"*l National Uibrary
of Canada

Cdu Canada

Bibhothoqgue nationale

Canadian Theses Service Servie e des theoes canadensyge .
CM g o aadia ’
WA R
®
LN
*
v
o
>

NOTICE

The qualty of this microtormis heavily dependentupon the
qualtty of the ongmnal thesis submitted for microhiming
t very eftort has been made 1o ensute the luighestquality of
reproduction posmk\)le

It pages are nussing, contact the uruversity which granted
the degree

Some pages may have indistinct print especally it the
onginal pages were typed with a poor typewriter nibben o
it the university sent us an interior photocopy b

Pre ously copynghted matenals (journal armicies. pub
lished tests, etc) are not hilimed

e, - -

Reproduction in fuli or m part of this nucrofarmas governed
by the Canadian Copynight Act. RS C 1970.¢ C 30 s

NL-330 (1. 88/04)

AVIS

{a quatte de cette mucroforme depend grandement ¢e la
quahte de La these sourmise au nucrohilmage Nous avons
tout fat pour assurer une quable superieure de reproduc
hon .

Subomanque des pages. veudles communiquer avec
Funversite gur a confere e grade

»
ta qualte dumpression de centdines pages peut lasser Q
desiter_surtou! siles pagd onginales ont ¢té dactylogra
phiges a faide d'un ruban use ou s l'utiversité nous a fal
parvenir une photocopre de qualité inféneure

\ Ca . .
l es doctiments qui tont deja l'objet d'un drot d'auteur
(articles de revue. tests publiés. etc) ne sont pas
microfiimeés)

1 a reproductioh meéme partiglle. de cette microtorme est

sounuse a la Lo canadienne sur le drot dauteur. SRC
1970. ¢ C 30

Canad¥

THE UNIVERSITY OF ALBERTA

APPLICATIONS OF LEARNING HIERARCHIES IN
ADAPTIVE INSTRUCTIONAL SYSTEMS

)

¢

by
\ C:> JOHN CALE NESBIT

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF EDUCATIONAL PSYCHOLOGY

EDMONTON, ALBERTA
SPRING, 1988

-

/
Permission has been granted
.to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the fil\ﬁ

The author (copyright owner)
has reserved
publication rights, and
neither the thesis nor
extensive extracts from ({t
may be printed or otherwise
reproduced without his/her
written permission.

ot?xerf

. /
L'autorisdtion a é&té g;cordée
4 . la Bibliothéque nationale
du Canada de microfilmer
cette thése et de -préter ou
de vendre des exemplaires du
film. -

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication;
ni la thése ni de 1longs
extraits de celle-ci ne
doivent @&tre imprimés ou
autrement reproduits sans son
autorisation écrite.

ISBN 0-315-42837-6

LY
i Ulmiversity ot Alberta Dhivision of Fducational Researdh Services

b=
; Fdmonton *Faculty ot Fducation

Coanads Tecs e 104 ducation Baildimy North Telephone 09 330 3760

i March 4, 1YKE

b
-

-

- t

We, J. C. Nesbit and S. Hunka, authors of the article "A method for
scquencing instructional objectives wtlich minimizes - memory load”
published in volume Mo-ef Instructional Science, hercby give permission 1o
J. C. Nesbit to include a modified version of the article tn his thesis

* "Applications of learning hierarchies in adaptive instructional systems”.

. (L Aotoc I

J. C. Nesbit,~

4

o Mesda —
S. Hunka o 3

THE UNIVERSITY OF ALLBERTA

of) RELEASE FORM
NAME OF AUTHOR:) \ John Cale Nesbit
TITLE OF THESIS: Applications of Learning Hierarchies in .'
/ Adaptive Instructional Systems
DEGREE: Doctor of Philosophy
YEAR THIS DEGREE S}RAQNTF.D: Spung, 1988
* “ *

! Permission is hereby granted to TNE UNIVERSITY OF ALBERTA LIBRARY to

reproduge single copies of this thesis and t énd or sell such copies for private, scholarly
i

or scientific research purposes only.

;i
\]

The author reserves other publication fights, and rfeither the thesis nor extensive

extracts from it may be printed or otherwisexeproduced without the author's written -

permission. :
| 4655 Keith Road -
West Vangouver, B.C.
- Canada V7W 2M8$
Date: Moccl 7, (988 & \

4

’ THE UNIVERSITY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCH

~

The undersigned certify that they have read, and recommend to the Faculty of Graduate

acceptance, a thesis entitled Applications of Learning Hierarchies

tudies a escarch, for
in A ive Instructional Systems submitted by John Cale Nesbit in partial fulfillment of
: [
t
Date:

JM 277 198%

-

To my parents

-~

.

Abstract
Lcarning hierarchies, which afc often used by instructional designers to represent the
Jprerequisite structure of course objectives, are a pfa;tical way of org_a&)izing adapuve
instructional-systems which deal with global course structure. In this thesis, two new
methods are developed for use iﬁ sach systems. One of these builds on the sequencing
+ function of leaming hierarchies, and the‘othcr on the diagnostic function.

A learning hierarchy often pcrrﬁits a large number of alternate linear arrangements
(sequences) of instructional objectives. The premise of the ssguencing method dcvclopéd
here is that for every sequence a memory load value can be calculated which is Lhe-orcticalky
related to the probability that students will fail to recall prerequisite objectives. An algorithm
1s chscmcd whiéh generates a minimal memory load sequence from a learning wee, a
restricted but frequently encountered type of learning hierarchy. To assess the effectiveness
of the aigorithmin generating low mcméry load sequences given hierarchies whith are not
trees, it was appl.ied to several publi:hcd examples of learning hierarchies. The results
indjcatcd that the algorithm isreffective as a heuristic, especially when combined with a hifl-
descending procedure which attempts to incrementally improve the generated sequence.

When a student exhibits difficulty in learning an objective, the learning hierarchy serves
a diagnostic function by indicating prerequisites, one or more of which r;ax have been
fi;rgottcn or never mastered. An inductive leaming procedure was developed which, aftcr
/cnc‘ountcri'ng several students, will associate a profile or model of the student with the state
(mastered or not mastered) of the prerequisites. An evaluation of the performance of the

' . ¥ . .
. procedure with artificial student models showed that, under cértain conditions, the
c\lassiﬁcation rules it learns will reduce the amount of testing required to determine which

prerequisites are not mastered. Guidelines for using the procedure and areas in need of

improvement are also indicated.) “

L

“ACKNOWLEDGEMENTS

Thanks are firstly due to my supervisor Dr. S. Hunka, whose substantial contribution
to the work reported here is but a small fraction of effortsthe has extended in suppoﬂwof‘
countless graduate students over the years, 1 owe special gratitude to Dr. E. W. Romaniuk
who, in additjon to serving on thc’supcrvisory committe, first introduced me to the field of
computer assisted instruction through his introductory éou}se and through ar.1 assistantship
with the“Division of Educational Research Services. For their insightful suggcstions: I
would like to thank the committee members: Drs. A. Liu, R. El,iE), D. E%Qinc, M. Szabo,
and M. Jongs. I would also like to acknowledge constructive ¢ommenys by fcllow graduate

student H. Chow on an early version of Chapter 3.

e

TABLE OF CONTENTS _ -

Chapter ' . Page
1 INOUCHI O . . et e]
1.1 Learning hierarchies as a representation of global course structure 2

1.2 Anoverview of this thesis U EUUUTURURPRORR e 4
1.3 Referenceso.ooiiiiiiiiii i VT SURUUURTRRUTRRR h)

2. Adaptive Instructional SyStems..................ii 6
2.1 * Atribute-treatrfient interaction and beyond..............ccooiiiiiiiiiaeiie 8
2.2 Hartey's framework for adaptive instructional Systemsecoiin. 1]
2.3 Leamercontol PO U P 12
2.4 The cost of program controlled'adaption ... 13
2.5 Smallwood's teaching MACHINE ..o oo, 15
2.6 Atkinson's drill optimizati(;‘n CSYSTEIM ..o 23
2.7 Adaptiye computer-managed inSTUCHON . .a... oottt 26
2.8 Tennyson's MAIS .. 28
2.9 Ferguson's branch and test procedure 31
2.10 Knowledge-based adaptive sequencingin BIP....................... 33
2.11 Koffman and Perry’s conccpt\‘sclcction procedure........oooiiiiiiiiii 34
2.12 Heines and O'Shea's rule-based tutor............. 36
2.13 Peachey and McCalla's plan-based CAL........ccoooiiiiiiiiniiiinaiinnn. 39
2.14 Conclusion................. e e 42
2.15 References e, ettt s 43

3 A Method for Sequencing Instructional Objectives which Minimizes Memory Load....47
"3.1 Learnin} hierarchies as acyclic digraphscccvevveeveeensnn. e, 48
3.8%1 Level numbers et eeenieeeteateaeneeeeaneaaeraaaaaraneeaeaneeanenteaans 51

3.1.2 Inreach and outreachcccoiiiiiiiiiiiiiiiiiiiiii e, 51
3.1.3 Interpretation and treatment of inessential BICS. .. nereeereeeeniereeee s e Sle

3.14 Augm‘cntcd learning hierarchies......c...ccoooviiiiiriinniininnnnn Ceqeerennne 52

3.2 Memory 10ad......co.cuiiiiiiiiiiiiiiiin ettt e e e e 53
3.3 Deficiencies of memory load as a model of forgetting..... e 55
3.4 A sequencing algorithm which minimizes memory 10adoceeereenees 56
3.5 Generalizing the algorithm to deal with non-trees..........c..ooiiiiiiiininiiinn 58

3.6 COMCIUSION....veeereeeeeeeeeeeereeereseeeeesesereesaeseeseeneen, L PR 62 .
3.7 REfEreNCeSoovverimeniiipnnnnsnreneeieneennnes ST UUURPIUPRURIS 63 -

