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Abstract

This document presents a case study in the as-yet unexplored avenue of ex-

ploiting running digital sum (RDS) statistics to achieve reduced error rates

in the detection of balanced guided scrambling (GS) coded sequences. As

demonstrated in this research, balanced GS codes are a good candidate for

this approach as the properties of GS coded sequences that produce de-

sirable spectral results translate well to desirable RDS statistics for detec-

tion. Through software simulation of GS coded sequences, it is demonstrated

that the RDS can be accurately approximated as a cyclostationary Gaussian

Markov process. Using an intelligent detection technique developed in this

work that takes these RDS statistics into account, error rates over additive

white Gaussian noise (AWGN) channels are shown to be significantly re-

duced. While this research focused on GS coded sequences selected using the

minimum square weight (MSW) criteria, the document proposes the devel-

opment of lower rate codes with high-order spectral-shaping properties that

might lend themselves well to this intelligent detection technique achieving

even greater reduction in error rates.
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Chapter 1

Introduction

This document explores exploiting the statistical properties of balanced guided

scrambling (GS) codes to achieve reduced error rates when detecting GS

coded sequences across signal corrupting channels. To accomplish this an ap-

proximate model is created to statistically characterize GS coded sequences

and an intelligent detection technique is applied that takes this model into

consideration to reduce the probability of erroneous sequence detection. Both

the GS coding technique and the aforementioned intelligent detection tech-

nique are implemented in software, therefore the model and results are gener-

ated largely through computational intensive simulations. The software and

all associated data has been made available to the reader as part of a free

and open-source software suite.1

1.1 Overview

The reader should first familiarize themselves with the notation and conven-

tions outlined in section 1.2 on the following page. Chapter 2 on page 6 covers

much of the background material with which the reader should be familiar,

1Guided Scrambling GNU Radio Module: https://github.com/eddic/gr-gs.

1
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1.2. NOTATION & CONVENTIONS

touching on both constrained sequence coding and signal detection while

focusing on guided scrambling. Chapter 3 on page 41 explores various meth-

ods and their justifications for building approximate statistical models of GS

coded sequences and proposes an algorithmic approach to intelligently detect

these sequences. A rudimentary explanation of the techniques used to im-

plement the approach in software is also included in this chapter. Chapter 4

on page 62 itemizes the results, highlighting the reduced sequence detection

error rates, for two specific code configuration cases, and outlines additional

observations of note made while generating these results. From these results

chapter 5 on page 70 draws conclusions as to the value this work might hold

while exploring a possible future research avenue that was observed.

1.2 Notation & Conventions

Throughout this document the following notation and conventions are used.

Normalized frequency, denoted f̂ , is a unitless measure of frequency that

is derived from the actual frequency f normalized by the signal centre fre-

quency f0 and baud rate fs = 1/Ts according to equation (1.1).

f̂ =
f − f0
fs

= (f − f0)Ts (1.1)

For baseband as opposed to passband signals, f0 = 0 and f̂ is simply f
fs
.

Normalized spectral density, Ŷ (f̂), is also unitless and is a measure of

spectral density derived from the actual spectral density Y (f) as a function

of normalized frequency f̂ . It is modified by centre frequency f0 and baud

rate fs as well as the symbol energy Es.

Ŷ
(
f̂
)
=

Y (f)√
fsEs

=
Y
(
f̂fs + f0

)
√
fsEs

(1.2)

This normalization process ensures that the total energy per symbol of the

2



1.2. NOTATION & CONVENTIONS

normalized signal is always equal to 1.

∞∫
−∞

⏐⏐⏐Ŷ (f̂)⏐⏐⏐2 df̂ = 1

The normalized power spectral density (PSD) is simply the square of the

magnitude of the normalized spectral density:

⏐⏐⏐Ŷ (f̂)⏐⏐⏐2 = |Y (f)|2√
fsEs

=

⏐⏐⏐Y (f̂fs + f0

)⏐⏐⏐2
fsEs

(1.3)

Noise power, n0, refers to the average amount of noise energy per sym-

bol per complex axis. Given an additive white Gaussian noise source with

standard deviation σ:

n0 = σ2 (1.4)

Thus for real valued signals n0 equals the total noise energy per symbol

whereas for complex values signals the total noise energy per symbol is 2n0.

Identifiers for sequences, vectors and matrices are expressed in bold font.

For example X = {xk}Kk=1 identifies a sequence X with elements xk defined

for k ∈ [1, k].

Random variables (RV) are always capitalized (X) but not all capital-

ized variables imply a random variable. Random processes (RP) contain a

subscript k (Xk). The use of the subscript n (Xn) refers specifically to a

cyclostationary random process. All probabilistic functions are expressed us-

ing blackboard fonts. Table 1.1 on the following page lists all such functions

used in this document.

Throughout this document probability mass functions (PMF) will be con-

structed by sampling continuously defined functions. The symbol ζ will be

used exclusively to denote a continuity correction ensuring a valid PMF. As-

suming a continuously defined function f and a discrete random variable X,

3



1.2. NOTATION & CONVENTIONS

P[X = x] Probability that RV X = x or RP Xk = x over all k

P[Xk = x] Probability that RP Xk = x at index k

P[Xn = x] Probability that the cyclostationary RP Xn = x at position

n within the cyclic period N .

E[X] Expected value of RV X or RP Xk over all k

E[Xk] Expected value of RP Xk at index k

E[Xn] Expected value of cyclostationary RP Xn at position n within

the cyclic period N .

V[X] Variance of RV X or RP Xk over all k

V[Xk] Variance of RP Xk at index k

V[Xn] Variance of cyclostationary RP Xn at position n within the

cyclic period N .

CXX [τ ] Autocovariance of weakly stationary RP Xk

CXX [n, τ ] Autocovariance of weakly cyclostationary RP Xk. n ∈ [1, N ]

where N is the cyclic period.

CXX [k, τ ] Autocovariance of non-stationary RP Xk.

RXX [τ ] Autocorrelation of weakly stationary RP Xk

RXX [n, τ ] Autocorrelation of weakly cyclostationary RP Xk. n ∈ [1, N ]

where N is the cyclic period.

RXX [k, τ ] Autocorrelation of non-stationary RP Xk.

Table 1.1: Probabilistic functions used in document

4



1.2. NOTATION & CONVENTIONS

the PMF is defined as:

P[X = x] = ζf(x)

where

ζ =
1∑

∀x

f(x)

thereby ensuring that∑
∀x

P[X = x] = 1

Digital symbols can be expressed in two states. A symbol x will represent

a value from the field GF(2M) while x̃ with a tilde will represent a value from

the signalling constellation. For example, the binary non-return-to-zero case

would be:

x ∈ GF(21) ∈ {0, 1}

x̃ ∈ R ∈ {−1, 1} =

⎧⎨⎩−1, x = 0

1, x = 1

With the 4-state quadrature amplitude modulated case this might be:

x ∈ GF(22) ∈ {0, 1, 2, 3}

x̃ ∈ C ∈ {1 + j,−1 + j, 1− j,−1− j} =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 + j, x = 0

−1 + j, x = 1

1− j, x = 2

−1− j, x = 3

The caligraphic symbol F is used exclusively to denote a Fourier trans-

form while subscripting indicates which variables are tranformed. For ex-

ample Fτ→ν{g(τ)}(ν) denotes a Fourier transform of g(τ) with the time

parameter τ transformed to the frequency parameter ν.

5



Chapter 2

Background

The research topics covered by this document straddle two sub-fields in the

realm of communications. For this reason and in an effort to maintain brevity,

the background information in this chapter outlines a limited number of rel-

evant details from the areas of channel coding and signal detection. This

treatment assumes a background in both probability theory [1] and informa-

tion theory [2].

2.1 Channel Coding

Channel coding in general, and constrained sequence coding in particular,

seeks to encode a sequence of digital symbols so as to ensure that the resulting

sequence satisfies a set of constraints [3].

One of the simplest examples of a constraint often placed upon a sequence

involves the run length. Should a sequence of digital symbols contain a long

subsequence of identical symbol values, recovering timing information for

detection may become unreliable [4, p. 51]. Thus one might design a code

to ensure that, regardless of the source data, runs of identical symbols are

limited to a length at most k + 1. Figure 2.1 on the next page presents an

6



2.1. CHANNEL CODING CHAPTER 2. BACKGROUND

k
=

2
k
=

7

Figure 2.1: Run length limited sequence examples. The top se-

quence satisfies a k = 2 constraint while the bottom has k = 7.

example of run-length limited binary sequences. Since the pool of acceptable

symbol sequences is now limited, the only way to maintain the same flow

of information is to allow for redundancy in the channel while increasing

the baud rate. The concept of capacity is introduced in [3] as the maxi-

mum amount of information that can flow through a constrained channel

per encoded symbol or per second. As shown in [4, p. 60], the capacity for

run-length limited channels with k ≫ 1 is:

C(k) ≈ 1− 2−k

4 ln 2
(2.1)

with units of bits of information per coded symbol.

Although often considered a framing strategy, the method proposed by

Gordon Bell [5] for use in universal asynchronous receiver-transmitter (UART)

devices is one of the simplest and most ubiquitous run length limited codes.

The idea is to encapsulate a source word of data in start and stop sym-

bols. The example in figure 2.2 on the following page is the most common

configuration used in RS-232/485/422 systems [6, p. 1038].

The code rate R is a measure of how much redundancy is introduced by

7



2.1. CHANNEL CODING CHAPTER 2. BACKGROUND

S
to
p

S
ta
rt

S
to
p

S
ta
rt

Figure 2.2: UART 8N1 style bit sequence with binary source

words of length 8 preceded by a single start bit (1) and termi-

nated by a single stop bit (0).

the code in order to meet the constraints. When both source words and

codewords have fixed length, the code rate is defined as:

R ≡ source word length

codeword length
(2.2)

The example in figure 2.2 contains 2 bits of redundancy in the start/stop

section with source words of length 8, therefore it has a code rate of:

R =
8

8 + 2
=

4

5
= 0.8

Due to the start/stop bits, the run length of 1s or 0s in the 8N1 configuration

is always bounded at 9, thus k = 8. However from equation (2.1) on the

preceding page, the capacity of a run length limited code with k = 8 is

C(k = 8) ≈ 1− 2−k

4 ln 2

⏐⏐⏐⏐
k=8

≈ 0.998

A capacity of 0.998 implies that a code should exist for which only 1 out of

every 500 bits need be redundant. From this one can conclude that although

the UART strategy is simple to implement, it is not very efficient in terms

of maximizing the flow of information across the channel. To compare codes

the code efficiency, η, indicates how close a code is to capacity [4, p. 96]:

η =
R

C
(2.3)

8



2.1. CHANNEL CODING CHAPTER 2. BACKGROUND

Source Word Codeword

0 x0

1 01

Table 2.1: MFM coding rules. The x shall always be the comple-

ment of the last bit of the previous codeword.

