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Abstract

Due to the unique properties of biopolymer gels, they are extensively used in the food indus-

try and biomedical applications such as drug delivery. Different from rubber-like materials,

the constituting chains in many biopolymer gels randomly interlock with neighbouring chains

by means of physical rather than covalent cross-linking. Such polymer networks are charac-

terized by two principal regions: the disordered zone containing coiled chains and the ordered

zone in the form of ion-mediated aggregation of macromolecules and/or helical structures.

The ordered regions serve as junction zones between the disordered chains, and the size of

these zones may alter as a result of zipping/unzipping phenomena. The entire polymer net-

work can be envisaged as a collection of coil-rod structures serving as the building blocks,

where the coil and rod are representative of the disordered and ordered zones, respectively.

The present work aims to provide a rigorous formulation of coil-rod structure that can predict

its mechanical behaviour including zipping/unzipping characteristics. The coil-rod structure

is modelled by a rod attached to a freely jointed chain, where the length of the rod and the

number of segments in the freely jointed chain are adjustable input parameters. The rela-

tionship between the force and end-to-end distance of the coil-rod structure is derived based

on statistical mechanics. The formulation is extended to incorporate the zipping/unzipping
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mechanism with the aid of Boltzmann averaging. As an example of its applications, the

model is implemented into the eight-chain model to describe the macroscopic mechanical

response of the network. Another example is demonstrated where the zipping/unzipping

mechanism is shown to be able to capture the unwinding of a double-stranded DNA under

a tensile force. The formulation presented in this work paves the way for future studies that

model biopolymer gel networks with potentially complex chain interactions.

Keywords: Biopolymer gels, Zipping mechanism, Coil-rod structure, Statistical mechanics,

Partition function, Force-extension relationship

Nomenclature

Ψ Helmholtz free energy per unit reference volume

λ1, λ2, λ3 Principal stretches

N Number of chains per unit reference volume

μ Shear modulus

ψi Helmholtz free energy of the ith chain per unit reference volume

σ1, σ2, σ3 Principal Cauchy stresses

p0 Unknown pressure in (49)

r0 End-to-end distance of the chain in the reference configuration

rchain End-to-end distance of the chain in the current configuration

A0 Normalization factor in the probability distribution (33)

G Gibbs free energy

M Total number of segments in the structure

N Number of Kuhn segments in the fully unwound coil-rod structure

Q(fx, T,M) Isothermal-isotension partition function with fixed applied force fx in x direction,
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temperature, and number of segments

QR(fx, T ) Isothermal-isotension partition function of the rod with fixed applied force fx in x

direction and temperature

QW(fx, T ) Isothermal-isotension partition function of the Weiner’s rigid model for the rod struc-

ture with fixed applied force fx in x direction and temperature

T Temperature

W (r) The probability that the end-to-end vector of the structure is r, at fixed temperature

and number of segments

WCR
n (r) The probability that the end-to-end vector of the coil-rod structure is r, with fixed

temperature and number of Kuhn segments n in the coil

Z(r, T,M) The canonical partition function with fixed end-to-end position vector, temperature,

and number of segments

Z(x, T,M) The canonical partition function with fixed end-to-end distance in x direction, tem-

perature, and number of segments

ZR(x, T ) The canonical partition function of the rod with fixed end-to-end projection in x

direction and temperature

ZW(x, T ) The canonical partition function of the Weiner’s rigid model for the rod with fixed

end-to-end projection in x direction and temperature

Z0 The integration of canonical partition function over the entire space, Eq. (6)

r End-to-end position vector of the coil-rod structure

〈x〉 Average end-to-end distance in x−direction due to the application of a fixed force

fx on the ends

〈fr〉 Average force required to maintain the structure at fixed end-to-end distance r

〈fx〉 Average force required to maintain the structure at fixed end-to-end distance along
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x−direction

dτ An arbitrary volume element in the space

H The governing Hamiltonian of the system

a Unstretched length of the rod

b Kuhn length of the coil

h Planck’s constant

kB The Boltzmann constant

m Mass of the end points in the rod model

n Number of Kuhn segments in the coil

n0(r) Number of Kuhn segments with maximum contribution to the summation (43)

nmax Maximum number of Kuhn segments in the coil during zipping/unzipping

nmin Minimum number of Kuhn segments in the coil during zipping/unzipping

p(x) The probability that the two ends of the structure are separated by x in the x

direction at constant temperature

pCR
n (x) The probability that the two ends of the coil-rod structure are separated by x in the

x direction at constant temperature

pCn (x) The probability that the two ends of the coil structure are separated by x in the x

direction at constant temperature

px, py, pz Components of the momentum vector of the rod end along x, y and z direction

qx, qy, qz Components of the position vector of the rod end along x, y and z direction

r End-to-end distance of the structure

r∗ The end-to-end distance with maximum probability

Δl An arbitrary factor of length dimension for normalization purpose

Ω(r, T, ε) The grand canonical partition function with fixed end-to-end position vector, tem-
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perature, and chemical potential

Φ Grand canonical potential energy

α Ratio of the length of one unit in the rod to the Kuhn length (see Fig. 7)

β (kBT )
−1, kB and T being the Boltzmann constant and temperature, respectively

η A dimensionless parameter introduced in Eq. (38)

κ Stiffness in the flexible rod model

ψ Helmholtz free energy of the individual chain

ε Required energy for liberation of one Kuhn segment in the rod

ξ A dimensionless parameter defined in Eq. (34)

ξ1, ξ2 Dimensionless parameters defined in Eqs. (36a) and (36b)

ζ The ratio of a to the Kuhn length b

1. Introduction

To describe the mechanical properties of a wide range of synthetic polymers, such as

rubber-like materials, it is conventional to model a uniform network containing the macro-

molecules as flexible chains connected together through covalent cross-linking (Treloar, 1975).

However, studies reveal that the proposed strategy is inadequate for identifying the phys-

ical properties of many biopolymer gels (Clark and Ross-Murphy, 1985). In contrast to

rubber-like materials, the constituting chains in many biopolymer gels randomly interlock

with neighboring chains by means of physical rather than covalent cross-linking. The signif-

icance of such physical cross-linkages has been widely reported, for example in high strength

hydrogels (Wang et al., 2017). As a result, models describing rubber elasticity encounter dif-

ficulties for capturing mechanical response of biopolymer gels. For example, the unorthodox

relationship between the elastic moduli of Na- and Ca-alginate gels and the temperature can-
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not be justified through a linear relationship predicted from the traditional rubber elasticity

model (Moe et al., 1992). In addition, studies on biopolymer gels show that the thermal,

mechanical, and chemical history of synthesis, including the type of polymer precursors,

swelling/de-swelling, or heating/cooling gelation process, significantly affect the final prop-

erties of such gels. For instance, the mechanical features of Ca-alginate gels depend on the

type of alginate and the preparation method (Moresi and Bruno, 2007).

