscopy. On¢ of the related areas of recent interest is
machine vision or computational vision, where efforts are focused in the direction of image
analysis and interpretation, leading to the machine recognition of an object [31], [32].
Recovering 3-D properties of surfaces from the 2-D images, extraction of features,
classification are some of the areas of research interest in image analysis. These
applications invariably involve manipulation and extraction of information from 2-D images
such as optical flow, edge detection, image restoration, and interpolation. Most of the
image processing and computational vision operations have been recognized to be members
of the family of inverse problems [33], [34]. These problems are ill-conditioned and
ill-posed and a satisfactory general solution has not yet been established due to
characterization difficulties. In solving inverse problems, the use of prior knowledge or
information is considered itnportant. But there exists conceptual and modelling difficulties
for images in general at computational levels and also at levels of incorporating prior
information or combining evidences [35], [31].

The natural flexibility of the ME method in incorporating prior information or extra
knowledge appears to be well-suited to many problems of image processing and machine
vision. But the method in its present form has serious progress limitations. In particular,
the criticisms regardirtg the foundations of the method have a dominant influence. The
theoretical foundations of the method are often condemned as philosophical assertions.
While the criticisms on the theoretical issues are only at the level of disputes, the practical
difficulties of the method are more fundamental and realistic. Due to the computational
difficulties and complexities, the methods are considered impractical specifically for image
processing applications. As a matter of fact, at the computational level, the method has not
advanced beyond its current application areas of image restoration and reconstruction.
Even in these areas, there lies the fundamental difficulty of obtaining a solution for the
method. The method apparently needs further investigation and development in order to

achieve its full range of potential application,



CHAPTER 2

FOUNDATIONS OF THE MAXIMUM ENTROPY METHOD IN
IMAGE PROCESSING

The ME method is well known in the area of time-series spectral estimation to
estimate a power spectrum of a stationary random process from a finite but incomplete
number of auto correlation coefficients. In image restoration or reconstruction, the ME
method is employed to estimate a true image from its measured samples that are finite,
distorted and incomplete. Unlike the time-series case, images are 2-D spatial power patterns
often resulting from a quantum statistical process. Extension of entropy concepts to images
have introduced different interpretations and view points in the literature. This chapter
investigates the basis of the ME method for images by closely following its various

develoﬁment stages.

2.1, APPLICATION OF ENTROPY CONCEPTS TO IMAGES

A number of physical problems are modeled using an expression of the form:

Olng) =D[I(n;)];i=1;-.... ; (2.1)

where D[.] is a distortion or a transformation operator that acts on the multi-dimensional
(including one-dimensional) input sequence I(n;) to produce an output sequence O(ny). In
many real applications, the O(ny) are the measurements of continuous physical quantities
and the problem is to determine the input I from O, which is called an inverse problem
[36], [37]. Deconvolution, noise removal and signal extrapolation are some of the common

examples of inverse problems. The ME method is reported to be a solution method for

inverse problems in general [38), but has not been firmly established beyond spectral
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estimation of 1-D time signals. Althcugh the basic concepts are similar, extension of the
method to 2-D signals in general, and images in particular, is not well understood. In this
chapter, attention is focused on 2-D images. Considering the example of image restoration
and reconstruction, which includes the problems of deconvolution, noise removal and

signal extrapolation, the ME method is discussed in the sections that follow.

2.1.1. Image restoration and reconstruction

True images are real, non-negative and bounded spatial power patterns of a
continuous object field. The patterns are often represented as 2-D functions f(x,y),
resulting either from a deterministic or a random process [28]. The physically measured
quantities are the spatial samples of f(x,y), characterized by the measurement medium. In
situations where a direct measurement is not possible, some function selated to f(x,y) will
be measured. In any case, there is a practical necessity to obtain f(x,y) from the measured
image. The processing techniques employed for the fundamental purpose of obtaining a
continuous true image in a quantitative manner are classified as image restoration and
reconstruction techniques in image processing [28], [29], [30], [39]. Although the basic
objective is the same, the two techniques differ in terms of the processing conditions.
Specifically, inputs for restoration techniques are the degraded measurements involving
physical processes such as atmospheric effects, lens distortion, channel and sensor noise,
echoes, reflections. Reconstruction, on the other hand, applies to inputs with sampling
problems. However, in the ME literature, as we will see in the following section, the term
'reconstruction’ is often referred to as a general term meaning restoration as well as
interpolation. The ambuiguity is not a matter of major concern from applications point of
view, since both techniques follow the same mathematical representation for using the ME
method. However, in discussing the foundations of the method, the distinctions appear to
be important. At this point, let us choose to discuss the subject matter from the view point

of restoration since the concept is more involved.
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Image restoration in general involves five stages of development: an image
measurement model, a restoration criterion, a computational procedure, an algorithm and its
implementation. The measurement model is an imaging model that tells us how the
recorded data are related to the true image data. The restoration criterion specifies the
conditions the solution needs to satisfy in order to restore the true image. Stated simply, it
specifies what restoration means. The computational procedure defines the solution
methodology for the restoration criterion and the algorithm is a means to carry out the
procedure on a given implementation scheme [40], [41]. In this chapter, we are concerned
with the first two stages of development, with more emphasis on the restoration criterion as

applied to the ME method.

2.1.2. Image measurement model for restoration
Consider a true image of an object represented by a set of finite samples, denoted
as f = (f},....f,; Jand measured as d = {djy..dpyy } with m <. Strictly speaking, a

general measurement model follows the form in (1) with a general class of degradation

processes. However, for discussion purposes, let us consider a widely followed

restoration model [39]. Under this model, the measured image datum dJ is written as

4=y fiAx+e; j=leom m<n., (2.2)

1-D notation is followed for convenience. The term & refers to the noise error (here

assumed to be additive and zero mean Gaussian) present in the datum d. Aisa2-D

function A = {Ajk 3= Lewm 5k = 1,.....1n} that relates d and fin a measurement

system and is assumed to be known. For convoived data A is commonly a linear,
space-invariant, point spread function of the measuring system. In using (2.2), it is of

fundamental importance to note that the model exclusively refers to monochrome image
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class. The restoration approach differs significantly for the case of multi-spectral image
class. The importance of this distinction is brought out in [42]. In this work, the
restoration analysis and the schemes refer to monochrome images. The objective of
restoration is to find the true image f, or the most probable image ?, from the

measurements d given by (2.2).

2.1.3. The ME restoration criterion

The problem of finding f from (2.2) is an ill-conditioned and ill-posed inverse

problem because, in practice, the data are often incomplete (m <n ) and noisy with a
singular A. The under-constrained and the corrupted nature of the problem introduces an
infinite number of possible solutions, called feasible estimates that could have given rise to
the measured data. As stated in [43], "this many-to-one mapping from an object to image is
an intrinsic property of any real measuring system that has a finite aperture or bandwidth
and hence a point-spread function of non-zero width". Finding an estimate of f means
choosing a particular estimate from the set of feasible estimates based on a criterion that is
'best' in some sense. Two types of restoration techniques are used in practice [39], [44]:
algebraic and statistical. The algebraic restoration techniques make use of approximation
techniques and filter transfer function design techniques. The statistically based restoration
techniques, on the other hand, make use of restoration criteria based on the statistical
formulation priciples of an image. The ME method is a statistical approach based on a
photon random emission models of image formation. In the restoration process the method
follows the criterion of assuming the least about the unknown measurements, while
allowing the incorporation of any known information about the true image. How the
criterion is derived from statistical principles is an interesting issue underlying the ME
method. A more interesting fact is the multiple basis for the criterion, which means that the
criterion is derived as a consequence of different view points and interpretations. The

existence of multiple basis is a major source of confusion in the literature. Also, because of
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extensive arguments and criticisms, the basis of the method rarely appears in clear terms
and is often subject to many misinterpretations in the literature. The different view points
for the method arise from using:

i) Shannon's information measure of uncertainty,

ii) the Bayesian theorem,

iii) physical models,

iv) Frieden's statistical approach,

v) consistent variational principles.
The different view points are explained in the following sections with the intent of
clarifying the underlying concepts. Quotes and italic fonts are employed to emphasize

unique and important terms.

2.2. SHANNON'S INFORMATION MEASURE BASIS

Let us start with the understanding of the ME method as proposed originally by
E.T. Jaynes [4], [5], [38]. Let us suppose that a real variable x can take any one of the

discrete values {x;,...... xn} and the information about x is available as constraint(s) of

form (2.2). According to Jaynes, it is possible to assign a probability distribution

partial information about x. The probability distribution is obtained by maximizing its
entropy subject to the available information as constraints. The entropy of the distribution

is given by Shannon's measure of uncertainty in a discrete probability distribution:

N
S(p)=- K, p; log p;. (2.3

i=1
K is a constant that allows for an arbitrary logarithmic base. Jaynes also discusses the

entropy of the continuous case [5],[45] as:
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S(p,m) = - xj pxllog [ﬁ’;—)) dx. (2.9

He calls m(x) an 'invariant measure' function, the reasons for which will become clear in
sectionn 2.5. For all practical purposes, let us consider the form (2.3). The basis of the
method as discussed in [2], rests upon the consistency properties of (2.3) as uncertainty

measure and hence upon Shannon's derivations.

2.2.1. The ME formalism
Putting aside, for now, the image measurement model (2.2), the general formalism

of the ME method proceeds as follows [38]. Let us consider the 'data’, a set of numbers

{Ay,......A,,"} resulting from m known functions {A;(x)......Ap,(x). In the ME

approach, the data are the values a probability distribution {p;,......py} is required to

'predict’. To 'fit' the distribution with the ‘measured data’, m simultaneous constraints are

imposed:
” ’
Y, piAixi) = Ag. (2.5)
i=1
If the 'predicted’ distribution (p;, ......py, ) is substituted in the left hand side term of (5), it

should give rise to the m numbers on the right hand side. The distribution is the ME

distribution found by maximizing (2.3) subject to (2.5) and is given by

= 1 A <) - . ,
Pi Zrihoen) expl-AMA1(X;) = weens AmAm(xi)] (2.6)
where
ZM s Am)= D, eXpl-MAL(Xi) - oo - AenAm(xi)] (2.6.1)
i=1
with A's determined by solving
Ak' = _g‘i‘lg_z_l . (2.6.2

s
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The application of the formalism to images is discussed below.

2.2.2. Luminance frequency model of image formation
In extending the general ME formalism to practical applications, means are

necessary to define the application in terms of probability events. Jaynes understands image

‘reconstruction’ (includes restoration as well ) as the process of distributing N equal

elements of luminance distributed over n pixels, labeled { X1, ooy Xy} 10 fOrm an image
with N; elements of luminance at pixel i [46]. This means a particular result x; is generated

with ‘frequency’ N; /N and the 'scene’ (image represented in terms of elements of
luminance) f = { f,,......f,} represents the true image distribution f (note: change in font
type). The number of ways in which the true image distribution could have been generated
is the multiplicity factor W(f) calculated as

w(p=—N_ (2.7)

42
.
N; !
j=t

With large N, Stirling's approximation of logW(f) gives rise to the form

log W (A=NS(p (2.7.1)

where

S(=- ifi log fi. (2.7.2

i=1
From (2.7) and (2.7.1) we understand that the ‘entropy’ (2.7.2) contains the multiplicity
information (the number of possible distributions) pertaining to any true image f that falls
under the luminance model. In the present context, we are interested in finding f that is

hidden in the ineasured image data given by (2.2). The measured image data, as R. Frieden
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puts it are 'blind’ to the order {x;j} in which the sequencing would have taken place in

forming the image. What we know is a set of numbers {d,,......,dy } as the average of m

quantities:

n
Y NiAlxi) = dc ;1sksm. (2.8)
i=1
(it may be noted that the noise terms have been omitted in writing (2.8)). The most likely

frequency distribution U";, ...... ,fAn] according to Jaynes is the one that maximizes the
multiplicity W(f) subject to the constraints (2.8). The solution is given by (2.6) with p;

replaced by jl’: Two aspects of the approach need further considerations: The incorporation

of noise reduction capabilities and the practical significance of N in restoration. Using the
ME prior information in Bayes' theorem, Jaynes suggests a possible way of incorporating
noise reduction capabilities into the ME method [38]. The second aspect is more of the

shortcoming of the model as we will see shortly.

2.3. THE ME METHOD USING BAYES' THEOREM

The basis of the ME method using Bayes' theorem, discussed in this section
pertains to the specific context of images, where the correlations between the adjacent pixel
luminances are not a major concern. It is important to realize this fact because, often in the
literature, the Bayes' theorem basis of the method is reported as a general statement, while
the connections between the two positions is still a research issue. In this section, the
derivation of the ME method is considered with the intent to clarify the approach in the light
of the Bayes' theorem. Besides, the approach has significant relevance to the subject matter

of the subsequent chapters.
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2.3.1. Bayes' theorem

Bayes' theorem has a long history, suggesting the idea of taking the prior
distribution and the likelihood into account to obtain solutions for inverse problems [1].
The foundations of Bayes' theorem are built on the rules of inductive logic among a set of
propositions, making use of the consistency requirements [2]. Applying these requirements
to a specific proposition p(ABIC) (i.e. probability that propositions A and B are true given

C) leads to the relation

__PMBIAC)p(AIC)
pABC) = J5iC) (2.9)

which is well known as Bayes' theorem. Although the Bayes' theorem and the maximum
entropy methods exhibit similarities on the grounds of consistency, the context in which
they apply differ. In (2.9), the constituting propositions are probabilities, and the
calculated result is a single quantity. On the other hand, the problem of solving for ? in
(2.2) pertains to an inference problem with distributions. A direct application of (2.9) is

therefore not possible.

2.3.2. Bayes' theorem for images
It is however possible to obtain probability distributions using statistical processes
and models that allow (2.9) to be written as

p(fldo)=p(fls, 1)%2 (2.10)

where I is the prior information, p(fle,D) [=p(fI)]and p(d | fol) are called g priori

probability distribution and likelihood respectively. The denominator term is independent of
fand hence is treated as a normalizing constant and has no specific name. The result is
called the a posteriori probability distribution. Maximizing the a posteriori probability
distribution is one of the popular image estimation methods, called maximum a posteriori

methods. One of the key features of the approach is the prior probability distribution. The
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various possibilities of obtaining this term can be found in the literature [47]. One such

possibility, as E.T. Jaynes points out, is the use of entropy.

2.3.3. The ME method from Bayes' theorem
In one of his works [38], E.T. Jaynes shows a possible way of estimating the
prior probability distribution with the Bayes' theorem. Based on the luminance frequency

model of image formation, (2.2) can be written as

"
de = 3 ANi+eg;1sk<sm<n (2.11)

i=1

where N, =Nfj. The Gaussian noise terms ¢, follow a probability distribution function

2
plex 16) o< -é—ex[{--zgg?) ,1sk<sm (2.12)

where ¢ is the standard deviation of the noise terms and o denotes proportionality. Now
let us consider the problem of finding ?in (2.2). As we already know, it is an ill-posed
problem, with infinite number of feasible f-distributions. In the present context, we are
trying to translate this conceptual description into an equivalent mathematical
representation. According to Jaynes, the multiplicity information provides a possible

medium. Based on the luminance frequency model, his ideas proceed in the following
manner: there are n?Y conceivable ways and a particular distribution f = { fi,.....fy,} can

be realised in W (f) = exp (NS (f)} ways. With the understanding of the 'prior scene’ as

the 'infinite number of f-distributions', Jaynes establishes the medium as

p(f1D=-Lexp[N(S(). (2.13)
N

Based on the justifications in [45], he calls (2.13) a prior probability distribution. This

distribution sets up only the medium for the representation. When we add the meaning of
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feasible’ to the possible f-distributions, we arrive at a final representation of the
measurements given by (2.2). The likelihood distribution fulfills this requirement. It is

calculated as follows: Given that the true scene is J, the probability density that we shall
obtain the data d = {d,,......d,, } can be written directly from (2.2) and is just the

probability that the noise terms e, will make up the difference. It is givea by

pld1 fo,]) = exp( Q“”ﬂ, (2.14)
where
m B 2
Qdf = 2L di-NY A,-i;, i (2.14.1)
j=1 i=1
Substituting (2.14) and (2.13) in (2.10) gives rise to the g Pposteriori probability
distribution:
P(Ndc]) = exp[N{S(-wQ(})] (2.19)
where
w=—1_ (2.15.))
N

From (2.15) we see that maximising the a Pposteriori probability distribution is equivalent to
maximising the function
X = Ns(f- Qdy) | (2.16)
20?

which is the ME method in Bayes' theorem approach. The ME distribution obtained by
solving 81/8}} =0 for a particular pixel j obeys the relationship
N(1+logf) - L2=0 9Q(dy) =0. (2.17)
o 3 [

The solution is implicit in (2. 17) and numerical procedures are necessary to find the

estimate f Before proceeding with the solution, it is necessary to understand and resolve

the ambuiguities related to N.
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2.3.4. Practical difficulties of the luminance frequency model
The luminance model explained above is reported to have significant practical

difficulties [23], [48]. Let us consider the ME solution given by (2.17). The first term
comes from the prior probability assignment and the luminance frequency model with N

denoting the number of luminance elements. As N increases, the first term of the equation

dominates giving rise to a uniform grey image, which is unrealistic. Therefore, for all

practical purposes, it is argued that N cannot be infinite. Although the arguments appear

reasonable on practical grounds, it may be noted that Jaynes approach is to some extent

misinterpreted. Jaynes identifies N J/N as 'frequency’ and not as 'probability' but the

controversies are raised by using it as a probability term in (2.3). In a different context,
Jaynes makes it clear that as N increases in (2.17), © decreases (6 due to the variability of

the scenes) and hence it is No2 or w that determines the solution conditions and not N
alone [38]. But still there is an element of ambiguity in interpreting Gas the spread due to

variability of scenes, because, G as we noted in the derivations, is the spread due to noise.
There are many other ambiguities for N with respect to its usage and physical meaning

[23]. From (2.16), we see that for any given N, at the maximum of J, fis expected to obey

the relation
as() _ aQ(ds)
ZN_E_)Z— =3 fi (2.18)
N is then given by
aQ(d)
__of
= 250 (2.19)

of;
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(2.19) shows that N depends upon the function Q, which means that it needs to be chosen
a posteriori and is not consistent with using exp(NS) as a priori probability distribution.
Other questions raised in the literature are: should N be electrons per unit cell, atoms or
photons?; What type of physical analysis is appropriate to determine N?. The consequences

of using N are also demonstrated experimentally in many specific applications. It should

however be noted that R. Frieden, in the very first application of the ME method to images,

eliminated the practical difficulties associated with N [11] using the physical basis of true

image formation.

2.4. PHYSICAL MODEL BASIS

For many types of images, intensities result from the emission of discrete particles

called photons from objects, speciﬁcélly incoherent optical objects [28], [39]. Let us

consider such an object, partitioned into n pixels, denoted as {x,,......x,,} each of area

AA. Let the ith pixel of the image be identified with an average intensity (brightness) f(x;).

In terms of the number of photons and their energies, the ih pixel intensity is given by
ﬂxi) = -£_ r(xi) (2.20)
AA

where € is the photon energy and 1; is the number of photons emitted from the it pixel.
Since the photon emission process is random, an image is considered to be a result of a
statistical process, often in a quantum sense. In this random emission model of image
fenation, the probability that a photon was emitted from the pixel i is given by the

normalized pixel intensity itself. A more detailed physical explanation in the context of
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optical objects follows [49].

2.4.1. Probability representation of a true image
A photon originates from within an area Ax of a true image planc and follows an
unknown path through a lens imaging system and strikes the image plane forming the

image intensity profile d(x) (1-D notation followed for discussion convenience). The
photons are assumed to have equal wavelength A (a monochromatic image formation). In
this situation, we are interested in answering the question: what is the probability p(x = Xj)
that a photon will be emitted from the ith cell of the true image plane?. The event is the
emission of a photon from pixel i. The number of photons 1; emitted from cell i determine

the number of events that took place to form pixel i, and is proportional to the energy flux

f(x;) Ax. The total number of emitted photons is proportional to the total cnergy flux,
21(x;) Ax. Since the total number of photons is very large for the majority of optical cases,

by the law of large numbers, the true image can be represented as {p(x),......,p(x,,)}, or

in short {py,.......p,,} Where
pix=x;) = p; = —i— = i (2.21)

2 v f

i=l i=l

With 3f; normalized to 1, the probability of the position for a photon in the true image
1

plane equals the true image intensity distribution itself. Besides its physical basis, the form

(2.21) has been reported to be free from the technical difficulties encountered with N [18],

[47]. For example, it shows consistency of a uniform image with the ‘equal weight' prior

probability assumption of 1/n when used with the ME method. The denominator of (2.21)

is the total light intensity and has an interpretation of a normalizing factor. The nomalization
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does not imply that the probabilities are independent of the total intensity of light. This is

because the numerator term f; varies with the illumination conditions due to the changes in

reflectivity.

2.4.2. Statistical communication theory model of image formation
With the probabilistic interpretation of images given by (2.21), R. Frieden extends

Jayne's model for images and calls the model a statistical communication theory model of
iniage formation [11]. When an object is subdivided into J equal-sized, elemental cells,
each of area AA, it means that JAA =n. In this context, AA is the 'spatial resolution’ limit.

Along the same line of reasoning, the intensity values can be expressed using a limit £Af,
which R. Frieden calls the 'uncertainty' limit. Perhaps both Frieden's as well as Jayne's
models are better explained using a simple term 'quantization', In Frieden's approach, the
spatial as well as the intensity values are quantized with levels AA and Af. Using this

model, true images are represented by
fi = NjAfforj = 1,..n, (2.22)
where N i is a dimensionless number with Af containing the unit of radiance. We say there

are N jAf 'object units' in the pixel j. The total number of object units consituting a given

image are
n
Y £ = NAf (2.23)
j=1

The probability that any one object unit being located in cell j is p; and is given by (2.21).
Let us assume that the occurrence of one object unit in a cell j does not affect the possible
location of any other object unit. That is the object units are statistically independent within

each cell (uniform prior) and also from cell to cell. The number of ways W(f) that an
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object can occur is the same as Jayne's model given by (2.7) but with W(f) replaced by
W(f). Thus we see that, the missing element in Jaynes luminance model is the unit of
radiance, which comes as a result of quantizing the true image distribution in Frieden's
approach. Taking logarithm and applying Stirling's approximation for (2.7), Frieden writes

the final expression as

n
NS (f) =- -ALZ flog f, (2.29)
j=1

He calls the resulting flogf form of entropy as the spatial entropy of the true image. On
mathematical grounds, it is however not clear how Frieden arrives at the form (2.24).

Taking the logarithm and applying Stirling's approximation to (2.7) using Frieden's model

we get
log W (f)=NS (f) (2.25)
where S(f) is given by
n ¢ . '
S(f) =-), ilog(-fl—) (2.25.)
j=1 Af
Substituting for Af from (2.23)
n ¢ .
S =NY nfl log uf’ (2.25.9
HY¥e |2k
k=1 k=1

Unlike Jayne's model, N is a fixed constant in Frieden's approach. The difference between
(2.25.2) and (2.7.2) is the model, which allows S to be written in terms of probabilities
rather than frequencies. All the results explained under Bayes' theorem approach are

therefore applicable with the frequencies replaced by pixel intensities.

2.4.3. Spectrum estimation basis for image reconstruction

Wernecke and Addario in their radio astronomical image 'reconstruction’ (does not
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refer to restoration) application observes a different situation [ 12], [50]. In their
application, an incoherent radio source gives rise to a random electric field, whose spatial
autocorrelation function is sampled by radio interferometers. The unknown radio
brightness distribution and the available interferometer measurements are related to each
other by Fourier transformation. The objective is to reconstruct the brighiness distribution
from incomplete auto correlation measurements. They consider the problem as the power
spectral analysis of the electric field. Their arguments are not based on any physical model,
but their application is based on the fact that entropy rate S(f) of a stationary, band-limited

random process is related to its power spectrum through the relation

S(A = f loga{f)df . (2.26)

s
where f; is the cut-off frequency. Thus they introduce the logf form of entropy for image
reconstruction. According to them, the use of the plogp probability form in (2.25.2) is not
suitable for radio astronomical images since the measurements do not have an optical basis
of random emission of photons. They also raise an objection to the spatial entropy of
images introduced by Frieden because maximizing the flogf form is not equivalent to
maximizing the plogp form unless the total intensity is assumed exactly known, which is
unrealistic. Irrespective of these differences, their work introduced a new concept in the
ME literature. The concept suggests that the choice of entropy form for a particular
application depends upon the physics of the measurement process. The concept also
implies that the information theoretic plogp form is not justified adequately for all types of

applications.

