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ABSTRACT

This work is aimed at developing a better theoretical under-
standing of the principal transport processes, namely diffusion and
fluid flow, when occurring within unconsolidated porous media, in
particular when occurring within an homogeneous swarm of spheres.

The principal objective has been to develop an efficient geometric
model to represent such a system, a model which can be employed to
study diffusive as well as hydrodynamic flow processes when occurring
therein.

The model proposed in this work satisfactorily fulfils the
above specified objective; it permits a totally rigorous mathematical
analysis of diffusive as well as hydrodynamic flow processes and
it yields encouraging quantitative predictions in both instances.
Moreover, this model may be extended to the study of transport
processes occurring within a swarm of co-axially orientated spheroids.
This extension has permitted an assessment of the important effects
which particle shape and orientation can have in systems composed of
non-spherical particles.

The solutions to some important, but hitherto unresolved,
problems have incidentally been forthcoming in this work, of
particular interest being the generalization of Stokes Law to the
case of the porous sphere. In addition, an exact solution to the
dual problem of creeping flow through a porous medium containing a

spherical cavity has been effected.
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NOMENCLATURE

I. SYMBOLS PERTAINING TO DIFFUSIVE FLOW PROCESSES

c concentration of diffusing species
D diffusivity of diffusing Species
e eccentricity of spheroid

K specific conductivity

q diffusive flux

Q mainstream diffusive flux

R radius of sphere

S radius of unit (model) cell
[x,y,z] Cartesian coordinates

[r,0,0] spherical coordinates

[g,n,¢] spheroidal coordinates

Greek Symbols

€ porosity of porous medium

T tortuosity of pore space

A diffusivity (conductivity) factor
v del (gradient) operator

v2 Laplacian operator

Subseripts

designates vectorial quantitieg

designates tensorial quantities

&

designates randomly orientated spheroids
8 designates spheres which are porous
Superseript
* designates macroscopically averaged quantities

pertaining specifically to a pPorous medium



INTRODUCTION

Broadly speaking, the principal transport processes occurring

within porous media may be classified as follows:

Molecular Transport
Ionic Transport
Charge Transport
Thermal Transport

Diffusive Flow Processes

Momentum Transport } Hydrodynamic Flow Processes

The principal difference between these two major categories is that
whilst diffusive flow processes are generally described by the Diffusion
Equation (in the steady state by Laplace's Equation), hydrodynamic flow
processes are governed by the Navier-Stokes Equation.

In engineering practice these fundamental transport processes
often occur simultaneously. For example, the process of liquid evapor-
ation within a porous medium would encompass molecular transport, thermal
transport and momentum transport. However, in order to be able to male
meaningful predictions concerning such complicated phenomena a fuller
understanding must firstly be developed of the fundamental transport
processes when occurring individually within porous media.

An appreciation of diffusive and hydrodynamic flow processes
occurring within porous media (such as catalyst beds, sand beds, columm
packings, etc.) is of considerable importance in many fields of
engineering. For example, in design work a prior knowledge of the
permeability of various porous media is a great asset. Equally
important is a knowledge of the effective diffusivity of molecules or

ions diffusing through a porous medium, as well as a knowledge of the
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specific conductivity of the medium when saturated with a conducting
fluid.

It is well known that the accurate measurement of absolute
diffusivities is excessively difficult on account of the inevitable
presence of interfering convection. However, measurements of the
effective diffusivity within a porous medium (for example, a randomly
packed bed of spheres) are usually simpler to execute since convection
effects can be arbitrarily reduced by a judicious choice of particle
size. A knowledge of the relationship between this- effective diffusivity
and ‘the absolute.diffusivity in Gnobstructed space. therefore. permits- an
indirect determination of this latter quantity.

However, transport processes occurring within porous media
rank amongst the most complex phenomena encountered in engineering
practice. This is because the internal geometry of most porous media
is not sufficiently well understood to afford more than a loose
statistical description. Exact analytical studies are, therefore,
usually out of the question and a mathematical model must be developed
to predict, and to yield physical insight into, such phenomena. That
is, certain approximations regarding the internal geometry must be
introduced such that a mathematical solution can be effected.

Several models have been proposed and presented in the litera-
ture to study specific transport processes occurring within specific
porous media. However, there does not appear to be available at present
any one model which can be used to predict successfully diffusive as
well as hydrodynamic flow processes within even the simplest homogeneous

and isotropic medium, viz. within a randomly packed bed of spheres.
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This is disappointing because such models are introduced only to
simplify the complex pore structure of the medium in question and,
ideally, their overall Success should not depend on which particular
transport process is being studied. The specific system of an
homogeneous and isotropic swarm of spheres is of particular interest
because many porous media, particularly those of a granular nature,
may be well approximated thereby and such Systems can be readily
Prepared in the laboratory for experimental investigation; moreover,
such a system can be defined by a minimum of parameters, viz. the
porosity and the particle slze distribution.

A considerable number of models aimed at Predicting transport
pProcesses within porous media have been based on reasonably well
developed theories for these processes when occurring in capillaries.
However, all such capillary models are inherently anisotropic in
constitution and without exception their final Predictions incorporate
at least one adjustable parameter which must be determined by experiment.
In this sense, therefore, approaches based on the capillary model can
only be partially predictive and can often be misleading. Moreover,
such models are not productive in the study of diffusive processes.

On account of the extreme geometric simplifications inherent in the
capillary model this representation requires but a minimum of mathe-
matical sophistication during its application. 1In contrast, the model
proposed later in this work will contain significantly fewer simpli-
fications; this will necessarily lead to far more complicated mathematics,

The principal objective of this analysis is to develop an improved

generalized model for an homogeneous and isotropic swarm of spheres
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which can be used to predict successfully diffusive as well as hydro-
dynamic flow processes occurring therein. A secondary objective will

be to extend this model to the study of anisotropic systems composed

of non-spherical particles.



THE PROPOSED MODEL FOR AN HOMOGENEOUS AND

ISOTROPIC SWARM OF SPHERES

Figure 1 depicts an unbounded, homogeneous and isotropic swarm
of solid spheres possessing a porosity ¢ and an arbitrary size distri~
bution. Choosing any reference sphere (of radius R) within the swarm
it is postulated that this sphere, together with its associated pore
space (here approximated by a concentric amnulus having an outer
radius S) sees the remainder of the system as an homogeneous and
isotropic porous mass of porosity e; this is illustrated in Figure 2.

In other words the portion of the complicated pore space
fairly attributable to our reference sphere has been replaced by a
uniform annulus, the outer radius of which must be specified such that
the porosity of the unit cell (comprising the reference sphere and its
associated annulus) is identical to that prevailing throughout the

original system. This necessitates that
S/R = (1-g)~1/3 0se<1.0. (1)

This relation ensures that the uniform porosity e is not locally
disturbed by the modelling procedure. An inherent advantage of the
proposed model is that the macroscopically homogeneous and isotropic
characteristics of the original system remain unchanged, i.e. the
modelled system is indistinguishable from the original system when
viewed from the outside.

To summarize then, the modelled system consists of our reference
sphere and two adjoining concentric regiomns, viz. an annular region of

vold space and an exterior region of homogeneous and isotropic porous
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material. In essence, the technique of solution will be to solve the
differential equations which describe the transport process of interest
within each of these regions and to properly connect these solutions

at the interface between them. It is important to note that subsequent
to the above indicated modelling of the porous medium the mathematical

developments for both diffusion and fluid flow are rigorous in their

entirety.



FIGURE 1. AN HOMOGENEOUS AND ISOTROPIC SWARM
OF SPHERES

(Cross-Section Through Centre of
Reference Sphere)
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STEADY STATE DLFFUSION THROUGH AN
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OF SPHERES
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I.1 OBJECTIIVES

The purpose of the following analysis is to develop a fuller
understanding of diffusion taking place within an homogeneous and iso-
tropic porous medium composed of spherical particles possessing an
arbitrary size distribution; in particular to predict the diffusivity
factor, A, which is defined to be:

Effective diffusivity within porous medium D¥*

A= =— ., (2)
Absolute diffusivity in unobstructed space D

This will be accomplished forthwith by application of the proposed cell

model.
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I.2 THE DEFINING EQUATIONS AND

BOUNDARY CONDITIONS

I.2.1 FUNDAMENTAL DIFFERENTTIAL EQUATIONS

The modelled system for diffusion through an homogeneous swarm
of spheres is depicted in Figure 3. The validity of Fick's Law of
diffusion2 within the annular region of this system will be acknow-
ledged, viz.

q=-D Ve R<r<g, (3)

Furthermore, Fick's Law in its macroscopic forn?*%7 will be postulated

as a description of conditions within the exterior region, viz.

q*:—D*Yc* S<r<°°. (4)

The symbol * will be employed throughout this study to designate
macroscopically averaged quantities pertaining specifically to a
porous medium.

In the steady state there can prevail no net build-up of the

diffusing material; this implies that

Y'q=0 s (5)

Vg =0 . (6)

Since D and D* are independent of location, the application of these

continuity conditions to Equations (3) and (4) yields:

annular region: V2e = 0 R<r<sg, (7)

|
o

exterior region: VZck = S<r<eo, (8)
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boundary conditions to pe Stipulated later. The System of coordinateg
convenient to thig analysis wil] be spherica] coordinateg [r,6,4], in

which the Laplacian Operator is given by2’22:

V2 = (32/8r2)+(2/r)(8/3r)+(1/r2)(82/862)+(cot9/r2)(3/86)
*+(1/r%sin20) (32/342) | (9)

and Fick's Lays by:

9= Iqr,qe,q¢1 = [-D(BC/ar),~D(1/r)(8c/39),-D(l/rsine)(ac/3¢)] >

(10)

*
[

= [qi,qg,qil = [-D*(BC*/ar),-D*(llr)(ac*/ae),-D*(l/rsine)(ac*/3¢)] .

However, for macroscopically Yectilinear diffusion ip the X~direction
there is po ¢~dependence so that q¢ = 0 and q$ =0, Consequently the

¢ variable ay hereafter pe Suppressed,

I.2.2 STIPULATED BOUNDARY CONDITIONS
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identically in the limit, viz.

c(s™,0) = cx(st,e) , (13)

0.(87,0) = qx(s",0) . (14)

Moreover, the flux vector at any station far removed from the reference
sphere must approach that of the mainstream, Q%, viz,

Limit q*(r,8) = Q* , (15)

r > o =

where Q* = [Q*,0,0] in Cartesian coordinates [x,y,2].

It is not possible to stipulate any boundary conditions concer-
ning q and qg (the tangential components of the flux vectors) owing
to the poorly understood phenomenon of surface diffusion, that is the
migration of molecules or ions over the solid surfaces9’27. It is
certainly dangerous to write qe(R,e) = 0 by direct analogy with the
viscous flow problem because viscous flow is a relative motion of the
adjacent elements of a fluid whereas diffusive flow is a relative
motion of its several constituents.

However, it transpires that Equations (12) - (15) constitute an
exact set of physically realistic and consistent boundary conditions,
thereby permitting unique solutions of Equations (7) and (8). Subsequen-
tly, the tangential component qe(R,e) may be calculated and, moreover,
it does purport to the existence of surface diffusion over the solid

surfaces (see Equation (27) to follow).
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1.3 SOLUTION OF THE DEFINING EQUATIONS

I.3.1 THE GENERAL SOLUTIONS

The general solutions of Equations (7) and (8) for the case of
rectilinear diffusion may be extracted from fundamental solutions of
Laplace's Equation in spherical coordinates discussed by Sneddonzz, viz,

n "n_l n
c(r,8) = E[Ahr, + Bnr ][Pn(cose) + <, Qn(cose)] R<r<s ,h(16)

_ n -n-1 o
c*(x,0) -.E[Agr * Bir " T1[R (coso) + c Q,(cos8)] S < r<w,(17)

where A , B , C_, A%, B%, C* represent arbitrary constants and P (cosb)
n° m n’ "n’ "p’ "n TTETEY n

and Qn(cose) denote nth order Legendre functions of the 1st and 2nd

kind respectively. The particular solutions which satisfy the four

stipulated boundary conditions can then be shown to be:
e(r,8) = cx(r,n/2) + A(RQ*/D*) [(r/R)+(1/2) (r/R) "2 ]cosd , (18)
c*(x,0) = c*(x,m/2) + (RQ*/D¥) [ (z/R)+(A%/2) (r/R)~2]coss » (19)
where A and A=§ are given by:
A = 3X/(3x-2e+e) , (20)
A% = (SA-Ae-Ze)/{(l-s)(3A-Ae+e)}T. (21)

In developing these composite expressions for A and A% it was necessary

to substitute for the ratio (S/R) according to Equation (1).

—————————————— iy

t Refer to Section I.3.4 for further information regarding the
numerical value of A%,
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I.3.2 QUANIITATIVE CONSISTENCY OF THE MODELLED SYSTEM

The solution developed above represents the exact solution for
the physically realizeable system of a single sphere concentrically
suspended inside a spherical cavity within an isotropic porous medium.
Therefore, if this simpler system is to be quantitatively represen-
tative of the original swarm of spheres it is necessary that within
the unit cell the average flux in the mainstream direction be equal
to that of the mainstream itself. In particular, this implies that

S
(llnsz)f qe(r,n/Z) 2nr dr = Q* , (22)
R

The flux component qe(r,w/2) may be evaluated from Equations (10), (18)
and (20), thus:

qg(r,m/2) = {-D(1/r)(3¢/38)} = 3Q*{1+(1/2) (x/R)~3}/(3A-Ac+e) .(23)
én/2

Evaluating the integral and substituting for (S/R) from Equation (1)

yields the ultimate expression
A =D*/D = 2e/(3-¢) 0<e<1.0. (24)

I.3.3 PHYSICAL INSIGHT PROVIDED BY THE SOLUTION
It is immediately apparent that the predictions of Equation (24)
are physically consistent at both porosity limits, viz. as € + 0,
A0 and as € > 1, A + 1. Furthermore, this equation implies that A
is invariant with the size distribution for systems composed entirely
of spheres and possessing a macroscopically uniform spatial distribution.

In view of this fact it is clear that diffusivity measurements should



sizes, pore size distributions and consequently to specific surface

areas of porous media in general,

I.3.4 DISTURBANCE INTRODUCED BY Typ MODELLING PROCEDURE

procedutre.

Firstly, from Equations (21) and (24) it may in fact be noted
that A* = 9, 1, View of this it follows from Equations (11) ang (19)
that q?(r,e) = -Q*cosh and qg(r,e) = Q*sin® . The flux vector,
Ef(r,e), at any station within the exterior region will therefore be

characterized by:

|9*@0) | = Agrcr,0012 4 laf(r,0)}12 = qx | (25)

Hence, the flowfield everywhere within the exterior region remains
totally undis turbed by the modelling procedure. In other words any

disturbance introduced by the modelling Procedure is wholly confined
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9 (R,8) = {-D(1/1r) (3c/36)} = (9/2)Q*sind/(3A-Aet+e) . (26)
@R

Substituting for A from Equation (24) then yields the ultimate

expression

1,(R,0) /Q* = (3/2)sin/e . (27)

This result suggests, as intuitively expected, that the contribution
of surface diffusion to the mainstream flux will be most significant

for very low porosities.