Based on Clark and Ross-Murphy (1987), biopolymer gels are divided into two main

groups: (i) rod-like ordered biopolymer gels such as globular proteins with branched net-

works where the pertinent networks are formed by junction points resembling synthetic

polymers; (ii) disordered biopolymer gels such as polysaccharide gels in which the individ-

ual chains associate together laterally, forming helical junction zones and/or ion-mediated

aggregation zones (egg-box structures) with length comparable to that of the coil parts

of the chain. Figure 1 illustrates possible types of junction zones in disordered biopoly-

mer networks. Compared with covalent bonds, the non-covalent links within the junction

zones can more easily dissociate and re-associate. Consequently, when an external loading

is applied, the junction zones can shrink by unwinding or expand by zipping, allowing the

exchange of segments between the junction zone and coil region of the network. The rate

of zipping/unzipping of the junction zones can be governed by several factors, including the

concentration of cations or the temperature (Clark, 1991). Polymer networks such as gelatin

or polysaccharide gels can therefore be envisaged as a collection of coil-rod structures serving

as building blocks, where the rod and coil respectively represent the ordered junction zone

and the remaining disordered region. For this reason, the elucidation of the mechanics of the

coil-rod structure is of cardinal importance to gain insight into the properties of disordered
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biopolymer networks.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 1: Examples of conformation and aggregation of junction zones in disordered biopoly-

mer gel networks: (a)-(b) egg-box multimer (alginate), (c) double helix (agar), (d) egg-box

dimer, (e) association of double helices with intermediate cations (carrageenan), (f) triple

helix (gelatin), (g) association of double helices without intermediate cations (agarose gels).

Each junction zone can be considered as a rod while the remaining disordered region can be

considered as coils.

In the literature, there have been abundant studies that develop phenomenological mod-

els for the description of constitutive relations of biopolymer gels (McEvoy et al., 1985; Zhang

et al., 2007; Clark and Ross-Murphy, 2009; Magnenet et al., 2012; Xu and Safran, 2015).

Readers are referred to the comprehensive review of the continuum elastic models for biopoly-

mer gels by Wang and Xu (2020). On the contrary, micro-mechanical studies accounting for

behaviours at the molecular level are fairly limited. Some research focused on the consti-

tutive relations of ordered biopolymer networks consisting of rod-like macromolecules. For
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example, Doi and Kuzuu (1980) attempted to capture the energetic contribution of entan-

glements in such networks. Dobrynin and Carrillo (2011) proposed a micromechanical-based

constitutive model capable of predicting the strain-hardening of synthetic polymer networks

as well as ordered biopolymer gels such as actin. De Tommasi et al. (2015) adopted a

multi-scale approach to derive a constitutive relationship for polymeric networks containing

macromolecules with unfolding domains. Likewise, there is scant information on the micro-

scale modelling of disordered biopolymer networks. Nishinari et al. (1985) proposed a reel

model for the zipping/unzipping mechanism to explain the nonlinear effect of the tempera-

ture on the elastic modulus in thermoreversible gels. In their treatment, the junction zones

served as a reservoir capable of changing the number of the Kuhn segments in the coils,

although the junction zone itself was not explicitly incorporated in the formulation. Me-

chanics of the coil was described by the inverse Langevin model, with energy levels assigned

to each conformation proportional to the number of Kuhn segments in the coil. This model

was verified for different types of biopolymer gels (Nishinari, 2007). Inspired by this study,

Higgs and Ball (1989) simplified the reel model using Gaussian approximation and obtained

the partition function of a reel structure attached to a rigid rod with a fixed length. Sub-

sequently, they studied the effects of the zipping mechanism by comparing the properties of

the reel structure with the conventional coil structure. In their zipping/unzipping treatment,

the total number of segments is not conserved as the length of the rod remains fixed while

the number of Kuhn segments in the coil is allowed to change. In addition, a number of

assumptions were made which led to some unphysical features such as discontinuity in the

force-extension curve.

The main goal of this paper is to provide a comprehensive statistical mechanics frame-
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work for modelling the coil-rod structure considering the exchange of segments between the

disordered region (the coil) and the junction zone (the rod). Since the choice of ensemble

depends on the question to be addressed and it can impact the results of the analysis, in

section 2, the fundamental concepts behind different ensembles are clarified. Subsequently,

in section 3, the statistical mechanics analysis of a rod structure is carried out with different

ensembles. The formulation is extended to the coil-rod structure with fixed rod length in

section 4, to derive the relationship between the force applied at the ends of the structure

and the end-to-end separation. In section 5 the treatment of coil-rod structure is cast in a

more general form to incorporate zipping and unzipping behaviour. Finally, as examples of

its applications, in section 6 the model is implemented into the eight-chain model to describe

the macroscopic mechanical response of a network, as well as used to predict the unwinding

of a double-stranded DNA under a tensile force.

2. Statistical mechanics considerations of a macromolecule

The main focus of this work, which is a general interest for the study of macromolecules,

is the relationship between the force applied at the two ends of the structure and the end-

to-end extension. The theoretical assessment of this mechanical property necessitates the

formulation of a partition function via statistical mechanics. Since the temperature, exten-

sion, applied force and number of units in the molecule are convenient measurable properties,

we generally deal with three ensembles: Canonical ensemble, isothermal-isotension ensemble,

and grand canonical ensemble.
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2.1. Canonical ensemble

In the canonical ensemble, two possible scenarios can be considered:

(i) The structure is maintained at a fixed end-to-end position vector r, fixed temperature

T and fixed number of segments M . An average force 〈f r〉 is required to maintain the

structure with fixed end-to-end distance |r| = r along the direction
1

r
r. If the canonical

partition function Z(r, T,M) is at hand, one can derive a relationship between the 〈f r〉

and r. For a single molecular structure, the direction of r is immaterial to the partition

function Z(r, T,M). Thus, with no loss of generality, the end-to-end vector r can be

replaced by “end-to-end distance r”. The Helmholtz free energy ψ is calculated from

ψ(r, T,M) = −β−1ln [Z(r, T,M)] , (1)

in which β = (kBT )
−1 and kB is the Boltzmann constant. The average force is colinear

with the fixed end-to-end vector r and its magnitude 〈fr〉 is calculated by

〈fr〉 = ∂ψ(r, T,M)

∂r
. (2)

This ensemble has been in the spotlight of abundant research due to its significance in

incorporating the chain properties into a network. For instance, Higgs and Ball (1989)

merely focused on canonical ensemble for the coil-rod structure.

(ii) The structure is kept at a fixed end-to-end “displacement”, fixed temperature T and

fixed number of segmentsM . The displacement can be imposed in any arbitrary direc-

tion, while the other components of the end-to-end vector are free to move. Without

loss of generality, we will call this arbitrary direction x in this work. The average force
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〈fx〉 required to keep the structure with fixed x can be determined with the aid of this

canonical ensemble, by recognizing that it is the work conjugate of x and its direction

is along the x axis. Once the canonical partition function Z(x, T,M) is available, the

Helmholtz free energy is obtained as

ψ(x, T,M) = −β−1ln [Z(x, T,M)] . (3)

Now, by taking its derivative with respect to x, one can obtain the average force as

〈fx〉 = ∂ψ(x, T,M)

∂x
. (4)

Evidently, the number of conformations with fixed displacement is much larger than

the previous ensemble. This stems from the fact that in the previous scenario, all

displacement components x, y, and z are fixed. Although studying scenario (i) is of

more practical relevance, there is an interesting relationship between the two scenarios

which facilitates the derivation of the partition function with fixed end-to-end distance.

This relationship is established below.

Consider a chain with one end fixed at the origin and without any applied external forces.

