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Abstract

This thesis is concerned with a measure of perceptual aliasing in image descriptors. Perceptual

aliasing occurs when the one-to-one mapping relations between world states (objects) and their

representation (descriptors) are not maintained. Our method measures the discriminating power of

an image descriptor in terms of its ability to distinguish between images of different objects and to

match images of the same object. Specifically, our method runs spectral clustering on the similarity

matrix computed with descriptors of known image clusters and measures the performance of an

image descriptor by its ability to maintain the original clusters, using two indices, MRI-1 and MRI-

2, that are based on the Rand index. Experiments on MRI versus precision and recall show that

our proposed metrics are more appropriate for applications such as content-based image retrieval in

which image clustering is a critical step.
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Chapter 1

Introduction

Perception is a concept in psychology indicating the recognition and interpretation of the sensory

information to understand the environment. The perceptual system in our brain makes it possible to

identify the world around us even when the sensory information is changing, unstable or incomplete.

Despite the complex and strong brain we have, it is still possible to misrecognize the environment,

such as a place, a building, a plant, etc.

In computer vision, the machine (e.g. a robot) perceives the environment based on the images

taken by a camera. To recognize the world, image matching has become a fundamental problem in

many computer vision tasks, such as object recognition. Perceptual aliasing exists when two images

are incorrectly matched or unmatched. To improve the matching rate and efficiency, people have

introduced image descriptors to characterize an image. Existing performance metrics are almost

exclusively dependent on the k nearest neighbor list of a query, i.e. the top retrieved images, which

might not be appropriate to capture perceptual aliasing between other image pairs. The lack of

measure of perceptual aliasing in image descriptors motivates us to design a new metric based on its

original definition [47].

In this thesis, we propose a novel method to quantify perceptual aliasing in image descriptors.

Perceptual aliasing within different applications can be different. Our method can serve as a ref-

erence when selecting image descriptor for a specific application. Section 1.1 defines the problem

in detail and Section 1.2 describes the objective and contribution of this thesis. In Section 1.3, we

overview the thesis.

1.1 Perceptual Aliasing

Perceptual aliasing used in characterizing a sensing process was proposed in 1991 [47]. In computer

vision, the sensory information consists of images captured by a machine (e.g. a robot) and the

decision is made by processing, analyzing and understanding the images. Perceptual aliasing arises

in image matching as the machine understands the world and it occurs when the one-to-one mapping

relations between the world states (objects) and the internal representation (descriptors) are not

1



(a)

(b)

Figure 1.1: Examples of two types of perceptual aliasing. (a) Type 1, images of multiple world states
are perceived the same with descriptor vector X . (b) Type 2, one world state has multiple internal
representation, i.e., the descriptor vectors Xi, where Xi 6= Xj if i 6= j.

maintained. There are two types of perceptual aliasing [47]. First, multiple world states share the

same internal representation, i.e., images of different objects are perceived the same according to

their image descriptors. Second, one world state has more than one internal representation, i.e.,

images of the same object are described by different image descriptors. Simple examples are shown

in Figure 1.1. The first type of perceptual aliasing is illustrated in Figure 1.1(a) where different

world states, i.e., different places, are perceived the same with the descriptor X . Figure 1.1(b)

offers an example of the second type of perceptual aliasing. In this case, images of one world state,

the graffiti, have four different descriptors. Ideally, we expect one world state corresponds to one

internal representation and vice versa. These two types of perceptual aliasing characterize an image

descriptor in terms of whether it retains the inherit similarities and differences between images.

People who are interested in image matching related works, such as image retrieval, object

recognition and robot localization, face the curse of perceptual aliasing. It is important to take the

issue into account when selecting an appropriate image descriptor within an application. We focus

on designing a measure in quantifying these two types of perceptual aliasing in this thesis.

2



1.2 Thesis Objective and Contribution

The work presented in this thesis offers a simple and novel measure of perceptual aliasing. Exten-

sive literature exists on comparison of image descriptors. Most of the works make use of precision

and recall or their variants to evaluate the performance, such as mean average precision (mAP),

recall@R and average normalized rank of relevant images [39]. These works mainly depends on

the k nearest neighbor list of a query. The way these performance metrics are computed ignores the

similarities and differences between each image pair but only focuses on the similarities between the

query image and the top retrieved ones, therefore leading them to be insensitive to the two types of

perceptual aliasing. The similarity information between all image pairs is important in performance

evaluation within clustering-based image applications to avoid overlap between image clusters. For

instance, with the proliferation of web and digital images, there are millions to billions of images,

and clustering has been taken as a pre- or post-processing step to organize the data. Overlap between

two image clusters, which can either hurt the efficiency or deteriorate the accuracy of the system, is

not expected. Specifically, image search results are returned with clusters to facilitate users’ brows-

ing [6, 3, 20]; distinctive visual words need to be clustered to build a big dictionary [39, 41, 37];

similar images are clustered into scenes or views to improve the efficiency and accuracy in place

recognition applications [18, 42, 21]; images are organized into clusters to distribute into different

machines as a pre-processing step to improve the scalability of an image processing system [25].

Existing performance metrics, e.g. precision and recall, might not be appropriate in such applica-

tions since it can be non-trivial to do the linear search in a huge dataset and the k nearest neighbor

list cannot capture the overlap information between each two image clusters. The goal of our work

is to define the indices for the two types of perceptual aliasing based on its original definition and to

propose a method using spectral clustering to quantify perceptual aliasing in image descriptors. The

usage of clustering algorithm gives us the opportunity to take into account the similarity between

all image pairs and the overlap between image clusters. Our method can assist in the process of

descriptor selection in both clustering-based and non-clustering-based applications.

In this thesis, we make two contributions:

• We define indices for perceptual aliasing. An optimal image descriptor should minimize

perceptual aliasing when it is used to compare images, i.e., similar images remain similar in

the descriptor space and vice versa. This leads to the idea of constructing a dataset consisting

of clusters of images. Images in the same cluster belong to the same object. Images in different

clusters belong to different objects. We expect the same similarity and dissimilarity properties

in the corresponding descriptor space. To quantify the comparative analysis, we borrow the

technique in clustering analysis of using the Rand index [38] to evaluate the similarity between

the set of clusters in the original image space and the set of clusters in descriptor space and

define the indices for perceptual aliasing, i.e., modified Rand indices MRI-1 and MRI-2.

3



• We offer a method to measure perceptual aliasing in image descriptors. In order to mea-

sure perceptual aliasing in image descriptors for a specific application, we provide a method

using our proposed perceptual aliasing indices to compare image descriptors. Given the

dataset within a specific application, the performance can be evaluated if the similarity can be

computed between image pairs. Clusters of images are collected for the application scenario

and the similarity matrix is computed correspondingly. The usefulness of spectral cluster-

ing [28] makes it possible to do the clustering on the similarity matrix to generate the clusters

in descriptor space even when the descriptors are of no fixed length or not available explicitly.

With the clusters in image space and in descriptor space, we are then able to evaluate the map-

ping relations between the world states (objects) and the internal representation (descriptors)

by computing the indices of perceptual aliasing.

1.3 Organization

The thesis is organized as follows. Chapter 2 reviews the common image descriptors and the perfor-

mance metrics used in image descriptors comparison, followed by the description of the faultiness of

these metrics in evaluating perceptual aliasing. Chapter 3 introduces the indices for the two types of

perceptual aliasing in detail. Then, Chapter 4 presents the performance comparison method in regard

to perceptual aliasing with the proposed indices. To illustrate the utility of the method, Chapter 5

provides the experimental results on different datasets and gives the related explanations. Finally,

the thesis is concluded with a discussion in Chapter 6.
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Chapter 2

Background and Related Work

In this chapter we present the background and related work of the thesis. The topics include: image

descriptors and performance metrics. The motivation of proposing a measure of perceptual aliasing

in image descriptors is also illustrated.

2.1 Introduction

Image description can be a critical step in many computer vision applications, such as content-based

image retrieval (CBIR), location recognition, robot mapping and localization. Generally, there are

two strategies to create an image descriptor. First, an image descriptor can rely on the detection of

local keypoint feature, and the description of the keypoint in terms of textural information around

the keypoint, which is called local keypoint descriptor. Alternatively, one can construct an image

descriptor without detecting keypoints but by characterizing a whole image, which we refer to as

whole image descriptor or global image descriptor in this thesis. Perceptual aliasing in image de-

scriptors is a key issue in image matching tasks where an optimal image descriptor will minimize

the problem when used to match two images. However, the existing performance metrics are not

sensitive to the two types of perceptual aliasing and are not appropriate to measure the problem.

Extensive literature exists on comparison of keypoint descriptors [31, 12, 10, 14, 43, 24, 5]. Pre-

cision and recall are the most common performance metrics, and the computation is based on the

matched detected keypoints. Other evaluation techniques are usually used in the context of an appli-

cation where each competing alternative is substituted in turn and a performance metric is defined as

the basis for choosing the optimal image descriptor for this application. The way these performance

metrics are computed relies on the k nearest neighbor list of a query, therefore ignoring the simi-

larities and differences between other image pairs but only focuses on the similarities between the

query image and the top retrieved ones, and making them improper to measure perceptual aliasing.

We offer a novel measure of perceptual aliasing which originates from the definition [47]. With

the evaluation of the two types of perceptual aliasing, one can select an optimal image descriptor

within an application.

5



2.2 Image Descriptors

Image descriptor characterizes an image so that the image matching can be executed effectively and

efficiently. Local keypoint descriptors characterize the keypoint patches detected by the keypoint

detector, e.g. Harris Corner detector [13]. In accordance with different ways of computing local

keypoint descriptors, there are following categories: gradient-based descriptors, binary descriptors

and bag-of-words (BOW) descriptors [39]. Recently, people found that image descriptors can also

be created for the whole image, which attain comparable performance and achieve efficiency [1].

The computation of gradient-based descriptors and binary descriptors can also be applied to generate

whole image descriptors. In this case, the whole image is taken as a “keypoint”, and the descriptor

is used to characterize the whole image. Besides, filter-based descriptors, e.g. GIST [35], are

developed to capture the structural information of a whole image. An overview for each category in

local keypoint descriptors and whole image descriptors is presented in the following sections.

2.2.1 Local Keypoint Descriptors

To use local keypoint descriptors to describe an image, a feature detector is needed to detect the

interest points in the image. Harris Corner [13], Hessian Affine [30], SIFT [26, 27], SURF [2] and

MSER [29] are some of the most common feature detectors. After detecting the keypoints, local

keypoint descriptors are computed to characterize the neighborhood around these keypoints. We

are interested in the performance of different local keypoint descriptors in perceptual aliasing with

respect to different changes in image conditions, such as scale, rotation, viewpoint and illumination.