I.3.6 CONSIDERATIONS WHEN THE SPHERES THEMSELVES ARE POROUS

Frequently the System under consideration is composed of porous
particles, for example a bed of spherical catalyst pellets in which
each pellet possesses the same porosity, €gs and the same diffusivity
factor, AS. For such a system the model representation assumes the
form depicted in Figure 4. To ensure that the porosity of the unit
cell again remains equal to that of the original system, e, it is here

necessary that

S/R = {(1-e)/(1-e )}"1/3 (28)

The calculations for this system, although much more complicated,
are entirely analogous to those of the preceding derivation for solid
spheres. However, it now becomes necessary to solve Laplace's equation
within three regions, viz. the exterior region, the annular region
and the reference sphere itself, and to connect these solutions at the
appropriate interfaces by means of boundary conditions analogous to

those stipulated in Equations (12) - (15). The ultimate result is:
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_ (2+As) - 2(1—AS)(1-€)/(1-ES) .

A (29)

(2+AS) + (1-15)(1-5)/(1-55)

For the particular case of diffusion through solid spheres

(es= 0, AS= 0) the above expression reduces to:
A= 2¢/(3~¢) . (30)

This is identical with Equation (24) for solid spheres as would be
expected.

If, moreover, each individual sphere may be visualized as being
composed of considerably smaller spheres then As may be evaluated

from Equation (30) above, viz.
AS = 288/(3-€S) . (31)

The substitution of this expression into Equation (29) for porous

spheres surprisingly yields the original expression for solid spheres,

viz.

A= 2¢/(3-€) . (32)

This analysis therefore suggests that A is independent of €
for the special case of porous spheres themselves composed of much
smaller spheres. Once again the infefence is that A is invariant
with the size distribution for any system composed entirely of spheres

and possessing a 'macroscopically' uniform spatial distribution.
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1.3.7 ELECTRICAL CONDUCTION THROUGH AN HOMOGENEOUS SWARM OF SPHERES

The electrical analogue of Equation (32) for conduction through
an homogeneous swarm of solid, non-conducting spheres, saturated with
a conducting fluid of specific conductivity K, is

A = K%/K = 2¢/(3-¢) , (33)

where A here denotes the conductivity faetor of the porous medium.
That this identification between diffusion and electrical conduction
can be made is formally apparent from the similarity in structure of
the underlying boundary value problems, namely the partial differen-
tial equations (based upon Fick's Law and Ohm's Law respectively)
and the stipulated boundary conditionst. Moreover, Schofield and
Dakshinamurti19 have actually measured the diffusivity and conduct-
ivity factors of a wide range of sands and clays and have obtained
agreement to within the limits of experimental error (Klinkenberg10
has further confirmed this equivalence from similar observations).
Throughout this work, therefore, A will be understood to be synonomous

with the diffusivity factor and the electrical conductivity factor.

t The boundary conditions stipulated for diffusion may be
interpreted as follows for electrical conduction. Thus, Equation (12)
expresses the non~conducting characteristics of the reference sphere,
Equations (13) and (14) imply respectively potential continuity and
radial-current continuity across the outer surface of the unit cell,
and Equation (15) again reflects the finite nature of the disturbance
created by the modelling procedure.

It should be emphasized that the expression A = 2¢/(3-¢) will
not, in general, apply to the case of thermal eonduction because no
allowance has been made in the presented derivation for either a
finite film resistance between the spheres and the fluid, or for the
inevitable presence of convection.
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I.3.8 COMPARISON OF PREDICTED RESULTS WITH EXPERIMENTAL DATA

There exists a great deal of electrical conductivity data4’6’26
supporting Equation (33) for € > 0.4; for lower porosities the
predictions of this equation are somewhat higher than observed values
(Figure 6).

As regards the effects of the size distribution of the component

spheres, the consensus of op:'Lnion7 »12,26

is that ) is essentially
invariant with this parameter provided the spatial distribution of the
spheres is macroscopically uniform; these observations are in accord
with the conclusions of the present analysis.

However, it is appropriate at this juncture to stress that
the experimental measurement of the conductivity factor, although
significantly easier than that of the diffusivity factor, is by no
means trivial. Such electrical measurements are often hampered by
polarization at the electrodes7 whilst, for dispersions in particular,
certain additional circumstances can interfere with the homogeneity
of the systeml4, notable amongst these being sedimentation of the
dispersed phase, adherence of the dispersed phase and chain formation
in the presence of electric fields. The very small effects attributed

by certain workers14 to the size distribution in systems of spheres

should, therefore, be viewed with some caution.

Present Experimental Work
In order to confirm the trend of existing experimental data
in the lower porosity range, a number of conductivity factor measure-

ments were carried out using a cylindrical plexiglass cell packed
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with various arbitrary mixtures of glass spheres (Figure 5). Solid
copper electrodes were placed at both ends of the cell and an acidified
aqueous copper sulphate solution was employed as the electrolyte in
order to effectively eliminate surface effects at these electrodesl3.
All subsequent electrical measurements were made using audio-frequency
alternating current in order to avoid polarization effects. In order
to further avoid any effects due to packing discrepancies at the cell
walls it was necessary to ensure a minimum cell to particle diameter

of at least twenty-five to one26.

The electrical resistance of the cell when filled with the
electrolyte alone was firstly measured, followed by the resistance of
the cell when packed with spheres and saturated with this same electro-
lyte, both measurements being taken at the same temperature. The ratio
of these two resistances gave the conductivity factor directly. The

porosity of the system was finally determined by a weighing technique.

Representative data so obtained is tabulated below.

TABLE 1

EXPERIMENTAL CONDUCTIVITY FACTOR DATA
FOR HOMOGENEOUS SWARMS OF SPHERES

£ A
0.261 0.174
0.296 0.198
0.309 0.214
0.348 0.248
0.380 0.278

This data is also displayed in Figure 6; it can be seen to conform

closely with the trend of previously reported experimental data.
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I.4 DISCUSSION OF PREVIOUS WORK

Clerk Maxwell12 investigated the problem of electrical
conduction through a dispersion of solid conducting spheres embedded
within a conducting medium. In essence he considered the limiting case
of a single sphere in space (¢ + 1.0) and proposed the following
solution as being valid for dilute systems (e = 1.0), viz.

) (2+As) - 2(1—15)(1-6)

A . (34)

(2+AS) + (1—AS)(1?8)

This equation agrees identically with the electrical conductivity
analogue of the derived Equation (29) for the specific case of solid
conducting spheres (es = O,Xs # 0) which do not touch one another.
For solid non-conducting spheres (es = O,AS = 0) both Equations (29)

and (34) reduce to the familiar expression derived earlier, viz.
A= 2¢/(3-€) . (35)

The above solution is closely related in form to Lord Rayleigh's17

exact solution for monosized spheres arranged in a cubic pattern, viz.

26~0.3919(1-€)10/3 —cevaceas
A= e = 0.4764.(36)
3-£-0.3919 (1-€) 10/3 —ecemene

This result is in good agreement with the derived Equation (35),
differing nowhere by more than 3.02% (Figure 7). Lord Rayleigh
himself questioned whether the orientation of the spheres could ap-
preciably affect A and stated that "an irregular isotropic arrangement

would, doubtless, give the same result'.
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Slawinskiz1 studied the relationship between A and e for
aggregates of non-conducting monosized spheres in several lattice
orders. However, his approach was based on merely geometric concepts
and thereby disregarded the fundamental principles of potential
theory according to which the potential distribution throughout the
conducting medium must satisfy Laplace's Equation (7). Despite this
deficiency Slawinski was able to develop an expression which is in good

agreement with experimental data for ¢ < 0.4, viz.
A = ¢/(1.3219-0.3219¢)2 . (37)

Bruggemann3 examined the system in which one relatively large
sphere is surrounded by a swarm of much smaller spheres. He considered
the region exterior to this large sphere to be a continuum and subse-
quently applied Maxwell's result on the premise that the system is

'dilute' with respect to the large sphere. He derived the expression
A= e3/2 (38)

However, for single sizes or narrow size fractions the physical
conditions necessary for justifying the Bruggemann approximation are
not satisfied, and this is reflected in the less satisfactory over-
all agreement of his formula with experimental data (Figure 7).
Archie1 examined contemporary conductivity data for spheres and

unconsolidated sands and suggested the following correlation:

A =gl*3, (39)
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This empirical result represents the data well for e < 0.4, It is
interesting to note the similarity in form of Archie's Equation (39)
and Bruggemann's Equation (38).

0f particular interest is the work of Prager16 who applied
the principle of minimum entropy generation to obtain bounds on the
diffusion factor for an homogeneous suspension of solid particles of

arbitrary shape. He showed that
A < e{1-(1-¢)/3} , (40)

and stated this inequality to be valid for particles of any shape and
at any porosity, the only stipulation being that the suspension be

isotropic. For spheres in particular he suggested that
A = e{1-(1-e)/2} . (41)

This formula gives good agreement with experimental data over the
entire porosity range (Figure 7).

It is instructive to note that Equation (41) constitutes the
first two terms of each series obtained when Equations (38) and (35)

are expanded in terms of (1-€), viz.
A= €3/2 = g{1-(1-6) }1/2 = e{1-(1-€) /2-(1-€)?/8~(1~) ¥/16-+=*} ,(42)

A= 2¢/(3-€) = e{l+(l-¢)/2}7! = e{l-(l—e)/2+(1-e)2/4-(1-s)3/8+-"} .

(43)

These expressions therefore exhibit an increasing agreement as ¢ » 1.0

(Figure 7).
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15,24

Arguments based on the classical capillary model have

yielded expressions of the form

A =g/t n=1or2. (44)

The parameter T denotes the so-called tortuosity of the pore space23’25;

this quantity must be measured experimentally. Clearly, such approaches
are impractical since the determination of T requires a prior measure-
ment of A itself.

It has recently been brought to my attention that a cell-type
model, fundamentally related to that proposed in this work, has been
employed by Hashin8 to study the conductive, magnetic and elastic
properties of polycrystalline aggregates and bi-metallic composites.
This serves to illustrate the fundamental significance of the proposed

model in representing both porous and non-porous heterogeneous media.
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I.5 SUMMARY

The presented results demonstrate that the proposed model
offers a satisfactory representation of, and provides valuable
insight into, diffusion occurring within an homogeneous swarm of
spheres. For solid spheres possessing an arbitrary size distri-~
bution the diffusivity factor may be evaluated by the formula
A = 2¢/(3-¢). If the spheres ;re non-conducting, the electrical
conductivity factor also may be evaluated by this formula. These
predictions agree well with experimental data for € > 0.4; for
lower porosities the predictions are somewhat high. The overall
agreement, however, is satisfactory and lends heavy support to
the realistic nature of the proposed model and to the acceptability
of the assumptions implicit therein.

This analysis suggests that A is invariant with the size
distribution of the spheres, inferring that diffusivity and conduc-
tivity measurements should not be expected to yield quantitative
information relating to pore sizes, pore size distributions or
specific surface areas of porous media in general; these conclusions
are also in accord with experimental observations.

In view of these encouraging results attempts will now be made
to apply the proposed model to the study of diffusion (conduction)
occurring within certain anisotropic porous media. This will provide
valuable insight into the important effects which particle shape and
orientation have on the diffusivity (conductivity) factor of uncon-

solidated porous media.



PART IB

EXTENSION OF THE PROPOSED MODEL
TO THE STUDY OF DIFFUSION WITHIN
ANISOTROPIC UNCONSOLIDATED POROUS MEDIA
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1.6 OBJECTIVES

The principal objective of this analysis is to assess the
effects which particle shape and orientation have on the diffusivity
factor of unconsolidated porous media.

In practice many such porous media are composed of preferen-
tially orientated particles far removed in shape from the spherical
geometry, for example a filter cake consisting of flattish or
fibrous particles. An excellent representation of such an anisotropic
system is often provided by an homogeneous swarm of co-axially
orientated oblate or prolate spheroids respectively. This analysis
seeks to achieve the above mentioned objectives by extending the
geometric model proposed in Part IA for spheres to the case of
co-axially orientated spheroids.

However, before proceeding further with the problem of interest
it will firstly be elucidating to examine the nature of the differen-
tial equations which describe diffusion within anisotropic porous media

in general.
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1.7 THE EQUATIONS GOVERNING DIFFUSION
THROUGH ANISOTROPIC POROUS MEDIA

I.7.1 POROUS MEDIA IN GENERAL
It is widely acknowledged that the appropriate form of Fick's
Law describing steady state diffusion within anisotropic porous media

(corresponding to Equation (4) for isotropic media) is

q* = -D¥% Vc* , (45)

where D* denotes a symmetric, second-order tensorls; in a Cartesian
frame of reference [x,y,z] the associated matrix would be represented
by:

D* D*x D*
XX Xy X2
D% D% D* . (46)
Xy Yy Yz
D% D% D%
Xz yz zz

Corresponding to the diffusivity factor for isotropic media, A, it

here becomes necessary to define a temsor, A, thus:

A A A
XX Xy X2
A= (L/D)D* = |2 A & 47
A= (1/D)D xy 'yy ‘vz| ° (47)
A A A
Xz 'yz zz
in which
= %
Aij (1/D)Dij . (48)

The diffusivity D again refers to that within unobstructed space.
The matrix representation in Equation (47) will be diagomalized by
selecting a Cartesian frame of reference which is collinear with

the three principal directions of the porous medium in questionls, thus:
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A0 0
X
0 x o0]}. (49)
y
0 0 2
VA

I.7.2 POROUS MEDIA COMPOSED OF CO-AXIALLY ORIENTATED SPHEROIDS
Having resolved matters concerning the nature of the tensor
A it is now in order to return to the original problem of interest,
viz, the study of diffusion within an homogeneous swarm of co-axially
orientated spheroids. In such a system one preferred direction of
symmetry will be observed; thus, if the x-axis is taken to be
collinear with this preferred direction (i.e. collinear with the axes
of revolution of the individual spheroids), then it follows from

symmetry that
A=A, (50)

so that the diffusivity factor matrix here assumes the more specific

form

A 0 O
X
0 A o0}, (51)
y
0 0 A
y

Hence, in order to extract meaningful information concerning diffusion
through such an anisotropic system it will suffice to investigate the

following two principal cases, viz.

Case 1: Diffusion collinear with the axes of revolution of the spheroids;

Case 2: Diffusion orthogonal to the axes of revolution of the spheroids.
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£(¢) = 1/sinhg - arccot(sinhE) s (54)
g(¢) = Sinh¢/cosh2g _ arecot(sinng) | (55)
h(g) = 2£(¢) - g(g) , (56)
The Parametepg €O and gl appearing in Equations (52) ang (53) are
defineq by:
EO = areatanh(e) 0 <e< l.o , (57)
sinh3£l + sinhgl - (cosh2gosinhgo)/(1-e) =0, (58)
I.8.2 COMPYTED RESULTS
Figure ¢ tecords tphe Ax = Ax(e) and Ay = Ay(e) relationships
Predicteq by the preceding €quatjong for Severa] representatlve Systems
of co~ax1a11y orientated oblate Spherojgs
For any Specific eccentrlclty, e
A

= 1.0 the oblate Spherojigg

offereq here are jp accord with thoge
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Ag >0, (60)

Ay > E (61)

This representation of a porous medium constitutes, in the limit, a

plate-type model.
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1.9 DIFFUSION THROUGH AN HOMOGENEOUS SWARM OF
CO-AXIALLY ORIENTATED PROLATE SPHEROIDS

I.9.1 THE DERIVED SOLUTIONS

A prolate spheroid is generated when an ellipse is rotated about
its major axis; such a geometry may be visualized as a sphere which
has undergone an elongating process. Figure 10 depicts an homogeneous
swarm of prolate spheroids of identical eccentricity, e, possessing an
arbitrary sizez distribution and orientated such that the axis of
revolution of each particle is collinear with the x-direction.