4 Inductive Leamning and Adaptive Instruction, 65

4.1, Inductive (35111 Y- PPN 66
4.1.1 Inductive leaming by parameter adjustment....... FEOTUTOT e, 68
4.1.2 Inducdve inference and description spaces..................coveennan. e 69
4.1.3 Learning conjunctive concepts .. e, 72
4.1.4 Leamning diSjunctive CONCEPLS........oueuiuinintaianeitiiinie i aiirneaeaes 77
4.1.5 Learning from noisy examples..........cccoovvivnin o 88
4.2 An inductive learning procedure for adaptive instructional SYSIemS ...oe.iennnnn. 92
4.2.1 Classification rules and recommendation criteriaoooivinnnn. 96
422 Attributes ... e ettt e et e e 97
4.2.3 The description languagec.. e, 98
, 4.2.4 Theinductive leamlng procedure ST SURUUPPRUPOR .98
4.3 Referencescocoeeveeuennennnn P PP 105
5 Performance of the Inductive Lchming Procedure ..ol .. 108
5.1 Aclose-up viewof ILPatwork.......................... PP 109
-5.2 Four simulated cages for testing ILP................a 113
53 Pre-generélization .. e 120
5.4 The effett of varying Search Parameters..ocueieiuiieeeieiniiinanineenanns 121
5.5 The effect Of NOISEcuiuirniinir et ee 122
5.6 Initialization of desSCIiptions........cccoooviiiiiiiiiiiiiiiiii 125
5.7 Othcrobscrvations....w.......; .. 126
5.8 Guidelines for the use of ILP............ocooiiiiiiiiiiiinin... rreeeeenrans 126
5.9 Future research,..........cocevueeeeuueencnnnnss e eeetee et eu e e et taaaeaaes 127 .
5.10 References \ .. 128
6 Application and Furthcr Dcvclopment of Mcmory Load Sequcncmg, ILP, and
Related Proccdurcs Geteeeceernenesestntasasansasasrnstesaanstaetnsasansenes -.. 129
6.1 Apphcauon and development of planning procedures........ e Serrerrenens 130
6.2 Apphcauon and development of diagnostic procedurcs Crereecinreeninineens 133
6.3 Referencescceeeennnes cereanas assssunsassesensunesesnisasense e e 133 <
Appendix Aceevvuiereierinniieeeneenese e eeereeteereseesnenearsendanseerasessessrnens 134
Appcnd@x 2 SO PPV PP T PP PP s 135

LIST OF TABLES
Table ' ~ Page
1.1 Periods in CAI (adapted from Goldstein and Carr, 1977) e 2
3.1 The GERNERATOR @lgOrthITl \uui ittt aeeeiie e et 57
3.2 Performance of GENERATORo s U 60
4.1 The candidate elimination algerithm learning a simple concept............... eeeraeeens 76
4.2 The positive example deletion SIAELYouuentiniiiinii e 79
5.1 A comparison of number of incorrect recommendations with pre- gcncrahzauon
(pg) and withow pre-generalization (NPE)verrvvneresnereenaeere e 121
5.2 Effect of increasing the search on number of incorrect rccommendanons 121
§
o
.
FIQ .
L)

LIST OF FIGURES
" Figure . Page
2.1 An atribute - treatment iNtEMACHONottt i e e 10
2.2° A general branching network..................... e [T 16
2.3 A decision tree for a teaching machine ... 20
31 A simple digraph..c.ooovoveeeoieoeeeeeeeerenns e, 49
© 3.2 Aleamning hlcrarchy .. e teateateeneenenaenaes 50
3.3 The arc fromA to Ci is mcssenual [SSSUTOTR T TP 52
3.4 A hierarchy with nodes labeled by GENERATOR RO SN 59
" 4.1 Part of a description space partially orderctf by the more-general-than relation....... 72
4.2 A beam search with maximum beam w1dth 2 et 74
4.3 * The boundary sets S and G are used to compactly define the version spacc 75
4.4 Generalization hlcrarcm%etcrmxncd by specifying attribute type...................o 82
A CLS/ID3 deCision tree.uuvvuneiiineiiiiniciii it e 86
5.1 Modules and files developed for performance evalURtioN. 108
5.2 Descriptions learned after 9 examples.............co 110
5.3 - Descriptions learned after 10 examples.................... e 110
5.4 \Qescriptions learned after 56 examplescoeoeerueieeneannnns SUTTURU 11 -
5.5 Descriptions leamed after 100 examples...........cooecvuiiinniiiinineiinen. reeerean 12 =
5.6 A case where a single example produces a radical changé in the description....... 113
5.7 Performance of ILP On Case 1.......cuceeuniianennecnnerreriennineensaieennnes o eeenans 115
5.8 Performance of ILP ONn CaSE 2.......ccovvvvvrirrererreernnnpernasanens eereraeraeans e 117
59 Performance of ILP on Case 37mueveeeevvreieennsonanens evenarteeesiierssesensienneis 119
A 510 Performance of ILP on CaSe 4........ovvvmeruunsnnssnssunssssss e cesenenee v 119
5.11 Varymg the search parameters with Case 4........ccocovineeenieineennennns cernenene 122
5.12 Performance of ILP on Case 1 with 0%, 5%, and 10% nOiSe..........c..cuueeee.123
5.13 ‘Performance of ILP on Case 2 with 6% 5%, 10% poise........ e e 124
5.14 Performance of ILP on Case 3 with 0%, 5%, and 10% noise............ 124
5.15 Performance of ILP on Case 4 vith 0%} 5%, and 10% NOISE v ivveveivvenreninee. 125
6.1 Tiansforminga ‘conjunctive learning hlcrarchy intoa conjuncnvc module R
RICTAICRY .. cieveerieveins rine e eneenee et rennees veneeseresrire rveeesereneinnn 132 <
x

Chapter 1

Introduction

In this theus two new methods are developad with the pllr'p(‘\’k,‘ betng to improve the
sequendang and diagnosuc funconons of learming hrerarchies i adapuve instructional
wtems Throughout the thesis, “adaptive instructional system™ (A1S) 1s used rather than
the more current intelhigent tutoring system”™ (ITS) because the former term suggests

. :
continuity with work prior to 1970 which s often 1gnored 1n recent literature Anothet
distinctuon adopted here s that, while ITS conventonally refers 1O software dc\.xgm'd to
teach spectfic content, an ALS has a somewhat broader scope ‘

The need to program domain spc‘\cmc tutoring (cchniqucﬂ 1s 1ndeed the greatest
deticiency of current ITS. So far, the applicanon of artificial inlclhg;‘ncc (AD 10 educanon

1
seems to have required that, in order to exploit domain specific knowledge. difterent
techniques be developed for every new instructional program. In practical terms, hitle has
changed since Goldstein and Carr (1977) presented the tongue-in-cheek sketch of "periods
of CAI" reproduced in Table 1.1

The main reason why it has been so difficult to break gway from the ad hoc nature of

domain-specific ITS is that instructioaal theory, on which any such advance must depend,
3
1s very weak. Good teachers acquirc'\Q();ﬂ of their art, not from studying a science of
learning, but through experience teaching specific subjects. The tutoring heunistics they
learn do not necessarily generalize well 1o new subjects, or even to new lessons in the same
subject. The approach: advocated here is that we provide the instructional system with the
litle practical knowledge that instructional theory has to offer, and also endow it with
means to acquire domain-specific knowledge as it teaches. However, in the foreseeable
fyture, we cannot hope to entirely eliminate the need for course authors and the domain-

el

specific software they produce.

Table 11 Peniodsin CAl adapted from Goldstein and Carr. 1977,

Primitive Classical Romanne Maodem
Programmed PLATO SCHOL AR
mnsiructon
(using ~) TICCTT SOPHIL
workbooky)
set theory with
EXCHECK
WUMPUS
BIP
Ll
” |
no computer no domain specific | use of Al for Al apphed to
experise experuse theory of

leaming and
teaching
.

1.1 Learning hierarchies as & representation of global course structure

In order 10 use general instructional principles, there must be a knowledge
representation structure applicable to many varieties of subject matter. The learning
hierarchy structure developed by Gagne (1962) is a promising candidate for part of such a
representation. Learning hierarchies have gained wide acceptance among instructional
designers. If frequency of presentation in instructional design textbooks is a valid measure,
the learning hierarchy is second in importance only to behavioral objectives as a hallmark of
systematic instructional design (e.g., De &cco. 1968, Dick & Carey, 1978; Briggs &
Wager, 1981; Martin & Briggs, 1986). "

In a review of learning hierarchy research, White and Gagne (1974) stated that "studies
since 1961 have provided fai}ly consistent support for Gagne's hierarchy postulate, and as
the methodology of investigations has been improved and the limits of ,thc postulate have

been clarified, this support has strengthened”l. This interpretation of the research was

confianed by a meta-analysis (Horon & Lynn, 1980) of .15 studies which tested the

3

1 By "limits of the postulate” they mean Gagne's original contention that learning hicrarchies are
applicable only w0 intellectual skills, and not to verbal knowledge.