Gradient-based Descriptors

The gradient property of pixels or a patch of pixels around the keypoint is usually made use of

to capture the texture information of the interest point. The common gradient-based descriptors

include: SIFT [27] and SURF [2].

• SIFT: Scale Invariant Feature Transform. Each image patch corresponding to a keypoint is

rotated in accordance with the dominant orientation of the patch, which results in the rotation

invariance property of the descriptor, and then is divided into 4 × 4 subregions. A histogram

with eight bins indicating eight gradient orientations is created for each subregion as shown in

Figure 2.1. The gradient orientation is added to the histogram after weighting by the gradient

magnitude, and the gradient magnitude and orientation are computed in Equations (2.1) and

(2.2), whereL is the Gaussian smoothed image at a specific scale,m(x, y) and θ(x, y) indicate

magnitude and orientation at point (x, y) respectively. The final 4× 4× 8 = 128 dimensional

SIFT descriptor is normalized to a unit vector. SIFT descriptor is proposed together with its

scale invariant detector, leading to its well-known scale invariance property. In addition, the

computation of gradient information gives it viewpoint and illumination invariance. With the

6



Figure 2.1: An image patch is divided into 4 × 4 subregions and weighted gradient orientation is
added to the eight bins/orientations histogram in each subregion. The final descriptor consists of
4× 4× 8 dimensions.

invariance to common image condition changes, SIFT descriptor has been applied to image

retrieval, place recognition, image segmentation, etc. However, the inefficient computation

impedes its usefulness in real-time applications, such as SLAM (Simultaneous Localization

and Mapping). It triggers the interest in finding a comparable image descriptor with SIFT

descriptor but achieving more efficiency. SIFT descriptor is usually taken as the baseline to

compare the performance of other image descriptors.

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (2.1)

θ(x, y) = tan−1((L(x, y + 1)− L(x, y − 1))/(L(x+ 1, y)− L(x− 1, y))) (2.2)

• SURF: Speeded Up Robust Features. The intent of SURF descriptor is to speed up the com-

putation of SIFT descriptor at the cost of some performance. It divides the neighborhood of a

keypoint into 4× 4 subregions and computes the Haar wavelet response along x and y direc-

tions respectively. Instead of computing gradient based on the intensity of pixels, Haar wavelet

calculates the gradient in terms of the intensity of pixel patches, which obviates the burden in

pixel level computation by relying on the integral images. The descriptor consists of the sum-

mation of Haar wavelet response and their absolute values along x and y directions as shown

7



Figure 2.2: For each detected interest point, its neighborhood is divided into 4 × 4 subregions.
The Haar wavelet response and its absolute value is summed vertically and horizontally in each
subregion. The final SURF descriptor is the concatenation of v = (

∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|) in

all subregions.

in Figure 2.2. SURF descriptor preserves the invariance property of SIFT descriptor to some

extent. Moreover, in applications like SLAM, the camera seldom rotates so that the computa-

tion of SURF descriptor can be further optimized without including rotation information [2].

It is interesting to investigate the performance of SURF descriptor within an application since

SURF descriptor is a common substitute to SIFT descriptor when the efficiency matters.

Binary Descriptors

Recently, binary image descriptors have been proposed such as BRIEF [4], BRISK [23] and FREAK [36].

The computation of binary image descriptors is usually based on intensity comparison with pre-

defined binary tests defined in Equation 2.3, where p(x) denotes the intensity of pixel x and τ

indicates one bit in the binary image descriptor. The comparison of pixel intensity is somewhat in-

dependent of absolute pixel values, which makes the descriptor insensitive to illumination changes.

The difference between different binary descriptors exists in the way that the pixel sampling pat-

tern is defined. BRIEF makes use of Gaussian distribution to find point pairs as shown in Fig-

ure 2.3. BRISK and FREAK define their explicit sampling patterns to capture meaningful texture

information. The binary image descriptor is compact and easy-computed to facilitate huge gains in

efficiency. The disadvantage is their sensitivity to image distortions and transformations, such as

viewpoint and rotation changes, which hinders their application in some scenarios.
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Figure 2.3: Illustration of sampling pattern of BRIEF. Point pair (x, y) ∼ i.i.d.Gaussian (0, 1
25S

2).
S is the size of the keypoint patch S × S.

τ(p;x, y) :=

{
1 if p(x) < p(y)
0 otherwise

(2.3)

BOW: Bag-of-words

Because an image may contain hundreds or even thousands of keypoints, bag-of-words (BOW) is

introduced from text search techniques to generate concise frequency histogram of the detected key-

points [39] as shown in Figure 2.4. The performance of BOW depends on the discrimination of

the visual words vocabulary, as well as the number of words used to bin the local feature descrip-

tors [48]. It is interesting to investigate the parameters and find an optimal setting. To improve the

performance of BOW method, pyramid BOW has recently been proposed to preserve more informa-

tion of the image by generating an image descriptor with the concatenation of the weighted BOW

descriptors computed from increasingly fined subregions of the original image [22]. The perfor-

mance of BOW based method is highly associated with the performance of the chosen local feature

descriptors. Parameters have to be carefully tuned to optimize the performance.

Summary

Local keypoint descriptors can be used to describe an image in terms of its characteristic regions and

detailed information. There could be hundreds or thousands of keypoint descriptors within an image

so that image matching using local keypoint descriptors can be computation and memory costly. The

performance of the descriptors is affected by both of the keypoint detector and keypoint descriptor.

Different keypoint detectors or descriptors need to be selected for different application scenarios.

There is no general solution to the problem of performance comparison of image descriptors and

selection of optimal ones. The lack of work on the evaluation and comparison of local keypoint
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Figure 2.4: Illustration of bag of words method. Hundreds of visual words are extracted from the
original image. The final image descriptor consists of a frequency histogram accumulated by the
visual words.

descriptors in terms of perceptual aliasing interests us to design a proper method to quantify the

problem and compare the popular ones under different changes in image conditions.

2.2.2 Whole Image Descriptors

[1] found that by taking the whole image as a keypoint and creating an image descriptor which

describes the neighborhood around the center point of the image, we can obtain a whole image

descriptor that is more compact than local keypoint descriptors. Meanwhile, the whole image de-

scriptor achieves higher efficiency, requires less memory storage, as well as presents competing

distinctiveness. In the following sections, we overview the common whole image descriptors and

discusses their properties.

Gradient-based Descriptors

WI-SIFT and WI-SURF [1] are the global versions of the corresponding local normalized keypoint

descriptors SIFT and SURF. “WI-” stands for “whole image”. In this case, we downsample the

image to a smaller image patch, e.g. 128 × 128 pixels, take the center point of the image as a

keypoint and create a SIFT or SURF image descriptor in the same way as we compute the local

descriptor. The whole image descriptors do not require keypoint detection and is promising because

of their comparable performance with the local version. Another attractive property of WI-SIFT and

WI-SURF is the very concise representation of a whole image, which facilitates efficiency in real

time applications.

HOG (Histograms of Oriented Gradients) is another global image descriptor based on gradient

information over a dense grid of overlapping spatial blocks in the original image [9]. The locally
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Figure 2.5: Example of Histograms of Oriented Gradients descriptor with a cell size of eight pixels.
HOG is an array of cells. Each cell contains the feature components. The size of HOG in this case
is 23× 29× 31. The dimension of HOG feature in each cell is 31.

normalized histogram of gradient orientations features are similar to SIFT feature. HOG is able to

capture the structural information, which gives good performance in applications like people or car

detection. Figure 2.5 shows an example of the original image and its corresponding HOG features.

Binary Descriptors

BRIEF-Gist [40] is a global image descriptor based on the idea of the local feature descriptor BRIEF.

Rather than extracting local binary image descriptors by comparing intensity of local keypoint pairs,

BRIEF-Gist downsamples the original image to proper descriptor patch size and builds the binary

image descriptor for a whole image. To preserve information of the original image and create dis-

tinctive image descriptor, BRIEF n × n divides the image into n × n tiles, builds descriptor for

each tile and concatenates them into one image descriptor. BRIEF-Gist is designed to be applied

to appearance-based place recognition system and proves to perform comparatively in large scale

SLAM with the state-of-the-art techniques [40].

Filter-based Descriptors

Gist descriptor [35] characterizes an image in terms of its response to a Gabor filter bank. The

property of Gabor filters gives them the advantage in detecting the structural information of the

image content, so as to determining the degree of naturalness, openness, roughness, etc. of an image.

The structural information is a useful feature in representing an image so that many applications have

adopted GIST descriptor in image description step. Figure 2.6 shows an example of GIST descriptor

of a street view. In this case, the image is divided into 4 × 4 tiles, and the final descriptor consists

the average response of each tile. 32 Gabor filters are used and the dimension of the descriptor is

therefore 4×4×32 = 512. The performance of GIST descriptor is highly dependent on the content

of the image - GIST works well with outdoor environment and works poorly in other situations -
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Figure 2.6: Example of GIST descriptor. 32 Gabor filters are used with eight orientations and four
frequencies. The response image is divided into 4 × 4 tiles and the final descriptor consists of the
average response of each tile. The final descriptor is 4× 4× 32 = 512 dimensions.

which restricts its use for different applications [49].

Summary

The extraction and computation of whole image descriptors require much less time and memory than

the local versions, therefore alleviating the load of the CPU and making it possible to be applied in

real-time tasks. However, it is inevitable to lose detailed information by describing the whole image

only, which results in performance decrease. The investigation and comparison of performance of

whole image descriptors becomes an important task since it can help find a promising global image

descriptor which has the potential to replace local keypoint descriptors within some application.

2.3 Performance Metrics

A measure of perceptual aliasing in image descriptors is proposed in this thesis. The discriminating

power of the image descriptors in terms of their ability to distinguish images of different objects and

match images of the same object is evaluated. The existing performance metrics in comparing image

descriptors are either based on precision and recall or related with image retrieval application, which

only focuses on the relations between the query keypoint/image and the top retrieved ones, while

ignoring the similarity and dissimilarity between the other keypoint/image pairs. The motivation and

methodologies of common performance metrics of image descriptors are analyzed in this section.

Toy example has been provided to illustrate the weakness of existing performance metrics in terms

of measuring perceptual aliasing.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.7: Dataset for keypoint descriptors evaluation. (a)(f): Zoom+rotation. (d)(d): Viewpoint.
(e)(f): Image blur. (g): JPEG Compression. (h): Illumination.