Based on this expression, the efficiency of this UART configuration is 0.8
0.998

=

80% while the maximum code efficiency is η = 100%.

Often, constrained sequence encoders are implemented with a state de-

pendent table that maps source words directly to code words. To understand

their operation it is helpful to examine them as both mapping tables and fi-

nite state machines. The modified frequency modulation (MFM) code is a

popular run length limited code with k = 2.1 See table 2.1 for the direct

A B
0/00

1/01

0/10 1/01

Figure 2.3: MFM state diagram. The input/output mapping is

on the state transition.

source word to codeword mapping and figure 2.3 for the state diagram. A

codeword ending in 0 puts the system into state A while a codeword ending

in 1 puts it into state B.

Input: 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1

Output: 01001001010101001001001010010001

1This analysis of MFM neglects precoding and its effects. See [4, p. 98] for clarification.

9



2.2. BALANCED CODES CHAPTER 2. BACKGROUND

Note that although the encoder is state dependent, the decode process is

entirely state independent: the second bit of the codeword is decoded as the

source bit. Effectively all that is happening is a clock bit is being inserted

between source bits. The ability of a code to be decoded in a state indepen-

dent fashion is desired as it ensures detection errors do not propagate into

subsequent codewords [4, p. 104].

2.2 Balanced Codes

Another constraint often placed on a sequence, and it is this constraint that

is relevant to this research, is that the sequence is balanced. Balanced, in

this context, means that the sum of digital symbols over time is bounded.

This sum, as a sequence progresses, is referred to as the running digital sum

(RDS). Assuming a source symbol sequenceX = {xk}Kk=1, xk ∈ GF(2M), x̃k ∈
C, the RDS sequence (Φ = {ϕk}Kk=0, ϕk ∈ C) is defined as:

ϕk = ϕk−1 + x̃k = ϕ0 +
k∑

n=1

x̃n (2.4)

Figure 2.4 on the next page illustrates an RDS sequence with source symbols

xk ∈ GF(21), x̃k ∈ {−1, 1}, ϕk ∈ Z.
The RDS of an uncoded sequence can be described by its statistical char-

acteristics as a random process (RP) Φk from uncorrelated symbols Xk where

the probability of 1 and 0 are p and 1− p, respectively. This is clearly a ran-

dom walk [1, p. 317] but to characterize this, Xk will be first redefined in

terms of a Bernoulli distributed RP X ′
k:

P[Xk = x] =

⎧⎨⎩1− p x = 0

p x = 1

X ′
k ∼ Bernoulli(p)

10



2.2. BALANCED CODES CHAPTER 2. BACKGROUND

−1

0

1

S
y
m
b
ol

(x̃
k
)

−3
−2
−1
0
1
2

0 5 10 15 20

R
D
S
(ϕ

k
)

Time Interval (k)

Figure 2.4: xk ∈ GF(21), x̃k ∈ {−1, 1} symbol sequence and its

corresponding RDS sequence.

Xk = 2X ′
k − 1

Φk = ϕ0 +
k∑

n=1

X̃k = ϕ0 +
k∑

n=1

(
2X̃ ′

k − 1
)
= ϕ0 + 2

k∑
n=1

X̃ ′
k − k

In [1, p. 54] it is shown that a sum of independent and identical Bernoulli

distributed random variables gives a binomial distributed random variable.

Yk =
k∑

n=1

X̃ ′
k ∼ B(k, p)

Φk = ϕ0 + 2Yk − k

E[Φk] = ϕ0 + 2E[Yk]− k = ϕ0 + 2kp− k

E[Φ] = Undefined ⇔ k → ∞

V[Φk] = V [Φ0 + 2Yk − k] = 4V [Yk] = 4kp(1− p)

V[Φ] = Undefined ⇔ k → ∞

11



2.2. BALANCED CODES CHAPTER 2. BACKGROUND

It can therefore be seen that the first order statistics of the RDS are effectively

unbounded if k is also unbounded. Although the mean will collapse to ϕ0 in

the case of a symmetric2 channel, the variance will continue to diverge with

k so long as p ̸= 0 or p ̸= 1.

A balanced code will therefore seek to ensure that the mean E[Φ] and
the variance V[Φ] are minimized regardless of k. To increase predictability

regardless of the source data, it is also preferred that these statistics be

independent of the source data statistics. More specifically the balanced

code seeks to minimize the sum of the square of the mean and variance,

E[Φ]2 + V[Φ] = E[Φ2].

A simple and commonly used balanced code is the Manchester code. See

table 2.2 for the coding rules and figure 2.5 on the next page for an example.

Note that the RDS at the end of each codeword is always zero. From this

it is obvious that the RDS can never surpass 1 or −1, but a more rigorous

Source Word GF(21) Codeword Mapped Codeword

0 01 {−1, 1}
1 10 {1,−1}

Table 2.2: Manchester Coding Rules.

analysis of its statistics is still warranted.

To calculate the mean RDS E[Φ] of a Manchester encoded RP, each code-

word can be treated as as its own symbol. This derivation assumes the same

source statistics discussed above where the probability of 1 and 0 are p and

1− p, respectively.

E[Φ] = P[X = 0]
−1 + 0

2
+ P[X = 1]

1 + 0

2

=
p− (1− p)

2
= p− 1

2
2In a binary symmetric channel, p = 0.5.

12



2.2. BALANCED CODES CHAPTER 2. BACKGROUND

S
ou

rc
e

C
o
d
ed

Figure 2.5: Sample Manchester coded sequence

Thus the mean RDS is completely independent of k, but is dependent on the

source statistics. Changes in p will cause the mean RDS value to vary in the

range (−1/2, 1/2).

The variance can be calculated using similar means.

V[Φ] = E[Φ2]− E[Φ]2

= P[X = 0]
(−1)2 + 02

2
+ P[X = 1]

12 + 02

2
−
(
p− 1

2

)2

=
(1− p) + p

2
−
(
p− 1

2

)2

=
1

2
−
(
p− 1

2

)2

Like the mean, the variance is independent of k but has a dependency on

the source statistics. It will vary in the range (1/4, 1/2). Figure 2.6 on the

following page plots the dependencies.

Although the mean and variance of the RDS are dependent on the source

statistics p, E[Φ2] = V[Φ]+E[Φ]2 is constant at 1/2. Thus Manchester coding

sets E[Φ2] = 1/2 regardless of the source statistics p and the position in the

sequence k.

13
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−0.6

−0.4
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0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1
p

E[Φ]
V[Φ]
E[Φ2]

Figure 2.6: Manchester coding RDS (Φ) first-order statistics.

2.2.1 Spectral Shaping

Now consider why one might seek to control the RDS statistics. At first

glance the benefits seem to be similar to that of the run length limited codes

discussed in section 2.1 on page 6: the Manchester code discussed in sec-

tion 2.2 is clearly limited to run lengths of 2. It turns out that this property

of balanced codes, although beneficial, is secondary to the larger goal of

spectral shaping [4, p. 195].

The raised cosine pulse, as seen in figure 2.7 on the following page, is

one of the more commonly implemented pulse shapes in digital systems. It

satisfies the Nyquist criteria for a pulse with zero inter-symbol interference

(ISI)3 and is band-limited [7, p. 134]. Equation (2.5) on the next page defines

3Assuming a channel free of distortion.
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Figure 2.7: Frequency domain representation of a normalized

raised-cosine pulse.

its normalized spectral density.

Ĥ
(
f̂
)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1,

⏐⏐⏐f̂ ⏐⏐⏐ ≤ 1−β
2

cos2
(

π
2β

[⏐⏐⏐f̂ ⏐⏐⏐− 1−β
2

])
, otherwise

0,
⏐⏐⏐f̂ ⏐⏐⏐ ≥ 1+β

2

(2.5)

The roll-off or excess-bandwidth factor, β, falls in the range [0, 1]. This

parameter allows a trade off between total bandwidth utilization and pulse

decay in the time domain. In channels that are more susceptible to distortion,

it may be appropriate to choose a value of β closer to 1 in order to mitigate

the effects of inter-symbol interference. In channels with heavy bandwidth

constraints, it may be appropriate to choose a value of β closer to 0.

When digital signals are represented spectrally, often only the contribu-
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tion of the pulse itself is considered. Since the information in each symbol is

carried by the pulse, the energy spectral density of a single symbol in a digi-

tal signal is equivalent to the energy spectral density of that pulse. However,

for a sequence of symbols, the statistics of the source data also contribute. If

the statistics of the source data are unknown, however, the pulse spectrum,

e.g. figure 2.7 on the preceding page, is the best approximation.

In the event that the source statistics are known, the pulse-based spectral

approximation can be refined. The noiseless signal traversing the channel y(t)

is actually the convolution of the continuously defined transmitted symbols

x(t) with the pulse shape h(t):

x(t) =
K∑
k=0

x̃kδ(t− kTs)

= x̃0δ(t) + · · ·+ x̃kδ(t− kTs) + · · ·+ x̃Kδ(t−KTs)

y(t) = x(t) ∗ h(t)

Y (f) = X(f)H(f)

|Y (f)|2 = |X(f)|2|H(f)|2 (2.6)

Thus the energy spectral density of the signal is the product of the energy

spectral density of the pulse and the symbol sequence. It is of interest then

to calculate the energy spectral density of a symbol sequence.

A sequence of symbols, X = {xk}Kk=0, xk ∈ GF(2M), x̃k ∈ C, with symbol

period Ts, can be represented as a sequence of impulses. Its energy spectral

density can be evaluated as follows.

X(f) = F{x(t)} =
K∑
k=0

x̃kF{δ(t− kTs)} =
K∑
k=0

x̃ke
−2πjkTsf

|X(f)|2 =

⏐⏐⏐⏐⏐
K∑
k=0

x̃ke
−2πjkTsf

⏐⏐⏐⏐⏐
2

= |x̃0|2e−2πj(0)Tsfe2πj(0)Tsf

16
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+ x̃0x̃
∗
1e

−2πj(0)Tsfe2πj(1)Tsf

...

+ x̃0x̃
∗
Ke

−2πj(0)Tsfe2πjKTsf

+ x̃1x̃
∗
0e

−2πj(1)Tsfe2πj(0)Tsf

+ |x̃1|2e−2πj(1)Tsfe2πj(1)Tsf

...

+ x̃1x̃
∗
Ke

−2πj(1)Tsfe2πjKTsf

...

+ x̃K x̃
∗
0e

−2πjKTsfe2πj(0)Tsf

+ x̃K x̃
∗
1e

−2πjKTsfe2πj(1)Tsf

...