2.4.4. The logp Vs plogp forms of entropy
In an attempt to clarify the confusion, the logp and plogp forms were analysed in

the context of ‘image restoration' by Kikuchi and Soffer [43]. Their terminology of
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‘restoration’ includes reconstruction problems as well, but their analysis is based on the

photon emission model of image formation. Also, they refer to the logp and plogp forms as

logB and -BlogB forms because, with the photon emission model, p; is considered as the

normalized brightness (intensity) B. They discuss the conditions under which the two
forms should be used. Their analysis starts with the physical interpretation of an image as a.
2-D spatial power pattern of an object formed by photon sources in the farfield. The
emitted or the reflected photons from the object are received by the true image image plane f
in an observation time frame of t. The fundamental question is the same: where (which
position i of the object) does the photon come from?. The answer is not straightforward
because, ‘the time as well as the spatial sequence of photon positions during the time t in
forming the true image f is unknown. They find an answer by investigating the underlying
physical causes of uncertainties for the photon cell positions. They find that the causes are
mainly the exposure time t, the temporal coherence time T = 1/Av for the radiation of

bandwidth Av, the area A of each detector aperture in the image plane and the coherence

area ¢ subtended by the resolution cell at the image plane. These physical factors influence
the process of image formation by altering the states of photons in each cell. Considering
the degrees of freedom z (number of possible states) as the parameter for characterizing the
image formation process, they derive z in terms of the various influencing factors

mentioned above. They derive it to be

z2=2.2 = ({-I%). (2.27)

The subscripts z, and z, stand for temporal and spatial degrees of freedom respectively. The

number of photons n; of cell j are distributed over the z degrees of freedom within the

bandwidth Av with the condition that more than one photon can occupy in any one degree
of freedom. To find the number of possible photon arrangements, they make use of the

Bose-Einstein expression and write the number as
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i) = _nJ +2-1 5

Un =L (2.28)
Each of these arrangements (macroscopically indistinguishable) is assumed to occur with

the same a priori probabilities P{g;} :j=1.....n. They also bring out the physical significance
of the prior probability assumption. They say that it is the 'equal-weight' postulate that

allows the interpretation of q; as the degeneracy for cell intensity j. Based on the uniform
priors, g; is considered proportional to the probability that n; photons are distributed over z
degrees of freedom. Assuming cell independencies, (i.e., the number of ways n; photons
coming from jth cell are not influenced by the number of ways n; (i # j) photons that come

fromi th cell), the total number of ways of forming the entire object is:

W(nl, n2....n”) = ﬁ q‘nj). (2.29)
j=1

They write the probability of the object pattern as p; = ny/n, where n = ?nj Applying
Stirling's approximation to (2.28) and (2.29), they analyse the choice of different entropy
forms based on the ratio n/z. Their conclusion is as follows: Bright radio objects with n/z
>>1, such as radio and X-ray astronomical objects should be processed with logp form of
entropy. Less-bright objects with n/z<< 1 such as optical radioastronomical image
restoration should be processed with the plogp form of entropy. Although their
conclusions are considered significant, their analysis approach is specific in the context of
image restoration, photon distributions and 'equal weight' prior probabilities. Cambridge
ME researchers observe that by using the duration of observation, they convert the
unquantized spatial power pattern into a quantized photon pattern and fail to provide full
objectivity [51], [52]. Following the results of Kikuchi and Soffer, Frieden attempts to

provide a more general basis for various forms of entropy.
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2.5. FRIEDEN'S STATISTICAL APPROACH

R. Frieden, in another work, shows that the entropy based methods in general can

be derived in a straightforward statistical approach [53], [54]. He sets out with the general

definition of the probability of an event as m;/n, the ratio of the relative occurrences of the
event to the total number of possible events, with the latter approaching infinity. In the
present context, it is p;(= p(x;)) for the position of a photon and is given by (2.21). The

objective of restoration is to find their values as applied to the data d in (2.2). The

information about {p;} comes from two factors: First, ¥p;j = 1, and secondly, the prior
1

knowledge about {p;j}, i.e., each event i has a probability q; prior to knowing the data d.

Let the prior probabilities for the events under consideration be {q;} with 2q; = 1.
1

Frieden's approach is largely based on defining the prior knowledge using the ‘multinomial

probability law'. He establishes a general basis as follows: The photon emission process is
an experiment repeated N times (N trials) with 1 possible outcomes. The quantity p;
stands for theprobability event of photon position for ith pixel and is one of the 1t distinct
events. The outcomes are assumed independent from trial to trial and from event to event.
The probability of occurrence of any one of the N trials becomes q;m1q;m2...q,,™". The
number of ways the events can occur can be calculated using N and is given by

Wnm1, ooy Ty ) = ———— (2.30)

Equation (2.30) may be compared with (2.7) to get a clear picture of Jayne's luminance
model. Instead of taking the logarithm of (2.30) and immediately using Stirling's

approximation as Jaynes did, Frieden makes use of (2.30) to define a joint probability

distribution. As a result of prior probabilities {g;}, the probability of any one set of

ocurrences {m;} changes to
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pN(my,......,Mu! Q1yenenesQy) = n! = Qiny...... gy, (2.31)
The product form of g;'s in (2.31) is the result of independence from trial to trial, and
independence among the events. Let us assume that the prior probabilities follow a
‘Probability law' p(q;.......,qy). Also, assuming that {q;} are all present, (2.31) can be

written using the partition law [(p(x) = | p(xly)p(y)dy] as

Maximizing (2.32) gives rise to the 'most likely' set of {p;} and Frieden calls (2.32) a
'general estimation principle'. Frieden also discusses in detail his viewpoint of prior
knowledge. True prior knowledge according to Frieden is that which biases the estimate

towards the true values (p;}, and depends on the particular problem being solved. Since

{pi} are the unknowns, it is difficult to assess the true {q;). However, the choice is
expected atleast not to bias the estimate towards incorrect values. With this understanding

he introduces a general form of prior probability law as

PQ1-..-Gn) = q1 - p1)....qn - Pu) (2.33)

and analyses the degree of 'maximum prior ignorance' in different entropy forms. For the

uniform priors, q; = I/ fori=1,......n, the general estimation principle (2.32) becomes

—N (L PRt et maximum, (2.34)

_—IE = maximum. (2.35)

Now taking the logarithm of both sides and using Stirling's approximation, the principle
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becomes

n
. 2 m;logm; = maximum. (2.36)

i=1

Substitiuting for m; = Np; (2.36) becomes

n
-y, pilogp; = maximum (2.36.))
i=1

which is Jayne's maximum entropy principle. Frieden's arguments follow the viewpoint
that the form of entropy depends upon the prior knowledge conditions, which in turn
depend upon the problem being solved. For photon occurrences from resolution cells, the
degeneracy factors obey the Bose-Einstein statistics and the estimation principle is derived

using (2.32) as

” n
-Z m;logm; +Z (m;+z-1)In(my+2z-1) = maximum (2.37)
i=1

i=1

where z is the number of yuantum degrees of freedom for a photon in a cell given by (2.27)
and m; = Np;. The principle (2.36.1) is well accepted on the grounds that the most of the

physical phenomena obey the ‘equal weights' postulate. With respect to the use of the form
plogp, Frieden's analysis based on the prior knowledge estimation principles led to the
same conclusion as that of Kikuchi and Soffer: when the object is of low intensity obeying
m; << z, the uniform prior probability principle applies. Using (2.32), he also provides a
detailed discussion in [54] of the different entropy forms and the associated prior

knowledge.

2.6. THE ME AS A CONSISTENT VARIATIONAL PRINCIPLE

Besides the arguments of choosing the appropriate form of entropy for image

reconstruction, Kikuchi and Soffer assert that the form logp should be called entropy and
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the other forms including Shannon's measure are only special cases of the logp form.
Their ideas have raised objections in the literature, particularly in the context of finding f
from (2.2). As a solution to this confusion, Shore and Johnson take a different
information theoretic approach without invoking the concepts of Shannon's information

measure [55], [56]. They start with the problem of inverting an equation
f s{xpp*(x)dx =5, (2.38)

for known s(x) and s, r = 1,.....,m. The problem is similar to (2.5), but stated as a

continuous case. From specific information about p*(x), the problem is to infer the

function p*(x) itself. Their approach is briefly outlined below following their own

notations with minor modifications: Consider 5 system in a vector state x e D (D is a set of
possible states). Let us suppose that x follows a probability density function p(x). Let D

(the font change may be noted) be the 'set’ of all probability densities p on D such that

p(x) 20 forx eD and

f p(x)dx = 1. (2.39)
D
The objective of inversion of (2.38) is to find a true, unknown state probability density

p*eD. Let the information on p* be in the form of linear equality constraints:
f Pxjarx)dx =a. (2.40)
D

The constraint is an information denoted as I = (p*e ), where 1 is a constraint 'set', and

1=D, which means that p* is a member of the closed convex set 1CD. Let qe D be

some prior density that is an estimate of p*, prior to obtaining I such that q(x € D) > 0.

Given the prior q and the information I, the aim is to obtain a posterior density p by
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minimizing a suitable functional H(p,q) over the constraint set 1. That is

H(p.q) = min H(p',q)
pel
The question is: What should be H?. To make the discussions clear, they introduce a
convenient notation p = q o I, meaning that the operator o takes a prior and new
information to yield a posterior. To find the functional H, they introduce a set of
consistency axioms for the operator o. The axioms are:

Uniguenéss; The posterior p is unique for any prior q € D and any new information

I = (p*e1). The axiom implies that whatever may be the constraint and prior information
the given testable information should remain the same.

Invariance: If S is a coordinate transformation operator that changes xeD toy € D', then

for any prior q € D and new information I = (p*e 1), (3 p) 0 (S ) =S(p o) holds true.
It means that when the problem is solved in two different coordinate systems, the
posteriors should be related by the coordinate transformation.

System independence; Suppose there are two systems D1, D2 with probability densities

pl* e 11 and p2* € ‘12 and the prior probability densities q1 € D1 and q2 € D2 . The
respective information for the systems are: I1 = (p1* € 1) and 12 = (p2* € 12) where
11SD1 and 12ED2. Then

(q1q2) o (11A12) =(ql 011){q2 0 I2). (2.42)
Subset independence: Suppose the states D decompose naturally into disjoint subsets Sj,

i=1,......n and new information is obtained about the conditional probability densities

I;=(p*!S; € I;) in each subset. Then
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(qol)i§; = (qI8;)ol; (2.43)

The justifications for the axioms and mathematical proof for finding a suitable H can be

found in [55]. The functional satisfying the axioms is found to be

Hlp,q) = f p(x) log(%((% (2.44)

which is called cross-entropy. They point out that the form (2.44) is due to Kullback and
has many different names such as discrimination information, directed divergence and

expected weight of evidence. The discrete equivalent of (2.44) is given by

7
5.9 = X pilogf2l) (2.44.1)
i=1 '

When q is a uniform distribution on a finite state space, minimizing the cross-entropy
(2.44) is equivalent to the maximization of entropy (2.3). Their proofs also show that
minimizing any function but entropy (refers to entropy as well as cross-entropy) will lead
to inconsistency unless that function and entropy have identical maxima. The properties of
(2.44) are reported in [56). Thus Shore and Johnson have answered the question: Under

what circumstances can a method of inference based on a variational principle be

self-consistent? The resulting posterior has the form

px) = qx)expl-p- 3 »s,(x)}. (2.43)
r=0

A, and p are the Lagrange multipliers determined by (2.40) and (2.39) respectively. Their
approach for the determination of prior probability distribution q(x) can be found in [57].
Given the prior estimates q; for the number of photons originating from the object point j,

the prior distribution q(x) must satisfy

qj= 2 np(x) (2.46)

where n; are the number of photons originating from point j- For example, q could be a
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multivariate poisson distribution given by

q(x) = ﬁ exp(qj)(&n;,E (2.47)
j=1 '

Using (2.47) in (2.45) they derive the posterior object intensity as

f =Y npx) =qjexp{- Y sy (2.48)
n r=0

The Cambridge group researchers follow the view point of the ME method as a
consistent variational technique along Shore and Jofmson's line of approach [58], [52}],
[51], [23]. Their reasoning and interpretation however differ significantly. According to
them, the ME method consists of choosing a single feasible image which has the greatest

entropy given by (2.44), written as

n
S=-Y pilog %‘i. (2.49)
i=1

Unlike Shore and Johnson, who attribute the form to Kullback, the Cambridge group
refers to the form as Shannon/Jaynes entropy. Also, they interpret p; as the probability
corresponding to an appropriate quality of an image, and my as the corresponding initial
measure. They understand the objective of finding f as the problem of restoring or
reconstructing the ‘shape’ or the 'configurational structure' of an image. The objective is
the same, whether the type of image is due to a 2-D light distribution, or 3 - D electrons in
free space, or 1-D sequence of numbers such as absorptivity. An image is the intensity
distribution {fy,......f,;} of a physical object resulting from a statistical process. The
intensity distribution represents the shape of an image. By removing its dimensionality by
normalization, the intensity distribution becomes 'intensity proportions’ {py,.....-:Pn},

which by themselves obey Kolmogorov's axioms of probability and hence can be

considered as probability distributions. According to them, the question of ‘where would
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the next photon come from?' is a precise formal intepretation to identify the p;s as

probabilistic quantities [58]. Stated simply, their arguments suggest that the physics of
image generation is included in the intensity proportions and their entropy given by (2.49).
They have also formulated the general consistency axioms of Shore and Johnson in terms
of intensity proportions of an image without invoking the probabilistic arguments [22],
[23].

As far as the image reconstruction problem is concerned, they say it does not matter
whether the particles are photons or nuclei or quasars and also whether or not they obey
classical or quantum statistics. They specifically object to the logf form of entropy for
image reconstruction. As a justification, they derive the results of Burg, Kikuchi and Soffer
diréctly by maximizing the Shannon/Jayne's entropy form using appropriate constraints
and m; [51], [52]. They also provide an analysis of their results in terms of classical and
continuous objects, photons and electrons. Their experimental results bring out the
consequences of using logp form of entropy for reconstruction with 1-D, 2-D and 3-D
data. Their conclusions can be summarised as follows: Entropy does not measure the
properties of a physical distribution but parametrises one's state of knowledge about a
physical distribution. The: choice of an entropy form for a particular application depends
upon the 'question being asked'. For example, in time series analysis, it is the question of
predicting an individual time sample or a spectral component. Burg's form, they say is
appropriate for this purpose. On the other hand, if the problem is to reconstruct, that is to
find the configurational information or the number of spectral lines, Shannon/Jayne's plogp
entropy form is the appropriate one. In other words, Shannon/Jayne's solution is
non-committal about the position of t from the distribution f(t). The Burg solution on the
other hand, is non-committal about the time samples f(t) from an ensemble-average
constrained distribution. '

There exists still another viewpoint in the literature. It is argued that the ME method

just fits the data with a non-linear transform of a band-limited function [59]. The functions
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F(B) = InB or -BiInB are just two members of a family of continuous entropy functions
having the key properties 92F/0B2 < 0 and 0°F/@B3 > 0. The best choice of F in a particular
application, according :- *his view point depends on the user's requirements and not on
fundamental issues. In another work, the ME method is interpreted as a regularizing
functional for inverse problems [60], [20]. With the growing number of theoretical view
points, interpretations and criticisms, the practical progress of the method becomes
important to explore its prospects. Unfortunately, for images, the practical progress of the
method, as we will see shortly is severely hampered by a more fundamental difficulty of
obtaining a solution at ail. In what follows the status of the method is summarised in the

light of above discussions.

2.7. INVESTIGATION SUMMARY - I

Following the information theoretic approach explained under section 2.1 and 2.5,
the ME method has a more general basis for inferential applications. On the basis of an
inference view point, as Jaynes suggested, the consistency arguments alone are sufficient
to determine the entropy formula given by (2.3) or (2.4). The point is further strengthened
by Shore and Johnson in their axiomatic derivation of principles of entropy. Under the
inference structure, the principle of entropy is simply the maximization or the minimization
of the functionals, either (2.3) or (2.44.1) with the input information as constraints. The
criterion for the choice of the functional depends upon the availability of a suitable prior
probability distribution as applied to the problem being solved. The issue will be discussed
further below. The extension of the inference principles to practical applications has been
established by the Cambridge group researchers. They have applied the principles to a wide
variety of application data, with promising results. They find all the results, analytical as
well as experimental, irrespective of the type of application, including radio astronomical
images center around the maximization of the functionals (2.44.1). Hence they introduce

the term 'the consistent variational principle' for the applications based on the ME
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principles.

The: second school of thought opposes the general basis on the grounds of the
physical arguments following the application of the entropy method to the radio
astronomical image reconstruction by Wernecke and Addario. Observing the spectrum
estimation basis for the reconstruction problem, they claim the use of logf form of entropy
for images. Their work was followed by Kikuchi and Soffer to establish the physical basis
and the general basis of the logf form for the entropy methods. Their arguments are
defended by tite information theorists on the grounds of the lack of an objective approach to
support the general claims. R. Frieden follows a more general approach based on statistical
principleé to emphasize the importance of the form (2.44.1) and the role of the physical
principles in determining the prior knowledge. In its present status, the functional form
(2.44.1) is widely followed for images with uniform prior probabilities, since it has a well
established basis for physical quantities [43], [45], [53], [61]. With uniform priors the
functional form (2.44.1) reduces to (2.3).

While use of the form (2.3) continues in practice, research efforts are in progress to
eliminate the arbitrariness in the usage of the prior probabilities q;. At present, there is no
well established way of assigning the probabilities to q, in relation with the quality or
closeness of the final estimate to the true image. However, it is to the advantage of the
method that its consistency basis allows this arbitrariness of prior knowledge to explore the
various possibilities. Different possible forms of q and their meaning are discussed
extensively by R. Frieden [54]. A recent survey shows a set of axiems proposed to
generate q [22]. The connections of the ME method with the Bayesian approach also
throws some light in this direction. Techniques for the formalization of relevant prior
information (in the present context q) are being reported in many current applications that
involve Bayesian problem formulation [27). Following these advancements, the connection
of the ME method with the Bayesian approach is receiving much attention in the current

literature [62], [63]. The prior knowledge issue which is considered as a research issue in



33
the ME literature, is also subject to criticisms and confusions. This is partly because q is
addressed by many different names depending on the context in which it appears. It
includes terms such as initial model, prior probability distribution, prior information,
hypothesis space and invariant measure space and so on. It appears that the form (2.3) with
a uniform q is relatively free from these confusions for images.

This thesis adopts the view point that like the regularization theory for inverse
problems, the ME theory in its present status requires progress in practical application
areas. Within the framework of the mathematical properties of solutions to ill-posed and
ill-conditioned problems, the progress of the regularization theory depends upon the
information gained from the application studies as well [33]. Along the same line of
reasoning, the physical and the statistical basis of the ME method need investigations in the
light of applications. To be able to successfully use the method in applications,
computational procedures and algorithms are necessary, an area which is not well
established for the ME method in image processing. The computational status of the ME
method is explored in the following.

2.8, COMPUTATIONAL SCHEMES

The computational phase of the ME method has a unique advantage: Irrespective of
the varying conceptual basis, the method of finding the estimate of f remains the same.
The method involves maximizing the entropy subject to the input constraints, which is a
non-linear constrained optimization problem. A solution (ME estimate) is obtained using
numerical procedures. O:ly very few procedures have been reported so far in the context of
specific image processing applications. These known procedures are discussed in this

section to explore the various computational difficulties.
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2.8.1. Newton-Raphson technique
This is the earliest approach followed by Frieden to obtain the ME solution for

image restoration. The technique involves solving a set of m+1 non-linear equations {11]
using the Newton-Raphson procedure. He formulates the problem by making use of the

weighted sum entropy (flogf form) written as

n ”n
- filogh-p Y e;loge; (2.50)

i=1 i=1
where ¢; =¢; + B (B is a constant employed to force the condition e; >0). Maximization is

carried out subject to the equalities

n
4=y Axfi+e;-B  j=l;.omm<n (2.50.1)
k=1 :
and
n
Z £=T. (2.50.2

T is the constant total intensity of the true image. The resulting solution is reported to be

m
f =exp (-1 TR+ k,-A,-k) (2.51)
1
and
ej=exp (-1 +u+2';i) (2.51.1)

(2.51) and (2.51.1) are expected to satisfy the constraints (2.50.1) and (2.50.2) with fJ

replaced by ?J The m+1 non-linear equations are solved for the unknowns Aj, =1,m

and W using the Newton-Raphson procedure. Frieden reports a satisfactory performance of
the procedure, provided the values of B are large. His results showed significantly

improved results in the restoration of a galactic image blurred by atmospheric turbulence

[19]. The computational complexity of solving m+1 non-linear equations and the use of
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special requirements for noise elimination make Frieden's approach less attractive.

2.8.2. Single constraint ME method

All the subsequent efforts for computational developments were based on the
Bayesian approach explained under section 2.3. In obtaining the a posteriori distribution,
the luminance frequency model is replaced by Frieden's statistical communication theory
model of image formation. Using this model, the objective function J resulting from this

model is the same as (2.16) but the frequencies are replaced by the pixel intensities. J is

written as
Xf) = S(f)-ArQ(dn (2.52)
where
N 2
m |dj - 2 A
Qan= 1Y —==t (2.52.1)
24 Gj

S(f) is given by (2.25.2). It may also be noted that unlike (2.16), the problem is stated
using a Lagrange multiplier, which necessitates a constraint be introduced on the function Q
to indicate the consistency of the ME estimate with the measured data. The most commonly

used constraint is:
Q(d, f)sgl. (2.52.2

The constraint is based on the central limit theorem [64], [65] stated as
. m .
im 3 Y & oo, (2.52.2.)

The ME method under the Bayesian approach has certain unique advantages on practical
grounds. First, as already noted, the method is complemented with the noise reduction

capabilities. Second, the use of a single Lagrange multiplier and the single constraint has

the significant computational advantage of overcoming the complexity of finding m+1
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Lagrange mutipliers. Maximizing the entropy subject to the Q-constraint in (2.52.2) is

referred to as the single constraint ME method in this work.

2.8.3. Optimization techniques

This single constraint ME method is used by Wernecke and Addario for Fourier
inversion in an image reconstruction application in radio astronomy [12]. Here, the

problem is stated as an unconstrained maximization of

A m -y
J Jiogtxyyinay - 2. 3 '—D‘%’"—F .53
k=1 k

where Dy are the observed noisy samples of a two-dimensional transform of an unknown

A
function f(x,y). Dy are the Fourier transforms of the estimate obtained using the relation

Dy = I I f(x, Jexp {-§2n{ugx + viy))dxdy. (2.53.1)

The Lagrange multiplier A is chosen to satisfy the constraint

i Ipe-Bif =m. (2.53.9
k=1 Ol

Their paper besides introducing the logf form for the ME method for reconstruction
applications, gives an account of the underlying computational difficulties in using

optimization techniques. In their solution approach, the task involves one-dimensional

search in an n-dimensional space. The simplest techniques are the steepest ascent and the
conjugate gradient techniques by suitably defining the search directions in an iterative
manner [66]. On one hand, the search is expensive, since a greater number of function and
gradient evaluations is required for a more accurate answer. Reducing the number of
searches may bring down the cost but may require more iterations for convergence. A
major practical problem is the situation when i)Q/E)fJ becomes negative. The resulting pixel

value may become unrealistic by taking negative values. Several refinements have been
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considered in their work to overcome the various practical problems. The difficulties of
using optimization techniques have also been reported by many other researchers under

different application contexts and a summarised account can be found in [21].

2.8.4. " Integral equation " approach
This approach was proposed by Gull and Daniell [13]}, [17], in image enhancement
and image reconstruction from incomplete and noisy Fourier transform samples in radio

and x-ray astronomy and enhancement. The problem involves maximizing the function

n < |Fgx-D
-3 fjlogfj-l-z-z J-‘iz—“'z (2.54)
i=1 keA Ok

where D, and F; are the Fourier transforms of the estimate and the observed data.

respectively. (2.54) is similar to (2.53.1) except for the flogf form of entropy. Also they

define the constraint in terms of %2 statistic . Instead of using optimization techniques to

find the ME estimate, they use an equation approach. They determine the equation as

‘fj = exp‘-l +2 ), Dy - Fy exp{z—milf-} . (2.54.1)
e O N

The solution is obtained using a general iterative approach. This approach is very simple
and straightforward to obtain the ME solution but has been reported to be impractical for
implementation on the grounds of numerical instabilities and poor convergence due to the
exponential operator [16], [21]. Because of the simplicity of the approach, many attempts
were made [14], [15], [67], [68], [69] to overcome the difficulties, but a satisfactory

solution could not be found.

2.8.5. Entropy metric technique
The difficulty of obtaining solutions with the straightforward approach introduced

algorithms with special control techniques [18]. Instead of searching along one direction at
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a time, the search procedure is carried out in a subspace of three directions. The first
direction vector maximises the entropy, while the second direction aims at reaching the
desired value of Q. A control element is introduced through a metric tensor defining the
lengths and angles in f space. The third vector is used as a correction vector. Based on
these three direction vectors el, 2 and e3, the iterative changes are made according to the
relation

df =x1e1+x2e2+x3€3. (2.55)

The coefficients x;, x; and x are determined using quadratic models for S and Q, based

on the local gradients and curvatures. The technique has been reported to be successful and

promising results have been reported in many restoration and reconstruction applications in

crystallography.

2.8.6. Differential equation approach

In the differential equation approach, the solution is obtained by a 1-D search [70],
[71]. The technique involves solving a set of differential equations using appropriate initial
conditions, determined by the required constraints. Promising results have been obtained
but no assessements have been made on the algorithm on the grounds of more work

needed to optimize the search, time savings and improved termination criterion.

2.9. INVESTIGATION SUMMARY - I

The computational development of the ME method appears to be more severe than
the fundamental progress of the method. The inference directly follows from the limited
span of the computational techniques and the inverse problem applications, particularly
machine vision applications. Even in its direct application area of image restoration and
reconstruction, a simple and convincing approach has not yet evolved to support the

usefulness of the method. The integral equation approach, the simplest technique of all, is
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found unsuitable on the grounds of numerical instabilities and convergence problems. The
coniputational status of the method for images therefore implies a more fundamental
problem of obtaining a solution at all. Solution techniques with sophisticated control
procedures are the only means at present to obtain ME solutions. The implementation
details, the possible computational efficiency, the difficulties underlying these complex
techniques are not known in clear terms on one hand, and on the other hand, their
implications are too difficult to comprehend. Although superiority of the results is
important, the computational aspects are more critical to the progress and acceptance of the
method. Besides, the high dimensionality of images has a significant bearing on the
computational efficiency of the ME algorithms in general. It is not uncommon at all to find
the reported cpu time figures of the order of several minutes to hours for a ME algorithm.

There is a valid reason to account for the computational underdevelopment of the
method. In general, non-linear techniques are theoretically well-praised for their merits,
but are not put to use on the grounds of practical problems of computation. The ME
method is not an exception to this shortcoming. Confronting this reality is important
because, unlike many other methods, the ME method has no linear counterpart. Besides, in
the computational areas, a non-linear constrained optimization problem in general has no
general basis to overcome the associated optimality problems. Very recently simulated
annealing techniques based on energy distribution concepts have been reported to be a
satisfactory solution approach for complex optimization problems {72}, [73]. In this sense,
new solution techniques developed for the method in any of its application areas contribute
to the increased understanding of non-linear solution methodologies in general. Also, the
method being the same for all application areas, a solution approach developed for 2
particular area of application may be useful for other applications as well. Based on these
arguments, it can be concluded that developing simple, economical and efficient working
algorithms for the ME method in image processing are important for its progress.

The computational proccdﬁres appear to follow the standard formulations and well
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established procedures in their applications. Experience however shows that the techniques
do not always result in a stable and convergent solution. Investigations in general show
two major pitfalls: lack of an analytical approach and the use of unjustified assumptions.

