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ABSTRACT

This work contains the results of the symmetry reduction of the time- and space-
dependent 3 + 1 dimensional real Landau-Ginzburg equations with positive and
mixed signatures. These results consist of a list of representatives of the conjugate
classes of subalgebras of the corresponding Lie algebra. All subalgebras leading to
reductions to algebraic or first and second order differential equations are identified
and corresponding reductions are performed explicitly. Geometries of the surfaces
of constant value of the symmetry variables are described in some cases. Solutions
to most of the first order differential equations are written down. The method of
soluticn of the remaining first order equations is indicated. The Painlevé test is
applied to all second order differential equations. Equations for which the result of
this test was positive were solved. Numerical attempts to estimate the behaviour of
the free energy for solutions with three different geometries for each signature are
also reported. The results of these calculations were compared with each other to

determine the influence of the signature on the nature of the states.
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CHAPTER ONE
INTRODUCTION

The main goal of this thesis is to present solutions of the tiine and space-dependent
three dimensional Landau-Ginzburg equation obtained by application of the symn-

metry reduction method.

In this work the time- and space-dependent Landau-Ginzburg equation ap-

pears as an equation of motion of a non-conserved order parameter.

We are interested in the Landau-Ginzburg equation as a very simple model of
continuum description of phase transitions using a coarse-grained approach. There
is an intensive effort of the group led by J.A. Tuszynski to investigate mathematical
and physical properties of this nonlinear model. His works published together with
A.M. Grundland, P.Winternitz {66] and also the MSc thesis of J.Rendell [56] deal
with the symmetry reduction analysis of this equation. This thesis is an extension
of this direction of research. The results of the application of symmetry analysis to
the time-dependent 143 dimensional Landau-Ginzburg equation are presented in

the second chapter and are the main part of this thesis.

On the other hand the analysis of the energy values, the partition function
associated with specific (Jacobi type) solutions was actually performed by A. Nip
and J.A. Tuszynski [46]. Stability properties of these solutions were investigated by
D. Schwartz and J.A. Tuszyniski [58]). The preliminary comparison of some results

of the energy calculations is presented in the last chapter of this thesis.

Recent developments in the area of symbolic computation allowed wider ap-
plications of the symmetry reduction method. A large part of these calculations can

be performed by a computer. Since this method became computationally feasible



many equations of mathematical physics have been analyzed by means of it. For
example the self-dual Einstein equations were analyzed by C. Boyer et al in [9], the
Wess-Zumino model by M. Légaré in [42], the nonlinear Schrodinger equations with

2 cubic or quintic nonlinearity by L. Gagnon et al [16,17,18].

Out of these investigations the closest to the present one are works in Ref.
(16,17,18,66,67) In the series of papers by L.Gagnon et al [16,17,18] solutions to
the nonlinear Schrodinger equations were discussed using the symmetry reduction
method. The functional form of the nonlinear Schrodinger equation is very similar
to the Landau-Ginzburg equation. The NLS deals, however, with complex variables

while the Landau-Ginzburg equation of interest to us is purely real.

It should be mentioned that symmetry reduction is only one of the methods
that can be applied to obtain analytic solutions of non-linear partial differential

cquations. It is possible to apply other methods such as: Lie-Backlund transforma-

tions [5] or new similarity reductions [12].

The plan of this thesis is as follows.
In this introductory chapter main ideas, such as phase transition, order parameter,
and coarse grained quantities, will be introduced. The limitations and extensions of
their applications will be discussed as well. The discussion of the relation between
phase transitions and symmetry groups follows. Then some side issues related to
phase transitions and to the Landau theory such as the Landau-Ginzburg criterion,
the eontinuous Ising model and critical indices are briefly described. The next

scetion contains discussion of the equation of motion.

The second chapter contains.a very general description of the symmetry
reduction method. It begins with a simple example illustrating the power of the
symmetry reduction method applied to the 1+1 dimensional linear heat equation.
The main steps of the symmetry reduction methcd will be introduced in this case.

The more precise formulation is deferred to the appendix. The following section

(]



contains the description of the relation between the Lie subalgebras and reductions
of the differential equation. The discussion of analysis of the algebraic structure of
the Lie algebra follows. This chapter closes with a brief description of the Painlevé

test.

The following chapter contains the main results of my thesis. The first part
describes the results of the symmetry analysis applied to the Landau-Ginzburg
equation with positive signature of the gradient term. This part starts from a
discussion of generators of the relevant Lie algebra. The structure of the system of its
subalgebras follows. Then reduced ordinary equations obtained using subalgebras
of the proper dimension are listed. Those reduced ordinary differential equations

that satisfy the Painlevé test are then solved.

The second part of this chapter contains results of the symmetry analysis of
a modified Landau-Ginzburg equation with mixed signature of the gradient term.
Discussion of its properties follows the same path as the similar discussion in the

first part.

The fourth chapter contains a comparison of the numerical values of the free
energy functional for a few chosen reductions for both signatures. The possibility

of transitions between these two cases is also discussed in this chapter.

The conclusion which contains a short discussion of implications of the ob-

tained results closes the body of text.

The appendix consists of two parts. The first part contains some basic math-
ematical definitions which are required in the following theorems. In the second part
I list some main theorems showing relations between the differential equation and

its Lie algebra.



1.1 Time and space dependent phenomena in phase transi-
tions

The following two subsections contain descriptions of the fundamental approaches

used in the analysis of large systems on different length and time scales.

¢) Thermodynamics

The behaviour of large systems is usually described using one of two approaches.
The first one, the thermodynamical approach, is applicable to systems that are close

to equilibrium and evolve on a large time scale in comparison to local equilibration

time (quasi-static approximation).

The thermodynamic approach was initially constructed to describe highly
homogeneous systems. It assumed that the state of the whole system can be de-
scribed using a very small number of extensive and intensive variables. Obviously,

to each thermodynamic state there correspond an enormous number of microscopic

states.

In thermodynamics the main role is played by two types of objects. The first
one is the state function of a system. The second type are the so-called thermo-
dynamic potentials. Both objects are functions of thermodynamic variables. The
knowledge of the state function and one of the thermodynamic potentials is suffi-
cient for calculations of the physically measurable susceptibilities. Susceptibilities
are expressed in terms of derivatives of different thermodynamic potentials. Us-
ing the Lagrange transformation one can transform each of the potentials into any

other.

Thermodynamics is, however, a phenomenological theory in the sense that

thermodynamic potentials and the state function are taken from the experimental



results. One can find justification of the results obtained from classical thermody-
namics deriving laws of thermodynamics from more fundamental laws of statistical
physics. However, practical calculations of the thermodynamic potentials from the
microscopic principles are, with the exception of a few systems (e.g. ideal or nearly

ideal gases), very difficult and one has to use the thermodynamical methods.

The ergodic property is one of the most essential assumptions of statistical
mechanics. It means that it does not matter if one calculates an average value of
any physical quantity over many identical systems (replicas) or if one uses only
one system but averages over long times of evolution. It is believed that most

equilibrium systems possess the ergodic property.

The main limitation of the thermodynamical approach which is the homo-
geneity of a state of a system on the length scale comparable with the size can be

relaxed if one uses the coarse grained approach.

b) Coarse grained approach

Introduction of the coarse grained quantities allows discussion of spatially-modulated
phenomena. The spatially homogeneous thermodynamic variables are dropped and
new variables which are slowly varying on the length scale L are used instead. Such
an approach is justified when there exists a finite range interaction that takes blocks
of the dimension L? back to equilibrium in a short time compared to the time scale

of changes taking place over long distances.

The next few paragraphs contain an interpretation of the main equations of
this thesis as it was given by Gunton and Droz in their book [23]. Both derivation
of those equations and their physical interpretation are based on the concept of the

coarse-grained free energy.



The partition function of the system is given as

zZ= {Z} exp(~BH{mi}) (L.1)

where summation is over the all possible configurations of the variable m; and
B = (kT)™'. In the above equation i numbers the lattice sites. The free energy Fof
such a system is given by the equation F = —~'In Z. The free energy function is
therefore a function of intensive parameters such as 8 = (kT)~!. It does not depend
on the actual value of the distribution m;. It is clear that one cannot discuss the

spatially varying distributions using the free energy function defined in this way.

Another way of defining a physically interesting functional is based on local
averaging of the distribution m;. One starts by dividing the sample into a large
number of subregions that are large in comparison with the lattice constant and
small in comparison both with the size of the sample and the correlation length.
In these subregions one defines the average values m, of the distribution m;. After
summation over the microscopic configurations m; compatible with a constraint m,

the partition function given in Eq. (1.1) can be rewritten in the form:

Z = Tr{ma}W{ma}exp(—ﬂE{ma})
= Trim,} exp[—BFa{ma}] (1.2)

where the symbol W{m,} denotes the number of configurations compatible with a
local average value m, and local functionals F, are defined as
Fu(ma) = —B'In Y exp(—BH{m.}).
{mi}
In the last equation ¥’ denotes the summation over the microscopic configurations
compatible with the constraint m,. One can then define the global free energy as the
functional F(m) = ¥, Fy(m,). This functional is defined in the space of average
distributions which in turn are defined over the whole sample. The functional

F, defined in Eq. (1.2) is called the coarse-grained free energy. One should be



aware that this object is quite different from the free energy function defined in
thermodynamics. It is distinguished by its dependence of the on the locally averaged
values of the distribution. However, if one considers only spatially homogeneous
solutions then the local and global averages are equal and the thermodynamic and

coarse-grained free energies differs only by an L dependent constant.

Transition to the continuous description takes place at the level of the aver-
aged local densities. Therefore one obtains the coarse-grained free energy functional

defined over continuous distributions m,.

One, however, rarely calculates the coarse-grained free energy starting from
a microscopic model. It is generally accepted to assume the Landau-Ginzburg form

of this functional as

Fi{m@®} = [fi{m(®)
[ al5erl V@) + Vi fm(). (1.3)

The index L expresses the fact that the coarse-grained free energy depends on the

size of the cell L used to average.

According to M. Luban [43] the coarse grained order parameter can be de-
fined using the following approximation
m(F) = ) exp(—ik-f)m;
R <ke
where k. is a cutoff value for the vector k and where mp is a Fourier transform of
the discrete system of values m(+) indexed by R

m; = N'S exp(ik - P)mp.
R

A more detailed definition of the order parameter is given in the next section but
at this moment it is convenient to think about it as just another thermodynamic

variable even if there are some significant differences between these two notions.



The main difference here in the approach of J.D. Gunton and M. Droz [23]
or that of J.S. Langer [41] is that the coarse graining operation is performed in the

Fourier conjugated space of the variable k.
If one denotes the equilibrium free energy as F and the coarse grained free
energy as F, then the partition function can be expressed as

Z =exp—(BF) = /_:/: [I dmiexp [_~/L‘ dd'FFL] . (1.4)

- |kl <ke
c¢) Singularities of the thermodynamic potentials. Phase transitions.

It may happen that derivatives of a thermodynamic potential have singularities.
The points at which singularities appear are called phase transition points. At
phase transition points some physically measurable properties quantities change
their values in a discontinuous fashion. Traditionally phase transitions were classi-

fied with respect to the order of derivative of the free energy at which discontinuity

appears.

A phase transition is a process in which some physical properties of a sys-
tem change in a discontinuous way. In a traditional (Ehrenfest) classification of
phase transitions different classes of transitions are differentiated by the lowest
order derivatives of the thermodynamic potential which are discontinuous at the
phase transition point. And so, for first-order phase transitions some of the first
order derivatives (e.g. entropy, energy, or volume) of the thermodynamic poten-
tials are discontinuous. Second-order phase transitions are related to continuous
changes of the previously mentioned thermodynamic variables but discontinuity of
the second derivatives of the thermodynamic potentials occurs. There are many
different theories describing phase transitions. For example the best description of
the critical exponents is presently given by methods of the renormalization group.

On the other hand, a qualitatively good description of the ground state for different



system can be achieved by the means of a much simpler mean field theory. Landau's

theory belongs to the latter type.

d) Landau theory of phase transitions

In the 1930’s L.D.Landau [38] suggested that in order to distinguish between differ-
ent phases one should append one more variable, called an order parameter to the
arguments of a thermodynamic potential. However, the order parameter is not a
thermodynamic variable because the equation of state does not depend on it. The
early theory of phase transitions assumed that it is a quantily characteristic of the
whole system in the same way as temperature or pressure is defined for the entire

system and is assumed to be equal in all its parts.

Introduction of the order parameter removes singularities from the potential
itself. The homogeneous phases are characterized by values of the order parameter
that minimize the thermodynamic potential for fixed value of other variables. This
section contains a brief description of the Landau theory in its original version. It
is based on L.D. Landau and E. Lifschitz’s book [40] and on the original paper by
L.D. Landau [38].

The concept of order parameter 7 is of primary importance in this theory.
Initially [38] the order parameter was as an additional variable which characterized
the degree of order in a system. It was supposed to be zero when the system was
in the state of the complete disorder and positive otherwise. Later, Landau [36]
extended the range of the variable to the whole real axis. In this later paper the
order parameter was given a physical interpretation. Its meaning was illustrated in

Landau’s book in the following way:

In transitions where the atoms are displaced from their positions in the

symmetrical phase, n may be taken as the amount of displacement. For



transitions with a change in the ordering of the crystal (e.g. in the CuZn
alloy), the parameter n may be defined as n = (weuw — wzn)/(weu +
wz, ) where we¢, and wz, are the probabilities of finding a copper atom
and a zinc atom, respectively, at any given lattice site. For magnetic
transitions, 7 may be taken as the macroscopic magnetic moment per

unit volume of a ferromagnet or the magnetic moment of the sub-lattice

for an antiferromagnet.

From the definition of the order parameter, the value at which the thermodynamic
potential has its minimum determines a stable phase. In this way it is possible to

distinguish between different phases by calculating the value of the order parameter.

In Landau’s theory one investigates a thermodynamic potential &(P,T,n).
The minimum of this potential defines the value of the order parameter n for each

value of P and T. That means that the conditions for equilibrium are given by

0P 0*®
a—n—o E]-{>0'

It is assumed that close to the point of a second-order phase transition this potential

can be expanded into a power series with the respect to 7.
&P, T,n) =B+ an+ An*+Cn*+ Bn* +---

where the coefficients a, A, B,C,... are functions of P and T. One should not
expect this expansion to be always correct or possible but in many cases it yields

correct results (e.g. structural phase transitions).

For many applications of the Landau theory using the average (equilibrium)
values of thermodynamic variables is quite sufficient. The following example is
discussed in L.D. Landau’s book [40]: the expansion of ¢ contains only terms up

to the fourth order in 7.

&(P,T,n) = ®o + an + An* + Cn° + B’ (1.5)

10



It can be shown that, if the states corresponding to n = 0 and n # 0 minimizing the
thermodynamic potential are of different symmetry and the transition is continu-
ous, the first-order term a in the above expansion must be identically zero. The
coefficient A(P,T) in the second-order term must vanish at the transition point
since in the low-temperature phase the value 7 = 0 must correspond to a minimum
of @, and it is necessary that A > 0, while on the other side of the transition point,
in the high-temperature phase, non-zero values of 7 must correspond to to the sta-
ble state, and this is possible only if A < 0. Figure 1.1 contains a sketch of the
generic behaviour of the thermodynamic potential ® close to a second order phase
transition. The coordinate axes are taken to be the temperature T and 7 the value

of the order parameter.

However, if the transition point is a stable state, it is necessary that the third

order term should be zero and the fourth-order term be positive there:

A(P,T) =0, C.(P,T) =0, B.(P,T) > 0.

There are two possible cases now. First, the third-order term is identically
zero owing to the symmetry of the body: C(P,T) = 0. Then, at the transition
point only the condition A(P,T) = 0 remains, which determines P as a function of
T or vice versa. Thus, in the PT-plane there is a line of phase transitions of second

order.

If, however, C is not identically 0, the transition points are determined by
the two equations A(P,T) = 0,C(P,T) = 0. In this case, therefore, the continuous

phase transition can occur only at isolated points.

For magnetic systems the thermodynamic potential of the body cannot be
altered by time inversion. But, the magnetic moment, being related to the electric
current, changes its sign under such an operation. For this reason the expansion of

® contains no odd-terms.

11
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Figure 1.1: Schematic pictures of second order phase transitions in Landau theory
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In the theory given here, it is assumed that the function A(P,T) has no
singularities at the transition point, so that it can be expanded near this point in

integral powers of temperature
A(P,T) = o(P)T - T)

where T = T;(P) is the transition temperature. The above temperature dependence
of A was proposed by L.D. Landau as the simplest possibility which yields a sign
inversion of A. At the same time it was assumed that the coefficient B(P,T) is
only weakly temperature dependent in the vicinity of the critical point and it may
be replaced by B(P,T.). The expansion of the thermodynamic potential therefore

becomes

®(P,T,n) = ®(P,T) + a(P)T - T.)n* + B(P)n* (1.6)
with B > 0.

The dependence of n on temperature near the transition point, in the low-
temperature phase, is determined from the condition for  to be minimum as a
function of . Hence, we obtain n? = —A/2B = a(T. — T)/2B, while in the high-

temperature phase n = 0 as was required in the first place.

It is also possible to include in this picture first order phase transitions. One
can do this by assuming that the coefficient C standing by the third order term in
Eq. (1.5) is temperature dependent instead of the coefficient A. This would result
in an additional free energy minimum appearing when A > 0 and B is sufficiently
large and negative. This behaviour was not discussed by L.D. Landau as it yields
a first order phase transition and because it involves a non-trivial third order term
which is usually forbidden due to symmetry properties (e.g. time inversion). A
sketch of the generic behaviour of the thermodynamic potential @ is given in Fig.
1.2. One can see there the existence of two characteristic values of C. At the first

one C. there is an inflection point. For values C < C.,, $ has two minima. The
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second characteristic point C, denotes the point at which the global minimum is
at the value a 7 # 0. In the region between C. and C., n = 0 is still the global

minimum and represents the stable state.

At this point I would like to summarize the main points of the Landau theory

of phase transitions.