As detailed in Appendix B the following results are obtained
for co-axially orientated prolate spheroids; they can be seen to be
closely related in form to those for oblate spheroids presented in-

Equations (52) - (58), viz.
A, = 16(5,)-6(g ) }/{G6(E ) -F(E)} (62)
Ay = {H(EO)—H(El)}/{H(ﬁo)-G(El)} s (63)

in which the functions F(£), G(£) and H(E) are given by:

F(E) = 1/cosht - areacoth(coshf) , (64)
G(£) = coshi/sinh?f - areacoth(coshf) , (65)
H(E) = 2F(&) - G(E) . (66)

The parameters 50 and El appearing in Equations (62) and (63) are here

defined by:
EO = areatanh(e) 0 <e <1.0, (67)

coshaé;l - coshg, - (sinhzgocoshgo)/(l-e) =0. (68)
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1.9.2 COMPUTED RESULTS

Figure 11 records the lx = Ax(e) and Ay = Ay(e) relationships
predicted by the pPreceding equations for several representative
Systems of co-axially orientated prolate spheroids, For any specific
eccentricity, e, it may be observed that Ax b Ay; however, in contrast
to the Preceding case for oblate spheroids, Ax is only slightly more
dependent on e than is Ay'

The predictions for e = 1.0, that is for spheres, are once

again:

A = Ay = 2e/(3-g) . (69)

However, for ¢ > 0, that is for a co-axially orientated swarm

of very thin circular cylinders the predictions are as follows:

Ax > €, (70)

Ay +e/(2-¢) . (71

This representation of a porous medium constitutes, in the limit, a
capillary—type model.

Equation (70) does of course represent the exact solution for
diffusion parallel to co-axially orientated, very long cylinders.
Moreover, Equation (71) constitutes a truncation of Lord Rayleigh's17
exact solution for conduction perpendicular to monosized circular

cylinders arranged in a square pattern, viz,

- - ‘*— - 8—...—...
A = _€ —0.3058(1-¢) 0.0134(1-¢) € > 0.2146 . (72)

y 2-6—0.3058(1-3)“-0.0134(1-8)8---‘—--'




1.9] 45

——y

A, =>\y=2€/(3'6)
and 0.5

] ] l
0 01 02 03 04 05 06 07 08 09 10
€

FIGURE 11. THE PREDICTED DEPENDENCE OF Ax AND Ay ON € FOR
CO-AXTALLY ORIENTATED PROLATE SPHEROIDS



1.9] 46

This prediction is displayed in Figure 11. It should be emphasized
that Rayleigh's solution applies only to monosized cylinders occupying
a square array, for which 0.2146 represents the minimum obtainable
porosity. However, for co-axially orientated cylinders possessing a

wide distribution of radii, arbitrarily lower porosities are attainable.

Practical Significance of the Predicted Resulte

It is appropriate to mention here that knowledge of the ratio
Ax/ly provides valuable information concerning the extent of anisotropy
in systems composed of co-axially orientated oblate or prolate spheroids.
The predicted results have important significance because it sometimes
becomes necessary to actually construct a porous medium possessing a
specified degree of anisotropy (for example a specified value of
Ax/ky). Such a system may often be approximated by preparing an
homogeneous swarm of co-axially orientated disc-like or rod-like
particles (approximating oblate and prolate spheroids respectively),
an estimate of the required 'eccentricity' of these particles being
obtained by inspection of Figure 9 (for discs) and Figure 11 (for

rods).
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I.10 DIFFUSION THROUGH A SWARM OF CO-AXIALLY ORIENTATED SPHEROIDS
AT AN ARBITRARY ANGLE OF ATTACK

earlier in context with Equationg (45) -~ (51). 1n the preferred

frame of reference [x,y,z] it assumeg the Specific form:

Ax 0 o
q* = -p |o Ay 0 [ Ve , (73)
0 o Ay

Sections I,8 and I.9 may be used to construct the diffusivity factor
matrix appearing in Equation (73) above, Moreover, thig matrix
Provides g knowledge of the tensor A which, ip turn, permits 5 full

description of the diffusion (conduction) occurring ag a result of
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1.1l DIFFUSION THROUGH AN HOMOGENEOUS SWARM
OF RANDOMLY ORIENTATED SPHEROIDS

I.11.1 DpIscussiow OF THE SYSTEM

(which in cousequence will be isotropic) than by a swarm of co-axially
orientated spheroids. This is frequently true of particulate suspen-—
sions. Seldom would it apply to sedimented media, as in such systems
the individual particles would usually have settled with some definite

bias as regards preferential orientation.

may be constructed by a weighted Superposition of the three Principal
solutions for the Cco-axial case, Now, by comparing Fick's Law with
Ohm's Law2 it becomes apparent that A-l is a direct measure of the
resistance of g porous medium to diffusion. The following estimate
may therefore be made for the diffusivity (conductivity) factor,

AE’ of a system of randomiy orientated spheroids of identical eccen-

tricity, pPossessing an arbitrary sigze distribution:
-1 -1 -1
AZ =(1/3)Ax + (2/3)Ay s (74)

where Ax and Ay are defined by Equations (52) and (53) for oblate

spheroids, and by Equations (62) and (63) for pProlate spheroids.

I.11.2 coMpyrED RESULTS
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FIGURE 12,

THE PREDICTED DEPENDENCE OF A}I ON & FOR RANDOMLY
ORIENTATED OBLATE SPHEROIDS
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Prolate spheroids reéspectively, It ig immediately apparent that for
oblate spheroids Az is strongly dependent on the eccentricity, whereas

for prolate spheroids thig dependence is surprisingly mild.

The Limiting Solutions for Oblgte Spheroids
The solution for e = 1.0 (spheres) follows directly from
Equations (59) and (74), viz,
Az = 2e/(3-¢) . (75)
This result is to be anticipated because spheres do not possess a
preferred axis of orientation,
The solution for e » 0 (very thin circular discs) follows

from Equationg (60), (61) and (74), viz.

(69) and (74) and ig identical to the prediction of Equation (75)
above, viz.,
As = 2¢/(3-¢) 77)
Again, thig result is to be anticipated.
The solution for e - 0 (very thin circular cylinders) follows
from Equationg (70), (71) and (74), but cannot be anticipated, viz.
AZ + 3e/(5-2¢) . (78)
It is interesting to observe the similarity in Structure of

Equations (77) and (78).
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I.12 DISCUSSION OF PREVIOUS WORK

No work has been reported to date concerning diffusion or
conduction through a swarm of co-axially orientated spheroids.
However, Fricke5 did extend Maxwell's12 theory (concerning conduc-
tion through a dispersion of spheres) to the case of randomly
orientated spheroids. From considerations of the potential of
a single spheroid in space he developed the following formula
for a low concentration dispersion of non-conducting spheroids

within a conducting medium:
AZ = Ae/(A+1l-€) , (79)

the parameter A being a function of eccentricity alone. Some specific
values of A for different shapes, as computed from Fricke's compli-

cated formulae, are tabulated below for reference.

TABLE 2

PREDICTIONS FOR RANDOMLY ORIENTATED SPHEROIDS
(after Frickes)

A
e

Oblate Prolate
1.0 2.000 2.000
0.9 1.994 -1.995
0.8 1.974 1.979
0.7 1.931 1.950
0.6 1.854 1.909
0.5 1.730 1.854
0.4 1.541 1.786
0.3 1.271 1.707
0.2 0.911 1.623
0.1 0.474 1.545
0.0 0.000 1.500
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Fricke himself was of the opinion that his predictions were
rather high, considerably . so for oblate spheroidss’7.

It is interesting to note that the predictions offered here
agree identically with those of Fricke in the limit ¢ - 1.0; this
agreement is to be anticipated since both theories then effectively
consider a single spheroid in infinite Space. The present predictions
are also identical with Fricke's for the specific geometries defined
by e = 1.0 (spheres) and e + 0 (thin circular discs or cylinders),

For all other values of eccentricity the present predictions (for all
porosities 0 < ¢ < 1) are smaller than those of Fricke, considerably
smaller for oblate spheroids.

These characteristics of the presented theory appear to be
a direct consequence of the fact that the eccentricity of the outer
surface of our model cell differs from the eccentricity of our reference
spheroid (Appendix A, Figure 27) for all geometries excepting those
defined by e = 1.0 and e > 0; for these specific geometries (viz. spheres,
thin circular discs and cylinders) the eccentricity of the outer sur-
face of our model cell is identical with that of our reference
spheroid, observations which follow-directly from Equations (58) and
(68).

Figure 14 displays the experimental conductivity data of De La
Rue and Tobias4 for a dispersion of randomly orientated cylinders
Possessing a diameter to length ratio of 0.1, Now, such a cylinder is
well approximated by a prolate spheroid possessing an eccentricity
of 0.1; the results Predicted by Equation (74) for randomly orientated

prolate spheroids Possessing this same eccentricity can be seen to
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conform closely with the presented data.

It will be recalled that the predictions of Equation (74)
for randomly orientated prolate spheroids lie within a very narrow
band over the entire porosity range (Figure 13) . That the data of
De La Rue and Tobias for highly 'eccentric' cylinders lies within

this band lends heavy support to the validity of the proposed theory.
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I.13 SUMMARY

The presented results demonstrate that the proposed cell
model offers a satisfactory representation not only of an isotropic
swarm of spheres but also of an important class of anisotropic
systems (viz. those composed of co-axially orientated disc-like or
rod-like particles).

In particular, it has been demonstrated that swarms of co-axially
orientated spheroids possessing an eccentricity of less than 0.5 are
markedly anisotropic, although this is much more in evidence with
oblate than with prolate spheroids. These results have important
practical significance in those areas in which conductivity measure-
ments are made on systems composed of flattish or fibrous particles,
a notable example being on the deliberately deposited mudcakes in
oil-well bores.

A study has also been made of diffusion (conduction) occurring
within an isotropic system composed of randomly orientated spheroids.
The diffusivity (conductivity) factor here has been demonstrated to
be strongly dependent on the eccentricity for oblate spheroids, but
surprisingly invariant with this parameter for prolate spheroids.

In view of these further encouraging results attempts will now
be made to apply the proposed cell model to the study of a radically
different, and far more complicated, transport process. This will
involve incompressible creeping flow through an homogeneous swarm
of spheres and will provide valuable insight into the nature of

liquid flow through porous media in general.



PART II

STEADY STATE INCOMPRESSIBLE CREEPING FLOW
THROUGH AN HOMOGENEOUS
AND ISOTROPIC SWARM OF SPHERES
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I1.1 OBJECTIVES

The purpose of this investigation is to develop a fuller
understanding of fluid flow occurring within an homogeneous and
isotropic porous medium composed of spherical particles possessing
an arbitrary size distribution; in particular, to evaluate the
resistance offered by such a system to an incompressible fluidT in
the creeping flow regime. In theory, the total resistance offered
by such a system may be calculated by integrating the local shear
stress over the entire surface thereof. However, so excessively
complicated is the internal geometry of even the most regular array
of spheres that resort must be made to a simplifying model.

On account of the encouraging results obtained during the
preceding diffusion analyses, the proposed cell model will here
be further employed to evaluate the permeability of an homogeneous
swarm of spheres in the creeping flow regime. For liquid flow (with
which this investigation will be exclusively concerned) through
porous media it is generally acceptable to make this creeping flow
assumptionzs, namely that inertial forces may be neglected in
comparison with viscous forces.

However, before proceeding further with the problem of
interest it will firstly be elucidating to examine the nature of the
equations which are normally employed to describe liquid flow through

porous media, and which implicitly define the permeability thereof.

+ Throughout this work attention will be confined to Newtonian
fluids under isothermal conditions.
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11.2 THE EQUATIONS GOVERNING INCOMPRESSIBLE
CREEPING FLOW THROUGH POROUS MEDIA

There has been considerable dissension in the past concerning
the nature of the differential equation which describes fluid flow
through porous media. As a basis for further discussion it will
here be convenient to consider the somewhat idealized system depicted
in Figure 15, viz. an extent of homogeneous and isotropic porous

material adjacent to a region of unobstructed fluid space.

Free Fluid Region
Throughout this region the validity of the Navier-Stokes
Equation will be acknowledged. Thus, for the flow of a Newtonian
fluid at a sufficiently low Reynolds number the hydrodynamic con-

ditions within this region will be described by the equation2
w2y = ¥p . (80)

In this equation u denotes the velocity vector, u the absolute

viscosity of the fluid and p the pressure referred to a datum plane.

Porous Medium Region
The following hypothetical differential form42, based on the
pioneering experiments of Darcy in 1851, is gemerally quoted with
confidence to describe incompressible creeping flow within an

isotropic porous medium, viz.

~(u/x)u* = Vp* . (81)
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In this equation k denotes the permeability of the porous medium,

u* the macroscopic velocity vector and p* the local mean pressure
referred to the same datum plane (the symbol * will continue to
designate macroscopically averaged quantities pertaining specifically
to a porous medium). The velocity profile within the porous medium
r%mn&megmtMsmmﬁm(mwmhuMHymmthDuw
Equation) is depicted in Figure 15.