+ |x̃K |2e−2πjKTsfe2πjKTsf

=
K∑
k=0

K∑
n=0

x̃kx̃
∗
ne

−2π(k−n)Tsf

Since energy spectral density becomes unbounded as K → ∞, analysis of

power spectral density proves to be more practical for arbitrarily long symbol

sequences. The power spectral density (PSD) of a signal is defined in terms

of the energy spectral density normalized by the total signal time [8]:

|X(f)|2 = 1

(K + 1)Ts

K∑
k=0

K∑
n=0

x̃kx̃
∗
ne

−2π(k−n)Tsf

This form, however, can be modified to expose a discrete-time Fourier trans-

form with two changes. First substitute n = k− τ . Second, the limits of the

inner summation can be changed to (−∞,∞) without affecting the result

since symbol values outside the original range are simply defined to be zero.

|X(f)|2 = 1

(K + 1)Ts

K∑
k=0

k−K∑
τ=k

x̃kx̃
∗
k−τe

−2πτTsf

17
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=
1

(K + 1)Ts

K∑
k=0

∞∑
τ=−∞

x̃kx̃
∗
k−τe

−2πτTsf

=
1

(K + 1)Ts

K∑
k=0

Fτ→f{x̃kx̃∗k−τ}(Tsf) (2.7)

Equation (2.7) describes the PSD for deterministic symbol sequences. For

a symbol RP Xk, it can be expressed in terms of the autocovariance:

CXX [k, τ ] = E
[
X̃kX̃

∗
k−τ

]
−
⏐⏐⏐E [X̃k

]⏐⏐⏐2
|X(f)|2 = 1

(K + 1)Ts

K∑
k=0

Fτ→f

{
CXX [k, τ ] +

⏐⏐⏐E [X̃k

]⏐⏐⏐2} (Tsf)

For a weakly stationary symbol RP, this reduces to:

|X(f)|2 =
Fτ→f{CXX [τ ]}(Tsf) +

⏐⏐⏐E [X̃]⏐⏐⏐2 δ(f)
Ts

This can be normalized as described in section 1.2 on page 2 to give the

following expression for the normalized PSD of a stationary symbol RP:

⏐⏐⏐X̂ (f̂)⏐⏐⏐2 = Fτ→f̂ {CXX [τ ]}
(
f̂
)
+
⏐⏐⏐E [X̃]⏐⏐⏐2 δ (f̂)

E
[⏐⏐⏐X̃⏐⏐⏐2] (2.8)

Similarly, the PSD of a weakly cyclostationary RP with a period of N can

be reduced to:

⏐⏐⏐X̂ (f̂)⏐⏐⏐2 =
N∑

n=1

(
Fτ→f̂ {CXX [n, τ ]}

(
f̂
)
+
⏐⏐⏐E [X̃]⏐⏐⏐2 δ (f̂))

NE
[⏐⏐⏐X̃⏐⏐⏐2] (2.9)

which is ultimately just the average of N different weakly stationary PSDs.

A few observations with regard to equation (2.8) are worth noting. First,

the |E[X̃]|2δ(f̂) term is an impulse at f̂ = 0 that represents the DC power
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of the symbol stream. If E[X̃] = 0, the equation reduces to the discrete-time

Fourier transform of the autocorrelation:

⏐⏐⏐X̂ (f̂)⏐⏐⏐2 = Fτ→f̂ {CXX [τ ]}
(
f̂
)

CXX [0]
= Fτ→f̂ {RXX [τ ]}

(
f̂
)

It can therefore be concluded that the PSD of a symbol RP is completely

defined by the first and second order statistics of the RP.

So how does a balanced code that controls the RDS allow for spectral

shaping? It turns out that it can be challenging to control the second order

statistics of a symbol RP directly. If, however, one controls the first order

statistics of the RDS, the second order statistics of the symbol RP are affected

indirectly.

Consider the PSD of the Manchester code discussed in section 2.2 on

page 10. Looking at table 2.2 on page 12 a few properties are evident.

1. Regardless of the source statistics p, there will always be an equal

number of 1s and 0s. It can therefore be concluded that no impulse

power exists at DC and that E[X̃] = 0.

E
[
X̃
]
= (1− p)(−1 + 1) + p(1− 1) = 0

2. Again regardless of the source statistics p, the energy per mapped sym-

bol E[|X̃|2] remains constant.

E
[⏐⏐⏐X̃⏐⏐⏐2] = (1− p)

(
(−1)2

2
+

12

2

)
+ p

(
12

2
+

(−1)2

2

)
= 1

3. The stationarity, like most constrained sequence codes, is cyclic with a

period equal to the length of the codeword, in this case 2.

Property 1 is a basic requirement of all balanced codes [4, p. 195] and with

property 2 the PSD can be expressed purely in terms of the cyclic autoco-

variance from equation (2.9) on the preceding page. From property 3 the

19



2.2. BALANCED CODES CHAPTER 2. BACKGROUND

τ = −∞ · · · −2 −1 0 1 2 · · · ∞
C[1, τ ] = 0 · · · 0 −1 1 0 0 · · · 0

C[2, τ ] = 0 · · · 0 0 1 −1 0 · · · 0

Table 2.3: Cyclostationary autocovariance data for Manchester

coding.

autocovariance can be established from table 2.2 on page 12 though inspec-

tion, as shown in table 2.3.⏐⏐⏐X̂ (f̂)⏐⏐⏐2 = 1

2

(
Fτ→f̂ {CXX [1, τ ]}

(
f̂
)
+ Fτ→f̂ {CXX [2, τ ]}

(
f̂
))

=
1

2

([
(−1)e−2πf̂(−1) + (1)e−2πf̂(0)

]
+
[
(1)e−2πf̂(0) + (−1)e−2πf̂(1)

])
= 1− cos

(
2πf̂

)
(2.10)

Equation (2.10) defines the normalized PSD for a Manchester encoded

symbol RP. Figure 2.8 on the following page plots this normalized PSD while

figure 2.9 on page 22 shows the resulting normalized PSD when this sym-

bol RP is represented with a raised-cosine pulse shape. Contrast this to the

normalized PSD for a completely uncorrelated symbol RP. Since the auto-

covariance of an uncorrelated symbol RP is simply an impulse function at

τ = 0 with magnitude equal to the RP variance, the continuous portion of

the normalized PSD is a constant:

CXX [τ ] = σ2
Xδ[τ ]⏐⏐⏐X̂ (f̂)⏐⏐⏐2 = σ2
X +

⏐⏐⏐E [X̃]⏐⏐⏐2 δ (f̂)
E
[⏐⏐⏐X̃⏐⏐⏐2] = 1 +

⏐⏐⏐E [X̃]⏐⏐⏐2
E
[⏐⏐⏐X̃⏐⏐⏐2]

(
δ
(
f̂
)
− 1
)

(2.11)

The uncorrelated symbol RP will always have a perfectly flat PSD possibly

with an impulse at f̂ = 0 representing any DC bias. This flatness confirms
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that any deviation from a constant in the PSD of a signal resulting from an

uncorrelated symbol RP is completely dictated by the spectrum of the pulse.

However, any symbol RP with a non-zero autocovariance outside τ = 0 will

generate a normalized spectral shape that is both periodic with a period of

f̂ = 1 and symmetric about f̂ = 0, just as in equation (2.10) on the preceding

page and as shown in figure 2.8.

0

0.5

1

1.5

2

2.5

3

−1.5 −1 −0.5 0 0.5 1 1.5

⏐ ⏐ ⏐X̂(
f̂
)⏐ ⏐ ⏐2

f̂

Manchester

Uncorrelated

−50

−40

−30

−20

−10

0

10

10−3 10−2 10−1

⏐ ⏐ ⏐X̂(
f̂
)⏐ ⏐ ⏐2

(d
B
)

f̂

Figure 2.8: Normalized PSD for Manchester coding contrasted

with an uncorrelated symbol RP with no DC bias. The scales

of the top curve are linear while those for the bottom curve are

logarithmic.

When discussing spectral shaping in the context of balanced codes, the
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Figure 2.9: Resulting spectrum when a Manchester coded symbol

RP is transmitted with raised-cosine pulse shaped with β = 0.5.

shaping that takes place is the introduction of a null around f̂ = 0. The

width of this null is a measure of the performance of the code and it is

directly controlled by the first-order statistics of the RDS, specifically E[Φ2]

[4, p. 195]. A balanced code that more effectively minimizes E[Φ2] will ensure

less signal power exists near f̂ = 0. Since the RDS mean is often forced to

zero by a balanced code, much of the literature assumes that V[Φ] = E[Φ2].

Due to both the periodicity and symmetry about f̂ = 0 of symbol RP PSDs,

a logarithmic comparison, as in the lower plot in figure 2.8 on the preceding

page, is often preferred. All balanced codes that minimize E[Φ2] will roll-off

in the “stop band” at 20 dB/dec [4]. Note that these codes are often referred to

as first order spectral null codes. Higher order nulls can be achieved through

alternate means. For any arbitrary Xk ∈ GF(21), X̃k ∈ {−1, 1} symbol RP,
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E[Φ2] is lower bounded at 1/2 [4]. Thus the Manchester code and its PSD

establish the best performance for RDS limiting balanced codes. Any such

codes with a code rate lower than 1/2, which is the code rate of the Manchester

code, cannot realize further minimization of E[Φ2]. Therefore the challenge

in RDS limiting balanced codes is realizing a spectral null as close to that of

a Manchester code while maximizing the code rate in the range (1/2, 1).

The question still remains as to why one would seek to spectrally shape a

signal through channel coding. There are numerous answers to this and they

are specific to their applications but, like all constrained sequence codes, it is

about meeting physical constraints placed on the channel during the design

process. A common application lies in baseband signal transmission. Imple-

mentation of these systems is greatly simplified when they can be used with

de-coupling capacitors or isolating transformers, but designing these compo-

nents so that they don’t attenuate or distort near DC can be complicated

and expensive. Balanced coding makes the process trivial. In the realm of

passband signals other possibilities present themselves. A null at the car-

rier frequency allows other auxiliary signals to be inserted at or near this

frequency. This might include a low-power pilot tone for carrier recovery or

low speed signalling or control data. Beyond that, this null results in I/Q

imbalances becoming trivial to filter out along with noise near the carrier.

2.3 Guided Scrambling

So far all the constrained sequence codes discussed in this document involve

the use of state dependent tables to map source words to codewords. Guided

scrambling (GS) offers a different approach [9]. This technique still maps

source words to codewords, but the codewords are generated dynamically as

source words arrive. This precludes the need for any mapping tables that

can become prohibitively large for long codewords. More specifically, the
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technique generates a set of candidate codewords as source words arrive and

then selects an appropriate word from this set based on a selection method.

Prior to delving into the details of GS, a discussion of scrambling itself

is warranted. Scrambling, in this context, is a very common technique used

in communication systems where a pseudorandom data source is used to in-

troduce the appearance of randomness into a digital symbol sequence. The

purpose of this randomness is not, as is often assumed, information security

but in ensuring the sequence has sufficient entropy to meet channel con-

straints. Since most constrained sequence codes simply map source words

directly to codewords through a state dependent mapping table, their effec-

tiveness depends on an assumption of equiprobable source words. Because

most source data is not actually maxentropic, scramblers are often used to

help compensate for probabilistic biases in the source data.