2.3.1 Precision and Recall

When an image is described, perceptual aliasing introduced by the description step can be indirectly

determined by the precision and the recall computed from matching the image descriptors. Extensive

literature exists on comparison of keypoint descriptors [31, 12, 10, 14, 43, 24, 5] which include

SIFT [27], SURF [2] and the more recent BRIEF [4], and the focus of these studies is often on the

invariance properties in regard to scale, rotation, illumination, etc. Performance is measured in terms

of repeatability of the keypoints, and the precision and the recall of matching detected keypoints. On

the other hand, precision and recall can also be applied in the evaluation of performance of image

descriptors in the context of image retrieval [8, 50]. By tuning the threshold on the similarity values,

precision and recall are computed by counting the true and false returned images and the ground truth

matched images based on the query one. Unfortunately, it is inappropriate to quantify perceptual

aliasing using precision and recall because of their lack of ability to measure the discriminating

power of image descriptors on distinguishing images of different objects and matching images of

the same object but only focus on the similarities between the query image and the correct retrieved

ones.
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Figure 2.8: Venn diagram for true positive, false positive, true negative and false negative.

Precision and Recall in Local Keypoint Descriptor Matching

The seminal work of Mikolajczyk and Schmid [31] presented perhaps the most popular framework

for comparing the performance of keypoint descriptors. They carefully constructed image datasets

under various image condition changes including affine, compression, blur, scale, rotation and illu-

mination as shown in Figure 2.7, and measured the performance of keypoint detectors in terms of

repeatability and that of keypoint descriptors in terms of 1-precision and recall as defined in Equation

(2.4, 2.5),

1− precision =
FP

TP + FP
(2.4)

recall =
TP

TP + FN
(2.5)

where FP, false positive, is the number of incorrectly matched keypoint descriptors, TP, true positive,

is the number of correctly matched keypoint descriptors and FN, false negative, is the number of

missing matched keypoint descriptors. Figure 2.8 shows the Venn diagram to illustrate the relation

of the above variables.

For each detected keypoint, only one matched keypoint is found by computing the distance

between the keypoint descriptors, therefore ignoring the distance from the other keypoints in which

perceptual aliasing can occur if the distance is still small and several keypoints can be misperceived

as the same.

Precision and Recall in Object Tracking

Gauglitz et al. [12] more recently compared local keypoint descriptors in the context of object track-

ing in video. Their work included up-to-date descriptor algorithms and examined their keypoint

matching performance in consecutive video frames, which due subject to motion continuity involve
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more predictable transformations than the data sets in [31]. As in [31], precision of 1NN (the first

nearest neighbor) of matched keypoints, i.e., the descriptor with the smallest distance is identified as

the matched keypoint descriptor, are used as the metrics of performance. In this study, the compar-

ison is for keypoint descriptor performance evaluation in video tracking application. But precision

of 1NN suffers from the same problem as previous [31].

Precision and Recall in Image Retrieval

Mark and Paul [8] develops a probabilistic approach to reduce perceptual aliasing in place recog-

nition problems. To evaluate the performance of their approach, they make use of precision and

recall in the context of loop closure detection in SLAM as the performance metrics. By tuning

the probability at which a loop closure is detected, precision and recall curves are generated for

their proposed method. Instead of computing precision and recall by matching the local keypoint

descriptors, Mark and Paul’s comparison is conducted on the image matching tasks. Plenty of re-

searches take advantage of precision and recall in an specific application scenario to compare the

performance of different image descriptors. To do the comparison within an application, complex

experiment environment or framework needs to be constructed, which is inefficient and non-trivial.

Toy Example in Perceptual Aliasing

Precision and recall are usually used to compare the performance of image descriptors. However,

they are insensitive to the perceptual aliasing problem, which will be explained by the following toy

examples.

Figure 2.9 shows a toy example in which 6 objects are indicated by different shapes and each of

them has 5 images. The dataset consists of images of the 6 objects. Figure 2.10 illustrates two image

retrieval cases to explain the insensitivity of precision in measuring perceptual aliasing. A “star” is

used to start a query and 10 images are retrieved correspondingly. In both cases, precision equals 5
10 .

But the perceptual aliasing in case 2 is more serious than that in case 1 since the similarity between

images of different objects is higher and multiple objects can share the same internal representation.

Precision can not capture the different levels of perceptual aliasing in these cases. On the other

hand, Figure 2.11 shows another two image retrieval results based on the query “star”. Recall in

both cases are the same, i.e., 1, since all relevant “star” images have been retrieved. However, the

“square” in case 2 is highly possible to be misperceived as a “star”, which means case 2 suffers from

more serious perceptual aliasing. Recall is insensitive to perceptual aliasing problem.

The inaccuracy of precision and recall in capturing perceptual aliasing is due to their compu-

tation based on the k nearest neighbor list of a query. The similarity between other image pairs

where perceptual aliasing can occur is ignored. This disadvantage makes them inappropriate to be

applied to the evaluation of image descriptors in clustering-based image applications where similar-

ity between all image pairs needs to be considered to avoid clusters’ overlap. Clustering technique
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Figure 2.9: Toy example: 6 objects are indicated by different shapes and each object has 5 images.

is common in computer vision and image processing, especially with large scale dataset. One ex-

ample is that big dictionary needs to be constructed to express different objects in computer vision

applications using bag-of-words method [39, 41, 37]. To differentiate objects, the visual words are

required to be distinctive and representative. It is important to find an image descriptor suffering

from less perceptual aliasing when building a dictionary. Another example is that image cluster-

ing is executed to cluster images into scenes or views in place recognition applications to improve

accuracy and achieve efficiency [18, 42, 21]. In addition, some large scale image retrieval system

searches results by image clusters to facilitate users’ browsing [6, 3, 20]. In such application, we

expect images in the same cluster to be similar and images in different clusters to be dissimilar. A

performance metric which measures the ability to remain the similarity and dissimilarity between

image pairs in descriptor space is needed. Moreover, clustering play an important role in data or-

ganization as a pre-processing step for large scale dataset [25]. In this case, data, i.e., images, need

to be clustered and distributed to several machines to improve the scalability and efficiency of the

image processing system. The overlap between image clusters can be a serious problem since it can

place a heavy burden in computation and destroy the parallel processing if more machines have to

be touched. The lack of ability in measuring the discriminating power of image descriptors between

image pairs by existing performance metrics motivates us to define a novel measure of perceptual

aliasing.

2.3.2 Other Related Metrics

Rather than precision and recall, other metrics have been developed for evaluating the performance

of an image descriptor, and they are almost exclusively always in the context of specific applications

such as content-based image retrieval or place recognition and dependent on the k nearest neighbor
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Figure 2.10: Two image retrieval results. The “star” is used to start a query. The precision in these
two cases are the same.

Figure 2.11: Two image retrieval results. The “star” is used to start a query. The recall in these two
cases are the same.

list of a query as well. These metrics are designed to measure different aspects of image descriptors.

They have the same disadvantage as precision and recall and might not be appropriate to measure

perceptual aliasing. In addition, metrics proposed in information retrieval are used to measure the

performance of any information retrieval method, which can also be applied to compare the per-

formance of image descriptors within image retrieval application. The evaluation is based on the

retrieval list of a query, which either only focuses on the correct matches or needs a ground truth

ranking list explicitly. However, in perceptual aliasing measurement, similarities between all image

pairs need to be considered, and no ground truth ranking list exists. The metrics in information

retrieval are not appropriate to measure perceptual aliasing.

Generalizing Precision and Recall: mAP, recall@R

Generalizing precision and recall, [17] proposed mean average precision (mAP) and recall@R to

compare the performance of the proposed compact global image descriptor with the state-of-the-art

image descriptors in large scale image retrieval. Intuitively, mAP computes the average area under

the precision-recall curve for a set of queries, thereby eliminating the need for choosing recall levels.

mAP is defined as,
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mAP =

∑Q
q=1AveP (q)

Q
(2.6)

where Q is the number of queries, AveP (q) is the average precision of a single query q, i.e., the

mean of the precision scores after each relevant image retrieved.

Recall@R, on the other hand, computes the recall for the first R returned images, in order to

overcome the difficulty in setting different recall levels for the high number of returned images in

large scale image retrieval.

Average Normalized Rank of Relevant Images

To measure the quality of the image retrieval result, average normalized rank of relevant images,

with values ranging between 0 and 1, was proposed in [33]. This metric was later used in the

video Google work [39] by Sivic and Zisserman to analyze the performance of their visual BoW

image representation. The query images have to be substituted each time and the retrieval has to

be run repeatedly to evaluate the performance of image descriptors. The computation of average

normalized rank of relevant images is defined as,

R̃ank =
1

NNrel
(

Nrel∑
i=1

Ri −
Nrel(Nrel + 1)

2
) (2.7)

where N is the total number of images in the dataset, Nrel is the number of relevant images, Ri is

the rank of the ith relevant image. The R̃ank takes only the rank of relevant images into account

without considering the similarity between other image pairs, leading it inappropriate to measure

perceptual aliasing.

Correct Matched Images in Top x-percent

Another possible performance metric for image retrieval was based on top relevant images [34],

motivated by the intuition that the correct images have to be at the top of the matched list for the

image descriptor and the retrieval algorithm in general to be effective. In this case, the performance

is defined in terms of the percentage of ground truth images that are among the top x percent of the

returned images. Again, this performance metric pays attention on correct matched images while

ignoring the possible perceptual aliasing in other image pairs.

Mean Reciprocal Rank

Mean reciprocal rank is a index in information retrieval evaluating the performance of any process

that produces a list based on a query [45]. It computes the average reciprocal ranks of correct

matches of queries,

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(2.8)
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where Q is a set of queries, | · | indicates the cardinality of a set, and ranki is the rank of the correct

matches of the ith query. The mean reciprocal rank only takes into account the rank of the correct

matches, therefore ignoring the similarities between other image pairs. The index values for both

cases in Figure 2.10 are equal, which means this index is insensitive to perceptual aliasing.

Cumulative Gain

Cumulative gain measures the effectiveness of an information retrieval method [16]. It computes the

sum of the relevance values of all results in a returned list based on a query. The cumulative gain

(CG) at rank position p is defined as,

CGp =

p∑
i=1

reli (2.9)

where reli is the relevance value of the ith returned result. There are two other versions of CG:

discounted cumulative gain (DCG) and normalized DCG [46, 7]. DCG penalizes the highly rele-

vant results that appear lower in the returned list by reducing the relevance values logarithmically

proportional to the rank of the results, which is defined as,

DCGp = rel1 +

p∑
i=2

reli
log2(i)

(2.10)

Since the length of the result lists can vary based on different queries, normalized DCG uses the

maximum DCG till p in the sorted resulted list by relevance, which is called ideal DCG (IDCG) to

normalize the DCG across all queries. The normalized DCG can be computed as,

nDCGp =
DCGp

IDCGp
(2.11)

The CG, DCG and normalized DCG need explicit relevance value for each returned result. Their

computation is still based on the returned results list. In measuring perceptual aliasing, we do not

have the ground truth relevance values and we are interested in the relations between all image pairs.