As ‘long ago as 1949 Brinkman30 proposed that a viscous stress
term need be incorporated in the Darcy Equation (8l) in order to
account for the distortion of macroscopic velocity profiles in the
vicinity of containing walls and regions of unobstructed fluid space,

thus:

—(u/k)u* + uvu* = ypx , (82)

This equation (hereafter referred to as the Brinkman Equation) has
recently received encouraging theoretical substantiation from
Slattery54 and, quite independently, from Tamss. For small values of
k the Brinkman Equation (82) is approximated by the Darcy Equation (81)
whilst for k =+ » it possesses the inherent advantage of developing into
the Navier-Stokes Equation (80); this behaviour is to be anticipated
because a non-porous mass and an unobstructed fluid represent the
possible extremes of the porous medium. The velocity profile accord-
ing to the Brinkman Equation (82) is displayed schematically in

Figure 15. It should be noted that this equation further reduces to
the Darcy Equation (81) whenever V?g? = 0, that is whenever the
velocity vector u* is uniformly constant throughout the porous medium

in question (as has been presumed in Darcy's pioneering experiments).
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Considerations at the Interface

At the interface separating the two regions it is necessary
that the limiting solution of the micro-flowfield associated with
the free fluid region (as described by the Navier-Stokes Equation)
must match correctly, when considered as a macro-flowfield, with
the macro-flowfield associated with the porous medium region (as
described by either the Darcy Equation or the Brinkman Equation),
thereby reflecting physical consistency (Figure 15). This consti-
tutes the principal reason as-to why the Darcy Equation must be
regarded as being incomplete and consequently inadequate, the
explanation being that the Navier-Stokes Equation (80) is a
differential equation of the second order whilst the Darcy Equation
(81) is of the first order only; this makes it impossible to formulate
physically rational boundary conditions at the interface using the
Darcy representation within the porous region. However, this
difficulty is not encountered when employing the Brinkman Equation
(82), which is indeed of the second order by virtue of the presence
of its viscous stress term; the inclusion of such a term is therefore
imperative if physical consistency is to be maintained throughout the

two region system depicted in Figure 15%.
—————————

+ In order to demonstrate the consistency and effectiveness of
the Brinkman Equation (82) three problems of considerable practical
importance, which cannot be solved rigorously using the Darcy Equation
(81) , have been examined in some detail in Section II.9, Appendix D
and Appendix E. These problems relate respectively to (1) sedimen-
tation of an isolated porous sphere, (2) incompressible creeping flow
parallel to a fracture within a petroleum reservoir, and (3) incompres-
sible creeping flow through an isotropic porous medium containing a
spherical cavity.
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Having resolved matters concerning the nature of the differential
equation which governs creeping flow through porous media it is now in
order to return to the original problem of interest, viz. the applica-
tion of the proposed cell model (Figures 1 and 2) to the study of

incompressible creeping flow through an homogeneous swarm of spheres.,
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IL.3 THE MODELLED SYSTEM FOR FLUID FLOW THROUGH
AN HOMOGENEOUS SWARM OF SPHERES

The model representation for fluid flow through an homogeneous
swarm of spheres ig depicted in Figure 16; this may be compared with
Figure 3 for the corresponding problem of diffusion. As before, it
consists of a reference sphere, an ammylar region of void space and
an exterior vegion of homogeneous and isotropic porous material,

The radius of the unit cell (comprising the reference sphere and
the annular region) must again be related according to Equation (1),

viz,
S/R = (1-¢)~1/3 0<e<1.0, (83

which ensures that the uniform Porosity € is not locally disturbed

by the modelling procedure.
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II.4 THE DEFINING EQUATIONS AND BOUNDARY CONDITIONS

It will be noted during the development which follows that
the fundamental differential equations and the stipulated boundary
conditions are radically different from, and far more complicated than,
those for the corresponding diffusion problem. It should also be
stressed that the subsequent analysis is rigorous in its entirety,

requiring no physical or mathematical simplifications.

II.4.1 FUNDAMENTAL DIFFERENTIAL EQUATIONS
Within the annular region of the modelled system (Figure 16)
the Navier-Stokes Equation (80) will be acknowledged to describe the

prevailing creeping flowfield, thus:
qu__= vp : R<r<s§, (84)

Within the exterior region the validity of the Brinkman Equation

(82) will be proposed, thus:
'(N/K)H* + HVZ_I}_* = .V_p* S<r<ow, (85)

For steady state incompressible flow the continuity equation28
assumes the following specific forms for the annular and exterior

regions respectively:

Veau=0, (86)
V.u* = 0 . (87

The terms involving pressure in Equations (84) and (85) may

be annihilated by performing the curl vector operation throughout.
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By noting that pressure is a scalar quantity, and that p and k are

independent of location, the following expressions are obtained, viz.

ulvxv2u] = [yxVp] = 0 , (88)
~(u/k) [Vxu*] + u[Uxv2u*] = [VxVp*] = 0 . (89)

The system of Euler (stationary) coordinates convenient to

this- investigation will be spherical coordinates [r,0,¢], for which:

u= [ur|u99u¢] s (90)
u¥ = [u:,ug,ugl .. (91)

The expansions of the individual terms in Equations (88) and (89) in
spherical coordinates are presented in numerous texts, notably Bird
et a128. On account of the specifications introduced so far the
prevailing flowfield will exhibit axial symmetry. Thus, u¢ = 0 and

u$ = 0; hence, the ¢ variable may hereafter be supressed. Consequently,
streamfunctions ¢ and J* may now be introduced; these are defined in
such a manner28 as to automatically satisfy the continuity conditions

implicit in Equations (86) and (87), viz.
ur(r,e) = =(1/r2sin6) (39/36) ; uy(r,8) = (1/xsind) (3y/31) , (92)

u;«(r,e) = =(1/r2sin6) (3y*/36) ; ug(r,e) = (1/rsinB) (3Y*/or) . (93)

On substituting these expressions into the expanded forms of Equations
(88) and (89) the following partial differential equations can eventually

be obtained:
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annular region: E2(E2y) =0 R<r<S§, (94)

exterior region: —-(L/k)E2yp* + E2(E2y%) =0 S <r <o, (95)
. 2 . . 28,42

In these Equations E? denotes the Spherical Harmonic Operator ’

defined by:

E2 = (32/3r2) + (1/r2)(82/362) - (cot8/r?)(3/3€) . (96)

In order to describe the hydrodynamic conditions prevailing
throughout the entire domain of the modelled system it will be
necessary to determine respective solutions of Equations (94) and

(95) which satisfy physically rational boundary conditions.

IT.4.2 STIPULATED BOUNDARY CONDITIONS
Recognizing that the reference sphere is impermeable, and that

there is no slip over the surface thereof, implies that:
u (R,0) =0, (97)
ug(R',0) = 0 . (98)
From considerations of equilibrium and continuity at the interface
separating the annular and exterior regions it is necessary that the

pressure, the tangential shear stress and the velocity distributions

within these regions match identically in the limit, viz.

p(s7,0) = p*(s*,0) , (99)
w(s™,8) = t*(s7,0) , (100)
u(s7,0) = ur(s",0) , (101)
ug(s7,0) = u§(s+,e) ) (102)
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Moreover, the velocity vector u* at any station sufficiently far
removed from the reference sphere must approach that of the mainstream,

U*, thus:

Limit u*(r,6) = U* , (103)

r > o

where U%* = [U*,0,0] in Cartesian coordinates [x,y,z].
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11.5 SOLUTION OF THE DEFINING EQUATIONS

II.5.1 THE GLOBAL STREAMFUNCIION DISTRIBUTION

The flowfield throughout the modelled system will be
completely defined by the respective solutions of Equations (94) and
(95) which satisfy the boundary conditions stipulated in Equations

(97)-(103). As detailed in Appendix C these solutions are found to be:

(KU*/Z)[A/X + By + cx? + Dx“]sinze o <X <B, (104)

P(x,90)

(cvx/2)[E/x + X2 + Ge—x(1+x)/x]sin26 B<yY<®, (105)

V*(x,9)

where x denotes the normalized radial coordinate defined by:
x =t/ . (106)

The parameters o and B denote the specific values of x defined by:

R/ V% , (107)

o

g = 8//k , (108)

and A,B,C,D,E and G are expressed in terms of o and B as follows:

A= 6a3(-236-735-15s“-1533+3e“a2—s3a3+3s3a2+32a3)/J(a,s) , (109)
B = ea(636+2135+4ss“+4533-53“a2-583a2—sa5-a5)/J(a,s) , (110)
C= 3(-866-2835-603“-6os3+5s3a3-532a3+3sa5+3a5)/J(a,s) , (111)
D= 3(43“+433-3e3a+3e2a-ea3-a3)/J(a,s) . (112)
B = 2(-469-2438-6087-6035+933a+4se7a-1055a3+12636a-3o55a3
+216e5a+93“a5-60s“a3+2703“a-433a6+9B3a5
-6033a3+27os3a-6ea6-6a5)/J(a,s) . (113)
¢ = geb (2085-278504583a3-00830:+206) /3(2,8) (114)
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where:

J(0,8) = (—485-2485—1808'*-18063+985a+456”a—1083a3

+18063a—3032a3+96a5—40L6+9a5) . (115)

The parameteXrs G and B appearing above are related according to

Equations (107) , (108) and (83), thus:

g8 = a(S/R) = a(1-e)"1/3 . (116)

IT.5.2 DISTURBANCE INTRODUCED BY THE MODELLING PROCEDURE

Typical streamlines, as computed from Equations (104) and
(105) , are displayed in Figure 17 for the modelled system possess-—
ing the representative porosity € = 0.7 (for which S/R = 1.494
from Equation (83), o = 3.708 from Table 3 to follow, whence
g = 5.540 from Equation (116)). The streamlines for other porosities
are very similar in appearance.

The most important implication of Figure 17 is that the
disturbance of the mainstream flowfield introduced by the modelling
procedure diminishes»rapidly with increasing distance from the unit
cell: this disturbance is effectively confined to a region concentric
with the unit cell and possessing twice its radius (it will be
recalled that for the corresponding case of diffusion (Section 1.3.4)
this disturbance was wholly confined to within the unit cell). This
observation counters any argument that the modelling procedure might
cause anything more than an (inevitable) 1ocalized disturbance of the

mainstream flowfield.
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I1.5.3 THE RESISTANCE OFFERED BY THE REFERENCE SPHERE

Using the derived expression for the streamfunction within the
annular region, v(x,0), it is straightforward, although tedious, to
develop expressions for the pressure and shear stress distributions
over the surface of the reference sphere, p(a,0) and (e,0) respec-
tively. The normal and tangential resistance forces offered by the
reference sphere (Fr and Fe respectively) may then be calculated by
integrating these distributions over the entire surface thereof. The
total resistance force, F, offered by the reference sphere is so

derived in Appendix C, viz.
F= Fr + Fe = 6TUU*R £(0,B) , (117)
where the function E(a,B) is defined by:
£(a,8) = 4(-636-2135-453‘*-4533+53‘+a2+se3a2+ea5+a5)/J(u,s> . (118)

It will be demonstrated later (Table 3) that as e - 1.0, £(a,B) = 1.0
so that Equation (117) then approaches Stokes Law28 for creeping flow

past a single sphere in Space, as would be expected, viz.

= %
FStokes 6TUU*R (119)

The term £(a,B) therefore represents the extent to which the sSpheres
surrounding the reference sphere increase the latter's resistance over

that predicted by Stokes Law for a single isolated sphere.



A G i et et e e

I1.5] 74

IT.5.4 THE TOTAL RESISTANCE OFFERED BY A SWARM OF MONOSIZED SPHERES

This analysis has heretofore been concerned with an unboundad
homogeneous swarm of spheres. As noted earlier in Section II.2 the
Darcy Equation (81) is valid for macroscopically uniform £low through
such a system. According to this equation the total resistance offered
by a swarm containing N monosized spheres of radius R will be (Equation
(€c71)):

F = 6muU*RN {202/9(1-€)} . (120)

The total resistance offered by the modelled system may be
evaluated by summing Equation (117) over all M spheres (since each
individual sphere may be regarded as the reference sphere in turn),

thus:

F = 6wuU*RN £(a,B) . (121)

Since the modelled system is to be quantitatively representative of
the original swarm of monosized spheres then the resistance forces
predicted by Equations (120) and (121) must be identical. This

generates the condition that:

202 - 9(1l-e)£(0,8) = 0 , (122)

with the parameters o and B being related according to Equation (116),

thus:

B = a(l-e)~1/3 , (123)

Consequently, Equation (122) may be re-expressed as the following

implicit function of o and e, viz.
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202 = 9(1-e)&(a,a(le)"1/3) = o . (124)

This equation effectively defines the functional relationship existing
between o = R/Vk and the porosity e for any homogeneous swarm of mono-

sized spheres.

II.5.5 COMPUTED RESULTS FOR MONOSIZED SPHERES

Recalling from Equation (118) the extremely complicated nature
of the function £(u,B) it is apparent that o cannot be extracted from
Equation (124) above as a function of ¢ in closed form. Resort must
therefore be made to an iterative, and in consequence pointwise,
techniqﬁe of solution. As expected, Equation (124) constitutes a
single valued function over the entire porosity range; the regula falsi
technique provides a rapid iteration on o using a digital computer.
Representative values of the g = a(e) relationship, satisfying
Equation (124) to within better than 10—10, were obtained using this
technique. These results are Presented (to four significant figures)
in Table 3 for reference; it will be noted that these predictions are
physically consistent at both porosity limits, thus as ¢ -+ 0, 0>
and as € » 1.0, ¢ + 0,

It is particularly instructive to compare the resistance of
the original system as predicted by Stokes Law, when assuming each
sphere to be hydrodynamically independent of the remainder, with that
predicted by the presented theory. This ratio, ¥, for monosized

spheres is given By (Equation (C86)):

W= 9(1-e)/20% = 1/E(a,a(l~e)~1/3) , (125)
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TABLE 3
THE PREDICTED DEPENDENCE OF o AND ¥
ON € FOR HOMOGENEOUS SWARMS OF
MONOSIZED SPHERES
€ o W= 1/g(a,B)
1.0 0.0 1.0
0.9999999999 0.2003x10™% 0.9994
0.99999999 0.2124%10™3 0.9968
0.999999 0.2137x102 0.9850
0.9999 0.2200x1072 0.9300
0.999 0.7282x10 " 0.8487
0.99 0.2584 0.6738
0.95 0.7071 0.4501
0.90 1.185 0.3207
0.85 1.684 0.2379
0.80 2.247 0.1782
0.75 2.908 0.1331
0.70 3.708 0.9819x10™1
0.65 4.706 0.7112x107L
0.60 5.986 0.5023x102
0.55 7.677 0.3436x10"
0.50 9.974 0.2262x10"L
0.45 13.19 0.1423x10~ L
0.40 17.83 0.8496x102
0.35 24.74 0.4780x10 2
0.30 35.44 0.2508x10™2
0.25 52.93 0.1205x10"2
0.20 83.87 0.5118x10™°
0.15 146.0 0.1794x103
0.10 302.7 0.4419%10
0.05 967.9 0.4564x10™
0.0 o 0.0
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The W = W(e) relationship predicted by this equation is displayed in

Table 3.

II.5.6 COMPARISON OF COMPUTED RESULTS WITH EXPERIMENTAL DATA

Figure 19 displays the o = a(e) relationship for monosized
spheres, as predicted by Equation (124), together with representative
data from the 1iterature25’43’47’48’53. The overall agreement can
be seen to be very satisfactory.

In keeping with literature trends the preceding results are
presented in alternative form in Figure 20, which displays the

W = W(e) relationship predicted by Equation (125).

In conmnection with both Figures 19 and 20 it should be emphasized

that the data of Happel and Epstein43 and Martin et al48 was obtained
using regular assemblage340 of spheres rather than using a random
assemblage thereof37. This is possibly the reason as to why their
data points lie rather less close to the present pPredictions than do
those of the other cited workers (who confined their attention to

randomly arranged spheres).