1. Existence of the order parameter 7
e in the high-temperature (usually high-symmetry) phase n = 0
e in the low-temperature (usually low-symmetry) phase n # 0

2. The value of 5 is given by the minimum of the thermodynamic potential &

which can be expanded in a series around the point of the phase transition

3. Thus expansion coefficients must satisfy

e APT)=0atT=T,
e C(P,T) = 0 if we have a line of second order phase transitions

o C(P,T) # 0 if we have isolated point of continuous phase transition

¢« B(P,T)>0at T =T,

Much later, in 1972 R. Thom [61] gave fundamentals to the classification of
singularities of functions defined on a space which is less then 7 dimensional. These
results are known as “Catastrophe Theory” [19]. According to this theory, under
some assumptions, one can write a generic (up to diffeomorphism) form of func-
tion which both the first derivative and the jacobian are zero. One of the simplest
elementary catastrophes has the exact form of the Landau 4** degree expansion.
Another catastrophe known as the butterfly catastrophe corresponds to the 6 or-

der expansion. Thus, the previously used term of the generic behaviour of the
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thermodynamic potential @ close to phase transition may be understood in terins

of catastrophe theory.

Physically, the validity of such an expansion is limited to the vicinity of the
critical point. Landau’s intuitive choice of the form of the thermodynamic potential

functional waited for this mathematical justification for many years.

At this moment it is clear that this type of theory operates with averaged
values which are the basic quantities of equilibrium thermodynamics. It is assumed
that all the processes are taking place very slowly in such a way that the value of

the thermodynamic variables is uniform in the whole sample.

There are some attempts to construct a catastrophe theory for systems cou-
taining many interacting subsystems but they are developed in the direction of the

cellular automata theory [2].

To generalize the Landau theory one must include the energy of inhomo-
geneities. It is usually done by adding the gradient term (so called Ginzburg term)
(Vn)?% The appearance of this term is not justified mathematically, but seems to
represent the desired phenomena very well and was successful in various models.
As far as it was possible for me to trace it, for the first time such an extension of a
thermodynamic order parameter was done by L.D. Landau and B.L. Ginzburg [39].
Despite the fact that the spatially dependent order parameter is used throughout

this paper there is no discussion of the physical interpretation of this extension.

e) The coarse grained order parameter

Using partition function expressed in terms of the coarse-grained functional Eq. (1.4)

the equilibrium order parameter /() in d-dimensional space can be calculated te
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be

o0 o0
() = / / I dmzm()exp [ﬁF—- / ddFFL].
-00 -00 | Ld
[k|<ke
It is usually approximated by a function that minimizes the coarse grained func-

tional /,. Using the Euler equation one obtains

§F,
Sty = (1.7)

A minimum of the thermodynamic potential which was obtained by calculation of

the partial derivative, now is replaced by calculation of the functional derivative.

) Renormalization group

On the other extreme of descriptions of large systems is the method of the renor-
malization group. It assumes that the correlation length is infinite at T¢ and that
the system looks the same on all length scales. Such conditions are usually satisfied

at points of second order phase transitions. In the description of this method I

follow L.E. Reichl [55].

The first step in the development of this theory was made by L.Kadanoff [27].
He proposed to divide a d-dimensional system of spins into subsystems containing
L4 spins which is large compared to 1 but small compared to the number N of spins

in the whole sample. Then he rewrote the original Hamiltonian
~N/2 N

H(S)=-K Y S8;-BY_S:
0w i=1
(where S denotes a specific spin configuration, ¢ and j numbers the lattice sites,
K is an exchange constant, v describes the number of nearest neighbours, and B
corresponds to an external field), in terms of the new variables S;. The new variables
S; can be defined as the average values of the old variables S; over subsystems I.

The new Hamiltonian takes the form
4NL=d/2 NL-d

H(SL)=-KL Z S;S;— B Z St
1,J I=1
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This new block Hamiltonian looks exactly the same as the original one. Therefore
one should expect to obtain the free energy per site f(¢, B) to be in the same
functional form fr(er, Br) = L%f(e, B) where € = (T — T¢)/Te denotes deviation
from critical temperature and B denotes the external field. It is clear that the new
values of the free energy parameters are L dependent. L.Kadanoff assumed after
B.Widom [64] that new values can be obtained by scaling ¢, = e¢L*, B, = BLY
where z,y are some constants. Knowing the behaviour of € and B as functions of
L one can calculate the power which dominates the divergence in the correlation

functions. Calling A = L? one gets
f(e, B) = A" f(M\Pe, A'B) (1.8)

where p = —z/d and ¢ = —y/d. Widom [64] expressed the critical exponents 8 and
6 in terms of p and ¢
l1—-q
g =—= 1.9
. (1.9)
q
6= —— 1.10
- (1.10)
where 3 describes the divergence of magnetization at zero magnetic field and é de-
scribes the divergence of magnetization along the critical isotherm. Using identities
between critical exponents one can find most of the remaining critical exponents

using the above two.

K.Wilson [65] extended Widom and Kadanoff’s ideas. He wrote a model

Hamiltonian in the form

1 2
H(K,S,N) = Ko+ K, ES; +KgZS;Sj +K3ES{SJ' + .
i ij i
where ¥ means that only k** neighbours are included. The coupling constants,

K; are temperature dependent. After summation over all blocks one obtains the

equality of the two partition functions:

Z(K,N)= Z(K,,NL¢)
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Since the free energy per site has the same functional form as the old one it can be
written:
2y - 1 > 1 i r> _r—d >
f(K) = lim <InZ(K,N) -gl_rgoNan(KL,N) = L™ f(KL)
The coupling constants are related by certain nonlinear transformation R, = T(I? )-

Repeating this operation many times for the critical point, at which correlations

arc infinite, one should reach a fixed point K =T(K").

In the next step one investigates stability by calculating the eigenvalues and
cigenvectors of the linearized map T around its fixed point RK*. Rewriting the free

energy in terms of eigenvectors 6@ one obtains
g(&u,, 6'M2, .. ') = L'dg(z\l&;l, /\25112, o ').

This expression has a similar form to Eq. (1.8) and it also provides a scaling relation
for the free energy per site. Therefore, one can use the same ideas as before and

express critical exponents in terms of the above scaling using Eqs. (1.9,1.10).

This theory has been very successful in finding critical exponents. However,
to describe phenomena appearing on the mesoscopic scales one must go to the

middle ground between thermodynamics and the renormalization group method.

g) Multicritical points

Multicritical points appear when lines of phase transitions of different order inter-
sect. Landau’s first paper [38] on phase transitions already contains a discussion of

the critical point between the first and second order phase transitions.

To describe the behaviour of systems displaying multicritical points one often
uses expansions containing higher order terms in the free energy expansion. For

example, if one uses the expansion of the free energy:

®(P,T,n) = %o+ an + An” + C7° + By + Dn®
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where A(P,T) = 0 but B(P,T) > 0, then the transition is of second order. However,
if B(P,T) < 0 and A(P,T) > 0, then the transition is of first order. The point
at which these two lines intersect is called a maulticritical point. The graphical
representation of Landau’s discussion is presented in Fig. 1.2. In the space spanned
by coefficients A and B one can see lines of first and second order transitions of
the above free energy functional. The point at which the metastable states appear
corresponds to C = 0 in Fig. 1.2. The point at which this metastable state becomes

stable and the state = 0 becomes unstable is denoted by C..

One may consider even more complicated geometries of the phase diagram
as it was described by A.Aharony [3]. An example of a tricritical point taken from
[3] is presented in Fig. 1.3. In the way characteristic to the Landau theory this
diagram can be expanded introducing an additional variable H. The name of the
tricritical point becomes clear in such extended space. Such expansion of a tricritical
point is illustrated in Fig. 1.4. Also this figure is based on a sketch in [3]. High
order expansions are often criticized, on the ground that terms corresponding to
the powers higher than 4-th are irrelevant in the sense of the renormalization group
theory. This argument does not take into account that one may be interested in
the behaviour around phase transition points where the correlation length is still
finite. Dropping the higher terms is correct in calculations of critical exponents
but also limits the possible range of geometries of the mesoscopic structures. This
thesis does not discuss the critical exponents but rather places importance on large
scale structures and geometry of the phase diagram so the higher order terms are

included in the following considerations.

h) Symmetry and Landau theory of phase transitions

In this section I will try to relate the above listed properties to the change of the

symmetry group for a second-order phase transition. As stated in his first paper
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Figure 1.2: Schematic pictures of the first order phase transitions in Landau theory
plotted in the C,n,® space. C. denotes point at which the global minimum is

different from zero
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Figure 1.3 is removed due to copyrights restrictions.

Figure 1.3: The tricritical point O in a dilute magnet. The dashed curve represents
the line of points of the second order phase transition, the continuous one the line

of first order phase transitions.
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Figure 1.4 is removed due to copyrights restrictions.

Figure 1.4: This diagram represents the tricritical point from Fig. 1.3 plotted in
the larger space spanned by H, s and T. The region limited by O, T, . and lying
in the H = 0 plane represents the first order transitions. Two “tricritical wings”

represents the surfaces of the second order transitions.
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[38] describing the idea of an order parameter L.D. Landau did not connect ideas
of order parameter and symmetry. Two years later in 1937 he published another
paper in two parts [36,37] in which he discussed phase transitions during which the

symmetry group is changed.

If two phases have different symmetry properties any function, which is in-
variant under the action of an appropriate symmetry subgroup and is not invariant
under the action of the whole group can be used as an order parameter. Landau
has argued that it should be therefore possible to reconstruct his expansion starting

from a discussion of the symmetry properties.

Reversing construction from previous sections one starts here from high- and
low-symmetry states described by a density p and then writes the thermodynamic
potential ® in terms of these invariants. One assumes that the density p in the
high-temperature phase and at the transition point itself has the symmetry group
Go while in the low-temperature phase it has the symmetry group G. Here, G is
a subgroup of Gy. The density function can be written as the sum p = ¥, 9;¢;
where all the functions ¢; are transformed into combinations of one another by all
transformations in the group G. We can decompose this sum into two parts the first
of which is composed of the function which is invariant under all transformations

of the group Gy and the second part is not invariant under Gp.
p=potbp, Sp=3 'Y n"4in)
n i

where n numbers different representations and ¢ numbers basis functions in each
representation. In this formula the unit representation is excluded from the sum-
mation. The actual values of the r),(") as functions of P and T are determined
thermodynamically from the conditions of equilibrium. It means that 17,(") is found
by minimization of the thermodynamic potential at given values of P and T. This

determines the symmetry G of the crystal.

23



If the crystal is to have the symmetry G at the transition point itself, it is
necessary that all the 7™ should be zero there, i.e. §p = 0, p = po. Since the change
in the state of the crystal in a phase transition of second order is continuous, bp
must tend continuously to 0, through arbitrarily small values near the transition
point. Accordingly, one can expand the potential ®(P, T, r],(")) in powers of nﬁ"’ near
the transition point. Having fixed families of functions ¢$"’ one can consider the

representation of G acting on the space of the coefficients n,(") instead of the space

of functions ¢7.

Next, since the thermodynamic potential is invariant under any of the trans-
formations of the group G, the expansion can contain only invariant combinations
of r)f") that are of the appropriate powers. No linear invariant can be formed from
quantities which are transformed according to the non unit irreducible representa-

tion of a group, for otherwise that representation would contain the unit represen-

tation.

Thus, the leading terms in the expansion of ¢ are of the form
=8+ 3 'A™ Y [piM]? (1.11)
(n) i

where the A™ are functions P and T.

At the transition point itself, the crystal must have the symmetry G, i.e.
the equilibrium values of the r)f") must be zero. It is evident that & can have a
minimum only when every n}") = 0 if all the A™ are non-negative. If all the A"
were positive at the transition point, they would also be positive near that point,
so that the n,!") would remain zero and there would be no change of symmetry.
For some r)i") to be non-zero, one of the coefficients A™ must change sign, and
this coefficient A™ must therefore vanish at the transition point. (Two coefficients
A() can vanish simultaneously at an isolated point in the PT-plane, which is the

intersection of more than one line of transitions of second order).
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The change in the sign of one of the A" causes the appearance of non-
zero n,(") belonging to the n'* representation. Thus the crystal with symmetry Gy
becomes one with density p = po+6p, where §p = ¥, 0! ¢{" is a linear combination
of the base functions of any one of the irreducible representations of the group
Go (other than the unit representation). Accordingly, the index n which gives
the number of the representation, will be omitted meaning always the one which

corresponds to the considered transition.

We shall use the notation: #? = ¥, 9%, 7; = nv; and write the expansion of

® as

® = ®(P,T)+n*ALT)+ 73 Cul P, TP (1) +

+7* 3 Bo(P,T)f (%) + ...,

where (3, f{¥ ... are invariants of the third, fourth etc. orders formed from the
quantities ;. In the sums over a there are as many terms as there are independent
invariants of the appropriate order which can be formed from the 7;. The previously
listed conditions are imposed on the coefficients A, B, C and therefore the expansion

up to the fourth order terms is in the form

b= P, + A(P, T)T')2 + 7]4 Z Ba(P: T)f(S")(‘YI)

In this way the basic results of Landau’s first paper were recovered and a
the connection between discrete symmetries and phase transitions were established.
However, it was not until many years later that Landau included continuous sym-
metries in the framework of his theory [40]. He did it by adding the group of

continuous translations to the already included discrete symmetries.

The representations of space groups can be indexed by the parameter k which
takes a continuous series of values. The coefficients A™ in Eq. (1.11) must therefore

depend not only on the discrete number n but also on the continuous parameter k.
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Repeating the argument dealing with minimization of a thermodynamic po-
tential that was used in the case of discrete symmetries one can argue that a phase
transition should correspond to the vanishing (as a function of P and T) of the
cocfficient A(®(k) with a given number n and a given k£ = ko. In order that the
transition should actually occur, it is necessary that A™ as a function of k should
have a minimum for £ = Ko, i.e. the expansion of A(")(E) in powers of % — Eq should

contain no linear terms.

The value of kg determines the translational symmetry of the functions ¢,
and therefore that of the function §p, i.e. it determines the periodicity of the lattice
of the new phase. The condition of stability at the transition point is translated
into the condition that the structure at Eq must be stable in comparison with those
which correspond to close values Fo. But a structure with £ = ko + & where & is
small, differs from that with k= ko by a spatial modulation in the periodicity of the
latter, that is, by the appearance of non-uniformity over distances (1/g) which are
large compared with the periods of the lattice. At this point one can think about
the thermodynamic potential as being dependent on the slowly varying coefficients

7; instead of being dependent on ¢;.

When 7; are space-dependent one has to include its derivatives in the ex-
pansion for the thermodynamic potential. One can neglect terms which are full
derivatives. They disappear after the functional derivative is calculated, because
using Stokes theorem they can be rewritten as integrals over the surface. Repeating
the discussion on stability and on the invariance with respect to the action of dis-
crete groups one can argue [40] that the derivatives should appear as combinations

of squares of gradients of the order parameter.
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i) Fluctuation of the order parameter

The main observation for this discussion is that when the system is in the equilib-
rium state n then the probability of the small deviation An from the mean field

solution 7 is
w x exp(—AP,/kT) (1.12)

where A®, denotes the change of the value of the thermodynamic potentinl &

with respect to the equilibrium value, k is the Boltzmann constant and T the

temperature.

For an inhomogeneous body it is better to use the thermodynamic potential
p, T,n). To include the energy of inhomogeneities a quadratic form depending
on derivatives of n
dn On

Dix(p, T)'g;g;:

is added to the original functional. In the simplest case the matrix D may be taken

as Dy = gb;r. For stability of a homogeneous body, D must be greater then zero

and the density of the potential 2 can be written as
Q = Qp + ain® + by* + D(Vn)? —nh (1.13)

where a and b are taken per unit volume. The value of Af2, in the linear approxi-
mation, 1s

AQ, = / [ad(én)? + D(Vén)?|dV (1.14)

The Fourier transform of the function §n allows us to calculate the correlation

functions for the reduced temperature { = T ~ T > 0

T
ne 2o ———
<l I'>= e ran

T. r
8% Dr exp(~ e )

where r. = \/D/at is called the correlation length of the fluctuations.

< b b >=
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The mean field solution for 7 is given by the minimum of the polynomial part
of expression (1.13) which is 72 = 0 for £ > 0 and 7? = —ai/b for f < 0. We would
like to determine when the mean square of the space average of the fluctuation
is of the same order as the square of the phase over the volume corresponding to
the correlation length. The space average of the fluctuation is given by the zero
component of its Fourier transform, so its mean value was already calculated and

it is | 6n |*= =L=. Comparing these two quantities over the volume V o 72 gives

2Vat”
the Ginzburg criterion for the validity of Landau’s expansion
T.b* -
t 1.15
= <l (1.15)

j) The continuous Ising model vs Landau ezpansion

The following paragraphs describing the relation between the S* Ising model and

the Landau theory are taken from the book by Patashinskii and Pokrovskii [48].

A useful generalization of the Ising model is its continuum analogue.
A variable ¢(Z) ranging from —oo to oo, is assigned to each site. The

Hamiltonian of the system has the form
I -t — X -t
= T6E@ - JE+B +ADBEF - P (116)
E) )

As A — oo the system described by the hamiltonian H becomes iso-
morphic with the Ising model, i.e. in this limit ¢(Z) takes just two
values +¢o. The model (1.16) is called the S* Ising model [55]. For any
positive A and I the ground state of the system is doubly degenerate
¢(Z) = Lo, the sign being the same at all the lattice sites Z. In weakly
excited states of the system ¢(Z) is slowly varying. In place of the lattice

model (1.16) we introduce its continuum analogue:

B = [S(VeF +X(¢* - $3)d%s
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= / §(5¢)2 + §¢’ + N¢*d*z + const (1.17)

where ¢ = Ib*~%, a = —2X@2b~%, X' = Ab~9, b is the lattice constant and

d is the dimensionality of space.

By comparing Eq. (1.13) with Eq. (1.17) one can perceive the close anal-
ogy between the Landau theory and the continuous Ising model. The
difference is that in the Ising and §* models the coefficients in the mi-
croscopic Hamiltonian are independent of the temperature, In Landau
theory the coefficients are assumed to be functions of the temperature

(one of the coefficients a changes sign as T passes through T,).