The above metrics are not appropriate in our case.

Kendall Tau Rank Distance

Kendall tau rank distance measures the distance between two ranking lists based on the number of

pairwise disagreements [19, 11]. The distance between two ranking lists L1 and L2 is defined as,

K(τ1, τ2) = |{(i, j) : i < j, (τ1(i) < τ1(j) ∧ τ2(i) > τ2(j)) ∨ (τ1(i) > τ1(j) ∧ τ2(i) < τ2(j))}|

(2.12)

where τ1 and τ2 are the rankings of results in lists L1 and L2. The smaller the distance, the more

similar the two ranking lists are. In our case, the ground truth ranking list of all images does not

exist. We are not able to borrow the Kendall tau distance to measure perceptual aliasing.
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Purity

Purity is a measure for clustering quality [51]. It assigns the class of a cluster with the class of

the most frequent elements in the cluster and counts the number of the dominant element for each

cluster. Purity can be defined as,

Purity(Ω,C) =
1

N

∑
k

max
j
|ωk ∩ cj | (2.13)

where Ω = ω1, ω2, . . . , ωK indicates a set of clusters, C = c1, c2, . . . , cJ indicates a set of classes,

N is the number of elements in all clusters. The purity values of the two cases in Figure 2.10

are equal, which is 5
10 , if we take the two retrieved lists as two clusters. However, the severity of

perceptual aliasing in these two cases is different. The purity is computed based on element count,

which ignores the relation between images. Hence, it is inappropriate to measure perceptual aliasing.

In this section, we overview three performance metrics in image retrieval. These metrics are

based on the k nearest neighbor list of a query, therefore ignoring the similarities in all image pairs

and being insensitive to perceptual aliasing. We also introduce three metrics in information retrieval,

which either focuses only on correct matches or needs ground truth ranking lists. In perceptual

aliasing measurement, relation between all image pairs need to be considered and no ground truth

ranking lists exist. The last metric purity is used to measure the clustering quality. However, its

computation is based on element count and neglects the relation between images. As far as we

know, the existing performance metrics are inappropriate to measure perceptual aliasing.

2.4 Summary

In this chapter, we briefly introduce some of the state of the art local and global image descrip-

tors. By describing local keypoints, local image descriptors preserve more information about the

original image than global image descriptors. Global image descriptors are developed with the in-

tent to improve efficiency for real-time applications. The selection of image descriptors becomes

an important and interesting topic in most image matching related tasks with the consideration in

distinctiveness, which can be defined in terms of the two types of perceptual aliasing. As far as

we know, the existing performance metrics for image descriptors are either based on precision and

recall and their generalized versions or in the context of a specific application, e.g., image retrieval,

which may not be appropriate to measure perceptual aliasing because their lack of ability in mea-

suring the discriminating power of image descriptors on distinguishing images of different objects

and matching images of the same object. This motivates us to design a novel performance metric to

measure the two types of perceptual aliasing in a proper way, where spectral clustering is run on the

similarity matrix computed from image descriptors of known image clusters and two indices (MRI-1

and MRI-2) which are based on the Rand index are defined to measure the performance of an image

descriptor by its ability to obtain clusters in descriptor space with the same clusters distribution in
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image space. Further details of MRI-1 and MRI-2, together with our proposed procedure to evaluate

the performance of image descriptors is presented in Chapter 3 and Chapter 4.
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Chapter 3

Indices for Perceptual Aliasing

The previous chapter introduced the common local and global image descriptors and their perfor-

mance metrics. The existing performance metrics may not be appropriate to evaluate perceptual

aliasing problem since they are designed to measure different aspects of image descriptors. To de-

sign a measure of perceptual aliasing in image descriptors, we borrow the technique in clustering

analysis of Rand index to define the indices of perceptual aliasing. In this chapter, we present the

detailed information of the modified Rand index, MRI-1 and MRI-2.

3.1 Introduction

Image description is a process of transforming an image from intensity space to descriptor space,

and perceptual aliasing happens when dissimilar images are mapped to similar descriptors, or when

images of the same object or place under various image condition changes such as view point, scale,

or illumination changes are mapped to different descriptors. We can quantify perceptual aliasing

by clustering analysis and computing the ratio of image pairs belonging to different objects falling

into the same image cluster and the ratio of image pairs belonging to the same object dropping into

different image clusters. We define the modified Rand indices (MRI-1 and MRI-2) for the two types

of perceptual aliasing based on the definition [47].

3.2 Perceptual Aliasing Indices

In Section 3.2.1, we introduce the Rand index. We then define our own indices to measure perceptual

aliasing in image descriptors, which will be presented in greater detail in Section 3.2.2.

3.2.1 Rand Index

Rand index [38] was originally introduced to measure the performance of a clustering algorithm.

Specifically, given two partitions of a set S, X = {X1, . . . , Xr} and Y = {Y1, . . . , Ys}, Rand index

is defined as,
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R =
a+ b

a+ b+ c+ d
(3.1)

where a refers to the number of element pairs in S that are in the same subset of X and in the same

subset of Y , b refers to the number of element pairs in S that are in different subsets of X and in

different subsets of Y , c indicates the number of element pairs in S that are in the same subset of X

but in different subsets of Y , d indicates the number of element pairs in S that are in different subsets

of X but in the same subset of Y . Intuitively, a + b denotes the number of agreements between X

and Y ; c + d denotes the number of disagreements between X and Y ; a + b + c + d denotes the

total number of element pairs in set S.

We can also create a contingency table to represent the overlapping between these two partitions

X = {X1, . . . , Xr} and Y = {Y1, . . . , Ys}. The table is shown in Table 3.1.

Table 3.1: Contigency table of X and Y .
X/Y Y1 Y2 · · · Ys Sums
X1 n11 n12 · · · n1s a1

X2 n21 n22 · · · n2s a2

...
...

...
. . .

...
...

Xr nr1 nr2 · · · nrs ar
Sums b1 b2 · · · bs

where nij , ai and bj are defined by the following equations. | · | indicates the cardinality of a set.

nij = |Xi ∩ Yj | (3.2)

ai = |Xi|, i = 1, 2, . . . , r (3.3)

bj = |Yj |, j = 1, 2, . . . , s (3.4)

Based on the contingency table, Rand index can be further defined as,

R =
C(n, 2)−

∑r
i=1 C(ai, 2)−

∑s
j=1 C(bj , 2) + 2 ·

∑
C(nij , 2)

C(n, 2)
(3.5)

where n =
∑
nij and C(n, 2) is the number of 2-combinations from a set of n elements.

The range of Rand index is [0, 1] with lower value indicating less similarity between two par-

titions. However, it suffers from the problem that the Rand index value for randomly generated

distribution of a set seldom equal to zero. Random distribution has no purpose to reproduce the

original distribution of a set, therefore hardly sharing the distribution information and being less

similar to the original distribution. The adjusted Rand index [38, 15, 44] overcomes this problem

with the Rand index by using the expected Rand index of a random distribution in the similarity

measure and offers a corrected-for-chance version of the Rand index. Based on the contingency

table, the adjusted Rand index (ARI) is then defined as,
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ARI =
Index− ExpectedIndex

MaxIndex− ExpectedIndex

=

∑
ij C(nij , 2)− [

∑
i C(ai, 2)

∑
j C(bj , 2)]/C(n, 2)

1
2 [
∑

i C(ai, 2) +
∑

j C(bj , 2)]− [
∑

i C(ai, 2)
∑

j C(bj , 2)]/C(n, 2)
(3.6)

The adjusted Rand index ranges from−1 to 1. The larger the index, the higher the similarity between

two partitions.

3.2.2 MRI-1 and MRI-2

In our case, we have two partitions of a set S, i.e. the dataset, from image space and descriptor

space respectively. One partition consists of image clusters of different world states (objects), i.e.,

images of the same world state belong to one cluster. On the other hand, in the corresponding image

descriptor space, we can obtain another partition according to the similarity between descriptors,

i.e., similar descriptors make up of one cluster. We borrow the toy example in Figure 2.9 to illustrate

the idea behind the definition of the indices for the two types of perceptual aliasing.

In the original image space, the image cluster structure is shown in Figure 3.1, with which a

ground truth partition Y has been obtained accordingly in Figure 3.2.

In the image descriptor space, another cluster structure can be achieved based on the similar-

ity between image descriptor pairs. An example set of clusters has been illustrated in Figure 3.3.

Correspondingly, we can then get another partitionX in the descriptor space as shown in Figure 3.4.

To minimize perceptual aliasing, we expect high similarity between these two partitions X and

Y , which means the image descriptor with strong discriminating power is able to maintain the similar

and dissimilar relations between each image pair in descriptor space. Fortunately, the property of

Rand index gives us the opportunity to define indices for the two types of perceptual aliasing so that

the performance of image descriptors can be compared based on the quantified perceptual aliasing

values.

MRI-1: The first type of perceptual aliasing occurs when multiple world states share one internal

representation. We define the modified Rand index (MRI) for the first type of perceptual aliasing as,

MRI-1 =
1

r

r∑
i=1

di
C(|Xi|, 2)

(3.7)

where C(|Xi|, 2) indicates the number of 2-combinations of the set Xi, |Xi| denotes the cardinality

of the set Xi and di is the number of image pairs that are in different subsets of Y but in the same

subset of X . MRI-1 takes the average over the ratios computed on each subset Xi ∈ X in the

range [0, 1]. In our case, we do not have explicit weights for Xi ∈ X , therefore simply taking the

average number. For specific applications, max or weighted average number can also be used. The

smaller the MRI-1 value of an image descriptor, the superior the ability of this descriptor against
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Figure 3.1: Toy example: The image clusters in the original image space.

Figure 3.2: Toy example: Ground truth partition Y = {Y1, Y2, Y3, Y4, Y5, Y6} of the dataset.

the first type of perceptual aliasing. The MRI-1 value of the example in Figure 3.4 is computed in

Equation 3.8.

MRI-1 =
1

6
(

6

C(5, 2)
+

7

C(5, 2)
+

8

C(5, 2)
+

0

C(5, 2)
+

6

C(5, 2)
+

6

C(5, 2)
) = 0.55 (3.8)

MRI-2: The second type of perceptual aliasing occurs when images of the same object are

mapped to dissimilar image descriptors, i.e., images that belong to Yj are clustered into different

subsets of X . Figure 3.5 shows the mapping between world states and internal representation in

Figure 3.4. MRI-2 is defined to characterize this type of perceptual aliasing as,

MRI-2 =
1

s

s∑
j=1

cj
C(|Yj |, 2)

(3.9)

where cj is the number of image pairs that are in the same subset of Y but different subsets of X .