[29]

cffectinveness of fearmimg hicrarchies in the sequencing of objectives Horon and 1Tynn

.

concluded that the use of learming hierarchies substanually ncreases achievement and
~ Y

marginally reduces learming time

Maodified forms of the Gagne learfag hicrarchy have figured prominently i a few ALS

(Westcourt, Beard & Qou‘ld‘ l‘)7;, Heines & O'Shea, 1985, Peachey ‘& McCalla, 1986).
Like the v\"mk reported 1n this thesis, these systems are based on the co(m‘epl that learmning
hierarchies can serve as a good framework for building large courses (1.e, exceeding 50
student houry) from collections of related modules, whcré each module covers a specified
set of objectives In the scheme adopted here, a module may be any instructional
[’)rc.\cnmtmn that a course author? deems appropnate and feasible, from a single frame to an

V/

entire ITS In .\({mc circung.\tancc.\, the nesting of hierarchies in modules would also be
useful. f) N

Learning hierarchies are iji practical way of representing global course structure. They
involve httle extra labour fn/r the author because most courses covering intellectual skills
are, or should be, subjecu:dt to a hierarchical analysis in the design phase. This is an
important advantage because lengthy authonng time 1s already the single greatest barrier to
the proliferation of good courseWare. >

\Also, this approach allows for an intégration of current instructional design practices
with a variety of instructional methods. The only constraint imposed on such methods 1s
that they provide an assessment of student mastery of the objectives they are designed to
teach. Accommodation of divetse methods is important because no single paradigm
currently dominates 19c field of co.mputcr-bascd cﬁucation. The last 25 years has seen

several promising and stimulating applications of artificial intelligence to educational

problems but, as Suppes (1984) has observed, intelligent CAI (ICAI) is still in its infancy

o ' i

2 Throughout the thesis, the term "author” refers to ?yonc ifvolved in the design, implementation, or
maintenance of a course. '

o

and is characterized hk)"“\;\nﬂ;nui C'xpccmtion.\ and a certain natve disregard for stochasug
methods. There is no comparative research o support claims concerming the superianty of
1CAT over frame-based CAL but there 1s a great deal of research supporting the hyp(nhcxi.x
that conventional CAl is as effective or more effective than standard classroom instruction
(Bangert-Drowns, Kulik & Kulik, 1985. Niemiec, Samson, Weinstein & Walberg, 1987,
Niemiec & Walberg, 1987). The point is that, given the current state of computer-based
education, a system dealing with global course structure 1s more iikcly to be successful if it
places few limitations on instructional methods used in local modAulcs. !

1.2 An overview of this thesis

The purpose of the work reported here was to develop new ways of cxploiling; lcarriing
hierarchies in adaptive instructional systems. It is hoped that these procedures will
eventually be available from course authoring and execution facilities.

Chépter 2 is a review of previous work on adaptive instructional systems. It focuses on
methods which are relatively independent of subject area, and especially on those which
use learning hierarchies. &

Chapter 3 proposes an extension of the standard t'n(cthod for sequencing instructidnal
objecti‘vcs with learning hierarchies. The extension tries to minimize a siniplc psychological
construct called (némory load. Procedures are dcvclop’cd which are practical for large

N

leaming hierarchies. Lo o
I

-~ N

Chabter 4 presents an inductive learninf procedure (I\LP)‘aimcd at improving the
di‘agnostic function of learning hierarchies. When centain assumptions are met, ILP will
) substantially reduce the ‘amount of testing required to identify which objectives from a set

of prerequisites are jn a state c}hon-mastcry. ‘ . .
- ‘

T

An experimental evaluation of ILP using sfmulated subjects is reported in Chapter 5.

The evaluation indicated guidelines for usage gf ILP and

In Chapter 6, consideration is given to the integration of memory load sequencing and

I1.P into future AlS. Funther development of these and other procedures 1s sugfested.

1.3 Refergnces

Bangen-Drowns, R, Kulik, J., & Kulik, C. (1985). Effectiveness of computer-based
education in secondary schools. Journal of Computer-Based Instruction, 12(3), 59-68.

Briggs, L., & Wager, W. (1981). Handbook of Procedures for the Design of Instruction.
Englewood Cliffs NJ: Educational Technology.

Y

De Cecco, J. (1968) The Psychology of Learqfng and Instruction: Educational
Psychology. Englewood Cliffs NJ: Prentice-Hall.

« B .
Dick. W., & Carey, L. (1978). The Systematic Design of Instruction: Glenview 1L: Scott,
Foresman. :

Gagne, R (1962). The acquisition of knowledge. Psychological Review, 69(3), 355-365.

Heines, J., & O'Shea, T. (1985). The design of a rule-based CAI tutorial. Inrernan'ona{
Journal of Man-Machine Studies, 23, 1-25.

Horon, P., & Lynn, D_ (1980). Learning hierarchies research. Evaluation in Educarion, 4,
82-83.

Martin, B, & Briggs, L. (1986). The aﬁ‘ectiv‘e and cognitive domains. Englewood Cliffs
NJ: Educatonal Technology. -
Niemiec, R., Samson, G., Weinstein, T., & Walberg, H. (1987). The effects of computer
based instruction in elementary schools: A quanttative synthesis. Journal of Research
on Computing in Education, 20(2), 85-103. i
&

Niemiec, R., & Walberg, H. (1987 Comparative effects of computer-assisted instruction:
A synthesis of reviews. Journal of Educational Computing Research, 3(1), 19-37.

Peachey, D., & McCalla, G. (1986). Using planning techniques in intelligent tutoring
systegns. International Journal of Man-Machine Swudies, 24, 77-98.

Suppes, P. (1983). Observations about the application of artificial intelligence research to
education. In D. Walker and R. Hess (Eds.). Instructional Software: Principles and
perspectives for design and use. Belmont CA: Wadsworth. {

i

Westcourt, K., Beard, M., & Gould, L. (1977). Knowledge-based adaptive curriculum

sequencing for CAI: Application of a network representation. Proceedings of the
f Association for Computing Machinery, Scattle WA, p. 234-239.

Whitc, R., & Gagne, R. (1974). Past and futup€ research on leaming hicrarchiés.
Educational Psychologist, 11(1). 19-28. . /

Chapter 2'

' Adaptive Instructional Systems3

1%

There is no consensus on definition of the term adaptive instruction, bt a rough

characterization of ‘the concept can be conveyed by & few of the many ovcr\apping

\ definitions given by theorists: >

Adaptive instructional strategies facilitate individual learning by adjusting the basic
learning environment to the unique learning characteristics and needs of each.
learner. . . . For an instructional system to be adaptive, it must be both diagnostic
and prescriptive. s
(Rothen & Tennyson, 1978, p. 317)

Adz(i}pti)s materials characteristically: (a) save the students' time and effort by letting
them skip unneeded teaching matenal; (b) test snidents to determine their needs; and
(¢) reflect individual differences among the students.

o - (Holland, 1977, p. 147)

The term "adaptive” is used to imply that the student is routed to material which
follows different teaching strategies and that tasks are put together, on-line, to fita ,
particular student's competence. The cothponents of an adaptive instructional
system are, representations of tasks and student performances, and a set of teaching -
operations which are controlled by means-ends guidance rules.

(Hartley, 1973, p. 421)

- .

Two features separate the modern sﬁldy of adaptive instructional systems (AIS) from
the wider field of individualiZzed or adaptive education: (1) an AIS is ultimately expressed in’
the fprm of a computer program '(c\;cn though, as in the case of computer-managed
instruction, some other medium may deliver the instmctiop) and (2) an AIS represents an
.attémpt to individualize the way‘ in which the curriculum is presentéd, but not the
curriculum itself. By many definitions, vinually an CAI program with canned text and
response .contingcnt branching-can be class.iﬁcd as aiAIS. But in this chapter, a definition

is adopted which agrees with Gable and Page's (1980) historical classification of teaching

programs: an AIS accomplishes individualization through some systematic and widely
A

b

3

© 3 A version of this chapter appeared as a Division of Educational Research Services Research and
Information Report (RIR-87-3). ’ \

.

. : .
applicable technique which exploits a student model formed from a history of responses

which is stored between instructional sessions.

-’

PO
LR

A crude taxl;nomy of adaptive instructional systems is suggested by several, admittedly

fuzzy,

parameters which researchers have allowed to vary in attempting to individualize

instruction:

S

Pace. This refers to the rat¢ at which instructional messages are presented to the .

learner and may be measured as words per minute, pages per hour, and so on.

Self-pacing was often cited as an important advantage of program[’ncd instruction

(PI), teaching machines, and CAl in the céﬂy 1960's. Except in cases where skills -

such as reading speed are being trained (Wilkinson, 1983), the universally

preferred approach to individualizing the pace of instruction is to place it under

~

learner control. _ .

Amdunt of instruction. This is the number of examples or dggrec of detail'in a
presentation required by a student to learn an objective. It is inversely related to step
size. The term step size arose in ;hc coﬁtéxt of PI where 1t referred to "the amount
of increase in'subject matter difficulty with each step in the program” (Cook, 1961,

4

p. 153). !

~

Amount of practice. TFhis paramcte-r\is similar to amount of instruction, but it can be
qadjus.tcd according to mcasurés of fluency derived from practige responses.

Selection of instructional‘ objectives to be‘covered. The prirrfary goal of many AIS
dcvclbpcrs has been to target the instruction to the knowledgc state of the learner. In

practice this means skipping instruction on conécbts which the AIS has peason to

- assumie the student knows.

écqucnce. Once needed objectives have been identified, some order for presenting
them (or tasks which incorporate them) must be determined. For .cvximplc, BIP I
(Westcourt, Beard, & Gould,, 1977) used a learning hierarchy, an estimate of the

student’s learning ability based on previous performance, and a list Of\'ﬁbjACCtiVCS

-

~ 14

e

o

from the hierarchy not yet mastered, to select the best BASIC programming task to
present ncx(.\ |

» Learning styl\é“.\'{his is really a catch-all factor which covers many kinds of
individual differences. ¥or example, in Hc'\ncs & O'Shea's tutor.ial, learning style
was inl;trprctcd as student preferences for non-interactive demonstration, assigned
exercises, or distovery learning.

| Most adaptive instructional systems start from the same state with each new student
\ they encounter, and there is no capacity for applying to later students infqrmation gleaned

from dealing with the current student. A_‘s;elf-improving AIS (H;mlcy & O'Shea, 1973)
" tries to bring previous expen'énce to bear on the problem of adapting to a new student. The
mechanism for accomplishing this can range from the rote learning 6f response dat:a (c.g.,
Smallwood, 1962), to rule learning by inductive inference as presented in Chapter 4 of this
thesis.

This review will p{imérily cover adaptive instructional systems which have been
designed to deal with a wide range of content argas. Tuton'né prografnsi which jncorporate
adaptive tcchg{xqucs are of interest here only to the extent that those techniques can be
genérally applied. Before taking a fairly detailed look at several content-independent
adaptive invs‘tructiona] systems, a very brief historical overview is given of significant

developments in educational psychology bearing on the iés:xc of indiQdualizcd edugation,

and a few general issues relating to these systems are presented.