1.2 Equation of motion

To include time dependent nonlinear relaxation processes M. Luban [43, page 71]

proposed to add the time derivative to the Eq. (1.7)

) §F |
?5? = -vR3-n-l—(% (1.18)

where R is a time-independent, positive, possibly temperature-dependent quantity
with dimension of frequency and v is the volume per particle. Writing Eq. (1.18)
one assumes that changes in m take place over times which are long compared to
the relaxation times of the microscopic variables which are averaged over in order to
define the order parameter. Otherwise, a hydrodynamic description of the system

in terms of m would be invalid.

The rest of this section contains derivation of the equation of mation for a
coarse grained macroscopic quantity. Derivation of this type was first made by J.S.
Langer [41] in the case of the conserved order parameter. Extending Langer’s ideas
H.Metiu et al [44] derived an equation for the evolution of a nonconserved coarse

grained macroscopic quantity. The starting point in this derivation is a Markovian
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master equation

LY S W+ P+ T W -6 - 2P~ 81)  (119)
6 )

where P(x,t) is the probability that the variable of interest (e.g. order parameter)

has the value x at time t. The following assumptions are made about the system:

1. The system is characterized at all times by a free energy F.

o

Changes in the variables of interest (i.e. density distribution) which increase

the free energy are less probable than those that decrease it.

3. On a given time scale 7, much shorter than the macroscopic time scale, large

changes are very improbable.

Using these assumptions one can find the transition rate W [23]. If one
considers the dynamics around the equilibrium position then the dynamics of a

system should satisfy the detailed balance condition
W(z — z +6)P(z) —W(z + 6 — z)P(z + ) =0.

Moreover, P.(z) should be proportionai to the Boltzmann factor exp(—8F(z)) [40].

Thercfore,

W(z —z+6) Pfz+9)
W(z+6—1z)  Pfz)

= exp —f[F(z + ) — F(z)].
One can now write
Wz +6—z)= exp{g[F(:c +8) = F(@))}Qz + 6,2)

where § is a symmetric function of its two arguments. J.D. Gunton in his book (23]
using the above assumption 3 argues that the function § in terms of the difference

of its arguments should be sharply peaked around 0. H.Metiu et al [44] assume
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here a specific form of this function, namely Q = exp(—%) where A is a positive

constant.

The above formalism can be extended to include interactions between many
cells. Denoting by n(x) the density of the variable at the point z one can rewrite

the master equation (1.19) as

OP(n(z),t)

ot = - % Win(z) — n(z) + §()]P(n(z),t) + (1.20)
+ Y Win(z) — 6(z) — n(z)]Pln(x) — §(=), t].
5(z)

Here, the intention is to go the infinite limit with division into small parts and
changing summation into the functional integration. Using the Kramers-Moyal
expansion [63, page 214] Eq. (1.21) can be rewritten as

OP(n,t)

5 = H(D,n)P(n,1) (1.21)

where »
H(D,n)P(n,1) = ;Z{(—%!)—wmwm — n+8)P(n,1)

The formal solution of Eq. (1.21) is
P(n,t) = exp[(t — to) H(D,n)|P(n, o).
Using the traditional construction of the Feynman path integral [20] this formula
can be rewritten as
P(n,t) = 131_{20 exp{(ty — tn-1)H(D,nn-1)]6(nny-1 —nin-2)...
8(ng — ny) exp[(ty — to)H(D,no)]P(n,to)

where ty = t, ng = n. After Fourier transformation of § functions and exponentials

one can write the above operator as

/ dny_y+-- / dn, / dky_y -+ / dko(2m)™™N
N-1
exp[—-At Z{< ikj,(nj+1 - n,-)/At > —H(—ik,-,nj}].

3=0
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Evaluation of the above integral is simplified by limiting an infinite series in the
Kramers-Moyal expansion to the first two nonzero terms. The result after perform-
ing integration over §; is

OF

7 0n;

1 m
-5 2.k (1.22)

j=1

H(=ik,n) = ~3BT 3 ik

Jj=1
with I' = (2rA)™?A. The substitution into the evolution operator (1.22) and
integration over k’s gives

t 1 & 0n; 1 _OF
- [ dt' =Y (=2 + =T =—)}.
expl /.0 ot 2+ 27 an;) |
The integrand is positive so the only distributions that can yield a nonzero contri-
bution are those for which the integrand is equal zero. Equating the integrand to

zero one obtains equation of motion Eq. (1.18).

1.3 Experimental examples

In this section I would like to describe two experiments containing features that are
interesting in the context of the symmetry reduction method. The first experiment
shows a system which displays states with the continuous symmetry properties. The

remarkable fact is that this system consists of crystalline thin film which does not

have any continuous symmetries.

Quite recently in a series of papers, the Russian group [29] [30] reported
very interesting behaviour of magnetic thin films under the influence of an exter-
nal square-wave oscillating magnetic field. They reported the existence of large
metastable structures appearing in the uniaxial iron-garnet (Y Sm)s(FeGa)sO2 in
the presence of a low-frequency (10? — 10* Hz) pumping. For very low frequencies
and without an external field the usual labyrinthine domain structure was observed.
Application of the static field leads to an increase in the size of domains orientated

parallel to the field and later to saturation which takes place for fields in the range
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70 — 100 Oe. When the field oscillates with a frequency in the range 120 — 200 H z
systems of concentric rings appear for a sample 5.5um thick. The diameter of the
internal ring is 200 —400 um and that of the outer ring is 400 — 600 zm. The system
of rings can move with a speed of approximately 10um/sec. The lifetime of such a

system is of the order of 5 — 10 sec.

When the frequency is increased even more and takes values in the range
200 — 6000 Hz one observes a system of spirals instead of rings. The core of the
spiral is 20 — 30 pum and the diameter of the whole spiral can reach up to 1 mm.
The lifetime of the spiral depends on the number of turns it has; more turns implies
a longer lifetime. It may reach 10 sec for a frequency of 300 Hz. These spirals can
move with a speed of 5 — 10 Hz/sec. Figure 1.5 represents the main features of the

spiral pattern after A.S. Kandaurova et al [30].

Interestingly, for a 11.5um thick sample rings patterns do not appear. In-
stead, spiral type domain boundaries appear starting at a frequency of 120 Hz.

There are no visible patterns for frequencies above 6000 Hz in both samples.

The most important features of this experiment, from our point of view, are

1. For frequencies in the range 120 Hz < f < 200 Hz either systems of rings
(for the thin sample) or spiral domains (for the thick sample) appear

o

For frequencies 200 Hz < f < 6000 Hz spiral domains appear (for both

samples)
3. There are no observed patterns for frequencies from 6 kHz to 30 kHz

4. The above structures are 5 orders of magnitude larger compared to the lattice

constant (104)

5. The lifetime of the above structures is fairly substantial, i.e. up to the order

of 10 sec
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Figure 1.5 is removed due to copyrights restrictions.

Figure 1.5: A spiral pattern observed using the Faraday method in the magnetic
thin film excited by an oscillating external electric field by A.S.Kandaurova et al,
Soviet Physics JETP 70, (684), 1990
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6. The above structures have continuous symmetry properties.

These experimental values illustrate how well the applicability conditions of
the continuous approximation, as stated by Gunton et al [23], are satisfied in this
case. These observations also indicate that the symmetry of the crystal lattice may
not be preserved in the larger scale phenomena. It may be also possible that some
role in symmetry considerations is played by the fact that one deals here with a very
thin, almost two dimensional structure. It is not quite clear what would happen
in three-dimensions. This aspect is manifested through the lack of ring domain

boundaries for the thick sample.

The second system consists of a molecular fluid. Therefore, one can expect
both continuous and discrete symmetries to appear. The interesting feature of this
system is the system of patterns appearing when the value of the control parameter

is changed.

Another example of self organization in systems driven by an external field
is investigated by the French group of R. Ribotta and A. Joets [57][26]. In this
experiment a thin layer (approximately 50um) of a liquid crystal is excited by
an external oscillating electric field with frequency around 150 Hz. When the
amplitude of the electric field applied perpendicularly to the plane of the liquid
crystal is less then 7 V' the observed pattern is called Normal Rolls and it consists
of parallel rolls of the same thickness as the whole layer. A schematic diagram
of the experimental setup in the case of the Normal Rolls is presented in Fig. 1.6
An increase of the amplitude above the critical value of 9 V leads to a change of
the pattern to so-called Obligue Rolls. The next threshold is approached at the
amplitude value of 11 V when so called Skewed-Varicose Rolls appear. Then at
15 V the more complicated Bimodal structures appear. A further increase of the
applied field leads to an apparently chaotic behaviour of the system. This sequence

is illustrated in Fig. 1.7.
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Figure 1.6 is removed due to copyrights restrictions.

Figure 1.6: The experimental setup of the experiment by A. Joets et al Physica
23D (1986); AC electric field is applied in the direction z
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Figure 1.7 is removed due to copyrights restrictions.

Figure 1.7: Examples of patterns obtained by A. Joets et al in liquid crystals; taken
from A. Joets et al Physica 23D (1986) 235-239

37



The above described series of transitions is characteristic of the slow changes
in amplitude (slower than 20 mV/min) but it may be significantly different for
rapid changes of amplitude. In such a case the obtained patterns contain some
defects. These defects have the symmetry properties related to thuse of the phase
corresponding to the higher value of control parameter, i.e. the amplitude of the

driving field. Therefore, they seem to mediate the transition to the higher phase.

The most interesting properties of this system are

1. Patterns are extended in the whole sample that is over distances large com-

pared with the distances between nematic molecules

o

The symmetry of patterns is decreased as the value of the control parameter

is increased.

3. The path of phase transformations depends on the rate of change of the am-

plitude of the driving field.

4. There is a well defined sequence of symmetries appearing in the system

It is important to realize that both the above systems are studied under
nonequilibrium conditions. It seems that different patterns are sustained by the

energy supplied by the driving field.

1.4 The time- and space-dependent Landau-Ginzburg equa-
tion and its modification with mixed signature

As was explained above the actual form of the free energy functional usually repre-
sents an educated guess because it is very difficult to derive it by rigorous statistical
means starting from microscopic variables. It is usually quite plausible to accept

the original form of the Landau-Ginzburg equation. This equation has the internal
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structure which is rich enough to include most of the interesting phenomena, and

at the same time is reasonably simple.

PRYLICE S D,,(%JZI-)'I] dr. (1.23)

2 H=T,\Y.2

1
2

1

FiM] = [lAo+4M+ :

1
A2M2+ZA.,M‘+

The standard physical interpretation of this functional is as follows:

Ao : This term corresponds to the part of the free energy density which is indepen-

dent of the order parameter M.

A M : This term usually describes the interaction of the order parameter with its
conjugate force A;. For a magnetic system A; would be equal to the negative

external magnetic field.

the quadratic, quartic and sextic terms : These terms usually describe the
average local interaction with the local field which is proportional to the poly-

nomial in the odd powers of M.

the gradient term : This term is responsible for the energy of inhomogeneities.

The coefficients D, appearing in the functional (1.23) describe the strength
with which the order parameter interacts with itself in different directions. Usually
all the coefficients D, are positive because this is necessary to guarantee the stability

of the minimum with respect to small perturbations.

However, we would like to explore a slightly more general form and allow
some of the coefficients D, to be negative. In order to satisfy physical requirements
we are forced to consider some cutoff- conditions necessary to limit the value of the
free energy functional from below. However, one has to remember that the cutoff
condition related to the coarse graining was already introduced into our consider-
ations; oscillations with the wavevector larger then k. were already eliminated. It

does not, therefore, appear to be a serious limitation.
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The usual cutoff procedure is related to the fact that the smallest length
scale appearing in the problem is the size of the unit cell of the crystal. There
should not be any variables which vary over smaller distances. Anothe: condition
limiting the class of solutions is that the amplitude should be limited by some
physically chosen maximum of the respective quantity. For example when one deals
with magnetization there is a fairly obvious limit to the magnitude of the magnetic

moment which is realized when all possible spins are parallel.

Additionally, we are interested in the possibility of reentrant phase transi-
tions when the coefficients D, are temperature dependent. This problem will be
discussed more extensively in section (3.3). The physical interpretation of the nega-
tive coefficients D, is that it corresponds to the antiparallel orientation of the order

parameter in planes perpendicular to the direction u.

Applying Eq. (1.18) to Eq. (1.23) oue can obtain an equation of motion for
the Landau-Ginzburg type of the free energy functional. First, however, one has to

evaluate its functional derivative through

F[M + 6M]=F[M]+

M
+ /V (A + AzM + AM® + AgMS — ,,2,3,,,, Dz )oM&r (124)
oM. 36M \
+ /a vu=§.z( 5 ) (5 ) + O6M). (1.25)

At this point one usually assumes that the surface term described in Eq. (1.25)
vanishes. It should be pointed out, however, that such an assumption has to be
deduced from the physics of the model and is by no means trivial. Hereafter, it is
assumed that these terms are equal to zero. It is equivalent to assuming that the
variational principle is applied to the problem with fixed values at the boundary.
It can be accomplished by two different assumptions. The first one is that there is
an open neighbourhood of the boundary of the domain V' in which every solution is

constant. Alternatively, one would assume that this condition is forced on variations
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of the functional F. Physically, it means that the value of the variation §M at the

boundary is fixed.

Now one can use the above value of the functional derivative and obtain the

basic equation of this thesis:

oM M
—aT = Z D“W - (Al + A, M + A4M3 + A6M5) (1.26)
H=zx,Y,z

where the t variable was rescaled to include coefficients appearing in Eq. (1.18).
Using the substitution z = /|D;|z’, y = /|Dyly, z = /|D:|, t = €t’,
a = €4, b= ed; c = €¢Ay, d = egAs where k = 1,2,4,6 and all ¢ = 41 and

dropping all primes one can transform equation (1.26) to its canonical form:

oM *M *M M, a 5
= + 57 + ¢( o + 527 )=a+bM +cM’ +dM (1.27)

The above equation includes two possible cases corresponding to different signs of
the ¢ = £1 constant. The symmetry reduction of the ¢ = 1 case is discussed in

section 3.1 while the case corresponding to e = —1 is discussed in section 3.2.

After this rather lengthy discussion of the coarse grained free energy one may
be led to thinking that there is a unique way of interpretation of the free energy
functional. The success of the application of the Landau-Ginzburg free energy
functional makes many researchers believe that its interpretation can be extended
and that it can be used to treat variations of the order parameter which take place
on the atomic length scale. It is not quite clear how this can be justified in more
fundamental terms. One of the examples of such a procedure is given in the paper

by A. Michelson [45].

Another example was given by W. Khan [31]. In this paper he attempts
to explain the periodic noncommensurate magnetic ordering in the RM,Si, alloy
in a certain range of temperatures where R is the rare earth element and M is a

transition element. He suggested that for the sinusoidal modulation of the magnetic
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moment in PrNi,Si; whose period is slightly above 2 lattice constants and which
takes place below Ty = 18 K, the problem can be adequately treated by solving

the variational equation of the free energy functional.

Many results presented here can be applied on the very small length scales
if this approach is correct. The more fundamental arguments lead us, however, to

believe that results presented in chapter 3 are justified for slowly varying solutions.
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CHAPTER TWO
THE METHOD

In this chapter I will give an outline of the mathematical method which is used
throughout this thesis. It starts from the symmetry reduction method in general.
An example of the application of this method to the 14+1-dimensional heat equation
follows. The last section of this chapter contains a discussion of the Painlevé test
and property. The main definitions and theorems are given in the appendix to make

this thesis self-contained and easier to read at the same time.

2.1 The symmetry reduction method

This section is devoted to a brief introduction of the method of symmetry reduction.

I shall assume a basic knowledge of differential geometry and Lie group theory.

The following introduction to the method of the symmetry reduction was

proposed by G.W. Bluman and J.D. Cole [8].

Consider a partial differential equation in independent variables z, ¢ and de-
pendent variables u

Az, t,u, Uz, Uy, Uzg,y Ugg, Uge) = 0. (2.1)

Together with m associated boundary conditions it will be called S. Consider a

one-parameter Lie group of transformation (parametrized by ¢):

z* = X"(z,t,u;€) (2.2)
t* = T*(z,t,u;€) (2.3)
u* =U(z,t,u;€) (2.4)

Say u = O(z,t) is a solution to the system S (2.1). Consider the new system S*
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obtained from S by substitution

One would say that the system S is invariant with respect to the group action if

and only if v = U*(z,t,0(z,t)) satisfies S* whenever u = O(z, t) satisfies S.

If one assumes that solutions v = U*(z, t,u;¢) and
u = O(X*(z,t,u;¢€), T*(z,t,u; €))

are equal then equating terms in different orders of € one may find the invariant

solution ©. Expansion to the first order in € of the formulae (2.3 - 2.4) gives

" =z + e((z, t,u) + O(¢)
t" =t + er(z,t,u) + O(?)
u* =u + en(z,t,u) + O(e).

Which in turn leads to

O(z + e((z,t,u) + O(€%),t + er(z, t,u) + O(e?)) =
= O(z,t) + en(z,t,u) + O(€?).

In the limit € — 0 one obtains the first order linear partial differential equation for

o
((z,t,0)0; + ~(,t,6)0, = n(t, z)

which usually can be solved yielding © = F(z, t, f(£)).

The above procedure assumes the knowledge of the action of the one-pari meter

symmetry group. Therefore one needs a method which would allow determination
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of the appropriate group. In general it is easier to look for the associated Lie alge-
bra than for the Lie symmetry group. In the process of determining this symmetry
it is also more convenient to consider a differential equation as an algebraic equa-
tion defined on the space of independent and dependent variables as well as all its

derivatives.

The main idea of the symmetry reduction method can be explained using
a simpler analogous procedure applied to a single algebraic equation defined by a

function A

Az, u™) =0 (2.5)

where u(® denotes all derivatives of u with respect to z up to the order n. In the
case of algebraic equations all derivatives of u are treated as independent variables.
Let A be a function acting from a subset 2 C R? into R?. The interesting objects
are level sets of the function A {z € RP|A(z) = c} for any fixed ¢ € R? of the
function A. Under some assumptions on the continuity class of the function A and
on the behaviour of its derivative (the implicit function theorem) each level set is a

submanifold of Q.

Using symmetry transformations one can start from any point of any level
set and remain in the same level set for some values of the parameter € which are
close enough to zero (see Definitions A.1 and A.2). It has to be pointed out that
one can find . much larger symmetry group for a particular level set than for all of

them combined.