Similar to MRI-1, MRI-2 then takes the average over the ratios computed on each subset Yj ∈ Y

and lies in the range [0, 1]. Similarly, max or weighted average number can be computed with

different purposes in specific applications. The smaller the MRI-2, the less severe the second type

of perceptual aliasing in the image descriptor. Equation 3.10 shows the MRI-2 value of the example
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Figure 3.3: Toy example: An example set of clusters in the image descriptor space. This set of
clusters is achieved by the similarity between pairs of image descriptors.

Figure 3.4: Toy example: Example partition X = {X1, X2, X3, X4, X5, X6} in image descriptor
space.

in Figure 3.5.

MRI-2 =
1

6
(

7

C(5, 2)
+

6

C(5, 2)
+

8

C(5, 2)
+

0

C(5, 2)
+

6

C(5, 2)
+

6

C(5, 2)
) = 0.55 (3.10)

3.2.3 Discussion

The modified Rand index (MRI) is originated from the definition of the two types of perceptual alias-

ing. Intuitively, perceptual aliasing can be measured in terms of image descriptor’s ability to mini-

mize the ratio of intraclass and interclass variances of clusters of images whose distance/similarities

are determined by the image descriptor. There are many indices to measure clustering quality, such

as Calinski and Harabasz index, Je(2)/Je(1) index and C-index [32]. However, we cannot quantify

the two types of perceptual aliasing by borrowing these indices directly. These indices are exclu-

sively based on element count and ignore the relation between all image pairs. In addition, we

cannot use one index value to measure two types of perceptual aliasing. We define two separate

indices, MRI-1 and MRI-2, based on the Rand index, with MRI-1 quantifying perceptual aliasing
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Figure 3.5: Toy example: Mapping relations from Figure 3.4

(a) (b)

Figure 3.6: Mapping relation corresponding to Figure 2.10. (a) Mapping relation for case 1. (b)
Mapping relation for case 2.

between image clusters and MRI-2 quantifying perceptual aliasing within an image cluster. Unlike

existing performance metrics which mainly focus on the similarity between query image and the top

retrieved ones, our indices evaluate the similarity and dissimilarity between all image pairs where

perceptual aliasing can occur. In Section 2.3.1, we discussed the insensitivity of precision and recall

in measuring perceptual aliasing. We will evaluate perceptual aliasing using our proposed indices

based on the same example in Section 2.3.1 to demonstrate the utility of our indices.

Figure 3.6 shows the corresponding mapping relations from Figure 2.10, and Table 3.2 illustrates

the precision and MRI-1 values computed for the two cases. Precision measures how many retrieved

images are correct, therefore ignoring the similarity between other image pairs. The precision values

for the two cases both are 1
2 which show the insensitivity of precision in the first type of perceptual

aliasing. Our MRI-1 is able to capture the different levels of perceptual aliasing and provide detailed

information about the problem.

To explain the difference between recall and MRI-2, we borrow the toy example in Figure 2.11.

Recall is computed by setting the recall levels with different thresholds on similarity values or by

picking the top n retrieved results, which focuses on only the similarity between the query and the

top retrieved ones. For case 1 in Figure 2.11, two different example sets of clusters can be found

in descriptor space as shown in Figure 3.7 and Figure 3.8. Although the recall of case 1 is 1 which
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Table 3.2: Precision and MRI-1 values for Figure 3.6.
precision MRI-1

minimum 0 0
maximum 1 1
value for Figure 3.6(a) 1

2
25

C(10,2) = 5
9

value for Figure 3.6(b) 1
2

35
C(10,2) = 7

9

(a) (b)

Figure 3.7: One set of clusters corresponding to Figure 2.11. (a) Five images drop into two clusters.
(b) Mapping relations.

means all the related images have been retrieved, the potential relations among them can be very

different. One possible set of clusters show that the five “stars” drop into two clusters in descriptor

space. Another possible set of clusters shows these images belong to three clusters instead. The

recall cannot capture the difference and is insensitive to the second type of perceptual aliasing since

its computation does not take other image pairs into account. The property of clustering gives us the

opportunity to explore the relations between all image pairs, therefore leading to different MRI-2

values as shown in Table 3.3.

Table 3.3: Recall and MRI-2 values for Figure 3.7 and Figure 3.8.
recall MRI-2

minimum 0 0
maximum 1 1
value for Figure 3.7 1 6

C(5,2) = 3
5

value for Figure 3.8 1 7
C(5,2) = 7

10

Different performance metrics aim at evaluating different aspects of image descriptors. The

insensitivity of precision and recall in measuring perceptual aliasing motivates us to design novel

indices for the two types of perceptual aliasing, i.e., MRI-1 and MRI-2. Our indices are computed

based on the clusters in the original image space and the corresponding image descriptor space,

making it possible to consider relations between all image pairs and giving accurate measurement
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(a) (b)

Figure 3.8: Another set of clusters corresponding to Figure 2.11. (a) Five images drop into three
clusters. (b) Mapping relations.

of perceptual aliasing.

3.3 Summary

In this chapter, indices for the two types of perceptual aliasing are presented. The indices rely on

the similarity between each pair of images to characterize different levels of perceptual aliasing in

image matching tasks. Simple examples have been given and discussed to illustrate the different

consideration of existing performance metrics, e.g. precision and recall, and our proposed indices.

Our indices are designed according to the definition of perceptual aliasing. As the examples show,

the measurement results from our indices are more sensitive to the two types of perceptual alias-

ing. A method using MRI-1 and MRI-2 to evaluate the performance of image descriptors will be

presented in the next chapter.
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Chapter 4

Perceptual Aliasing Measurement

In the previous chapter we introduced the indices for the two types of perceptual aliasing, i.e., MRI-

1 and MRI-2 and discussed the usefulness in measuring the problem by comparing the results with

precision and recall. Our indices can provide accurate quantification of perceptual aliasing based on

the clusters in the original image space and the corresponding image descriptor space. To evaluate

the image descriptor performance, we introduce a perceptual aliasing measurement using MRI-1

and MRI-2 in detail in this chapter. The measurement can be applied to different applications and

the results can be taken as a reference to select an appropriate image descriptor.

4.1 Introduction

In image matching related tasks, image descriptors are usually extracted to characterize images. The

process of generating image descriptors is presented in Figure 4.1. Local keypoint descriptor is used

to characterize the property of an image patch which is detected by a keypoint detector, e.g. Harris

corner detector. On the other hand, whole image descriptor describes the property of a whole image,

which is more compact and computationally efficient. The performance of either local keypoint

descriptors or whole image descriptors can be evaluated by following the proposed procedures in

the next sections.

To investigate the extent of perceptual aliasing caused by a particular image descriptor, we can

construct a similarity matrix with respect to many clusters of images such that images within a cluster

are similar and images between clusters are dissimilar. With a similarity matrix, the performance

of image descriptors can be evaluated even when the descriptors are not explicitly available or of

no fixed length. The clusters can be collected easily by grouping consecutive images of a video

into clusters – assuming the camera captures the images continuously. The similarity matrix can

be computed by matching local feature/keypoint descriptors like SIFT [27] and SURF [2] or global

image descriptors like GIST [35] and HOG [9]. Similarly, similarity matrix can also be constructed

by computing the similarity between each pair of detected image patches to evaluate the performance

of local keypoint descriptors only in regard to different image condition changes like scale, view
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Figure 4.1: Generation of local keypoint descriptors or whole image descriptors.

point, illumination, rotation, etc. In the following sections, we will first introduce the construction

of a similarity matrix in detail and then explain the clusters exploration in both image space and the

corresponding image descriptor space. Finally, we will make use of the proposed indices to measure

the two types of perceptual aliasing in image descriptors.

4.2 Similarity Matrix Construction

Each element sij in similarity matrix S indicates the similarity between two data points. To construct

a similarity matrix, we collect images to create a dataset such as those shown in Figure 4.2 that

includes street views of the city of Pittsburgh. We include c adjacent images of the video in a cluster

and select m clusters in total. Images in the same cluster contain similar scenes and images in

different clusters do not overlap by requiring each cluster every n� c images.

The similarity can be computed by matching the local feature/keypoint descriptors or calculating

the distance between two global image descriptors if the image descriptors are explicit and of the

same length such as GIST. As a result, the similarity matrix S is of size mc × mc. An example

similarity matrix, computed from the GIST image descriptors with 20 clusters and 5 images per

cluster, is plotted in Figure 4.3. Since images of the same cluster contain similar scenes, elements

near the diagonal form c× c bright blocks indicating much higher similarity within each block than

between blocks. Due to perceptual aliasing, however, many off-diagonal elements of the similarity

matrix have high values. This common weakness is shared by all image descriptors to various

extents.
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Figure 4.2: Four image clusters from the dataset. Each cluster contains five adjacent images taken
from the back perspective of a camera car. Images in the same cluster contain the same scene and
there is no overlapping between two clusters.

In addition, to evaluate the performance of local keypoint descriptors under different image

condition changes, we can also construct a similarity matrix based on the similarity between pairs

of local keypoint patches. With respect to different changes in image conditions, such as scale,

view point, illumination, rotation, etc., sets of images containing the same scene but under a specific

image condition change to different degrees are collected as shown in Figure 2.7. Each set has

six images under one type of image condition change. For a specific image condition change, e.g.

scale change, keypoints are first detected from one image in the set by using a keypoint detector, e.g.,

Harris corner detector. The corresponding keypoints in the other images of the set are found by using

RANSAC-based robust matching. Clusters of keypoint patches are then extracted accordingly with

six keypoint patches per cluster. A similarity matrix is computed on clusters of keypoint patches.

One example has been shown in Figure 4.4.

4.3 Spectral Clustering

Spectral clustering [28, 42] is widely used in image processing, computer vision, computational

biology, statistical data analysis and machine learning. It works on the spectrum of the similarity

matrix and is superior in solving general clustering problems even when the clusters are not convex

sets. With the similarity matrix computed on image descriptors, we are then able to group images
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Figure 4.3: Similarity matrix computed with GIST descriptors. m = 20 and c = 5. Similarity
matrix is of size mc×mc = 100× 100.

according to their descriptors using spectral clustering and perform an analysis of perceptual aliasing

based on the clustering results. Since the ground truth clusters in the original image space are known

in our dataset, we can measure the performance of an image descriptor by examining how well the

clusters have been retained in image descriptor space.