2.1 Attrii)ute-treatment inte”ril_ction and beyond |

With the advent of universal comipulsory education in Europe and North America in the
late nineteenth and @ iwlenticth centuries, 'educators, were challenged on an
unprecedented scale with the prébtcm' of impressing a standard curriculum on a large and
diverse studet population. In his influential paper "The child and the curricujum” which
appeared iw 1902, Dewey argued for the Rousseayan ideal that the child be the "thie starting

S

o
4

point, Y&?'cemcr, and the end"” of the educational process (Dewey, 1976, p. 276). Both
Dewey's essay and Thorndike's book lndividua[-(r_y, first published in 1911, reflected the
growing recognition of human diversity and of the commensurate need for individualization

* of instructional methods and curriculum (Glaser, 1977). This attitude was reinforced by the

’

results of the administration of a modified version of Binet's new inlslligencc testto 1.75

i
!
i

j" y

Over the following four dccadcé, schooi>systcms introduced means of channeling

million U.S. army recruits in World War 1 (Gould, 1981).

secondary students into a small number of different programs (e.g., business, vocational,
academic) according to their career expectations or tested abilities. In his 1957 presidential
address to the American Psychological Association, Cronbach suggested thag psychology
had been prevented from helping to bring about a more profound change by a Schism
which had divided the discipline since the early 1920's. The split was along the ancient
nativist-empiricist fault line: correlational psychology, which deals with vanation in ability
or aptitude, versus experimental psxchology, which deals with variation in treatmexy.

‘ N

Cronbach proposed a new agenda for applied psychology:

The job of applied psychology is to improve decisions about people. The greatest

social benefit will come from applied psychology if we can find for each individual

the treatment to which he can most easily adapt. This calls for the joint application

of experimental and correlational methods. . . . For any practical problem there is

some best group of treatments to use and some best allocation of persons to

treatments. We can expect some attributes of persons to have strong interactions

with treatment variables. These attributes have far greater importance than attributes

which have little or no interaction.

(Cronbach, 1957, p. 679)

Figure 2.1 illustrates Cronbach's point about aftribute treatment interaction. Treatment A
produces greater average achicvc:?nt than treatment B, but the greatest average
achievement or payoff is aftained when students are divided into two treatment groups
according to aptitude. The point is that, when anpA"I'I is present, it is possible to do better

than to simply give everyone the single treatment which produces the greatest average

achievement.

F(. Give A e D r Give B¥€¢-Give A~

Achievement

(Payoff)

Achievement /
/

(Payofl)

a/
1
AN

3

Aptitude . . Apttude
Figure 2.1 ‘An atribute - treatment interaction.

\

However, the disordinal interactions necessary to,rcaiizc the potential of this
enlightened view had yet to be discovered. Although a search for ATIs was pursued

igtently by many researchers in the sixties and seventies, there were few interesting results

(Glaser & Regnick, 1972). In surveying 90 ATI studies involving 108 potential ATlIs,
Bracht (1970) foqnd that only 5 significant disordinal interactions had been reported. All
but one of the ATIs found were not applicable to instruction. Cronbach and Snow (1977,
p. 6) conceded that "well-substantiatcd)f'mdings regarding ATI are scaree”, and suggested
that the original concept of ATI, though an improVement on the single treatment approach,
had been an oversimplification.
Several limitations in the original ATI model were noted by Cronbach and Snow (1977)
and Tobias (1976): | i ‘
* An ATI may involve mare than one aptitude or treatment variable.
 The set of,attributes interacting with a trcétmcnt variable may vary as the treatment
progrcsscs. .
» The attribute measured in a prc-tést may not remain stablc over the period of time in
which the treatment occurs. .

» Evidence indicated that an ATI validated for one content area is often not

generalizable to other topics.

10

-

\

In the fage of these possibilities, a successful ATI hunt would seem to require guidance
<

from stronger theories of instruction than are presently available.
Whatever«Cronbach's original intention, attribute was often narrowly interpreted as a
Py a

static heritable trait. Tobias (1976) observed that in ATI studies where prior familidrity wi/lh

- the content was included in the analysis, disordinal intgractions were often found, not with

11

the expected aptitude, but with the familiarity variable. He proposed that -

7
achievement-treatment interactions be used to determine treatment assignment. The shift

from trait to state implies that treatmenis be shart, allowing for frequent treatment

assignments to keep up with the current state of the student.

C
2.2 Hartley's framework for adaptive instructional systems

The most endufing paradigm for the structure of an adaptive instructionak system is due

to Hartley (1972; 1973; Hartley & O'Shea, 1973). Hantley's framework is best viewed not

as an AlS itself, nor prescription for AIS structure, bt as a descriptive tool allowing

for qualitative comparisons between systems and bringing a limited degree of order to a
TN

chaotic field. T / \

Han‘l‘c.)./'s framework is based on the General Problcnﬁ Solver (GlgS), a pionetering Al

i N A
program developed by Newell, Shaw, & Simon (1960). Given a currerit state, a desired

state, domain-dependent operators, and domain-dependent heuristics for applying the
operators, GPS tried to obtain through a "means-ends analysis" an operator scquenc.c for
transforming the current state to the desired state.

By analogy, a system for solving instructional problems requires the foliowing

components:

~f

1) A task representation (or expert model)

2) A student molel - (5

-

3) A teacher model composed of
1

* aset of teaching operations

+ a set of means-ends guidance rules (heuristics for applying the operations)
The goal of the instructional system is to obtain an ordered set of teaching operations
capable of transforming the student model into the expert model. This framework assumes
the existence of a mechanism for updating the .studcnt model as instruction proceeds. The

guidance rules are reinvoked avhen an updated version of the student. medel becomes

available.

e

2.3 Learner control N~)

There are three potential loci of control in an instructional system. Decisions can be
made by a human teacher, a computer program (the teacher mzdcl), or the leémcr. The term
learner control usually implies manipulation by the student of sequence, amount of
instruction, or mode of instruction. Lcamc);r control is best exemplified by TICCIT, a CAl
system tailored to the teaching of concepts (Mcrﬁll, Schneider & Fletcher, 1980). In
TICCIT, studen{s could choose which concept to study and whether to learn about the
concept by rule, example, or practise. As the primary alternative to an AIS Vas a mc;ms of
individualizi‘ng computer-based instruction, the prospects for learner control are now
briefly considered. * |

The rationale behind leamner control is that, through introspcctioh. the student has
access to internal states that can at best be only crudely modeled by an AIS. It is also
claimed that gi\}ing cont'rdl to’learners makes them more motivated and leads to hi gher
achievement. The countcr-afgumént is that these advantages, if thcy’ exist at all, are defeated
by shortcomings in the other two of necessary knowledge: knowicdgc of how to
teach one's self (the tc#chcr model),'and kndwledge of what is being taﬁht (the cxpci't
model). ' .

Experimémal cvidence bearing onrthese points is insufficient to arrive at any general

conclusion. In a review of the sparse research eyaluaiing the effects-of learner control i

CAL Steinberg (1977) found that the achievement of learner control groups was loferor)\ -

[y

A

.
L}

not significantly different from that of groups with less control. Some studies found learner

control subjects to have more favorable attitudes toward CAI while showing poorer

|

achievement. \\ " ,
™ <

The solunon to the locus of control issue would seem to be a judicious mix of learner,

teacher, and program control (Nakayama & ngashlbara 1986). Both Steinberg (1977)

and Snow (1980) recommended that degree of learner control be itself regarded as a

treatment variable to be individualized, and that attributes should be sought which interact

with the locus of control variable. There is some weak evidence supporting the intuitive.
‘

notion that learner control works best with high achxcvmg or better 1nformcd students
(Tennyson 1981). A precept of this dlssenanon which 1 1s supported by Tennyson's study,
is that the possibility of learner control does not negate the value of research on program

control because even when the system does not control, it should be able to advise.
t

2.4 The cost of program controlled adaption
Some adaptive instructional programs (e.g., IPI Mathematics) try to minimize learning
~time by,administering a diagn()stic test,on objectives not yet covered and presenting
instruction only on objectives fqr-which the srud‘cnt f‘ailcd to demonstrate mastery. Holland
(1977) pointed ont'that there is no advantage in employing such an ndaptivc decision when
the instructional time it saves is largely offset by additional time spent in the test. All
formative tests are candidates for this kind of criticism, because even a post-test can be seen
as a kind of pre-test allawing those who pass to skiia remedial instructic;n. As a
quantification of this principle, Hollana presented a consequence ratio:
T y

where 1 is the estimated time to teach the obj::)ivc and T is the estimgted time to test the

objective. A consequence ratio of 0.5 was taken to be the "b

values representing adaptive decisions which cost more time /thanﬂ.thcy save.

13

v

Hollahd calculated average consequence ratios of four indml\izcd instructional
progran;s inc-lluding Atkinson's. ‘(1968) influential early reading CAI progra;h\ In
Atkinson's program, every teaching frame is also a diagnostic test which branches the
student either ahead to the next teaching frame, or to one of several corrective frames
dcpcndiﬁg on his or her response. Holland obtained an average consequence ratio for this
program of 0.70 which he concluded was "a disappointing conscqucrncc ratio for a program

. sparking a multi-million dollar CAl movement". . “

But Holland'--s analysis is seriously flawed. Aside qfrom crrofs made in dealing with the
non-dichotomous nature of Atkinson’s CAI frames, there is a problem with the basic
formulation of the consequence ratio. It accounts for the cost to students who pass th.c test,
but ignores the cost incurred by tho-se\ who fail it. A better measure of the utility of an-
adaptive decision is the expected time saving per student:

1-(T+gD

whzre q is the proportion of students failing the test. -

Unfortunftely, the validity of this improved metric rests on the same questionable prior
asgumptioﬁs used by Holland. He arguéd that a single item cannot properly serve both
diagnoétic and instruttional purposes Because good instructional items must have very low

. failure rates, and good diagnostic items must have failure rates close to 50%. The premise,
that instructioﬁal iterns should be errorless is an axiom of E‘thc pixilosophy of PI (Skinner,)
1958) to which‘ Holland is a long'timc adhcre;nt. The current mood 6f educational
psychology, though no better ‘supportcd by empirical evidence on this point4, backs the
s;mcwhat opposing view that uhcqnainty“ and conceptual conflict provide necessary

) t‘notiyation (Gagne, 1985). Although the best level of item difficulty for learning is

dclih'tablc, few would claim that nothing can be learnéd from items of maximum
. \ . .