The condition on the transformation group which assumes equality of the
transformed solution and of the solution at the transformed point described by G.
Eluman [8] is called the group invariance. A few generalizations of this concept are

given in Definitions A.3,A.4 and A.5.

The above ideas can be generalized to a case where the function f is a

45



differential equation. Points which belong to the zero level set of the function A are
solutions of algebraic equation (2.5) and therefore analysis of the symmetry group
for solutions is equivalent to finding a local group of transformations of the zero

level set. The corresponding definition describing a solution is A.6.

The main difference between a differential equation and a simple function is
that the variables appearing as the arguments of the differential equation are not
independent. The action of the group may depend only on z,u but it may also
depend on some derivatives of u. In this thesis only the first case is discussed. The
action of the group on the derivatives can be obtained assuming a covariant change
of derivatives (point symmetries). The appropriate formula is called a prolonga-
tion of the action of the group (see Definition A.7). It is easier to calculate the

prolongation formula for the associated Lie algebra then for a Lie group.

To actually use this method one has to know how to calculate the n — th
prolongation of a vector field. The general formulae for the prolongation of the

vector field which are presented below are taken from [47].

Let the vector field v be given by

v—Zﬁwu) +ZMazM

a=l
Note that since the coordinates (z,u™) on M™ consist of the independent

variables (z!,...,z") and all derivatives u§ of the dependent variables up tc the

order n, a vector field on M will in general take the form

v—Z€ +22%aa

=1

the latter sum ranging over all multi-indices J of order 0 <| J |< n; the coefficient
functions ¢*, ¢J could depend on all the variables (z,u(™). In terms of coefficients

of the given vector field v, pr*(v) is written as

g 17}
pri(v) =v+ Z Zd)ﬁ(z,u("’)%
a=1 J
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where 1 <| J |< n and the coefficient functions ¢! of pr(™v are given by the
following formula:
J p . P .
balz, u(n)) = Dy(¢a — ZE'U?) + Zf'uf;.iv
i=1 =1
where uf = Gu®/0z', uj; = du§/0z’, and the action ° the total derivative D; on a
function P(z,u(™) is defined as
oP oP
D;P = — i
ozt + Z zJ:uJ'.a J

[+ 4
=1 u

After introducing the basic concepts of the symmetry reduction method the
outline of this method can be written as follows. A system S of n-th order differ-
ential equations in p-independent and ¢-dependent variables is given as a system of
equations A,(z,u™) = 0,v = 1,...,l involving z = (z',...,27), u = (u!,...,u%)
and the derivatives of u with respect to z up to order n. The function A can be
viewed as a smooth map from the jet space X x U™ to some [-dimensional Eu-
clidean space, A : X x U™ — R!. From this point of view, a smooth solution of
the given system of differential equations is a smooth function u = f(z) such that

A (z,u™)=0,v =1,...,l, whenever z lies in the domain of f.

Now suppose G is a local group of transformations acting on an open subset
M C X x U of the space of independent and dependent variables. There is an in-
duced local action of G on the n-jet space M (™), called the n-th prolongation of G
and denoted pr(™G. This prolongation is defined so that it transforms the deriva-
tives of function u = f(z) into the corresponding derivatives of the transformed

function & = f().

Combining Theorems A.10 and A.11 we can transform the condition involv-
ing invariance of S5 under the action of the prolongation of elements of the group G
into a condition involving prolongation of infinitesimal generators v of G (see The-

orem A.12). Theorem A.13 shows that under local solvability condition also the
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reverse implication holds. This extra condition has to be introduced because there
is no exact equivalence between the set of solutions of the system S understood as
an algebraic system and the set of solutions of the same system understood as a
system of differential equations S. For a given point (z,u(™) which belongs to Sa
a corresponding function does not have to exist. To deal with such a pathology
we introduce the local solvability condition which is intimately connected to the

Cauchy-Kovalevskaya Theorem and is included in the nondegeneracy condition.

Theorem A.13 gives us a practical way to look for transformation groups of
a system of nonlinear differential equations. Let us assume that the vector field v is
an infinitesimal generator of the symmetry group of the equation A. We can then
calculate the n — th prolongation of v, in terms of the yet unknown coefficients of
v, and apply it to A. The resulting equation can be simplified using the condition
A(z,u™) = 0. The system of first-order partial differential equations for the coef-
ficients of v is obtained by inspecting coefficients of all independent and dependent
variables together with derivatives of the latter ones. We were able to solve this
system of of equations in our cases and in this way we are able to find the symmetry

group associated with the equation A.

The first part of this problem, namely the construction of prolongation and
obtaining the determining system of equations is a completely algorithmic proce-
dure. It can be performed by a computer using a symbolic calculation language.
Our calculations were done at the Centre des Recherches Mathematiques, Univer-
site de Montreal. A program written in the symbolic language MACSYMA by

Champagne and Winternitz [11] was used.

To proceed further, we have to discuss the existence of invariants related to

the previously constructed algebra g.

In practice, the s-dimensional orbits are defined by the appropriate subal-

gebra of the associated algebra g. Let us take a subalgebra go C g where g is
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the associated algebra of the symmetry group G. The vector ficlds generating the
subalgebra go are in involution and they satisfy the assumptions of the Frobenius
theorem. Therefore, they define a family of completely integrable submanifolds in

the space of independent and dependent variables.

a) Reductions of the system of partial differential equations A

The next step in the analysis is finding solutions of the system of PDE’s A knowing
its symmetry group. One method which works in the case of a 1+41-dimensional
second order equation was already presented above after [8]. A description of a

more general approach is given below.

Consider a system of partial differential equations A defined over an open
subset M C X x U ~ RP x R? of the space independent and dependent variables.
Let G be a local group of transformations acting on M. The solution u = f(z)
is said to be G-invariant if it is left unchanged on the common domain by all the

group transformations in g € G such that g - f is defined.

If G is a symmetry group of a system of partial differential equations A, then,
under some additional regularity assumptions on the action of G, we can find all
the G-invariant solutions to A by solving a reduced system of differential equations,
denoted by A/G, and then writing these solutions in terms of independent variables

of the original system A.

We make the regularity assumption that both the action of G on M and the
projected action of G on A/G are regular, and that the orbits of the latter one have
dimension s, where s is strictly less than p, the number of independent variables in
the system. The case s = p is fairly trivial, while for s > p there are no G-invariant

solutions.

Under those assumptions there are p + ¢ — s invariants 7,{. The system A
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can be now expressed in terms of those invariants and some parametric variables.
The next regularity assumption is that it is possible to recover the old variable u

out of variables 7,¢. To assure this it is assumed that the last ¢ columns of the

Jacobian matrix J have rank g everywhere
rank(dn' /0uP,8¢* |0uP)T = q

It should be mentioned that when the generators of the action of the group G are

independent of the old dependent variables u then the new dependent variables ¢

can be chosen as ( = u.

The last remaining problem with the quotient structure is that some sub-
manifold given by the Frobenius theorem may not represent any function because
the derivative of the dependent variables with respect to independent variables may

go to infinity. Such submanifolds would correspond to solutions on the smaller

domain.

In practice, the s-dimensional orbits are defined by the appropriate subal-
gebra of the associated algebra g. Let us take a subalgebra go C g where g is
the associated algebra of the symmetry group G. The vector fields generating the
subalgebra go are in involution and they satisfy the assumptions of the Frobenius
theorem. Therefore, they define a family of completely integrable submanifolds in

the space of independent and dependent variables.

b) Analysis of the algebraic siructure of Lie algebras

In the second part I will describe the basic principles of classification of subalgebras
and finding the representatives of conjugacy classes. There are many subalgebras
that generate reductions. The next problem is to classify them in a convenient way.

The appropriate idea comes from the Lie Group theory (Theorem A.15) and it can
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be translated into corresponding subalgebras using the following theorem (Theorem

A.16).

There is no unique description of the structures of subalgebras as it can be
easily seen by applying the adjoint transformation to the entire system at once. The
result of such an operation transforms each representative into the corresponding
conjugated representative. However, the physically important characteristics re-
main invariant under such operations. For example, the dimensions of subalgebras,
the dimensions of orbits, and the inclusion structure are preserved under the action

of an adjoint transformation.

Methods of analyzing the structure of systems of subalgebras were developed
in a series of papers by J. Patera, R.T. Sharp, P. Winternitz and H. Zassenhaus
[63,52,50,51,49]. In these papers they indicated the method of a systematic deter-
mination of all possible subclasses of subalgebras. Their method is based on the
decomposition of an algebra into the semisimple product of its two subalgebras.
Sometimes one can use the Levi-Malcev decomposition which represents an algebra

as the semisimple product of a radical and semisimple algebra.

It is natural to divide subalgebras into two types: splittin and nonsplitting.
The splitting algebras are generated by generators that are elements of the radical
or the semisimple part of the decomposition. They do not contain generators that
are sums of elements from two components of the decomposition. The nonsplitting
algebras contain at least one generator that mixes two elements from different parts
of the semidirect decomposition. For this rather technical reason these two types

are distinguished in Tables 2 and 7 by writing a tilde above the subalgebra notation

for that of the nonsplitting type.
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¢) Ezample. The 1+1-dimensional heat equation

In the following I would like to illustrate the main steps of determining the Lie
algebra and then discuss the results of symmetry reduction applied to the 1+1 di-

mensional linear heat equation. The details of this calculations are given in P.Olver’s

book [47, page 120]

The 1+1-dimensional heat equation can be written in the form

ou 02
Et'i = .éz_’; (2.6)

is a linear second order PDE containing a first derivative term with respect to time

t and a second order derivative term with respect to position z.

The generator of the Lie algebra associated with Eq. (2.6) can be represented

as a vector field and as such can be written in the form
o o 7
v = &(z, t,u)a- + (=, t,u)a-t- + ¢(=z, t, u)-éz

Then its second prolongation pr? is

0

2 t
t +é Ouy

Ouzs

0
it
+¢ du

1t

a ta T
auz+¢3u¢+¢

where functions required in the following calculations are [47, page 117]

priv=v + ¢°

¢t = ¢y — {uz + (¢u - Tt)ut - é.uuzut - Tuu?

¢::c = ¢z= + (2¢:u - Ezz)u:: — TzzUt + (¢uu - 26.1:14)“:
'"2T:uuzut - Euuug - Tuuu:ut + (¢u - 26::)“:::
~27 Uzt — 3uUzUss — Tulitlzr — 2Ty U sy,
Applying the second prolongation pr?v to Eq. (2.6) one finds that the infinitesimal

criterion of invariance is ¢¢ = ¢** which must be satisfied whenever u; = u.. Using

the explicit form of the functions ¢* and ¢** one finds an equation containing a
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variety of combinations of derivatives of the dependent variable u. The system of
determining equations are obtained by equating the coefficients of all derivatives of

u to zero. The solutions of the determining equations are the following

£ = c; +cqz + 2c5t + degxt
T = ¢g+ 2c4t + degt?

¢ = (c3—csz —2c6t — cz®)u + afz, t)

where cy,...,cg are arbitrary constants and a(z,t) is an arbitrary solution of the

heat equation. The Lie algebra is spanned by the six vector fields

v = 3,
v, = 0
V3 = uau

Vg = $6,+2t6¢
vs = 2t0; — zud,

ve = d4tzd, + 4t%9, — (z* + 2t)ud,

and the infinite-dimensional subalgebra generated by v, = a(z,t)d, where a is an

arbitrary solution of the heat equation.

The first two generators reflect the fact that there is no distinguishable frame
of reference for Eq. (2.6). The generator v reflects the fact that one can multiply
a solution by an arbitrary number. The generator v, reflects additivity of solu-
tions which is the second part of the linear property of Eq. (2.6). The remaining
generators describe the scaling property (generator vs) and a kind of Galilean trans-

formation (generator vs).

Calculating the action of the one-parameter group generated by vs one finds



1 — 4et’
- t
f =
1 — 4et’
. ex?
% = uv1 -—liaetexp(1 -4et)
which for » cor sssion u(xg, o) = ¢ takes the form
. c —€i?
u(Z, t) = ex =
(&) 3 PiTaed)

The last formula can be interpreted in the following way: if one knows the initial
condition for a point that belongs to a generic orbit, then one can calculate its
influence on the value of solutions at other points. The final result is obtained

through integration over the domain of influence due to linearity of Eq. (2.6).

2.2 The Painlevé property

This part is written on the basis of the book by Drazin [15] and the paper by
Ablowitz et al [1]. Solutions of an ordinary differential equation may have singular-
ities of different types (poles, branch points, essential singularities). Those of them
which depend on integration constants are called movable singularities. However,
there are equations for which the position of critical points (singularities other than
poles) do not change when initial conditions are changed. It is said that in such a

case the equation possess the Painlevé property.

For the ordinary differential equations of the first and second order there is a
complete list of such equations under some limitations on the form of the equation.
Namely, the right hand side of the equation under consideration must be a rational

function of a dependent variahle and an analytic function of an independent variable.

There are 50 types of second order differential equations having the Painlevé

property. Solutions of these equations are expressed in terms of elementary func-
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tions, elliptic functions and the six Painlevé transcendents. The list of these equa-

tions with their solutions can be found in the book by E.Ince [25).

Therefore, it is convenient to know if a given ordinary differential equation
has the Painlevé property because when it does then it is possible to look for an
appropriate transformation to one of the listed equations. It is a way to look for

analytic solutions.

There is a computationally feasible algorithmic test to check the necessary
condition for an equation to have the Painlevé property. It was constructed by
Ablowitz et al [1]. The Painlevé test was constructed with the intention to deter-
mine whether an equation can be solved by the inverse scattering method. This

motivation is irrelevant to the way it was used in this work.

In the first step of the Painlevé test it is determined what is the lowest power
in the Laurent series expansion of a solution around an assumed singularity. It is
done by assuming that a solution w(z) is proportional to a(z — zp)? and calculating
the lowest power p for which this term is eliminated from the ODE. This term in
the expansion is called the leading term. The power p which appears in the leading
term should be a negative integer because only then the singularity can be a pole.
If p is a negative rational number then through an appropriate substitution the

equation can be transformed to one with an integer p.

The next step is to investigate the relation of the leading term to next terms
in the expansion. It is done by adding the next term to the leading term in the
expansion w(z) = a(z — 2p)? + f(z — 20)**". Here r should a positive integer. These
positive integers r are called resonances. These relations must be satisfied for any
integration constants obtained from an inductive integration of the equation using

only the first few terms in the expansion.

In the last step one checks if coefficients in the expansion can be expressed in
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terms of the constants of integration by substituting w(z) = a(z—z0)? + X}, aj(z2—
zo)?*7. It should be stressed at this point that this method allows one to check only
the necessary condition for the equation to be of Painlevé type. There are examples

of equations satisfying the Painlevé test and having movable essential singularities.

The above test can be written as an algorithmic procedure and is in practice
executed by the computer. We used programs written in the symbolic language

MACSYMA by Rand and Winternitz [54] and by W.Hereman [24].
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CHAPTER THREE
RESULTS

3.1 The Landau-Ginzburg equation with positive signature
of derivatives

This chapter contains the results of symmetry reduction analysis of the partial
differential equation (1.27) where € = 1.

oM oM &M N M

— 3 5
5T et g g = ot OM oM+ dM (3.1)

Different aspects of the symmetry reduction are discussed in the following

order

1. Alrebras

N

. Systems of subalgebras
3. The geometry of ordinary differential equations (ODE’s)
4. Algebraic and first order equations
5. Results of the Painlevé test and solutions of some ODE’s
These results are original and were published in [60] and [59]. It should be
mentioned, however, that some earlier results obtained by the means of symmetry
reduction and describing time-independent solutions were given by J.Rendell [56]

and in the time-independent case where the right hand side : slynomial was limited

to a 3™ order expansion by P.Winternitz et al [66].
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a) The Lie algebras of the Landau-Ginzburg equation

The Jetermining equations for Eq. (3.1) were obtained using the program written
by B.Champagne et al [11] in the symbolic language MACSY M ATM_ The second
independent check :ras done using a program written by A.K.Head in the symbolic
language MUM ATH™™. Generators of the algebras were calculated by hand using
the determining equations obtained in the previous step. These results were che ed

using the above mentioned program written by A.K. Head.

There are three possible symmetry groups for equation (3.1) when at least

one of the nonlinear terms is different form zero.

—

.d#0anda=b=c=0,
2.c£0anda=b=d=0,

. all other possibilities (where it is implicitly assumed that the equation has to

o

remain nonlinear; i.e. ¢ and/or d are not equal 0)
Using the following generators

Translations P; = -33_1:’ P, = 5‘9;, P. = %, P = %

Rotations L, = zP, —yP,, Ly =zP, —2P;, L. = yP: — zP,

Dilatations D, = zP, + yF, + zP, + 2tP, — Ma—aﬁ,
Dy =zP, +yP, + 2P, + 2tF, - %’—-a%.

one represents algebras in the following way.
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case a = b= c =0 This algebra can be written as (e(3) » (/))0{D;). In other
words, it is generated by the following generators (P, P;, P,P., L. L, L, D).

case a =b=d =0 This algebra can be writtex as (e(3) @ (P,))0(D,). That is, it
is generated by (P, P;,P,,P,,L,,L,,L,,D,).

otherwise [he last algebra is of the form ¢(3) @ (P,). That means that it is
generated by (P, P, P,,P,,L,,L,,L.).

In the above description & denotes the simple product of Lie algebras, O denotes
the semisimple product of Lie algebras, and e(3) denotes the euclidean algebra

generated by (P, Py, P,)O(L.,L,,L.) acting on the three dimensional space.

The non-zero commutation relations are :
(Lz)Ly) = Ls, [Ly, L] = Lq, [Lz, L] = Ly,
[L:, P} = P, L, P} = —P,, [Ly, P;] = — Pz,
(Ly, P:) = Py, Lz, Pe] = Py, [L., P} = —Px,
[D,P|=P., [D,P)=P, D P]|=P, (D P| =P,
where D is equal to D, or D,.