Assume a source sequence Z and a pseudorandom sequence Λ both with

symbols from the GF(2M) field. In one often used scrambling technique, the

scrambled sequence is generated as:

X = Z⊕Λ

where⊕ denotes symbol-by-symbol addition according to the rules of GF(2M)

addition. The original sequence can be recovered upon reception:

Z = X⊖Λ

where ⊖ denotes symbol-by-symbol subtraction according to the rules of

GF(2M) subtraction. The sequence X should hopefully contain the entropy

required by any downstream constrained sequence encoders to perform as ex-

pected. The word “hopefully” is emphasized because the scrambling process

cannot actually guarantee anything about the statistics of X since it does

not add any redundancy. Assuming Λ is non-periodic the above scrambling

system might work fairly well. The reality, however, is that pseudorandom
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sequence generators are implemented as some variant of a feedback shift

register, and as a result Λ is periodic. If, however, the source sequence can

influence the operation of the feedback loop, this periodicity can be disrupted.

One such method used for scrambling is via Galois Field polynomial di-

vision. First establish a GF(2M) divisor polynomial D(α) of degree L.

D(α) =
L∑
l=0

dlα
l = dLα

L + · · ·+ dlα
l + · · ·+ d1α

1 + d0α
0

The input input sequence Z can be regarded as a series of source words Si

of length N :

Z = {zK , . . . , zk, . . . , z1, z0}

= {SI ,SI−1, . . . ,Si, . . . ,S1,S0}

Si = {si,N−1, . . . , si,n, . . . , si,1, si,0}

si,n = ziN+n

For each source word Si, form a polynomial Si(α).

Si(α) =
N−1∑
n=0

si,nα
n = si,N−1α

N−1 + · · ·+ si,nα
n + · · ·+ si,0α

0

Now perform polynomial division to obtain:

Ci(α) = QD(α)[Si(α) · αL +Ri−1(α) · αN ]

Ri(α) = RD(α)[Si(α) · αL +Ri−1(α) · αN ] (2.12)

where Q and R denote, respectively, evaluation of quotient and remainder

of their argument divided by their subscripted polynomial. The scrambled

codeword Ci is extracted from the coefficients of the polynomial Ci(α). The
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Figure 2.10: GF(2M) polynomial division scrambler

output sequence X is the concatenation of the codewords.

Ci(α) =
N−1∑
n=0

ci,nα
n = ci,N−1α

N−1 + · · ·+ ci,nα
n + · · ·+ ci,0α

0

Ci = {ci,N−1, . . . , ci,n, . . . , ci,1, ci,0}

X = {CI ,CI−1, . . . ,Ci, . . . ,C1,S0}

The polynomial Ri(α) is the remainder of the division and its recursive use

provides a feedback loop. So long as D(α) is a primitive polynomial, when

Si(α) = 0 the scrambler will continue outputting distinct and loosely cor-

related codewords, repeating with a period 2ML − 1. In this instance the

initial remainder R−1(α) is not relevant to the operation of the scrambler

and can simply be set to any non-zero value. The process described by equa-

tion (2.12) on the previous page can also be accomplished with the sequential

logic shown in figure 2.10. Notice the standard linear-feedback register struc-

ture modified with the input sequence now inside the feedback loop.

Just as the scrambling process can be described in terms of Galois field

polynomial division, the descrambling process can interpreted as multiplica-

tion of the codeword by the scrambling polynomial, and removal of the L

least significant symbols, a process that can be written as:

Si(α) = QαL [Ci(α)D(α)−Ri−1(α) · αN ]
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Figure 2.11: GF(2M) polynomial multiplication descrambler

Ri(α) = RαL [Ci(α)D(α)−Ri−1(α) · αN ] (2.13)

Note that, unlike the scrambling process, the remainder polynomial Ri(α)

in equation (2.13) has no dependency on Ri−1(α) so long as N ≥ L. In

other words, the inversion of this scrambling process converts the feedback

nature of the remainder polynomial into a feed forward operation. Although

source words affect all future codewords when scrambling, codewords only

affect both the current and subsequent source word when descrambling. As

a result, the distance by which detection errors are propagated forward by

the descrambling process is bounded. Visually, the feed forward nature of

the descrambling process is evident in figure 2.11.

It is this polynomial division-based scrambling technique that is used

in guided scrambling. Instead of a single scrambler, however, GS employs

multiple parallel scramblers to build a set of codeword candidates. The first

step involves mapping each source word Si to a set of augmented source

words S′
i.

S′
i =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0 si,N−1 · · · si,1 si,0

0 0 · · · 1 si,N−1 · · · si,1 si,0
...

...
. . .

...
...

...
. . .

...

2M − 1 2M − 1 · · · 2M − 1 si,N−1 · · · si,1 si,0

⎤⎥⎥⎥⎥⎥⎦
The rows of the set S′

i,j are built by prefixing the source word Si with all
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possible permutations of symbols from GF(2M) in an augmenting sequence

of length A to give 2AM rows to the set. Each row S′
i,j is then mapped to

a polynomial S ′
i,j(α) and scrambled into a candidate codeword polynomial

C ′
i,j(α) just as with equation (2.12) on page 25.

C ′
i,j(α) = QD(α)[S

′
i,j(α) · αL +Ri−1(α) · αN ]

R′
i,j(α) = RD(α)[S

′
i,j(α) · αL +Ri−1(α) · αN ]

The set of codeword candidates is then built from the coefficients of all can-

didate codeword polynomials.

C′
i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C′
i,1

C′
i,2
...

C′
i,j
...

C′
i,2AM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
From the set C′

i, the codeword Ci = C′
i,J is selected that best meets the

constraints prescribed for the channel. The remainder polynomial Ri(α) =

R′
i,J(α), used in the generation of the next codeword candidate set, is set to

that which was generated along with the selected codeword C′
i,J .

To recover the original source word during descrambling, the received

codeword is multiplied by D(α), and the augmenting sequence is discarded

without regard to its value. Since A redundant symbols are being added into

each source word of length N , the code rate is R = N
N+A

.

The mechanism used to decide on the best codeword from the candidate

set is called the selection method. Much of the GS research has revolved

around developing these methods. The original paper [9] focused on se-

lecting codewords that contained the most transitions thereby minimizing

run lengths in symbol sequences, and also considered RDS balanced codes
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through selection of the codeword with the smallest RDS magnitude at the

end of the codeword (WRDS). The authors of [10] recommend minimizing

the squared weight (MSW) of the RDS over the codeword. In other words,

given a codeword length of N +A, the metric associated with each codeword

candidate C′
i,j is defined by equation (2.14) where ϕ′

i,j,n is the RDS after the

nth symbol of the jth codeword candidate of the set C′
i.

SWi,j =
N+A∑
n=1

⏐⏐ϕ′
i,j,n

⏐⏐2 (2.14)

Since RDS balanced codes seek to minimize E[Φ2], the MSW selection method

seems fairly intuitive and has been shown to offer very good performance

when compared with other RDS-based selection methods [10]. For the re-

mainder of this document any mention of balanced RDS GS coding will

assume MSW selection.

Care must also be used in deciding on the scrambling polynomial D(α).

By observation of figure 2.11 on page 27 it is evident that errors in detecting

X will continue to affect the output Z for L subsequent symbols. Thus

unlike traditional block codes, the error multiplication is dictated not by

the codeword length, but the scrambling polynomial’s length and number of

non-zero terms. Specifically, the number of non-zero terms in the scrambling

polynomial dictates how many errors in Z will be generated for every error

in X. The window length in which these errors are dispersed is determined

by the degree of the scrambling polynomial L. Therefore to reduce the size

of the error multiplication window in Z, shorter scrambling polynomials are

desired. Unfortunately, short scrambling polynomials also result in shorter

periods for the feedback shift register in the scrambler from figure 2.10 on

page 26. Deciding on the degree of the scrambling polynomial is therefore

a trade off between the error multiplication window size and feedback shift

register period. The degree is, of course, not the only consideration to be

made. Choosing a primitive polynomial for the scrambler ensures that the
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selection set codewords are very loosely correlated; this has been argued

to be ideal for MSW selection [10]. For WRDS selection [11] recommends

scramblers that have the factor α+1 as this ensures every codeword candidate

in the selection set has its complement in the set as well. Since this document

will generally assume MSW, D(α) will be assumed primitive unless stated

otherwise and its quantity of non-zero terms will be minimized.
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Figure 2.12: Normalized power spectral density for an xk ∈
GF(21), x̃k ∈ R GS symbol sequence with a codeword length of 24

and 6 augmenting symbols. PSD of Manchester coded and 3b/4b

coded sequences are included for purposes of comparison.

Overall the performance of balanced GS codes is very promising in com-

parison with the more traditional block codes. As can be seen in figure 2.12,
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the low-frequency rejection of a GS signal with a codeword length of 24 and 6

augmenting symbols performs significantly better than the industry standard

3b/4b code with the identical rate [12]. Ultimately the price for using GS

codes is the increased computational resource requirements on the transmit

side. For longer codewords, however, these computational requirements can

be dwarfed by the lookup table memory requirements for large block codes.

Beyond the spectral performance gains, using GS codes also carry the ad-

vantage of maintaining encoded sequence statistics somewhat independent of

the source statistics.

2.4 Detection

When modulated digital symbols are transmitted over an actual channel,

both noise and distortion affect the received signal values. Receiving these

corrupted signal values and deciding what symbol was transmitted is called

detection.

2.4.1 Maximum Likelihood Detection

The optimum approach to deciding on the value of a transmitted symbol

x entirely from the received symbol y is called maximum likelihood (ML)

detection [7, p. 287]. In this approach the detector chooses the transmitted

symbol x that makes the received signal value y most likely; it must choose

the x that maximizes P[Y = y|x]. Should the received signal RV Y be

defined continuously, the detector chooses x that maximizes the continuous

probability distribution (PDF) fY |X(y, x).

For additive white Gaussian noise (AWGN) channels, detection can be

greatly simplified. Assume a transmitted symbol RVX and a received symbol
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RV Y where:

X ∈ GF(21)

X̃ ∈ {−d/2, d/2}

N ∼ N (0, n0)

Y = X̃ +N

Y |x ∼ N (x̃, n0)

fY |X(y, x) =
exp

(
− (y−x̃)2

2n0

)
√
2πn0

The symbol x = 0 is detected when:

fY |X(y, 0) > fY |X(y, 1)

exp
(
− (y−[−d/2])2

2n0

)
√
2πn0

>
exp

(
− (y−[d/2])2

2n0

)
√
2πn0

(y + d/2)2 < (y − d/2)2

��y
2 + yd+

◁
◁
◁d2

4
< ��y

2 − yd+
◁
◁
◁d2

4

y < 0

Similarly, x = 1 is detected when y > 0. Ultimately this establishes a decision

boundary at y = 0. The probability of erroneous detection can be derived

analytically as the probability of receiving all possible signal values y which

lie outside the correct decision regions established by the boundary at y = 0.