4 Haﬁlei (1973)‘ developed a system capable of adjusting task difficulty to maintain predetcnmned success '
rates. Of three treatment groups with success rates of 60%, 75%, and 90%, the group maintained at 75% -
__showed highest achievement, with the 90% group outperforming the 60% group. .

~ S

b

\

discnmunabihty The importance ot high discnmumabihity tor entenon referenced diagnostg
ttems 1s also questonable

Imphcrtin Holland's ahalysn 15 the behiet that the only cost resulung trom giving a
«udent more instruction than he or she needs to achieve mastery s the tme then o doso
But there 1s evidence (Tennyvson & Rothen, 1977) that excess instructonal itemis can lead to
lower post-test scores

The validity of the diagggstic test should be included 1n any formulation of the unlity of
‘the adaptive decision. Cronbach and (]lcscr'&cmploycd validity coefficients 1n the utility
functions considered in their wide ranging attempt (Cronbach & Gleser, 1957) to umty
psvchological testing with decision theory Tt s hkely that the insttuctional decision
problem posed by Holland 15 a special case covered by their taxonomy of pyvchological

decision problems.

2.5 Smallwood’s feaching machine

Smallwood, (1962) developed the earliest sélfmmg AIS. Although the design of
his system was ‘;\i\mggly in{‘lucnccd by contemporary ﬂ;;earch on teaching machimes and
programmed instruction, the ability of the system to use cxpcn’cnpc to improve its decision
c;itcﬁa distinguishes it from previous systems. An examination of the essential aspects of
Smallwood's teaching machin is warranted by its influence on later instructional control
systems.

In Smallwood's system, concepts to be taught are arranged in a linear sequence which
is fixed for all students. For each concept, the course author prepares a general
branching network and a post-test on the concept. A general branching network 1is
comprited of blocks, which can be roughly described as frames of instruction: each

having an instructional message and a question exercising and testing the student on the

information presented in the message.

15

Smallwood assumes that in learning a single concept students progress through an
invanant sequence of levels of understanding. It is also assumed that every block can be
recognized as ransfermng students from a certain lower level to centain higher ones. Figure
2.2 shows an example of a general branching network. The jth block staruing at the 1th level

1s designated by

level

0

.Figure 2.2 A general branching network.

The purpose of the branching network ?s to provide the potential for adaption in both
step size and learning style. Fo; example, the branching network in Figure 2.2 allbws a
slow sr’udent to receive a sequence of four blocks — bpj, by, b2, b31. A bright student
may be presented with only one block — b4 covering the entire concept. Blocks b173 and
b4 both start and terminate at the same levels, and™so can be assumed ta differ in
instructional style.)

Responses to a block question are assigned b)jfrcsponsc analysis to one of a
predetermined number of equivalence classes called answers. Smallwood#fissumed that,
for each branching nénmrk, a function v(i,j.k) is defined which is equal to the level of the
student after he'or she has givcﬁ the kth answer to the question in block bjj. If the kth

answer is completely correct, v(iJk) will equal the terminal level of block bj;. Otherwise,

16

\

——

v(i).h) ‘\»\‘l“.(‘qll;l] some level lower than the lcnn‘i’rml level The funcuon v k) s fixed by
the course amho\r and does not improve with experience® It may ard the reader’s
understanding to view the network as actually comprised of two components: the set of,
blocks, which are the nodes of the network, and a set of directed arcs implicd by v(i,j.k).

The following control procedure was used to route students through the branching

a

network:
1) Assign the student to level O

2) Using/somc decision process, select for presentation one of the blocks starung at

pa
o

the student’s current level

[After reading informaton presented in block, student responds to block quesnon | ’

3) Classify the response as the kth answer and assign the student to fevel v(ig.k).

4) If the student is at the terminal level then halt, else go to step 2.

The only feature which really distinguishes Smallwood's teaching machine from a
standard frame based CAl program is the decision process alluded to 1n step 2 of the
control procedure It is to this process that we now turn our attention.

In terms of decision theory, the angwer k gibvcn‘by a student to the question in block by;
is the outcome of deciding to present by to the student. One can imagihe a goodness or
utility value, denoted Ujji. associated with each outcome. Smallwood proposed that the
definition of utility be derived from the instructional application. Without knowing with

certainty how the student will respond, the machine can only obtain an expected utility Ej;

for each of the options available to it:
“(l
K : *
Eij= X PijkUijk (eguation 2.1)
g k=1

where Pjjk is the probability that the student gives the kth answer in bjj. According to

decision theory, utility is maximized over many such decisions if one always selects the

5 Smallwood proposed that future work might find ways to allow the system to determine v(i,j k).

N

17

*

.

.) \ ,
option with the maximum expected utihty. The problem is now rcducé‘d to onc of finding
good esumates of Py and Uy.

Smallwood based his estimation of Pyjx for student S on the "pasl.history" of § -~ what.
would now bc\{';]led the student model. The student model was a vector of tri-valued
elements (RIGHT, WRONG, NOT_TAKEN) representing the student’s performance on‘
all questions in the course, including those in the post-test.

The probability of the correct answer is designated by Pjj ., and its estimate by }Sljkc-

fa)

The estimate of Pyjx for any k was obtained by first finding ﬁnjkc- then partitioning 1-Py

among the wrong answers according to the distnbution of past students answering the

question incorrectly. After comparing several approaches to estimating Py ., Smallwood
L

chose one for his empirical study which he referred to as the "intuitive model”. It was
based on three parameters:

__number of correct answers in all student models
~ number of questions attempted in all student models

number of correct answers by student S

M = humber of questions attempted by student S
, . _ number of students which answered bjj correctly
7.9 N number students which attempted bj;

An intuitive estimate of Pjjy_ for student S is given by aﬁy function of these parameters
which satisfies the following conditions:

. lsijkc 20, ﬁijkf ¢, ﬁijkc <¢,as >, T =q, n<a respectively. This means that
if S is an abo:'c-avcragc (average, bclow-'avcragc) student, his expected
performance on bjj is better than (equal to, worse than) thie average performance of
previous students who have attempted b;;.)

. ﬁijkc 2x, ﬁ,'jkc =x, ﬁijkc <masd>a,0=a,0¢ < o respectively. This means that

if bjj is an easier than average (average, harder than average) qucstiori, the expected

A

performance of S on by, is better than (equal to, worse than) his own average

Y

pcrformancc.l

. ﬁ'jkj increases as « incrcascs.,

. ﬁnjkc increases as ¢ mcréascs.

Among the other models considered by Smallwood was one based on muluple
regression, with responses to questions already completed serving as predictors. The
intuitive model was preferred over others because it allowed for fast computation and
incorporated Smallwood's own subjective expectations about the behavior of lt;amers_

4

A few defimuons of xitility were suggested, all of which were based on the expected

score on the co}mccpl post-test. To give an example, suppose one's goal is to maximize the

student’s score on the post-test. Using\the same model as that used to estimate Pjjx , an

estimate can be obtained for P, the probability that a student with a particular path through

the branching network will give the correct answer for the mth question on the postlgst—

The utility of the entire path is the expected score on the post-test of any student who has

traversed that path:
n
Pm
m=1
n

terminal utility = (equation 2.2)

where n is the number of questions in the post-test.

The key to Smallwood's method is the recursive definition of utility: the utility of any
outcome achic\;in g the terminal level is simply the expected score on the post-test,
otherwise the utility of the outcome is ﬁc maximum expected utility of all paths continuing
from the level achieved by the outcome. o

To see this more clearly, one can represent the problem as in Figure 2.3. This
representation can be thought of as a game tree, much the same as those used to describe
the behavior of chess or checker playing prograrﬁs. Every time it makes a decision, the

teaching machine searches ahead through this tree by following options available at future

decision points and evaluating outcomes. Both Smallwood's teaching machine and a caess

20

—

BN
player engage in a strictly aliernating dialogue with an organism whose actions they can \
only partially predict and control®. Typologics of artificial intelligence problems (Rich,

1983) contrast problems of 'this type with problems in which the environment is completely

v

predictable.

o'y

stage '

YN IR B D

-7
@ D @ D @ D @ @

6f\4 9f\1 .4 .Q}\-‘.s S5 .sf\s 812 .sf\s 8] \2

F U EHEIBERLEEE0LEEEDEDE
- Figure 2.3 A decision tree for a teaching machine.

\ T

L.

Two stages of the decision process are répresented in Figure 2.3. Machine decision
points appear as capsules and student decision poi;ns as ellipses. The terminal nodes in the
bottom row contain expected scores (equation 2.2) on the post-test for each path. The arcs

below the student decision points rcpréscnt the answers from which the student may
’ .) Y 4

.) 77\
6 Of course, unlike a chess player, a teaching machine is not in "zero-sum” competition with the -

» organism. The consequence is that instead-of a single planning strategy which does double duty, the
teaching machine requires separate models of teacher and student behavior.

Y

o
choose. Each answkr is labeled with its own probaéili(y P,k Each stydent decision point is

labeled with the ekpected utility (cquétion 2.1) of the machine decision from which it
follows. Each mach\i\nc decision point is labeled with the maximum of the expected utilities
of all‘jt\s‘\‘availab]e options.

The decision tree in Figure 2.3 is simplified in several respects. All paths shown lierc
are the same length, but in general they will have different lengths. In fact, because the
repetition of blocks is allowed, some pat‘hs will have infinite lengths. Also, in a more
realistic example most decisions would involve more than the two options per decision
point depicted here.