Equation (3.1) has not only cantinuous symmciries but also some discrete
ones. For exainple, transformations z — *z, y — *y and z — %=z leave Eq. (3.1)

invariant. These symmetries were also used to simplify subalgebras.

b) Lists of subalgebras

To obtain a reduction of a PDE to a fewer dimensional PDE one has to obtain
equations for surfaces on which the general solution is constant and then map an
original PDE onto the quotient structure on which the rrew equation is defined. The
surfaces of the ccnstant value are defined by the system of vector fields. The Frobe-

nius theorem [6] states that the necessary and sufficient condition for a systemn of
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vector fields to describe a <1 e is that they must create a Lie algebra. Th.: cfore,
investigation of the possible subalgebras of the Lie algebra describing e ¢, nmetry

of o PDE is the first step on the way to obtain solutions through the symmetry

reduction method.

Because the commutation relations are independent whether D, or D, is
used, the first two algebras are algebraically isomorphic. Therefore, it is sufficient
to investigate the algebraic structure of one of them. The corresponding lists of

representatives of the conjugacy classes are listed in Table 3.1 and Table 3.2.

Table 3.1: The representatives of conjugacy classes of algebras generated by
(P.,P,,P,,P.,L;, L, L.,); @ and 3 are different from 0; n is the dimension of an

algebra; n, is the dimension of the corresponding orbit.

Number Generators n n; Normalizer
Yoo L.L,L.P.,P,P.,P 7 4 go,0
doun L.,L,L,P,P,P. 6 3 go,0
bo,2 L.L,L. P 4 3 99,2
Y3 L., LyL, 3 2 g
Yo L. PPy, P, P 5 4 Gqio
g1 L.,,P.+aP,P,P, 4 3 1.0
g L., PP, P, 4 3 g0
i3 L., P, PP 4 3 g0
14 L., P.P 3 3 914
Y5 L. PP, 3 2 g0
die L, P;. +aP, 2 2 914
1.7 L, P; 2 2 J14
g8 L. P 2 2 g

(=2}
o



g1.9

92,6
g2z
g2.8
g2.9

g2,10

g1.10
g
g2
g113
gr14
gits
di1e
Grar
gras
g119
g1.20

gi1,21

L:

P, ,P,P.,P
P, P, P,

P, P, P+ aP;,
P,P,, P

P, P,

P, P

P.+aP,P,
P,

P,

P; + aP,

L,+aP,P,P,P,

L.+ aP,P,P, P,

L, +aP,P.+aP,P,P,
L.+aP,+BP,P, P,

L;+aP,P,P,
L.+ aP,P,P,
L.+ aP,P;
L.+ aP,, P,

L:+0P27P$+ﬂpf

L:+aP:+ﬂPt
L: +aP;
Lr+aP¢

o W W W W

[

no

= NN N W W LW W (=R

—
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D W W W

N

o

O = e s

= = NN WL W b e

914

Joo
go,o
g3o0
g30
92,0

g2,0

gs.0
gs.0
93,0
gs.0

do,0

gl"
g1.4



Table 3.2: The representatives of conjugacy classes of the algebra generated
by (Pe, P,,P;, P, L;, Ly, L,,D); a and B are different from 0; n is the dimension of

an algebra; ny is the dimension of the corresponding orbit.

Number Generators n n; Normalizer

Jo.u L.L,L,P,P,P,P,D 8 5 90,0
Jo. L.L,L,P,P,P,P 7 4 90,0
Jo.2 L. L,L,P,P,P,D 7 4 go,2
Ju,3 L., Lya L,FP, Pyv P, 6 3 go,0
Jo.4 L.,L,L,P,D 5 4 Jo.4
gu.5 L.,L,L, P 4 3 Jo,4
Jos L.,L,L,D 4 3 dos
go,7 L;, Ly» L. 3 2 go,¢
Y10 L:va,PyaPz,PﬁD 6 ) q10
g1 L, P,P,P,P 5 4 g1,0
1.2 L., P,P,P,D 5 4 1,2
91,3 LrvpystvPhD 5 4 913
ai L.,P,P,P, 4 3 g1.0
g L. P,P., P 4 3 91,0
aie L.,P. +cP,P,P, 4 3 g
dy 7 L., P, ,P,D 4 4 g1,7
¢18 L.,P,P,D 4 3 g1.8
g1.9 L; P, P 3 3 g
g1.10 L. P,P, 3 2 g10
g1.11 L.,P.,D 3 3 1,11
g1.12 L.,,P,D 3 3 g1,12
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9113
9114
91,15
91,16

dra7

L, P
L., P,

L, P; +aP,
LD

L,

P.,P, P, P,D
P.,P,P,P
P,P,P, D
P, P, P,D
P., P, P,

P, +aP,P, P,
P, P, P
P.,P,D
P,P,, D

P, P,

P, P,

P, +aP, P,
P.,D

P.,D

P,

P,

P; + aP,

D

0

L=+QD,P:1Py’P21Pt
Lr+aD1PzaPy1Pz

[ S 2 SU I &)

[l )

© = = = = NN NN W W O W O O W e o
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© = = o= NN NN NN

9.7
e
S
g1

a7

o0
9o
9o,2
93
9o,
916
910
917
g1.8
92,0
g10
92,1
g1.n
goa
910
Jo,0
g1.1
Jos

go,0

q10
91,2



g1,20
g1,21
Ji,22
J1.23
g1,24
J1.25
J1.26
G127
g1,28
1,20
J1.30
i
91,32
J1.33
91,34
g1.35
Y136

g1.37

L.+aD,P, P, P,
L.+aP,FP,P,P,
L.+ aP,P.+ BP,P, P,
L.+ aP,P, P, P,
L.+aD, P, P,
L.+aD,P, P,
L.+aP, P, P,
L.+aP,P,P,

L.+ aP; +B8P,P, P,
L.+aD P,

L.+ aD,P,

L:+aP,, P,
L:+aP,P;

L.+ aP;,P: + BP,
L.+ aP, + BP,
L;+aP;

L;+aP,

L.+ aD

[ R R O O N

[}

o= = = NN NN W W

Y DN NN W W W W W W R R

- e o DN

91,3
911
g1
g1
g7
g1.8
g1
911
g1
g1
91,12
919
g1.9
g1.9
91,9
919
d19

91,16

Each entry in Tables 3.1 - 3.2 consists of a subalgebra specified by its gen-

crators then the dimension of the given subalgebra, the generic dimension of the

orbit of the associated subgroup and finally its normalizer in the whole algebra.

The classes of subalgebras that have 4-dimensional orbits in the space of the

independent variables give reductions to an algebraic equation. Classes that have

3-dimensional orbits in the space of the independent variables give reductions to

ordinary differential equations.
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c) Geometry of symmetry variables

There is a certain ansount of arbitrariness in the choice of the symmetry Vygiables.
The symmetry variables are constructed as integrals of the vector fields: Jut any
smooth function of the symmetry variables is also an integral curve ©f thesy vector
fields, therefore the choice is not unique. Whenever it was possible | baVe yried to
choose the symmetry variables in such a way so that they had a possibly simple

geometric interpretation.

The symmetry variable £ of a subalgebra that does not cOntain ilation
as one of its generators leads to a reduced equatio: with solutiofs i® the form
M(z,y,z,t) = f(£) where £ is a function of z,y, z,t. If dilation belon&s t0 the set of
generators then generally speaking the reduction is of the form M(z, ¥ 2, t) x pf(€).
In the last expression p is also a function of independent variables *,¥12,¢, The
reductions to ordinary differential equations of the partial differ.~1tial equatiyy (3.1)
are listed in Tables 3.3 - 3.5.

It is useful to discuss the action of subgroups in terms of geometry of jts
orbits. The obtained information allows one to predict what kind ©f sYMypetries
might be observable in the system. Solutions which are stable or at least M,stable
having a relatively long life time should be observed in numerical or actual bhysical
experiments, when their energy is a local minimum of the energy functioy iy the

space of states.

The simplest possible geometry is given by the spatially hom2&en®Cyg (con-
stant) solutions. They might be time-independent or time-dependent- TV€ vzlue of
the order parameter for time-independent spatially-homogeneous solutions iy given

by solutions to the algebraic equation
a+bf+cfP+dfS=0 (3.2)

These solutions recover the results of the standard mean field (withOut 5Pyyjal in-
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homogeneities) Landau theory.

The next class of solutions is related to stationary or travelling plane waves.
In the most general case 3 there are only two other symmetry variables left. One

of them describes cylindrical patterns and the other one spherical patterns.

For the case where only ¢ # 0 or only d # 0 there are a few more symmetry
variables. The time-independent solutions are constant on half-planes enumerated
by the angle, on logarithmic spirals, and on cones. The time-dependent solutions
include solutions constant on moving planes, on expanding cylinders, and on ex-
panding spheres. In the case ¢ # 0 the relation between £ and p is p = \/’Eﬁ while
in the case d # 0 this relation is p = (£/t)}/4. The surfaces of the constant values

for some of these surfaces are sketched in Fig. 3.1.

d) Solutions of algebraic and first order equations from Tables 3.9 - 3.5

Fortunately, it is possible to solve analytically at least some of the listed ODE'’s.
Those for which solutions are known include the only first-order equation and all the
equations that pass the Painlevé Test. The first-order equation is of the following

form.

df _ 3, 65
Eg—a+bf+cf + df (3.3)

Such an equation is integrable using the fractional parts method. The knowledge
of the roots of the quintic polynomial on the right hand side is necessary to apply
this method. There are no analytic expressions to solve such an equation but if at
least one root is found numerically the equation can be reduced to a quartic one
and the rest of the procedure is analytical. The symmetry variable that leads to
this particular reduction is £ = t. Solutions then are time-dependent and spatially
homogenous. If at the given time ¢ = t, the iaitial value f(¢5) = fo then the

behaviour of the solution f(¢) for ¢, < t is determined by the positicn of f; relative
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Figure 3.1: Geometries of some symmetry variables obtained by reduction of the

Eq. O, M + 8o M + 8,y M + 8., M

= yM? for ¢ = 3,5. i) planar waves; ii) cylindrical

waves; iii) spherical waves; iv) planes indexed by angle; v) spiral sheets; vi) conical

symmetry (each surface

consists of two sheets).
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to other roots of the polynomial (3.2). If f; is outside of the range of roots then f(t)
tends to 00 as t tends to oo. Otherwise f(¢) tends to one of the stable stationary
solutions (if such exist). This behaviour is illustrated in Fig. 3.2. There is at least
one unstable solution for the coefficient d > 0 and at least one stable solution for
d < 0. There may be up to three unstable or stable solutions for this reduction.

Here the word stability means stability of a solution of the reduced ODE (3.3).

e) FEgquations satisfying the Painlevé test

The calculations of the Painlevé test were performed using a program written in
the symbolic language M ACSY M A™ by D.Rand [54]. The above calculations
were independently checked using program also written in MACSY MA™ by
W.Hereman [24].

The following equations from Tables 3.3 - 3.5 passed the Painlevé test:

H=atbf+of (3.4)

f{f bf +cf?+ dft (3.5)
-Z%+l;i—];—a+bf+c,f3 +df* for (3.6)
a=d=0 and b——% or (3.7)
a=c=0 and b——?'lis (3.8)
‘ZJ;Jrf_cfs (3.10)

ZZH df (3.11)
‘;Zf+d_£+°‘4+1f of’  for a=43i (3.12)
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Figure 3.2: Solutions of the equation f'(t) = f(f — 1)(f — 2)(f — 3)(f — 4) for
different values of the initial value f;. The singular solutions at 1.0 and 3.0 are

stable while these at 0.0, 2.0, and 4.0 are not.



af 4 a’ +

% dE m f df*  for a =+ (3.13)

Snlutions of equation (3.4)

Equations (3.4) and (3.5) appear many times in different contexts in this thesis.
Because of this they rieserve more attentic The solutions to equation (3.4) in the

case when a = 0 were discussed in [66] while in the generul case in [22].

The first observation is that the second order derivative is a smooth function
of its dependent variable. That means trat a unique solution exists for any initial
conditions. Both equations have singular solutions. They are given by the roots of

the polynomial and were already discussed as solutions of Eq. (3.2).

There are many nonsingular solutions to Eq. (3.4) that can be written in a
closed form as well. Multiplication of &.y. (3.4) by df /d€ # 0 (without any loss of
generality because singular solutions wvre already discussed) followed by integration

gives the following equation

SR =K +af+ 37+ 51" (3.14)
It is obvious that real solutions exist only when for the initial point (&, fo) the right
hand polynomial is positive a::d that in the opposite case solutions are purely i.nag-
inary. Additionally Eq. (3.14) is symmetric with respect to the reflection z — ~z.
After charge of the role of the independent and dependent variables, Eq. (3.14) is
integrable in terms of Jacobi elliptic functions. The required integrals are listed
in the handbouok by Byrd and Friedmann [10]. The Jacobian elliptic functions are
meromorphic periodic functions defined on the complex planc. Because physically
interesting variables are real, only the real sections of these functions are interest-

ing. Some of the solutions hav. _eriodic poles on the real axis. It scems that in

the applicatior: to the magnetic systems such solutions should be rejected. There



is, however, a certain degree of physical interest in functions representing such be-

haviour in combustion processes [4].

The solutions of Eg. (3.14) contain sn,cn.dn,... Jacobi elliptic functions.
The full list of solutions was presented by A.M.Grundland [22]. Unfortunately, the
size of this list prohibits from copyivg it into “his thesis. For every position of the
initial condition f(zo) with res; % o @ roots of the polynomial standing on the
right hand side of Eq. (3.14) there is a specific solution. The sketch illustrating

genetir regions in which different types of solutions appear is presented in Fig. 3.3.

Solutions of equation (3.5)

The solutions to Eq. (3.5) were discussed earlier by Winternitz et al [67'. To solve
this equation the first integration proces:s in the same way as in the case of Eq.
(3.4). The next step is a substitut. . f = +v/h. After these two operations the

follc " g equatinn is obtained

1,dh., b, c,5 d
S22 = K + 2k + —h® + =h? :
) =K +3h +gh 5 (3.15)

In its essence this equation is very similar to Eq. (3.14). The solutions to Eq. (3.15)
are also obtained by the inversion of the roles of the independent and dependent
variables. They are expressed in terms of the Jacobi elliptic functions. The protlem
of a proper continuaticn of 2 solution of Eq. (3.5) arises when the corresponding
solution of Eq. (3.15) passes through zero. The continuity of the first derivative

allows one to solve this problem.
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Figure 3.3: Some real solutions of equation f"(z) = a + bf + cf> + df°® for different
values of the initial value fo. i) f’ as a function of f; ii) bump; iii) antibump; iv)

kink; v) periodic; vi) divergent.
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Solutions of equation (3.6) with condition (3.7)

Using substitutions f = B¢ and ¢ = £/v Eq. (3.6) with condition (3.7) can be

rewitten in a form where there are no fres coefficients left, i.e.

d*q  dg 2 3 .
E-C; + EZ = "'9'9 + 2g (3.163

where 8 = v(/2/c. In a similar way Eq. (3.8) is transformed to

d*g dyg 3 3
g dg__3 3 3.17
a2 Tac T 1690 (3.17)

where = ("f,'—::)'/“. The general solution of Eq. (3.16) can be found in [28, page

548)
£(6) = = B2 axp(=$) sV expl— + K2), 2717)

Thercfore, for ¢ > 0 most of the solutions are purely imaginary while for ¢ < 0 one

should expect many real solutions.

Solutions of equation (3.6) with condition (3.8)

The general solution of equation (3.17) was obtained by P.Winteraitz et al [67].
After substitution back to the old variables the solution of Eq. (3.6) with condition

(3.8) is in the foerm
(S £ Eyqrz
where W is an arbitrary solution of the equation
W:=W'+CW (3.18)
which has solutions expressed by Jacobi elliptic functions.

It should be noted that for the solution f to be real the product /cW must

be real. It means that for negative values of the coefficient ¢ one is interested in

purely imaginary solutions of Eq. (3.18).
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Solutions of equation (3.9)

An analytic solution of the Eq. (3.9) was found by Winternitz et al [67]. Solutions
of this equation as well as of some its generalizations are also discussed by J.Dixon

ct al [13}.

The substitution f = +v/% into (3.9) gives the equation

2dh

The next transformation is of the form h(€) = A(£)W(() where ¢ is a function of the
variable £. After such suhstitution into Eq. (3.19) functions ¢, W, X can be chosen
in such a way that Eq. (3.19) is in the canonical Paiulevé form number XXX. The
last substitution is relatively general anu can be encountered in many reductions to

the Painlevé types.

In the specific case of Eq. (3.19) the function A can be chosen as A({) =
\/3/4dE7Y, the function 7 is chosen as n(€) = lu(€). Such a transformed equation is

in the form
W 1 dW

dnt s dn

But this equation can be once integrated to the form

3 1
2 ‘173

(5‘%)2 =W*42W? + 4rW (3.21)

where r is an integration constant. The last equation is an equation for Jacobi

elliptic functions (3.15).

Going back to the original variables f and £ the formula

_ [3W(n(©)
1O =\~ (3.22)

is obtained. To obtain real solutions the function W must be real and must have

the same sign as the coefficient d. It is possible to discuss solutions of Eq. (3.21) in

7



more detail. For the function W to be real the integration constant r must be real
as well. In such a case the polynomial which is on the right hand side of Eq. (3.21)
has only one or two real roots, namely wher r = 0 then 0 is a double root and when
r # 0 then 0 is a single root and there is one more real root. For an arbitrary choice

of the integration constant r real solutions are divergent.

Solutions of equation ($.10)

The soluticis of Eq. (3.10) are obtained through the same procedure as those of
Eq. (3.4). The singular solutions are f = 0 for ¢ < 0 and f = 0,+c™"/? for ¢ > 0.
The change of the dependent variable to f =g | ¢ |~'/2, multiplication by df /dé
and integration gives the following equation

d
&y =tr-r-§ (3.29)

where € = sign(c). Because of the nature of the variable £ which corresponds to the
angle in the cylindrical system of coordinates it is important to discuss the periodic

solutions with the period equal to 27 /n where n is an integer.

Let € = 1 then there are five possible cases. The first one when r > 0 is

characterized by the fact that all solutions have singularities. Solutions are

9(§) = V1 + VI+7 ne(V2(1 + r)4(€ — &), k)

where & = \/%(1 - (1 +7-1/2). In the second case r = 0 the solution is

V2
cos(V2(€ — &)

The third case when —1 < r < 0 seems to be the most interesting. Besides divergent

g(€) =

solutions of the form

g(6) = V1+V1+rns(V1+ V1+r(€— &) k)
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where

b= 1—V1+4r
N1+ VT ¥r

there is only one periodic solution

9(6) = y1 - VI tm sn(V/1 + VITri(€ - 60) k)

gy = |loVitn
R Y ey

The period of this solution corresponds to the only solutions of the transcendental

Vi+vVIitrm = K(k)

where K is the first complete elliptic function. The integration constant r; has a

where

equation

ST

subscript 1 to distinguish it from integration constants appecring in the case e = —1.