The development of the solution procedures is not based on the understanding of why the

convergence is poor or why the instability prokic -+ - - Asa consequence, the
mechanism of a given procedure in obtaining th~ . ‘s remains unknown. The
understanding of a computational procedure in t5:: ¢ . . :andamental not only out of

a practical necessity but also to effectively exten¢ the piccedure to diffent applications.
The overlcoked aspect is that the general computational procedures, in their extension to
complex problems such as the constrained optimization problems need careful
investigation, particularly with respect to their convergence aspects. Another overlooked
aspect is the influence of assumptions used for computational convenience on the final
solution. A typical example is the use of total constant intensity assumption without any
accompanying justifications on its influence on the final solution. Indeed, none of the
practical techniques explained above apply directly to the plogp form of the entropy. They
are all based on the flogf form with the assumption of a known total constant intensity of
the true signal, which is unknow in the problem. Also in using iterative procedures, the
solution approach starts with an initial approximation and refined in successive steps
towards a final solution. The error conditions of the procedure play an important role in
determining the closeness of the successive estimates to the solution estimate. It is therefore
important to analyse the given problem conditions and the applicability of control
procedures with respect to the error conditions of the procedure. The problem of reducing
the cpu execution time for the algorithm resides in parallellizing the algorithm suitable to a
given parallel implementation scheme. Attempts have not been made in this direction for
the ME algorithm so far. However, in a closely related approach based on Bayesian image
models, parallel concepts are becoming increasingly popular using simulated annealing

algorithms [25]. Following these observations, an attempt is made in the next chapter to
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develop a general procedure starting from first principles, eliminating the assumptions

wherever possible.
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CHAPTER 3

DEVELOPMENT OF A PARAMETER CONTROLLED
RELAXATION SCHEME

Preliminary studies of the computational procedures for the ME method have
shown three major shortcomings to consider the development of a general procedure from
first principles in this chapter. First, there are no established general schemes to obtain a
ME solution. Even for specific applications related to data of type (2.2), experience has
shown the computational procedures being either too complex to implement, or not feasible
atall. Secondly, the procedures, for no clear reasons continue to make use of flogf form of
entropy, when its usage, as discussed in chapter 2, is questionable on practical as well as
fundamental grounds [12]. On practical grounds, the problem of maximizing the plogp
form of entropy is not equivalent to the problem of maximizing the flogf form of entropy
unless the total intensity of the true signal is known exactly, which is in fact an unknown in
the problem. Thirdly, the constrained maximization problem of the ME method is often
formulated as an unconstrained maximization problem with Lagrange multipliers in order to
make use of general numerical solution procedures to obtain a ME solution. These schemes
lack justifications or evidences of the feasibility to obtain a final solution and, more
importantly, of the closeness of the final solution to the true ME solution.

This chapter proceeds with the derivation of a solution procedure starting from a
constrained maximization formulation of the problem with plogp form of entropy without

any assumptions on the total constant intensity. The choice of the ME method (single

constraint or m - constraints), an application problem and the numerical procedure is not
considered a major issue because of the following intuitive anticipations: Irrespective of the

type of the ME method, the application and the numerical approach, the computatioral
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problem of obtaining a ME solution remains the same as that of a non-linear constrained
optimization problem. Therefore, the derivation of a solution procedure is bound to show
up optimality problems for solution convergence in some form. The form and the
techniques to be proposed to overcome the optimality problems will depend on the
numerical procedure chosen for the study. The numerical procedure may also influence the
functional aspects of the application class chosen. Based on the form and the techniques
used, it should be possible to understand the general mechanism of convergence underlying
the solution scheme. Infact all these issues will be encountered in the process of deriving a

solution procedure for the ME method in the sections that follow.
3.1. PHASE - I: CONSTRAINED ITERATIVE PROCEDURE

In what follows, the single constraint ME method explained under section 2. 8.2 is
stated as a constrained maximization problem and a solution is obtained in an equation
form. The equation is also shewn tc e lerivable using the Bayes' theorem explained under
section 2.3.1. The equation is interpreted as a constrained iterative procedure in terms of
initial, intermediate and termination conditions. With a suitable formulation of these

conditions, the procedure is analysed for its influence on the application class.

3.1.1. Specificaticiis for computations
For the computational problem under consideration, the input data are from an

application class defined by (2.7.), with the noise terms assumed to for-1 a Gaussian

distribution N(0,5). For reasons which will be covered in subsequent sections, it is not
necessary o know the standard deviation parameter © of the noise distribution. Rewriting

(2.2) we obiain
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d; =Z Ajkﬁ( +e& j=lieen mmsn, (3.1)
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Following the discussions in chapter 2, the true image vector f are associated with the

shape distributions given by (2.21). The entropy of this distribution is written as

n

sM=-3 —fijog_ti (3.2)

bt 1 no
.=1ka sz
k=1 k=1

In writing (3.2), it is not assumed that 3f, is a known constant. Alternative expression for

(3.2) would be

n n
sh=-[3 ~fi-log |+log Y . (3.2.1
i=1 }5 ﬁ k=1
k=1 ‘

More concisely (3.2.1) can be expressed as

24l
S(f) = log = / (3.2.2
where
dN=exp(3 b 1og, \ (3.2.3

i=l£§; fi }

The function Q(d,f) is defined as

n 2
(dj- Z Ajkﬁ‘) . (3.3)

k=1

Qdf) = Ej;i“,

Fi

Using (3.1), Q{d.f) can aisc be written as

Qaf = 51":'2": 2= (3.3.)
=1
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The computational problem as applied to (3.1) is now stated as follows: Givend and A,
find the ME estimate of T'by maximizing the function

3£ A0 2) =S (D) - lx(ng'f)_ 1} (3.4)

Ox
The subscript x denotes an unknown quantity. Since the solution for (3.4) invariably
involves iterations, sk noise variance 62 may not be present in its true form. Hence, 62
has bees: ceplacet by an unknown 6,2 in writing (3.4). L is however assumed that ,2
also reswits from a Gaussian distribution. The sectio’: 3.1.6 on the error analysis indeed
justifies the Gaussian assumption. A, is the Lagrange multipiier introduced to satisfy the
constraint
Q. f) (3.4.1)
c}

The conditions for a single, unique and finite maximum of J in (3.4) are the same as those
reported for f in (52) and (54) [69], [46] and are stated in Appendix-C. The removal of the

~tal intensity assumption in the present approach introduces an additional condition log

q(f) < 1/2, apart from the standard A, > 0 condition.

3.1.2. Solution equation
The maximum point of J(f) obeys the stationary point equation @ J(f) /of = 0 for

the given solution conditions. From (3.4), the equation can be written as

3I(f Apoy?) 2SI 22,9Q(d 0 _
of; af ol 9f

0. (3.5)

Working out the derivatives (without assuming that t*= total intensity is a constant), it can

be shown that
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"
2.2 &
L =1 0Q(d,f)
-log £+ p;logf, - — k=1 =0. (3.6)
gf =Zl pilog - —23 o

Rearranging the terms yields

f 2).,5: i i

} } k=1 9Q(d, N,
f = i log f; - . (3.7)
i = exp ‘l:zl pi log exp' o Y ’
Using (3.2.3), (3.7) is expressed as
’ 27 i &) ‘
=1 /0Qldf
f =qlf) exp' - ;,% . Y ’ = q{f)f; (3.8)
where ’ l
(34
= 9Q(d,f)
f1 = -— k=1 . 8.
1 cxpl & Y ’ (3.8.3)

Appendix-£) shows how (3.8) can be derived using the Bayes' theorem. The pixel values
of the solution estimate in (3.8) are all invariably positive due to the exponential operator,

which is an important criterion for a true image estimate. In the discussions that folloys,

(3.8) is referred to as the solution equation and fjl as the kernel term.

3.1.3. Interpretation

The solution equation is non-linear of form x=g(x) where g(x) = exp(r(x)) with
x = . The standard procedure involves starting from an initial estimate x(9), at any iteration
n, g(x) is evaluated using the previous estimate x(n-1), If g(x) exists, it becomes an
estimate for the iteration (n+1). Upon repeating the steps, the solution is reached at some

iteration, say s, provided the iterations converge. This basic procedure evolves into a more



47
meaningful conceptual interpretation when extended snitably to the ME computational

problem.
The process of carrying out the iterative procedure is visualized in terms of a 1-D

path defined by the estimates calculated at various iterations. The path evolves in an

n-dimensional space in a direction determined by the successive estimates. The iterative

function being exponential, is analytic everywhere, indicating that there exists an infinite

number of paths to reach the required maximum point of J(f; A, ©,2). Le: i =
(fo,...... ,?“(ﬂ)} be an estimate at any iteration n, called as an intermediate estimate at

an intermediate point n of the path (n and n differ only by their font and style but stand

for two different quantities: n refers to the number of iterations, while n represents the
total number of pixel elements). The path traced by the iterative procedure up to the point

n+1 is expressed in terms of the initial and intermediate estimates as

Pn+1 = éo),‘%j(i)} fori=1,.....n+land j=1;---- 1. (3.9

— denotes an assignment symbol. The superscript terms denote the intermediate points of

the path. In obtaining the ME solution, the path is constrained by (3.4.1) with a suitable
value for 0,2, or more appropriately by 6,2(). The constraint (3.4.1) with o2 replaced by

6,2() is called an intermediate constraint. With the constraint incorporated, the
iterative procedure becomes a constrained iterative procedure. The behaviour of the

procedure in reaching the solution point is along this directed path is determined by A, and

q(f). Intuitively, the interpretation shows a necessity to control A, and 0,2 over iterations

for a stable and a reliable solution. These ideas are conveyed by writing the path in (3.9) as

(i)
Pn+l = f(){ ( (0 lx ,ze(,)’BQ(d,f ))} fori=1,...-. a+l. (3.10)
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F is a function given by (3.8) with f; replaced by ?j(i) and also q(?)(i) replacing q(f). The

destination point of the path is fixed by the solution estimate deroted as T =

A A . . . . . . e .
(fysecifn ). It is characterized by specific A,() and 0,2(i), satisfying certain
termination conditions, in addition to the intermediate constraints. These conditions
will be discussed at the end of this section. The following section gives the quantitative

definition of various terms introduced in this section.

3.1.4. Initial condition

The initial condition of the procedure in the present study is considered as a
maximally uncertain situation. This situation is marked by the beginning of the procedure,
when there are no constraints, that is when A,©® =0 in (3.8). The solution for this
condition is obtained by the unconstrained maximiziation of the entropy resulting in a

uniform estimate given by

'fj(O)

=exp{-1} j=1;....m. (3.11)
From the above approach of finding the initial estimate, it may be noted that the initial
estimate comes from the prior knowledge term of the general plogp/q entropy form given
by (2.44.1) in chapter 2. Since the prior knowledge is assumed uniform, as implied by the
plogp form of entropy, the maximization has resulted in (3.11). With the initial condition

fixed, the path (3.10) simplifies to

Prs1 — {;.j(i)} fori=0,..... n+landj=1,...... M. (3.12

3.L.5. Intermediate variables and conditions

The intermediate estimate for the pixel j at any intermediate peint n+1 is obtained

simply by replacing f; and q(f) in (3.8) hy ?j(n) and q(?)(") respectively. Ii is given by
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n
2&‘“‘( 3 Afk("))
Iy n+ A n (n)

(3.13)
oz af;
where
() ’ L An) . om
qlf)®™ = exp Y, " log fj (3.13.))
\j=l
with
i
= (3.13.2
“(n)
Y &
k=1

In (3.13), Q(d,? M) is written as Q® for clarity. Since the vector d is invariant over n, it
implies that QW = Q(?(“)) = (Q(?))(“) . Q) follows from (3.3) with f replaced by T and

is given by

Q® = L |:dj y Aﬁ:fk(n)] = Zam. (3.14)

2m = ot

" The term g is the intermediate estimate error term for pixel j at iteration n given by

A(n) n N
G =di- Y Ak (3.15)

(n) n N .
Q™ _ -'}‘-i(d,- Y Ax )A,,-. (3.16

The parameters A2 and C,2(M) will have to be determined. The determination of ©,2(n),
as mentioned earlier, is based on the intermediate constraint (3.4.1) with Q replaced by

Q) written as
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Q" L (3.17)

(3.17) differs from (3.4.1) by the numerator term. In (3.4.1), the value of Q is exact,
whereas in (3.17) it is the value as determined by the procedure at iteration n based on the

procedure conditions. An error analysis of the procedure is carried out in the following

section to evaluate the form of 6,2 in the procedure.

3.1.6. Error analysis and noise variance elimination

Rewriting the intermediate estimate error given by (3.15)

~(n) )
Cj _dj EAkalgn (3.18)

Let the difference(error) between the n'h? intermediate estimate and the true solution be

denoted by a random variable g,). Equation (3.18) can then be written as

@ B X
G =di- Y Ali+a®). (3.19)
k=1

If the input data are subject to noise, (3.19) becomes

~(n)

G =ej- ZA & (3.20)

where the terms ¢; are derived directly from (3.1). Equation (3.20) can be expressed as

~() ~ (n)
G =¢-§ (3.21)

where
~ (n)

2 aMA . (3.21.1)
k=1

(3.21) shows that the intermediate estirate error for pixel j is the difference between of the

noise error terms in the input data and the estimation error terms in (3.21.1) due to the
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iterative procedure. The estimation error terms result from a summation of a random
variable M over n elements using Ajk. It follows from the central limit theorem [64],

[65] that at any intermediate point n, when n is large, which is usually the case with

images, irrespective of the type of the distribution of the individual random errors g, the

estimation error terms approximate a Gaussian distribution. Since the noise terms in the
input data are additive and Gaussian in the problem under study, it follows that the
intermediate error at any point n is also Gaussian. Similar arguments hold true in the
absence of noise in the input data. This is because in the absence of noise, the intermediate

error term becomes
~(n) n ~ (n)
G = Z & Aj (3.22)
k=1

which shows that the intermediate error terms still form a Gaussian distribution through
estimation error terms. In other words, the procedure has become ‘transparent’ to the input
noise error terms through the intermediate estimate error terms as a result of the iterations.
The intermediate error variance is written as

m ~2 (n)

)

AR S— (3.23
m

By squaring and summing (summation over the pixels) the terms of (3.21) on both sides,

the variance (3.23) can be expressed as

82 =02+ 8}™- 28,4 (3.23.1)
where
6.0 = LY o£® 3.23.2
Ot =m2%&j- (3.23.2)
j=1

The possibility of reducirg the noise variance using 0,2 is explored below.
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3.1.7. Determination of ¢,2

In the procedure, the right hand side term of (3.23) is calculated as Q™ (equation

3.14). Hence, (3.23) becomes

ot ™ - 2qm, (3.24)
Combining (3.24) and (3.17) it can be seen that the intermediate constraint is satisfied in

the procedure if "
~AUn,
o2 = of . (3.24.1)

The situation indeed shows consistency with a reported work [38], where a result of form
(3.24.2) appears as a consequence of applying Bayes' theorem using Jefferey's prior
probability distribution for ¢ (a completely unknown parameter) in the ME method.

Substitution of (3.21) in (3.16) gives rise to

An

(n) n
R ; (3.29)

=1
ag ™,

Using (3.24.1) and (3.25) in the solution equation (3.13), we get

27&;‘"’( i’: ‘ﬁ‘(n))

(n+1) (fyn) ,;Z.; Z Er(n)Ag (3.26)
%

The intermediate error variance term in the denominator term of (3.26) is given by (3.23),
which shows that the noise variance (if any) automatically gets eliminated in the solution.
Besides, the intermediate constraint in (3.17) is always satisfied and the path is constrained

as required by the computational problem.

3.1.8. Termination condition(s)

The condition(s) employed by the procedure to identify a specific intermediate point
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close to the solution point, are called termination condition(s). The solution point is fixed
by an estimate that satisfies (3.13), which happens when the iterations converge to their
limiting condition. Under the assumption that the iterations converge, the convergence

condition is the same as that of any general iterative procedure given by

lim (}j(ml) . *j(n)) - 0. (3.27)

n—eo
The procedure requirements for convergence depend on further developments that are to
follow. Assuming for the present that Q decreases with increasing iterations in the
procedure, we can see from (3.23) and (3.24.1) and (3.17) that the intermediate constraint
tends to its theoretical constraint (2.52.2), encountered earlier in chapter2. The convergence
of the constraint can be expressed as
im 2Q™W _2Q
= _="==1. (3.28)
n— 02 (n) 02
Because of the finiteness of the intermediate error terms, the denominator is a non-zero
quantity for noisy as well as noiseless cases. It can be seen from (3.23) and (3.14) that the
absolute value of Q near the solution point is influenced by the level of noise. For the
no-noise case, the theoretical limit can be written as
im @) _
Q™ =0, (3.28.])
In presence of noise, the limit is expected to be
im o _ g®
n-—)ch =5 (3.28.2
The intermediate variance reduces by a factor of m, when it is true that
im o _
n_mQ = ~u2-f- (3.28.3

As we will see later, the limiting conditions (3.28) can be satisfied in the procedure using
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suitable techniques. It follows therefore that the convergence condition (3.27) is the only

termination condition necessary and sufficient for the procedure.

3.1.9. Determination of A, and its difficulties

With 6,20) given by (3.24.2), the path becomes solely a function of A, written as

puet = (5] = (F)) fori=0,......n+1and i=lien (3.29)

where the estimate pixels 't}(i) are+-btained using
afy . (i) (‘)
f,(l) = a(’) exp ’ - 2_15__ ?-Q_ . ‘ (3.30)

(3.30) is written without the total intensity term in the numerator as a general form refering
to the two types of solution approaches: With and without involving the assumption of the
total intensity being a constant. The derivation in appendix-D refers to the solution equation
with the assumption. This thesis work, which is the case of not involving the assumption
refers to the solution equation given by (3.13). The equivalence of (3.30) to (3.13) will be

addressed shortly in the context of a relaxation scheme under section 3.3. In writing
(3.30), q(?)(i) is replaced by GO for the purpose of clarity. Also, A, can be combined with

the intermediate variance and written as

. () (i)
l (1) = i?-,(i) = l;(i_). (33 1)
§2 Q

The main purpose of A (the suffix x has been dropped for convenience) in the procedure is
to satisfy the limits on Q in (3.28.1) or (3.28.2). Also, by reaching these limits faster, the
computer processing time can be considerably reduced. This requires the values of A to be

as high as possible, so that Q is lowered as fast as possible. With increasing values of A,
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tne feasibility of the procedure however becomes questionable, because of the exponential
operator in (3.30). It leads to large values of the estimates, leading to integer overflow and
underflow. The exponential instability in turn will lead to serious iterative convergence and
termination difficulties. This behaviour is best demonstrated in terms of the characteristics
of the iterative function.

For an iterative equation of form x=g(x), the sufficient condition for convergence is

lg )l < 1 (3.32)
where g'(x) is the first derivative of the iterative function g(x). If (3.32) is satisfied, then
the iteration must converge for all x, including all the intermediate values of x; and the true
value x [74], [75]. The iterative function at point n for pixel j follows from (3.30) and is

written as

(A~ Q™
g‘ij( )= 3™ exp { Al ,B_Q_} . (3.33)
25

A®) is given by (3.31) with i replaced by n. The magnitude of the derivative of (3.33)

follows the relationship

g ([{)] = A ™5 . (3.34)
With increasing values of A andlf;(n), we can see from (3.34) that the convergence condition
in (3.32) is more likely to be violated. To characterize the estimate g with this behaviour,

the symbol ~ is appended over the estimate symbol 4 and is named as the unbounded

intermediate estimate. The improvement lies in choosing A as high as possible to reach
the limit on Q faster, but at the same time, not high enough to cause exponential instability.

Obviously, these conflicting requirements are very difficult to meet using empirical

techniques. A quantitative approach is necessary to improve the situation.
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3.2. PHASE II: THE CONSTRAINED ITERATIVE PROCEDURE IN A

RELAXATION SCHEME

One possible way of overcoming the conflicting situation with A is to introduce

additional steps for its iterative convergence. The standard way of improving convergence

in an iterative procedure is to use a relaxation parameter B to average the successive

estimates. This step by itself can not result in the convergence improvement. As wiil be

seen below, this step, apart from smoothing the intermediate estimates, exercises its

influence on the intermediate variables of the procedure at different levels.

3.2.1. Relaxation of iz::zrmediate estimates using B

By using the standard procedure to improve convergence, the successive estimates

(3.30) are averaged using a parameter (. As a result, the intermediate estimate

corresponding to point n+1 becomes
~(n+1) ‘ (n_,_l)):(n) (Ml)z(m-l)
§ =1p™)g + g

with .
O<B(')51, for i=1,......n

and
rf,- (1) _ 3 expl . A® Q@ }
df;

"y )is now calculated in terms of the estimates given by (3.35) as

n — Y
q™ =exp { )) Dj ® log (n)}

with

(3.39)

(3.35.)

(3.35.2

(3.35.3
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x(n)

= f
P = e (3.35.4
*(n)
3 &
k=1

In (3.35.2), QW = Q(?(ﬂ)) and ™ can be called as the relaxed intermediate estimate.
Equation (3.35) is a recursive relation which can be substituted successively for its nth

estimate in the right hand side resulting in

a{n+ el i, n+ 2(i)
fj( 1) _ __1_2 (n+l)Bp(' l)t} (3.36)
n+l i=0
where _ .
ﬁp(l. n+l) - (l-ﬁ(n+1))(1’ﬁ(n)) ...... (I_B(H'l)) B(l) - (3.36.1)

In (3.36), for notational convenience, it is assumed that B® = 1 and when i = n+1,

Bp("+1-“+1) = B(n+1), Also, n+1 is introduced in the numerator and the denominator for

analytical purpose. Expressing (3.36) in a simpler form

% (n+1) 1 ! (in)

-1 8 (3.37)
where (i)

72 (en gm0 6.37.0

(3.37) implies that the estimates are scaled using Bp(i.n+l) as in (3.37.1) and averaged over

iterations in the process of relaxation.

3.2.2. Influence of relaxation on the procedure

Substituting (3.37) in (3.14), and denoting the result as Q yields

m n n s(in 2
a® = E'I:ZI:(dj-% z A fk(l' )):| . (3.38)

=

We cam make use of n in the denominator to write (3.38) as
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oY = 5 Z[IZ(d, ZA,kfk("n))}

=t L i=0 k=1
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(3.39)

Identifying the term within the inner parenthesis as the new error term, (3.39) is simplified

o
—m 1 m X(n)2 1 m <2
2 2n Z CJ = 5;1-2 Cj
=1 =1
where
=(n) . =(i,n)
Y 5.
1=
withs in)
~\n n - (l n)
G =di- ) Axk
k=

Also, dQ/of; becomes

Q" _ 5 iin)
= ; (2 (dr Z Al

afi r=1 k=1

(3.42) can be expressed in a much simpler form as

where

o)

(2.40)

(3.41)

(3.41.])

(3.42)

(5.43)

(3.43.))

The error analysis results obtained for the intermediate esiimates in section 3.1.4 hold true

for the relaxed intermediate estimates as well. The intermediate variance resulting from the

relaxation scheme is estimated by

(3.44)
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As a result of the cha. .= in Q, A in (3.31) gets modified to

(n)
2™ A (3.45)

Q"

The path becomes a function of ti 'relaxation parameter’ . That is

-~

x(i) i i) o
pt = (o) = [EQO B for - cnslandj= 1. (346
'f;(i) is obtaine:1 using (3.35) with the unbounded c.uitiate given by

' $6) . 2o W
f = 3@ exp ‘ - l")a—q— \ {3.46.1)

ag |
The terminztion condition (3.28) is obtained in terms of f;. With this understanding, the
convergence situation is explored in the foliuwing sections. Before proceeding with thi

step, the form of AM™ can be modified to suit the practical requiremers.

3..«5..‘3. Practical form for A,

As noted earlier, A is expected to be as high as possible, so that, the termination
convergence of Q is faster with less computer processing time. Also, the A variation should
guarantee error reduction in the procedure. These conuditions are satisfied simpiy by forcing
A to strictly increase with *:-ations. One way of increasing A is to iterate it in the same

way as the relaxed intermediate estimates, so that

J— n .
AR LRI L (3.4
i=0

The initial value, A(® is assumed to be 0. Substitituting for A® from (3.45) and

considering A to be a positive constant K
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(3.48)

4

fo);
=%
e |

o v

Ao i K
i=0

Because of the summation of strictly positive quantities, A will always be an increasing

parameter with iterations so that Q always decreases [since dQ/dA is negative, explanations
follow in chapter 4]. This means that in the procedure, the intermediate error variance is a

decreasing quantity, making the limiting condition definite on Q. Also, the convergence
hecomes faster compared with the A variation given by (3.31), since A® > A(M, With A0

given by (3.47), the path becomes

P+l -ﬁ{gi)} = {F (X(i)' ﬁm” fori=0,.-.... Ntlandj=1,.... ri.  (3.44

T follows from (3.36) as

= (i i wi) s (w.i)
g”: > 5p( "’g Y (3.50)
w=0
with .1
Iy (W, i) ~ - (v 0 W i
£ =q™expl-2’ 9 \ (3.50.1
o |
where
5 (w) d (1) :
AT =¥ 3.50.2
=
and )
—{w, i w (s, w)
Q™ 139077 (3.50.3
9f s=0 0f;

The procedure now has all its variables defined except P and the term K, in A. Before

proceeding to determine them,the convergence sensitivity of B is explored to study its
significance ir. the procedure. An analysis in this direction is also expected to provide

insight into the inherent difficulties of the approach.
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3.2.4. Significzace of using B

Let us first consider the simple case of using B® with A variadons given by (3.45).