‘Ideally, the teaching machine would start at the current machine decision point, and
recurse until it arrived at the end of all pathg. Then, as it backed up the tree, it would
calculate the values shown as labels in Figuré 2.3 by taking the weighted sums (equation
2.1) over all student optiong and the maximum over all machine options. When it had
finally backed up to the original decision point it would choose the option with thd
maximum expected utlity. °

In the example, the teaching machine chooses the left branch because it has the greatest
expected utility (.65) of the two options available to it. Note that this decision is made even
though the path w1th the greatest 'cxpcctcd score on the post-test (.9) belongs to the right
sub-tree. |

Without some method for dealing with combinatorial explosion, the teaching machine
would continue pondcring. its first decision forever. So Smallwood found it necessary to
employ both breadth-_wisc and depth-wise pruning to limit the search of the decision tree.
Both types of pruning introduce error into the decision process.

Breadth-wise pruning was accomplished by dropping fro;n considcration any
incomplete path (and therefore the sub-tree dominated by that path) whosc csnmatcd

"N
probablllty was less than a predetermined threshold. Thc?'cmmated probability of a path

was presumably calculated as the product of the Pk cncountcred so far on the path.

21

A

The depth of the search was limited 1o three stages. In cases where this boundary fdll
short of the end of a pat;l, an approximation of the expected post-test score was obtained by
assuming that the proponion of guestions that were answered correctly 1n getting to the
boundary would hold constant for the remainder of the path. |

Trying to maximize the post-test score is clearly a poor strat?gy.lb'e.causc it"tends to
produce very long paths. The decision criterion actual}y implerﬁe;ned by Smallwood
minimized the learning Ftimc fiecessary for a student to.achieve a predetermined expected
score on the post-test. Although requiring more complicated calculations, the implemented
procedure used-a recursive defittition of utility and was_vcryﬂsimilar in othcr\\rcspects to the
proccfiure described here for maximizing the expected score.

There are two major shortcomings to‘ the system presented by Smallwood in his 1962
monograf)h: ‘ .

* Thg branching };ctwork should span a partial ordering of subconcepts rather than a

linear arrangement of levels. The advantaéc qf assuming a linear arrangemeqt is that
the currcnf state of knowledge of the student can be represented very concisely by a
single integer. The implication is that the student has learned all and only the
subconcepts :(t or below his current level. HOWCVCI:. since Gagne's work on
learning hierarchiés (Gagne, 1961),. it ha‘s bccn‘ apparent that normally a linear
arrangement o? in§tmctional objectives cannot capture the prerequisite relationships
between the objectives. Whéncvcr.a linear arrangement is used to approximate a
parti;al order, it is likely that a student set back to a lower level will be re-instructed
on matcrial he alrcady knows as he works‘ his way back up to his on'ginal position

e As Sma.llwood (1970 p 106) recognized in an article summanzmg and revising his

views on the optimization of instruction, "the weakest componcnt in that early
system was the mathematical model used for the calculation of student response
probabilities”. The most obvious limitition of that intuitive model was that it could
not take-advantaée qf differing degrees of correlation between items (qucs}ibns). An
™ : ,

e

23

P
by

nem which is highly correlated with the predicted item 1s allowed no more weight in
the prediction than itemns which are irrelevant. Also, the intuitive model shares with
more advanced models (such as item response theory) the often untenable

assumption of unidimensionality of test items.

[y

2.6 Atkinson's drill optiﬁlization system :

Studies on optimalinstructional strategies which followed Smallwood's imitial work. are\
best exemplified by the adaptive drill programs developed primarily by Atkinson at
Stanford (Atkinson, 1972a, 1972b, 1976; Atkinson & Paulson, 1972; Groen & Atkinson,
1966). Atkinson viewed the decision theoretic mct};od,\flrst applied to instruction by
Smallwood, as the basis for a theory of instruction. The theory required that the following
components be spcciﬁcd‘ for each instructonal problem:

* possible states of the learner

* pgssible instructional actions or obcrations

+ the state transformation resulting from each action

» the cost of each action

« the utlity of each state
4 To make this concrete, a paired-;associate learning-experiment is described which
Atkinson conducted to demonistrate the effectiveness of his method: Items to be learned
consisted of German words paired with their English translation. In each trial, the student,
was faced with the task of supplying the appropriate English worﬂ in response to a German
word presented as a 'stimu%us’. When the student gave a wrong response, the correct
English word was supplied as corrective i‘ccdbacic. Each s}udcnt received 336 trials
followed a v:eck later by a post-test covering all 84 items. Students ?Ccivin g' a randomly
selected sequence of -itcms averaged 38% on the post-test, those in a lcamcrlcontrol

condition averaged 58%, and those receiving an optimized sequence averaged 79%. All

differences were highly significant.

¥

N

The student’s knowledge of each item was assumed to be in one of three states (P, T,

U) between trials. State P indicates that the item has been permanently learned. State T
indicates that it has been only temporarily learned and may be forgotten. State U indicates
“that it has not yet been learned. The .cffcc"ts of a trial (i.e., an instructional action) on
knowledge of an item are modeled as two simple Markov processes represented by the two

arrays shown below:

P T U
P. 1 0 0
Liy= T | x() 1-x(i) O)
U Ly zG) 1-yG)zG) o
¢
P T U
Pr1 0 O

Fi)= 7T |01-f) £(i)

‘UL o 1

L(i) models the learning of item i in a trial presenting item i. F(i) models the férgctting
of itern i caused ny interférence from new learning in a trial when some other item is
presented. The cell at the rth row and cth column gives the pr;bability that state r will
transit to state c. Thc"paramcters x@), y@), z() and f(i) rclatc‘ to the ‘difﬁculty and
forgetability of item i as determined by prior experimentation. An additional parameter g(i)
gives the probability that a specific student is m state P with respect to item i at the start of
the drill. These parameters allow for the calculation of a probabilistic' statement of the
student's knowledge of item i fqr any given sequence of items.

The parameter ‘g(i) varies with diff"crcnt students and therefore provides the system with
the potential for adaption to individual differences. In the experiment described here, the

other parameters were fixed for the duration of the study, obviating any potential for

24

D

self-improvement. However, a system capable of improving its estimates of item difficulty
was implemented.

Atkinson wanted to maximize ghe scores on the delayed post-test. He assumed that
items in state T would be forgdtien in the week preceding the test, so the definition of utlity
chosen to guide decision.process was the number of items in state P at the end of the
instructional session.

A decision process similar to that employed b¥ kSmallwood was used to select the next
item to maximize the expected utility. Unl{kc Smallwoo.d'_s system, all paths throug!*lic
complete decision tree were of length N. The search process actually implemented was on

y

one stage deep, because Monte Carlo studies indicated that this would obtain a good
estimate of the result returned by an N-stage search. '

The results of the experiment cannot be taken as evidence that Atkinson’s sequence
optimization strategy is more effective in a practical instructional situation than a much
simpler control strategy or even learner control. It is possible that all the gains in the
optimized condition rest on the g(i) parameter. A simplc sequencing procedure which
allow'vcd the frequency of presentation of item i to be proportional to 1-g(i) may do as well
as the optimizing strategy. Unfortunately, Atkinson did not describe ho&"g(i) was
obtained.

Although post-test scores are often the only way to measure learning in a practical
instructional si'tuation, when the goal set {or an optimizing procedure is the maximization of

;;ost-tcst scores, gains produced by the optimal’strategy may be illusory. Atkinson's

system tended to select items with the greatest probability of transition to state P. This

~ apparently means that for students receiving the optimized sequence, items not recalled in

the post-test were the most difficult items in the list. Had a sequel to the experiment been
’ r

arranged which required students to continue instruction until the entire list was mastered,

students in the optimized treatment group may have required as many trials as students in

the learner control group.

25

Atkinson & Paulson (1972) reported on the optimization of frame sequence in the
famous Stanford early reading CAI program. The main difference from the proccdulre
,already described was that, in this case, the probabilistic learning model did not allow for
forgetting. Optimal allocation of instructional time to related drill strands was considered by
Chant & Atkinson (1973). This work was based on observations that rate of learning on

one strahd was often a function of how far thlc student had progressed along a related

strand. . .

1
£

26

Atkinson's optimization procedure is deserving of more interest and exploration than it -

has received to date, but its épplication seems restricted to list drills and other simple tasks
for which a credible state transition model can be devised. Smallwood (lyy discussed a

hypothetical modification to his teaching machine based on a probabilistig/state transition

~
L 4

model of the leamer. Unfortunately, state transition modeling seems to demand & kind of

omniscience of the course author. This was the main objccﬁon raisedn a critique by Gregg
(1970, p. 124):) |

The question is how realistic is it to expect that that a precise enumerafion of states
of the learners and their transition probabilities can be derived from a

characterization of the subject matter? . ;

L3

2 7 Adaptive computer-managed instruction \
A computer-managed instruction procpdure based on ATIibn'nciplcs was described and
tested by researchers at Memphis State University (Ross, 1984; Ross & Rakow, 1980,
1981). The aim of the proced\;rc' was to prescribe an optimal number of examples for
concept learning. The underlying assumption was that the correct number of examples to
prescribe pnor to instruction is a function of the student's abxhty as measured by a mulnplc
regression predlctxon of his post-test score: students w1th higher predicted acﬁic/vcmcnt
should receive fcwc‘ll' examples. * , ¢

Ross and his associates applied their procedure to the management of printed materials
used to tcaéh undergraduate students ten élementary algebra ryles. In order to geirclop the

adaptive treatment, considerable prior experimentation was necessary. An initial set of
.
students was given several personality and aptitude tests as well as a test of familiarity with
the subject matter. This was followed by instruction on all ten concepts with the students
grouped into‘diffcring levels of "instructional support” (number of examples). After the
* instruction phase, a post-test was administered which yielded ten scores for each studém,
Multiple regression analysis revealed that-weighted combinations of four variables, prior
familiarity, math reading comprehension, locus of control, and trait anxiety, produced
multiple corrglations ranging from .53 to .63 across the components of the post-test.
Correlations with prior familiarity alone were only slighdy lower.
An adaptive program based on this analysis took each student through the following
plocedure:
« Entry tests are administered yielding measurements of the four predictor variables.
+ A pr'g':djctcd score is obtained for ea_c;h component of the post-test using ihc distinct
set of weights derived for each of thcqten concepts. The predicted scores are used to
.
determine the number of examples to prcsép'bc for each concept. For example, one
approach was to prescribe six examples for students within 0.5 standard deviations

of the mean. Students above this range are prescribed fewer examples (to a

minimum of two), and those below ;,cg:civc more (to a maximum of ten). None of

the generally available reports of this work provide a justification for the decision

rules used, or an account of how'they were derived.