In the case r = —1 the solution is of the form

_exp(2v3( ~ &) - K
exp(2V/2(E — o) + K

It has singularities when the denominator is equal to 0.

g(&) =

The last remaining case r < —1 has a solution:

_ o |l en((=r)AE ~ &) k)
o) = ‘J Voo en((~r)4(€ — &), k)

where

k=2 s (rrm
These solutions have singularities for £ = & + 2K(k).

Equation (3.23) with ¢ = —1 has more solutions without divergencies. The
singular solutions are f = 0 and f = %:i. Real solutions exist for the integration

constant r > (. There is a countable number of them and they can be written as:

9(€) = £V T — 1 cn(VB(1 + ra) V4(€ — Eo), kn)

(L)



wheren 2 2

by = ,/%(1--(1 + )12

and r, is a solution of the transcendental equation

K(ky) = —\/fé—nu + o),

Solutions of equation (3.11)

As equation (3.10) is a special case of Fq. (3.4), Eq. (3.11) is a special case of (3.5).
Therefore, its solutions are also given in terms of the Jacobi elliptic functions. Due
to the special character of the symmetry variable one distinguishes here a countable
family of continuous solutions. However, the number of ;-ossible cases is so big here

that explicit formulas are omitted here.

Solutions of equation (8.12) and equation ($.13)

Equation (3.12) for a = £3i as well us equation (3.13) for @ = +2i were already
discussed in this chapter. Their solutions were listed in the process ¢” discussion of

solutions of Egs. (3.16,3.17).

3.2 The Landau-Ginzburg equation with mixed signature
of derivatives

This chapter contains the results of the applization of the symmetry reduction
method to Eq. (1.27) with e = -1

PM _FM M
0z? Oy? 022

oM + =a+bM + M+ dM°. (3.24)

The basic plan of this chapter is the same as the previous one. Namely, the

following points are discussed:
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1. Algebras

X

System of subalgebras
3. The geometry of ODE’s
4. Algebraic and first order equations

5. The results of the Painlevé Test and solutions of some ODE’s

a) The Lie algebras of the Landau-Ginzburg equation with mized signature

As in the previous case of ¥',. “3.1) we ha. :hree possible symmetry groups. They
are quite similar with the ex:.ntic n of the fact that two of the rotaticus Z,, L, are

substituted by the hyperbolic rotations K, K, where
Ky =120,+26: K,=y0:+z0,

The new nonzero commutation relations are:
(L., K,] = -K,, [L;, K,] = K,, [K,,K,] = L.,
[K’y,-‘Dz] = _Pn [I{V';PzJ = —Pza [Kz’Pz] = —Pw [Kza Py] = "'Pz:-

The symmetry structure for Eq. (3.24) is much richer than the corresponding
structure for Eq. (3.1) because the algebra generated by (L., K, K,) has a much
more complicated system of subalgebras tl:en the one generated by (L., L,,L,).

There are some Ciscrete sy'ametries in this case and they were also used to simplify

subalgebras.

b) Systems of subalgebras

The algebraic structure of an algebra that does not contain the scaling operator D;

is presented in Table 3.6.
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Table 2.6: The representatives of conjugacy classes of the algebra generated
by (Pe, Py, P;, P, L., Ky, K.); a and 8 are different from 0; n is the dimension of

an algebra; n; is the dimension of the corresponding orbit.

Number Generators n n1 Normalizer

90,0 L.K,K; FP,P,P,P 7 4 9o,
do.1 L, K, K, FP,P,P, 6 3 go,0
o2 L..K,K.,PF 4 3 do.2
Y03 L..K, K, T2 g
0o Lo+ K, K. Ps P, P, P 6 4 g0
1.1 L.+K,K, P,P,P, 5 3 10
g1, L.+K, K, P.+P,P,P, 5 4 d1.2
3 L.+K,K;,,P.+P,,P. 4 aP, 4 4 g1,2
91,4 L.+ K,,K,,P.+P,P, 4 4 g12
J1.s L.+ K,,K.,P.+ P, P, 4 3 01,2
g6 L:+K,,K.,P:+ P, 3 3 g1z
g7 L.+ K, K., P 3 3 91,7
g8 L.+ K, K, 2 2 %
20 L., P, P, P,P 5 4 g2,0
g2, Ly, P, +aP, P, P, 4 3 g2
g2.2 L, P, Py, P, 4 3 920
923 Ly, P, P, P 4 3 920
J24 L P, Py 3 3 924
g5 Ly Py, P, 3 2 gz
926 Ly, P+ aF 2 2 g4
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g2,7
928
g29

g3,0
g3
93,2
933
93,4
g3
93,6
93,7
938
g39
93,10
9311
g3,12
9313

93,14

940
/ER|
g4,2
94,3
944
g4,5
94,6
94,7

L::a P.r
szpt
L,

K,,P,P,P,P
K,,P,P,+ aP,P,
K, P, P, P,
K,, P, P, P,
K,,P.+ P, P, P,
K, P;+ P,,P, + aP,
K,,P.+ P, P,

K,, P, P,

Ky,P.+ P, P

K, P, P,

Ky, P, + P,

Ky, P, + aP,
K, P,

Ky, P,

Ky

L1:+KyaPmPyaPzaPt

Lz+Ky7Pz+Py1Py+aPth

L:+ Ky, P, Py, P;

L:+K,,P.+P,P,P,
L.+K, P, +P, P, +aP,

L:+K,,P:+P,P,
Lz+Ky7Pz+Py,R:

L:+KyaPz+Py+aPt

[ S- R ]

bt BN NN N W W W W W b R RO —

N W W W s R bW

o

W W W o W W W —

N W W

—-N NN

RN W N W W W W e

g3.0
gs.o
g3
gs,0
93,4
93,4
93,4
gs,0
43,4
939
3.4
43,9
93,9
93,9

g3,

94,0
94,0
ga
ga9
94,3
94,0
ga,3

das



gi.8
J4,9

g4,10

©

gs,7
gs.8
959
gs,10

gs,11

513
gs14
gs.15
g5,.16
gsa7

gs.18

5,20
gs,21

gs.22

L.+K, P, +P,
Lz + Kth
L.+K,

P.,P,P,P
P, P,P,

P., P, P+ aPF,
P, P, P,
P,P, P+ aPF;
P, P, P,

Pz+PyaPzaPt+aPy

P. + P, P, P,
P.,P,+ aP,
P, P,

Py, P+ aP;
P,, P,

P, P+ a(P; + P,)
Pz+Pz1Pt+aPy+ﬂPz

P.+ P,,P, + aP,
P, + P,;,P, + aP;
P.+P, P,

P, P, + aP,
P.+aP, P,

Py, P,
P, P,

P, + aP,
P;
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94,3
Jas

Ja6

90,0
Jdo,o
g3,
g3.0
92,0
g2,0
94,0
94,0
95,0
gz2,0
95,0
93,0
95,0
gs,0
95,0
95,0
g1,0
gs.0
10
gs,0
93,0
92,0
92,0

g2,0

for a=1

for a#1



Js,23
95,24
95,25
gs,26
gs,27

gs,28

51.9

gl,lO
.(71.11
g1.12
51,13
gl.l‘i
51.15

g1,16

2,10
g2
G212
G213
G2,14
G215
G216
572.17
G218
G219
§2,20

g2,21

P, +aP,

Py

P.+ P, 4+ aP,
P; - P,

P,

0

L.+K, K,+aP,P.,P,,P,
L.+K, K. +aP,P,+P,,P,

L.+ K, K.+ Py, Py + P,, P,

L.+ K, K; +aP,,P. + P,, P, + BP,
L.+K, K, +aP, + 8P, P, + P,
L.+K, K,+aP., P, + P,

L.+ K, K, +aP, P, +P,

L.+ K, K. +aP,

Lz:+aPhP:+ﬂPtaPy1Pz
L;+aP,P,P,P,
Lz+aPmPy7szljt

L, +aP, + PR, P, P,

L.+ aP,,P,.P,
L. +aP, P, P,
L. +aP, P, + 8P,
L.+aP, P,

L.+ aP,, P,
L;+aP. +BP,
L.+ aP,

L, + aP,
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g3.0
Jg4,0
S0
Jo,o

Jo,0

[/3 0]
gi0
91,2
g1.2
91,2
91,2
gi1.2
g1,7

2,0
92,0
92,0
92,0
92,0
92,0
92,4
92,4
92,4
92,4
92,4
92,4



53,15
3,16
53,17
G318
G319
53.20
da
3,22
63,23
53.24
53.25
g3,26
53'27
53.28
§3,29
53,30
g1

93,32

54.11
54,12
54.13
64.14
54,15
§4,16
54.17
gaas

Ga,19

K,+aP,P, P, + B8P, P,
K, +aP,P,, P, P,

K, +aP, P, P, P,

K, + aP;, P; + P;, P, + BP,
K,+aP,P. + P, P,

K, +aP,+ P, P, P,
K, + aP,, P,, P,

K, +aP, P, P,

K,+ aP,,P, + P,, P,
K,+aP, + BP, P + P,
K,+aP, P, + P,
K,+aP,P. + P,

K, + aP,, P, + BP,

K, +aP, P,

K, + aP,, P,

K, +aP, + P,

K, + aP,

K, +aP,

L2+Ky+aPth+Py,Py+ﬂB7Pz

L.+K,+aP,P,P,P,

L.+ K,+aP;,,P;+ P, P, + P,
L. +K,+aP;+BP,P: + P, P,
L.+K, +aP,, P, + P, P,
L.+K,+aP, P, + P, P,

L.+ K, +aP,, P, + P, P,
L.+K,+aP;+pP,P: + P,
L.+ K, +aP;,P; + P,
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g3.0
gs.o
gs.0
g4
g3.4
g3.0
g3.0
g30
g3.4
g3
934
g3.4
g3,
93,9
g3,9
939
93,9

939

ga,0
ga,0
gs,7
94,0
ga0
ga,0
gs,7
gs.7
gs,7



94,20
dan
G422
91,23

94,24

L.+ K,+aP,P:+ P
L,+K,+aPF,P,
L.+ K,+aP:+ P
L,+K,+aP;
L,+K,+aP,

- = - NN

_ = = N N

g4,3

gs,16
gs.16
gs,16

gs,16

Algebras containing the scaling operators D; and D, are algebraically iso-

morphic and differ just by the action of the scaling operator in the same way as it

happened in the case of Eq. (3.1). Therefore, the algebraic structure of only one of

them is presented in Table 3.7.

Table 3.7: The representatives of conjugacy classes of the algebra generated

by (P, Py P:y P, Ly, Ky, K,, D); a and J are different from 0; ¢ = £1; n is the

dimension of an algebra; n, is the dimension of the corresponding orbit.

Number Generators

90,0
90,1
90,2
o3
Jo.4
Jo,5
90,6

Jo,7

Qo
J11
.2

L, K, K.,P:,F,P,P,D
L.,K,K.P,P,PFP, P
L.,K,K.P,P,P,D
L,,K,,K., P, P, P,
L.,K,K.P,D

L., K, K.,P
L,K,K.,D

L., K, K.

L.'r: +I‘.yaKz7P3aPyst’})¢1D
L.+ K,,K;,P:, Py, P, Py
L.r +KysI{zsPt1PVaPziD

87

W B BT O N~

-3

ni

N W W e W e W

Normalizer

go.o
go,0
go,2
goo
go4
go,a
Gos

gos

gq10
a6
g1,2



913 L,+K,K, P.+P,P.,P,D 6 5 1.3
91,4 L.+K,K, FP,P,P, S 3 g0
91,5 L:+Ky,K;, P + P, P,, I, 5 4 ga
g6 L.+K,,K., P.+P,P,,D 5 4 1.6
q1,7 L.+K,K,,P.+P,P,D 5 5 g,z
918 L.+ Ky,K;,P,+ P,,P; + aP, 4 4 q5
91,9 L.+ K,,K,,P.+P,P, 4 4 d1.3
91,10 L.+K,K,P.+P,P, 4 3 g1.3
N L.+ Ky, K., P.+ P, D 4 4 g
9112 L.+ K, K,,P,D 4 4 gi12
91,13 L.+K,K,P.+P, 3 3 913
94 L.+ K,, K., P, 3 3 g1.12
91,15 L.+ K,K..D 3 3 91,15
91,16 L.+ K, K, 2 2 g
g2.0 L.,P,P,P,P,D 6 5 92,0
92,1 L., P, P,P,P 5 4 g0
92,2 L.,P,F,P,D 5 4 g2
923 L;,P,P,P,D 5 4 g2
924 L,,P.+aP,P,P, 4 3 g2
92,5 L., FP,P,P, 4 3 g2
92,6 L, P, P, P, 4 3 92,0
92,7 L.,P,P,D 4 4 g
92,8 L;,P,P,D 4 3 g8
92,9 L, P.,P 3 3 ga7
g2,10 L;,P,P, 3 2 g
g2 L., P,D 3 3  gan
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92,12
92,13
92,54
g:,15
92,16

g7

93,0
Y3
43,2
93,3
93,4
g3.5
93,6
93,7
93,8
939
gs,10
gsn
43,12
93,13
g3.14
43,15
4316
g317
g3.18
g3.19

43,20

L., P,D
L., P; +aP,
L. P
L, P

L,D

L,

K, P, P, P,,P,D
K, P, P, P., P,
K,,P.,P,P.,D
K,, P, P, P,D
K,,P.+ P, P,P,D
K,,P;,P, + aP,, P,
K,, P, P, P,
K,,P;, P, P,
K,,P.+ P, P, P,
K,,P., P, D
K,,P.+ P,,P,,D
K, P.+P.,P,D
K,,P,P,D
K,,P. + P,,P, + aP,
Ky, P; + P, P,

K, P,P,

Ky, P: + P, P,

K, P, P,

Ky,P:+ P, D

K, P,D

K,,P,D
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92,12
929
g2,7
92,7
92,18

ga.7

93,0
g30
93,2
93,3
g3
g3
93,0
g3,0
93,4
93,9
93,10
gan
93,12
g3s
934
g30
934
g3.12
93,18
g3.19

g3,20



g3,21
93,22
93,23
93,24
93,25

g3,26

ga,0
94,1
9a,2
ga.3
g4
94,5
ga.6
ga,7
ga8
94,9
94,10
gan
94,12
94,13
94,14
94,15
94,15
9a,16

ga.17

gs.0

K,,P. + P,
K, P, +aP,
K,,P,
K,, P,
K, D

Ky

L.+ K,,P.,P,,P,,P,D
L, +K,,P,P,P,P
L.+K, P, P, P,,D
L:+K,,P.+P,P.,,P,D
L.+K, P.+ P, P,+aP,P,
L.+K,P,P,P,
L:+K,P.+P,P,P
L,+K, P, +P,P.,D
L.+ K, P.+P,P,D
L.+K,,P. + P, P. +aP,
L.+K,P,+P,P,
L.+K,,P. +P, P
L.+K,P.+P,D
L.+K,, P,D
L:+K,,P:+ P, +aP,
L:+K,,P: + P,

L.+ K, P,

L.+K,D

L.+ K,

szPy’Pz’PhD
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934

gaaz
93,12
gsa2
3,25

gs312

gao
94,0
g4,2
g3
G117 la=-1
94,0
94,3
a7
ga,8
94,6
94,0
94,3
9412
94413
g4,
ga,3
948
24,16

gas

90,0



Jsaz

P., P, P, P,

P, P, P, D
P., P, P,D

P, P, P,D
P.+ P, P, P,D
P., P, P,
P.,P,, P, + aP,
P, P, P,

P, P,,P 4+ aP;
P, P, P

P.+ P, ,P,,P, +aP,
P.+ P, P, P,
P.,P,D

P, P, D
P.+P,P,D
P.,P,D

P, P,D
P.+P,P,D
P, P, 4 aP,
P, P,

P, P, +aP;
P, P

Py, P.+o(F: + F,)

P. + P, P, +aP,+BP.

P.+ P, P, +aP,
P, + P,,P,+aP,
P.+ P, P,
P,,P.+ aP,
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90,0
do,2
93,3
92,3
3
Jo,0
g3a
93,0
921
g2,0
gs,1
q10
93,9
g2.8
g6
ga,7
g312
g7
gs1
920
gs,.1
g3,
gs1
gs,1
gi,5
gs.1
g0
gs1



gs.29

gs,30
J5,31
95,32
g5,33
95,34
gs.3s
95,36
537
95,38
95,39
gs,40
g5,41
gs,42
g5.43

G544

51.17
51.18
51.19
51.20
51.21
G122
51.23
51.24
125

di1.26

o

L.+K,K,+aD,P,, P, P, P,

L.+ K, K.+aP,P,,P,,P.