The advantage of spectral clustering comes from its graph-partitioning-based clustering without

any assumption on the structure of the clusters, and its usage of eigenvectors derived from the data,

i.e., the data mapped to a low-dimensional space that is more separable. Specifically, given data

points x1, . . . , xN and the pairwise similarity (or affinity) sij = s(xi, xj) where similarity can

encode the local structure in the data, a graph G can be constructed which consists of a vertex set

V (G) corresponding to the data points and an edge set E(G) related to the similarity (or affinity)

between data points as shown in Figure 4.5. In spectral clustering, we always use undirected graph

with the edges representing the similarity between data points. The object of spectral clustering is

to find a cut through the graph. Graph is an important component of spectral clustering since many

datasets have natural graph structure, such as protein structures, citation graphs and webpage links.

In our case, with the help of spectral clustering, we are able to construct a graph taking similarity

between each pair of images into account to measure the two types of perceptual aliasing without

assuming the form of the clusters.

In addition, a low-dimensional embedding can be found to project the data points to a new space

as shown in Figure 4.6. We are then able to cluster the data points using a clustering algorithm. Par-

ticularly, we need first compute the adjacency matrix W of the constructed undirected graph G. The

adjacency matrix W is an N ×N symmetric binary matrix with rows and columns representing the

vertices and entries indicating the edges of the graph G. Second, an affinity matrix A, the weighted

adjacency matrix, is created whose edges are weighted by pairwise vertex affinity (or similarity).

Affinity matrix in our case is also called similarity matrix. Third, we also need to define the degree
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Figure 4.4: A set of graffiti images of different view point changes. Rows of keypoint patches are ex-
tracted. Keypoints are detected using Harris corner detector from the first image (top left one). The
corresponding keypoint patches are extracted from the other 5 images using the Homography matri-
ces H1to2, H1to3, . . ., H1to6 indicating the transformation from the first image to the corresponding
image. Each row contains 6 keypoint patches from the 6 images.

matrix D of the undirected graph, which is an N × N diagonal matrix containing the degrees of

vertices in graph G. Based on the above matrices, we can finally compute a Laplacian matrix L of

the simple undirected graph, and find its eigenvectors to do the clustering. There are many strategies

to calculate a Laplacian matrix, while Lrw achieves better clustering performance [28], which is

computed in Equation 4.2.

L = D −A (4.1)

Lrw = D−1L = I −D−1A (4.2)

where I is the identity matrix of size N ×N . 0 is the smallest eigenvalue of Lrw with the constant

one vector 1. Lrw is positive semi-definite with n non-negative real-valued eigenvalues 0 = λ1 ≤

λ2 ≤ · · · ≤ λn. The eigenvectors u1, . . . , uk corresponding to the k smallest eigenvalues are taken

to construct U ∈ R
n×k. K-means is then used to do clustering on U row-wisely to find the k

clusters. Intuitively, the original data points have been mapped to a new low-dimensional space, i.e.,

k-dimensional space, where the data is more separable.

In the graph theoretic point of view, spectral clustering is solving a graph cut problem with

the affinity matrix A. The simplest solution to this problem is to find a min-cut through the graph.

However, clustering results may not be reasonable when the connected components are not balanced

as shown in Figure 4.7, which can deteriorate the performance of image descriptors in our case. It
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Figure 4.5: Spectral clustering: graph theoretic view.

(a) Original data (b) Projected data

Figure 4.6: Spectral clustering: low dimension embedding view.

is necessary to consider the size of each cluster to generate more balanced results. In general, there

are three ways to balance the clustering results: ratio-cut, normalized cut and min-max cut. Each is

defined as,

Ratiocut(Z1, . . . , Zk) =
1

2

k∑
i=1

A(Zi, Z̄i)

|Zi|
=

k∑
i=1

cut(Zi, Z̄i)

|Zi|
(4.3)

NCut(Z1, . . . , Zk) =
1

2

k∑
i=1

A(Zi, Z̄i)

vol(Zi)
=

k∑
i=1

cut(Zi, Z̄i)

vol(Zi)
(4.4)

MinMaxCut(Z1, . . . , Zk) =
1

2

k∑
i=1

A(Zi, Z̄i)

A(Zi, Zi)
=

k∑
i=1

cut(Zi, Z̄i)

A(Zi, Zi)
(4.5)

where |Zi| indicates the number of vertices in the subset Zi, A(Zi, Z̄i) is the minimum similarity

between the subset Zi and its complementary set Z̄i, cut(Zi, Z̄i) = 1
2

∑
i∈Zi,j∈Z̄i

Affinity(Zi, Z̄i),

vol(Zi) =
∑

i∈Zi
Di, A(Zi, Zi) indicates the maximum similarity between subset Zi. The problem

is NP-hard. Relaxing RatioCut leads to unnormalized spectral clustering. Specifically, we can

rewrite the problem as,

min Ratiocut(Z1, . . . , Zk) = min
Z1,...,Zk

Tr(U ′LU) subject to U ′U = I (4.6)
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where U ∈ Rn×k contains k indicator vectors as columns. The element uij is defined as,

uij =


1√
|Zj |

, if vi ∈ Zj

0, otherwise
i = 1, . . . , n; j = 1, . . . , k (4.7)

The problem can be relaxed by allowing the matrix U to take arbitrary real values,

min
U∈Rn×k

Tr(U ′LU) subject to U ′U = I (4.8)

Optimal U is the first k eigenvectors of L as columns.

The relaxation of NCut and MinMaxCut leads to normalized spectral clustering which com-

putes the normalized Laplacian L, and the eigenvectors are normalized before being clustered by

Kmeans [28]. Similarly, we rewrite the problem as,

min NCut(Z1, . . . , Zk) = min
Z1,...,Zk

Tr(U ′LU) subject to U ′U = I (4.9)

In this case, the element uij is defined as,

uij =


1√

vol(Zj)
, if vi ∈ Zj

0, otherwise
i = 1, . . . , n; j = 1, . . . , k (4.10)

Similar to above, we relax the problem by allowing the matrix T to take arbitrary real values,

min
T∈Rn×k

Tr(T ′D−1/2LD−1/2T ) subject to T ′T = I (4.11)

U = D−1/2T (4.12)

Solution U contains the first k eigenvectors of Lrw. Relaxing MinMaxCut leads to exactly the same

solution as relaxing NCut. Better clustering performance is achieved with normalized spectral clus-

tering based on the eigenvectors of Lrw [28]. Our method makes use of Lrw. The time complexity

of spectral clustering is O(n3)

With spectral clustering, we are able to evaluate the perceptual aliasing in image descriptors if

similarity can be computed between each pair of images, even when the image descriptors are not

available explicitly or not of fixed length. We set the number of image clusters to the ground truth

number k as input to spectral clustering. We tried to find natural cluster number with clustering

algorithms and no method exists to do it reliably. Besides, since we are interested in the relative

performance, it is still fair to set the known cluster number when we measure perceptual aliasing for

different image descriptors. To illustrate the usefulness of spectral clustering in our case, we com-

pare the performance of Kmeans and spectral clustering with the Adjusted Rand index. The ground

truth clusters are collected as discussed in Section 4.2 and the image descriptor we used is GIST

descriptor. Figure 4.8(a) shows that spectral clustering can in general generate superior clustering
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Figure 4.7: Unbalanced clusters generated by min-cut on the graph.

results in our case. Meanwhile, spectral clustering runs Kmeans row-wisely on U ∈ Rn×k which is

constructed by the first k eigenvectors of the Laplacian matrix corresponding to the first k smallest

eigenvalues. The clustering on k dimensional data can achieve more efficiency than traditional clus-

tering algorithms, e.g. Kmeans, on the original high dimensional data as shown in Figure 4.8(b).

Since the data in our case is of relatively small scale – 100 image clusters with five images per cluster

and the descriptors are around tens to hundreds of dimensions, the efficiency of clustering algorithm

is not that important. We obtain the ground truth partition/clusters Y = {Y1, . . . , Ys} in image space.

With the help of spectral clustering, we then get another partition/clusters X = {X1, . . . , Xr} in

descriptor space. Based on these two partitions, we can make use of the proposed indices to analyze

the two types of perceptual aliasing.

4.4 Computing Perceptual Aliasing Indices

Indices for the two types of perceptual aliasing (MRI-1 and MRI-2) are then computed for the two

sets of clusters X = {X1, . . . , Xr} and Y = {Y1, . . . , Ys}. The overall process is summarized in

Algorithm 1. The number of image clusters k is set from 2 to K, where K ≤ m, so that we are able

to observe the trend of perceptual aliasing with more image clusters. For each k, the corresponding

similarity matrix Skc×kc is extracted from the input similarity matrix Smc×mc. Cx and Cy are

vectors of the result cluster labels and the ground truth cluster labels of the images. PA is the

method to compute MRI-1 and MRI-2 according to Equations (3.7, 3.9) given the cluster labels.

The experimental steps are then repeated with each k for max iter times since perceptual aliasing

between different image clusters can be different and the final results are the average over the results

of all iterations.

To compare the performance of different image descriptors within an application, image clus-

ters containing images of the specific application can first be collected and similarity matrices on

different image descriptors can then be computed. By following the steps, comparison results with
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respect to perceptual aliasing are generated to help image descriptor selection.

Require: S ← similarity matrix, K ← #image cluseters, t← 1
1: MRI-1 table = zeros(max iter, k);
2: MRI-2 table = zeros(max iter, k);
3: for k = 2→ K do
4: while t ≤ max iter do
5: Skc×kc = sub similarity matrix corresponds to randomly selected k image clusters;
6: CY = Spectral clustering(Skc×kc, k);
7: [MRI-1,MRI-2] = PA(CX , CY );
8: MRI-1 table(t, k) = MRI-1;
9: MRI-2 table(t, k) = MRI-2;

10: end while
11: end for
12: MRI-1 result = mean(MRI-1 table, 1);
13: MRI-2 result = mean(MRI-2 table, 1)

Algorithm 1: A method to measure perceptual aliasing

4.5 Summary

In this chapter, a procedure to measure perceptual aliasing in image descriptors based on the pro-

posed indices MRI-1 and MRI-2 is introduced. By constructing a similarity matrix, we can evaluate

the performance of image descriptors even when the descriptors are of no fixed length or not avail-

able explicitly. The similarity matrix can be created on either global image descriptors describing

the characteristic of whole images or local feature descriptors capturing the properties of keypoint

image patches. With the help of spectral clustering, we are then able to capture the clusters in de-

scriptor space which corresponds to the original image space so that the mapping relations can be

found between world states and internal representation. We briefly investigate the spectral cluster-

ing in terms of its graph-partitioning-based point of view and its low-dimensional embedding point

of view. Normalized spectral clustering with Laplacian matrix Lrw produces the best clustering

results and we make use of this version of spectral clustering in our case. In summary, spectral clus-

tering uses the spectrum of the similarity matrix and generates superior clustering results without

the assumption in the form of the data. After clustering, the indices for the two types of perceptual

aliasing are computed for different numbers of image clusters to investigate the trend of the problem.