We know from our analysis that B influences the procedure by averaging (32, as in

(3.50.3). The consequence of this influence can be seen by substituting (3.43} i~ /3.46.1)

and expressing the result as
z(n) ~ n (n)aQ(l) ~ n 7(n-i)
£ =q®f[ exp{- "= }=3"[] (3.51)
i=0 of; i=0
where the kerne: term is
: (ni) [ maqt?
f = expi- A — (3.51.1)
| %

In (3.51) the kernel terms, calculated with A at iteration nand dQ/df; at iteration w -r¢
multiplied. With increasing iterztions, the number of kernel terms increases in the product,
the magnitude <. .ach term being dependent upor the magnitude of the exponential
argument AMAQU)/9f;. The unbounded behaviour of the ME estimate is caused by the
exponential growth of the argumenz with increasing values of A. It leads to integer overflow

or underflow in the procedure. The situation can be expected to improve by using P ior

scaling and averaging in the relation (3.36), rewritten as

10 3 ﬂp(i.m)‘fj(" (3.51.2
i=0
With increasing iterations, the number of terms under summation increases along with the
number of product terms, the two being controlled by B. Although the scheme shows
flexibility for convergence improvement, A is not used in its prac.ical form for
computational speed improvements.

Next, by considering the case with A for computational speed improvements, but

without B, the significance of f can be demonstrated. This situation was encountered earlier
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in section 3.1.9, where we emphasized the need for relaxation, but a different line of

reasoning was followed. Substituting (3.50.2) in (3.33) yields

PR | ; My n z(in)
™ 250 [ exp { A . o & (3.52)
=0 of; J =0
with the kernel term o
:(. ) i n
t:ilm= exp {- ).,( )a—Q- } (3.52.1)
of;

(3.52) differs significantly from (3.51) ii. :erms ¢ f flexibility. With (3.52), the number of
product terms increases with increasing iterations. But unlike the previous situation, there
is no way to overcome the overflow and underflow behaviour except by lowering the
values of A. This does not serve the purpose because it reduces the computational speed.
From the above two casés, it can be inferred that the relaxation op<:siion using B
contributes to improved corvexgénce, provided it is controlled suiiatly.

The use of B, althcugh relevant, along with the iterated form of A adds
computational difficulties to the procedure. This is shown by substituting (3.50.2) axd

(3.59.3) in (3.50.1) and expressing the result as

= (i) b z(ns)
2 LT ITE .53
r=0 s=
where .
7 (rs) $
fi = expi- l‘r)a—g- ‘ (3.53.1)
2

The situation is rather complex, since the number of exponential product terms is squared

with their magnitude increasing with increasing values of A. These product estimates at

various iterations are scaled and summed up subsequently to form the intermediate estimate

given by
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= () LT T S (9) .
f mZB,,(“ WOIT 6 - (3.54)

n
i=0 =0 s=0
We note that at any given iteration n, for the same number of terms in B,Gm as in (3.51.2},
by recursive variation of A, the number of exponential product t¢rns have been squared in
(3.54). Therefore, the value of B is expecied to be significantly lowered. The complexity of

the situation demands a quantitative approach in the determination of A and B for reliable

improvements in the procedure.

3.3. PHASE-III: PARAMETER CONTROL AND CONVERGENCE

The quantitative determination of * and B, as seen above, and also as reported in
the literature, is not straightforward in the procedure. This section starts with the
formulation of a set of criteria to be satisfied in the procedure for convergence
imprevement. Techniques can then be subsequently develope w0 fulfill these criteria for
the procedure. With the parameters satisfying the criteria, the convergence staiss of the

procedure can be analysed.

3.3.1. Criteria for controlling A and B

The analysis results has shown that B, which appears as a relaxation parameter in
the procedure exercises an influence on the exponential argument along with A, which is an
increasing parameter with iterations. Reducing the values of A is not a solution because it
tends to decrease the rate at which the iterations can proceed. Under these conditions the
criteria can be stated in their order as follows:

1. The convergence of iterations should be made independent of the variations of A. By

this, the cornponent K; ofﬂ'x acquires enough freedom to control the rate of convergence.
~
2. Recalling the discussions of section 3.1.9,?- in (3.35.2) should be made equivalent to
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its true form in (3.7).
3. With the criteria 1 and 2 satisfied, the sufficieni condition for iterative convergence given

by (3.32) should be satisfied at all iterations and for all pixels.

3.3.2. Controlling techniques
Since the fundamental purpose behind the above criteria is improved convergence,

let us start with an evaluation of the first derivative of the iterative function g(x). Rewriting

(3.37) gives
n+ W i e
é 1) - Z?J 1)) (3.55)
i=0
where - (i)
.'éx. n+l) _ Bp(i,;wk)i.il . (3.55.1)

The iterative function can be written as

g‘?ji.nﬂ)) - (?ji.n-rl)): Bp(i' nﬂféi)- (3.56)

Substituting (3.53) and (3.36.1) in (3.56) and expressing the result in terms of the ith and

remaining components yield:
% (i, nt1) AP (. il il 2 (g
™) = 89405 IT (1) IT 5.5 (.57
t=i+1 r=0 s=0
where _ " .
?,-(1') = ?,-1"') - exp{ -x(i)%%(’)}. (3.57.1)
i
and |
i) cxp{-l(r)§(s)}. (3.57.2)
i

Working out the magnitude of the derivative of (3.57) results in
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(z (n Nz (i) el i1 il s
G - aap®@F? IT (I [T55Y. sy

t=i+l =0 s=0

Expre ;sing the result in terms of ’f;(i) using (3.53) yields

z(i) n+l

lg' (f, (i n+l)] “A'A ﬂ(i)x(i) q(iyfj H (I-B(‘))- (3.59)

t=i+]

Atdenotes the transpose of the measurement function matrix A such that | A'Al <1. Now,
B can be chosen to satisfy the various criteria listed above. The first criterion is satisfied

by cancelling the variadons of A through . That is by choosing

Y= % (3.60)
x 1

where Kg is a positive constant. The denominator term A® s yeretghiforward to calculate

from (3.48) as AW = K;j-é(i) . The numerator term is chosen to d¢

Kg = —'":—(n—) (3.61)

1

2 &

k=1
in order to satisfy the second criterion. Appendix-E shows how the second criterion is

satisfied using (3.61). The resulting form of B is

O = 1 (3.62)

Turning to the third criterion, the suificient condition to force converge:ice in the iterative

procedure follows directly from the well-known condition (3.32), written as

| g (f_’j("))

The right hand side tei: 1 follows from (3.59), with B® substituted from (3.62). The result

-3 )< 1 (3.63)
i=0
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is:

o )
g =ata n’ H (1) (3.64)
fk l"’!+l

Substituting (3.64) in (3.63) and using the rélation (3.55), we get

= ()
g ()] - A'A,,_f";() (3.65)
%kn
where
A 2 Bl (3.65.1)

In (3.65.1), Bpl(i) i3 the same as (3.36.1) but with f® = 1. Comparing (3.65) and (3.63),
we can see that

™) <165, < i (3.66

~
In writing (3.66), the condition IA'Al < 1 has been used. Also for a given @, ?}(n) < f g
s?j(n), since g 1in obtaining?j(n) whereas @ = 1 for ’f}gl) and there is no scaling at all

in the case of 'f;(n). The condition (3.66) can then be restated as

-~ n =
k™) < 1i ff” fk‘"’. (3.67)

The existence and finiteness of f(l) however is based on the numerical stability

considerations which is the subject matter of the following section.

3.3.3. Convergence conditions in the procedure
The condition (3.67) is indeed consistent with the behaviour of the unaveraged

estimate, which is already known to be a factor causing numerical instabilities. Rewriting
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the unaveraged estimate fron. 13.530.1)

z i) 2 i
f = a‘ exp{ )aa? } (3.68)
j

~
ihe value of i?j(i) at an iteration i depends upon the value of the exponential argument,

. 3 3 . ry = . . . :
which in turn is determined by he values of A and dQ/df;. Dividing (3.68) by %fk(i) , at

any iteration i, the condition in (3.67) can also be expressed as

) 023" |

-——CXP

sz afj‘

<l (3.69)

Expres.ix.g the condition in terms of the exponential argument we obtai?

x; (i< log “;(‘i) (3.70
q
or simply using (3.2.2):
X ()< S(ﬂ forj=1,...-. n (3.70.1)
where )
(i) .0 3Q"
X af, (3.70.2
and

= 21

(3.70.3

S(?) =- i --log
i=1 Z fk
k=1

(3.70), (3.70.1) are the restatements of the condition (3.67) in different forms. (3.70.1)

k

M=,

shows that for convergence to take place, the exponential argument should be less than the

entropy of the estimated probability distribution.

-

. . . . A
Let us consider the actual situation encountered by the procedure, that is f;®



68
resulting from the use of B®). From equation (3.35), the exponential argument can be

written as

{3.71)

x(i) iN=(G-1)
() =100l '(1'5())5'
X; =log B=A) .
B q

Denoting the numerator term by 't?s(i) and substituting for B® in the denominator, (3.71)

becomes
(i) B = (i)
( Aljs z f
@) _ k=1 )\
X = lOg —— 5 (3.“'4
J \ 6(1)6(1)
X ...
The term fi(} is given by

=5 - (g5 372.9

Expanding the logarithmic term in (3 72) and using (3.48) we get

. z (i) : i
X j(’) = logfis + log A0, S(;‘(l)). (3.73)
Equivalently we obtain
O < 1og +10g 8% 10ga®+ s
x;¥ = logf; +log B+ loga¥+ sif ) (3.73.)
The vzriations of the tenn’fj‘-s(i) depend on how the estimatcs?j(i) vary with the iterations. In
general, we can write
Y (.) At Ay,
£, >0if>1". (3.74.)
I ii) . Ay a‘.l
fs 2 0iff<f . (3.74.9

Combining the conditions in (3.74.1) and (3.74.2) with (3.73.1), we see that practically,

the exponential argument exceeds the entropy of the estimated probability distribution with

increasing values of A. The condition (3.70.1) is satisfied only when
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(i, @
A <1 (3.75)

From (3.72.1), we can see that (3.75) is satisfied when

g = 1 (3.76)

and when B® — 0 it is true that
(@
s — 0. (3.77)

n !

The .t condition is satisfied when i = 0. This corresponds to the unconstrained
maxir. ization point. Using equation (3.35), the equivalent condition of (3.77) can be

writtes: as

x(i) 5 :fj(i'l).

£ (3.78)

When the entropy of the estimate becomes maximum, the condition (3.78) becomes active
in the procedure, which is the convergence condition. Depending on the parameter A, B
regulates the process for convergence. The convergence processes based on (3.77) in
general, have a hidden implication. (3.77) or (3.78) do not imply anything at all about the
absolute magnitude of the resulting estimates. This means that the indirect scaling
information in the data constraint is lost in the convergence process. One of the test studies
in the following chapter demonstrates this situziion. The scaling iaformation can be
provided using an external constraint compatible with (3.77). The information on the
maximum possible limit for the estimate values fulfills this condition. For ‘mages, the
maximum possible value is the maximum level on the scale used for the input image
scaling. This constraint is referred to as the upper-bound constraint in the discussions
that follow. By placing this constraint in the procedure, the convergence process is
constrained by the scaling information. A measure based on (3.78) for all pixels can sense
the convergence condition of the procedure exicinally. Such a measure is indeed the

standard convergence measure, written as
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o ,\/ %f‘i @ g | (3.79
i

¥m is expected to be close to 0 for the result to be a true solution in an iterative equation.

3. 4. CONVERGENCE MECHANISM OF THE PARA™ “ETER
RELAXATION PROCEDURE

The direction of analysis followed in this chapter has led to th development of a
simple and computationally feasible (stable and convergent) procedure to obtain a ME
solution, which is the primary aim of this chapter. The analysis results of the various
intermediate stages, when viewed in - "bal perspective give rise to a more meaningful

interpretation of the procedure as discu ..:d below.

The information processing activities underlying the computation:! scheme are best

environment, which in the, present case is an algorithm based or the relaxation scheme. The

algorithm influen. . - "< . - «uin by controlling its iogarithmic states §; thereby changing the

'behaviour' of the system. In the discussioas below, it implies that §; € § for all i's. As the

equation (3.73) shows, in the present study, the behaviour of each state can be

conveniendly described by the exponential argument xforj=1,...,n.

Initially, the state of the system is stable. This systeus is characterized by no
external constraints and has an entropy of logn. The initial logarithmic state of the system

(equation 3.11) is given by

otV = (i jo1,..m. (3.80.1)

Combining the inequality (3.70.1) with (3.68), the behaviour of the system can be
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described as

~(0
B(so) < S50 (3.80.2
S(B(O) is the entropy of the system calculated using (3.70.3) for the initial state given by

(3.11). ﬁa(o) is the logaritmic average obtained by taking the logarithm of qf?). B simply
denotes a numerical scale for the behaviour measure. “*«:n an external constraint (data)

ac". upon the system, its behaviour changes. Dependii.; it the strength of the external

coustraint parameters A and 62, the states get changed

~ =)
S f (3.81.))

with 1) given by (3.35.2). The behaviour of these states is based on (3.73) written as

i ,
S togt” ={1oghs + 10820+ s{if")30 (3.81.2

which implies that
#5) > sfif'59 (3.81.3)
S(H® is calculated using (3.70.3) using (3.35.2). As the strength of the constraint A

increases, the beaviour of the system becomes unbounded. The system is controlled by the

algorithm using the relaxation parameter B(). This relaxation process modifies the states

(equation 3.35) to €0
S f . (3.82.1)
The behaviour (equation 3.73.1) changes to
E;(—{log:fj(l} { f +l:~g[3('+ log 7\” + S(-)( )a")} (3.82.2

From the behaviour of the parameters discussed in connection with equation (3.73),

(3.82.2) implies that .
ast) > s (3.82.3

S(?’)(i) is given by (3.70.3). The states can be effectively relieved from the influence of A
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by controlling B suitably as in (3.62). This relaxation process, when repeated, refines the
behaviour of the system successively. When entropy becomes maximum, say Sm(?’), which

happens when the solution equation (3.8) is satisfied, the condition (3.70.1) becomes

0 Syff) for i > m and j = L. (3.83)

At this stage m, the system begins to obey the condition

_ ~{m)
B(s (M) < sm qlm. (3.83.1)
(3.83.1) happens when the entropy of the system is close to its true maximum (equation
3.70.1), which is the convergence condition. The corresponding state of the system is the

required solution, denoted as -

Sef . (3.83.2

The scaling of (3.83.2) will be arbitrary, since the relaxation process has taken place
without the scaling information. However, with an external upper bound constraint, the

process can be controlled depending upon the scaling requirements, so that

Som ?(m)

(3.84)

The key activity behind convergence is the relaxation process with associated
control mechanisms. Simulated annealing techniques, the currently popular techniques in
solving complex constrained optimization problems [27], [72], [73] are reported to have a
similar mechanism for successful convergence. The technique is discussed in chapter 7.
Reports also indicate that the current technological developments of VLSI array processors
are well suited to simulate the algorithmic activities of a relaxation process [76]. The
discussions of these issues are also covered in chapter 7. In the next chapter, the behaviour
characteristics of the relaxation process and its influence on the states of the system are

tested and studied using practical examples. The subject matter is approached from a

functional point of view to avoid the abstractions associated with the systems perspective.
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CHAPTER 4

NUMERICAL AND FUNCTIONAL BEHAVIOUR OF THE
RELAXATION SCHEME -TEST STUDIES

The solution scheme developed for the ME method in chapter 3 shows two different
directions for test studies: the study of its dynamic behaviour characteristics and functional
merits. The two aspects are explored in this chapter by conducting test studies on practical
examples. The characteristics of the scheme are evaluated analytically and compared with
the test results. The functional merits are evaluated in inverse problems. Natural and
computer generated images serve as practical examples for all the test studies. Results are

discussed in two phases: Phase-I deals with studies on the behaviour characteristics and

phase-II with applications.

4.1. TEST OBJECTIVES AND SET-UP

The tests all involve applying the parameter relaxation scheme on practical images
using an aigorithm. This section begins with an account on the choice of images and the

algorithm followed for the test studies.

4.1.1. Choice of images and algorithms

For the study under discussion, the type of images are from the class (3.1) that
need inversion of some kind. For test studies, these images are obtained in two stages: In
the first stage, 'source images' are acquired from external sources and stored in digital form
using an image acquisition or special camera equipment Systems. Exceptions to the camera
acquistion step are computer generated source images. In the second stage, the ‘input

images' are generated from the source images using image processing techniques. The
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discussions on the generation of the input images are postponed to the phase-II section.

For phase-I, images are ensured to be in the class (3.1) and their exact type is not a matter

of concern.
When selecting algorithms, the ease of programming and tractability are two major

factors to be considered since extensive trial runs are needed for test studies. The time
complexity of the sequential algorithms in the application class is as high as O(n?), where

n is the total number of pixels in an image, or the image size. To reduce the computational

time demands, images of dimensions 64 x 64 have been considered. Also, the results and
conclusions obtained from the test studies using the sequential algorithm are expected to
serve as reference for further developments in chapter 7. The sequential algoritlitn followed

for the test studies is outlined below.

4.1.2. The test algorithm

An algorithm by definition is characterized by its input, output, finiteness

definiteness and efficiency [40]. The basic specifications of the algorithm used in this
study are given below:

Input: The measurement function A and the 2-D set of numbers d;, representing the
measured data or image (finite and bounded) are the inputs to the algorithm. The numbers
d; could be positive or negative and their type could be integer, real or complex depending
on the type of application. For example, in the reconstruction of Fourier synthesis data in
radio astronomy, the input data are mostly complex [12], [13]. If the input is noisy, then d,
will be positive or negative.

Qutput ; The ME estimate of the source image distribution (2-D set of numbers) ﬁ L3 Hp—-

n.
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Algorithm: All the test studies make use of an iterative sequential algorithm shown in
Fig. 4.1. It is represented as a set of computational steps, each step charaterized by its own
input(s) and output(s). The input(s) and output(s) are either a single parameter or 2-D
arrays(1-D if the image is stored in a vector format). 2-D arrays are denoted by outlined
characters. The algorithm, for its implementation requires three 2-D image data arrays for
the output, input and an additional one tc hold the previous output. There ars four phases in
the algorithm: reading of the inputs and initialization constitute the first phase. The data
processing in the second phase consists of calculating Q and 0Q/of, (data space
calculations) followed by the estimation of parameters (parameter space calculations). The
results of these steps are combined to determine the cutrent estimate using (3.35). The
convergence condition is checked in the third phase. The results (estimate images and

parameters) of different stages are output in the fourth phase.

Finiteness: Finiteness of an algorithm is assessed by the feasibility of its termination
conditions. The termination conditions are determined from the iterative convergence of the

procedure measured using

" (xm =x(n- 2
y@ = J%Z(f}”-fj( 1)) . (4.1)
=1

¥® becomes close to 0, upon convergence. The feasibility of the convergence condition

in the algorithm follows directly from the derivation results of section 3.3.2.

4.2. PHASE - I: NUMERICAL BEHAVIOUR CHARACTERISTICS

The algorithm explained above was run on six different images shown in Fig 4.2
(a)-(f) all from the class (3.1). The inputs are identified as input-1, input-2, etc, as shown
in the captions. The inputs are of different types of data (positive, negative, real, complex)

and also cotrespond to different forms of 3Q/of in the algorithm. Given the inputs, the
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control parameters K;, 6,1 and P are determined by the algorithm iteratively. Since the
algorithm follows a set of criteria to determine the parameters, the behaviour of the
algorithm is predictable mathematically. Experimentally, the characteristics can be
determined by recording the variations of all the relevant parameters QA B.G.Sandy
with iterations under different input and operating conditions. These characteristics can
subsequently be compared against the predicted ones. The derivation of the scheme in
chapter 3:shows a definite purpose for each of the control parameters in the algorithm.
Based on this understanding, the parameterx is qualified as the 'constraint strength’
parameter and B as the ‘relaxation parameter’ in the following discussions. These two
parameters are the design parameters, whereas 4 is the 'scale’ parameter is part of the
scheme itself. In the discussions that follow, Q and A will be referred to as Q and A for

convenience.

4.2.1. Predicted Vs recorded behaviour of the algorithm

As indicated by the equation (3.41), Q is an error measure for the intermediate
estimates. This means that the algorithm evaluates the functional distance between the
intermediate and the true (solution) estimates from the value of Q in each iteration. Based
on this measure, the algorithm estimates the control parameters A and [ to determine the
next estimate. In addition, the algorithm also makes use of the information derived from
the previous intermediate estimates using the scale paramter q in the estimation process.
The control mechanism of the algorithm is illustrated in Fig. 4.3.
4.2.1.1. Constraint strength parameter A

In the closed loop of control in Fig. 4.3, the variations A can be determined

relative to variations of Q. Itis obtained from (3.48) as
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g™ _ Ky
ddi) 'Qz(i)

The notation A conveys the meaning that the value of A at iteration n depends upon its

(4.2)

value at n, as well as the other iterations. In the discussions that follow, the term A®-) will
be simply referred to as A. The right hand side term of (4.2) is strictly a negative quantity,
meaning that the variations of A and Q are in opposite directions. Since the variation of A is
known 1o be strictly positive (increasing in values with increasing iterations), its influence
on the intermediate estimate takes place in the direction of decreasing Q. The decrease in
the values of Q as noted in chapter 3, is an indication of progress towards convergence.
Any external constraint imposed by the algorithm on the intermediate estimates, such as the
one obtained by imposing the upper bound constraint may change the stope of Q. This in
turn changes the slope of A but not its direction of variations. Therefore, the algorithm
controls A such that it is strictly increasing with iterations but its slope variations are
controlled depending on the variations of Q. The results of running the algorithm on the
input images illustrate this behaviour of A over 20 iterations in Fig 4.4 (c) and (d). The
variations of Q are shown in Fig 4. 4 (a) and (b). The values of Q varied widely between
6000 and 15000 for the different inputs. These values have been converted to a common
scale in plotting the graph. For all the input cases, the slopes of A change at a particular
iteration and as will be seen shortly, are due to the influence of the upper bound constraint

on the intermediate estimates.

4.2.1.2. Relaxation parameter

The purpose of using B in the algorithm is to reduce the strength of the influence of
the data constraint (increasing ) on the intermediate estimates. As discussed in chapter 3,
it is done by using B in a relaxation scheme (equation 3.35) with its variations in a

compensating direction to that of A. The expected relative variations of B can be found from
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(3.62) as

B( n)

(4.3)

l .
7 : -
2 i
Since the integnediate estimates are all strictly positive, the denominator of (4.3) is a

positive quantity, which means that the algorithm controls B by following closely the error
variations. Fig 4.4 (¢) and (f) shows the experimental results for illustration. Here also, the
values are calculated on a common scale of 0-1 to accommodate all the six cases in a single

plot. As can be seen in the figure, when Q tends to change its directions, the algorithm

changes the course of B accordingly.

4.2.1.3. Scale parameter q

The variation of q, as the equation (3.35.3) indicates, is a function of the

intermediate estimates. Its variation is governed by the relation

dqn) ) = % (n)
2 -2 (145055 ”) (4.9
i e
j Y &
k=1
where _ _
o = 1- ™. (4.4.1)

Unlike the paran:sters A and 8, the parameter q is an 'implicit’ control parameter in the
algorithm. Equation (4.4) shows that the direction of variation of q for each pixel is based

on the sign of the term (l+§- (n)logia-(n)). It implies that the variations are strongly influenced
n i

by the initial estimate of the algorithm. Hence, unlike A and B, the relative behaviour of q
does not exhibit a fixed pattern in the algorithm. However, upon convergence, irrespective
of the other parameter conditions, q becomes constant in the algorithm. This expectation

follows directly from the convergence condition in (3.78). For the algorithm under study,
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the initial estimates are all 2 exp{-1}, which means that the parenthesis terms are 20
initiaily. It sets up a uniform initial base for a monotonic increase of the intermediate
estimates. Hence q® is expected to increase steadily up to the convergence point. The

observed behaviour for the inputs shown in Fig. 4.4 (g) and (h) supports this view point.

4.2.1.4. Entropy S
Along the same lines, the entropy variations can be determined from (3.70.3) and

written as

n) =(n) _
as(:) ) 3B (1aaogh®) (4.9
at £
j Y

»
{]

1

The variation of entropy is determined by the sign of (l+logﬁ(ﬂ)), which in turn is a
function of the initial and the intermediate estimates. Its relative behaviour along with g, is
difficult to predict. But once again, with uniform initial estimate and monotonic variations
of the intermediate estimates, its behaviour is predictable in an intuitive sense. S(?) being a
measure of uncertainty, is expected to decrease during the 'active phase’ of the iterations.
Active phase is the phase between the initial stage and the beginning of the convergence.
During this phase, because of the steady influence of the external constraints, the degree of
uncertainty decreases in the intermediate estimates and hence the entropy decreases. Once
convergence point is reached, the entropy variations become consistently positive because
of its maximum coiiditions in the algorithm. The observed variations in Fig.4.4 (i) and (j)
indeed show this behaviour for all the inputs. However, these arguments cannot be

generalized for all types of initial estimates.

4.2.1.5. Convergence

In all the six test cases, there are no signs of overflow or underflow in the

behaviour of the algorithm, which is an indication of numerical stability. The variations of
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the convergence measure ¥ shown in Fig 4.4(k) and (1) are indicative of this improvement.
In the termination phase, the constraint factors have no effect on the intermediate estimates,
which is the characteristics of a convergent state. In particular, it may be noted that a linear
increase in A during termination phase has not influenced the state of convergence. To

study the influence of the upper bound constraint on convergence, the following test was

performed.