L. +K,+aP,K,+ D/2,P,,P, P,
L.+K, K,+aD,P., P, P,

L.+K, K.—D,P, +P,,P,, P, +aP,
L.+K,K.+aD,P.+P,P,P,
L.+K,+aP,K,+2D,P. +P,, P, P,
L.+K, K.+aP,P.+P,,P,
L.+K, K,+aP,,P.+P,P,

L.+ Ky, K.+ aP;,P: + P, P+ 3P,
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qio fora=1
gso for a #1

gt
93,19
Jo4
grat
gs.1
920
93,1
93,0
gs.1
gi.0
o0
Jo.6

Jo,o
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L.+K,+aP,K.+D/2,P. + P, P,
L, +X,+aP.,K,+2D,P, +P,,P,

L.+K,,K,+aD,P. + P, P,
L.+ K, K. +aP;+D,P.+ P, P,

L. +K,+aP. K, +2D,P.+P,,P,

L.+ K, K,+aD,P.+P,P.
Lz+1{y+0P21I{z+D,Pz+PyaPt
L.+K,K,+eD+ P, P, +P,P,

L,+KV+GP,/2,Kz—D+€Py’Pz+PwPl

L.+ K, K, +aP,+BP,P. + P,
L.+K,K,+aP,, P+ P,
L.+K,K,+aP,P. + P,

L.+ K,,K,+D,P; + P, +aP,
L.+ K, K,+aD,P, +P,
L.+K,+aP,K,+D/2,P. + P,
L.+ K,+¢P.—P),K,+2D, P,
L.+K, K.+aD,P,
L.+K,+aP., K,+2D,P. +P,
L.+ K,+aP,,K,+D,P. + P,
L.+K,+aP,,K,+D,F,

Lr+I\’y+€Pz/2us_D+€PyaPz+Py

L.+ K, +¢P,/2,K,—D+¢P,, P,
L.+ K, K,+aP,
L.+K,+aP,K,+D/2
L.+K,+aP,,K,+D
L.+K,+a(P,—-PF,),K.+2D
L.+K,,K,+aD

L.+ K, +¢eP./2,K.— D +¢€P,

93
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1,27
g1,28
g1
g1,10
G1,31
a7
G133
51.20 |a=¢
g1,35
q15
91,5
91,5
g1,39
g1
g4
1,42
gi12
G144
G145
G146
G147
g1.48
g9
g1,50
51.51
g1,52
g1,53

g1,54



Gaa7
g2.18
g2,19
§2.20
G2.21
G222
g2.23
g2,24
G2.25
92,26
G2,27
G2.28
G2,29
G2,30
g2,31
G2,32
G233
92,34
G2,35

92,36

G327
3,28
G329
3,30
G331
9332

G333

L:+aD,P,P, P, P
L;+aP,P.+pBP,P,P,
L. +aP, P.,P,P,
L;+aP.,P,P,P
L,+aD,P.,P,P,
L.+aD,P,P,,P,
L:+aP.+pP, P, P,
L.+aP,P,.P,

L.+ aP,P, P,

L.+ aD, P, P,
L.+aD,P,P,

L.+ aP, P, + 8P
L.+ aP,P;

L, +aP., P,

L.+ aD,P,

L, +aD,P,

L. +aP; + P,
L;+aP;

L;+ aP,

L.+ aD

Ky +aD,P., P, P, P,
K, +aP,,P;,P, + BP, P,
K, +aP, P, P, P,

K, + aP,,P,,P,, P,

Ky, +aD,P.,P, P,
K,+aD,P. + P, P, P,
K,+aD,P., P, P,
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K,+D,P, - P, P, P, + aP,
K,+D+¢P,,P.+ P, P,P,
K,+aP,P. + P, P, + BP,
K,+aP,P.+ P, P,

K, + aP, + 8P, P, P,
K,+aP, P, P,
K,+aP,P,,P,
K,+aP,P;+ P, P,
K,+aD,P.+ P, P,
K,+aD,P;, P,
K,+aD,P,+ P, P,
K,+aD,P, P,
K,+D,P.+P.+aP,P,
K,+D,P,— P, P, +aP,
K,+ D +¢€P,,P.+ P, P,
K,+D+¢eP,,P. + P, P,
K, + D +¢€F,,P,, P,
K,+D+¢eP,,P,,P,+a(P: + P,)
K, +aP,+pP,P: + P,
K,+aP, P, + P,

K, +aP,P. + P,

K, + aP, P, + BP,

K, +aP, P,

K, +aP, P,

K,+aD,P. + P,

K, +aD,P,

K, +aD,P,

K,+D,P,+ P.+aP,
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43,34
G335
g3s
g3s
g3
g3
g3
93,8
g3,10
g3
gan
93,12
g346
§3,47
G348
G349
§G3,50
G351
g3s
['KE]
g3s
9317
gaar
9317
g3,18
9319
g320
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J3.62
G363
G364
53.65
G366
.‘73.67
G268
G369

g3,70

54.18
§4.19
Ga,20
§4.2l
54,22
Ga,23
§Ga,24
§4.25
Ga,26
Ga,27
Ga,28
G4,29
G4,30
G
Ga,32
G433
54.34

94,35

K, +D+¢eP,,P.+ P, +aP,
Ky,+D+¢eP,,P. + P,
K,+D+¢P., P,

K, + D +¢€P,, P,

K, +aP, + 8P,

K, +aP,

K, + aP,

K, +aD

K,+D+¢€P,

L.+ K,+aD,P,P,P,P
L.+K,+aP,,P.+ P, P+ pP,P,
L.+K,+aP,P,,P,P,

L.+ K,+aP;,P.+P,P,P,
L.+ K, +aD,P,,P,P,
L.+K,+aD,P.+P,P.,P,
L.+K,+aP,, P, + P, P, + (P,
L.+K,+aP. +BP,P.+P,P,
L.+ K,+aP;,P.+PF,P,

L.+ K,+aP,P.+P,,P,

L.+ K,+aP,,P.+ P, P,
L:+Ky,+aD,P.+ P, P,

L.+ K,+aD,P. +P,P,

L. +K,+aP.+BP,P. + P,
L:+K,+aP;,P; + P,
L.+K,+aP,P, + P,

L.+ K, +aF.,P,

L.+ K,+aD,P. + P,
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g3.62
93,63
g3.64
g3.65
g3z
gsazt
ga3a7
3,25

Ja.70

a7 |a=1/2
g4,21

g4,2

51,17 |u=2
!71.17 |a=l/2
gl.23

ga.7

ga8

.(.].4,21

§1.23

91,22 |a=l/2
g1,31

4,12



Ga,36 L.+ K,+aD,P, 2 2 a3
Gaar L.+ K, +aD+¢€P, P, 2 2 Gaa7
Ga.58 L.+ K, +aP; + BP, 1 1 Ja,28
a3 L.+ K, +aP: 1 1 gazs
.40 L.+ K, +aP, 1 1 §1.29 la=1/2
Ja.41 L. +K,+aD 1 1 da.16
Ja.42 L.+ K, +aD+eP; 1 1 Ga 42

The main difference between algebras corresponding to the previous Eq.
(1.27) and those corresponding to the present Eq. (3.1) is that here the Levi-Malcev
decomposition is trivial. There is no semisimple part when generators Ly, L, are
substituted by generators K,, K,. The present algebra is solvable as was pointed
out by J.Patera et al [51]. A large part of the analysis of the structure of subal-
gebras was presented in this paper. However, these authors considered only the
7-dimensional algebra which differs from the present one by the time translation

generator. Patera et al called the corresponding group the Similitude Group.

¢) The geometry of symmetry variables obtained through reduction

For the algebra corresponding to the case where at least two coefficients a, b, c,d
are not equal to 0 one finds, as it was for the previous Eq. (3.1) the singular time-
independent and spatially homogeneous solutions with values which are given by the
roots of the polynomial (3.2). There are also time-dependent spatially homogeneous

solutions satisfying the same equation as in the previous chapter.

The symmetry variables corresponding to standing planar waves and travel-
ling planar waves are this time more complicated. As it can be easily seen from the
form of Eq. (3.1) the direction r is distinguished from any other. Due to this fact

equations describing the planar wave type solutions have coefficients of different
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signs.

The cylindrical symmetry variables appear also in this case but the axis of

symmetry here must be parallel to the r axis.

The new variables include hyperbolic sheets, hyperboloids and some other
more complicated variables involving combinations of exponential and algebraic
functions. Surfaces of the constant value for some of the symmetry variables are

sketched in Fig. 3.4.

d) Solutions of algebraic and first order equations from Tables 3.8 - $.10

The ovdinary differential equations obtained through the symmetry reduction method
for Eq. (3.24) are listed in Tables 3.8 - 3.10. Among them there are many first

order equations and an algebraic one.

a+bf+cfP+df°=0 (3.25)
Z—J;=a+bf+cf3+df5 (3.26)

For the above equations there are versions corresponding to cases ¢ = b =
¢ =0 and a = b = d = 0 while equations listed below appear only in the one of

these cases.

(a - 1)% - % =cf? (3.27)
(a - 1)% - % = df® (3.28)
a% —5f=cf (3.29)
a-g-fg - i—f = df’ (3.30)
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. §, = constant,
i) if) £, = constant,

-

g

7 P

Mpreencecenan

LY X4

¢, = constant, '
¢, = constant,

iii) %x iv) AX ¢, = constant,
Y .

&, = constant,

f

§, = constant,

£, = constant,

Figure 3.4: Geometries of some symmetry variables obtained by reduction of the
Eq. M +0;;: M — 3,y M ~ 8,,M = yM? for ¢ = 3,5. i) planar waves; ii) cylindrical

waves around the x axis; iii) parabolical sheets; iv) hyperbolical surfaces.
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¢! -a)%— %f:cf" (3.31)
a-a% -1 = (3.32)

Z_f; + 2l£.f = —cf? (3.33)

%Jrglc_ = —df* (3.34)
2% + (3~ 2 = =¢f (3.35)
3G -2 =4 (3.36)
%t = (337

df 1

EE— + ———2(€ n a)f = —2df° (3.38)

Only one algebraic and one first order reduction existed for the Eq. (3.1).
The algebraic one was related to solutions having the full symmetry. The first order
equation corresponded to the spatially-homogeneous time-dependent solution. One
may expect, therefore, a similar behaviour for the present Eq. (3.24). However,

there are many new equations in this case.

To explain these phenomena one has to realize that there is a variable of a
quite special type now. The symmetry variable of the form £ = z+y (or equivalently
any conjugated variable) is degenerate in the sense that the differential operator in
Eq. (3.24) vanishes on the arbitrary function of £. Therefore, any other symmetry
variable of the form £(z + y,t) will lead, after reduction, to a first order ODE. It
also may happen that a combination of variables z + y and t appears as a function

p in the reduction.

Solutions of Egs. (3.25,3.26) were discussed in the previous chapter (3.2,3.3).

Methods of solving and an interpretation of results were also given there.
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The remaining equations can be divided into two classes with respect to the
coefficient of the first derivative term and to the dependence on €. The method of

solution is given for each class separately with an initial condition yo = y(zo).

The first class contains equations that do not contain the independent vari-
able € explicitly. These are Egs. (3.27,3.28,3.29,3.30,3.31,3.32). These equations are
of the Bernoulli type [28, page 19]

y' + f(z)y +9(z)y’ =0 (3.39)

and after the substitution u(z) = y'~# are transformed into a linear ODE of the

form

u'+ (1= B)f(z)u + (1 - B)g(z) = 0.

The general solution of Eq. (3.39) with the initial condition (zo,y0) is in the form
y(z) = lexp(-F)ws ™" - [ (1= Bo(z)exp(F))dz]™2  (3.40)

where

Fa)= [ :(1 — B)f(z)dz.

For the above listed cases the functions f and g are constant. Denoting them by f

and g, respectively, one obtains the general solution in the form

y(z) = [exp(—f(z — zo))wa™ — (1 — B)g] ™2

The second class of equations contains the £~! coefficient by the linear term
in these equations. These equations are: (3.33,3.34,3.35,3.36,3.37,3.38). These
cquations are also of the Bernoulli type (3.39). However, the function f is different

from O here. Using the general form of the solution one finds the following explicit

solutions: to Eq. (3.33)

O = [ 657 - (e = D
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to Eq. (3.34)
y() = [(f;)*(ya‘ ~ 4dz¥(z™t - 25"))) "M

to Eq. (3.35)
) = | Zlexp(~ZZ 2457 + ac— L) — ac + LI
to Eq. (3.36)
€)= [Zlexp(- 2222y g5t 4 4d + SEIE) - Bi(Z2)) - 4aZ2y

where Ei is an exponential integral defined in (21, page xxxii],

to Eq. (3.37)

WO = [EE 057 - e —m0) - (e - )
and to Eq. (3.38)
y(©) = (ZE5) i +8d(z + a)(=™" — 25" )%

¢) Equations satisfying the Painlevé test

There are many equations in Tables 3.8 - 3.10 that satisfy the Painlevé test. Most

of them are the same as those from the previous chapter and they were discussed

already. In order not to repeat the discussion only the following new second order

equations that satisfy the Painlevé test are listed below:

(€2 1)‘;?2r +4§d£ +2f = ~—cf® (3.41)
d*f df

Gy 1)d€2+3£d£+4f— —df? (3.4
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Solutions of equation ($.41)

Equation (3.41) can be solved after it is rewritten in the form

2l = 0f = =P (3.43)

The next substitution f(€) = (€2 — 1)(~"/?w(£) transforms Eq. (3.43) into

dw
(€ —1)2‘1£2 +26(6% -1 E:—w—cw

This equation is in the form described by E.Kamke in his book (28, p.569] as equa-
tion 6.103. The next substitution changes the independent variable z = In|(§ ~

1)/(€ + 1)| so that this equation is reduced to the form
w'(z) = —w(z) — cw’(z). (3.44)

The last equation tan be once integrated and Eq. (3.14) appears once more. There-

fore, the final solution of Eq. (3.41) is of the form

_ w(lnj(¢ = 1/(€+ 1))
sl = TRl

where w is a solution of Eq. (3.44) which is expressed in terms of Jacobi elliptic

functions.

Solutions of equation (3.42)

Equation (3.42) can be solved using substitutions written down by Winternitz et

al [67]. The final solution is in the form:

f(€)=\l\/3(£—3——)w(iln|£+ll+ff)

where the w function satisfies the Painlevé XXX equation

s w? 3 5 1
w' = 5 + S + W (3.45)

The Painlevé equation XXX (3.45) has the first integral in the Jacobi form and it
was already discussed as Eq. (3.20).
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3.3 The numerical values of the free energy functional for
selected patterns

In this section calculations of numerical values of the free energy functional for some

of the symmetry variables are presented.

To understand the obtained results more clearly it is convenient to reduce
the number of the coefficients. Therefore, it is assumed that the coefficients 43 =
Ao = 0. Analytical formulae for the free energy of the planar wave type solutions
for this choice of the coefficients are available [66]. They can be used for comparison

with numerical estimates.

There exist various methods of setting up the physical situation. They are
expressed in terms of coefficients as well as boundary conditions. Our approach
neglects boundary conditions in the sense that in the derivation of the fundamental
equation (1.26) the surface terms were assumed to vanish. It is a limiting assumption
because there is no reason to believe that the magnetization vector or its fluctuations
should be equal to 0 on the boundary of the sample. However, the validity of these
results can be extended to all those cases where the length of the sample is much
greater than the period of the related oscillation. In such a case the relative error

is small in comparison to the absolute value of the free energy functional.

A phase transition in the Landau theory is related to the change in the num-
ber of minima of the free energy functional signalling a bifurcation. It was achieved
by assuming that in the vicinity of the transition point only the coefficient of the
quadratic term is temperature dependent, or in other words, that the remaining

coefficients are slowly varying and different from zero in this region.

It is possible, however, to discuss a different type of phase transition. The
coefficient standing by the »radient term might change its sign in the vicinity of the

transition point and the (aartic term might remain constant. This possibility was
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discussed by J.A. Tuszynski et al [62].

On the microscopic level it is quite normal to assume that one of the coupling
constants may change its sign. The results of a such an effect were for the first time
explored by by C. Kittel [33] and later on were generalized to create the theory
known as RKKY. This theory introduces the change of the sign of the exchange

constant J in the Heisenberg hamiltonian as a result of the exchange constant’s

distance dependence.

Another attempt to describe the reentrant phase transitions was made by H.
Kitatani et al [32]. They have assumed that in a two-dimensional lattice there is a
competition between exchange coefficients changing signs at different lattice sites.
In this way thcy have obtained some phase diagrams plotted in the space of the

ratios of the exchange coefficients.

Here, according to our interpretation of the coarse grained free energy func-
tional we propose that the interaction between planes in a sample may have different
character than those within planes (anisotropy). The main question that appears

now is: what kind of phase transitions might one expect in such a situation?

It is obvious that the change of the sign of one of the coefficients D; may
change the symmetry group. The crucial word here is “may” because despite the
fact that the large (high-temperature) groups are quite different they have some

common subgroups.

The analysis of the transition sequence as D in Eq. (1.26) goes through zero
performed by J.A. Tuszynski et al [62] was limited to the planar wave type solutions.

It was deduced that there are four possible sequences :

4>0,D>0 As D —» 0 M = 0 remains the only solution

41 <0,D>0 As D — 0, sn — tanh, eventually, at Ty, tanh splits into Mo and
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""'MO
A>0,D<0AsD—-0cn—=M=0

A<0,D<0 As D — 0, cn — sech, eventually, at Ty, sech splits into M, and
-~ M,

where it was postulated that D = d(T — Ty).

Here, those results are extended to include some other geometries. The actual
values of these solutions and th-ir free energies were obtained numerically with the
exception of the planar symmetry where both numerical and analytical calculations
were performed. For the planar geometry we assumed the initial conditions to be
given at the centre of the sample and equal to the maximum possible value of the
solution and its derivative equal to 0. For other symmetries we assumed the maximal
value at the boundary of the sample because the related ODE’s have singularities
at the origin. In our calculations we compared three different solutions having
relatively simple symmetry properties for both D, being positive and negative which

are given below.

Geometry D.>0 D. <0
Planar =1z =1z
Cylindrical | € = (z; + z;)!/? €= (y* + 22)'/?

Spherical £ = (22 + 42 + 22)1/2

Hyperbolical € = —z% 4 y? + 2°

where 7,7 = 1,2,3. These surfaces of the constant value are illustrated in

Fig. 3.1 for D > 0 and in Fig. 3.4 for D < 0.

To make this comparison easier a volume of the sample was fixed but the
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shape of the sample was slightly varied to make it more compatible with a given
symmetry. The sample was assumed to be of cubic, spherical or cylindrical shape
with the volume equal to 10% in lattice constant units. The model parameters
were chosen as b = —1.0 ¢ = 100.0 and D, = D, = 1.0. The value of the coef-

ficient D, was successively changed for comparison purposes and was taken to be

-100.0,-10.0,-1.0,1.0.