To demonstrate the usefulness of our measure, experimental results on comparing different global

image descriptors, as well as local feature descriptors, are provided in Chapter 5.
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(a)

(b)

Figure 4.8: Comparison of Kmeans and spectral clustering. The clusters are collected as discussed
in Section 4.2. (a) Adjusted Rand index on the clustering results. (b) Computational complexity of
the two clustering algorithms.
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Chapter 5

Experimental Results

In this chapter, we conduct four sets of experiments. The first set involves evaluation of different ver-

sions of the global BRIEF descriptor, i.e., BRIEF-Gist, to demonstrate the conclusion of our method

is consistent with the literature. To illustrate the utility of our method in image descriptor compari-

son, we run the second set of experiments on two image datasets, the Pittsburgh Street View dataset

and the Recognition Benchmark dataset1, to examine image descriptors within place recognition and

image retrieval applications. The first two sets of experiments are run to evaluate and compare the

performance of the common global image descriptors in terms of MRI-1 and MRI-2 defined in the

previous chapter. In the third set of experiments, we investigate the performance of local keypoint

descriptors against perceptual aliasing with respect to different changes in image conditions, such

as viewpoint, scale, rotation and illumination changes. In these experiments, keypoint patches are

collected from the Affine Covariant Regions dataset2 and local keypoint descriptors are created to

characterize the keypoint patches. In the last set of experiments, we compare the evaluation results

using our proposed method and precision and recall to further demonstrate the utility of our method

in clustering-based image applications. The empirical results show the usefulness of our method in

real applications.

5.1 Datasets

We use three datasets in our experiments. The first two datasets are used to evaluate the performance

of global image descriptors in the first two sets of experiments. The third dataset containing images

under different changes in image conditions is used to compare the performance of local keypoint

descriptors. The different utility between our method and precision and recall on evaluation of

perceptual aliasing is investigated using global image descriptors on the first dataset.

Pittsburgh Street View dataset: The dataset contains consecutive images taken from four per-

spectives, front, back, left and right, along the Pittsburgh streets. The images are taken by Google

for the street view in Google Maps. The back and front views are more suitable for our work since

1Recognition Benchmark dataset: http://www.vis.uky.edu/ stewe/ukbench/
2Affine Covariant Regions dataset: http://www.robots.ox.ac.uk/˜vgg/data/data-aff.html
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Figure 5.1: Four image clusters from Benchmark dataset. Each cluster contains four images of
different changes in scale, rotation, illumination, blur, etc.

consecutive images share overlap so that we are able to collect image clusters. We pick the back

views and select 100 image clusters with each cluster containing five consecutive images. To ex-

clude overlap between two image clusters, each cluster is chosen by an interval of 100 images. We

use 100 × 5 = 500 images. Figure 4.2 shows example image clusters selected from the Pittsburgh

Street View dataset.

Recognition Benchmark dataset: This dataset is different from the Pittsburgh Street View

dataset and contains image clusters of different objects, such as shoes, CD covers, books, clocks,

etc. Most images are indoor scenes with various blur, illumination, view point and rotations changes,

which can affect the performance of some image descriptors. We select 100 image clusters and four

images per cluster from the dataset. Figure 5.1 illustrates the sample images from this dataset.

Affine Covariant Regions dataset: To evaluate the performance of keypoint detectors and

keypoint descriptors, Mikolajczyk and Schmid collected sets of images under different changes in

image conditions [31]. Each set has six images under different changes in image conditions as shown

in Figure 2.7. For each set of images, homography matrices recoding the transformation information

between the first image and the other images in the same set are also included. We use this dataset

to collect keypoint patches and measure perceptual aliasing in local keypoint descriptors. With

homography matrices, we are able to find corresponding keypoint patches among the six images in

a set and conduct experiments to compare keypoint descriptors with respect to a specific type of

image condition change.

In our experiments, we extract image descriptors to create a similarity matrix of size mc×mc,
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Figure 5.2: Comparison of the performance against perceptual aliasing of global BRIEF descriptors
with MRI-1 on Pittsburgh Street View dataset.

where m is the number of image clusters, c is the number of images per cluster. Given the similarity

matrix, we set the maximum number of image clusters K to 50 so that k is from 2 to 50. Practically,

it is difficult to determine the range of k. However, since we are interested in measuring the relative

performance against perceptual aliasing of different image descriptors, we can just set k from 2 to

50 and observe the comparison results. The maximum number of iterations max iter has been set

to 100 since perceptual aliasing can be different within different combinations of image clusters and

the results can be averaged to show the overall performance.

5.2 Results on BRIEF-Gist

To examine our method, we ran the experiments on the Pittsburgh Street View dataset to evaluate

perceptual aliasing using different versions of global BRIEF descriptors.

The BRIEF-Gist descriptor is proposed and applied to SLAM problem where the scenario is

similar to that of the Pittsburgh Street View. [40] proves that BRIEF with 7 × 7 tiles achieves the

better performance than a smaller number of tiles. With a larger number of tiles, the performance

will also not improve. Our results of the relative performance of different versions of BRIEF are

shown in Figure 5.2 and Figure 5.3 where one can observe that they are consistent with that reported

in [40]. However, our method provides specific performance evaluation in regard to the two types

of perceptual aliasing.
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Figure 5.3: Comparison of the performance against perceptual aliasing of global BRIEF descriptors
with MRI-2 on Pittsburgh Street View dataset.

5.3 Results on Different Datasets

Experiments of this section are conducted to illustrate the utility of our method in image descriptor

comparison within different application scenarios in terms of perceptual aliasing.

We evaluate and compare the performance of the common global image descriptors that do not

require keypoint detection, including: BRIEF-Gist, GIST, WI-SIFT and WI-SURF, on Pittsburgh

Street View dataset and Recognition Benchmark dataset. We also ran experiments with the local

SIFT descriptor, since it shows outstanding performance and serves as a baseline to observe the

performance of global image descriptors intuitively and objectively. The similarity matrix for SIFT

descriptors is created by matching the local feature/keypoint descriptors.

5.3.1 Results on Pittsburgh Dataset

Figure 5.4 and Figure 5.5 show the experimental results on Pittsburgh dataset. Local SIFT shows

the best performance among the tested image descriptors, which is not unexpected since a local

keypoint descriptor is capable of preserving more information in general. BRIEF-Gist was recently

designed and applied in SLAM problem where the dataset is similar to the dataset we used in our

experiments. There are different versions of BRIEF-Gist and BRIEF 7×7 is superior than the other

versions [40]. Figure 5.4 and Figure 5.5 show that BRIEF 7×7 achieves better performance than the

other global image descriptors. Following BRIEF 7×7 are WI-SIFT and WI-SURF, which are quite
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Figure 5.4: Comparison of the performance against perceptual aliasing of the common image de-
scriptors with MRI-1 on Pittsburgh Street View dataset.

similar in performance in terms of perceptual aliasing, perhaps due to the similar way in which they

describe an image with SURF aiming to speed up the computation. GIST was originally proposed

to represent the global structure of the scene and was used to describe the naturalness of the image

content, such as buildings, mountains, trees, etc. In this case, the Street View dataset contains images

of an urban city environment, which a similar degree of naturalness that GIST captures. Therefore,

it is difficult for GIST to distinguish and match images in this dataset.

5.3.2 Results on Benchmark Dataset

Figure 5.6 and Figure 5.7 show the experimental results on Benchmark dataset that contains image

clusters of different objects, such as shoes, CD covers, clocks, etc., which are different from the

Pittsburgh Street View dataset. The local feature descriptor again achieves the best performance as

expected. We notice that the MRI-1 curve of local SIFT goes down with larger number of image

clusters. Figure 5.8 shows the standard deviation of MRI-1 values of three selected image descrip-

tors in Figure 5.6. The variance of MRI-1 values converges with larger number of image clusters.

For local SIFT, the curve is not guaranteed to go down since the variance on smaller number of

image clusters is larger than that on larger number of image clusters and some index values are

smaller than those of larger number of image clusters. The first type of perceptual aliasing might be

serious between some randomly selected image clusters with description of local SIFT. Among the

global image descriptors, WI-SURF gains the best performance, followed by WI-SIFT, GIST and
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Figure 5.5: Comparison of the performance against perceptual aliasing of the common image de-
scriptors with MRI-2 on Pittsburgh Street View dataset.

BRIEF 7× 7. It is interesting to observe that the rank of image descriptors is different from that on

the Street View dataset, and there is a simple explanation. Since this dataset contains many indoor

images with varying amounts of blur and under different lighting conditions, WI-SURF is expected

to be robust to these variations. BRIEF 7×7 however is not invariant to rotation changes and unable

to handle many of the images in the dataset that experience rotational changes. GIST also seems

have difficulty with this dataset. It performs better than BRIEF 7× 7 in MRI-1 but worse with large

number of image clusters in MRI-2.

The results in this section show that our performance indices, MRI-1 and MRI-2, can be used to

select image descriptors in different applications. For example, in SLAM, the robot will easily lose

itself if images of multiple locations look similar to each other in the descriptor space, i.e., if MRI-1

is very serious with an image descriptor, the localization mission will fail. Better ability of an image

descriptor against MRI-1 is preferred in this situation. On the other hand, in image retrieval, it is

important for the matching images to be at or near the top in the ranked retrieved results, i.e., the

robustness against the second type of perceptual aliasing should instead be favoured.

5.4 Results on Local Keypoint Descriptors

In this section, we compare local keypoint descriptors by measuring perceptual aliasing under differ-

ent changes in image conditions, including: blur, viewpoint, scale, rotation, illumination and JPEG
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Figure 5.6: Comparison of the performance against perceptual aliasing of the common image de-
scriptors with MRI-1 on Benchmark dataset.

Figure 5.7: Comparison of the performance against perceptual aliasing of the common image de-
scriptors with MRI-2 on Benchmark dataset.

46



Figure 5.8: Standard deviation of MRI-1 values of local SIFT, BRIEF 7× 7 and WI-SIFT.

compression, to demonstrate that our method can also be applied to local keypoint descriptors.

The evaluation of local keypoint descriptors also depends on the performance of keypoint de-

tectors. For different detectors, the rank can be different since different detectors capture keypoints

based on different properties. People who want to find out the optimal descriptor within an appli-

cation can do experiments to evaluate the performance with their preferred keypoint detector. In

our case, we choose Harris corner detector as the keypoint detector. In terms of the keypoint patch

size, we do the experiments with different keypoint patch sizes and the results show that the rank of

different local keypoint descriptors is independent of the patch size. For the following experiments,

we set the patch size to 32 × 32. We then evaluate the performance of three popular local keypoint

descriptors: BRIEF, SIFT and SURF. The similarity matrices are computed based on the keypoint

patches collected as stated in Section 4.2.