4.2.2. Removal of upper-bound constraint: a test for convergence

From the above studies it was understood that the upper-bound constraint imposed
by the algorithm on the intermediate estimates has an influence on the variations of QA

and P. This is because, the upper-bound constraint, as discussed in chapter 3 incorporates
the scaling information of the input data in the estimation process. The constraint however
does not influence the convergence of iterations. To test this, the algorithm is studied for its
numerical behaviour in the absence of the upper bound constraint. According to the
analytical results in chapter 3, if the upper bound constraint is removed, the magnitude of
the intermediate estimates will begin to increase at a point when the intermediate estimates
exceed the range of input scaling. As a result, Q will increase, the rate of increase being
dependent upon the control parameters. This scale change in the intermediate estimates will
obviously result in the sudden changes of entropy. Despite these discrepancies, the
algorithm is expected to control the iterations for convergence because, as understood
earlier, the convergence process does not depend upon the scaling and follows naturally
when the entropy reaches its maximum limits, whatever it is. Specifically, the algorithm is
expected to respond with A still increasing but with a much smaller slope. B is expected to
be modified for its value to the new variations of Q in order to maintain numerical stability.
With this understanding, the procedure was put to the following test: The algorithm was

run on an arbitrarily chosen example, in this case, input-3 without imposing the
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upper-bound constraint. The resulting characteristics are shown in Fig 4.5 (2)-4.5(1). Fora
clear representation, the plots are shown separately for the active and the termination phases
with iteration 10 separating the two phases. In the active-phase Q begins to decrease ina
normal manner (as in 4.4 (c)-4.4 (d)). At iteration 11, when the parameter settings of the
procedure are ready for scaling (the input irnage scaling is 0-255), there is no active
mechanism to define the upper limit. The iterations therefore continue to respond to
increasing A without an upper-limit, which causes an apparent outburst of numbers due to
exponential operation. Q as expected, has a wide swing in its variations (1300 times higher
than the normal) and A changes its slope. The entropy shows these changes by a sudden
decrease in its course. The interesting factor here is that B adjusts to this new situation by
considerably raising its value (880 times larger than the normal case). The fact that there are
no integer overflows despite the exponential growth of the estimates is an indication of the
numerical stability of the procedure. Further evidence for stability comes from the
convergence variations shown in Figd.5 (1). The characteristics of the convergence are seen
in the termination phase, but the value of the convergence measure in the termination phase

was found higher, close to 10 (is not clear in the plot due to the wide range of scaling ).

4.2.3. Influence of K, on convergence speed

The derivation results of chapter 3 show that the choice of K, in A is not very

critical to the functioning of the procedure and can be adjusted for faster convergence. To

test this, the algorithm was run on an arbtrarily chosen image, once again input-3 with three

different values of K, (30, 70 ,100). The resulting Q and the convergence variations are

shown in Fig 4.6. The lowest K (30) has significantly lowered the termination value of Q

but has not converged within the observed window of 20 iterations. As expected, with
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increasing values of K;, the number of iterations needed for convergence decreases.

However, this has the effect of increasing the limiting values of Q slightly above its settled

value in the active phase. In practice, these variations do not seem to produce a noticeable

effect in the final results. With very high value of K; (a quantitative limit is not available),

the behaviour of the procedure was found to be normal but its application performance was
not satisfactory. The convergence valve of Q was found to be much higher than its settled

value in the active-phase and the resulting output image appeared distorted. This situation

can be overcome by working out a reasonable upper limit for K;. The upper-limit is

expected to be a function of the image size and the total intensity of the input image.

4.2.4. Error performance

Error analysis results in chapter 3 have shown that the intermediate error terms
follow a Gaussian distribution regardless of the presence or the absence of noise error
terms in the data (sections 3.1.6 and 3.2.2). This feature has also been noted and reported
as an observation in the studies related to simulated annealing techniques [ 27, page 269].
To substantiate this result, the noiseless but convolved data (input-1) was considered as

input to the algorithm. The intermediate error image formed by the quantities

~(n) n .
G =di- Y fAgi=lim (4.6)
k=1

was recorded for different iterations. The histograms of this image at different iterations
were estimated (after removing the mean) and shown as a plot in Fig 4.7(a). The results
indeed show that the intermediate error terms have formed a Ganssian distribution in the
procedure. Also, the decreasing widths of the histogram shows that the intermediate error
variance decreases with increasing iterations.

In presence of noise, the derivation results showed that the noise variance



84

automatically gets reduced in the procedure through the intermediate variance. To test this,
the algorithm was run on the noisy image example in Fig 4.2 (input-4). The variance of the
noise terms in this example is 368, with the signal to noise ratio of 9.17dB. The variance
parameter was not used by the algorithm but used for testing. To show that the procedure

indeed reduces noise, a histogram was calculated from the residual quantities given by

” A
n =-<1,- (dj - kzl A,-kfg) forj=1,n (4

where 6 is the standard deviation of the Gaussian noise terms. If the procedure has fitted
the noise well, the histogram formed out of the residual quantities should follow a unit
Gaussian histogram. These plots for the example under consideration are shown in Fig.
4.7(b) for different iterations. As expected, the width approaches unity with increasing
iterations. From the calculations of the area of the histogram, it was also observed that all

the residual terms lie within the unit width. The noise performance of the procedure will be

further discussed under phase-II section.

4.3. PHASE - II: FUNCTIONAL PERFORMANCE

The objective of this section is to explore the usefulness of the procedure and the
ME method in practical image processing applications. The lack of an objective measure for
images leaves an element of ambiguity in the usage of the terms 'application’ and
rusefulness’. This section begins with an understanding of these terms as applied to the

work reported in this thesis.

4.3.1. Application perspective

Image processing and machine vision studies are branches of visual science that

deal with variety of images encountered in different application fields of science and
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engineering. For most of these applications, human visual responses are the only known
reliable sources [28], [77], [78]. Indeed the development of an objective measure for image
quality itself depends on the psycho-physical understanding of human visual responses.
This is because the 'objectiveness' of the measure is expected to match with the judgments
of human eyes. Because of this fundamental difficulty, true objective evaluation schemes
have not yet evolved for image processing applications. Objectivity at other levels, for
example, formalizing a set of test patterns for a given application purpose, contributes to a
stable and a systematic evaluation of processing methods and techniques. But the progress
in this direction is hampered by the interpretation difficulties of the evaluation process.
However, the issue is not considered an obstacle because subjective improvements are one
of the application requirements for many image processing fields. Subjectively, images are
often assessed for their quality based on the degree of sharpness and details [79], [77],
[28]. Reports also indicate objective evaluation measures such as least mean square error
but their usage is limited to selected cases. In this study, the application results are
evaluated on the subjective as well as objective grounds. Subjective evaluations are

however approached with the viewpoint of further developments.

4.3.2. Advantages of the ME method

The non-negative nature of the resulting output is one of the well-recognized
features of the ME method in image processing applications. Further, on the grounds of
objectivity, in a similar sense to formalization, the ME method has a unique advantage. The
objectivity is ensured in the ME solutions since the miethod incorporates all the available
information with maximum uncertainty [46]. Extra details cannot appear in a ME solution
unless there is evidence for it in the input data [18]. This increases the user's degree of
confidence on the extra details (if any) revealed by the method. This practical implication of
the ME method stems directly from its foundations. Further, in the study of inverse

problems as a class, the general basis of the method is of significant advantage for
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algorithm implementation.

4.3.3. Choice of source images

As mentioned in section 4.1.1. of this chapter, images used for test studies are
two-stage products. Source images acquired in the first stage are processed in the second
stage to generate input images suitable for the application under study. The source images
chosen for this study are shown in Fig. 4.8(a), (b) and (c). The eye image is from a
natural object and the text image is from a man-made object. The third image is a simple
two-level computer generated pattern. All images are monochrome images with 8-bit
resolution. A close examination of the checker board in Fig. 4.8(c) will show
discontinuities along the pattern. These 'testgaps' have been introduced while generating
the pattern itself for the purpose of testing. The varying types of these source images can be
seen from their frequenicy domain representations in Fig. 4.8(d), (e) and (f). The reasons
for choosing an eye image for this study are two fold: First, the general features of an eye
are known a prioi and hence provide a certain degree of objectivity basis for interpretation.
The second reason is that some of its features, pupil and its reflection for example, aid the

visual evaluation of deconvolution performance of the algorithm.

4.3.4. Generation of input images

The input images to the test algorithm are the degraded or the transformed images,
obtained from the source images. One of the commonly encountered degradation is blurring
and is obtained by convolving the true image with filter or window functions. The amount

of degradation in the input image depends upon the type of filter chosen. In this study, a3

x 3 'normal' and a 7 X 7 'worst case' filters are chosen. The normal filter is a Gaussian
window. The other filter is called worst case filter because, spatially, it has its 24 border

elements unity, the rest all being zeroes. The transfer function of this filter has many 0'sin
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its pass band, which is an ideal test setting for inversion, specifically in restoration. The
transfer function of these filters are shown in Figs 4.9(a) and (b).

The input images generated using the two filters are shown in Fig.4.10(a), (b) and
(c) along with their respective Fourier spectra in (d), (¢) and (f). The eye image is the result
of convolving the source image in 4.8(a) with the 3 x 3 filter. The other two images have
been generated by convolving the high frequency source images in Fig 4.8(b) and (c) with
the worst case window filter. Comparison of the Fourier transforms in Fig. 4.10 with

Fig.4.8 indicates a high degree of loss of information for the images (b) and (c). The result

of convolving the eye image with a2 3 x 3 gaussian window, on the other hand has a
minimal blurring. It is in fact hard to consider it as a degraded case, because, visually, it
appears smoother compared to the source image. The image still qualifies as a test case for
the studies, because, whatever may be the input image, it is the ME estimate that is under

investigation in the present context. With respect to the application class, these are all

examples of the case

n
di= Y fAjj=1Lernths (4.8)
k=1

The ill-posedness is mainly due to the the singular nature of A. Let us understand these
examples as category-I.

The second category of problems include the inevitable source of degradation, the
noise terms. In generating noisy input images, the noise terms (zero mean Gaussian noise)
are first generated and added (signal independent terms) to the blurred image. Fig. 4.10(g)
is one such image with the noise terms of standard deviation of 19.13 added to the blurred
eye image in 4.10(a). Its frequency spectrum is shown in Fig. 4.10(h). The signal to noise

ratio of the input image is 9.17dB. The image falls under the class

d = 2 filAx+epj=1s.-0. . (4.9)
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where the e;'s reprent the Gaussian noise error terms. Here, the ill-conditioned nature of the
problem is due to the singularity as well as the randomness in the input data.

The third category is a simple example of reconstruction obtained by uniformly
skipping the image samplcg. The input image in Fig. 4.10 (i) is an undersampled image
with 94% of the image discarded (the size of the input image is 16 X 16). Its frequency
domain representation in Fig. 4.10(j) exhibits the under sampled nature of the input by its
spectrum repetitions within the image window. The major purpose of including this
example is to infer the applicability of the solution technique for a different measurement
function A and hence a different Q function. Therefore, the input samples are assumed to
be in the frequency domain. Applications of Fourier synthesis in radio astronomy belongs

to this class and the measured inputs are of the form (without noise error terms)
& 2nik
Dy = 2 t}exp(-i—nl—)fork=1, ------ m<n (4.10)
j=1

where Dy is the complex frequency sample and i =-1. The function A in this case is the
complex exponential basis function with sine and cosine frequency components.
Accordingly, in the procedure, the function Q is defined in terms of complex frequency
values at known sample points. That is
of) = T |pe-Fef (4.10.1
ke D
where D is the domain formed by the known frequency samples. ffk is the kth frequency

component of the estimate. The ill-posed nature of this problem class is due to

incompleteness.

4.3.5. Results of the ME estimation

The ME relaxation algorithm was run on the five examples explained above and the
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results upon convergence are shown in Fig.4.11(d)-(f) for the first category of inverse
problems. The input images are also shown for comparison. The features of the eye image
appear notably enhanced in Fig.4.11(d). The ME performance, more appropriately, the
performance of the ME method in a relaxation approach, needs further investigations in this
example. Discussions are postponed to the end of this chapter. Evidences for restoration
come from the severely distorted cases shown in Figs. 4.11(e) and (f). Particularly in
4.11(f), it may be noted that the results have faithfully followed the 'test gaps' of the
source checker board pattern.

In running the algorithm on the noisy image, no noise variance was specified. Fig.
4.11(g) shows the ME estimate. The justification for noise reductionr comes from the
residual test, already explained in Fig 4.7(b). More tests in the study of the noise
performance are discussed in the following section. Comparison of Fig.4.8(a) with Fig.
4.11(h) shows a satisfactory reconstruction performance. All these results are evaluated

quantitatively for their performance further in section 4.3.8.

4.3.6. Restoration in presence of noise-discussion

One of the disturbing factors with the result in Fig 4.11(g) is that it pertains to
iteration 6, which as can be seen from the parameter variations in Fig. 4.4 (1), is not a
converged result. Visually , the results upon and after convergence did not appear smooth.
To reason out this behaviour quantitatively, the algorithm was run on the same input but
with lower noise level (signal to noise ratio of 16.49 dB) shown in Fig. 4.12 (a). In this
case, the results have shown a satisfactory performance upon and even after convergence.
The zesult at iteration 10 is shown as an example in Fig 4.12(b). For both cases ( 9.17 and
16.49 cases), the variations of the stardard deviation of the noise residuals are calculated
and plotted as a function of iterations in Fig 4.13. In the 16.49 dB case, the residual
standard deviation is close to unity upon corivergence. The 9.17 dB case on the other hand,

shows unit value at iteration 6, which corresponds to the visually pleasing result. Upon and
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after convergence, the histogram shows a value close to 0.5 as implied by the narrowness
of the residual histograms. This means that the agorithm, in the process the relaxation,
attempts to fit the input data too closely after some stage But at iteration 6, the
deconvolution performance would be unsatifactory. Hence the results did not appear
smooth in the case of 9.17dB upon convergence. It follows therefore that in presence of
noise terms, there is an optimum level of performance depending on the level of noise in
the input, which can be found by the algorithm from the residual standard deviation
calculations. It is however anticipated that the noise optimum problems can be resolved
efficiently with suitable design techniques to control the convergence process for the noise

terms independent of the data.
4.4. PERFORMANCE EVALUATION

The purpose of this section is to evaluate the usefulness of the ME method in
applications related to inverse problems. Evaluations of this type are in general carried out
by comparative studies with the standard techniques for a given application. Here, the
deconvolution problem is considered and the performance of the ME method is studied
along with two standard algebraic techniques of restoration namely, inverse and the
constrained least squares (minimum mean square error) filtering techniques [28], [29],
[30], [39]). The worst case images in Fig 4.8(b),(c) and 4.8(a) are chosen as inputs for the

study.

4.4.1. The algebraic techniques of restoration
In inverse filtering approach, an image is restored in two steps, first, by finding

the Fourier transform of the true image using the relation

~

__k.D
=F.. 4.11
Hy k ( )
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In the discussions of this section, the upper case letters denote the discrete Fourier
transforms of the corresponding spatial signals denoted by lower case characters. In
standard restoration terminology, h is the point spread function (one of the measurement

functions A in the ME method). k is a frequency variable that stands for (k1, k2) in two

dimensions. The transfer function of the inverse filter in (4.11) is 1/ Hy Performing the

inverse fourier transform operation
f = FUF) (4.11.)

gives rise to an estimate of the true image. The symbol F-1 denotes an inverse Fourier
transform operation. In the regions where the values of Hy are zeroes or small, the
restored result becomes unreliably high. If both Hy and D, happen to be small at high
frequencies, then the image quality becomes severley distorted. In practice, the difficulty is
overcome by truncation of H to its limited neighbourhood, eliminating the values close o
0. The performance of inverse filtering will be worse in presence of noise because the filter

design does not include the underlying noise process. In presence of noise, one can use the
Wiener filtering approach. Assuming additive noise, the transfer function H; of the
restoring filter in this approach is given by

__Hy
[t P + ]

H, can be used in the same way as in (4.11) and (4.11.1) to find the true image estimate.

H = (4.12)

Onx is the noise power spectral density term. An improved form of (4.12) resuits from a
stochastic process model for the ideal image field with known power-spectral density of

¢gand a zero mean. The restoration filter in this case has been shown to be
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Hy = — & (4.13)

{l H +-ql‘-'k-]

Orx
In practice, the image field power-spectral density will be unknown and there are many
variations of (4.13) reported in the literature. One such technique is the constrained
least-square filter developed by B.R. Hunt [39], [25]. Itisa parametric restoration filter

with a transfer function of the form

Hy \
Hi = , (4.14)
“ [P + plod]

p is a design constant and C, is a design spectral variable constraint related to the human

visual system.

4.4.2. Comparative study

The two techniques were applied to the worst case images along with the ME
method. The results are shown in Fig. 4.14. As pointed out earlier, the fundamental
difficulty with the chosen filter is that its transfer function has many zeroes in its pass band.
The inverse filter is therefore not physically realizable and a large truncation approximation
is necessary. Expectedly, the performance of the inverse filter is not satisfactory. The
least squares filtering improves the situation but is still not satisfactory. Improvements may
however be possible with carefully chosen design parameters.

The techniques being non-iterative, are computationally simple compared to the ME
methods, but functionally have many drawbacks. In both techniques, the practical
truncation limits and the design parameters are often found on a trial and error basis. As a
result, the functional performances of these techniques vary significantly with varying
inputs and blur conditions. Adjusting the parameters for the required performance becomes
difficult and impractical. The term 'required performance’ needs special awention. It refers

to a subjective assessment, which as noted all along, is acceptable on the grounds of lack of
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a quantitative measure for the quality of an image. But, it seems to have a more significant
role for the techniques. The techniques rely upon the subjective evaluations and the
understanding of 'image quality’ for the possible design improvements. This implies that
the lack of understanding of image quality has a direct impact on the progress of the
techniques. A reasonable way to improve the filter design techniques is to improve the
existing techniques based on some definite purpose, or to use ad-hoc techniques to study
their effects on the final results. Unfortunately, in both cases, there lies ahead the problem
of distinguishing the artifacts from the useful features.

The results obtained using the ME method are shown in Fig. 4.14(d). They are
relatively free from ringing artifacts of inversion. More importantly, the method does not
require any ad-hoc procedures for its functioning. Yet, its performance shows consistency
with the different types of inputs considered for the study. The objectivity of the solution
(explained in section 4.3.2) and the miminum interference of the artifacts contribute
significantly to the visual evaluation of the results. The result obtained with the eye image
in Fig. 4.11(d) indicates this possibility. Starting from the visual evaluation results of Fig.
4.11(d), significant developments become possible by using the ME method. It appears
that the compntational tediousness of the method is not a major issue compared to the
magnitude of the problems of inversion. On the other hand, its impact on implementation is
a matter of concern, but not a problem from the stand point of current technological
developments. Studies show that the current technological developments are encouraging
for the implementation of the ME method in general, particularly, for relaxation schemes.
Along this line of reasoning, the relaxation approach proposed in this thesis work shows a

promising direction for implementation. The implementation issues are covered in chapter

7.

4..4.3. Mean square error evaluation

In practice, many image processing applications make use of image fidelity
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measures for performance evaluation. One of the simplest and standard measures of
performance with discrete (sampled) monochrome images is the normalized mean square
error measure [28]. The measure is given by

"

R

NMSE = &=L

n
2 £
j=1

(4.15)

where the f; represents the true data and the ?J represents the estimated data. In cases where
the information on true image is not available, f; and i’; are replaced by the input data d;and
&j, with the latter calculated using f‘; Some times, the measure is conveniently expressed as

a signal to noise ratio in dB using the relation

MS(SNR) =-10 logio (NMSE) (4.10.2
The higher the dB value, the better is the performance of a method in following the true
signal. Based on (4.10.1), the measures are calculated for the input and the restored
images in Fig. 4.11(a)-f and 4.11(a)-(d). In these calculations the wrap around error terms
are eliminated since these error terms are inevitable in a convolution operation. Fig. 4.15
shows the performance of the ME method alone for the inputs 1-5. The inputs 2 and 3 and
5 have improved by 40%, 86.4% and 86% respectively by using the ME method. The
increased error level with inputs 1 and 4 is as expected, because the results show certain
characteristics that need visual evaluations and further investigations. The mean square
error measure does not include these characteristics. Fig. 4.16 shows the results of
comparative studies. The error level in the ME estimate for input-2 has reduced by 58%
with respect to the constrained least squares approach. Fer input-3 it shows a reduction of
87%. The result with input-4 is as noted above, ambiguous because of the above

mentioned discrepancies.
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4.5. OBSERVATIONS FOR FURTHER INVESTIGATIONS

As noted earlier in section 4.3.5, the algorithm has restored the eye image in
4.11(d), with marked enhancement. The result pertains to iteration 9. The results at few
other iterations, 2, 4 and 12 are shown in Fig. 4.17(a), (b) and (c) to show the sequences
of changes in the process of restoration. The appearance of the iris at iteration-4 and the
predominance of many features at iteration-12 gives rise to the possibility of the presence of
an enhancement mechanism hidden in the procedure, which becomes operative in the
relaxation process of restoration. This behaviour is also seen with the example in Fig.
4,12(b) that has minimal blur and noise. The fact that these examples have minimum levels
of degradation leads to the formulation of a special test for the procedure. The simple
pattern shown in Fig. 4.18 (a) was generated for this purpose. The basic idea behind the
test was to investigate the performance of the algorithm with no degradations in the input
data. Such a case does not fall directly under the class of inverse problems in (3.1). In

order to run the algorithm on the undegraded input, the input samples are assumed in the

frequency domain and the algorithm performs restoration based on (4.8) with m =n. The
results of this test showed an unexpected behaviour. They are shown in Fig. 4.18. The
bright and dark bands that appear (faint appearance) in the input image in Fig4.18(a) are
due to our perception well known as Mach’s bands. The predominant bright and dark
bands appearing in Fig. 4.18 (b), on the other hand, are the results of the ME method using
a relaxation algorithm with no degradations. This observation is the motivating factor for

the next chapter.
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Fig. 4.1 Algorithm for test studies
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Fig. 4.2 Inputs to the algorithm
(a) input-1; (b) input-2; (c) input-3; (d) input-4; (€) input-5; (f) input-6.
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Q variations for (a) inputs 1 - 3; (b) inputs 4 - 6.
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Fig. 4.7 Intermediate error histogram variations.

(a) in the absence of noise; (b) in presence of noise.
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(a) (b) (¢)

(d) (e) (f)

Fig. 4.8 Source images and their frequency spectra
(a) image - 1; (b) image - 2; (c) image - 3.

Display of log(1+Fy)): (d) image - 1; (¢) image - 2; (f) image - 3.
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(a) (b)

Fig. 4.9 Transfer functions of the window filter

(a) 3 x 3 'normal’ Gaussian filter; (b) a 7 X 7 'worst case' filter.
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(a) (b) (¢)

(d) (e) (f)

Fig. 4.10 Generated input images and their frequency spectra
input images: (a) input - 1; (b) input - 2; (c) input - 3.
Frequency spectra of: (d) input - 1; (e) input - 2; (f) input - 3.
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Fig. 4.10 Continued. Generated input images and their frequency spectra
input images: (g) input - 4 (blurred and noisy; S/N ratio = 9.17dB); (i) input - 5 (under
sampled, 94% of the data discarded); Frequency spectra of: (h) input - 4; (j) input - 5.
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(a) (b) (¢)

(d) (e) (f)

Fig. 4.11 The degraded inputs and the ME restored images
input images: (a) input - 1; {b) input - 2; (c) input - 3.
restored images of: (d) input - 1; (€) input - 2; (f) input - 3.
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(a) (b)

Fig. 4.12 The ME performance for reduced noise level input
(a) input (S/N ratio = 16.49 dB) (b) ME restored result at iteration - 10

7 N"‘x mwemg==_S/N ratio:16.49dB
6 \ wemea= S/N ratio:9.17dB
57 \"a
P

o \
3 ., \
27 ‘~.

.~. ol

17 ﬂ..,

0 ' ;
0 2 46 8101214

iteration

Fig. 4.13 Noise performance characteristics in the observed results.



Fig. 4. 14 The ME Vs algebraic restoration

(a) Degraded inputs: (b) Inverse filtering: (¢) Constrained lcast squires

filiering: (d) ME method.

113

(b)

(c)



114

O input error
B maximum entropy method

mean square error

1 2 3 4 5
images

Fig. 4.15 Performance of the ME method in restoring inputs in Figs. 4-11
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Fig. 4.16 Performance of the ME method in comparison with the standard methods
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(a) (b) (c)

Fig. 4.17ME iterative improvements for the eye image in Fig. 4.11(d)
(a) iteration-2; (b) iteration-4; (c) iteration- 12.

4.18 A test pattern and the observed ME estimate (a) input-6; (b) output at iteration - 10.
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CHAPTER 5

MACH BAND BEHAVIOUR OBSERVATIONS - A SPECIAL
TEST CASE STUDY

Test results of the simple pattern in chapter 4 are investigated in this chapter. The
primary objective of this study is to identify the underlying mechanism (if any) that led to
the formation of the unexpected additional bands in the test pattern. This is done in three
phases: in the first phase, experiments are planned and carried out to obtain more evidence.
Interestingly enough, results show striking similarities to some of the psycho-physical
characteristics of the Mach band phenomencn in biological visual systems. In the second
phase, the procedure is investigated analytically to identify the underlying enhancement
mechanism. Using the results of this test study, attempts have been made to account for the

various observations in the third phase.

5.1. TEST STUDIES AND DISCUSSIONS

The 2-D intensity gradient patterns similar to the one shown in Fig.4.18(a) are used
for most of the test studies reported in this chapter. Following the terminology of biological

models, they are some times referred to as the 'stimulus' patterns. Fig. 5.1(a) shows the
test features of the pattern. It is a computer generated pattern of dimensions 64 x 64 with

the gradient area of 10 X 64 pixels, with two edges, el and e2. The intensity slope of the
pattern is the ratio between the illuminance intensity difference and the width of the gradient
region. The uniformity of the intensities in one of the directions (here Y -direction) allows
an elegant representation of the inputs as 1-D intensity profile distributions. The test
studies, as discussed under section 4.5, involve running the algorithm shown in Fig. 4.1
with Q/of suitably modified for the type of input. The resultisa ME estimate of the input

pattern, sometimes referred to as the ‘response’ pattern.
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5.1.1. Test results of the ME estimation

The ME estimate of the pattern in Fig. 5.1(a) was already shown in Fig. 4.18(b).
The pattern was observed in the absence of the restoration process in the procedure. The
1-D intensity profile of the estimate is shown in Fig. 5.2 along with the input for
comparison. As expected, the response is uniform over the constant intensity regions.
Near the edges, the response shows unexpected overshoots and an undershoot. The
overshoots have appeared near the convex and concave edges and the undershoot near the
concave edge alone. Further, they are not observed exactly at the edge points e1 and e2, but
close to them.