These regions of error are the Gaussian tails as seen in figure 2.13 on the next

page and give the probability of error as a function of the minimum distance

between constellation points d and the single axis noise variance n0:

P[error] = P[(Y > 0 ∩X = 0) ∪ (Y < 0 ∩X = 1)]

= P[X = 0]P[Y > 0|X = 0] + P[X = 1]P[Y < 0|X = 1]
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Figure 2.13: GF(21) AWGN decision and error regions with n0 =

d2.

= P[X = 0]

∞∫
0

fY |X(y, 0)dy + P[X = 1]

0∫
−∞

fY |X(y, 1)dy

= P[X = 0]Q

(
d

2
√
n0

)
+ P[X = 1]Q

(
d

2
√
n0

)
= Q

(
d

2
√
n0

)
(2.15)

Similar logic can be applied to the GF(22) constellation in figure 2.14

giving these decision regions:

(ℜ(y) > 0 ∩ ℑ(y) > 0) ⇔ x = 0

(ℜ(y) < 0 ∩ ℑ(y) > 0) ⇔ x = 1

(ℜ(y) > 0 ∩ ℑ(y) < 0) ⇔ x = 2

(ℜ(y) < 0 ∩ ℑ(y) < 0) ⇔ x = 3

To calculate the probability of error it is easier to consider first the probability
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Figure 2.14: GF(22) Complex Constellation Pattern

of success.

P[success] = P[(ℜ(Y ) > 0 ∩ ℑ(Y ) > 0 ∩X = 0)

∪ (ℜ(Y ) < 0 ∩ ℑ(Y ) > 0 ∩X = 1)

∪ (ℜ(Y ) > 0 ∩ ℑ(Y ) < 0 ∩X = 2)

∪ (ℜ(Y ) < 0 ∩ ℑ(Y ) < 0 ∩X = 3)]

= P[X = 0]P[ℜ(Y ) > 0 ∩ ℑ(Y ) > 0|X = 0]

+ P[X = 1]P[ℜ(Y ) < 0 ∩ ℑ(Y ) > 0|X = 1]

+ P[X = 2]P[ℜ(Y ) > 0 ∩ ℑ(Y ) < 0|X = 2]

+ P[X = 3]P[ℜ(Y ) < 0 ∩ ℑ(Y ) < 0|X = 3]

= P[X = 0]

∞∫
0

fℜ(Y )|ℜ(X)(y, 0)dy

∞∫
0

fℑ(Y )|ℑ(X)(y, 0)dy

+ P[X = 1]

0∫
−∞

fℜ(Y )|ℜ(X)(y, 1)dy

∞∫
0

fℑ(Y )|ℑ(X)(y, 1)dy

34



2.4. DETECTION CHAPTER 2. BACKGROUND

+ P[X = 2]

∞∫
0

fℜ(Y )|ℜ(X)(y, 2)dy

0∫
−∞

fℑ(Y )|ℑ(X)(y, 2)dy

+ P[X = 3]

0∫
−∞

fℜ(Y )|ℜ(X)(y, 3)dy

0∫
−∞

fℑ(Y )|ℑ(X)(y, 3)dy

= P[X = 0]

(
1−Q

(
d

2
√
n0

))2

+ P[X = 1]

(
1−Q

(
d

2
√
n0

))2

+ P[X = 2]

(
1−Q

(
d

2
√
n0

))2

+ P[X = 3]

(
1−Q

(
d

2
√
n0

))2

=

(
1−Q

(
d

2
√
n0

))2

P[error] = 1− P[success] = 1−
(
1−Q

(
d

2
√
n0

))2

= 2Q

(
d

2
√
n0

)
−Q2

(
d

2
√
n0

)
(2.16)

Similar strategies can be applied to the GF(24) constellation pattern in

figure 2.15 on the following page by dividing the points into three separate

categories. The first category is in the corners when x ∈ {0, 2, 8, 10} where

the probability of error, by inspection, must equal that derived for the GF(22)

constellation pattern in equation (2.16):

P[error|x ∈ corner] = 2Q

(
d

2
√
n0

)
−Q2

(
d

2
√
n0

)
(2.17)

The second category consists of the centre points where x ∈ {5, 7, 13, 15}.
The starting point is, again, the probability of success:

P[success|x ∈ centre] = P[0 < ℜ(y) < d ∩ 0 < ℑ(y) < d|x = 13]
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Figure 2.15: GF(24) Complex Constellation Pattern

=

(
1− 2Q

(
d

2
√
n0

))2

P[error|x ∈ centre] = 1− P[success|x ∈ centre]

= 4Q

(
d

2
√
n0

)
− 4Q2

(
d

2
√
n0

)
(2.18)

The third category consists of the edge points (x ∈ {1, 3, 4, 6, 9, 11, 12, 14}):

P[success|x ∈ edge] = P[d < ℜ(y) ∩ 0 < ℑ(y) < d|x = 9]

=

(
1−Q

(
d

2
√
n0

))(
1− 2Q

(
d

2
√
n0

))
P[error|x ∈ edge] = 1− P[success|x ∈ edge]
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= 3Q

(
d

2
√
n0

)
− 2Q2

(
d

2
√
n0

)
(2.19)

Combining equations 2.17, 2.18 and 2.19 the probability of erroneous detec-

tion is:

P[error] = P[X ∈ corners]

(
2Q

(
d

2
√
n0

)
−Q2

(
d

2
√
n0

))
+ P[X ∈ centre]

(
4Q

(
d

2
√
n0

)
− 4Q2

(
d

2
√
n0

))
+ P[X ∈ edge]

(
3Q

(
d

2
√
n0

)
− 2Q2

(
d

2
√
n0

))
(2.20)

Typically the symbols are considered equiprobable which can result in some

simplification of equation (2.20) but for the purposes of this work, they will

be identified separately as shown above.

2.4.2 Maximum a Posteriori Detection

The optimum approach to deciding on the value of a transmitted symbol x

from the received symbol y with consideration for the statistics of X is called

maximum a posteriori (MAP) detection [7, p. 288]. In contrast with ML

detection, the detector chooses the most likely transmitted symbol x given

the received value y; it chooses the x that maximizes P[X = x|y] where:

P[X = x|y] =
fY |X(y, x)P[X = x]

fY (y)

Since fY (y) is independent of x, the same decision can be reached by simply

maximizing fY |X(y, x)P[X = x]. Note that the probability of the source

symbols X impact these decisions.

For the GF(21) AWGN example, interesting contrasts can be made to the
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ML strategy. This time, the symbol x = 0 is detected when:

fY |X(y, 0)P[X = 0] > fY |X(y, 1)P[X = 1]

exp
(
− (y−[−d/2])2

2n0

)
P[X = 0]

√
2πn0

>
exp

(
− (y−[d/2])2

2n0

)
P[X = 1]

√
2πn0

−(y + d/2)2

2n0

+ lnP[X = 0] >
−(y − d/2)2

2n0

+ lnP[X = 1]

(y + d/2)2 − 2n0 lnP[X = 0] < (y − d/2)2 − 2n0 lnP[X = 1]

(y + d/2)2 < (y − d/2)2 + 2n0 ln
P[X = 0]

P[X = 1]

��y
2 + yd+

◁
◁
◁d2

4
< ��y

2 − yd+
◁
◁
◁d2

4
+ 2n0 ln

P[X = 0]

P[X = 1]

y <
n0

d
ln

P[X = 0]

P[X = 1]

Note that with equiprobable input symbols, the decision boundary is at

y = 0. However, as the symbol probabilities change, instead of the deci-

sion boundary resting consistently at y = 0 as in the ML case, the boundary

y = ϵ is adjusted to n0

d
ln P[X=0]

P[X=1]
as in figure 2.16 on the next page.

The smaller x = 0 error region comes at a cost to the larger error re-

gion for x = 1 but given that x = 0 is more probable to begin with, error

rates are ultimately reduced. Of course when x = 0 and x = 1 approach

equiprobability, ϵ→ 0 and MAP detection is equivalent to ML detection.

The probability of error can be calculated similarly to the GF(21) case in

section 2.4.1.

P[error] = P[(Y > ε ∩X = 0) ∪ (Y < ε ∩X = 1)]

= P[X = 0]P[Y > ε|X = 0] + P[X = 0]P[Y < ε|X = 1]

= P[X = 0]

∞∫
ε

fY |X(y, 0)dy + P[X = 1]

ε∫
−∞

fY |X(y, 1)dy

= P[X = 0]Q

(
ε− (−d/2)

√
n0

)
+ P[X = 1]Q

(
−ε− (−d/2)

√
n0

)
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Figure 2.16: GF(21) AWGN MAP decision and error regions with

n0 = d2,P[X = 0] = 0.6,P[X = 1] = 0.4.

= P[X = 0]Q

(
d/2 + ε
√
n0

)
+ P[X = 1]Q

(
d/2 − ε
√
n0

)
(2.21)

Unsurprisingly, as ϵ → 0, equation (2.21) converges to equation (2.15) on

page 33. See figure 2.17 on the following page for an error rate comparison

of ML versus MAP detection with unequal probabilities.
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Chapter 3

Principles of Intelligent

Detection of GS Coded

Sequences

The goal of this research work is to employ an intelligent detection technique

to GS signals so as to reduce the resulting error rate on AWGN channels. In

order to do so, the premise will be to take advantage of known characteristics

of GS coded signals. The focus on GS codes, as opposed to balanced codes

in general, is due to the unique property of GS coding that with appropriate

parameter selection, the signal statistics can be, for practical purposes, as-

sumed independent of the source data [13]. Although block codes combined

with scramblers also reduce dependence on source statistics, they provide

no guarantees as certain source symbol sequences may result in statistically

undesirable signals.

This chapter outlines principles on which intelligent detection of GS coded

sequences can be performed. Section 3.1 develops a statistical model to

describe GS coded sequences that offers insight into the possibility for their

intelligent detection. Section 3.2 presents an algorithmic approach to the
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proposed detection technique while section 3.3 discusses the implementation

of this technique.

3.1 Modelling of GS Coded Sequence Statis-

tics

Since GS codes that perform codeword selection using the MSW criteria

base their selection entirely on the RDS, the chosen strategy was to model

the RDS statistics as opposed to the mapped symbol statistics. For the sake

of computational feasibility, the model will seek to satisfy four criteria:

1. Statistics should be cyclostationary. This has been shown in [14] for

GS codes.

2. Dependency between RDS values over time should be accurately de-

scribed by their correlation.

3. It should be memoryless. That is, the model should be accurately

described as a first order Markov chain.

4. Complete circular symmetry should exist in the case of complex valued

signals.