Present Experimental Work
In order to confirm the validity of existing experimental data
in the lower porosity range a number of permeability determinations
were carried out using a cylindrical brass cell which was filled,
under distilled water, with monosized stainless steel spheres (Figure
18). Distilled water at a constant temperature could be made to flow
through the cell at a pre-selected constant flowrate (effected by

means of a commercial constant-flow regulator). For each constant
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TABLE 4

EXPERIMENTAL PERMEABILITY DATA FOR AN
HOMOGENEOUS SWARM OF MONOSIZED SPHERES

e = 0,379
Re o W
0.081 19.08 0.00768
0.093 19.12 0.00765
0.168 19.10 0.00766
0.192 19.09 0.00769
0.251 19.12 0.00765
0.290 19.10 0.00766
0.552 19.10 0.00766
0.670 19.13 0.00764
0.807 19.11 0.00765
0.932 l§.14 0.00763
1.38 19.16 0.00762

79
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I1.6 DISCUSSION oF PREVIOUS WoRg

The first worker to establish a model concerning the Problem

of interest appears to have been Cunningham36 who, in 1910, studied the

ably ¢orresponding to the surface of the Surrounding Spheres, Although

of fundamenta] significance, this model Presents difficulty in that

empirical considerations,

Based on Kozeny'345 classic capillary model, Carman34 developed
the following semi-empirical correlation for the Permeability, K, of

a bed of monosized spheresg:
K = R2e3/{91<c(1-e)2} , (126)
which together with Equationg (107) and (125) becomes:

W= e3/{2Kc(1~e)} . (127)
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The parameter Kc denotes the so called 'Carman constant' which has to
be determined by experiment. The universally acknowledged value of
Kc for spheres is 5.0, for which Equation (127) becomes reasonably
representative of a vast quantity of experimental data within the
porosity range 0.26 < € < 0.7 (Figure 20).

One of the more widely quoted theories concerning the present
problem is that due to Brinkmanzg. He extended the model proposed by
Bruggemann33 for electrical conduction (Séction I.4) to the case of
creeping flow, the representation underlying both treatments being
that of a spherical particle embedded within a uniform porous mass,
Brinkman cbtained the following solution for an homogeneous swarm of

monosized spheres:
W=1+a+0a?/3=1~ (3/4)(1-¢)[/8/(1-0)3 -1] . (128)

However, this solution is entirely unsatisfactory for € < 0.4 and, in

fact, predicts zero permeability for ¢ = 1/3 (Figure 20)+.

t Referring here to the predictions of the present theory
it is elucidating to consider the limit of Equation (125) as
B > o, that is as the thickness of the annular region in the proposed
model tends to zero. Under these conditions the proposed model
reduces to the simpler one employed by Brinkman; an inspection of
Equation (125) in conjunction with Equation (118) ultimately yields:

Limit W = Limit [1/£(a,B)] = 1 + o + a2/3 .
B+ a B ~»a

This is identical vith the Brinkman solution as would be expected.

‘Aiming to generalize his model to include porous spheres
Brinkman? made .attempts to incorporate an annular region which
could be varied in size so as to present the experimental facts
throughout the entire porosity range. However, this valuable contri~
bution has been neglected in the literature to date, probably on
account of the fact that his revised solution was physically
inconsistent and was presented without derivation.
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Uchida56 attempted a rigorous solution of the Navier-Stokes
and continuity equations for incompressible creeping flow through
an unbounded cubic assemblage of monosized spheres. However, the
problem of simultaneously satisfying the appropriate boundary conditions
on spherical as well as cubical surfaces proved to be intractable and
he was only able to extract an approximate solution; this failure to
solve exactly the specified boundary value problem resulted in very
unsatisfactory predictions.

Happel41 proposed an interesting cell-type model which is now
referred to as the 'free surface model'. It is apparently based on a
refinement of Cunningham's36 previously discussed cell model, the solid
outer envelope thereof here being replaced by a free fluid surface on
which both the normal velocity and the tangential shear stress vanish.

Using this representation Happel derived the following expression for

monosized spheres:
W= [6~9(l-e)1/3 + 9(1-¢)5/3 - 6(1-€)2]/[6 + 4(1-€)5/3] . (129)

Although the free surface model may be superficially unconvincing the
agreement of its predictions with experimental data is undeniable.
It is interesting to note that the predictions of the presented
theory are in remarkably close agreement with those of Happel for
€ > 0.7, nowhere differing by more than 17 (Figure 20).

K.uwabara46 modified the free surface model by replacing the
zero shear stress condition at the outer envelope by one of zero
vorticity. However, his predictions are far less satisfactory than

those of Happel.
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Various statistical models have been advanced to study fluid
flow through porous media in general. A number of these have been
reviewed by Scheidegger52 (who himself proposed a model in which the
theory of Brownian motion is applied to the problem in question).

Of significant interest amongst these is the approach of Yuhara who
postulated an analogy between laminar flow in porous media and
turbulent flow in bulk fluids. On a somewhat different theme Broadbent
and Hammersley proposed a model in which any 'randomness' is attached
to the medium rather than to the fluid (this is generally the case in
practice) . Although such approaches are extremely interesting they
tend (at present) to be too qualitative in nature to permit any direct

engineering application.
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11.7 THE EFFECTS OF THE SIZE DISTRIBUTION

occurring within an homogeneous swarm of,spheres the size distribution
had little or no effect on the diffusivity factor. In contrast, for
fluid flow the Presented theory predicts a definite dependence of the
permeability on the Prevailing size distribution of the spheres (Appen-
dix C). The specific predictions which follow have been confined to
binary mixtures of spheres in order to permit a more meaningful inter-

Pretation of the effects of the size distribution,

Size Ratio 5:1

Figure 21 displays the W = W(e) relationships Predicted by
Equations (C84) and (C82) for binary mixtures of spheres possessing
arbitrary radii R and R/5, in the relative proportions 1007, 50%, 25%,
107, 1.74% and oz by numbers of the larger species. Ag would be expec~
ted the results for 100% and 0% are identical since both systems are
then composed of monosized spheres. Mixtures containing more than 50%
of the larger species exhibit characteristies very close to those for
monosized spheres and have therefore been omitted from Figure 21 to
Preserve clarity.

The solutions for 50%, 25% and 109 display an increasing depar-
ture from that for monosized spheres and, in fact, a maximum departure
is predicted for 1.74%. As this Proportion further decreases to 0%
the solution rapidly re-approaches that for monosized spheres, Hence,
the solution for any arbitrary mixture Possessing a 5:1 size ratio will

always lie between that for monosized spheres and that for the mixture
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containing 1.74% of the larger species.

Size Ratio 2:1

Figure 22 displays the results predicted by Equations (C84)
and (C82) for binary mixtures of spheres possessing arbitrary radii
R and R/2. However, only the two limiting solutions (viz. that for
monosized spheres and that exhibiting the maximum departure therefrom)
have been included because, although the general trends are closely
similar to those for the 5:1 size ratio, the corresponding departures
are very much less pronounced. The maximum departure is here exhibited
by the mixture containing 15.27 of the larger species.

The most important inference to be drawn from Figures 21 and
22 is that W, and hence the permeability of the system, do indeed
depend on the prevailing size distribution of the spheres; this
dependency increases rapidly with the size ratio. Equations (C84)
and (C82) may likewise be employed to accomodate ternary, quaternary

and higher order mixtures should the occasion arise.
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II.8 THE EFFECTS OF THE REYNOLDS NUMBER

The Preceding theoretical results have all been based on the
Premise of Creeping flow, viz., that inertial forces can be neglected
in comparison with viscous forceg. In practice this ig generally a
valid assumption for liquid flow; however,'exceptions may be encountered
from time to time. To this end, many investigations have been .directed
towards determining a universal Reynolds number, above which the creep-
ing flow assumption ceases to be strictly valid for liquid flow through
POorous media in general. For swarms of monosized spheres, in particular,
this specific Reynolds number ig generally acknowledged to be about
unity (Figure 23), when based on the superficial velocity of the fluid
and the particle diameter32’38’49’51. However, no universal result
concerning porous media in general has so far been forthcoming,

It is possible that this specific number for ap homogeneous
Swarm of spheres could be determined by means of the proposed model.
This has been attempfed by accounting for the inertial force term,
Pu.Vu, in the Navier-Stokes Equation (84), which describes conditions
within the annular region, and by introducing an equivalent macroscopic
term, pg*.!g*, into the Brinkman Equation (85), which describes

conditions within the exterior region, thus:

annular region: w2y = yp + pu.Vu R<r<s, (130

exteriopr region: -(u/r)g* +»uV29* = Vp* + pu*, Vu* §<r<w, (131)

The above equations have defied-analytical attempts of solution. Perturb--

afion*techniques Or numerical methods would appear to be inevitable,
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1I.9 THE EFFECTS OF PARTICLE POROSITY

As noted previously (Section 1.3.6) porous particles frequently
play an important role in catalyst beds. The problem often arises as
to the fraction of a flowing f£luid which passes through a single
particle contained within such a bed. With this in mind it is
particularly instructive to calculate the streamfunction distribution
for incompressible creeping flow through and around a single isolated
porous sphere (of radius R and permeability k). Incidentally, this
analysis will serve to demonstrate the effectiveness of the Brinkman

Equation (82) in solving an hitherto intractable, two-region problem.

II.9.1 FUNDAMENTAL DIFFERENTIAL EQUATIONS
By analogy with Equations (94) and (95), the equations describing
the flowfield within the porous sphere and within the surrounding fluid

region will be:
porous sphere: ~(1/k)E2p* + E2(B2y*) = 0 0<r<R, (132)

surrounding fluid: E2(E2y) = 0 R<r<o,., (133)

II.9.2 STIPULATED BOUNDARY CONDITIONS

The following boundary conditions must here be stipulated, viz.

pH(R,0) = p(R,0) , (134)
(R ,0) = T(R,0) , (135)
wh(R7,0) = u,(K',0) , (136)
wy(R,0) = ug(K,0) (137)
Limit u(x,8) = U, (138)

r >
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where U = {u,0,0] denotes the velocity vector of the undisturbed main-
stream; the arguments on which the above boundary conditions are based
are presented in Section 11.4.2, In addition, a restriction demanding

finiteness of the flowfield must be imposed, in particular that
ug(o,e) must be finite. (139)

1I.9.3 SOLUIION OF THE DEFINING EQUATIONS

The solutions of Equations (132) and (133) which satisfy the
boundary conditions implicit in Equations (134)—(139) can be shown to
be:

PE(X:8) = (<u/2) [Mx2 + N(sinhx—xcoshx)/x]sinze 0 <x <V (140)

V(x,9) = (cU/2) [A/X + BX * x2]sin?8 g <y <o, (181
where:
= ¥/ s (142)
v = RV (143)
and:
M= (tanhv—v)/(tanhv—v-2v3/3) , (144)
N = (2»3/coshv)/(tanhv—v—zv3/3) , (145)
A= 2v3(tanhv{l+v2/2'}-v{l+v2/6})/(tanhv-v—zv3/3) , (146)
B = —v3(tanhv—v)/(tanhv—v-2v3/3) . (147)

When the sphere ceases to exist (R=10, V = 0), Equation (141) reduces
to the limiting form ¥ = (1/2)Ur?sin?e. This is the familiar stream=

function representation28 of an undisturbed flowfield, U, a8 would be

expected.
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II.9.4 THE RESISTANCE OFFERED BY AN ISOLATED POROUS SPHERE
The resistance force, F, offered by an isolated porous sphere
may be calculated by means of Equation (C62) , which here assumes the

simpler form:
F = 6muUR(L2A - 2Bv2)/9v3 . (148)

Substituting for A and B from Equations (146) and (147) ultimately

yields A Genmeralized Form of Stokes Law, for a Porous Sphere, thus:
F = 6muUR £ (v) (149)

where:

1 = (7/3v)tanhv + (4/v2) = (4/v3)tanhv
g(v) = (150)
1 + (3/2v2) = (3/2v3)tanhv

For solid spheres v = «, whence z(v) = 1.0; Equation (149) then becomes
identical with Stokes Law as would be expected.

For v > 10, z(v) = 1-(7/3v). In general v >> 100 for commercial .
porous spheres, whence z(v) = 1.0 (Figure 24). The immediate inference |
is that for v >> 100 an insignificant quantity of fluid actually passes
through the particle itself; in other words the fluid prefers to flow
around the porous sphere just as if it were solid (Figure 25). The
implication of this for flow within a swarm of porous spheres is that
most of the fluid will flow between the spheres; only a small fraction
can be anticipated to flow through the individual spheres. In view of

this a bed of catalyst pellets can be expected to function more

efficiently when composed of a multitude of very small solid particles |

than when composed of a few much larger porous particles possessing



96

I1.9]

FYEHAS SNOY0d V ¥0d MVT STH0LS J0 Wi0d GAZITVVANID HHL *HZ TANO1d
x/y4=a
| - ﬁo___ - «o___. . o
5 - sco
- (M3andzg = 4 080
- 3¥3HdS SNOYOd V ¥O4 MV1 SINOLS 4O WIO4 QIZIVIINIO 580
i 4060
R + 560
. bt b 00't

(2)3



11.91 97

the same overall volume (since catalysis is predominantly a surface
phenomenon).

The proposed model for am homogeneous SwWarm of porous spheres
(Figure 4) may, in theory, be extended to the present case of incom-
pressible creeping flow. Unfortunately the algebra involved grows
so excessively complicated that all attempts of completing the
solution have failed. Howevel, in view of the inferences drawn from
the above analysis for an isolated porous sphere, such a solution would

appear to have limited applicability.

II.9.5 THE RESISTANCE OFFERED BY A DENSE CLUSTER OF SPHERES

It should be stressed that the results developed above also apply
to the case of a single porous sphere sedimenting within an unbounded
extent of §luid. Of more interest, however, are the sedimentation
characteristice of a dense cluster of spheres, particularly when the
cluster itself approximates a porous spheret.

At present there does not appear to be available any theoretical
result relating to the sedimentation of such'a cluster of spheres.
However, the results developed above for a single porous sphere
may be applied directly to the case of a sedimenting spherical cluster

(of radius Rc and permeability k) composed of monosized sphexes (of

— e

+ Whilst studying the pehaviour of piological macro-molecules
in solution, Brinkman30 noted that such particles showed a tendency
to sediment in dense clusters which approximated porous sphexes. (He
attempted31 to incorporate this observation into his previously
discussed model for an homogeneous swarm of solid spheres?? but was
unable to obtain a physically consistent solution) .
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radius Rs). The value of v for such a cluster will be:
v = Rc//E = (Rp//E) (Rc/Rp)
= a(Rc/Rp) , (151)

0,40 and 0.44 for monosized spheres in contact),

(

Hence, a knowledge of

Rc/Rp) and o for the cluster is sufficient to evaluate its sedimenta-
:ion characteristics defined by Equationg (149) and (150).