For the planar waves the free energy can be rewritten in the form:

b c D
F[M] = /V di(M? + TM* + S|V M)
[+

« D 2
M +7‘(6€M)) (3.46)

b
— A/Ldf(-2-M2+

where £ is one of the equivalent directions in the sample. To simplify notation € is
assumed to be equal to z in the following paragraphs. For the above form of the

free energy functional, the planar wave solutions are taken from Winternitz et al

[66):
i)whenb< 0 D, <0and K, <0

M(z) = \J—" /D~ Ky en(y [~ ()" - K)4(z = 20), B

-2+ -K
2,/(2)2 - K

ii) when b< 0 D, <0and K; >0o0r whenb<0 D.,>0and K; >0

b, [b,
J—E+ (-c') — Ki(z — o), k) (3.47)

2./t — Ky
k= _b b\2 _ I,
b4 /R - K,

In both above equations K, is the integration constant. In the reduced ordinary

where

A

M(z) = \J—” o

where

differential equations the z coordinate does not appear explicitly. Thus, the second
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integration constant is implicitly given by fixing the position z, of one of the char-
acteristic points of a solution which in this case is assumed to be the position of the
maximum value of solutions. Using the above solutions, integrating by parts powers
of the Jacobi transcendental functions and neglecting surface terms one obtains:

whenb<0 D;<0and K, <0

K b b b 2 ;
FIM) = VI + G+ (- K0+ 3P - R @)

whenb<0 D, <0and K;>00rd<0 D,>0and K; >0

Ky
12

3+ Cr-K0ED (3.49)

FM)=V]|
where K (k) and E(k) are the first and second complete Jacobi integrals and k is
the modulus of the Jacobi functions. Because k£ — 1 when K, — 0 it is easy to see
that the ratio E(k)/K(k) — 0 and in the same limit the value of the free encrgy
goes to 0. It is consistent with the assumed initial condition for the wave, namely
that its maximum is fixed at the origin. Thus, this solution tends to the constant
homogeneous solution. The results published by Winternitz et al [66] were obtained
under the assumption that the fixed value at the origin is equal to the average of

the maximum and minimum values. In such a case the solution tends to the "kink”

solution and the total free energy has a positive limit.

The first and quite surprising result is that the value of the free energy
functional does not explicitly depend on the magnitude of the coefficient D,. This
fact holds true as long as one does not consider the cutoff condition. When the
cutoff condition is imposed on planar wave types one gets the band of solutions

that becomes very narrow when D, tends to 0.

One should always remember, however, that there are singular solutions of
the reduced ordinary differential equation. The family of these solutions is related

to spatially homogeneous distributions of the order parameter. The value of the
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free cnergy functional corresponding to these solutions is equal to

b
FiM] = V[ZM*+ M)
3b? b?
V; or —VZE

We are dealing with the case where ¢ > 0, therefore, it is always the second value

that has a lower energy.

The neglect of the surface terms leads to an error which should be smaller
than twice the free energy of the wave over the length of one period. It should be

then extremely good when one deals with 10° periods in the sample.

The results of our calculations are presented in Figs. 3.5 - 3.7 in which the free
cnergy is plotted against the integration constant. In the case of planar symmetry
the integration constant is directly related to the amplitude of the solution. This
relation is not true for other geometries. In Fig. 3.5 we can see that the free energy of
planar waves is weakly dependent on the value of the coefficient D, < 0. The ripples
appearing on the plot are related to the coincidence of the length of the sample and
the multiplicity of the wavelength of the solution. These ripples disappear when
we use an approximation where averages are calculated. The same comments are
applicable to the free energy of planar waves when D, > 0 Fig. 3.6. The value of
the constant of integration is bounded from above by the smaller of the two values:
the cutoff value and the value (2)? = 0.001. In the case D, < 0 the lower limit is
given by the lower cutoff value while in the case D, > 0 it is 0. We can see that the
free energy has its maximum at 0, is monotonically increasing for the integration
constant < 0 and monotonically decreasing otherwise. The value of the free energy
for D, < 0 is less than —4.5 x 10? in Fig. 3.5 and is of the order —1.1 x 10° for
D, > 0. The values of the free energy for solutions with cylindrical symmetry for
the comparable values of the initial conditions were in the range (—100,0) while

those for solutions with spherical symmetry were slightly above 0. Values of the
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Figure 3.5: Numerical values of the free energy for plane waves, propagating in the

z direction, solutions to the Eq. D3, M = 100.M? — M* for different values of D.

118



-200

-400

-600

Free Energy

-800

-1000

-1200 '
! 0 4X10-5 8%10-5
Int. Constant

Figure 3.6: Numerical values of the free energy for plane waves, propagating in the

z direction, solutions to the Eq. 8;;M = 100.M? — M*.
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free energy functional for the solutions with hyperbolic symmetry are of the order

of —1. x 10® as can be seen in Fig. 3.7.

We can see that the lowest free energy corresponds to solutions with hyper-
bolic symmetry followed by those with planar symmetry ( first with D, < 0 then
with D, > 0) and finally by those with cylindrical and spherical symmetrics.

The above results seem to be quite reasonable with the exception of the
unexpectedly low value of the free energy for the hyperbolic type solutions. As
far as we know this type of solution is not commonly observed. We think that
such low values are related to the fact that surfaces of constant magnetization are
getting closer when they approach the singular conical surface —z? + y? + 2% =
0. If the magnetization is not constant outside and/or inside of this surface the
gradient term in the free energy functional may become very large in the positive or
negative direction because of an increased density of surfaces. On the other hand,
we assumed that the solution should not significantly vary on a scale smaller then
the lattice constant. It seems then reasonable to assume that the solution with
such symmetry should be close to the spatially homogeneous outside and/or inside
the above cone.The free energy is equal then to that of the mean field solution

-2.5 x 103,
3.4 Experimental applications

There are some experimental results related to the above discussed theory. Most
of the experiments investigating the magnetization of solids are based on some
forms of scattering. The scattering experiments are described in terms of planar
waves and consequently only planar geometry can be investigated by those methods.
Therefore, in most of the experimental results all the attention is concentrated on

the planar wave solutions.
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Figure 3.7: Numerical values of the free energy for hyperbolic waves, propagating
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different values of D.
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The experiment which can be described by Landau-Ginzburg theory with
positive signature (case D; > 0) was performed by D. LaGraffe et al [35] and
later theoretically discussed by P.A. Dowben et al {14]. In this experiment a thin
overlayer of Tb is deposited on the substrate of Ni and on Cu. The whole system
is investigated in the range of temperatures around Curie temperature for Th. The
anisotropy of the 5p levels was then measured using angle resolved photocmission
without spin detection of photoelectrons. It was discovered that there is a significant
difference in this anisotropy as a function of the thickness of the overlayer in the

case of different substrates.

This phenomenon can be explained by considering magnetic interactions be-
tween the substrate and the overlayer. For Tb at temperature above its Curie
point but below Curie temperature for Nt the ferromagnetic order in N: induces
some magnetic orientation in the Tb overlayer. The measured asymmetry vanishes
exponentially. It can be shown that this behaviour can be described using a one-

dimensional order parameter.

Using boundary conditions imposed on the logarithmic derivative of mag-
netization P.A. Dowben et al [14] were comparing these results to the exponential

curve. They obtained the correlation length 2.5 + 0.74.

In this thesis the main equation describing magnetization {14] work was ob-
tained for the planar wave solutions as Eq. (3.4). This equation does not have
exponential solutions but it has the bump type solution as a solution to Eq. (3.4).
This solution is inversely proportional to hyperbolic cosine and therefore the dom-

inant behaviour of the bump solutions is exponential.

Some more detailed theoretical results in the case D, > 0 describing the
characteristic quantities of the planar-wave type solutions of the Landau-Ginzburg
equation were given by P. Winternitz et al [68]. The field dependence of the mean

magnetization, of the wavelength and of the free energy for many type elliptic solu-
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tions are presented in this work. These quantities can be measured experimentally.

The case D, < 0 was discussed by W.I. Khan [31]. He attempted in his
calculations to explain the experimental data obtained by J.M. Barandiaran et al
[7). J.M. Barandiaran et al discovered that below Ty = 18K the magnetic phase
of PrNi,Si; rare earth alloys is sinusoidally modulated. In this temperature a
crystal of this alloy reveals a large uniaxial magnetocrystlline anisotropy. Ni is non-

magnetic and Pr moments are along the c-axis with a maximum value of 2.6+0.115
at 3.5K.

W.I. Khan discussed the possibility of describing a sinusoidal magnetic phase
in rare earth alloys using Landau-Ginzburg equations. He has used the free energy

functional in the form
1 2, 1 4, 1 6 2
F= -2-AM +ZBM +-6-CM + G(VM)*.

The coefficients of this functional were rescaled to the form 8 = A/2D, v = B/4D,
6 =C/6D,and D = -G.

He has also shown that it is possible to find a solution which closely follows
the experimental curve of the nonhomogeneous magnetization obtained in [7]. He

managed to fit both the period and magnetization to experimental data. However,

questions of numerical values of its coefficients and their justification remain still
open.

The equation used by W.I. Khan in [31] to describe magnetization was also
obtained in this thesis and is listed in Table 8 as Eq. 2. Its solutions were discussed
together with solutions of Eq. (3.4). It has many solutions oscillating around zero

as well as some bump type solutions.

To observe more complicated geometries one has to use different experimental

methods. These would include the direct observations of the domain shapes by

123



Bitter’s and Faraday’s methods. However, it is difficult to say whether the one-

dimensional order parameter is sufficient to describe such geometries.
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CHAPTER FOUR
CONCLUSIONS

In previous chapters results of the symmetry reduction applied to the time- and
space-dependent Landau-Ginzburg equation with two possible signatures were pre-
sented. These results contain a classification of all possible subalgebras that lead to

reductions of these equations to equations of a lower order or to equations in fewer

variables.

All reductions to algebraic and to ordinary differential equations were ex-
plicitly performed. Solutions of ordinary differential equations of second order that
satisfied the Painlevé Test were given. Also methods for integration of the first or-
der differential equations were also given. Our results have suggested that Landau
theory of phase transitions contains a large number of continuous symmetries which

have been investigated for the first time.

The limitation of considerations to the discrete subgroups of the group of
translations can be possibly justified on a microscopic scale. The proper description

then should be completely microscopic and one should start from a lattice model.

On the other hand, there is no apparent reason to limit the analysis to this
rclatively narrow class of formations when one discusses the coarse-grained approx-
imations on the mesoscopic scale. The symmetry method provides an appropriate

method of investigation of these cases.

However, in a similar way to the case of topological classification [34], sym-
metry analysis does not provide one with the ability to predict which of the obtained
symmetries is actually realised. This question should be solved by comparing en-

ergies of solutions with different geometries. The results of a preliminary attempt
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by the author at numerical evaluation of these energies associated with 3.3 scem
to suggest that a significant role is played by regions close to singularities and
boundaries. For orbits with negative curvature one can see that because surfaces
of constant value are getting arbitrarily close in the physical space the free energy

may become divergent.

There are many remaining problems for which solutions were not even at-
tempted in this thesis. For example, discussion of stability of solutions, the hierarchy

of phase transitions, or statistical properties around each particular solution.

I would like to mention some directions of possible extension of this thesis.
Probably the most interesting one, at least in my opinion, is the extension of this
investigation to include more dimensional (e.g. complex) order parameter. The
case investigated here is possibly too simple in the sense that despite its value as
a model systems one would not expect to find any practical applications of the
one-dimensional non-conserved real order parameter. Therefore, the actual value
of the above reduction should be more measured in terms of the idealized model
than actual representation of experimental results. Another problem is related
to the lack of precise mathematical understanding of continuous approximations
which necessarily appear in a coarse-grained procedure. Because of this it is not
clear what are the limits of applicability of the obtained results. In many places
[23,43,40] it is suggested that this type of approximation should make sense only
for slowly varying quantities. However, at the same time many authors utilize the
same method to describe results on a length scale comparable with average atomic
distances [31,45]. It is quite possible that the dynamical bchaviour can be modelled
even on very short scales when there is very weak time dependence (a situation
which is dynamic locally can be averaged using the continuous approximation while
the global character of solutions remains almost the same). These problems seem

to be quite difficult and as far as I know open to further investigations.

126



The results presented in this thesis proved that the symmetry reduction
method is a valuable tool in the analysis of physical problems. It gives one means

not only to look for special solutions but also to predict the possible hierarchy of

symmetries appearing in the sequence of patterns.
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APPENDIX A
BASIC DEFINITIONS AND THEOREMS

1.1 Basic definitions

Definition A.1 An r-parameter local Lie group consists of connected open
subsets Vo C V C R’ containing the origin 0, and smooth maps m : VxV — R,
defining the group operation, and i : Vo — V, defining the group inversion, with the

following properties.

1. Associativity. If z,y,z € V, and also m(z,y) and m(y,z) are in V, then

m(z, m(y, z)) = m(m(z,y), 2)-
2. Identity Element. For all z in V, m(z,0) = z = m(0, z).

9. Inverses. For each z in V , m(z,i(z)) = 0 = m(i(z), z).

Definition A.2 Let M be a smooth manifold. A local group of transformations

acting on M is given by a local Lie group G, an open subset U, with
{e}xMcUCGxM

which is the domain of definition of the group action, and a smooth map ¥ : U — M

with the following properties:

1. If (h,z) € U, (9,%(h,z)) € U, and also (g- h,z) € U, then ¥(g,¥(h,z)) =
U(g- h,z)

2 Forallze M, ¥(e,z)=2
3. If (g,z) € U, then (g7, ¥(g,2)) € U and ¥(¢97",(9,2)) = =
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Definition A.3 Let G be a local group of transformations acting on a manifold M.
A subset S C M is called G-invariant, and G is called a symmetry group of S,
if whenever x € S, and g € G is such that g - z is defined, theng-z € S.

Definition A.4 Let G be a local group of transformations acting on a manifold
M. A function F : M — N, where N is another manifold, is called a G-invariant

function if for allz € M and all g € G such that g- = is defined, F(g - z) = F(z).

Definition A.5 Let G be a local group of transformations acting on the manifold
M. A subset S C M is called locally G-invariant if for every £ € S there 1s o
neighbourhood G. C G of the identity in G such that g-z € S for all g € G.. A
smooth function F : U — N, where U is some open subset of M, is called locally
G-invariant if for each z € U there is a neighourhood G: C G: of e in G such that
F(g-z) = F(z) forallg € G,. F is called globally G-invariant if F(g-z) = F(z)
forallz e U, g € G such thatg-z€U.

Definition A.6 Let S be a system of differential equations. A symmetry group
of the system S is a local group of transformations G acting on the open subset M of
the space of independent and dependent variables for the system with the property
that whenever u = f(z) is a solution of S, and g - f is defined for g € G, then
u = g - f(z) is also a solution of the system. (By solution we mean any smooth

solution u = f(z) defined on any subdomain X C X ).

Definition A.7 Let M C X x U be an open subset and suppose v is a vector
field on M, with corresponding (local) one-parameter group exp(ev). The n-th
prolongation of v, denoted by pr(™v, will be a vector field on the n — jet space
M®), and is defined to be the infinitesimal generator of the corresponding prolonged

one-parameter group pr™[exp(ev)]. In other words,

d
V(I, u(n)) € M(ﬂ), p,,.('n)v l(z'u("))= c—i—‘

~ mopr ™ [exp(ev)](z, u)
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Definition A.8 A system of n-th order differential equations Az,u™) = 0 is
locally solvable at the point

(20, u§™) € Sa = {(z,u™ : Az, u™) = 0}

if there ezists a smooth solution u = f(z) of the system, defined for z in a neigh-
bourhood of xo, which has the prescribed “initial conditions” u((,") = pr(® f(zo). The
system is locally solvable if it is locally solvable at every point of Sa. A system of
differential equations is nondegenerate if at every point (mo,u((,“)) € Sp it i3 both

locally solvable and of mazimal rank.

1.2 Basic theorems

Theorem A.9 IfG actson M, and F: M — R} is a smooth function, then F is a
G-invariant function if and only if every level set F(z) = ¢, c € R!, is a G-invariant

subset of M.

Theorem A.10 Let G be a connected local Lie group of trcnsformations acting
on the m-dimensional manifold M. Let F: M — R, | < m, define a system of
algebraic equations F, = O,v = 1,...,l and assume that the system is of mazimal
rank, meaning that the Jacobian matriz g—ff is of rank | at every solution z of the
system. Then G is a symmetry group of the system if and only if v[F,(z)] = 0,

v=1,...,]1 whenever F(z) =0, for every infinitesimal generator v of G

Theorem A.11 Let M be an open subset of X xU and suppose A(z,ul™) =01s an
n-th order system of the differential equations defined over M,with corresponding
subvariety, Sa = {(z,u™)|A(z,u™) = 0}, Sa C M™). Suppose G is a local
group of transformations acting on the M whose prolongation leaves Sa invariant,

meaning that whenever (z,u™) € Sa, we have priMg . (z,u™) € S, for allge G
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such that this is defined. Then G is a symmetry group of the system of differential
equations in the sense of Definition A.6.
Theorem A.12 Suppose

Afz,u™ =0, v=1,...,1

is a system of differential equations of mazimal rank over M C X x U. If G is a

local group of transformations acting on M, and

pr™o[A (2, u™] =0, v=1,...,l, whenever A(z,ut™)=0,
for every infinitesimal generator v of G, then G is a symmeiry group of the system.
Theorem A.13 Let A,(z,u™) = 0, be a nondegenerate system of differential

equations. A connected local group of transformations G acting on an open sub-

set M C X x U i3 a symmetry group if and only if
pr™u[A(z,u™)] =0, v=1,...,1 whenever A(z,ul™)=0,
for every infinitesimal generator v of G.
Theorem A.14 Let G act semi-regularly on the m-dimensional manifold M with
s-dimensional orbits. If zo € M, then there ezist precisely m — s functionally inde-

pendent invariants £}(z),...,E™%(z) defined in a neighbourhood of zo. Moreover,

any other invariant of the group action defined near z, is of the form
§(z) = F(€\(z),...,£""(z))

for some function F. If the action of G is regular, then the invariants can be taken

to be globally invariant in a neighbourhood of zo.
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Theorem A.15 Let G be the symmetry grcup of a system of differential equations
A and let H C G be an s-parameter subgroup. If u = f(z) is an H-invariant
solution to A and g € G is any other group element, then the transformed function
u=f(z) =g f(z) is an H-invariant solution, where H = gHg™" is the conjugate

subgroup to H under g.
Theorem A.16 Let H and H be connected, s-dimensional subgroups of the Lie

group G. Then H = gHg™! are conjugate subgroups if and only if h = Ad g(h) are

conjugate algebras.
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