The responses with varying input patterns were studied using a set of patterns
similar to 5.1(a), but with different gradient slopes. The gradient areas of the patterns were
0, 5, 10, 20 and 25 pixels wide in the X-axis direction and 64 pixels in the Y-axis
direction. Their profile plots are shown by the plots in Fig. 5.3(a) and (b). The ME
estimate for each of these patterns is shown in Fig. 5.4(a) and (b). In another test, the
slopes of the pattern were modified by changing the illuminance intensities. The responses
are shown for two different gradient widths in Figs. 5.5(a) [the inputs are not shown in
this case for clarity]. All the test responses show overshoots and undershoots near the
edges. More importantly, the widths and amplitudes of the overshoot and the undershoot
responses have undergone a regular modulation depending on the gradient slopes. The
characteristics of the overshoots and undershoots will be discussed shortly.

In the next test, the sensitivity of the estimate response was tested with the pattern
shown in Fig. 5.6(a). It has 4 adjacent edges as close as possible to each other near the
overshoot edge. The ME estimate of this pattern is shown in Fig. 5.6(b). The response
shows evidences for the presence of all the adjacent edges. Their correpondences with the
concavity or the convexity are not interpretable because of the shifts in the undershoots and

overshoot responses. Nonetheless, the test results have given rise to an important clue.
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5.1.2. Mach bands

The ME algorithm response to the selected test patterns are found similar to the
Mach band behaviour in biological visual systems. The presence of enhancement
mechanism in biological visual systems was first established by Ernst Mach (1838-1916)
through the discovery of the Mach band phenomenon. The phenomenon shows the
response of the biological visual system around the boundary regions of different
intensities [29], [80], [81]. Whenever an edge pattern consisting of a black and white
region (stimulus pattern) is presented to the eyes, two additional, unexpected thin light and
dark strips will be perceived near the edges (this can be checked visually in the figure Fig.
4.18(a)). These unexpected additional bands are referred to as Mach bands. Using
psycho-physical experiments, the characteristics of these bands were studied, the reports of
which can be found in the literature [80]. The following section gives an account of the
reported experimental evidences relevant to the test studies explained above. The
information for the following section has been obtained from the book by Ratliff [80],

which contains the translated version of the original works of Mach.

5.1.3. Mach band characteristics in biological visual systems

The characteristic of a typical Mach band as reported in the literature is shown as a
schematic diagram in Fig 5.7 (a). The characteristic pertains to the stimulus pattern of type
shown in Fig. 5.1(a). The amplitude and the widths of the bands have been found to vary
with the slopes of the gradient in the stimulus pattern. Specifically, it has been reported
that as the slope decreases, the width of the bright band becomes wider and disappears
altogether for gradual slopes. The widths of the dark bands on the other hand, have been
observed to remain constant over a range of slopes. The reports on the dark bands do not
appear conclusive, perhaps because of the limited measurement capabilities of the

equipment available during Mach's time. Also, the position of the bright band with respect
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to the flexion point has been reported to be subjective, varying from observer to observer.
The bands were found either symmetric around the point of flexion or into the bright field.
Results however appear conclusive on the behaviour of the bright bands. More
importantly, the widths of the bright bands are narrower compared to the dark bands. With
respect to their positions, the two bands are strongly asymmetrical. The reported

characteristics are shown in their schematic form in Fig. 5.8(b).

5.1.4. A comparison

Visual comparison of Figs. 5.4 with 5.7 and 5.8 shows strong similarities with
respect to the asymmetry of the bands and the behaviour of the bright bands for the varying
widths of the stimulus pattern. The bands, in one dimension, refer to the overshoots and
undershoots of their intensity profile. The shift in the position of the bright bands is another
notable feature. Comparisons are not attempted on the dark band characteristics, since the
report evidences are understood to be inconclusive. However, the similarities of the ME
algorithm response with the Mach bands near the bright band are supportive of the
presence of a hidden enhancement mechanism in the relaxation procedure of the ME
method. It is also quite possible that the mechanism is interpretable in terms of the models

of biological visual enhancements reported in the literature.

5.1.5. Need for suitable parameter settings

Encouraged by the initial results with simple pattern, examples of complex
perceptual test patterns typically used in Mach band studies {80] were considered for the
test studies. Multi-gradient steps, staircase, simultaneous contrast test patterns are some of
the kinds that were tried and the ME algorithm results were not found favourable.
Following the discrepancey, the inital tests were rerun with modified values of f and A.

With the modified parameter values, the overshoot amplitudes and widths varied

significantly and the results could not be interpreted. A sample response with varying B is
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shown in Fig. 5.9(a). Infact, the response in Fig. 5.5(a) itself is the result of using a
specific value for B, determined on a trial and error basis. These test conditions, combined
with the fact that the responses do not have any external functional influence (absence of
restoration) suggest that the parameter settings of the relaxation process have a major
bearing in the Mach band functional performance of the ME algorithm. In this sense, the
simple pattern case is only a specfic test case. The lack of a suitable parameter setting is one
possible reason for the failure with the complex patterns. A possible strong reason comes
from the ME method itself. The estimation approach for the above test conditions make use
of the single constraint ME method. In this approach, the parameters A and B are global to

the stimulus pattern. Perhaps, the global parameter setting applies well to uniform stimulus

patterns. If this argument is true, then the standard ME method with m constraint
parameters in a relaxation approach is expected to yield favourable responses with complex

patterns.

5.1.6. The behaviour conditions of the algorithm for Mach bands

One of the useful pieces of information for the study of Mach bands comes from
ME response variations in the process of relaxation. Fig. 5.10(c) shows the sequences for
an arbitrarily chosen pattern of slope 100/10 . It shows that the bands with typical Mach
band features appear only at iteration 10. After the 10% iteration, the dark bands begin to
disappear, while the bright bands still persist. This observation turns our attention to the
recorded behaviour characteristics of the procedure discussed in chapter 4 to find the
'uniqueness’ of the iteration 10. The input-6 variations in Fig.4.4 provides the required
information. The variations of entropy shows that between iteration 9 and 10, the phase
when Mach bands are observed, the entropy measure has just crossed its active phase and

entered the termination phase. Conclusions are however not obtainable from this result

because of lack of enough evidences.
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§.1.7. Test study inferences-summary

The observations reported in chapter 4 along with the test results of this chapter are
summarized below before proceeding with the analytical studies. Input images with
minimal blurring conditions, when subject to the ME restoration process under a parameter
relaxation scheme, gave rise to estimates with markedly enhanced features. The degree of
enhancement was observed to increase with increasing iterations. The enhancement effects
were also observed in the absence of a restoration process, under undegraded input
conditions, using the ME parameter relaxation algorithm. In the latter case, a specific input
pattern showed similarities with the psycho-physical characteristics of Mach bands in
biological visual systems. The similarity was marked by the asymmetry and the amplitude
as well as the width modulation of the bright bands with varying slopes of the input
pattern. Also, a difference was noted in the functional performance of the ME algorithm
between in the presence and absence of restoration. Unlike the presence of restoration case,
the enhancement effects diminished with increasing iterations in the absence of restoration
case and the bands appeared at a specific stage, when the entropy variations were at the
crossing stage of the active and the termination phases. All these observations pertained to a
simple test pattern. With more complex patterns, the anticipated enhancement effects were
not observed. This failure was attributed to the globalized nature of the parameter settings
in the relaxation process, resulting from the use of the single constraint ME method. In

general, the parameter settings of the procedure were found to have a significant functional

influence on the responses.

5.2. ANALYSIS - STAGE 1

The test conditions under which the enhancement effects were observed fall into
three different classes. In the test studies with the simple pattern, no degradation effects or
filtering were present and the parameter settings alone were found responsible for the

enhancement effects. The restoration results of chapter 4 on the other hand, had the
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restoration mechanism as well as the parameter settings. For analysis considerations, we
can introduce an intermediate test class of the simple restoration without any parameter

settings.

5.2.1. Test class-1

Let us consider the true (unaveraged) ME estimate at any iteration i, obtained as a

result of applying the parameter relaxation algorithm. Rewriting (3.50.1)

(i - i)
50 _ foexp { -’%}. 5.

The function Q corresponds to the undegraded input for the test class and is given by

¥ = _1_“ ‘((t) )2 (52

2ni 1 o1 1=0

Ty . . . .. . =,
£j® is the intermediate estumate of iteration t. The actual calculation of Q in the procedure
takes place in the transform domain and here it is written in its equivalent spatial form for

analytical convenience. From (5.2)

Z(f fi

0Q" _ w0 (5.3)

af; in

z 7 . . - :
f(® has been replaced by f; for notational convenience. A assumes its usual form

following the procedure requirements and is given by (3.48). For present discussions, let

us denote it as a function ¢; . That is

i
Z E.K(% Ql forJ =ljee-es . (5.4)
r=0

with A© = 0. The index j is introduced to signify the fact that A is global and is constant
for all the pixels for a given t. Substituting (5.4) and (5.3) in (5.2) and replacing j by p (p



123

stands for a particular element) we get

£ q(i)exp{%igo (fp-?p.)} (5.5)
Altematively
. exxJ &11 fp}
B= g \m‘j" (5.6
exp m‘; e

(5.6) can be expressed in a more general form as

: () exp\ %tfp}
£, =ql »'?0 - (5.7)
CXP{Z ¢p&pt
t=0
where
bp = T fort=0, ..o, (5.7.1)

(5.7.1) is the characteristic function for the test class - 1.

5.2.2. Test class-2

In this class, the true ME estimate is the result of restoration without the relaxation
control parameter f. Also, the analysis does not assume any specific form for A. This class
is only of analytical interest because, in practice, test results are not feasible without control

mechanisms. dQ/of pertaining to the class can be rewritten from (3.16) as

" (] a
9Q _ (2 £h; - d; }a,-k. (5.9)
ofi k=1 \rm

The measurement function A has been replaced by h (point spread function). Substituting

(5.8) in equation (3.13), the ME estimate for the class is:
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x i .
fi=qexp {ﬁ;— ) (Z frhjr-dj)hﬂc}-

k=1 \r=1

The presence of the exponential allows (5.9) to be written in the form

exp { -3‘2'- i djhjk}

k=1

Th

"

Replacing j by p, (5.10) can be expressed as

A Y %hgh |
exp\ozglfk kak}

where
dg = fehpk

Expressing (5.11) in a simple form using ¢

where

(5.12.1) is the characteristic function for test class - 2.

5.2.3. Test class-3
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(5.9)

(5.10)

(5.11)

(5.11.1)

(5.12)

(5.12.1)

Let us now corisider the practical form of the ME estimate in the procedure used in

obtaining the restoration results in chapter 4, Referring back to (3.68), the unaveraged ME

estimate at iteration i is given by
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. 135l
£ i exp {-_(')%% } (5.13
J

Q at iteration i for restoration is given by (3.39) and can be written in terms of the present
notations as
i -
Z 13 (Z fichjic - dj) (5.14)
=0
0Q/fj can be written in its simple form as
a ~ in =
(_;Q_) LYY [G-d) (5.19)
off i ™ 1=0k=1

where
dk; fhhjk (5.15.1

Substituting for A from (5.4) and 0Q/0fj from (5.15), the true ME estimate in (5.13)

becomes

{Z 2. d hpk%t}
1=0 k=1

exp{% 2:‘, A hpkq)p,}

where ¢y, is given by (5.7.1). As in other test classes, j has been changed to p in (5.16).

(5.16)

N

pi= G

Equivalently
’ i n
. €xp \E Z dp Ppie }
/3 =0 k=1
fo= qi {‘i . o (5.17)
123 Y z z die ¢pkt}
\lt =0 k=1
where |
Opkt = hpxOpt. (5.17.1)

Comparing (5.7), (5.12) and (5.17), we see that although the test classes differ, the
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true ME estimates of the test classes reduce to a common form. Within the form, the classes
are characterized by the ¢ terms and the type of variables involved. The type of functional

operations however remain the same.

5.3. ANALYSIS - STAGE I

The test classes can now be expressed using a more general form:

exp{i Oyisp }

o= Gp— - (5.18)
exp{z d,:5; }
i=co

s denotes the signal and @ stands for an arbitrary function that convolutes with s in

determining the reponse at point p. The signal is assumed to be finite with limits cg and

c. The exponential argument ratio term in (5.18) can be expressed as

~ or cr ~

i=co i=co

(5.19) can be written as an inequality relation since RpZ 1. Equivalently

~ or o
Ap = {Z (Dp;sp - Z (bpi?i} ; 0 (5.20)

i=co i=Co
The exponential argument is denoted by A Expanding (5.20)

_, pl - cr -
(‘Dppsp'd’ppgp) £, (d’pisp“ppi?i)*' Y (‘ppisp-‘bpi?i) >50 (5.21)

i=co i=p+1

Ap =

This equation suggests that at any point p, the response corresponds to the summed up
differences between its own response and the weighted functional distances of the

surrounding stimuli. Expressing the summation limits in terms of the relative distances with

respect to the point p
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Let signal s be extended such that the number of neighbouring elements on both sides of p
are equal. The extension procedure will be discussed in detail in the next chapter. With this

extension scheme, the summation limits can be replaced by their finite sizes. This leads to

~ x'\ X i =
(¢PPSP-¢PP§p)+ 2 (‘Dp-Ai(Sp‘sp-Ai»"‘ Z (‘Dp+Ai sp'sp+Ai»} ; 0.

Ai =ct Ai=1

=
Ap =

(5.23)

Without loss of generality the function & can be assumed even and symmetrical , i.e.,

( ‘D(p-Ai) = ‘D(p+Ai))- (5.23) then becomes

~ e _
Ap = {(‘DPPSP - d’ppgp) +2 (' Sp-ai +25p - §p+Ai)¢p-Ai } 2 0 (5.24)
Ai=1

The term under summation can be readily identified as the convolution operation on the
signal with a Laplacian mask -1 2 -1. From these results, we can understand that the

enhancement mechanism is the result of using a filte. function in the ratio form of (5.18)

that leads to a Laplacian operation. (5.24) can therefore be written as

o= ((@0fsy- )+ (v2s(ai)s o(ai) | 2 0 (5.25)
Substituting (5.25) in (5.18), the true ME estimate becomes
§p = q,,exp(tlJ(O‘sp . §p)) exp((st (i ))* alai )) (5.26)

The properties of the Laplacian operation in relation (5.26) are studied in the next chapter.

In what follows, the observations reported in the first part of this chapter are interpreted.
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5.4. INTERPRETATIONS

It was shown in the first stage of analysis that the results of all the test classes that
showed enhancement effects reduce to a common form (5.18). In this form, the classes are
characterized by the function ¢. In the absence of restoration, the equations (5.4) and
(5.7.1) show that the parameter A forms the characteristic function. In presence of
restoration, the characteristic function is jointly determined by the point spread function h
and A as shown by (5.12.10), (5.17.1) and (5.7.1). These cha_racteristic functions when
present in the common form (5.18), lead to a Laplacian operation as shown by (5.26). It
follows therefore that the enhancement effects shown by the test classes 1 or 2 or 3 are the
direct consequences of the hidden Laplacian operation. The Laplacian operator in (5.26), as
will be shown in the next chapter, in general, is not a sensitive edge enhancement function.
This is because, the characteristic function has 2 significant influence on the Laplacian

operation. However, under specific conditions, the operator shows increased sensitivity.

For example, with a point spread function of 3 X 3 size, the Laplacian operator has a
maximum sensitivity. These issues are discussed in the next chapter. The increased
sensitivity of the Laplacian operator is the reason for the enhanced result in Fig.4.11. (d).
‘The prominance of the features with increasing iterations as observed in Figs. 4.17(a),(b)
and (c) follows directly from equation (5.26). As iteratibns proceed, the first exponential
teri ~=nds to 1 because, the estimate approaches ts true limit and the exponential argument
tends 1w 0. As a result, the influence of the sensitive Laplacian operation is dominant in the
estimate.

The above interpretations refer to the classes 2 and 3, where the influence of the
restoration process is a matter of concern. The test class-1 is also susceptible to similar

arguments because of the common form and the enhancement mechanism. But unlike the

point spread function in (5.17.1), the type of influence of ¢ on the Laplacian operation is
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not clearly known for this test class. Further, the parameter B cannot be overlooked in the

interpretations, because the final estimate that showed the Mach band characteristics is the

result of relaxation, obtained with

ffj(n) - i ﬁp(i-nfg(i) (5.27)
i=0
where
Bin) = (1-p®) (1-pCD)...... (161 ) g0 (5.27.1)

with g-(i) given by (5.26) and with f replacing the signal s. For the same reasons, the
association of the entropy measure with the appearance of the bands in the estimate are not
predictable. In short, the interpretations for this class need more investigations.

The common form (5.18) shows strong similarities to Mach's model. Mach's
model was suggested as a possible neural network by Mach himself to account for the
observed Mach band behaviour [80]. The model however remains obscured, perhaps
because it was suggested before electro physiological evidences became available. The
following chapter investigates Mach's model in detail, to explore its possible links with the

ME estimation procedure.
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CHAPTER 6

STUDIES ON THE MACH'S BIOLOGICAL MODEL OF
VISUAL ENHANCEMENT

The mathematical similarities of the ME estimation procedure with Mach's model
need further investigations because, the results evolve from two different perspectives:
computational and biological. Further, the obsoleteness of Mach's model, its appearance in
connection with the ME estimation and the striking similarities with psycho-physical
characteristics all need a satisfactory link for a bet:-~ understanding. This chapter
investigates the links by analysing Mach's model. The ideas arising out of this attempt are

extended to the possibilities of using the ME method for edge detection and enhancement

applications.

6.1. STUDIES ON MACH'S MODEL

Following the discovery of the Mach band phenomenon and the studies on
psycho-physical characteristics, many neural network models were proposed, including
Mach's model. These early models fall into the category of stimulus dependent (linear and
non-linear) type [80]. Mach's model, in particular, is a non-linear, stimulus dependent
model. When the electrophysiological studies on the eyes of Limulus (a marine arthropod)
demonstrated the lateral inhibition phenomenon (inhibition of each receptor upon its
neighbor receptors on the retinal surface) as the underlying cause of the Mach band
phenomenon, new models began to appear under the class of response dependent
(simultaneous-linear) type. With the change in the model class from stimulus-dependent to
response-dependent, Mach's model went obscured. The analytical results of chapter 5
suggests the possibilities for a 'hybrid' model. Striking similarities with psycho-physical

characteristics lead to the interpretation of the ME approach as a response-dependent
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Mach's model. Following the aim of this thesis work, attention is focused on the possible
developments of the ME algorithm with Mach’s model as the basis, rather than the

development of a ME visual model.

6.1.1. Mach's model - an overview

In its proposed form (as reported by Ratliff and modified here for consitency

notations) Mach's model is given by the relation

L (6.1)

where, 1p is the neural activity discharged from a particular element p (neuron) the stimulus

intensity fp. Mach's model, as can be seen from (6.1), has foreseen the fundamental

inhibitory mechanism of biological systems before conclusive evidences became available
through electrophysiological studies. Therefore, the obsoleteness of Mach's model is not a
matter of concern for the analytical studies in the following sections.

The numerator term of 6.1 is the excitatory influence due to the stimulus intensity
alone and the denominator is the inhibitory influence at a particular receptor p due to the
intensities from the neighbouring receptors. Mach believed that the function ¢ must be
decreasing with increasing distances of the neighbouring receptors from p (this means that
the elements nearest to one another exert a greater influence upon each other). The distances
are denoted by the symbol & in (6.1). The individual inhibitory influences exerted on any
particular element are additive. However, the model is non-linear, because the resulting
neural activity from any element is the product of the intensity on that element and the ratio
of excitatory and inhibitory influences.

A simple distribution which illustrates Mach's model is the step pattern, such as the

one encountered earlier in Fig. 5.1(a). The pattern satisfies the following inequalities at the
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edge points e1 and €. At €]

£ > f, for >P. (6.2
The numerator term of (6.1) being a low constant, is less than the denominator term,

satisfying the condition
n n
T iy Aa< 3 fSpla; (6.3)
. ). J
=1 j=1
The result is p < fp - Hence an undershoot is expected at e;. At e we notice

fi<f, forj<p (6.4)
leading to the relation '
n n
) ,0l5p) 22 > 3 £0(05) Aaj. 6.5)
J: J=

The condition (6.5) implies that rp > fp, which implies an overshoot at e;. An example of

this result is shown in Fig. 6.1 with the function ¢(5p;) given by

o(8p)) = I'slp,_l (6.6)

considering only the first 16 neighbouring elements. Spj denotes the distance between the

receptor elements p and j. The important feature to be noted is that the response is
non-linear with the amplitude of the overshoot higher than that of the undershoot. This

asymmetry, as noted earlier, is one of the important features of the Mach bands observed

in the experimental studies.

6.1.2. The underlying mechanism of enhancement

Since Mach's model falls directly under the general form (5.18), the derivation
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steps of this section follow closely the ones reported under 5.3.4, but in a different context.
The analysis is carried out in 1-D for convenience. Considering the ratio term Ry, of (6.1)

for a particular element p we can write

Ry === —. (6.7).

The term fp in (6.1) has been replaced by I in (6.7) for generality. Let us assume that all
receptors have an equal surface area Aa. Expressing (6.7) as an inequality relation and

denoting it with Ep, we obtain

n n <
Ep =[1p j§1 ¢(3p;) da - j)_:l 5; o{3pi) Aa] > 0 (6.9)
Let us express (6.8) in terms of the responses from the receptor area of the particular

element and its neighbouring area:

1 1
1{(;3: doghe B ¢(s,.,,)+¢(s,,,,)) ra C’z o & 1kt + Ipq,(aj,,)) Aa}; 0

=1 j=p+l =] j=p+1
(6.9)

Grouping the receptors yields

4 n
LZ-I (190(%pi)- o Bpia +. 2 | (Ip¢(8pj)-lj¢(5pj))Aa] 20. (610
The self inhibitory terms get cancelled in (6.10). Replacing j in terms of its relative distance

8pj from p results in

>
20 (611

“ et daj")M}”{aE: fripeay) A

Sjp=p-1
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where
8jp=xp-xj i6.11.1)
Bpj = Xj - Xp- {6.11.2)

The function ¢(8p;) is assumed to be real and even so that §(5p;) = ¢(3;p). For analytical

purposes, let us extend (virtual extension) the neighbouring receptor fields to n without
affecting any of the receptors under the active region. The extension procedure is discussed
in detail in the next section. The basic idea behind the extension for (6.11) is to make the

summation limits equal with respect t0 p. Equation (6.11) then becomes,

,g_l [+ To-8ip*2%p" Tp+33p) of8ip) 42| 2 - (6.12
P

(6.12) has a Laplacian term often denoted as

= v2r_|3.
[+ Tp-8i*28p - Tp+dyp) = ¥ To (8ip): (6.13
(6.13) is a convolution cperation of Ip and the Laplacian mask -1 +2 -1]. Substituting

(6.13) back in (6.8) yields

n

>
Ep = Z VZIp {ijMajp) < 0. (6.14)
Sjp=1
Subtracting 1 from both sides of (6.7) and substituting for Ep from (6.14), we can arrive at

an alternative expression form for Mach's model:

LY Ve do

Sip=1
B, = — +1p. (6.15)

g.l 1 0l8p)

(6.15) shows that the underlying mechanism of the model is Laplacian with the same form

derived in (5.26) for the common form of the ME estimation procedure.
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6.1.3. Boundary correcticsi procedure

The derivation steps above made use of an extension procedure to equalize the

number of neighbours for an element p. Extension becomes necessary when

p-8p< landp+8;p> 1. (6.16)
Under this situation, the functional invariance of the Laplacian operation is satisfied in

(6.13) if
> .
Ip+dy < 1p EPjp<1 (6.17.1)

> .
IP‘%'p < Ip 1fp+5jp <n. (6.17.2
(6.17.1) and (6.17.2) are realized in (6.13) if
Ip'ajp = P+5jp ?fp'sjp <l1. (6.18.1)
IP"'Sjp = p_qp if p+8jp >n (6.18.2
This is indeed mirror extension, one of the commonly encountered boundary correction

techniques in image convolution operations. Instead of extending the sequence, correction
terms can be added to (6.7) depending on the numbes of neighbours in the function ¢.

That is
(tp+;) ofjp) ifpSjp<1 (6.19.1
(1p-55p) ¢{5jp} if p+Sjp > (6.19.2

For a given p and Spj, the correction terms (6.19.1) and (6.19.2) can be added to (6.7).

6.2. LAPLACIAN OPERATOUR IN THE MODEL

Rewriting the enhancement mechanism of the model given by (6.14)

n
Rp= 3 V{plelp) 2 0. (6.20
8jp =1
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where n is the order of ¢ ( 1/2 (number of coefficients-1). (6.20) can be expressed in a

simple form
>
R, = LgnTpn' ¢ © (6.21)
where '
Lon = [-0n On-t--- 0.1 Q0 6 0n 1 u) (621.1)
with
n
0o = 2, b (6.21.2
i=1
Also
In = [Ip-n % SERIRRLE Ip-1Ip Tpst oo Ip+n -1 Ip+n] (6.21.3

The coefficients of ¢ are in the form Lon. As can be seen from (6.21.1) and (6.21.2),

irrespective of the type and order of ¢, the elements of L always satisfy the condition

+n
Y & =0 (6.22)
i=-R

There!~* Lon can be expressed as a Laplacian in (6.21) resulting in

>

< 0. (6.23)

2
R, = Ven' Lpn'
When the operation over the whole image is considered, we obtain
R = Von *L (6.24)
Alternatively
R = V(I*Ln) (6.25)

The symbol * denotes convolution operation. Because of convolution, the Laplacian

operation in the model is strongly influenced by the type and the order of ¢. With the

specific one neighbour case n = 1, (6.24) becomes

R = Ven *I = VA1*¢) (6.26)
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which is a standard Laplacian operation. With increasing order of the filters, there is a
problem of decreased edge sensitivity due to the convolution operation. But using (6.20),
we can infer that the fundamental component (the order 1 component) remains hidden in
(6.20). By subtracting the higher order Laplacian responses, it is possible to remove the
fundamental. Such an approach is however not practical because of the significance of the
convolution operation in noise reduction. In presence of noise (zero mean and additive), a

higher order increases the number of summation terms and hence noise is reduced by

averaging. Let the input be
g =l + & (6.27)

Replacing Ip by gp in (6.21)

>
Rp = Lyn(lpn + &)’ < O (6.28)
where L¢n and Ipn both take the same form as in (6.21.1)-(6.21.3). The noise terms Epp
are given by

&pn = [ep-ll €p-p -l € -1 € Epsl --- Ep+n -1 €p+l|] (6.29)
(6.28) and (6.29) shows that with the higher order filter the noise terms (0 mean)
effectively get cancelled thereby reducing its effect on Rp. The standard deviation ¢ of the

noise in the result varies inversely with the order of the filter ¢, following an error

reduction operation by averaging .