The probability that the other end of the chain is located in a volume element dτ is given

by (Flory, 1969)

W (r)dτ =
Z (r, T,M) dτ

Z0

, (5)

where

Z0 =

∫
τ

Z (r, T,M) dτ, (6)
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and W (r) denotes the probability distribution as a function of r, commonly referred to

simply as the “distribution function”. The volume element dτ in (5) is located at the end

of the position vector r with Cartesian coordinates (x, y, z). Similar to Z(r, T,M), W (r)

depends on the end-to-end distance r rather than end-to-end vector r. Now, Eq. (1) is

rewritten as

ψ(r, T,M) = −β−1ln [W (r)] + cte. (7)

This alternative formulation enables us to use W (r) to determine 〈fr〉 vs. r for the coil-rod

structure. Likewise, if p(x)dx is the probability that one end of a structure, free of any

external forces, is located between x and x + dx, while the other end is fixed at the origin,

then:

p(x)dx =
Z (x, T,M) dx∫ +∞

x=−∞
Z (x, T,M) dx

. (8)

Fig. 2 depicts the aforementioned probabilities for the coil-rod structure with number of

Kuhn segments n, Kuhn length b, and rod-length a. It can be readily shown that W (r) and

p(x) satisfy the following equation:

−
(
dp(x)

dx

)
x=r

= 2πrW (r). (9)

The detailed derivation of (9) is provided in Supplementary Information, Section S1. To

emphasize that W (r) and p(x) are obtained in the absence of external forces, they are

termed as the probability distribution of the “free” chains hereafter.
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(a) Probability distribution WCR
n (r) (b) Probability distribution pCR

n (x)

Figure 2: Schematics of the coil-rod structure and the two different probabilities. The

superscript CR denotes the coil-rod structure, and the subscript n indicates the number of

Kuhn segments in the coil.
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2.2. Isothermal-isotension ensemble

In this case, the structure with one fixed end is acted upon by a fixed force f at the other

end under fixed temperature T and a fixed number of segments M (Flory, 1969)1. With

no loss of generality, the coordinate system is set up such that x axis is in the direction of

the applied force and the magnitude of the force is designated by fx. In this sense, different

conformations with different x can be established as a concomitant of the applied force. The

average 〈x〉 is the work conjugate of the force fx and can be determined in the isothermal-

isotension ensemble. Specifically, the isothermal-isotension partition function Q(fx, T,M)

can be related to the canonical partition function Z(x, T,M) by (Hill, 1986)

Q(fx, T,M) =
1

Δl

∫ +∞

−∞
Z(x, T,M)exp [βfxx] dx, (10)

where Δl is a quantity with a dimension of length to ensure the dimensionless nature of

the partition function. Because the derivation of the force-extension relationship involves

differentiating the logarithm of the partition function, it is not influenced by the actual value

of Δl. Alternatively, the isothermal-isotension partition function can be written in terms of

Z(r, T,M) by using spherical coordinates as below (Flory, 1969)

Q(fx, T,M) =
1

Δl3

∫ 2π

θ=0

∫ π

φ=0

∫ +∞

r=0

Z(r, T,M)exp [βfxrcosφ] r
2sinφ dr dφ dθ. (11)

After specification of Q(fx, T,M), the Gibbs free energy G is derived as

G(fx, T,M) = −β−1lnQ(fx, T,M). (12)

1This is analogous to the isothermal-isobaric ensemble for ideal gas with a fixed number of particles, fixed

temperature T , and fixed applied pressure.
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Subsequently,

〈x〉 = −∂G(fx, T,M)

∂fx
(13)

is utilized to obtain a relation between 〈x〉 and fx.

2.3. Grand canonical ensemble

In the ensembles discussed above, the length of the rod is considered fixed, which becomes

inadequate if phenomena such as zipping and unzipping are to be accounted for. To allow

for variable rod length and exchange of segments between the rod and coil portions of

the structure, the grand canonical ensemble will be employed such that the structure is

maintained at a fixed end-to-end position vector r, fixed temperature T and fixed chemical

potential. This ensemble samples, according to the appropriate probability distribution, all

possible conformations with different rod length or equivalently different number of Kuhn

segments in the coil. The formulation in the grand canonical ensemble will be presented in

section 5.

It should be acknowledged that there have been many discussions on the equivalence of

ensembles in the thermodynamic limit which, in the context of chain mechanics, refers to

M → ∞. For the standard coil structure, different ensembles can lead to different results

for small or moderate M (Titantah et al., 1999), while convergence of different ensembles

has been demonstrated for large M (Winkler, 2010). The equivalence is no longer valid for

certain polymer lattice models involving two equilibrium states for each segment. In this

case, the force-extension relationships predicted from canonical and isothermal-isotension

ensembles can be qualitatively different even for large M (Giordano, 2018). The equivalence
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of these two ensembles will be examined below for a single rod as well as for the coil-rod

structure.

3. Analysis of a single rod

In this work, the junction zone is modeled as a single rigid rod. Different treatments

are available in the literature. For example, in ordered biopolymer gels such as actin and

collagen, the rod structures have been modeled using a semi-flexible chain with bending

and axial stiffnesses (Carrillo et al., 2013). The worm-like chain model (Marko and Siggia,

1995) is another popular model often adopted for semi-flexible rod-like structures. The use

of a non-deformable rod to represent the junction zone is a further simplification from the

worm-like chain model, which is a reasonable assumption when the length of the rod is small

compared to the persistence length of the worm-like chain (Buhot and Halperin, 2002).

According to Weiner (Weiner, 1982), there are two distinct paths for the extraction of the

partition function for a single rigid rod: (1) The rigid model in which the Hamiltonian of

the rod is established based on the existing kinematic constraint. Hereafter, this model is

referred to as Weiner’s rigid model. (2) The flexible model in which the rod is first assumed

to be flexible with a finite axial stiffness κ. Then, the result of a stiff rod is achieved by

setting κ to infinity. It should be noted that the term “flexible” for infinite κ may be

misleading as it represents the rigid rod structure per se; nevertheless, the results may be

different from Weiner’s rigid model. In the current section, the flexible model is examined in

detail and the results from the canonical and isothermal-isotension ensembles are compared.

The description of Weiner’s rigid model is deferred to Supplementary Information Section

S2 where the differences between the approaches are clarified.
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Consider a segment AB placed between two fixed walls with distance x at fixed temper-

ature T (see Fig. 3). The segment is modelled by a Hookean spring with stiffness κ and

unstretched length a. Furthermore, the mass m of the segment is lumped at point B. Point

A is affixed at the origin, while B is allowed to occupy any points on the right wall. Hence,

the Hamiltonian of the segment is determined as

H =
1

2m
(p2y + p2z) +

1

2
κ
(√

q2y + q2z + x2 − a
)2

. (14)

In the above relation, py and pz denote the components of the linear momentum of the

concentrated mass m. qy and qz are the y− and z− components of the position vector of

point B, respectively. Since the concentrated mass at B is confined to move in the yz plane,

the system has two degrees of freedom and the corresponding canonical ensemble partition

function is

ZR(x, T ) =
1

h2

∫ +∞

py=−∞

∫ +∞

pz=−∞
exp

[
− β

2m
(p2y + p2z)

]
dpydpz

×
∫ +∞

qy=−∞

∫ +∞

qz=−∞
exp

[
−βκ

2

(√
q2y + q2z + x2 − a

)2
]
dqydqz, (15)

in which the Planck’s constant h is introduced to preserve the partition function dimension-

less. In the above relation, superscript R is utilized to indicate the rod structure. After some

mathematical manipulations, the above partition function is expressed as below:

ZR(x, T ) =
4π2ma2

βh2

{
1

βκa2
exp

[
−βκa2

2

( |x|
a

− 1

)2
]
+

√
π

2βκa2
erfc

[√
βκa2

2

( |x|
a

− 1

)]}
,

(16)

in which erfc (· · · ) signifies the complementary error function. In the limit of very large κ,

one can obtain

ZR(x, T ) =

√
32π5m2a2

β3h4
H(x+ a)−H(x− a)√

κ
, (17)
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where H(· · · ) is the Heaviside step function. By employing Eq. (17) in (8) it is found that

pR(x)dx =
dx

2a
(H(x+ a)−H(x− a)) . (18)

which agrees with Treloar (1946) for a single rigid rod. Finally, by substituting Eq. (16) in

(10), one can obtain the isothermal-isotension partition function as

QR(fx, T ) =

1

Δl

√
8π5m2

β5κ3h4
1

βafx

{
exp

[
−βafx

(
1− βafx

2βκa2

)] (
βafx − βκa2

)(
1 + erf

[
βκa2 − βafx√

2βκa2

])

+ exp

[
βafx

(
1 +

βafx
2βκa2

)] (
βafx + βκa2

)(
1 + erf

[
βκa2 + βafx√

2βκa2

])}
,

(19)

in which erf(· · · ) represents the error function. For very large values of κ,

QR(fx, T ) =
1

Δl

√
128π5m2a4

β3κh4
sinh(βfxa)

βfxa
, (20)

which is equivalent to the well-known result of the partition function for a single segment of

a freely jointed chain (Yamakawa, 1971).

After calculation of partition functions (16), the average applied force 〈fx〉 can be ob-

tained using Eqs. (3) and (4). In the normalized form,

βa〈fx〉 = 2βκax

2 +
√
2πβκa2 exp

[
1

2
βκa2

( |x|
a

− 1

)2
]
erfc

[√
βκa2

2

( |x|
a

− 1

)]

=
2βκax

2 +
√
2πβκa2 exp

[
1

2
βκa2

](
1 + erf

[√
βκa2

2

]) + O

((x
a

)2
)
. (21)

The second step in Eq. (21) is obtained as a result of the Taylor expansion of the function

about x/a = 0. Similarly, the average displacement 〈x〉 can be obtained in the isothermal-

isotension ensemble by substituting (19) in Eqs. (12) and (13), which in the normalized form
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x

y

z

y

κ

Figure 3: The single segment modelled by a Hookean spring is constrained between two fixed

walls with a distance of x. Since the B end is allowed to occupy any position on the right

wall, there are two degrees of freedom. The spring stiffness is κ and the unstretched length

of the segment is a.
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is given by

〈x〉
a

= − 1

βafx
+

1

βκa2

{√
8(κβa2)3

π
exp

[
−βκa

2

2

]

+ exp

[
−βafx

(
1− βafx

2βκa2

)] [
κβa2 +

(
fxβa− βκa2

)2](
1 + erf

[
βκa2 − βafx√

2βκa2

])

+ exp

[
βafx

(
1 +

βafx
2βκa2

)] [
κβa2 +

(
fxβa+ βκa2

)2](
1 + erf

[
βκa2 + βafx√

2βκa2

])}

×
{
exp

[
−βafx

(
1− βafx

2βκa2

)] (
βafx − βκa2

)(
1 + erf

[
βκa2 − βafx√

2βκa2

])

+ exp

[
βafx

(
1 +

βafx
2βκa2

)] (
βafx + βκa2

)(
1 + erf

[
βκa2 + βafx√

2βκa2

])}−1

. (22)

For very large κ the leading order term is

〈x〉
a

= L (βafx) =
1

3
βafx + O

(
(βafx)

3) , (23)

where L (· · · ) represents the Langevin function.

Fig. 4 shows the normalized force βa〈fx〉 versus x/a obtained from the canonical ensemble

for different values of βκa2. By increasing βκa2 the curves tend to level off for sufficiently

small x/a with a sharper increase toward infinity as x approaches a. Fig. 4 also depicts the

normalized applied force βafx versus normalized average displacement 〈x〉/a obtained from

the isothermal-isotension ensemble for different values of βκa2. Clearly, for a given βκa2 this

ensemble predicts stiffer behaviour compared to the canonical ensemble. The discrepancies

between the two ensembles are negligible for βκa2 = 1, while larger differences between

the ensembles are detected as βκa2 increases to 10000. This feature confirms that the rod

structure cannot be considered as a macroscopic thermodynamic system.
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Figure 4: Normalized force vs. normalized displacement along the x−axis for different values

of βκa2. For the isothermal-isotension ensemble βafx is plotted against 〈x〉/a, while for the

canonical ensemble βa〈fx〉 is plotted against x/a.

4. Coil-rod structure with fixed rod length

In this section, we will present the formulation for the determination of the force ver-

sus end-to-end distance (or x displacement) of the coil-rod structure in the canonical and

isothermal-isotension ensembles.

To calculate the probability distribution of the coil-rod structureWCR
n (r), it is preferable

to obtain the probability distribution along x direction pCR
n (x) in advance. Hereafter, the

superscript CR indicates the coil-rod structure. For this purpose, it is convenient to employ
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the convolution property to relate pCR
n (x) to pR(x) for the rod (Eq. (18)) and pCn (x) for the

coil (see Fig. 2b):

pCR
n (x) =

∫ +∞

−∞
pCn (x

′)pR(x− x′)dx′ =
1

2a

∫ x+a

x−a

pCn (x
′)dx′. (24)

The latter identity is achieved through the use of Eq. (18). For the coil the superscript C

has been added and the subscript n is the number of Kuhn segments it contains. Carrying

the above result into Eq. (9) and applying Leibniz integral rule yield

WCR
n (r) =

1

4πar

[
pCn (r − a)− pCn (r + a)

]
. (25)

Herein, without the explicit calculation of WC
n (r) and WR(r), the distribution function of

the coil-rod structure WCR
n (r) is achieved in terms of the probability distribution of the coil

along x direction, i.e., pCn (x).

4.1. Gaussian approximation

Let us first approximate the coil structure by a Gaussian chain with Kuhn length b and

the number of Kuhn segment n. The probability pCn (x) of such structure is given by (Treloar,

1975)

pCn (x) =

√
3

2πnb2
exp

[
− 3x2

2nb2

]
. (26)

Combining Eqs. (25) and (26) leads to

WCR
n (r) =

√
3

8nπ3a2b2
1

r
exp

[
− 3

2nb2
(r2 + a2)

]
sinh

(
3

nb2
ar

)
, (27)

which is equivalent to the model of Higgs and Ball (1989). It is important to note that the

term “Gaussian distribution” only applies to the coiled part of the coil-rod structure, while
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the coil-rod does not exhibit the Gaussian behaviour. By differentiating the Helmholtz free

energy (7) with respect to r, the average external force 〈fr〉 is derived as

aβ〈fr〉 = −3ζ2

n
L

(
3ζ2

n

r

a

)
+

3ζ2

n

(r
a

)
, (28)

where ζ = a/b. For small extension r/a, it can be readily shown that

aβ〈fr〉 = 3ζ2

n

(
1− ζ2

n

)
r

a
+ O

((r
a

)2
)
. (29)

The above relation shows that the initial slope of the 〈fr〉−r curve is negative when ζ >
√
n.