3.1.1 First Order Statistics

In order for a spectral shaping code to maximize the null width at f̂ = 0 it

must endeavour to minimize E[Φ2] [4, p. 208]. Since most codes attempt to

ensure that E[Φ] → 0 it is reasonable to approximate E[Φ2] = V[Φ]. There-

fore with a fixed source entropy, to maximize the width of the null at DC

the coding process must minimize the variance of the RDS. Minimization of
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the variance of a continuous random variable for a fixed amount of infor-

mation occurs with a Gaussian distribution [3]. RDS values are, however,

defined discretely, but the probability mass function should nonetheless be

well approximated by a Gaussian curve if the variance of these values is to

be minimized. It can therefore be assumed that balanced codes with a wide

spectral null have RDS values that can be well approximated as a Gaussian

random variable. Given the good performance available with GS, as outlined

in section 2.3, it is assumed that the first order statistics of the RDS should

follow a circularly-symmetric Gaussian profile. Due to the complexity of GS

sequences with moderately long codewords, however, analytic solutions for

the relevant statistics are not feasible, and therefore this assumption is ex-

amined through simulations with 2×109 symbols that were used to generate

the RDS probability mass functions (PMF).

For circularly symmetrical RDS statistics, constellation patterns must be

chosen that are 2-fold symmetric about the real and imaginary axes. For

the purposes of simulation, therefore, the constellation patterns shown in

figure 2.13 on page 33, figure 2.14 on page 34, and figure 2.15 on page 36

were used with d = 2. Several GS codes were simulated including all possible

configurations up to a maximum codeword length of 24, rate of 1/2 and 4096

scramblers.

In all these simulations, RDS patterns such as that in figure 3.1 on the

following page and figure 3.2 on page 45 arise. In these figures, the logarithm

of the probability of an RDS value is represented by the size of the circle

centred at the RDS value.1 These figures demonstrate the complete first

order independence and symmetry between ℑ(Φ) and ℜ(Φ). As expected,

the pattern qualitatively seems to follows a circularly-symmetric complex

Gaussian profile.

The circular symmetry allows the PMFs to be collapsed into a single

1Averaged over the cyclostationary period
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Figure 3.1: Simulated RDS PMF on the complex plane for xk ∈
GF(22),ℜ&ℑ(x̃k) ∈ {−1, 1} GS signals with a codeword length

of 12 containing 3 augmenting symbols. Point size is proportional

to the logarithm of the probability. Note the first order circular

symmetry.
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Figure 3.2: Simulated RDS PMF on the complex plane for

xk ∈ GF(24),ℜ&ℑ(x̃k) ∈ {−3,−1, 1, 3} GS signals with a code-

word length of 12 containing 3 augmenting symbols. Point size

is proportional to the logarithm of the probability. Note the first

order circular symmetry.
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dimension for easier analysis. Figure 3.3 on the following page presents a

collection of RDS PMFs for rate 3/4 xk ∈ GF(22), x̃k ∈ C GS codes aver-

aged over the cyclostationary period while figure 3.4 on page 48 gives an

XY comparison of these approximations. Although appearing more bino-

mial in nature, the distributions are well approximated by a Gaussian curve.

It should be noted that the accuracy of the Gaussian approximation is de-

pendent on having larger selection sets, similar to the relationship between

spectral performance and size of the selection set.

Table 3.1 on page 49 tabulates the RDS variances for rate 3/4 xk ∈
GF(22),ℜ&ℑ(x̃k) ∈ {−1, 1} GS codes with up to six augmenting symbols.

It also lists RMS error in the Gaussian approximation, where this RMS error

is calculated according to:

ε =

√ 1

2Φ + 1

Φ∑
ϕ=−Φ

(
ζ exp

(
−ϕ2

2σ2

)
− P[Φ = ϕ]

)2

(3.1)

These results reinforce the accuracy of the Gaussian approximation, partic-

ularly with larger codeword candidate sets. Similar results can be observed

with different fields sizes and code configurations.

Based on these simulation results, it is concluded that, in the first order,

a sampled continuity corrected Gaussian curve is a good approximation for

the RDS of GS signals with a sufficient number of scramblers. Specifically:

P[Φn = ϕ] ≈ ζn exp

(
−ϕ2

2CΦΦ[n, 0]

)
(3.2)

where CΦΦ[n, 0] is the variance at the nth position in the cyclostationary

period and ζn is a continuity correction to ensure the sum of all RDS prob-

abilities is 1.

Given this Gaussian approximation, all dependency between RDS values

of GS coded sequences over time should be well approximated by their corre-
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Figure 3.3: PMF for the real or imaginary component of the RDS

for ℜ&ℑ(x̃k) ∈ {−1, 1} GS signals of rate 3/4. The curve is a

continuity corrected Gaussian PDF generated from the variance

of the RDS.
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Figure 3.4: XY Gaussian approximation comparison for the real

or imaginary component of the RDS for ℜ&ℑ(x̃k) ∈ {−1, 1} GS

signals of rate 3/4.
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Codeword Length Scramblers RDS Variance RMS Error

4 4 1.64 1.40× 10−2

8 16 1.24 3.08× 10−3

12 64 1.10 5.28× 10−3

16 256 1.05 5.04× 10−3

20 1024 1.01 5.39× 10−3

24 4096 0.99 5.36× 10−3

Table 3.1: RDS variance and Gaussian approximation error for

rate 3/4 ℜ&ℑ(x̃k) ∈ {−1, 1} GS codes. The RMS error is calcu-

lated as per equation (3.1) on page 46.

lation. The second order statistics should therefore sufficiently describe the

dependency [1, p. 94].

3.1.2 Second Order Statistics

Just as in the first order, so long as constellation patterns are chosen to be

2-fold symmetric about the real and imaginary axes, circular symmetry is

preserved in the second order as well. Simulations show that, unsurprisingly,

E [ℜ(Φk)ℑ(Φk−τ )] = 0. Given this symmetry, the autocovariances for the

real and imaginary RDS processes can be considered equivalent and analyzed

along a single dimension.

Analysis of the second order statistics will first assume the Markovian

property:

P[Φk = ϕk|Φk−1 = ϕk−1] = P[Φk = ϕk|Φk−1 = ϕk−1, . . . ,Φ0 = ϕ0]

The process can then be fully described by the probability of transitioning

from one RDS state to another. Assuming an RDS state space truncated at

±Φ, the probabilities are assembled into a cyclostationary transition matrix
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Pn where n signifies the position within the cyclostationary period.

Pn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pn,(−Φ)→(−Φ) · · · Pn,(−Φ)→ϕj
· · · Pn,(−Φ)→(+Φ)

Pn,(1−Φ)→(−Φ) · · · Pn,(1−Φ)→ϕj
· · · Pn,(1−Φ)→(+Φ)

...
. . .

...
. . .

...

Pn,ϕi→(−Φ) · · · Pn,=ϕi→ϕj
· · · Pn,ϕi→(+Φ)

...
. . .

...
. . .

...

Pn,(Φ−1)→(−Φ) · · · Pn,(Φ−1)→ϕj
· · · Pn,(Φ−1)→(+Φ)

Pn,(+Φ)→(−Φ) · · · Pn,(+Φ)→ϕj
· · · Pn,(+Φ)→(+Φ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.3)

Due to the first order Gaussian nature examined in the previous section,

the transition probabilities Pn,ϕi→ϕj
should also be well approximated by a

continuity corrected Gaussian curve.

Pn,ϕi→ϕj
= P[Φn = ϕj|Φn−1 = ϕi]

= ζn,i

⎧⎨⎩exp
(

(ϕj−µn,i)
2

2σ2
n

)
, ϕj − ϕi ∈ X̃

0, otherwise
(3.4)

Note that the transition probability can only be nonzero if the mapped sym-

bol, x̃, exists to force the transition. The mean µn,i and variance σ2
n are

conditioned [1, p. 94] using the previous RDS value ϕi and the simulated

cyclic autocovariance CΦΦ[n, τ ] with τ ∈ {0, 1}.

µn,i =
CΦΦ[n, 1]

CΦΦ[n− 1, 0]
ϕi

σ2
n = CΦΦ[n, 0]−

CΦΦ[n, 1]
2

CΦΦ[n− 1, 0]

The coefficient ζn,i is, again, a continuity correction to ensure that each row

of the transition matrix sums to exactly 1.

In order to show that Φk is, in fact, well approximated as a Markov chain,

the autocovariance beyond τ = 1 should be well predicted by the transition

matrix. To simplify this analysis, the cyclostationary process Φk will be
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averaged across the length of a codeword into a stationary process. Given a

transition matrix P, an RDS state vector S, and a steady state probability

vector P0, the autocovariance should be well approximated as:

P =
1

N

N∑
n=1

Pn

S =
{
−Φ, . . . , 0, . . . ,Φ

}
P0 =

{
1

N

N∑
n=1

P[Φn = ϕ]

}Φ

ϕ=−Φ

CΦΦ[τ ] = E[ΦkΦk−τ ]

≈ diag(P0)×Pτ × S⊤ × S (3.5)

Figure 3.5 on the next page presents some simulated autocovariances for

xk ∈ GF(22),ℜ&ℑ(x̃k) ∈ {−1, 1} GS signals of rate 3/4 compared to auto-

covariance data calculated from the transition matrix as per equation (3.5).

These curves show that, just as its first order statistics can be well approx-

imated by a continuity corrected Gaussian curve with sufficient scramblers,

the RDS can be well approximated as a Markov chain given sufficient scram-

blers. Table 3.2 on page 53 tabulates the error in the Markovian approxima-

tion of the autocovariance evaluated according to:

ε =

√ 1

T

T∑
τ=0

(diag(P0)×Pτ × S⊤ × S− CΦΦ[τ ])
2 (3.6)

Similar to relationships demonstrated earlier, accuracy of this approximation

increases as more scramblers are added. Also included is the correlation

between adjacent RDS values. Just as the RDS first order variance decreases

as more scramblers are added2, so does this correlation.

It is, therefore, concluded that the RDS can be well approximated as a cy-

clostationary sampled Gaussian Markov chain so long as there is a sufficiently

2See table 3.1 on page 49.
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Figure 3.5: Averaged cyclostationary real or imaginary autoco-

variances for xk ∈ GF(22),ℜ&ℑ(x̃k) ∈ {−1, 1} GS signals of rate

3/4. The curve is calculated from the transition matrix as per

equation (3.5) on the preceding page.
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Codeword Length Scramblers RΦΦ[1] RMS Error

4 4 0.70 2.32× 10−2

8 16 0.60 4.49× 10−3

12 64 0.55 4.30× 10−3

16 256 0.52 3.05× 10−3

20 1024 0.51 2.51× 10−3

24 4096 0.49 2.39× 10−3

Table 3.2: Autocorrelation (τ = 1) and Markov approximation

error for rate 3/4 ℜ&ℑ(x̃k) ∈ {−1, 1} GS codes. The RMS error

is calculated as per equation (3.6) on page 51.

large selection set. Given that this requirement also leads to better spectral

performance, it is expected that it will be a characteristic of implemented

GS codes. Thus the model meets all criteria outlined at the beginning of

section 3.1 and can be used as the basis for probabilistic detection.