Figure 5.9 illustrates the results of the experiments. For blur, viewpoint and zoom+rotation

changes, there are two corresponding sets of images respectively. The “bikes” and the “trees” sets

contain images of blur changes. Images in the “trees” set are of repeated textures. Similarly, The

“graffiti” and the “wall” sets contain images of viewpoint changes with images in the “wall” set of

repeated textures. The “boat” and the “bark” sets are of images of zoom+rotation changes. The

“bark” has images of repeated textures. Figure 5.9(a) and Figure 5.9(c) show that SIFT achieves

better performance under blur and viewpoint changes. However, with repeated textures, BRIEF is

able to capture the property of keypoints better, leading to higher discriminating power as shown
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in Figure 5.9(b) and Figure 5.9(d). For zoom+rotation and illumination (the “cars” set) changes,

Figure 5.9(e), Figure 5.9(f) and Figure 5.9(g) show that SIFT is always good in these cases, followed

by SURF and BRIEF. Finally, under JPEG compression, BRIEF and SIFT behave similar.

Our experiments in this section demonstrate that our method can be applied to evaluate and

compare the performance of local keypoint descriptors with respect to different changes in image

conditions. The perceptual aliasing in keypoint descriptors is sensitive to different image condition

changes. To compare keypoint descriptors, people can use their preferred keypoint detector to detect

keypoints and then evaluate the performance of local keypoint descriptors of interest.

5.5 MRI vs. Precision and Recall

In this section, we discuss the different utility between our method and precision and recall in com-

paring image descriptors in clustering-based image applications by examining the evaluation results.

This set of experiments is conducted on the Pittsburgh Street View dataset. We compare the per-

formance of BRIEF 7× 7 and GIST using both precision and recall and our proposed method. We

create 100 image clusters with five images per cluster, extract image descriptors and compute the

similarity matrix as before. MRI values have been calculated in Section 5.3.1. To measure precision

and recall in terms of different numbers of image clusters, we set the ground truth number of im-

age clusters from 2 to 50 and compute the precision and recall values given the corresponding sub

similarity matrices. In our case, each image is taken as a query and the evaluation is executed in the

context of image retrieval. Since each query has five ground truth matches (if the query image itself

is used in image retrieval), precision and recall are computed on the top five retrieved images, lead-

ing the precision and the recall values to be the same in our case. For each number of image clusters,

the experiment steps are repeated for 100 times and the average precision or recall are computed and

plotted. The parameters are set the same way as what we did for computing MRI indices.

Figure 5.10 shows the experimental results on the common global image descriptors: BRIEF 7×

7 and GIST. The curves of precision and recall are almost flat, which means the results are insensitive

to cluster count, and the interval between the curve of BRIEF 7 × 7 and the curve of GIST are

too insignificant to tell the difference between the discriminating power of the image descriptors.

These disadvantages result from their computation based on the top matched results. Specifically,

to compute precision and recall, we simply find k nearest neighbor list for each query, which is

essentially insensitive to the dataset size, i.e., when the number of images in the dataset increases,

the k nearest neighbor list is most likely the same. Therefore, precision and recall values do not

change with the cluster count. On the other hand, the metrics based on the k nearest neighbor list

might only capture local similarity information and ignore the potential perceptual aliasing between

other pairs of images, leading a minor difference between two curves if the k nearest neighbor

lists are similar using different image descriptors. In contrast, to select an image descriptor for

a clustering-based image application, global similarity information, i.e. the similarity between all
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(a) MRI on bikes (b) MRI on trees

(c) MRI on graffiti (d) MRI on wall

(e) MRI on boats (f) MRI on bark

(g) MRI on cars (h) MRI on ubc

Figure 5.9: MRI values of different local keypoint descriptors on eight sets of images under different
image condition changes. (a)(b): Results under blur changes. (c)(d): Results under viewpoint
changes. (e)(f): Results under zoom+rotation changes. (g): Results under illumination changes. (h):
Results under JPEG compression.
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image pairs, need to be taken into account to avoid overlap between two clusters. For example, in

large scale image retrieval based on the bag-of-words method, we build a dictionary and expect few

synonyms; In applications that image organization acts as a pre- or post-processing step, non-overlap

between two image clusters is important to achieve efficiency or scalability. Performance metrics

that use the k nearest neighbor list are not involved in these cases. The usage of clustering algorithm

in our method can provide an alternative performance metric in such applications since clustering is

based on the global similarity information, i.e. the similarity between all image pairs. As we can see

in Figure 5.10, our measure can provide detailed information and the trend in terms of perceptual

aliasing in image descriptors with different numbers of image clusters, therefore assisting in finding

an optimal image descriptor for different application scenarios, especially for clustering-based image

applications where a problem of grouping images exist.

In addition, the measure based on the top matched results may not capture the quality of the sim-

ilarity matrix. Figure 5.11 and Figure 5.12 show the similarity matrix computed with BRIEF 7× 7

and GIST descriptors on Pittsburgh Street View dataset respectively. The similarity matrix of

BRIEF 7 × 7 descriptor is visually of higher quality than that of GIST descriptor, in terms of mea-

suring image similarity. The ambiguous off-diagonal areas with large values are where perceptual

aliasing can occur. However, the precision/recall curves indicate that GIST performs better than

BRIEF 7 × 7, which contradicts visual observation. Our results in Figure 5.4 and Figure 5.5 pro-

vide the intuitively matched rank. The advantage of our method comes from the usage of clustering

algorithm, which makes it possible to take into account the relations between all pairs of images, in

measuring perceptual aliasing in image descriptors rather than the commonly used k nearest neigh-

bor list for each query.

The time complexity of retrieval based performance measurement is O(mnk), where m is the

number of test images, n is the number of images in the dataset, k is the length of the retrieved

list. For each query, it takes O(n) to retrieve a matched image from the dataset by linear search.

Therefore, the total time to retrieve k results based on m queries is O(mnk). On the other hand,

the time complexity of our method depends on the complexity of spectral clustering algorithm. In

our case, the spectral clustering is executed on the similarity matrix of k′ image clusters, where k′ is

from 2 to 50. For each k′, if there is c images per cluster, the time complexity of spectral clustering is

O(k′c)3. Unlike retrieval based performance measurement which conducts retrieval from the whole

dataset, our evaluation is based on the randomly selected image clusters from the dataset. Therefore,

it will be less time-consuming than the retrieval based performance measurement.

In general, a measure of image descriptors sensitive to different number of image clusters is

important in large scale image applications. our method can serve as a reference in image descriptor

selection within these applications. Meanwhile, the clustering algorithm provides us the opportunity

to explore the relations between all pairs of images in a dataset and evaluate the performance of

image descriptions with respect to perceptual aliasing.
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Figure 5.10: Precision/recall for different number of image clusters. y axis shows precision or recall
values. x axis indicates the number of image clusters. We use 1−MRI values to draw the curves.
Note: The computation is based on the top five returned results, which means the precision and the
recall are equal in our case.

Figure 5.11: Similarity matrix computed with BRIEF 7 × 7 descriptors on Pittsburgh Street View
dataset. There are 100 image clusters with five images per cluster.
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Figure 5.12: Similarity matrix computed with GIST descriptors on Pittsburgh Street View dataset.
There are 100 image clusters with five images per cluster.

5.6 Summary

In this chapter, experimental results using our proposed method to measure perceptual aliasing in

image descriptors are presented. Four sets of experiments have been conducted. The first set of

experiments in evaluating and comparing different versions of BRIEF-Gist descriptor demonstrates

that the results from our method are consistent with the literature. In the second set of experiments,

we measure perceptual aliasing in the common global image descriptors which do not require local

keypoint detectors on two different types of datasets. The results show that perceptual aliasing in im-

age descriptors can be different within place recognition and image retrieval. Our method can serve

as a reference to image descriptor selection. Furthermore, we conduct the third set of experiments

to compare local keypoint descriptors under different changes in image conditions by collecting

clusters of keypoint patches from Affine Covariant dataset. The comparison of local keypoint de-

scriptors have been an interesting topic since various keypoint descriptors have been proposed and it

is important to select an appropriate in different applications, such as object tracking, place recogni-

tion, people counting, etc. The performance of local keypoint descriptors with respect to perceptual

aliasing is sensitive to different image condition changes and can be evaluated by our method. The

last set of experiments is conducted to explain the different utility between our method and the other

existing performance metrics, for example, precision and recall. Unlike the existing performance

metrics which mainly rely on the top retrieved results, the property of clustering algorithm gives us

the opportunity to measure perceptual aliasing existing in all pairs of images, which is important for

clustering-based image applications.
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Chapter 6

Conclusion and Future Work

In this thesis, we have presented a pair of novel performance metrics for comparing and measuring

perceptual aliasing in image descriptors. The metrics are formulated directly from the definition of

perceptual aliasing and calculated in a similar way to the Rand index, used popularly in comparing

clustering results. We have also introduced a procedure in which images in the intended application

are selected and organized into clusters and a similarity matrix constructed using descriptors of

these images. In terms of local keypoint descriptors, the procedure can also be applied to keypoint

patches collected from images under different image condition changes and the similarity matrix

can be constructed correspondingly. With the help of spectral clustering and comparison with the

ground truth clusters, we are thus able to evaluate the performance against perceptual aliasing of any

descriptors. We should add that our method is applicable even when image descriptor is of no fixed

length or explicitly available.

We have demonstrated the reliability and usefulness of our method by using different common

global image descriptors, as well as local keypoint descriptors. The comparison results from our

method are consistent with the literature but provide more detailed conclusion concerning percep-

tual aliasing. Furthermore, the proposed method is efficient as it does not involve an application. The

results can be taken as an important reference when choosing the appropriate global or local image

descriptor for a specific application. The comparison of our MRI metrics with other existing per-

formance metrics for image descriptor evaluation demonstrates that our method is more intuitively

sensitive to different number of clusters and potential perceptual aliasing among image pairs. The

advantage comes from the clustering based performance measurement which takes into account the

relations between all pairs of images besides the top retrieved ones. The proposed method is able to

capture important descriptor properties that other common metrics such as precision and recall fail

to capture.

Our future work includes the verification of the usefulness of our method in real applications. In

the thesis, we conduct several experiments to compare both local and global image descriptors, as

well as compare our method with other existing performance metrics. It is important to apply the

proposed method to real application scenarios and evaluate the performance to further demonstrate
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the utility.

Another aspect of our work that can be improved is that we compare and evaluate the perfor-

mance of the common image descriptors by selecting 2 to 50 image clusters. The cluster count is

relatively smaller than that in real world. We are also interested in investigating perceptual aliasing

in image descriptors for much larger scale image applications.
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[17] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez. Aggregating local descrip-
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