This feature stems from the fact that under zero external force the coil structure has a

maximum probability at zero end-to-end distance (see (26)), but the presence of the rod

shifts the maximum of the probability (27) toward a non-zero end-to-end distance. Hereafter

this distance will be denoted by r∗. It is worthwhile to mention that the above result is valid

only if the number of Kuhn segments is large and the end-to-end distance of the coil is very

small. In other words, the Gaussian description of the coil-rod structure is legitimate when

r → a and n � 1. Performing Taylor series expansion of Eq. (28) about r = a, one can

obtain an estimation of r∗ at which the average force 〈fr〉 vanishes:

r∗

a
≈

L

(
3ζ2

n

)
− 3ζ2

n
L ′

(
3ζ2

n

)

1− 3ζ2

n
L ′

(
3ζ2

n

) , (30)

where L ′(· · · ) is the first derivative of the Langevin function.

In the following, we provide a more rigorous calculation and the validity of the Gaussian

approximation is inspected through comparison with the exact result.

4.2. Exact treatment

Compared to the coiled chain in rubber-like materials, the length of the coil between

junction zones in biopolymers is not necessarily large. Therefore, the Gaussian distribution
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assumption for the coil may be invalid, and it is necessary to account for the finite number

of segments in the coil (McEvoy et al., 1985).

Consider a freely jointed chain with an arbitrary number of Kuhn segment n subjected

to no external force. If one end of this coil is located at the origin, the probability that

the other end is located between x and x + dx, along an arbitrary direction x, is given by

(Treloar, 1946)

pCn (x)dx =
1

2b

k∑
s=0

n(−1)s

s!(n− s)!

[
1

2

(
n− x

b

)
− s

]n−1

dx if − (2k + 2− n)b ≤ x ≤ (n− 2k)b,

(31)

and zero for |x| ≥ nb. In the above relation, k = 0, 1, · · · , n − 1. The substitution of

Eq. (31) in Eq. (25) results in the exact form of WCR
n (r), from which the average force can

be determined:

aβ〈fr〉 = a

r
− a

(
dpCn (r − a)

dr
− dpCn (r + a)

dr

)(
pCn (r − a)− pCn (r + a)

)−1
. (32)

As a side note, in Supplementary Information Section S3, the closed-form expression of the

probability distribution pCR
n (x) is derived from (24) and (31).

4.3. Approximation for a large number of Kuhn segments

As x approaches −nb, the numerical calculation of summation in (31) for large n en-

counters fluctuations. To circumvent this issue, we will devise an alternative remedy for

large n. It should be emphasized that the Gaussian approximation in 4.1 is only valid if the

end-to-end distance r/b� 1 and n� 1, while the current treatment is applicable for n� 1

irrespective of r values.
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The probability distribution of a freely jointed coil along x direction can be expressed in

a single term under certain conditions (Flory, 1969)2,

pCn (x) =
A0√
n

[
sinhξ

ξ

]n
exp

[
−ξx
b

]
, (33)

in which

ξ = L −1
( x

nb

)
, (34)

and A0 is a normalization factor and a function of b. Substituting (33) into Eq. (25) yields

WCR
n (r) =

A0

4πar
√
n

{[
sinhξ1
ξ1

]n
exp

[
−ξ1ζ

(r
a
− 1

)]
−

[
sinhξ2
ξ2

]n
exp

[
−ξ2ζ

(r
a
+ 1

)]}
,

(35)

in which

ξ1 = L −1

[
ζ

n

(r
a
− 1

)]
, (36a)

ξ2 = L −1

[
ζ

n

(r
a
+ 1

)]
. (36b)

The average force applied at the ends of the coil-rod structure can therefore be calculated

from the Helmholtz free energy,

aβ〈fr〉 = a

r
+ ζ

ξ1

[
sinhξ1
ξ1

]n
exp

[
−ξ1ζ

(r
a
− 1

)]
− ξ2

[
sinhξ2
ξ2

]n
exp

[
−ξ2ζ

(r
a
+ 1

)]
[
sinhξ1
ξ1

]n
exp

[
−ξ1ζ

(r
a
− 1

)]
−

[
sinhξ2
ξ2

]n
exp

[
−ξ2ζ

(r
a
+ 1

)] . (37)

For small values of r/a, and a < nb (ζ < n) it can be shown that

aβ〈fr〉 = ζ2
3− nη2L ′(η)

3nL ′(η)
r

a
+ O

((r
a

)2
)
, (38)

2These conditions are thoroughly discussed in Flory’s book. During the derivation, the summation of

probabilities in (31) is replaced by an approximate expression, and then the factorial functions are estimated

with Stirling’s approximation.
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where η = L −1

(
ζ

n

)
. For large n the result of the Gaussian approximation (29) can be

recovered from Eq. (38).

4.4. Comparison of different results in the canonical ensemble

The normalized average force βa〈fr〉 is plotted against the normalized end-to-end distance

r/a for fixed ζ = 5 and n = 5, 10, 25 in Fig. 5. Three cases are considered below and the

results are provided for the exact model (32), Gaussian approximation (28), and large n

approximation (37).

Case 1: ζ2 ≤ n

Demonstrated by the curves with n = 25 in Fig. 5, the coil component in this case is

dominant, and hence the behaviour of the curves resembles that of coiled chains without a

rod component. The average force monotonically increases as the structure extends. The

Gaussian and large n approximations both have reasonable agreement with the exact model

for small r/a. For r/a > 2.5 the large n approximation still agrees well with the exact model,

while there is a substantial deviation from the Gaussian approximation. This is due to the

assumption of small end-to-end distance for the coiled structure inherited from the Gaussian

approximation.

Case 2: ζ < n < ζ2

As shown in Fig. 5, for n = 10 there are two states with zero force, at r = 0 and r∗ = 0.83a.

Recall that r∗ represents the end-to-end distance with maximum probability. In this case,

the curves behave completely differently from the conventional force-extension curves in that

a convexity appears in the plots. The convex behaviour reflects the fact that the maximum
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probability of the free coil-rod structure occurs at a non-zero end-to-end distance (r∗) as

opposed to zero in the pure free coil chain model. For this reason, such a structure can

sustain compressive forces if r < r∗. Physically, the phenomenon is caused by the presence

of the rod, which has a rigid structure and when its length is comparable to the contour length

of the coil, a compressive force is required to reach sufficiently small end-to-end distance for

the coil-rod structure. The zero end-to-end distance r = 0 still represents an equilibrium

state, albeit unstable. Similar to the previous case, the large n approximation agrees with

the exact model for the entire range of r, while the Gaussian approximation departs from

the exact model significantly as the end-to-end distance increases. In particular, under the

Gaussian approximation, the coil-rod structure is permitted to be stretched more than its

contour length, i.e., r/a = 3, which is not realistic within the framework of entropic elasticity.

Case 3: ζ ≥ n

For this case, the length of the rod is greater than the contour length of the coil, i.e.,

nb < a, and it is impossible to reach zero end-to-end distance. This feature can be captured

by the curves in Fig. 5 with n = 5 (exact result and large n approximation) in which infinite

compressive force is required to push the two ends toward each other. Zero force is found

to occur at r∗ = 0.92a which is the end-to-end distance with the highest probability of the

free coil-rod structure. Clearly, the curve predicted from the Gaussian approximation differs

drastically from the other two curves not only for large extension r/a > 1.5 but also for small

extension r/a < 0.5. Such a poor performance of the Gaussian approximation is expected

and necessitates the application of the non-Gaussian model for smaller n or large a.