3.2 Detection

The accuracy of detection of GS coded symbols can be improved with an

intelligent detection technique that takes into consideration the statistics of

the RDS values. With the model described in section 3.1, RDS values can be

conditionally mapped to probability values. MAP detection, as described in

section 2.4.2 on page 37, requires choosing a source symbol xk that maximizes

the following probability.

P[Xk = xk|yk] =
fYk|Xk

(yk, xk)P[Xk = xk]

fYk
(yk)

GS coding, however, does not control the coded data statistics directly but

does impact the RDS statistics. However, since the RDS is an outcome of the
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coded symbol values, it is assumed that the coded statistics can be accurately

described by the RDS statistics.

P[Xk = xk] = P[Φk = ϕk−1 + x̃k|Φk−1 = ϕk−1]

= P[Φk = ϕk|Φk−1 = ϕk−1]

This probability is simply extracted from the matrix described by equa-

tion (3.3) on page 50 populated with values from equation (3.4).

The fact that this probability is conditioned by the previous real3 RDS

value makes it necessary to describe it in terms of sequence probabilities.

X = {xk}Kk=1, xk ∈ GF(2M), x̃k ∈ R

Φ = {ϕk}Kk=0 = {ϕk−1 + x̃k}Kk=1, ϕ0 = 0, ϕk ∈ R

P[X = X] = P[Φ = Φ] =
K∏
k=1

P [Φk = ϕk|Φk−1 = ϕk−1]

Therefore the conditional probabilities can be recursively described for se-

quences.

P[Xk = xk|yk] =
fYk|Xk

(yk, xk)P [Φk = ϕk|Φk−1 = ϕk−1]

fYk
(yk)

(3.7)

Y = {yk}Kk=1, yk ∈ R

P[X = X|Y] =
fY |X(Y,X)P[X = X]

fY (Y)

=
K∏
k=1

fYk|Xk
(yk, xk)P [Φk = ϕk|Φk−1 = ϕk−1]

fYk
(yk)

(3.8)

Equation (3.8) again describes a first order Markov chain [1, p. 424]. This

Markov chain can be represented as the tree in figure 3.6 on the following

page where the RDS, ϕk, defines the states and all possible values of xk

3Complex valued signals can be detected as two independent real valued signals so long

as constellation patterns are two-fold symmetric.
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force transitions with probabilities considering the observed value, yk, as per

equation (3.7) on page 54. The probability of all possible sequences can be

calculated by taking the product of all transition probabilities. The detector

should thereby choose the sequence that has the maximum probability. For

computational simplicity, however, the best path through the tree can instead

be found by determining values that minimize equation (3.9), discarding

fYk
(yk) as it is common to all paths and performing summations rather than

multiplying probabilities.

ψk(ϕk−1, x) = − ln
(
fYk|Xk

(yk, x)
)
− ln (P [Φk = ϕk−1 + x̃|Φk−1 = ϕk−1])

Ψ(X) =
K∑
k=1

ψk

(
ϕ0 +

k−1∑
i=1

x̃i, xk

)
(3.9)

Since RDS states reoccur each time interval the tree can be folded into

a Viterbi style trellis [15] as seen in figure 3.7 on the next page with one

caveat. Trellis detection assumes a finite number of states whereas [16] shows

that the RDS values of MSW selected GS signals are not necessarily hard

bounded. This can be rectified by truncating highly improbable RDS states

as in figure 3.7 on the following page. Intuition leads to the assumption that

this would create an error floor but such has yet to be observed in simulation.

For AWGN channels the path metric ψk(ϕk−1, x) can be further simplified

by considering fYk|Xk
(yk, x).

fYk|Xk
(yk, x) =

exp
(

−|yk−x̃|2
2n0

)
√
2πn0

ψk(ϕk−1, x) = − ln
(
fYk|Xk

(yk, x)
)

− ln (P [Φk = ϕk−1 + x̃|Φk−1 = ϕk−1])

=
|yk − x̃|2

2n0

+ ln(
√
2πn0)

− ln (P [Φk = ϕk−1 + x̃|Φk−1 = ϕk−1])
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This expression demonstrates that the ln(
√
2πn0) term can be discarded as

it is constant to all paths resulting in a path metric that is a function of the

Euclidean distance, noise power and RDS probability.

ψk(ϕk−1, x) = |yk − x̃|2 − 2n0 ln (P [Φk = ϕk−1 + x̃|Φk−1 = ϕk−1]) (3.10)

Since this intelligent detection algorithm is ultimately an application of

the Viterbi algorithm, the computational complexity in its implementation

is already established in the literature [7, p. 176]. Specifically complexity

grows linearly with sequence length K and quadratically with the number of

RDS states 2Φ + 1.

3.3 Implementation

In order to test and simulate the detection mechanism described in sec-

tion 3.2 on page 53 along with the coding technique outlined in section 2.3,

use of software-defined radio (SDR) was selected. Section 3.3.1 provides an

overview of the SDR suite that was selected as a platform to build the pro-

cessing blocks discussed in section 3.3.2 on the following page.

3.3.1 GNU Radio

The GNU Radio4 SDR suite was first released in 2001 as a free and open-

source software (FOSS) high performance alternative to many of the sluggish

proprietary options available at the time. The platform is divided into two

parts: a scheduler and a collection of common signal processing blocks.

The scheduler component is the backend of the suite that interconnects

the signal processing blocks. It flows signal streams between blocks and

decides when specific blocks require compute time in order to maximize

4https://www.gnuradio.org
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throughput. It was described using the C++98 [17] programming language

for performance reasons while the interface is fully accessible via the Python

scripting language. This allows the high level signal flowgraphs to be eas-

ily implemented using Python while maintaining the performance benefits of

C++ for the lower level computationally intensive processing blocks.

The signal processing blocks in the GNU Radio SDR suite are typically

implemented in C++ to maximize computational performance. Although

the suite comes with many common signal processing blocks, the application

programming interface (API) is well documented allowing users to build their

own blocks as part of out-of-tree modules.

Web based resources for the GNU Radio project are plentiful. The source

code is hosted on GitHub5 while installation6, GUI7, Python API8, and out-

of-tree module9 instructions are available on the project Wiki.

3.3.2 Blocks

All signal processing blocks developed for this research have been collected

and made available as part of the gr-gs10 Guided Scrambling GNU Ra-

dio Module. All blocks are described using the C++14 [18] programming

language while simulation scripts are written in Python. Altogether twelve

blocks were created to fully realize this work and they are all demonstrated

in the gs demo.grc graphical flow-graph contained in the module. For the

sake of brevity this section will focus solely on the guided scrambling and

detector blocks.

5https://github.com/gnuradio/gnuradio
6https://wiki.gnuradio.org/index.php/InstallingGR
7https://wiki.gnuradio.org/index.php/TutorialsCoreConcepts
8https://wiki.gnuradio.org/index.php/TutorialsWritePythonApplications
9https://wiki.gnuradio.org/index.php/OutOfTreeModules

10https://github.com/eddic/gr-gs
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Guided Scrambler

The guided scrambler block implements multiple scramblers as shown in fig-

ure 2.10 on page 26 through heavily optimized C++ code while the selection

method is kept independent through object oriented polymorphism. This

allows trivial experimentation with different selection methods. Due to the

parallel nature of the guided scrambling process described in section 2.3, the

block was implemented using the multithreaded facilities available in C++14.

Detector

The detector is implemented as a trellis with both variable width and vari-

able length defined using recursive object oriented principles. Due to the

two-fold symmetry, real and imaginary components are detected entirely in-

dependently. The trellis dynamically deallocates nodes as it self-closes and

dynamically allocates nodes as new signal points arrive.

Path metrics through the trellis are calculated using equation (3.10) on

page 58. The conditioned source symbol probabilities are implemented as

a lookup table of equation (3.3) on page 50. Since this transition matrix is

typically very sparsely populated, it is compressed into a three dimensional

matrix mapping the codeword position, previous RDS, and symbol value to

probabilities:

sourceProbability[codewordPosition][rds][symbol]

Output sequences are extracted from the trellis once it self-closes. Self-

closing, in this context, refers specifically to when a column in the trellis

is collapsed into a single remaining node due to downstream path decisions

cascading back upstream. Once the column collapses to a single node, it

and all upstream nodes can be extracted as a section of the output sequence.

The non-deterministic nature of the delay time before the trellis self-closes

presents numerous engineering challenges, which ultimately motivated the
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dynamic nature of the trellis implementation. Although less computation-

ally efficient than a deterministic implementation, the trellis can grow and

shrink as needed to accommodate the unpredictable nature of the closing

time. In the event that this detection algorithm was to be implemented in a

more computationally efficient manner, it would be beneficial to statistically

characterize the closing times for all relevant code configurations and noise

power levels.

In order to improve the trellis closing times in this implementation a non-

optimal modification was made to the traditional Viterbi algorithm. When

new columns are created as new signal points are received, nodes with path

probabilities less than one tenth that of the best path probability in the

column are instantly discarded. It was considered highly improbably that

the statistics of paths with such low probability would change to the point

that they would eventually be selected. This dramatically improved closing

times while having no measurable effect on the error rates. This is especially

helpful for low noise power scenarios due to the reduced weight of the MAP

term in equation (3.10) on page 58.
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Chapter 4

Results

Results, in this context, refer specifically to the error rates achieved using the

intelligent detection strategies outlined in this document, as compared to the

more traditional ML detection methods. Two specific cases are examined.

Section 4.1 presents results for a rate 9/12 GF(22) code while section 4.2 on

page 65 considers the performance of a multilevel 9/12 GF(24) code. The

9/12 code rate was selected as a reasonable mid-point between no coding

whatsoever and the 1/2 rate Manchester code.

All error curves are generated through simulation at 0.5 dB noise power

intervals. Data points are completed once 10,000 intelligently detected sym-

bol errors have occurred, giving typical curve generation times in the 1–2

month range.

4.1 Case 1: GF(22) 9/12

This case study involved equiprobable uncorrelated source symbol sequences

with Xk ∈ GF(22), X̃k ∈ C. The constellation mapping is that in figure 2.14

on page 34. Source data was assembled into source words of length 9, to

which 3 augmenting symbols were added, giving codewords of length 12.
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Figure 4.1: Error rates for GF(22) GS signals with a codeword

length of 12 containing 3 augmenting symbols.
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This configuration used 22×3 = 64 scramblers. Source word candidates were

scrambled using the GF(22) primitive polynomial α5 + α + 2. Codewords

were selected using the MSW selection method. The resulting error curves

are shown in figure 4.1 on the preceding page.

Curve (1) was generated through simulation giving the symbol error rate

after intelligent detection of the GS symbol sequence as described in the pre-

vious chapter, while curve (2) gives the symbol error rate with ML detection.

This curve was also generated in the same simulation, and matches the ex-

pected result as described by equation (2.16) on page 35. Comparison of

these curves shows the merit of this detection technique in cases where this

GS code is already being used for spectral shaping purposes. The system

gains the equivalent of an additional > 2 dB of signal to noise ratio (SNR)

at low error rates for “free” and continues to outperform traditional ML

detection at higher error rates.