Inherent in the above discussion of an isolated cluster is
he presumption that the cluster contains a sufficient number of

pheres to approximate a sphere itself. For monosized spheres in

ontact this necessitates that (RC/RP) > 5 (from geometric congider-

tions).

e e e

AN e e e R ek e
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I1.10 THE EFFECTS OF PARTICLE SHAPE AND ORIENTATION

The effects of particle shape and orientation were considered
in Part IB during the study of diffusion through certain arrangements
of oblate and prolate spheroids. A similar analysis for incompressible
creeping flow has been attempted. In essence, this problem consti-
tutes one.of obtaining general solutions of Equations (94) and (95)
in spheroidal coordinates. Unfortunately, all attempts at determining
an analytic solution of this latter equation have failed (although
such a solution of the former equation s availableAz). A numerical
approach, as previously suggested in Section II.8 for the evaluation
of inertial effects, therefore appears inevitable. However, it
seems likely that the solution so obtained would suggest a perme-
ability dependence on the eccentricity and mode of orientation of
the spheroids similar to the diffusivity dependence on these parameters

discussed in Part IB.
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11.11 SUMMARY

The presented results demonstrate that the proposed model
offers a satisfactory.representation of, and provides valuable
physical insight into, incompressible creeping flow occurring
within an homogeneous swari of spheres. For solid monosized
spheres of known radius, the permeability may be evaluated by
jteration of Equation (124) or by interpolation of Table 3. These
predictions agree well with experimental data over the entire
porosity range, lending heavy support to the realistic nature of
the proposed model and to the acceptability of the assumptions
jmplicit therein.

This analysis has demonstrated that, for spheres, the
permeability is not invariant with the size distribution, inferring
that fluid flow measurements can be expected to yield quantitative
information relating to poreé gizes, pore size distributions and
specific surface areas of porous media in general; these conclusions
are also in accord with experimental observations.

Although the presented results have been derived specifically
for creeping flow, there exists a great deal of experimental data
purporting to their validity up to 2 Reynolds number of at least
unity. Since this is substantially higher than that usually
encountered with 1liquid flow in porous media, the preceding results

may, in such cases, be applied with confidence.
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CONCLUSION

The nature of the results derived in this work serve to demon-
strate that the proposed model satisfactorily fulfils the original
objectives of (1) being able to predict successfully diffusive as
well as hydrodynamic flow processes when occurring individually with-
in an homogeneous swarm of spheres, and (2) providing valuable
physical insight into these processes when occurring within uncon-
gsolidated porous media in general.

The diffusivity (conductivity) factor of an homogeneous swarm
of spheres may be evaluated if the porosity is known. When the size
distribution is known the permeability also may be evaluated. These
predictions display similar trends to experimental data over the
entire porosity range, observations which justify having resorted to
the same mathematical model throughout this work.

The diffusivity (conductivity) factor has been demonstrated to
be invariant with the size distribution of the spheres, thereby implying
that such measurements cannot be expected to provide quantitative
information relating to pore sizes, pore size distributions or
specific surface areas of porous media in general. In contrast,
however, the permeability has been demonstrated to be significantly
dépendent on the prevailing size distribution. Hence, caution is
advisable when comparing theoretical or experimental permeability data,
obtained for a given system, with experimental data obtained from
systems having like porosities but different or unknown size

distributions.
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The important effects of particle shape and orientation were
assessed during the study of diffusion (conduction) through systems
of co-axially orientated oblate and prolate spheroids. The proposed
model also yielded encouraging predictions for these fundamentally
important anisotropic systems.

To summarize then, the proposed model provides valuable
insight into the understanding of diffusion (conduction) as well
as fluid flow when occurring individually within unconsolidated
porous media. It is totally different in concept from the classical
capillary model which, although widely utilized, remains rather
unrealistic and restrictive in practice (its most serious limitation
being that it is wholly unproductive in the study of diffusive flow
processes); indeed, most unconsolidated porous media (and many
consolidated ones) are more closely approximated by an homogeneous
swarm of spheres or co-axially orientated spheroids than by a bundle
of non-interconnected capillaries.

With reference to further work it is suggested that the proposed
model be extended to the study of diffusive and hydrodynamic flow
processes when occurring simultaneously within unconsolidated porous
media. An important case in question would be the investigation of
water evaporation from naturally occurring soils, sands and gravels,
since this phenomenon, although of paramount importance in civil

engineering, is poorly understood at present.
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A.1 ESSENTIAL GEOMETRY OF THE OBLATE SPHEROID

An oblate spheroid is generated when an ellipse is rotated about
its minor axis (Figure 26)., The System of coordinates convenient to
this investigation will be oblate spheroidal coordinates [E,n,¢], which
constitute the special case of ellipsoidal coordinates in which, of the
three Principal axes of the general ellipsoid, the two largest are of
equal length. If a Cartesian frame of reference [x,y,z] is chosen to

be collinear with these three Principal axes then it can be shown11

that:
X = a sinh& sinn , (A1)
¥ = a coshf cosn cos¢ , (A2)
Z = a cosh cosn sing . (A3)
where: £§20; -n/2sqpc< /2 ;3 0 < ¢ < 21w ,

In these equations 1 denotes the distance between the trajectory of the
focus, F(0,a), and the geometric centre, 0. The coordinate surfaces of
constant £ comprise a family of confocal oblate spheroids; those of
constant n comprise a family of confocal hyperboloids of revolution,
The third orthogonal coordinate, ¢, denotes the azimuthal angle
measured out of the Plane of the paper of Figure 26. Typical unit
vectors g£ and Eh are depicted in thig figure; the unit vector g¢ is

orthogonal to the paper.
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A.1] 111
An element of distance in space, dL, may be represented by:
dL)? = (dx)2 + (dy)2 + (dz)?2 = (hpd£)2 + (b dn)? + (hyde)? ,  (a4)

where hg’ hn and h¢ denote the'so-called metrical coefficients (scale

factors) which follow directly from Equations (A1) - (A4), viz.

hy=h =a Vsinh2E + sin2y , (A5)

h¢ = a coshf cosn . (46)

The particular spheroidal shape of interest will henceforth be

identified by £ = Eo; for this geometry it may be noted that:

length of semi-minor axis = a sinhE0 ’ (A7)

length of semi-major axis = a cosh€0 . | (A8)

When designating specific spheroidal shapes it is customary to do so

by means of their eccentricity, defined by:

eccentricity = minor axis/major axis = e

tanhE0 0<e<1,0. (A9)

This definition holds also for prolate spheroids, and will be used as
such in Appendix B.

For future convenience the following functions will be defined:

£(€) = 1/sinhe - arccot(sinhg) , (A10)
g(&) = sinh&/cosh?z - arccot (sinhg) , (All)
h(g) = 2£(8) - g(&) . (A12)
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A.2 THE PROPOSED MODEL FOR CO-AXTALLY

ORIENTATED OBLATE SPHEROIDS

Attention will here be confined to an homogeneous swarm of
oblate spheroids of identical eccentricity, e, possessing an arbitrary
gize distribution and orientated such that the axis of revolution of
each particle is collinear with the x-direction.

The proposed model for this system (Figure 27) is closely
related to that for spheres (Figure 3). It here consists of a
reference spheroid (§ = EO), an annular region of void space (bounded
by the two confocal spheroidal surfaces £ = 50 and § = El) and an
exterior region of homogeneous porous material possessing the same
macroscopically anisotropic characteristics as the original system.

In order that the porosity of the unit cell (comprising the
reference spheroid and the annular region) remains equal to that of

the original system, €, it is necessary that
{(4n/3)(acosh&o)z(asinhﬁo)}/{(4ﬂ/3)(acosh&l)z(asinhgl)} = (1-¢) . (Al3)
After re-arrangement, this expression yields the condition:

sinh3§1 + sinha1 - (coshzgosinhgo)/(l-e) =0 . (Al4)

It should be noted that the eccentricity of the outer surface of the
unit cell will, in general, be different from that of the reference
spheroid.

This model possesses the distinct advantage that the macro-

scopically homogeneous and anisotropic characteristics of the original
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system of spheroids remain unaffected by the modelling procedure, i.e.
the modelled system is macroscopically indistinguishable from the

original system when viewed from the outside.
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A.3 THE DEFINING EQUATIONS AND BOUNDARY CONDITIONS

A.3.1 GENERAL DISCUSSION

The macroscopic form of Fick's Law which describes diffusion
through an homogeneous swarm of co-axially orientated oblate spheroids

may be recalled from Equations (45) =~ (51) of the main text as being:

q*=—D

i>

Vex , (A15)

with the temsor ), in the preferred frame of reference [x,y,z], being

represented by

2 0 0 ]
X
A= 10 A O . (Al16)
= y
0 0 A
| Y

It may be further recalled that in order to fully describe diffusion
occurring in an arbitrary direction it suffices to possess a knowledge
of hx and Ay, since this provides all the necessary information to
construct the temsor ) appearing in Equations (Al5) and (Al6) above.
Consequently, the principal objective of this investigation must be

to so evaluate Ax (the diffusivity factor in the x-direction) and Ay
(the diffusivity factor in the y-z plane).

Intrinsically, the modelled system possesses the same macroscopic
anisotropy (characterized by A) as the original system of spheroids.
However, the evaluation of Ax and Ay for the modelled system implicitly
presupposes a knowledge of A (which itself implies a knowledge of Ay

and Ay). The problem, as it stands, is therefore intractable.
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However, this difficulty may be averted for diffusion occurring
specifically in a characteristic direction. In general, the mainstream
flux, Q*, within the original system will not be collinear with its
inducing concentration gradient on account of the anisotropy of the
gystem. Only for diffusion occurring specifically in a characteristic
direction will Q* be collinear with its inducing concentration gradient.
In other words, for flow in a characteristic direction the macroscopic
flowfield will remain totally unaware of any anisotropy in the system.
Therefore, the previously mentioned difficulty within the modelled
systen may be averted for diffusion occurring specifically in a charac-
teristic direction by treating the macroscopic flowfield within the
exterior region of this system as if it, too, is unaware of any
anisotropy of the system as a wholet. Thus, Fick's Law for the

exterior region (El < g < ®) may be written in the form:

:l_* (&sn '9) = [q.g sqﬁ:q'é;]

U}

[-D*(l/hg)(3C*/BE),‘D*(l/hn)(ac*lan),-D*(l/h$)(30*/3¢)],

(AL7
where: )

D% = Di for diffusion collinear with the x~-direction;

D* = D; for diffusion collinear with the y-z plane.

# It will be recalled from Section 1.3.4 that for spheres the
exterior flowfield is everywhere collinear with the mainstream flowfield.
Observations made in Section A.4 to follow demonstrate that this also
holds true for spheroids.
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Fick's Law for the isotropic annular region (Eo < Es< 51) is:

q(E,n,0) = [qg,qn,q¢]
= [éncllhg)(ac/as),4D<1/hn)(ac/an),AD(1/h¢)<ac/a¢>] . (A18)

A.3.2 FUNDAMENTAL DIFFERENTIAL EQUATIONS
By direct analogy with Equations (7) and (8) of the main text
(for an homogeneous swarm of spheres) the describing equations for

the corresponding case of co-axially orientated oblate spheroids will

be:
annular region: v2¢ = 0 Eg SE <& (A19)
exterior region: V2ck = 0 g, SE<w (A20)

The Laplacian operator, V2, here assumes the formlli

V2 = (3/3sinn) (cos2n{3/3sinn}) + (3/98inhg) (cosi2E{3/5sinhE})
+ (h§/h§)<a2/a¢2) . (A21)

A.3.3 STIPULATED BOUNDARY CONDITIONS
Again, by direct .analogy with Equations (12)-(15) for spheres,
the following boundary conditions respectively must be stipulated

for co-axially orientated oblate spheroids, viz.

ag (Egonsd) = 0 (422)
C(EI,H.¢) = c*(l-;-;,n,(p) ’ (A23)
ag G1onab) = gE(E]on,0) (424)
Limit g*(g,n,¢) = Q* | (A25)

E »r o
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where:

Q* = [Q*,0,0] for diffusion in the characteristic x-direction;
Q* = [0,0%,0] for diffusion in the characteristic y-direction;
Q* = [0,0,Q*] for diffusion in the characteristic z-direction,

these latter three expressions referring to the preferred Cartesian

frame of reference [x,y,z].
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(8(6g)-8E P} - A {g(E)-£(5,))

A% = R
EE) {8 8EDY - A g EEN-EE}

(A31)

the functions £(£) and g(£) being defined by Equations (Al0) and (All)
respectively. |
Since the modelled system is to be quantitatively representative
of the original system then it is necessary that within the unit cell
the average flux in the mainstream direction be equal to that of the
mainstream itself. This necessitates that
5

{1/w(acosh§1)2}f qn(E,O) 27 (acoshg) d(acoshg) = Q* . (A32)
%0

This equation is analagous to Equation (22) of the main text for

spheres. The flux component qn(E,O) appearing in Equation (A32) may

be evaluated by means of Equations (Al18) and (A26), thus:

q,(€,0) = {-D(L/n ) @e/on)) = (AQ/A D) /g(5)} - (a33)
@n=0

The substitution of this expression into Equation (A32) can be shown to

yield:
31
f sinhE{l—f(E)/g(Eo)}d(sinh&) = (Ax/ZA)coshzg1 . (A34)
g€
0

After integration and manipulation this equation yields:
L - g5 85 = A /A . (435)

Following substitution for A from Equation (A30) the ultimate expres-
sion for the diffusivity factor in the characteristic x-direction

can be obtained, viz.
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Ay = {8 -g &)/ {gE)-E ()T . (436)

The parameters EO and &, are defined by Equations (A9) and (Al14)
respectively.

The substitution of the above expression for Ax into Equation
(A31) serves to illustrate that, in fact, A* = 0; this implies that the
flowfield within the exterior region of the modelled system is
everywhere totally undisturbed by the modelling procedure (compare

with the like conclusions .of Section T.3.4 for spheres).

A.4.2 CASE 2: DIFFUSION ORTHOGONAL TO THE AXES OF REVOLUTION OF THE
SPHEROIDS
Although the following analysis relates specifically to diffusion
occurring in the characteristic z-direction (for which the calculations
are simplest) the final results will be valid for diffusion occurring
in any direction collinear with the y-z plane (from considerations of
symmetry). As already noted in Equation (50) of the main text this

implies, in particular, that:
A=A . (A37)

However, in such cases the flowfield will no longer be axi-symmetric
but will be ¢-dependent. Sufficiently general solutions of Laplace's
Equations (A19) and (A20) for diffusion in the z-direction can be.
shown11 to be:

c(E,nyd) = [B1+Bzarccot(sinh5)] + [B3+B4g(§)]cosh£cosnsin¢

£y <E <Ep s (438)
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c*(E,ny0) = [Bf+B§arccot(sinh§)] + [B§+Bzg(£)]coshgcosnsin¢
£1<5<°°s (A39)

where Bi and Bi (i = 1,2,3,4) denote arbitrary constants. The parti-

cular solutions which satisfy the boundary conditions stipulated in

Equations (A22)-(A25) tranmspire to be:

c(E,n,0) = c*(E,n,0) - B(aQ*/D;)[l-g(g)/h(go)]coshgcosnsin¢ , (A40)

c*(E,n,9) = c*(E,n,0) - (aQ*/D§)[l-B*g(E)]coshEcosnsind) R (a41)

in vwhich B and B* are defined by

A h(E ) g8, )-h(ED}
B = y ror -l 1 , (A42)
2@ hEY-h(ED) = AR (M-8}

(h(Eg)-h(e))} = A AR -g(E)))

B* =

> (A43)

the functions g(£) and h(g) being defined by Equations (A11) and (A12)
respectively.