It is worthwhile to mention that in all cases, the average force predicted from the exact
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model goes to infinity as the end-to-end distance approach the fully stretched state, i.e.,

r → a + nb. Moreover, as r/a approaches 1, the accuracy of the Gaussian approximation

increases because of the small extension of the coil.

Figure 5: Normalized force βa〈fr〉 vs. normalized end-to-end distance r/a of the coil-rod

structure with fixed ζ = 5 and Kuhn segments n = 5, 10, 25 in the coil.

4.5. Comparison between canonical and isothermal-isotension ensembles

When an applied force is prescribed in x−direction, the coil-rod structure can take differ-

ent conformations with various end-to-end vectors r. The exact canonical partition function

has been obtained via Eqs. (25), (31), and (5). By substituting the result in (11) it can be
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shown that

Q(fx, T, n+ 1) = Z0
4πsinh (fxβa)

fxβa

(
4πsinh (fxβb)

fxβb

)n

. (39)

Now, by utilizing Eq. (13), we have

〈x〉
a

= L (fxβa) +
nb

a
L (fxβb) =

1

3
βafx

[
1 +

n

ζ2

]
+ O

(
(fxβa)

2) . (40)

The second step of the above equation shows the asymptotic behaviour of the function near

the origin. The normalized value of βafx is depicted versus 〈x〉/a in Fig. 6 for ζ = 5 and

different n = 5, 10, 15. By increasing n the curves tend to behave more linearly, and the

Gaussian characteristics of the coil-rod structure are more pronounced. Fig. 6 also shows

the results from the canonical ensemble in dashed lines, which are obtained by applying

Eqs. (S19) and (8) in (3) and (4). Although one ensemble measures the average of the dis-

placement 〈x〉 and the other measures the average of the applied force 〈fx〉, good agreement

between the two ensembles is observed. The results at small x are still distinguishable due

to the presence of the rod structure mentioned in section 3, but the discrepancies fade away

as x increases. One feature of the fx (or 〈fx〉) vs. 〈x〉 (or x) is that the initial slope is always

positive, which is different from the 〈fr〉 vs. r result derived from the canonical ensemble

(Fig. 5). In fact, for canonical ensemble with prescribed displacement x, even for very small

x, the coil-rod structure can still access conformations with large end-to-end distance r due

to the displacements along y and z directions. Consequently, a compressive force is not

required to maintain a small displacement x as opposed to the case with a small end-to-end

distance r.
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Figure 6: Normalized force vs. normalized displacement along x direction for ζ = 5 and

n = 5, 10, 25. For the isothermal-isotension ensemble βafx is plotted against 〈x〉/a, while

for the canonical ensemble βa〈fx〉 is plotted against x/a.

5. Coil-rod structure with zipping/unzipping mechanism

As it was alluded to, external mechanical loading may cause the unzipping of the segments

contributing to the junction zones. For example, in ion-mediated biopolymers, the trapped

cations are set free from the junction zones under the external loading, and the length of

the associated junction zones is reduced accordingly. To incorporate the zipping/unzipping

mechanism, the Boltzmann average of statistical mechanics will be used. This treatment

considers each coil-rod conformation with a different rod length as an equilibrium point in
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the phase space. The energy of each conformation is ascertained based on the binding energy

of the constituent units of the rod. As the number of these units increases, the total energy

of the coil-rod structure decreases and the structure tends to be more stable. The number

of Kuhn segments in the coil is reduced during the formation of new units in the rod. If we

suppose that N is the number of Kuhn segments in the completely unwound system (purely

coiled structure), then the number of Kuhn segments participating in the rod is N − n.

Without loss of generality, we define an effective unit in the rod such that it is formed from

one Kuhn segment from the coil. The number of effective units in the rod is therefore N−n.

The length of each effective unit is denoted by αb with α being the ratio between the length

of one unit in the rod and the Kuhn length. Accordingly, the length of the rod a is dependent

on n as below

a = (N − n)αb. (41)

We denote the energy required to liberate one effective unit from the rod by ε. Fig. 7

illustrates the energy landscape of the rod, using the egg-box model as an example. As n

increases and the effective units are released from the rod, the energy of the rod increases,

reaching different equilibrium states (energy wells) separated by multiple of ε. The length

αb is also shown in the rod structure.

By applying the Boltzmann average and Eq. (5), one can write the partition function for

a coil-rod with prescribed end-to-end vector r but variable n,

Ω(r, T, ε) = Z0exp [βNε]
nmax∑

n=nmin

WCR
n (r)exp [−βnε] , (42)

where nmin and nmax are respectively the minimum and maximum allowable numbers of

Kuhn segments in the coil during zipping/unzipping. This form is equivalent to the grand
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Figure 7: Schematics representation of the energy landscape for the rod, using egg-box model

for illustration.

canonical partition function with fixed chemical potential ε. Let us rewrite Eq.(42) as

Ω(r, T, ε) = Z0exp [βNε]
nmax∑

n=nmin

exp
{
ln

[
WCR

n (r)
]− nβε

}
, (43)

where the vector r has been replaced by r due to the dependence of WCR
n (r) through r. At

fixed r, by increasing n the probability distribution WCR
n (r) increases as a result of having

more conformations. On the other hand, the energy level goes up due to the liberation of

the units from the rod. These two competing effects can yield a specific value of n0(r) for

which the argument of the exponential function in (43) is maximum. This term makes the

most contribution to the sum in (43), and examination of the variation of n0 with respect

to r allows us to detect the occurrence of zipping/unzipping. Specifically, a flat region of n0

vs. r indicates the tendency of the structure to have a fixed number of Kuhn segments in

the coil, while a region of varying n0 vs. r shows the tendency of the structure to update the

number of Kuhn segments through zipping or unzipping processes. After the calculation of
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Ω(r, T, ε) in Eq. (43), the grand canonical potential can be determined as

Φ(r, T, ε) = −β−1ln [Ω(r, T, ε)] , (44)

from which the average force is evaluated by

〈fr〉 = ∂Φ(r, T, ε)

∂r
. (45)

Fig. 8a shows the normalized force βb〈fr〉 vs. the normalized end-to-end distance r/b

for N = 20, nmin = 5, nmax = 19, α = 0.8 and εβ = 0.1. Here the large n approximation

for WCR
n (r) (Eq. (35)) has been used to ensure numerical stability. Results for fixed n

at nmin and at nmax are also plotted for comparison. The inset shows the variation of n0

with r/b. A qualitative comparison of the main plot with the inset identifies five different

regimes. For r/b ≤ 2, the structure has a fixed number of Kuhn segments, n0 is constant

and the force-extension curve converges to that of the coil-rod structure with fixed n = 19.