Curve (3) is generated through simulation and gives the symbol error rate

of the intelligently detected GS symbol sequence after it has been descram-

bled. The increased error rate vs curve (1) is due to the error multiplication

discussed in section 2.3. Given that the scrambler used has three non-zero

terms, the error rate at low noise powers is slightly less than three times that

of curve (1). The reason it isn’t exactly three times that of curve (1) is due

to erroneous augmenting symbols being discarded and not affecting the error

rate. Curve (4) is the error rate of an ML detected equiprobable uncorre-

lated symbol sequence with reduced noise power. It matches equation (2.16)

on page 35 but with n0 scaled by 9/12 to account for the reduced baud rate

due to the lack of redundancy. Comparing these curves shows merit in GS

combined with this detection method as an error control code at high SNRs

without any consideration for its spectral shaping properties. Below error

rates of ∼ 10−3 the error control properties of this code outweigh its error

multiplication during descrambling, giving the equivalent of an additional
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∼ 1 dB of SNR.

4.2 Case 2: GF(24) 9/12

Although there is a lack of any previous research exploring the use of GS

for generating balanced multilevel symbol sequences, there was never any

reason to assume it would not apply. Since the implementation used in

this research is not specific to any particular Galois field, it was deemed

worthwhile to explore GS using the constellation pattern shown in figure 2.15

on page 36 along with the detection strategy that is the topic of this work.

Like the case described in the previous section, source data was assembled

into source words of length 9, to which 3 augmenting symbols were added

giving codewords of length 12. This time, however, the configuration involved

24×3 = 4096 scramblers. The primitive scrambling polynomial used was

α4 + α2 + 2α + 4 and the selection method was MSW. See figure 4.2 on the

following page for the error curves.

As in section 4.1 on page 62, curves (1) and (2) compare error rates for

intelligent and ML detection, respectively. Similar to the GF(22) case ex-

plored in section 4.1, the rate 9/12 code in GF(24) shows the equivalent of

a ∼ 2 dB SNR gain at low error rates. Curves (3) and (4) also show sim-

ilar gains post-descrambling as compared to the equiprobable ML detected

sequence with scaled noise power.

All error rates discussed thus far have considered a ratio of noise power 2n0

to the minimum distance squared d2 between constellation points. However,

examining results from a ratio of average symbol energy Es to noise power

2n0 gives interesting insights. Assuming equiprobable symbols, the average

symbol energy Es for the GF(24) constellation pattern in figure 2.15 is:

Es = E
[
X̃2
]
=

4

16

⏐⏐⏐⏐3d2 +
3d

2
j

⏐⏐⏐⏐2 + 8

16

⏐⏐⏐⏐3d2 +
d

2
j

⏐⏐⏐⏐2 + 4

16

⏐⏐⏐⏐d2 +
d

2
j

⏐⏐⏐⏐2
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Figure 4.2: Error rates for GF(24) GS signals with a codeword

length of 12 containing 3 augmenting symbols, where the hori-

zontal axis is defined in terms of d2/n0.
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(
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)
=

5d2

2
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Simulations show, however, that when GS balanced coding is used on multi-

level symbol sequences, symbol probabilities are not equiprobable but follow

a Gaussian profile. For the code configuration discussed in this case, the

following first order symbol statistics are observed:

Es = E
[
X̃2
]
≈ 1.90d2

P[X ∈ corner] ≈ 0.12

P[X ∈ centre] ≈ 0.42

P[X ∈ edge] ≈ 0.12

Therefore applying a rate 9/12 balanced GS code to the multilevel GF(24)

symbol sequence results in, approximately, a 25% reduction in signal power,

which is practically equivalent to the amount of redundancy added to the

sequence.

Since this complex valued constellation would typically be used with wire-

less channels, performance analysis in terms of signal power as opposed to

minimum distance is warranted. Figure 4.3 on the following page reexam-

ines these error rates in this context. The ML curves, although generated by

simulation, are accurately described by equation (2.20) on page 37 with the

above probabilities. Comparing curves (1) and (2) shows no improvement

to that of figure 4.2 on the preceding page, however comparing curves (3)

and (4) shows significant potential for this to be used as a low rate error

control system for power limited multilevel signals at error rates less than

∼ 10−2, while simultaneously providing spectral shaping properties as an

added bonus.
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Figure 4.3: Error rates for GF(24) GS signals with a codeword

length of 12 containing 3 augmenting symbols, where the hori-

zontal axis is defined in terms of Es/N0.
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4.3 Insights & Observations

Examining the internal behaviour of the intelligent detection algorithm while

simulating the error curves has resulted in some observations of note.

The trellis path metric, as described by equation (3.10) on page 58, con-

tains two terms. The first term is simply the ML or Euclidean distance

term. It describes the distance between the received signal point and the

constellation mapped symbol value. The second term is the RDS probability

or MAP term. This second term is weighted by the noise power n0. This

weighting might lead one to assume that the effectiveness of this detection

technique would decrease with noise power, converging toward ML detection

as in figure 2.17 on page 40. As seen in the error curves shown in this chapter,

however, this is not the case. The reason for this is that although the rele-

vance of the second term is attenuated on a symbol-by-symbol basis at low

noise powers, its total value will still accumulate over long sequences due to

erroneous decisions affecting this same term in future iterations of the met-

ric. It is for this reason that the intelligent detection method is still highly

effective, albeit more computationally demanding, at lower noise powers.

The significance of the modified symbol probabilities shown in the previ-

ous section should not be understated. Although, on a theoretical level, the

benefits of unequal symbol probabilities for the purpose of reducing signal

power and improving error rates has been well established for quite some

time, it has been considered impractical to implement. Specifically, it has

been shown that symbol probabilities that are well approximated by a Gaus-

sian distribution result in more efficient error rates when plotted against

SNR. Experimenting with GS and the GF(24) signalling constellation from

the previous section has shown that these symbol probabilities do follow a

Gaussian distribution and it is expected that these gains would be realized

to an even greater degree for larger signalling constellations.
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Chapter 5

Conclusions

5.1 Summary

This research stands as a case study on the practical value in extracting what

might be rich error control potential from constrained sequence codes. Chap-

ter 1 provided an overview of the document along with relevant notation and

conventions. Chapter 2 on page 6 detailed background information relevant

to the research, specifically in the areas of channel coding, signal detection

and guided scrambling. Chapter 3 on page 41 illustrated the construction

of a statistical model for GS coded sequences and used this model to de-

velop and implement intelligent detection. Results presented in chapter 4 on

page 62 showed that this intelligent detection technique provides significant

gains in error rates over more traditional detection techniques.

5.2 Future Research

The development of this detection technique and the associated gr-gs soft-

ware suite opened the door for intriguing observations to be made. Specif-

ically, the modular nature of the selection method implementation allowed
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for easy experimentation with novel approaches. One promising approach is

introduced in the following section.

5.2.1 MSW2

When referring to balanced codes, this document has thus far focused ex-

clusively on so called first-order balanced codes achieved by bounding the

sequence RDS. However, the generation of balanced codes can also be ac-

complished by bounding other metrics, including the running digital sum

sum (RDSS). Just as the RDS is the running sum of mapped digital symbol

values over time (see equation (2.4) on page 10), the RDSS, θk is the running

sum of RDS values over time:

θk = θk−1 + ϕk = θ0 +
k∑

n=1

ϕn (5.1)

It has been shown that if the RDSS is controlled in a manner similar to the

RDS in a first-order balanced code, higher order spectral nulls can be real-

ized that roll off in lower frequencies at 40 dB/dec as opposed to just 20 dB/dec

[4, p. 243]. Just as RDS balanced codes reach maximum spectral shaping

capabilities at rate 1/2 with the Manchester code, RDSS balanced codes reach

a similar peak at rate 1/4 with the code described in table 5.1 on the next

page resulting in a normalized sequence PSD of:⏐⏐⏐X̂ (f̂)⏐⏐⏐2 = 4 sin2
(
πf̂
)
sin2

(
2πf̂

)
Although traditional MSW selection chooses the codeword candidate that

best minimizes E[Φ2], it provides no mechanism for further gains in the face

of candidate ties. In the event that two codeword candidates have the same

MSW metric, randomly choosing between the two appears an appropriate

way to proceed. The MSW2 selection method proposes tracking the RDSS

as well and using this information to assist in the selection process thereby
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Source Word Codeword

0 0110

1 1001

Table 5.1: RDSS equivalent of the Manchester code.

reducing or eliminating ties. Therefore as opposed to the metric being de-

cided as per equation (2.14) on page 29 for MSW, the metric is defined as

follows:

SW2
i,j =

N+A∑
n=1

⏐⏐θ′i,j,n⏐⏐2 + Ξ
N+A∑
n=1

⏐⏐ϕ′
i,j,n

⏐⏐2 (5.2)

The coefficient Ξ allows the selection process to establish priority weight-

ings to either the RDS or RDSS. The limit as Ξ → ∞ signifies only using

the RDSS for tie breaking while the limit as Ξ → 0 gives the reverse where

the RDS is used for breaking ties while the primary selection criteria is the

RDSS. Figure 5.1 on the next page compares the spectral performance of a

rate 16/24 GS coded binary sequence, generated when codewords are selected

using equation (5.2), with different values of Ξ. Figure 5.2 on page 74 plots

the change in RDS and RDSS statistics as Ξ is varied.

Since the resulting statistics of the RDSS could be modelled in much

the same way as the RDS, they could also be used for intelligent detection

opening the door for error control gains to be realized at rates below 1/2.

5.3 Final Thoughts

Typically error control codes and constrained sequence codes have been iso-

lated from each other and kept to their intended purposes. The assumption

that constrained sequence codes have limited value for error control has left
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sequence with xk ∈ GF(21), x̃k ∈ R, MSW2 selection, a codeword
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with xk ∈ GF(21), x̃k ∈ R, MSW2 selection, a codeword length of

24, and 8 augmenting symbols as the RDS weighting, Ξ, is varied.

an avenue largely unexplored that might lead to significant gains in commu-

nication channel use efficiency.

Guided scrambling is an excellent candidate for the aforementioned pos-

sibilities in that the largely non-deterministic1 nature of the sequences that

can be generated through different selection methods opens many doors to

a wide variety of constraints with associated probabilistic detection tech-

niques. The author firmly believes that the exploration of selection methods

providing tighter constraints might lead to lower rate codes that could rival

modern error control codes while simultaneously generating sequences with

highly desirable physical properties.

Finally it is hoped that the reader is convinced of the value in using

1As opposed to traditional block codes.
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free and open-source software-defined radio systems, particularly GNU Ra-

dio, for high-performance simulations in communications research. Through

GNU Radio, the gr-gs2 guided scrambling module should prove itself a valu-

able platform for those pursuing further research into guided scrambling and

associated intelligent detection techniques.

2https://github.com/eddic/gr-gs
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