Again, since the modelled system is to be quantitatively
representative of .the original system then it is necessary that within
the unit cell the average flux in the mainstream direction be equal to

that of the mainstream itself. This here necessitates that
31
{l/w(asinhgl)(acoshgl)}f q¢(£,n,0) dA = Q% , (A44)
&g

where dA denotes an annular element of area in the plane ¢ = 0, viz.
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dA = naz(sinhzg + cosh2g)dE . (A45)

The flux component q¢(E,n,0) appearing in this equation may be

evaluated by means of Equations (A18) and (A38), thus:
q,(E,n,0) = {-D(A/h)@ec/3®)} - = (3Q*/A ) {1-g(E) (5}« (A46)
(0 b @¢=0 y 0

The substitution of Equations (A46) and (A45) into Equation (A44) can
be shown to yield:
5

/ (cosh?t + sinhzg){l-g(g)/h(ﬁo)}dg = ()\y/B)sinhElcoshE1 . (A47)
3
0

After integration and manipulation this equation reduces to:
1-h h =A_/[B . A48
(£)) /b EQ) = Ayl (A48)

Following substitution for B from Equation (A42) the ultimate expres=
sion for the diffusivity factor in any direction collinear with the

y~-z plane can be obtained,.viz.
hy = (n(Ep)-h () M n(E-8EP} - (a49) ~

The parameters £, and §, are again defined by Equations (A9) and (Al4)
respectively.

The substitution of the above expression for ky into Equation
(A43) shows that, in fact, B* = 0; this implies (once again) that the
exterior flowfield within the modelled system is everywhere totally
undisturbed by the modelling procedure (compare again with the like

conclusions reached in gection I.3.4 for spheres) .
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APPENDIX B

THE CALCULATION OF A AND A,

FOR CO-AXIALLY ORIENTATED

PROLATE SPHEROIDS
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B.1 ESSENTIAL GEOMETRY OF THE PROLATE SPHEROID

A prolate spheroid is generated when an ellipse is rotated
about its major axis. The system of coordinates appropriate to this
investigation will be prolate spheroidal coordinates [E,n,¢]. This
coordinate system constitutes the special case of ellipsoidal
coordinatas in which, of the three principal axes of the general
ellipsoid, the two smallest are of equal length. If a Cartesian
frame of reference [x,y,z] is chosen to be collinear with these three

principal axes, then it can be shown11 that:

x = a coshg sinn , (B1)
y = a sinhf cosn cos¢ , (B2)
z = a sinhf cosn sin¢ , (83)

where: £ 20 3 -w/2 £ n<T/2; 0<¢ <21 .
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B.2 THE SOLUTION FOR PROLATE SPHEROIDS

Attention will here by confined to an homogeneous swarm of
prolate spheroids of jdentical eccentricity, e, possessing an arbitrary
gize distribution and orientated such that the axis of revolution of
each particle is collinear with the x-direction.

However, rather than solving this problem anew, it is possible
to proceed more directly by making avail of the preceding results
developed for oblate spheroids together with a standard mathematical
transformationhz. Thus, as may readily be verified, if a is replaced
by -ia and sinhg by icoshf in the expressions developed in Appendix A
for oblate spheroids then the solutions of the corresponding problems
involving prolate spheroids will be obtained. Execution of this
transformation on Equations (A36), (A49) and (A10)-(A12) ultimately

yields the following expressions:
A = (6EYEEPIIEEPTFEDT (84)
Ay = {H(Eo)—u(el)}/{Hcao)-c(al)} s (B5)

in which the functions F(E), G(E) and H(E) are defined by

F(E) = 1/coshg - areacoth(coshg) (B6)
G(E) = cosht/sinh?E - areacoth(coshg) (87)
H(E) = 2F(E) - G(E) . (88)
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The parameter EO is again related to the eccentricity, e, according to

Equation (A9), viz.

50 = areatanh(e) 0<e<1.0. (89)

However, the parameter 61 is here defined by:
cosh3g, - coshé; - (sinh?g coshE )/ (1-¢) = 0. (B10)

This equation ensures that the porosity of the unit cell for prolate
spheroids is equal to that of the original system; it corresponds to
Equation (Al4) for oblate spheroids and could, in fact, have been
derived from this equation by application thereon of the above

specified mathematical transformation.
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C.1 REVIEW OF THE DEFINING EQUATIONS AND BOUNDARY CONDITIONS

C.1.1 FUNDAMENTAL DIFFERENTTAL EQUATIONS

The differential equations describing steady, incompressible
creeping flow through the modelled system (Figure 16) have been
presented and developed in Section II.4 of the main text. Solutions
are there sought of Equations (94) and (95) within the annular and

exterior regions respectively, viz.

|
o

anvular region: E2(E2y) = R<r<sg, (c1)

|
o

exterior region: =-(L/c)E2y% 4+ E2(E2y%) = S<r<w, (c2)

In these equations ¢ and y* denote the streamfunctions in the annular
and exterior regions respectively, and E? denotes the Spherical

28, 42

Harmonic Operator » defined by:

E2 = (3%2/3r2) + (1/r2)(82/962) - (cot8/r2)(3/28) . (c3)

C.1.2 STIPULATED BOUNDARY CONDITIONS
The boundary conditions which must be satisfied have been

stipulated in Equations (97)-(103), viz.

u (8,0) =0, (c4)
u (R%,0) = 0, (c5)
u,(s7,0) = ut(s,0) , (c6)
ug(s7,0) = u(s’,0) , c7)

1(s7,0) = (s",0) , (c8)

I
]
*
%)
. +
D
~

p(s™,0) = R (c9)
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Limit u*(r,8) = U* , (C10)
r >
where U* = [U%,0,0] in Cartesian coordinates [x,y,z]. The velocity
components Uy Ugs ug and ug appearing above are defined in terms of

their respective streamfunctions by Equations (92) and (93), viz.

u (r,0) = -(1/x%sind) (3y/38) , (c11)
uy(r,0) = (1/rsind) (3y/dx) , (c12)
u*(r,0) = -(1/r2sin6) (5y*/90) , (c13)
uk(r,0) = (1/rsine) (3y*/3r) . (C14)

For the present case of axial symmetry, T and 1% denote the non-zero
shear stress components, Trg and r?e, of their respective stress

tensorszs, viz,

1(x,0) = -ulrd (uy/r)/3r + (1/r)(3u_/30)] ,  (C15)
t*(r,0) = —u[ra(uglr)/ar + (1/r)(au§/ae)] . (Cl16)
The-pressures p and p* are defined respectively by the Navier-Stokes
Equation (84) and the Brinkman Equation (85). These equations yield,

on expansionzs, the following expressions for the radial pressure

gradients 9p/dr and 3p*/dr:

3p/or = u[(azur/8r2)+(2/r)(aur/Br)+(l/r2)(82ur/862)+(cote/r2)(Burlae)

-(Zur/rz)-(Z/rZ)(Bue/ae)-(ZuecotG/rZ)] .

(c17)
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3p*/or = u[(32u¥/8r2)+(2/r)(8u§/3r)+(l/r2)(82u§/392)+(cot6/r2)(3u§/86)

-(2u§/r2)-(2/r2)(8u3/86)-(2u3cot6/r2)-(u?/K)] .

(c18)

The pressures P and p* may be obtained by integration of these equations

with respect to r.
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C.2 SOLUTION OF THE DEFINING EQUATIONS

C.2.1 THE GENERAL SOLUTIONS
The following analysis derives in detail the results presented

and utilized in Sections II.5 and II.7 of the main text.

The Exterior Region
The boundary condition implicit in Equation (C10) may be

rewritten in component form as follows, viz.

Limit u?(r,e) = =U%cosf , (c19)

>

1}

Limit ug(r,e) U*sind . (c20)

r>w
These equations, in connection with Equations (c13) and (c14) , imply

that:

Limit ¢*(x,0) = (1/2)U%r2sin?6 . (c21)

r >
Observing the nature of this limiting solution for y* a general

solution of Equation (C2) is sought in the separable form:
y*(r,0) = L (x) + wy(x) + wy(r) + w4(r)]sin26, (c22)

where wi(r) denotes any function of ‘x such that wi(r)sinze constitutes
a particular solution of Equation (C2).

It transpires that a general solution of the above form is:
*(x,0) = (U*/2)[E/x + Fx® + e X (1) /x + BeX(1-x) /x1sin?6, (C23)

where E,F,G and H denote arbitrary constants and X represents the
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normalized radial coordinate defined by:
xix) = /e . (C24)

From a closer inspection of Equations (c21) and (c23) it follows

necessarily that H = 0 and F = 1, whence Equation (C23) becomes:
vr(x,0) = (ux/2)[E/x + x2 + ge X (14x) /x1sin?6 . (c25)
The Anmular Region

A general solution of Equation (cl), possessing the same

separable form as Equation (C22), can be shown to be28:
0(x,0) = (U*/2)[A/x + Bx ¥ cx? + Dx*] sin?e, (c26)
where A,B,C and D denote arbitrary constants.

The Global Streamfunction Distribution
The entire flowfield around the . reference sphere is completely
defined by the streamfunctions presented in Equations (c25) and (c26),

viz.

L}

P(x,9) (ux/2)[a/x + Bx + cx?% + Dx"]1sin?8 o <y <8, (C27)

(KU*/2)[E/X +x2 + Ge_x(1+x)/x]sin26 B <X <™. (c28)

LU}

V% (x,9)

The parameters 0 and § represent the particular values of X defined by:

RIVE (€29)
s/ . (c30)

o= x®)

g = x(S)
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Now that the general form of the global streamfunction has been
ascertained the global velocity, shear stress and pressure distri-

butions may be determined directly, as follows.

The Global Veloeity Distribution
The radial and tangential components of the prevailing flow-
field follow at once from Equations (C1ll)-(C14) and Equations (C27)-

(c28), thus:

ur(x,e) = -U%[A/x3 + B/x + C + Dx2]cos® s (c31)
u:(x,e) = -U%[1 + E/¥3 + Ge_x(l+x)/x3]cose , (C32)
uy (x,0) = U*[-A/2x3 +.B/2x + C + 2Dx2]sin6 , (c33)
ug(x,e) = U%[1 - E/2)3 - Ge-x(1+x+x2)/2x3]sin6 . (C34)

The Global Shear Stress Distribution
From Equations (C15)-(C16) and Equations (C31)-(C34) above it.

may be shown that:

1(x,0) = -(uu*//)[3a/x"* + 3Dx]sine , (c35)

T*(x,0) = =(iu*/Vk)[3E/x" + Ge-x(6+6x+3x2+x3)/2x”]sine.(C36)

The Global Pregsure Distribution
From Equations (C17)-(C18) and Equations (C31)-(C34) it is

possible to show that:

P(X,0) = p*(x,m/2) - (uU*/Vk)[B/x% + 10Dx]cosb, (C37)

P*(x,8) = p*(X,7/2) - (uU*/Vk)[E/2x2 - x]coso . (c38)
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c.2.2 EVALUATION OF THE ARBITRARY.CONSTANTS
The stipulated boundary conditions presented in Equations (c4)-
(C9) may be~re-expressed in terms of the normalized parameters ¢ and

g, as follows:

ur(u+,e) =0, (€39)
ue(u+,6) =0, (c40)
o (57,0) = wEE0) (c41)
5 (8750) = w50 (ch2)
(@ ,0) = T(ET,0) (c43)
o (6™,0) = PR(E,0) - (C44)

It transpires that these six conditions contain sufficient information
to permit the determination of . the six unknown arbitrary constants

A,B,C,D,E and G. Thus, by applying these conditions to the respective
global distributions presented in Equations (c31)-(c38) the following

sixvindependent'equations may be generated:

A+ Bo? + Co3 +Da> =0 (C45)
A - Ba? - 2Ca® - 4pes = 0 (C46)
A + BR2 + CB3 + ppd = B3 + E + ce P (1+8) » (C47)
A - B2 - 2083 - 4D8° = 283 + E +Ge P (1+B+8%) » (C48)
6A + 6DR3 = 6E + ce B (6+6p+382+8%) » (c49)

9B + 20083 = -283 + E . (c50)
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Equations (C45)~(C50) comstitute six simultaneous equations in.the
s8ix unknowns A,B,C,D,E and G; the solution of these equations can be

shown to be:

A =‘6a3(-286-765-158“—1563+36“a2-83a3+363a2+82a3)/J(a,B) : (C51)
B = 6a(636+2135+4ss“+4ss3-534a2-533a2-ea5-a5)/J(a,s) s (€52)
C= 3(-885-2885-606“-6083+583a3-562a3+38a5+3a5)/J(a,B) , (C53)
D = 3(4B“+4B3—3B3a+382a-3a3-a3)/J(G.B) , (c54)
E =.2(-439-2438-6037-6036+938a+45s7a-1ossa3+12636a-3035a3
+216Bsa+9B“a5-606“a3+2708“a-483u6+983a5

-6OB3a3+27OB3a-68a6-6a6)/J(a,B) » (C55)
G = 6eB(2036-2735a+ss3a3-9os3a+2a6)/J(a,s) , (c56)
where:

J(a,B) = (-436-2435-18034-18033+9s5a+453“a-1os3a3+18033a

-3082a3+96u5-4a6+9a5) . (c57)

C.2.3 THE RESISTANCE OFFERED BY THE REFERENCE SPHERE

The normal resistance force, Fr, and the tangential resistance
force, Fe, offered by the reference sphere may be calculated by inte~
grating the local pressure P(,8) and the local shear stress T(x,0)

respectively over the entire surface thereofzs, thus:

T
F_ = 2mR%[ [p(a,0)cos0] sino do , (c58)
0

m™
Fy = 21R2[ [-1(0,0)s1n6] sind do . (c59)
0
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After substituting for p(w,6) and 1(0,0) from Equations (C37) and (c35)

respectively, it is found that:

rx]
n

6TUU*R (-2B~20D03) /90, (C60)

6TUU*R (4A+4Da5) /33 . (c6l)

i
u

The total resistance.force, F, offered by the reference sphere will

therefore be:
F=F_ +F, = 6miU*R(12A-2Bo?~8Da5) /903 . (C62)

After substituting for A,B and D from Equations (C51), (C52) and

(C54) respectively the ultimate expression for F is obtained, viz:

F = 6miU*R E(a,B) , (c63)
where:
£(a,B) = 4(-685~2185-45p"-458%+58%a2+58302+805+05) /T (a,B) . (C64)

It has been demonstrated in the main text.(Table 3) that as € + 1.0,
£(a,B) + 1.0 so that Equation (C63) then approaches Stokes Law28 for

creeping flow past a single isolated sphere, viz.

= £3
FStokes 6TUU*R (C65)
C.2.4 THE TOTAL RESISTANCE OFFERED BY AN ARBITRARY SWARM OF SPHERES
A randomly textured swarm of spheres possessing the following

size distribution will be considered:
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Total number of spheres : N ,

Number of spheres having radius R.i 1 Ni i =1,2,3, ceesn),
Fraction of spheres having radius R, ¢ fi = Ni/N’

Size Ratio : vy = Ri/R s

where R0 denotes the radius of any chosen species of sphere present,

for example the radius of the most prolific.