For 2 ≤ r/b ≤ 11.7, n0 decreases with r/b suggesting the occurrence of zipping. The

force-extension relationship starts deviating from the curve that corresponds to n = 19 and

moving towards the curve that corresponds to n = 5. Meanwhile the plot exhibits negligible

average force and hence stiffness. In other words, when the applied force is small, the coil-rod

structure is able to achieve different end-to-end distances by varying the number of units in

the rod. For 11.7 ≤ r/b ≤ 16.7, n0 is constant again, and the force-extension curve almost

overlaps with the curve corresponding to fixed n = 5. With this maximum rod length, the

structure can bear the normalized tensile force up to 17. In the regime of 16.7 ≤ r/b ≤ 18.4,

n0 increases with r/b indicating the unwinding of the coil-rod structure and its transition

towards n = 19. The unwinding alleviates the loading on the structure and a slightly

decreasing trend is observed in the force-extension curve. It should be noted that some
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small fluctuations exist in the curve in this regime, which is not due to the numerical issues.

Rather, this is caused by the discrete nature of n in the summation (43). In other words,

each oscillation in the curve corresponds to, on average, the liberation of one unit from the

rod. Finally, when r/b ≥ 18.4, n0 stays at 19 and the load-bearing nature of the structure is

activated, with sharp increase in the normalized force at the minimum rod length.

To demonstrate the effects of binding energy, Fig. 8b shows the results under the same

condition as in Fig. 8a except for a larger binding energy of εβ = 5. A close examination

of the main curve with the inset shows the presence of four regimes. When r/b ≤ 8.3, n0

decreases with r/b and zipping occurs. Unlike in Fig. 8a, at r/b = 0, n0 = 10 instead of

nmax = 19 and its decreasing trend starts immediately after r/b deviates from zero. This

distinct feature is caused by the larger binding energy, which drives the units to zip and

form the rod. The force-extension curve is substantially different from both reference curves

(corresponding to n = 19 and 5) in this regime. Notably, the force is compressive, this

can be explained by the lengthening of the rod and shortening of the coil part which tend

to generate a bulkier structure. A similar observation is made in Fig. 5 where short coil

require compressive force to achieve a small end-to-end distance. For 8.3 ≤ r/b ≤ 16.9,

n0 is at nmin = 5 and the force-extension curve also agrees with the one at maximum rod

length. In addition, the force transitions from compression to tension at r/b = 11.8. Further

extension causes unzipping in the range of 16.9 ≤ r/b ≤ 19.4. Similar to Fig. 8a, upon

unzipping the force shows an overall decreasing trend, but the oscillations in the curve are

much more pronounced because the liberation of one unit from the rod is associated with

more substantial change in the energy. Beyond r/b ≥ 19.4, the rod reaches its minimum

length and the force on the structure increases significantly with the end-to-end distance. It
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is worth pointing out that in the formulation of zipping/unzipping, β and ε always appear

together as the product βε. Therefore, increasing the binding energy ε is equivalent to

increasing β or decreasing the temperature. The comparison between Fig. 8a and Fig. 8b

hence also demonstrates the change in the behaviour of the coil-rod structure caused by

decreasing the temperature. Figs. 8a and 8b also remove the discontinuity that appeared

in the force vs. extension curve obtained by Higgs and Ball (1989). The discontinuity was

caused by a number of assumptions in their partition function calculation which are avoided

in the current work.

6. Demonstration of model application

6.1. Implementation in eight-chain model

In this section, the force-extension relationship developed in this work is implemented

into the macroscopic eight-chain model of Arruda and Boyce (1993) to predict the mechanical

response of a network containing coil-rod structures. Following the idea of Arruda and Boyce

(1993), eight coil-rod structures are placed in a cube such that for each structure, one of its

ends is fixed at the center while the other is tethered at a corner of the cube. The Helmholtz

free energy per unit reference volume can be written in terms of the end-to-end distance of

the chain rchain in the current configuration

Ψ =
N∑
i=1

ψi(rchain), (46)

where N refers to the number of chains per unit reference volume. ψi is the energy stored

in the ith chain

ψi(rchain) =

∫ rchain

r0

〈fr〉 dr, (47)
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(a)

(b)

Figure 8: Normalized force βb〈fr〉 vs. normalized end-to-end displacement r/b of the coil-rod

structure for εβ = 0.1 in (a) and 5 in (b). The insets show the associated value of n0 against

r/b. The results are produced with N = 20, nmax = 19, nmin = 5, and α = 0.8.
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where r0 is the end-to-end distance of the chain in the reference configuration. If the cube

edges are parallel to the principal stretches λ1, λ2, and λ3, it can be shown that the end-to-

end distance of each chain in the current configuration rchain is given as (Arruda and Boyce,

1993):

rchain =
r0√
3

(
λ21 + λ22 + λ23

)1/2
. (48)

Differentiating (46) while assuming all chains to be identical and imposing incompressibility

λ1λ2λ3 = 1, the principal Cauchy stresses (σi, i = 1, 2, 3) can be obtained

σi = λi
dΨ

dλi
+ p0 =

N r0λ
2
i√

3 (λ21 + λ22 + λ23)
1/2

〈fr〉
∣∣∣
rchain

+ p0, (49)

where p0 is the unknown pressure to be determined from the boundary conditions. Clearly,

the stress-stretch relations directly depend on the force-extension behaviour of the con-

stituent chains, i.e., 〈fr〉-r . For coil-rod structures with fixed rod and coil lengths, 〈fr〉

can be obtained via Eqs. (28), (32), or (37) for various approximations. It should be noted

that the end-to-end distance r0 in the reference configuration is taken to be
√
nb for a freely

jointed chain (Treloar, 1975), which is not applicable for the coil-rod structure. Instead, we

determine r0 from

r0 =

∫ ∞

0

rWCR
n (r)dr, (50)

which is the average end-to-end distance of a coil-rod structure subjected to zero force.

Fig. 9 shows the normalized principal stress σ1/μ (μ = N β−1) vs. the principal stretch

λ1 for three different loading conditions: biaxial (with equal stretches in directions 1 and

2), uniaxial (stretch in direction 1) and pure shear (in the 1-2 plane). 〈fr〉-r relation in

Eq. (37) is used for n = 25 and different ζ = 0, 5, 25. ζ = 0 corresponds to the case where
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the rod is absent and the coil-rod structure reduces to a freely jointed chain. For any given

loading condition, as the length of the rod increases, the network becomes stiffer and the

difference can be significant. For instance, by introducing a rod with the length equal to 5

Kuhn segments, σ1 is doubled at λ1 = 3 for uniaxial tension and pure shear, and more than

doubled for biaxial loading. This signifies the importance of considering the rod element in

macroscopic modeling of biopolymer gel networks.

Figure 9: Normalized Cauchy stress σ1/μ vs. the principal stretch λ1 for biaxial, uniaxial

and pure shear loadings of a biopolymer gel network modeled by implementing Eq. (37) into

the eight-chain model of Arruda and Boyce (1993). The coil has a fixed number of Kuhn

segments n = 25, while different rod lengths are considered, ζ = 0, 5, 25.
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6.2. Prediction of DNA unwinding

In this section, we test the validity of the proposed zipping/unzipping mechanism against

existing experimental data. For this purpose, the experiments performed by Clausen-Schaumann

et al. (2000) are considered, which involve the unwinding of a double-stranded DNA. The

exploration of DNA unwinding is crucial as it occurs extensively in biological processes, in-

cluding replication, transcription and DNA-protein interaction (Liebl and Zacharias, 2017).