6.3. IMPLICATIONS

Edge enhancement is an important operation for many image processing
applications. Laplacian operation is one of the popular edge enhancement operations (wiif
no reference to edge direction), best understood as the convolution of an image with a

Laplacian mask [28], [82], [83). The masks are often generated with coefficients satisfying
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the fundamental condition in (6.22). Examples of such masks are

-1 -1-1-1
4-1 -18-1 -24-2 (6.30)
-1 -1-1-1

O.—-O

(@) ®) ©
The Laplacian operation in Mach's model on the other hand has no external representation
as :n (6.30). It is inherent in the model itself in the form (6.15). Besides Laplacian, there

are many other ¢nhancement operations scattered throughout in the image processing

literature.

6.3.1. Unsharp - masking Vs Mach's model
With a normalized ¢, Mach's model can be written in the form

-
. - X fitw
—f:-1= = (6.31)
2 fi0p
| =l i
After simplification we obtain
fp-f = ) (6.32)
where
£1= 2 fi0p (6.32.1)
=l

Multiplying (6.32.1) by a constant ¢ and adding fpj on both sides we get the relation

for + o{fp - ) =°fp1(§ff- 1 +%) (6.33)

The left hand side term can be recognized as an unsharp masking operation , a well known
technique of edge enhancement used in electronically scanned images [84]. It is a simple

linear technique, where an image is subtracted from its blurred version in order to
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a.centuate the edges. fpl is a low pass filtered image intensity at pixel p and c is a boost
factor in this technique. Replacing the left hand side term by fpum with the suffx ‘'um’

denoting the unsharp masking operation

-{——- -l+c¢c|=

With ¢ = 1, it can be seen that, the unsharp masked image and Mach's mdoel differ by a

(6.34)

mutiplication factor. The multiplication factor is the ratio formed by an image and its
filtered (low-pass in this case) version. Using (6.15), (6.34) can be expressed in terms of a

Laplacian operation ( with ¢ = 1):

fpum) = fp( 2

v1{5;) ¢(a,-p)+fpl). (6.35)
Sp=1

(6.35) is the unsharp masking operation using the Laplacian operator of Mach's model.

6.3.2. Mach's model and ME edge enhancement

The analysis of Mach's mcdel has shown that, a filter or a point spread function
when used in the form of Mach's model, leads to Laplacian operation. The Laplacian mask
is of type (6.30)-(a) for 2-D images and the operator is given by (6.21.1) and (6.21.2).

The performance of Mach's model in edge enhancement is illustrated with an example in

Fig. 6.2. The image B; j = 1, ......, n transformed by Mach's model, as shown in Fig.
6.2(b) has been subject to a thresholding operation given by
E;=1 if B;286 ‘ (6.35.1)
Ej=0 if Bj<@ (6.35.2
where 0 is the thresholding parameter, fixed by the mean of the image B. The thresholded
image is shown in Fig.6.2(c). With a slightly lowered threshold, the edge image looked
like Fig. 6.2 (d).
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The image results are only an illustration to show the performance of Mach's model

with real images. Significant information can be obtained by evaluating its performance
with the test patterns introduced in chapter 5. The response of Mach's model to the

stimulus patterns with varying widths is shown in Figs. 6.3(a)and (b). The Laplacian

operator that led to this image has followed the form (6.21.1) with ¢ as the 3 x 3 Gaussian
filter mask. The results of the ME method, explained in chapter 5 are shown in Fig. 6.3(c)
and (d). The ME response is the result of a relaxation procedure under specific parameter
conditions. Comparison of both responses with the psycho-physical characteristics shown
in Fig. 5.8 shows that the ME response follows more closely the expected results. The
significance of the response dependent models is understood from this test result. The
importance of suitable parameter conditions in obtaining the expected results was already
discussed in chapter 5. All these evidences suggest that the ME method in the parameter
relaxation approach is a possible response dependent biological visual model. It is however
not conclusive without exploring the type and influence of the parameter conditions of the
model on its respense. The resulis also suggest that the ME method can be used for edge
detection and enhancement applications in computational vision studies. Recognising the
fact that Fig. 4.17(c) is the product of an image restoration process, it can be considered as
a true irnage distribution, although the Laplacian effects are dominant in the result. Using
Mach's model, the edge features of the restored result can be enhanced as shown in Fig.
6.3. The enhancement of the iris is the notable feature in the result. More studies are
however necessary to explore the potential of using the ME method for edge detection and
enhancement and applications. With its foreseen potentials, attention is focused on the

implementation issues in the next chapter.
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Fig.6.1 Response of Mach's model to the test pattern in Fig. 5.1(a)
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(a) (b)

(c) (d)

Fig.6.2 Edge enhancement performance of the Mach's model

(a) Input image; (b) Edge enhanced image
(c) and (d) Mean thresholded images
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Fig.6.4 Edge performance of the ME method - an example
(a) Input image; (b) Edge enhanced image (thresholded)
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CHAPTER 7

PARALLEL IMAGE CONVOLUTION ME IMAGE
DECONVOLUTION - AN IMPLEMENTATION STUDY

Computationally, the problem of obtaining a convergent solution for the ME
algorithm is the same as that of any constrained optimnization algorithm. A possible solution
was proposed in chapter 3 in the context of image processing applications. In this scheme,
the solution is obtained by controlling two parameters cf a solution equation under a
relaxation scheme, with the convergence limits set by the entropy maxima. Despite this
simplification, it was found in chapter 4 that the algorithmic time complexity of its

application class was as high as O(N4), where N2 i the image size, typically ranging from

256 x 256 to 1024 x 1024 (square image is assumed for discussion convenience). For the
meaning of the O- notation of time complexity, readers are referred to the list of symbols'
section of this thesis. Sequential algorithms are impractical for large image sizes. In fact, to

reduce the time complexity of the sequential algorithm for test studies, the problem size had

to be restricted to 64 x 64, Parallel processing implementation offers the potential to reduce
time complexity, by having multiple processors cooperating to solve a given computational
problem without restricting the problem sizes. The 1ain .. performance relies heavily on the
effective parallelization the algoriihnis 1o map thew: =" ciently onto parallel hardware. This
chapter explores the problems and benefits in parallelizing the ME algorithm using the
parameter relaxation approach. Studies are carried out for a specific application class of

image convolution and deconvolution using the Myrias SPS-2 parallel computer.

7.1. THE ME ALGORITHMS - A REVIEW

The computational problem of the ME method is to find a set x of independent
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variables xj, i = 1,......,.N that would yield the absolute maximum of a cost or objective

function J(xj). In image processing applications, the independent variables are the
individual pixels. The objective function for the present study is the standard maximum
entropy method expression in (2.7) or (2.16) under a Bayesian approach. In the following
section, the general means of obtaining 2 solution for the maximization problem are
discussed including the parameter-controlled relaxation procedure proposed in this thesis.

All discussions refer to image processing applications.

7.1.1. Dynamic programming techniques

In general, the maximization of the objective function in (2.7) involves finding a

solution T* by satisfying a set of m + 1 constraints using m+1 Lagrange multipliers. The
number of constraints depends upon the type of application and the solution approach. In

its simpler form the objective function is givgn by

1p) = Slp*) + p(z P - 1) + Y xk(z ADi - dk) (7.1)
i=1 k=1 i=1

where 1 = N2 in the present context and 1 i the measured image size. Earlier attempts

approached this problem by solving (7.1) as a set of m non-linear equations {11]. The
problem with this approach i8 that the number of equations increases with increasing
problem sizes. Subsequent attempts therefore made use of the single constraint ME method
explained under section 2.3.4. The computational problem for this scheme simplifies to the

unconstrained maximization of

17) = s(f) -raad) (1.2
with a single Lagrange mutiplier and a single constraint in (2.15). Most of the solution
techniaues for (7.2) explained in chapter 2, fall into the class of dynamic programming

techniques with iterative improvements. The optimality conditions of the solution with
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respect to the local or global maximum conditions are hard to define in these search

procedures. This often results in convergence problems.

7.1.2. Simulated 2nnealing by stochastic relaxation
Simulated annealing techniques are designed to overcome the optimality problems

witl local and global convergence [72], [73]. In these techniques, the problem is stated as

a minimization of an 'energy’ function E(S), defined on a finite set of states §. The
solution technique makes use of a relaxation scheme, where an initial choice of a state is
refined and updated in the successive stages of iterations. The annealing algorithm
generates a sequence of states based on a stochastic decision process. The basic idea of
annealing is to allow the possibility of getting out of the trap of the local optimum. The

decision scheme is based on the probability distribution

pi = exp:i\l;ax__[%?_lﬂl} (7.3

with AE = E(8;) - E(s,) and T; is the ‘temperature’ control parameter. In the beginning of

the simulated annealing process, T is very high and the probability of accepting the new

state si' is very large. This means that if the state is a local minimum, there is a possibility

that it can get out of that state. During the iteration process, the temperature parameter is
gradually lowered using a prescribed schedule for a guranteed convergence. When the
temperature has become sufficiently lowered, the state will arrive at the global minimum
region. In practice, the annealing process is found to be very slow. Geman and Geran
have recently proposed simulated annealing algorithm for image restoration [25]. It follows
a Bayesian approach to find a maximum a posteriori estimate of the original image modelled

using Gibbs distribution.
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7.1.3. Parameter-controiled relaxation
The procedure proposed in this thesis work falls under this category. Along the

same line of reasoning followed in simulated annealing, the problem is approached as a

physical system $ to be optimized by a 'treatment’ process in order to reach the ground

state. The treatraent process consists of a controlled relaxation of the system between its

two limiting states. The controiling is done by the algorithm using a parameter B under the
relaxation scheme in (3.35). The algorithm controls the sequences of state changes by
controlling the behaviour of the system in response to external conditions. {for analytical
details readers are referred to section 3.4 of chapter 3). The mechanism of th» algorithm is

briefly outlied below:

Initially, the system is at its stable state given by

0 »(0 .
Soa‘-—i()={f:i( )}; j=lieeom. (7.9
The initial estimates are given by (3.11). The behaviour of the system is <h:racterized by

the relation
B(so) < SO (7.4.1

S(0) is the entropy of the state §, given by (3.2) and g, is the average scale parameter given
by the logarithm of (3.2.3). The system is forced to leave its initial state by the external

constraint(s), characterized by the parameter A and 62, Depending on the strength of these

external constraint parameters, the states get changed to

P (7.5)

The behaviour of the states is typically characterized by

(s} > sl (7.5.1)
As the strength of the constraint increases, the state of the system tends to become

unbounded with its behaviour characterized by the relation
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B(s;) >> st (7.5.2
To control the unbounded behaviour of the system , the algorithm attempts to 'relax’ the
states using the parameter B0 given by (3.62). When the parameter A varies depending on
the constraint condition, B controls the states of the system accordingly. The relaxation

rrocess modifies the states to

ae?” (7.6)

changing the behaviour to

8(s;) > slgd . (7.6.1
S is given by (3.70.3). With the continued relaxation process, at some stage m, when

the entropy becomes maximum, the system begins to obey the condition

BSm)s Sg™. (1.7
With the behaviour of the system characterized by (7.7), the increased strength of the
external consiraints has minimal influence on the system. The state of the system can be

denoted as

= 3m

Sn—f . (7.7.1)
The condition implied by (7.7.1) is measurable by a standard convergese measure given
by (3.79). The scaling of (7.7.1) is arbitrary, since the relaxation process has taken place
without the input scaling information. With an external upper bound constraint, the process

can be controlled for the given scaling requirements so that

Z(sm)

S . (7.7.2
The iterative refinement of each state is controlled by the intermediate constraint in (3.4.1).

The rate of convergence (number of iterations) can be controlled b; adjusting the

component K; in A. There are no strict restrictions observed for this control.
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7.2. PARALLEL IMPLEMENTATION

As indicated earlier, the development of a suitable concurrent algorithm constitutes a
key step for parallel implementation. This algorithm is then mapped onto a parallel
architecture for the best possibie exploitation of the exhibited concurrency. The term
concurrent is used in this context to €Xpress potential parallelism ; the actual parallelism is
determined during the mapping step. Typically, for efficiency reasons, several concurrent
activities may be grouped onto 2 single processing element, depending on the level of
parallelism (granularity) of both the design and the target architecture. Envisageable target
architectures may range from special purpose processors to general purpose parallel
machines. Systolic arrays are popular representatives of the first category [85]: they are the
most suitable for mapping highly regular problems (e.g. matrix operations). Most 'real life’
problems however contain a significant irregular component which tends to clutter the
border of such arrays, at the expense f the otherwise excellent space/performance ratio. In
such cases approaches as proposed by [86], deriving the target VLSI architecture frooeae
concurrent algorithm description, may prove to be the most efficient. There exists many
different viewpoints in classifying the general purpose parallel machinzs [87], [88], [89].
In the traditional classification [87], the members in the second category, the general
purpose machines, may range from SIMD (single instruction, multiple data) to MIMD
(multiple instruction, multiple data). For example, the vector processor CYBER-205isa
pipeline machine (2 special class of SISD). The MISD (multiple instruction, single data)
class, sometimes seen as r:ataflow machines, does not have any commercially accessible
implementations ye* ¢ ° . the object o1 high research interest. Assuming that Flynn's
ronomy is compietc, > MIMD class of computers cover a wide range of modern
architeciures. It is therefore uscful to subdivide the MIMD class further into 3 subclasses in

terms of granui=~ " coarse-grained, medium-grzined and fine-grained. The first subclass
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consists of multi computers or distributed systems: fully fledged computers communicate
via relatively low bandwidth channels such as local- or wide area netwotks. The second
subclass consists of general purpose processors (typically 32 to 1024 TPUs), embedded in
hierarchical memery schemes, and communicating via high performance data paths (bus).
Hypercube type machines are popular representatives of this subclass. The subclass of
fine-grained MIMD, also called massively parallel machines consists of vast amounts of
very primitive processors (typically 1K to 64K units) communicating through very highly
developed communication schemes. The Connection machine of Hillis is the best known
representative of this subclass [90].

The following «!aborations will rely on the Myrias SPS-2, a medium-grained
MIMD machine consisting of 64 M68020 processors. It should be noted that this
architecture is not necessarily the best imaginable for the types of parallelism that will be

considered in this chapter.

7.2.1. Myrias SPS-2 parallel computing system
Myrias SPS-2 is a multiprocessor parallel computing system (with 64 processors in
.st configuration) with a pardo extension to Fortran and C [91]. The syntax of pardo is
identical to that of a con~entional DO loop in Fortran. Each iteration of a pardo loop is a
separate task with its own memory space. When a ‘parent task' executes a pardo
instruction, a coliection ¢f 'child' tasks is created and the parent task is suspended until all
of the child tasks coinplete. Child tasks inherit identical copies of the parent task's memory
with oniy the iterator differing. Zach task then executes independently. Since each child
task executes within its own memory space, sibling tasks cannot . "fect each other's
memory. Upon completion of the child tasks, their memory images are merged together to
form a new memory image for the parent, wherafter, the parent task resumes execution.
The assignment of tasks to processc:s is hidden from the user and is done dynamically by

the operating system (The Parallel Application Mfanagement System (PAMS)). The
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operating system manages all of the copying, storage, and merging of memory images.
Appendix-F shows the sequence of activities in the Myrias pardo scheme.

Proper understanding of the merging rules is fundamental to the efficient and
reliable use of the SPS system. They are briefly outlined below following the Myrias
manual specifications [91]. The merging rules are such that if exactly one child task
changes a location, then the new value appears in the parent's memory image. If no child
stores a value in a location, that location in the parent memory state retains the value it had
before the execution of the pardo statement. If more than one child stores a value in a
location, and the last value stored is the same for each child, that location in the parent
memory state receives that value. If more ti:an one child stores a value in a location, and the
last value stored is not the same for each child, that location in the parent memory state is
undefined when the parent resumes execution. The wait time of the parent task during
merging, the communication requirements of child tasks execution, task assignment to
Processors, mergis iweration all constitute system overhead. The following section
explores the consequences of these issues by parallelizing an image convolution and a

deconvolution algorithm.

72.2. The concepts of instruction and domain partitioning parallelism
Let us consider a program P operating on an input image domain D. A program in

general may be considered a3 a set of instructions {I;} with ;e P; j=1,... ], operating on

a data set D (DSD) denoted as

Pp E{Ij!g for b= hud (1.8)

The program, when executed on a given computer is defined in terms of an execution set {

I;} with an execution time T. The execution program can be expressed as
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fork = 1,...K. (7.9)

T €T
PTIP = :(I"‘)D:kcn
The time interval for the execution of instruction k is denoted as Tg = (tog, Aty). togk iS

the time of execution initiation instruction k and Atg, is the time taken for the execution of

the instruction. I, can be considered as a sampling from {I;} determined by the actual

execution. Based on the above formulation, three types of programs, with no parallelism
(sequedtiial), with instruction parallelism and with input data parallelism (domain

partitioning) are characterized below along with an illustration example.

Sequential program : A sequential program is characterized by the time dependencies
between the execution instructions. Spc-ifically, no two instructions overlap within their

execution time intervals. Also, a specific ordering of instructions is followed in the

execution. The conditions are expressed as
tosey < tos; < tosey fori=1,..., K (7.10.1

and
K
N =0. (7.10.2

Let us consider an algorithm that involves an iterative improvements, similar to the ME
algorithm for which the parallelism is attempted in this work. The structure of the program

is written (iterations are denoted as time steps) as follows:

do 10 t=1, number of time steps
do 20 j =1, Y-imagesize
do 30 i =1, X-imagesize
image(t,i,j) = function (image(t-1,i,j), parameters(t-1))
30 continue
20 continue

do 200 j =1, Y-imagesize
do 300 i =1, X-imagesize
parameters (t) = function(image(t,i,j))
300 continue
200 continue
10 continue
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Instruction parallelism : On the Myrias system, parallelism is best exploited by identifying
instruction parallelism, i.e identical instruction sequences that act on independent data sets.
Starting from a sequential program, the data dependencies for given statement sequences
are analysed and independent sequences are determined. The program can then be
restructured to a parallel form. DO loops are natural candidates for this approach. Starting
from the general program expression given by (7.8), the execution programs can be written
as

PTiP E{agt)f;:e;r } for k = 1,...K. (7.11)

c

where Tg = (tosp, Atgp)- Ly is given by

‘ M TskaT .
=l U () for k=1,..,Kandm=1,.M (7.11.1)

I, =
\ m= l %Cn
where Tgm = (tokms Atim)- Tskm = Tsk form = 1, ... M provided there exists independent

instructions obeying the conditions:

S A . (7.12 1)

Also

- Dkn =@ Vm{Dime D). (7.12.2)

For the instructions satisfying the conditions (7.12.1) and (7.12.2), such as the DO loops,

the time condition in (7.10) becomes

tOS(M) = t08i= t()S(m) fori = l, ooy K (7.13.1)
with
X
A T, # OVm. (7.13.2)

1=
The conditions in (7.13.1) and (7.13.2) represent instruction parallelism. If the conditions

are not met then M = 1 and the execution proceeds sequentially. Under instruction
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parallelism, the coding of the program will be as follows:

do 10 t= 1, number of time steps
pardo 20 j =1, Y-imagesize
do 30 i=1, X-imagesize
image(t,i,j) = function (image(t-1,i,j), parameters(t-1))
30 continue
20 continue

pardo 200 j =1, Y-imagesize
do 300 i = 1, X-imagesize
parameters (t) = function(image(t,i,j))
300 continue
200 continue
10 continue

Domaii; _paritioning: In this approach, the input data domain, i.e., the image domain, is
partitioned into several sub-domains, based on the number of processors available. Under

the partitioning scheme, the image domain is represented as

N
\
Dn= udj - (7.14)
j,j=1
The program expression in (7.8) is written as
PID  =(lePyldmeDlp for j = L, (7.1

where the term P, refers to a general program. The analytical approach followed in the

above sections are the same except that the domain D is replaced by smaller domains. In

writing (7.15), a square image has been assumed. &, in (7.15) is the partitioned domain

each of area ( N2 /p), where p is the number of processing elements. In domain
partitioning, the independency of image pixels has been used to remove the requirement
for independence of data sets implied by (7.12.2) in using instruction parallelism. The

approach however introduces the problems interms of mapping global computations over



162
the partitions. Coding the program will illustrate the issues underlying this approach.
pardo 10 t= 1, number of time steps
pardo 20 k = 1, number of domains
do 30 j =1, Y-domainsize
do 40 i =1, X-domainsize
domain(t,k.i,j)=function(domain(t-1,k,i,j), parameters(t-1))
40 continue
30 continue
do 300 j =1, Y-domainsize
do 400 i = 1, X-domainsize
parameters (t) = function(domain(t,k.i,j))
400 continue
300 continue
20 continue
10 continue
As we see from the program, the computations over images have been deliberately
replaced by the same computations over domains. The approach makes use of the fact that
most of the image processing computations are of block-type with operations restricted to a
small neighbourhood of pixels. Investigations are however necessary for a given
application problem to explore the suitablity of mapping. Another significant feature of the
domain partitioning approach is the independency of the domain operations over time or
iterations (pipelining). The necessity of sychronization at the end of each iteration is
climinated (asynchronous over iterations) which is expected to yield a significant
performance improvement in a multi-processor environment. Although attractive, as

mentioned above, investigation is necessary to explore the implementation possibilities for

epecific application problems.

7.2.3. Performance and e¢ificiency measurements

Efficiency aspects of an algorithm in general are inferred using an empirical (a
posteriori) or theoretical (a priori) or a combined approach [923. In the theoretical approach,
the execution time, memory space etc., needed by »2 algorithm is determined
mathematically as a function of the sizes of the instances considered. The empirical

approach on the other hand, consists of programming the algorithm and trying on different
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*:;stances with the help of a specific computer. The actual statistics are collected during the
execution of the algorithm and the performance measures are estimated from these figures.
The performance of a parallel algorithm is in general measured in terms of
speed-up-ratio. Assurring that speeds of the p processors are the same, the speed up ratio

is defined as

(p)-% (7.16)

where t(p) is the execution time using p processors (p>1) and t(1) is the execution time

with a single processor. The quantity

n(p) = ‘p) (7.11.)

is termed as the efficiency of a parallel algorithm. In the speed-up and efficiency
calculations, the execution time is often considered as the elapsed time of the process
between the start of the program and finish of the last process. In an ideal parallel setup, a
program should run in 1/p of the time required in a one processor setup. Graphically, an
ideal case shows a linear (with slope = 1) relationship with the number of processors. In
terms of the elapsed time statistics, the speed-up factor is calculated as
S(p) ::g; | (1.16.)
where e, is the elapsed cpu time. The elapsed time is a function of the user, system, idle
aiid wait times. For the definition and usage of these time figures in the Myrias parallel
computer, the readers are referred to Appendix - G. The performance studies conducted
using the Myrias system for image convolution and deconvolution algorithms are explained

in the following section.

7.3.IMAGE CONVOLUTION ' GORITHM

Convolution and correlation are importaat spatial domain operations, central to
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numerous image processing applications. Efforts are in constant progress to develop
efficient algorithms for these basic operations [93], [76]. In the present context, the
convolution operation is a core computation for the ME image deconvolution algorithm to

be explained shortly.

7.3.1. Image convolution operation

The image convolution operation is defined by the relation

M M
gpa) = 3, Y, hijfp-i g forp=1;--.--Nandg=1,-.-N. (7.17)
i=1j=1

hisa window of size M x M. The image is of dimension N x N. The coefficients of h, in

general depend on the application. For example, if f is to be edge detected, it is convolved

using (7.17) with 3 x 3 windows such as Laplacian, Prewitt and Sobel operators [76]. In

the present study, the purpose of convolution is to blur the image f using a window filter

h, say for example, the 7 X 7 worst case filter encountered in the earlier test studies of
chapter 4. Graphically, convolution is an operation of moving the window h over the
jmage f. Its pictorial illustration is shown in Fig.7.1. For each move, the convolution
result is computed using (7.17). Wraparound errors are characteristics of discrete
convolution, which appears as distortion around the end border of an image. This
inevitable error near the image border is not objectionable. Periodic and mirror extension
procedures may be used if necessary. The time complexity of the convolution algorithm is

O(M2N2),

7.5.2. Task specification strategy in the instruction parallelism approach
In general, the linearity, spatial invariance of h, and the localized window operation
ere the main features that are exploited for parallel implementation of the image convolution

operation in (7.17). It is a special case, where the requirements (7.12.1) and (7.12.2) are
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eliminated in the computational problem itself. Therefore the concepts of instruction and
input domain partitioning are the same for image convolution. To implement (7.17) using

instruction parallelism, on the SPS-2 system, pardo tasks are specified such that

P
1
T=U Tq (.19
i=1
where
k=N
j=1§(i+l)
Tei = U Tl Dy (7.18.)
.=iN_ 1
k=1

The suffix ¢ stands for a child task. Fig 7.2(a) shows tk:¢ algorithm. As noted earlier (7.17)

is a special case with the task domain D equal to the input domain D. The stored locations
are independent for each child and also the tasks are of duplicated type and hence the

merging process is quite straightforward.

7.3.3. Performance studies with instructipn parallelism

The algorithm was run on a simple computer generated image (checker board

pattern) of size 256 X 256 shown in Fig. 7.3. The speed-up-ratios were calculated from the
ginmsed fune watistics using (7.16.1). They are plotted in Fig 7.4. The ideal performance
curves are Also shown for comparison. The elapsed time plot shows the time improvements
very close to the ideal. The measurements indicate a 91% efficiency with 16 processors.
The speed-up characteristics shows unexpected jumps at the points marked as p1
and p2 in Fig. 7.4, the reasons for which are investigated below. As seen from the task

specification strategy in (7.18), the child tasks are determined by the ratio N/p. If the tasks
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are not exactly divided by the ratio, the tasks become uneven, generating an uneven load of
the allocated processors. The performance of the algorithm is then influeaced by the

distribution of the tasks. With respect to (7.18.1)

k=N
j=(Np(i+1)) +n,{1-9
Ta = U Tad D (7.19)
j=ig- + 1
k=1
yin (7.19) is a 'load distribution’ parameter, with its value 1 for some processors and 0

for others. The processors with ¥ = 0, face an additional amount of work, (in the present

context it is processing of an additional n, columns of data), during which time, the

processors with y=1 remain idle.