The Original System
This analysis has heretofore considered an unbounded swarm of
sphergs. This implies an absence of all wall and end effects so that
U* will be uniformly constant throughout and, in consequence,
V%Hﬁ = 0. Under these circumstances the Brinkman Equation (82) reduces
to the familiar Darcy Equation (81) as previously noted in Section II.2

of the main text. This means that:
(u/k)U% = pAp*/ax (C66)

where Ap* denotes the pressure differential across the system and Ax
its overall length. Letting A denote the cross-sectional area of the
System orthogonal to the flowfield, the total resistance offered by

the swarm of spheres will be:

starm = Ap* A . (c67)

Substituting for Ap* from Equation (C66) then yields:

= LU* = PU*Vo2 /g2
Fowarn = MU*AAx/k = uU VaS/RD (c68)

n this equation V denotes the total volume of the system (AAx) and «
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Total number of spheres : N ,

Number of spheres having radius Ri H Ni 1=1,2,3, ceasnl),
Fraction of spheres having radius Ri : fi = Ni/N’

Size Ratio vy = Ri/R s

where R.0 denotes the radius of any chosen species of sphere present,

for example the radius of the most prolific.

The Original System
This analysis has heretofore considered an unbounded swarm of
sphergs. This implies an absence of all wall and end effects so that
U* will be uniformly constant throughout and, in consequence,
V%gf = 0. Under these circumstances the Brinkman Equation (82) reduces
to the familiar Darcy Equation (81) as previously noted in Section II.2

of the main text. This means that:
(u/x)U* = Ap*/ax (c66)

where Ap* denotes the pressure differential across the system and Ax
its overall length, Letting A denote the cross-sectional area of the
system orthogonal to the flowfield, the total resistance offered by

the swarm of spheres will be:

= *
starm Ap* A . (c67)

Substituting for Ap* from Equation (C66) then yields:

= yU* = pU*Vg2/R2
starm = WU*AAx/k = U VaolR0 . (c68)

In this equation V denotes the total volume of the system (AAx) and «
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has been replaced according to Equation (c29), viz.

K = R%/a% . (c69)

The total volume of the system may be expressed in terms of the total

particle volume and the porosity as follows:

V = J(4n/3) RIN;/(1-e) = (4m/3)R3N ]y3E, /(=€) . (c70)
i i :

Substituting this expression for V into Equation (C68) then yields
the following expression for the total resistance offered by the

original swarm of spheres, viz.

= 2 - 3
Farm 6mHU*R N{205/9 (1 s)}gyifi . (c71)

The Modelled System
According to Equation (C63) the resistance force, Fi’ offered

by a reference sphere of radius Ri will be:

E = 6TUUR, E(a;,8,) = 6muU*R Y, E(ai,Bi) > (c72)

where:
o = Ri/fK_ . (€73,
B = si//‘ . (c74

There still exists a constant ratio between Bi and oy according to
Equation (116) of the main text, since each sphere within the swarm

may be considered to be the reference sphere in turn, thus:
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1 =0 (A-e)"1/3 (c75)

Frode1 = g F,N, =,N§ Ff . (C76)

as follows s thus:
4 =R /¥ = (R /Vi) R, /R)) = %Yy (c80)

Bi = cti(l-e:)'l/3 = czoyi(l-e)'l/3 . (c81)
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After introducing these expressions into Equation (C79) it becomes
apparent that o and ¢ are related by an exceedingly complicated

function, viz.
2 3¢ - - —c)—1/3) =
208 § y3t; - 9(1-¢) E y,£,E gy a0y, Ame)72/3) =0 (c82)

Provided the size distribution (fi’yi) of the spheres is known then
0q may be extracted from Equation (C82) as a function of € by an
iterative procedure.
C.2.6 COMPARISON OF THE TOTAL RESISTANCE WITH THAT PREDICTED BY
STOKES LAW
The total resistance of the original swarm of N spleres, assum—

ing each sphere to be hydrodynamically independent of the remainder,

would be given by Stokes Equation (C65) as:

F = Y6muU*R
i

(N, = 6miURN gyifi . (c83)

Stokes.

It is instructive to compare this expression with the resistance pre-
dicted by the presented theory. Thus, from Equations (€C71) and (C83)

it follows that:

W

= FStokes/starm = {9(1_€)/Z“S}EEYifi]/[gygfi] . (c84)

Hence, for a.specified porosity € and .a known size distribution

(fi’yi)’ a knowledge of % is sufficient to evaluate W.

Monosized Spheres
For a system composed exclusively of monosized spheres

(n=1,1=1, fi =1, vy =.1 and 0y = o) Equations (C82) and (C84)
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reduce to?
202 - 9(1—s)€(ot,ot(1-fs)"1/ 3) =0, (c85)
0 = 9(1-e)/20% = 1/s(a,a(1-s)-1/3) , (C86)

Therefore, for 2 specified porosity € the corg:e5ponding yalue of o
may be obtained from Equation (c85) by an.iterative procedure;

W may then be computed. directly from Equation (c86) .
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APPENDIX D

INCOMPRESSIBLE CREEPING FLOW THROUGH

A FRACTURED POROUS MEDIUM
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FIGURE 28. AN IDEALIZED FRACTURE WITHIN A PETROLEUM RESERVOIR
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D.2 THE DEFINING EQUATIONS AND BOUNDARY CONDITIONS

D.2.1 FUNDAMENTAL DIFFERENTIAL EQUATIONS

The Brinkman.Equation (82) will be employed to describe the
hydrodynamic conditions within each of the porous regions, whilst the
Navier-Stokes Equation (80) will be acknowledged within the separating

channel of free fluid space, thus:

=(u/ky)uf + u(dzuf/dyz) = dp#/dx h<y<®, (1)
u(d2u/dy?) = dp/dx -h<y<h, (D2)
-(u/x,)uf + u(dzuizc/dyz) = dp%/dx ~ <y <-=h, 3)

At great distances from the fracture the velocity profiles will become’

uniformly constant, that is:

Limit uw§(y) = U} , (D4)
y*+®

Limit-uﬁ(y) = Ug . (D5)
y -

Substituting these expressions into Equations (D1) and (D3) yields:

_(M/Kl)U{ .dpi/dx , (D6)

- R = %
(u/k,)U% = dpg/dx . (07)
However, from considerations of equilibrium it is necessary that

dp#/dx = dp/dx = dp¥/dx = constant . (08)
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In view of these equalities the substitution of Equations (D6) and

(D7) into Equations (D1)-(D3) ultimately yields:

"uf/Kl + dzuf/dy2 = -UI/Kl h<y<o, (D9)
d%u/dy? = U%/xy -h<y<h, (p10)
-uk/k, + d2u§/dy2 = -U%/x, — <y <-h, (p11)

D.2.2 STIPULATED BOUNDARY CONDITIONS
From considerations .of continuity and equilibrium at the

extrema of the channel the following boundary conditions must be

stipulated:

") = u@) , (®12)
+ -

@®) =th) , (p13)
+ -

u(-h') = ui(-h ) , (D14)
+ -

7(-h’) = 13(-h ) . (D15)

In these equations 1%, Tt and 1% denote the tangential shear stresses,

2
defined by:
5 = -u(duf/dy) , (D16)
T = -u(du/dy) , (017)
15 = -u(duﬁ/dy) . (D18)
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D.3 SOLUTION OF THE DEFINING EQUATIONS

The solutions of Equations (D9) - (D11l) which satisfy the

boundary conditions stipulated in Equations (D12)-(D15) tramspire to

be:
uk(n) = U§(1+A§e'”) §<n<w, (p19)
u(n) = U$(B+Cn-n?/2) -8 <n<s, (D20)
u¥(n) = Ug(l+A’2°eYn) -0 < <=6, (D21)
U} = U’i/yz . (D22)

In these equations n denotes the normalized variable defined by:
n =yl . (023)

The parameters § and y are defined by:

§ =hlvk, , (D24)
Yy = @; s (D25)
and Ai, B, C and.Aﬁ possess the specific forms:
at = e -y2+26v4262y2) /U(8,Y) (D26)
B = (Lty+8+28y+8y2+362y/2+362y2/2+83v2) M(8,Y) (D27)
C = =(L-y2+8y=8v2) M(8,Y) (D28)
A% = -Yeéy(l—YZfZGYZ—ZGZYZ)/M(G,Y) , (D29)
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where:
M(8,v) = y(1+y+28Y) . (D30)

Equations (D19) - (D30), being of a rather general nature, are

capable of several interesting specializations, as follows.
One Medium Impermeable

Supposing that medium 2 is impermeable (Kz = 0, vy = ») then the

prevailing flowfield will be described by:

u(n) = Uk (+ate™) (D31)

u(n) = Uk(B+Cn-n?/2) , (D32)

uf(n) =0 , (D33)
where:

a% = -e®(1-262)/ 1426) , (D34)

B = §(1+38/2462)/ (1+26) , (D35)

C = (1+6)/(1+28) . (D36)

From these equations it is clear that u(-§) = 0, as required for non-

slip fluid flow past a solid surface.

Both Media Possessing an Equal Permeability
Under these conditions (kz = K15 ¥ = 1) the flowfield will be

described by:
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uk(n) = U§(1+se6'“) , (037)
u(n) = Uf(l+&+62/2*n2/2) . (D38)
uj(n) = U{(1+ae6+“) . (D39)

The flowfield is therefore symmetric about n = 0, as would be expected.

Both Media in Contact
In this case'(h = 0, § = 0) the channel separating‘the two media
ceases to exist and, in effect, constitutes a discontiﬁuity between

them. The flowfield will then be described by:

uf(n) = Uf(l+ake™) (D40)
up(n) = (U4/v?) (rage™™ (D41)
where:
A% = A-v)/v ., (D42)
A% = (-1) . (D43)

Furthermore, when the permeabilities of the two media become equal the
flowfield will become uniformly constant. Under these conditions

(y = 1) Equations (D40) and (D41) reduce to the necessary forms, viz.

uf(n) = uf(n) = U§ . (D44)
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D.4 COMPARISON OF THE PRESENTED SOLUTION WITH THE APPROXIMATE

REPRESENTATION OBTAINED USING THE DARCY EQUATION

When estimating liquid flow through fractured porous media it
has been customary44 in the past to adopt the Darcy Equation (81) within
the porous regions and the Poiseuille Equation28 within the separating
channel. Thus, when both media possess equal permeabilities (which is

usually the case in practice) the flowfield would be approximated by:

ui(n) = U{ § <n<ow, (D45)
u(n) = U’l‘(62/2-n2/2) -§<n<é8, (D46)
uE(“) = U{ 0 < <=8, (D47)

These profiles are depicted schematically in Figure 29. It is
immediately apparent that the above equations do not.sdtisfy the
continuity boundary conditions implicit in Equations (p12) and (D14),

viz.
ui(é) = u(s) , (D48)
u(=8) = uﬁ(-&) . (D49)

Moreover, they are also unable to satisfy the equilibrium conditions

implicit in Equations (D13) and (n15), viz.

Tf(é) (8) , (D50)

1(=8) T%(-G) . (D51)
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D.4] 153

In order to obtain an-estimate of the relative error, A,
incurred by adopting this approximate representation of the flowfield
it will be instructive to compare the mean.velocity, G, within the
channel as predicted rigorously from Equation (D38) with that pre-

dicted approximately from Equation (D46), viz,

A= (u- uapprox)/a , (D52)
where:
- +3
u= (1/28)f UF (1+6+82/2-n2/2) dn = Uy (1+6+62/3) , (D53)
-8
I 18 2 2 2
Uapprox = (1/28) {a U¥(8%/2-n2/2) an = Ux(82/3) . (D54)

A = (1+8)/(1+6+82/3) (D55)

This equation predicts that for § < 300 the relative error.A will be
8reater than 1Y%. The-immediate-inference is that the incurred error
will be of Practical significance‘for sufficiently thin‘fractures.
However, the thickness (2h) of a typical petroleum reservoir fracture
would be of the order of-1 mm,, with ¢ being in the rdnge 500-5000,
In practice, therefore, the quantitative error incurred by employing
the Darcy Equation (81) rather than the Brinkman»Equation (82) wil1l

usually be negligible,
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E.1 DISCUSSION OF THE SYSTEM

In many naturally occurring rock formations there occur distinct
cavities of various shapes and sizes. Having particular significance in
Canada are those encountered in oilfields formed within dolomite reefs.
An understanding of liquid flow through such two-porosity systems is
therefore desirable. In order to gain physical insight into this
problem it will be instructive to consider incompressible creeping flow
through the idealized system consisting of an unbounded, isotropic
porous medium which contains an isolated spherical cavity. As yet,
there does not appear to be available a solution to this important
problem.

This analysis will also serve to demonstrate the necessity and
effectiveness of the Brinkman Equation (82) in solving another,

hitherto intractable, two-region problem.
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E.2 THE DEFINING EQUATIONS AND BOUNDARY CONDITIONS

E.2.1 FUNDAMENTAL DIFFERENTIAL EQUATIONS
The Navier-Stokes Equation (80) will describe the flowfield
within the cavity (of radius S); this equation may be expressed in

terms of the streamfunction y as per Equation (94), viz.
E2(E2y) = 0 0<r<s, (E1)

The Brinkman Equation (82) will be acknowledged to describe
the flowfield within the isotropic porous medium (of permeability «);
in terms of the streamfunction y* this equation assumes the following

form (Equation (95)):
=(1/c)E2p* + E2(E2y%) = 0 S<r<ow, (E2)

E.2.2 STIPULATED BOUNDARY CONDITIONS
The following boundary conditions must be stipulated for this

physically realistic problem:

p(s™,0) = pk(s*,e) , (E3)
w(s”,8) = t(s¥,0) , (E4)
v, (57,0) = uk(s%,0) , (E5)
uy(s7,0) = uwr(s’,0) , (E6)
Limit w*(r,0) = U* , (E7)

r > ©

The arguments on which the above boundary conditions are based are
presented in Section II.4.2 of the main text. In addition, a

restriction demanding finiteness of the flowfield must be imposed,
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in particular that

u_(0,8) must be finite . (E8)
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E.3 SOLUTION OF THE DEFINING EQUATIONS

E.3.1 THE GLOBAL STREAMFUNCTION DISTRIBUTION
The solutions of Equations (El) and (E2) which satisfy the

boundary conditions implicit in Equations (E3)-(E8) can be shown to

be:
0(x,0) = (<U*/2)[Cx? + Dx*]sin6 0<x<B, (89)
P*(x,0) = (U*/2)}[E/x + x? + Ge X(1+x)/x]sin%6 . B <x <= , (E10)

where:

x =t/ , (E11)
B =8/Vk , (E12)

and:
C = (6B3+2182+458+45) / (B3+6B2+45p+45) , (E13)
D = -3(B+1)/(B3+682+45p+45) , (E14)
E = 283 (83+682+158+15) / (B3+682+458+45) , (E15)
G = -3083¢®/ (83+682+458+45) . (E16)

When the cavity ceases to exist (S = 0, B = 0), Equation (E10)
reduces to the limiting form Y% = (1/2)U%r2sin?6, This is the familiar
streamfunction representation28 of an undisturbed flowfield, U*, as

would be expected.
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