Clausen-Schaumann et al. (2000) reported the stretching of a 1.5 μm-long segment of double-

stranded λ-BstE II digest DNA at T = 20◦C using atomic force microscopy (AFM). They

observed that after a highly cooperative mechanism, a conformational transition occurred

at force 65 pN. At this point, the DNA double helix started to shrink, and only one of the

two strands remained attached to the AFM tip and to the substrate. Below we show that

the current model is capable of capturing the unwinding process and the conversion of the

double-stranded DNA to single-stranded ones. Here, the double-stranded DNA is modelled

as the rigid rod, while the single-stranded DNA is treated as a freely jointed coil structure.

Under applied loading, the double-stranded DNA unwinds completely so that N = nmax,

and the number of unknown parameters in the model reduces to nmin, nmax, b, α and ε.

Fig. 10 shows the original experimental data and the model prediction using the following

parameter values:

nmin = 600, nmax = 12000, b = 3 Å, α = 0.46, ε = 0.1 kBT. (51)

Due to the large values of n ∈ [nmin, nmax] and exponential decay in (43), it is sufficient to

approximate the sum in (43) by considering only the term n0 with maximum contribution.

Good agreement is found between the model and experiments. In particular, the model
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suggests four regimes: 0 ≤ r ≤ 1.56μm at which the system demonstrates negligible stiffness,

1.56μm ≤ r ≤ 1.71μm where the system can endure limited tensile force up to 65 pN

with fixed n = 600, 1.71μm ≤ r ≤ 2.71μm where the double helix unwinds and the

force plateus, and r ≥ 2.71μm where the force-bearing mechanism is reactivated at fixed

n = 12000. It is of interest to note that the binding energy per unit length is given by

ε/αb ≈ 0.04 kcalmol−1 Å
−1
. Taking the binding energy of a base pair to be 2kBT (Liebl

and Zacharias, 2017) and considering the base pair step length as 36 Å (Dong et al., 2018),

the binding energy per unit length for the DNA is estimated to be 0.03 kcalmol−1 Å
−1
.

In Clausen-Schaumann et al. (2000), the data corresponding to single-stranded DNA were

fitted using a modified freely-jointed chain model (Smith et al., 1996) with stretchable Kuhn

segments of length 15 Å. Admittedly, the Kuhn length for the coil used in the present

work is smaller, but considering the correct order of magnitude and the simplicity of our

model, the parameters in (51) are deemed physically reasonable. The model is therefore

able to capture the entire force-extension curve of the DNA which underwent conformation

transition through unwinding of the double helix. It should be pointed out that in Fig. 10

the negative force in the experimental data near zero extension originates from the contact

between the substrate and the AFM tip (Zhang and Zhang, 2003), not from the elasticity

of the DNA chain. This part of the data is therefore not considered when comparison is

made with the model. Also, while the stiffness of the AFM tip can play a significant role in

the measurement (Florio and Puglisi, 2019; Bellino et al., 2019), its stiffness is likely large

enough to allow the end-to-end distance to be prescribed (Eq. (42)) when empolying the

grand canonical ensemble (Manca et al., 2013).
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Figure 10: Force-extension curve of the double-stranded DNA in Clausen-Schaumann et al.

(2000) (purple points). The solid curve is the prediction from the current model with the

parameters in (51). The dashed lines represent results with fixed n at nmin = 600 and

nmax = 12000.

Some discussions are warranted on the modeling of unwinding/unfolding of biomacro-

molecules. It is acknowledged that there are other works that study the unwinding of double-

stranded DNA via more elaborated description of intramolecular interactions. For example,

in the model of denaturation by Theodorakopoulos et al. (2004), the interaction between a

base pair is modelled via the Morse potential (Peyrard, 2004) and the DNA unzipping is
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explained through the formation of domain walls in the one-dimensional lattice model. In

comparison, in the present work the strength of interaction between the two DNA strands is

represented by a single quantity, namely the binding energy ε. Despite the simplicity, it is

encouraging to see that the model is capable of predicting the DNA unzipping phenomenon

with physically reasonable parameter values. Although absent in Fig. 10, Fig. 8 shows the

potential existence of sawtooth-like behaviour in the force-extension curve caused by un-

zipping. This type of phenomenon has been reported in the unfolding of proteins such as

titin (Rief et al., 1997). A number of attempts have been made to model this phenomenon

by considering folded and unfolded domains of a polymer structure. For example, Qi et al.

(2006) investigated the effect of folded domains on the mechanics of biomacromolecules and

their networks. The molecule is represented by a freely jointed chain or a worm-like chain

while the Eyring model is used to capture the kinetics of unfolding. The model is able to

achieve good fitting with the experimental data on the stretching of spectrin which exhibit

sawtooth patterns. Based on the extensible freely jointed chain model (Manca et al., 2012),

Manca et al. (2013) represented a polymer chain by connected domains each having a poten-

tial energy with two local minima. These two minima corresponds to two stable equilibrium

states, one folded and the other unfolded. Monte-Carlo simulations using this model show

sawtooth behaviour in the force-extension curves. Inspired by this work, Cannizzo et al.

(2022) analyzed a discrete chain containing bistable units using three different models (Ising

scheme, zipper model, and the stationary phase approximation) and studied the temperature

effect on the force-extension response. De Tommasi et al. (2010) proposed a microstructure-

based continuum model for the mechanics of spider silks, based on the original idea of De

Tommasi et al. (2008). The material is assumed to consists of hard (folded) and soft (un-
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folded) domains, which can transition between them. The total bearing force is taken to be

the summation of the forces associated with the soft and hard domains. Via energy mini-

mization of a two-state system, the same group (De Tommasi et al., 2013) also proposed a

model for macromolecule unfolding and demonstrated its ability to match experimental data

on the stretching of titin protein. These previous studies are valuable and provides different

perspectives on how unwinding/unfolding may be modeled. Compared with these works, our

approach to modeling unfolding is different in that: 1) we explicitly consider the rod element

and its associated probability distribution; and 2) we employ the grand-canonical ensemble

to statistically sample all the conformations corresponding to different number of segments

in the coil. Since all the models are capable of reproducing experimental observations (with

certain fitting parameters), it is of interest to conduct more examination in the future to

compare their advantages and limitations.

7. Conclusion

Macroscopic responses of disordered biopolymer gels to external mechanical loading orig-

inate from the interaction between constituting macromolecules inside the network. To

capture the presence of junction zones in disordered biopolymer gels, a coil-rod structure

can be considered as a building block which consists of a freely jointed chain and a rigid rod

segment. In this paper, the force-extension relations of the coil-rod structure are explored via

a statistical mechanics formulation. The proposed formulation not only improves previous

models in the literature but also unveils new features such as the requirement of compressive

force to reach small end-to-end distance when the rod length is sufficiently large relative

to the coil. When allowing the exchange between units in the rod and Kuhn segments in
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the coil, the model is capable of capturing zipping/unzipping in the junction zone and the

associated changes in the force-extension curve. The application of the current model is not

merely limited to zipping/unzipping in the junction zones of biopolymer networks. It can

also serve as a tool that provides a perspicuous explanation for the unwinding of interlocked

strands, such as double helix structures. As an example of the application and based on

availability of data, the coil-rod model is used to simulate the unwinding of double-stranded

DNA subjected to external loading. The model is shown to be able to predict the transition

of the double helical structure to single strands with satisfactory accuracy. An attempt is also

made to implement the coil-rod model into the eight-chain model to predict the mechanical

response of a coil-rod network under different loading conditions.
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