. Instruction on each concept with the prescribed number of examples is followed by
a concept pds;t-tcst. If the post-test score is substantially greater or less than
predicted, the_numper of examples prescrib'éd for the following concept is
decreased or increased by a commensurate amount. . | Y

* A final cumulative post-tost is given to serve as a means of comparison with other

treatment programs, ’ ‘
o B :

27

A

Ross & Rakow (1981) reported that students recejving adaptive treatment achieved
significantly higher ‘fmal test scores than students in & leamner control group (number of
examples chosen by students), a non-adaptive group (fixed number of cxa;nples). ana(z
lecture group (fixed number of examples). Ross (1984) also found that ad'aptitvc treatment
resulted in better achievement than a non-adaptive treatment presenting thé maximgm
number of examples. The most important outcome of this research is that it supports
Tobias' view of achievement-treatment interaction as a sound basis for adaptive instruction.

The major shortcoming of the adaptive CMI procedure explored by Ross and his
~ associates, is the ad hoc derivation of rules for determining prescriptions from predicted
scores. Although Ross & Rakojv (1981) use a different rule than Ross & Rakow (1980),
no comparison or evaluation of the merits of these rules is supplied.

The procedure is not mastery-based. One wonders why the student should proceed

. o . .
with a new concept when a test reveals he has not mastered the previous one. It is also not

self-improving: no mechanism is considered for updating the regression weights.

2.8 Tennyson's MAIS P

The Minnesota Adaptive Instruction System (MAIS) has been dcscnbcd and cvaluatcd .

d
in several articles by Kobert Tennyson and his co-workers at the University of ancsota

The goal of MAIS is to determine mdxvxduahzc:d "mstructxonal treatment ptescriptions”
| from a combination of trait, achievement, and on-task mformatxon about the student. In
diffgrent studxcs, MALIS has prcscnbed the number of pracncc examples needcd tolearn a
concept (Tennyson, 1981; Tennyson & Rothen, 1977) and the period of time the system

should wait for a student response before glvmg away the answer to a question (Tennyson,

Park & Chnstcnscn 1985). These studxcs found evxdence suggesting that control by. |

MAIS and lmer control with advisement by MAIS are more effecnve ‘than both __

_non-adaptive oontrol and learner control wnhout adwscmcnt

Unlihe Rosss adapuve CMI system. the emphass placed on on task performance in
MAIS has mcant that only treatments involving mcasufablc student responses are
prescnibed. For instance, in teaching several related concepts, an example 1s presented and
the student responds with the concept to which it belongs

MAIS 13 based on a Bayesian method for prescnbing the minimal number of 1tems to
include n a cnitenton referenced test developed by Novick andy Lewis (1974) tor the
Individually Prescribed Instruction (IPI) project. In this method the student’s ability 7 as
maodeled by a beta distnbution B(ab) over the imcr\";xl between Opnd 1. The user supplies.

« The parameters a and b of a prior distnbution représenting belicfs about the

student’s ability before the test Novick and Lewis suggested that informaton
gleaned from administration of the test to previous students be used. I;Jovxck and
Jackson (1974) describe 1nteractive programs which allow the user to express the

prior distnbution in terms of mode and sample size When applied to prekeribing

test length, sample size is an estimate of the worth or wgight of the prior
. \ / i A,
information in terms of number of test items’ 1 o

» A criterion ability level ng such that students with © 2 n, should pass the test (be

anced) and others should fail (be retained).

oss ratio R = p/q indicating the relative costs associated with false advancement

p) and false retention (q) decisions. Novick and Lewis indicated that instructional
dcsigncfs in IPI preferred loss ratios ranging*from 1‘.3 to 3.0.

For any prier distribution B(a,b) and test performance where x out of n items are
passed, the application of Bayes' theorem generates a postcri%r distribution B(a+x,b+n-x).
A student is advanced if and only if: -

gProb(nt 2 np I x, n) < pProb(n < ®y I x, n)
Undér these conditions there is a minimum number of itcrﬁs below which it is impossible to
advance a student performing pérfcctly (x=n) or retain a student who failS all the items

(x=0). Also, because n and x may oﬁil\y take on integer values, certain test lengths allow a

29

.

27N

better approximation of Proben 2 n, 1 x, n) for borderhine performances Rovick and Lewis
presented tables of recommended test lengths zm\d advancement scores for selected prior
distnbutions, cutuing scores, and loss ranos,

MAIS 15 apparently an attempt to apply the mechanism proposed by Novick and Lewis
to the prescription of instructional items rather than test items. Unfortunately, although
several putzlishcd articles refer to MAIS, there is no readily available description giving
enough detail to allow for a replication or analytical evaluation of the system. The most
complete descriptions can be found in Tennyson and Rothen (1977, 1979) and Rothem and
Tennyson (1978), but these leave the careful reader with many unanswered questions.

It 1s not clear how MAIS uses the prior distnibution ‘to select the optimal number of
instructional items. There seems to be little justification for simply using the tables
presented by Novick and Lewis because a fundamental assumption in their work was that ©
remains constant, and of course. the purpose of an instructional item is to systematically
and permanently change n. i

In general, there is no rationale given for significant departures from the Nov)ick and

N
_ . \ . . .
Lewis procedure. For instance, MAIS sets the loss ratio according to the student’s score on

1

a prior aptitude test, but Novick and Lewis viewed the loss ratio as a property of the

instructional program to be set for all students by the instructional designer.

Tennyson and Rothen (1977) féund that MAIS produced higher post-test scores while
requiring less learning time than the non-adaptive program. These effects were presented as
evidence that MAIS had exploited an aptitude (or achievement) x treatment intergction.
However, because the non-adaptive program gave the maximum number of examples (30),
a more parsimonious explanation is that subjects in the experimental group benefited by

receiving fewer examples regardless of ability. The issue could have been resolved by a

30

replication which included a non-adaptive control group with subjects receiving the average

number of examples presented by MAIS. Statistics concerning the number of examples

actually presented by MAIS were not repofed. xplanation was given for the

P z

iteresting finding that the standlard deviatuon of learming time was considerably greater in

the non-adaptve group .

2.9 Ferguson's branch apd test procedure

The remainder of the adaptive instructional systems reviewed in this chapter are

-

primarily concerned, as is this thesis, with exploiting the prerequisite relation between
instructional objectives in a learning higrarchy. Allhough\fér}m(Iforms will soon be
encountered, the standard lca}ning hierarchy, as originally conceived by Gagne (Gagne &
Paradise, 1961), is an acyclhic directed graph with the nodes representing objectives and the z
arcs representing the prerequisite relation between them. It is interpreted as a Conjunct-ive
graph, which means that all 'prcrcquisilcs to an objective shouldobc mastered before the
objecuve is attempted by the student. A more complete definition is presented in Ch‘apler 3.
The Individually Prescribed Instruction (IPI) program in mathematics for grades one
through six consists of about 400 objectives divided into 80 modules (Lindvall & Bolvin,
1967). The prerequisite relationships between the objectives in each module are represented
by a lca.rning hierarchy. When a student enters an IPI module he is administered a paper

and pencil pre-test which determines his mastery or non-mastery of each objective in the

module by directly testing each objective.

-
/

_Ferguson (1970) developed a computerized adaptive testing system for IPI which

determined when to terninate testing on a single objective using Wald's sequen.rial
probability ratio test’. But what makes Fcrglniqn's system of interest here is a branching
procedure he ir:corporatcd which made a decision about the mastery or non-mastery of
every objective raftcr directly iesting only a subset.

A complete account of the branching procedure i® not available, so the following

]

description is a loose reconstruction based on Ferguson (1970). The procedure requires

7 More recent work (Ferguson & Novick, 1973; Kingsbury & Weiss, 1980) has indicated that newer
methods based on a combination of item response theory and Bayesian theory are more appropriate for this

purpose.

k4

11

that the hierarchy first be broken down into linear lists of objectives such that a goal
.
objective and an entry objective be, respectively, at the tdp and bottom of each list®.

The goal of the branching procedure is to find the highest mastered objective in each

ist. It is based on the assumption that the hierarchy is valid for every student; whichisto -

y that a position exists on each list below which all objectives are mastered, and abov(
which none are mastered. In practice, some accommodation must be allowed in the
algorithm foy violations of this principle resulting from flucguations in student ability during
testing, mcasurcmcr:t error, flaws in the hierarchy, and so on. Ferguson provides no
discussion of the need f(;r, or the nature of, such accommodating mechanisms. But he did
report a comparison between the branching procedure and an exhaustive testing of the
objectives in one module which found few discrepancies. "

The procedure works through each list,-moving to the next list when the highest
mastered objective has been found. First, an objective in the middle of the list is selected
for testing. If the student’s probability of mastery is .85 or greater (p 2 .85) the objective
is assumed to be mastered, otherwise non-mastery is assumed. In the case of mastery, the
next objective selected is normally midway between the culrre:m objective and the lowest
non-mastered objective (or the top of the list), but if the student does very well on the test
(p 2 .93), the highest untcs;\c\d objective is chosen. In the case of non-mastery, an entirely
sWﬁc strategy was followed in selecting a lower objective for the next test.

s When applied to a module containing 18 objectives, the branching }?roccdurc was
responsible for an average reduction in objectives tested of 61%. The differential treatment
of stud_cnts achieving p 2 .93 or p < .43 was based on an intuitive but, so far, not
empirically justified belief that extreme performances predict mastery status of objectives
about vs;hich she standard learning hierarchy model makes no prediction. This differential

LY L 3

-
&

. . ¥

8 In terms of the definitions given in Chapter 3, these lists are paths starting with a goal objective and
ending with an entry objective. To prepare for computerized adaption of the branching strategy it was.
necessatyloobuinallnwhpaﬂs.auskwlﬁchuﬂmﬁmwmﬂdptobtbly.hweheenmbyhm '

E

treatment 15 only one of several possible strategies that could be us(\in #wying to optimize

selection of the next objective to be tested. A N

2.10 Knowledge-based adaptjve sequencing in BIP

Many conventional instructional programs in the pure and applied s‘cjicnccs are built on
the reasonable belief that the best way to learn the area is to solve a large number of
problems. Unlike programs such as IPl, in which each unit of instruction com:sponas to a
single objective, the problem-oriented approach demands a many-to-many correspondenée

between instruction and objectives, and thus introduces an interesting complication to

analysis and management of the instructional process.