This situation can be explained in practical terms from the recorded elapsed times
shown in Appendix - H. in the execution of the convolution algorithm. Let us consider
point 8, which corresponds to a resource demand of 50 processors. In the algorithm, 50

parallel tasks would have been generated, one for each processor. For 256 tasks, some

processors have a task space of 5 X 256 and some 6 X 256.Ler . . “atd4 of the tasks
do calculations on 5 colums and 6 tasks do 6 columns each. "> . shorter tasks have
finished, the six longer ones have oné more column to process upor. shis tirae (averag:..
can be calculated from the number of tasks and the user time statistics. In this case it is

0.3098 secs/columan. When the longer tasks are being executed, the shorter tasks, that have

finished their jobs will be idle for 44 X 0.3 = 13.2 seconds. This constitutes 62.6% of the
recorded idle time. This accounts for a reduction of 76.3% in the elapsed time. Therefore,
the sudden decrease at point 8 on the speed-up characteristics is the result of the sudden
increase in the idle time. The situation is similar between points 9 and 10 because point 10

pertains to a Processor resource of 60. At point 11, the tasks get divided evenly among the
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processors. Hence there are no idle time discrepancies due to shorter and and longer

tasks. The idle time behaviour returns to its 'normal’.
7.3.4. Performance studies using domain partitioning
For the domain partitioning approach, the big (square) image domain is divided into

square sub-domains djk (j=1, sy NAp and k = 1,...... ,NAp). By this partitioning

scheme, the tasks are specified at the input data level. Mathematically

P

7.20

T= U T (7.20
i=1

where

=N
=%
j=X
P

Ty = U T| dge. (7.20.1)
j=1
k=1

Each domain is 'secn’ as an individual image by each processor in this case. In this mode,
as indicated earlier, some considerations are necessary to ensure the functional correctness
of the resulting convolution operation. The domains need to communicate with their
neighbouring domains for reading their input data so as to eliminate the wrap around errors
within its own 'private’ domain. One way of resolving this problem would be to increase
the visibility of each domain, with the task domain restricted to the private domain. In terms
of the expressions, (7.20) remains the same, but the pariitioned domain area is increased
from N2 to (N+M-1)(N+M-1). The algorithm is shown in Fig. 7.2(b).

During execution, when a task references an address in the visible task domain, but
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the page which stores that value is not present, the operating system sends a copy of that
page to the task. The pages modified by the tasks are not sent back to the parent task until
all the child tasks have completed. So there is no communication between sibling tasks.
However, the overhead involved in the process of implicit communication affects the
overall time performance of the algorithm. The test results showed a 27% increase {with 16
processors) in the elapsed time compared to the instruction parallelism approach, where the
communication requirements are relatively minimum. The performarce efficiency in the
domain partitioning approach was found to be 88.5% which is aknost equai to that of the
instruction parallelism approach. The results show that the SPS system is not well-suited to
the domain partitioning approach of convolution mainly because of the system overhead in
meeting the communication requirements. The result of convolution wzt observed to be
the same in both cases and is shown in Fig. 7.5. It is used as an input image for the ME

deconvolution algorithm discussed below.

7.4. IMAGE DECONVOLUTION-THE ME ALGORITHM

Starting from the image in Fig. 7.5, the purpose of image deconvolution is to
restore the source image shown in Fig. 7.3 using the ME method. The solution is obtained
using an algorithm based on the constrained parameter relaxation approach explained under
section 7.1.3. Here, its implementation is attempted using the SPS systern. The various
computational stages of the algorithm were already explained in chapter 4 (sce Fig. 4.1).
Let us consider the data processing phase of the algorithm, which consists of the data space
(phase-2) and the parameter space (phase-3) calculations. The parameter space calculations
have a time complexity of O(N2). The calcuiation of 9Q/of involves two successive
convolution operations with a time complexity of G(N2M2). Both measures exclude the
influence of the number of iterations over the problem size. This, as explained in chapiers 3
and 4, is due to the procedure having a mechanism to adjust the number of iterations. This

flexibility allows the assumption of a constant time behaviour of the algorithm within the
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limits of the mechanism. Therefore, for all practical purposes, the time complexity of the
ME deconvolution algorithm is the same as the convolution operation. The computational
involvement of each phase in the algorithm is calculated as a percentage of their elapsed cpu
times in the 1-processor set-up, and is shown as a pie-chart in Fig. 7.6. The figure shows

that the calculation of 3Q/2f amounts to 88% of the total computational time.

7.4.1. Instruction parallelism approach

As in convolution, the different phases of the algorithm in a sequential program was
restructured for instruction parallelism and is shown in Fig.7.7, highlighting the estimate
and data space calculations. In executing the parallel ‘algorithm, the efapsed time
characteristic of each phase was recorded. Since our main concern is the computational part

of the algorithm, the phase-2 and 3 of the algorithm are studied for their performance in

detail. The algorithm was run on problem sizes of 64 x 64 and 256 x 256.

The calculation of dQ/df, as mentioned above, consists of two spatial convolution
operations. The program steps for this phase are the same as that of the convolution
algorithm explained in section 7.3. The recorded performance of the algorithm for this
phase is shown in Fig. 7.8. The reduced linearity in the speed-up is due to the reduced
parallelism in the algorithm. This is because, the two convolution operations remain
sequential in the program and could not be executed in parallel efficiently using instruction

parallelism. The parallel execution of phase-3 which involves parameter and estimate

calculations makes use of the fact that the parameters A and P are constant multiplying
factors for all the pixels in the procedure. The speed-up characteristics of this phase is
shown in Fig. 7.8 along with the resulting over all speed - up characteristics in Fig. 7.9.
From the recorded speed-up characteristics, it is possible to obtain an optimum
number of processors for a satisfactory performance. The criterion for optimum
performance is to have maximum possible efficiency of the algorithm for the minimum

possible elapsed time. The overall efficiency and the elapsed time (average time for one
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iteration) variations are shown in Fig. 7.10, for both 64 x 64 and 256 x 256 problem sizes.
Graphically, the optimum corresponds to the point of maximum separation distance of the
two curves. In the case of 64 x 64 image, the optimum number of processors

corresponding to these figures is 4. It gives 74.1% efficiency with 50% increase in the

computational speed. For an optimum number of 8 processors in the 256 X 256 case, the

efficiency of the algorithm is 78% with the computational speed improvement of nearly
99%. The 256 X256 problem size shows a better performance compared with the 64 x 64
case. This is because of the increased work for each child in the case of 256 x 256 problem

sizes.

The result of the algorithm is shown in Fig. 7.11. Visual comparison of the result
with the source image in Fig. 7.3 shows a satisfactory functional performance of the
algorithm. The behaviour characteristics of the algorithm are shown in Fig.7.12. The

variations are consistent with the predicted characteristics discussed in chapter 4. The

chosen value of K; was 100 for the 256 X 256 problem size, and convergence was

obtained at iteration 14. As discussed earlier, K; can be adjusted for faster convergence.

7.4.2. Domain partitioning approach - a discussion

The implementation of the algorithm in the domain partitioning approach follows
the same relation given by (7.19) with the task T corresponding to the ME restoration
algorithm. As discussed earlier, the degree of concurrency is higher in the approach, but
the communication requirements to realize the functional correctness of dQ/of need

significant attention. Following the visibility extension for functional correctness, the

domain area dj; for the first convolution first convolution increases to (N/p + 2(M-1))2,

The active child task domain becomes
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k=N +M-
5 +M-1
= N .
j e +M-1
Ty = U T . (7.17)
j=1
k=1

For the execution of the second convolution, the visible and the active task domain size
becomes the same as that of a single convolution case explained in 7.3.4. The extension of
domain areas consitute an overlapped domain configuration. The studies on the activities
within the overlap regions in the light of synchronous and asyrchronous requirements, the
implementation of the different overlap schemes using Myrias computers are in progress
and is not elaborated here.

The discussions show that the parallell algorithms in general offer significant time

improvements over the sequential algorithms. In image convolution for 256 x 256 image,
the time improvement was as high as 98% and in image deconvolution it was 89% over the
sequential algorithms. In this study, it was found that the instructior: parallelism was found
suitable for a local and sychronous linear operations such as the image convolution with an
efficiency figure as high as 98%. In a typical nonlinear environment, such as ME
deconvolution algorithm, the performance slows down and the flexibility to increase
parallelism in the program is found to be minimal. The input data parallelism basis of the
domain partiticring approach, on the other hand offers an effective solution to increase
| parallelism. A study in this direction was however not easily feasible because of the
mapping problems and the increased system overhead associated with their implementation

using the SPS-system.
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g(x,y) =h(-1,-1)f(x-1,y-1) + h(-1L,0)f(x-1,y)+h(-1,1)f(x,y+1) +

h(0,-Df(x,y-1)+h(0,0)f(x,y)+h(0, 1)f(x,y+1)+
h(1,-1)f(x+1,y-1)+h(1,0)f(x+1,y)+h(1,1)f(x+1,y+1)

Fig. 7.1 Image convolution operation

DO BEGIN

IN PARALLEL FOR 1 €j < numter of

find star1(j) and end (j)

DO 10 start(j) < i < end(j)
DO20 1 <k<N

calculate g(k,i)

20 CONTINUE
10 CONTINUE
END IN PARALLEL DQ

(a)

Prox €ssors

DO BEGIN

IN PARALLEL FOR 1 £ < number of
processors

find startx(j) and endx(j)

find starty(j) and endy(j)

DO 10 stanx(j) < i < endx(j)
DO 20 starty(j) < k < end y(j)

calculate g(k,i)

20 CONTINUE
10 CONTINUE

END IN PARALLEL DO

(b)

Fig.7.2 Image convolution using instruction and data parallelism
(a) instruction parallelism (b) data parallelism
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Fig.7.3 Input image for the convolution algorithm
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Fig.7.5 Output of the convolution algorithm
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Fig.7.6 Time involvement of different computational phases in ME deconvolution

100

100

Fig.7.7 Image deconvolution algorithm using instruction parallelism

i=1

start ; estimate(0)  and input d
INPARALLEL

convolve estimate(i - 1)

END PARALLEL CONVOLUTION
calculate Q

IN PARALLEL

convolve for dq/df calculation
END PARALLEL CONVOLUTION
cakulate A and B

IN PARALLEL

calculstethe ME estimae andq
END IN PARALLEL

i=i+] ;GOTO 100

data space
calculations
(phase - 2)

—_

estimate
Spacc
calculations
(phase - 3)
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CHAPTER 8

CONCLUSIONS

The primary aim of this thesis is to understand and contribute to the progress of the
maximum entropy (ME) method in the areas of image processing and machine vision. In
reference to the aim, the status and the foundations of the method were investigated in
chapter 1 and 2 as applied to images, followed by a series of developments in the

subsequent chapters. Conclusions are summarized below.

8.1. The ME method-a general outlook

From the discussions of chapter 1 and 2, it is understood that the ME method
stems from two different concepts: physical and information theoretic. To summarize, the
problem of estimating f from d in (2.2) is understood by the 'physical’ group as the
problem of restoring a true image based on the statistical considerations of image
formation, with prior knowledge and the entropy form determined by the type of
application problem. The information theoretic group, on the other hand, believes that
finding the true image is an inference problem of finding a distribution f that incorporates
the testable information in d as constraints with a suitable prior information. Both concepts
make use of the entropy functional form plog(p/q) with q as the probability distribution
resulting from prior information and p resulting from the testable information d. In a more
broad sense, the method is expected to be useful in application areas, ranging from the
traditional inverse problems to modern arificial intelligence problems of machine
reasoning, leamning and problem solving. But investigations show that the progress of the
ME method is limited to inverse problems. Within the class of inverse problems, the
method. is not firmly established beyond 1-D power spectrum estimation. This thesis has

adopted the viewpoint that the present status of the method requires application
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developments for further progress. The issues of importance for application developments
are: the general ways of estimating prior probability distributions and a general basis for
obtaining ME solution. In the literature, specifically for imagev processing applications, as
discussed in chapter 2, the computational efforts are minimal compared te the theoretiéal
developments. Considering the importance of a general computational scheme for the
preseat as well as the future applications, attention is focused in this thesis on the
computational developments. Application studies have led to interesting observations and

conclusions for the ME method for further studies.

8.2. Computational scheme for the ME method

A parameter controlled relaxation approach is proposed for the ME method in this
thesis. In this scheme, an initial estimate undergoes successive transitions towards the
final solution. The transitions are best explained in terms of states of a system. The initial
state of the system is determined by the prior knowledge conditions. In this thesis work, a
uniform state results from the uniform prior probability estimate but in general, is not a
strict requirement for the solution scheme. the successive states of the system are
determined by the stationary point equation of the Bayesian based ME objective function.
The state transitions are controlled by a set of constraints and parameters: Intermediate
constraints and Lagrange parameter(s) A for consistency with the input information
constraint(s); relaxation parameter(s) P to adaptively control the influence of the external
constraints upon the system for improved numerical stability and convergence of the
system; upper-bound constraint for the required input-scaling. The behaviour of the system
resulting from these controls is characterized in terms of the magnitude of the logarithmic
state entropy and its average. The states with entropy maximum is the required state,
converged for the given input constraints. The use of function Q in the Bayesian

formulation of the ME method explained under section 2.8.2 reduces the size of the control

parameters from m (the total number of pixels in an image) to 1. The above inferences and
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the test studies reported in this thesis are based on the Bayesian formulation of the ME

method using the function Q. It is however anticipated that the same inferences can be

extended to the standard case of m-Lagrange mutipliers.

8.3. Application studies in Bayesian restoration

The algorithm based on the relaxation scheme with the Bayesian fomulation of the
ME methcd was applied to different types of degraded images for restoration. In the case of
inputs degraded by Gaussian noise, analysis of the error behaviour of the algorithm shows
that the specification of noise variance is not necessary. The numerical behaviour of the
algorithm was found consistent with the analytical results, giving rise to a stable and

convergent solution for varying types of inputs. The rate of convergence is user-controlled

in the algorithm by a component K of the parameter A. No restriction is observed for the

possible range values of K; with respect to the numerical behaviour of the algorithm, The

restoration performance of the algorithm is also found consistent with minimum artifacts
even under the worst conditions of degradation. With the worst case examples, a mean
square error evaluation of the ME restoration performance shows an improvement of 58%
and 87% over the constrained least squares approach. Under minimal degradation
conditions, the algorithm shows unexpected enhancement effects in the restored results
with the effects becoming increasingly pronounced upon and after convergence. Analysis
reveals a Laplacian operation underlying the enhancement effects in the ME restoration
performance. The increased sensitivity of the Laplacian mechanism to the minimum
degradation test conditions are shown to be the reason for the prominance of enhancement
effects upon convergence.

One of the nontrivial requirements of an algorithm in application studies is its
capability to deal with realistic 1mages, for which the degradation parameters are not

known. Even if the degradation parameters are determined experimentally, the sensitivity of
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the algorithm performance to the accuracy of the degradation parameters is an important
issue for practical and real time applications. In this context, the elimination of Gaussian
noise variance specifications proposed in this thesis studies, partly contributes to over come
the experimental difficulties. However, as demonstrated in chapter 4, the influence of the
level of noise on the noise reduction capabilities of the algorithm leads to the problem of
settling for an optimum level of restoration performance. Development of independent
control schemes for noise reduction and schemes for 'blind deconvolution’ (elimination of
the point spread function specification) are significant practical issues of future interests for

the ME relaxation algorithm.

8.4. Links with Biological visual models

Test results of the ME restoration algorithm under minumum degradation conditions
have also led to new concepts in this thesis study. With the help of specially devised test
schemes for no-degradation conditions, the ME relaxation algorithm is shown to simulate
the psycho-physical characteristics of Mach bands of biological visual systems for simple
intensity gradient stimulus patterns. Marked similarities are observed, particularly the
asymmetries and the response modulation with slope variations of the stimulus pattern. A
suitable parameter setting is found to be the key feature for the algorithm in forming the
bands. Analytical results show a Laplacian mechanism for the parameter settings. The
reasons for the modulation behaviour with slope variations are not clear yet. The response
of the algorithm with complex Mach patterns are not found favourable. The difficulties of
determining a suitable parameter settingé for the complex patterns are believed to be the

reason for the unfavourable responses. It is anticipated that the relaxation algorithm based

on the m-Lagrange multiplier ME method has a greater potential for more interesting
simulation studies of biological visual responses.
In another analytical study, it is found that the relaxation scheme shows similarities

to Mach's biological visual model but with one major difference. Unlike Mach's model,
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which is non-linear stimulus dependent, ME relaxtion algorithm is non-linear response
dependent. This difference accounts for better results possible with the ME algorithm
compared to Mach's model with respect to the simulation of Mach band characteristics.

Test studies also suggest new application prospects in edge detection and
enhancement for the ME method. The application differs from the current approaches in the
sense that ME edge enhancement operation does not require external Laplacian masks or
spatial derivative masks but may require suitable functional derivative operators, a study

which needs further investigations for stable inferences.

8.5. Parallel implementation studies

Implementation of relaxation algorithms, in general have a favourable status in
current VLSI computer technology. With an aim of implementing a real-time ME
restoration algorithm using dedicated parallel architectures, the concepts of Instruction
parallelism and the domain partitioning parallelism were explained. Initial studies have been
performed on Myrias parallel computer that has an MIMD architecture. Studies made on
specific image convolution and ME image deconvolution algorithms using instruction
parallelism and domain partitioning techniques lead to the following conclusions: Image
convolution, being a linear and spatial invariant operation, fulfills the requirements of the
instruction parallelism, leading to an efficiency of 91% with 16 processors. On the other

hand, with the ME deconvolution algorithm with strong data dependencies, the instruction

parallelism approach was not found satisfactory. For 256 X 256 images, studies show
78% efficiency and 99% time improvement (over 2 single processor) with an optimum of 8
processors. The understanding of the domain partitioning techniques shows a potential for
significantly improved performance, but stable results could not be obtained due to the
system overhead in its SPS impleraentation. The possible schemes for partitioning the

computations of ME algorithm are being worked out.
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APPENDIX - A

Usage of different terms in the thesis
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APPENDIX - B

Computing systems, input-output resources and migration paths

---------------------------------------------------

..[ LASER WRITER

(image output medium)

-Dr DISPLAY (alv format)

~..—-----—--

e
]
e
]
1
]
]
[}
t
1
'
1
| ]
1
]
[ ]
1
]
1
1
]
]
A
\\

(SPS-2)

(UNTX)

file transfer lq L

protocol

image
acquisition

system

in----------------—------——--------— -----------------

- algorithms

- output format (algorithm) @ . data transfer format

- input format

(algorithm) @ image acquisition format



200
APPENDIX-C

The solution existence conditions for the single constraint ME method:

This section outlines the properties of J that determine the existence of a unique
maximum point for the objective function in (3.4). For detailed discussions, readers are
referred to [50], [70]. The purpose of this section is to study the consequence of removing
the total constant intensity assumption on the solution conditions. Rewriting (3.4)

e ) =s(@ - 7.,‘3%(-‘259- 1} (C-1)
x

The various terms follow the discussions of section 3.1.1. S(f) is given by

S(f) =- i ”t} log ”f} ) (C-2)
P Y& Y&
k=1 k=1
For convenience, Q(d,f) is considered in its vector form as Q(d,f) =1/2 IAf- di2 where
f={fi, ol and A= [Ap]n,n (C3)
The following are the specific properties of J that determine the existence of its unique
maximum point as a solution .
1. It is defined over a continuous domain:
D> {(fseeeenfn); §>0,i=1;e..m) (C-4)

2. It is twice differentiable with

1. f
>4
2
: ; ==l _fy 5 jogs.1 -%;-ZLA‘A (C-5)
: fj(}: ) 2 & '
k=1 k=1

and At is the transpose of the matrix A.
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3. Its second derivative is negative definite everywhere when A, 20and
2(f;/ Xfy) logf;<1. The latter condition is duc to the removal of total constant intensity

assumption and can also be expressed as

“ "y
> -—fl——logfj <, (C-6)
1 i §
k=1
Further J = —oo, as Il f Il = oo (the symbol ILIl denotes the norm in f space). Based on the

specific conditions listed above, and the detailed discussions in the cited references, J is a

convex function with a unique and finite maximum point.
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APPENDIX-D

Solution equation in Bayes' theorem approach

The derivation below is an alternative approach for deriving the solution equation
starting from flogf form of entropy. The idea is to convey the mathematical steps involved
in obtaining the solution equation. The discussions do not refer to the conceptual basis or
the justifications for the usage of different quantities. Let us start with the flogf form of

entropy and write the objective function from (3.4) as

50 = Sa(f) -Ax %"j)—-l (D-1)
Ox
where
Si{f) =- Y, flogf. (D-1-1)

j=1

The solution obtained by maximizing (D-1) is given by

1 _ expl.1. 2Ax 9Q(dS) !
f; exp{ 1 @ % . (D-2)
Dividing (D-2) by the sum total intensity of fjl
2, 9Q(d))
p;! =—1—°"P{'1';’2“T(g'l}- (D-3)

7
> ¢
i=1
Substituting (D-3) as a likelihood term in Bayes' theorem (equation (2.10)) and using the

standard plogp form of entropy as prior probability distribution, the posterior probability

becomes

= —I—[eXP(-S(f))exp 1. 2. 200 J (D-4)
i i oz Of

i=1

Using (2.21), (D-4) can be written as
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fk

_ k=1 2, 0Q(d.f)
= exp(-S(f)) exp{ 7.—%1 7 }] (D-5)
fl
With suitable modifications, (D-5) can be written as
f, = exp(logz fi- S(f) ) exp{- 2:2‘ aQa(:'f)} expl-1) (D-6)
k=1 X J

3 8
i=1

Using (3.2.2) and (3.2.3), (D-6) can be expressed as

f; =q(f) exp{- 2_:.2_L3Qa(:,f) e?(-l) X (D-7)
X ] 2 e
i=1

The first two terms in (D-7) together form the solution equation in (3.8) obtained by

maximizing the plogp form of entropy. The extra mutiplication term is a constant that

appears as a 'replacement term’ for the eliminated %‘.fk in the numerator of (3.8).
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APPENDIX-E

True form of solution equation from its analytical form using B in (3.62)

Rewriting the analytical form of the solution equation given by (3.35)

% (i s G-1) sl
fj() =(I‘B())fj( + B“f,- . (E-1)

With B® given by (3.62), and f{® given by (3.35.2), (E-1) becomes

Substituting for @ from (3.35.3) and rearranging the terms suitably

;‘(l)z ti‘( ) k=1

k=

20 (1___1__){(' Y1 5 p{(Z pj"lozfjl) og 3 & }e"p{ _%J—}

(E-3)
Making use of the relationship in ( 3.2.1), (E-3) can also be written as

10 $30_6 g}*i) 1;[{2 0, { $9). -(:)a;"}} '““’](u)

k=1

Substituting for S(ﬁ from (3.2.2) and comparing the result with the true form in (3.7),
(E-4) becomes

(i) =(-1) 2 () z(i-)
x(l)z
=1
Alternatively
‘() (159 (1), (@ ()
= (1-pW)E" s g% (E-6)

where B®is given by
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Sequence of activities in the Myrias pardo

ORIGINAL
PARENT
TASK
PARALLEL
AR
PARDO || rask
FIRE UP

" SIBLING
................... TASKS

|

CHILDY b
PARENT || i % i SaD
TASK O N ikl

PARDO

PARALLEL
TASK
MERGE

MEMORY MERGING

UPDATED
PARENT
TASK

PAMS 2,30 MYRIAS

* includedwith permission from [91].
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APPENDIX-G*

Run-time statistics in Myrias system

Statistcs may be gathered during program cxccution. They are periodically sampled during program exe-
cution, and a summary is displayed at the end of program cxccution.

For information on how to interpret these swatistics, see User' s Guide o Pardo.

All basic satistics are domain-wide: the sum over all processors of individual processor staustics. For
example, the user cpu time siatistic is the sum over all processors of the uscr cpu time of each processor.
Since cpu time is measured in seconds, the dimension of the summed statistic is processor-seconds. Typi-
cally, this sum exceeds the elapsed run-time of the program.

The displayed statistics are output to standard error unicss the -f flag is used to redircct them 1o a file or
program. Each statistic is identified by a two-letter code.

Suatistics are subdivided into four cawegories: cpu time, paging, /O, and program progress.
Cpu time statistics:

usercpu time (ut)  Time spent cxccuting user code, summed over all processors in the domain. Meas-
ured in processor-seconds .

system cpu time (st) Time spent executing system code, summed over all processors in the domain.
Measured in processor-seconds.

idle cpu tme (it) Idle time for cach cpu, summed over all processors in the domain. Mcasured in
processor-seconds.

wait cpu ime (W)  Wait time for each cpu, summed over all processors in the domain. Measured in
processor-seconds. Wait time is thc time that a processor had a wsk resident that
could not exccute because it was waiting for a resource, typically a page.

primal time (pt) Total time spent exccuting user code scrially, in the primal task. Mecasured in
seconds.

critical path ime (ct) Longest parallel exccution path running user code, Measured in seconds.

Paging statistics:
pages in (pi) Number of pages moved between processors 10 satisfy task page requests.
pages out (po) Number of pages moved between processors as a result of over-commitment of

memory on the processors initiating the move.
pages created (pc)  Number of pages created (or cach task to support the Myrias memory model,
O statistics:
SVCs (sv) Number of SVC server call instrucuons «xecuted by the program,

sve byies ot (s0) Number of bytes ransnatted by the progiam via SVC instructons,

MRC PAMS Version 2.3.0 16 November 1989

* included with permission from (91].
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APPENDIX-H

The recorded elapsed and idle times for the image convolution algorithm

number of processors elapsed time idle time
(secs) (processor-secs)

1 80.1 0

2 41.3 0.3

4 21.0 0.5

8 10.8 1.5

10 8.7 2.4

16 5.5 1.8

24 3.8 5.6

32 2.8 5.1

50 2.2 21.1

60 1.9 23.2

64 1.7 17.3