The BASIC Instructional Program (BIP) developed at Stanford (Atkinson, 1976; Barr,

Beard, & Atkinson, 1976) was an attempt to minimize the time necessary to learn

fundamental computer programming skills by making the selection of BASIC programming
tasks contingent upon previous performance. Like many of the projects applying artificial
intelligence techniques to instruction which a;ppcarcd after Carbonell's ground-breaking

SCHOLAR program (Carbonell, 1970), BIP was based on a LISP representati§n of a

33

N

Al
semantic net model of the subject matter. In the original version of BIP, the prereqin t{r

relationships were restricted to a linear order.

BIP was capsble of presenting to the student about 100 different programming tasks
requiring, and thereby teaching, a total of 90 skills (objectives). The number of skills
exercised byfa single task varied from one to more than ten. The programming tasks,

including hints, sample solutions, and skill classifications were human-generated. All

g

+

solution checking was done by the computer.

BIP maintained a studerdt model containing information about the student's
understanding of each skill, as well as a measure of the student’s general ability based on
his or her sucdess with the tasks. The task selection procedure can be summarized as

follows:

/ | ' '
\

34

1) Search the student model for skills that currently have a high priority. High
prionty skills are those which were required by a previous task that the student
was unable to complete, or those which the student has asked for more work
on.

2) When a set of high priority skills has been identified, search the curriculum ~
model for a task that requires some of the high priority skills and which best
matches the student’s ability.

After comparing BIP with a less flexible procedurg which they cgnsidered to be

- representative of "waditional” branching methods, Barr et al. reported thdt students were
able to complete significantly more tasks within a 15 hour course when tasks were selected
by BIP. However, a post-test found no significant differences’in achievement between the
two groups.

In BIP-1I (Westcourt, Beard, & Gould, 1977) the prerequisite relation in the
curriculum model was extended to allow for a partial ordering of skills (i.e., a learning
hierarchy). The task selected by BIP-II was that one which most closely satisfi;d the

. following conditions (in the given order): i d

\»
1) requires no skills w1th unlc?mcd prerequisites
2) requires m high priority skills N
3) requires n unlearned skills
where m and n are certain unspecified functions of the student's demonstrated ability. We

¢

are only told that m and n are low when ability is low, ahd high when ability is high.

~

2.11 Koffman and Perry's concept selection procedure) ’v
Koffman and Perry (1976) described an AIS based on a tree representation of

pkrequisitc relationships between concepts (i.c., objectives) comprising a course on digital

sy'stgms design. As in BIP, students learned by solving &'oblems, and the system could

evaluate student solutions and provide sample solutions if necessary. But Koffman and
/ ' X .

Perry's system also included a problem generator that could provide a problem specific o a
given concept at a given difficulty level.

‘ ‘% The most noteworthy feature of this AIS was a concept selection procedure that tried to
pfédicl which next concept should be worked on to advance the student most speedily

through the course. The student had the option of accepting the recommendation of the AIS

or rejecting it and making his or her own selection. The system then generated one problem -

relating to the selected concept. The student’s response resulted in the increment or
dacrement of a concept-specific ability variable’stored in the student model. It was found
that students relied heavily on the system's recommendations at the beginning of the
course, but became more independent as the course mecsscd.

Thc’ selection proccdurc. made use of a rather extensive student model. Each student
model contained a few general variables (i.e., numuer of days since last used system;
number of concepts worked, number of sessions) and about 17 variables for each concept
(;t.g., studentss ability on concept, number of days since last worked on concept). There
were 21 co}xccpts in the course, so each student model must Have contained about 360
numeric values.

The concept selection procedure first identified potential concepts for instruction (those

permitted by Yhe learning hierarchy), then cvaluatc}i the utility of each potential concept by

applying a scoring polynomial (a vector of 10 weights) to 10 variables in the student’

35

m_odcl?. The concept with the highest score was recommended. After the student had |

chosen a concept and worked a problem generated by the system, the student model was

updated according}y./—\ : .
- \ %
) . , ”i

9 Koffman and Perry cited Samuel's famous checker player (Samuel, 1959) as a precedent for this
procedure, but there are important differences. Samuel's program could improve the weights as it played.
Also, the polynomial was effective in the checker player because it served as a static evaluation function at
the terminal nodes of search of the game tree. But, unlike Smallwood's teaching machine, Koffmen and
Perry's AIS did no searching.)

, Weights for the scor\ing polynomial were derived from a multiple linear regression
analysis (r = 0.48) on data gleaned from two semesters of system use. The predicted
variable in this analysis was the change in the student’s ability on the selected conce‘pt.‘Thc
predictor variables were the 20 variables in the student model relevant to the selected
concep;t.—Thc regression analysis indicated that conceptsﬁéuld be recommended which:

« when last worked resulted in an increased ability.

. the student has a low ability on.)

+ have not been recently worked on.

» have a large number of prerequisites.
But the most heavily weighted variable suggested that the system should not »rccomr’n\gnd
concepts which havé been previously recommended but rejected by the student. The low
multiple correlation and the predominance of this latter variable, undermine co,nﬁdcriCC in
the validity of the heuristics outlined above. A refinement of the system, Based on a cluster
analysis of the data, provided for four separate scoring polynomials. Students ‘were
assigned to one of these according to a "compatib@} ratio” for which no description was

provided.

Koffman's AIS is subject to the same criticism as Atkinson'’s drill optimization system,

to which it bears a resemblance. That is, the system may be greedily recommending the

concept expected to result in the greatest immediate advance, but in doing so it is only

delaying the time at which the more difficult concepts are dealt with. ’Thereforc, even if one
. s '

could lz{asc decisions on a polynomial derived from a very high lgon_jclation, the overall

instructional time may be unaffected.

2.12 Heines iﬁKO'Shea'su rule-based tutor
Heines and O'Shea’s (1985) proposal for a rule-based tutorial sysiem for'tcac‘hing the

~ ReGIS graphics language is one of the clearest appgcations of Hartley's framework for

adaptive instruction. Had it been implémcntcd. their system would have consisted of 1) a-

=]

36

task model m the form of a learning hierarchy, 2) a student model giving the student’s
learning rate and style and the mastery status of each skill (objective) in the task model, and
3) a teacher model comprised of (a) a set of teaching operations for teaching the skills and
(b) a set of means-ends guidance rules whi\ch were heuristics indicating under which
conditions of the student model each of the teaching operations should be triggered. |

Even though the proposed tutorial dealt with only .a small subset of the ReGIS
language, the task model contained about 50 skills. The task model, represented by the
production rule formalism, was an augmented variety of learning hierarchy which allowed
for both the conjunction and disjunction of prerequisites!9.

The proposed student model was a vector of integer values. It included a mastery status
variable for each skill in the task model, a learning rate variable (VERY_FAST, FAST,
AVERAGE, SLOW, VERY_SL.OW), and a learning style variable indicating the students
preference for one of the three types of instrt\igrtion available (EXPOSITORY, EXERCISE,
LABORATORY). The mastery status variable took on a range of values (-3 to +3)

_4rcf1ccting the system's degree of confidence that the student had not mastered or mastered
the skiil. For example, a status of -3 meant that the student had demonstrated non-mastery
in 4 test, but -1 indicated that non-mastery had only been assumed because the student had
demonstrated non-mastery of a‘prerequisite.

Teaching operations were executed by invoking a LISP function with skill, learning
style, an\d learning rate parameters. Heines and O'Shea did not discuss how the teaching
operations were to be prepared or generated, but it becomes an important question when

one considers that at least one distinct teaching operation is required for each possible

combination of parameter bindings!1.

10 See page 52. ,,
11 [calculate a minimum of 50 * 3 * 5 = 750 operations for the ReGIS course. However, Heines and
O'Shea seem to imply that remedial operations should also be available, bringing the total to 1500.

14

A summary of a few of the means-ends guidance rules is presented here because they

. shed light on the design of the student model and teaching operation structures. Also, the

last rule given here bears considerable relevance to the project reported in Chapters 4 and §

of this dissertation,

»

If the student is studying a skill for the first time, then call the teaching function
with the leamning rate and learning style parameters given in the student model.

If the student is reviewing a skill for which the student model indicates
non-mastery, then call the teaching function with learning rate = SLOW and
learning style = EXPOSITORY.

If the student is reviewing a skill for which the student model indicates mastery,
then ask the student which learning style is preferred, and invoke the teaching
functon with the given pa,ratnctcr. .

If the student demonstrates non-mas\t_cry on a skill and there is only one prerequisite
for the skill on which mastery .has not been demonstrated or assumed, t}\cn call the

vy
teaching funcdon passing that prerequisite as the skill parameter.

N

If the student demonstrates non-mastery on a skill and there is more than one
prerequisite on which mastery has not been deronstrated or assumed, then call the
teaching function passihg the prerequisite which is "most likely"” ﬁilacking. The

determination of which prerequisite is most likely lacking is made by some

38

i

unspecified analysis of other skills sharing some of the same prcrcqilisités.

Heines and O'Shea did not explain whether the AIS or the student is responsible for
L J

selecting new skills to study. When a standard conjunctive hierarchy is used, letting the

learner choose from the set of skills for which the prerequisites are satisfied is an

acceptable, if not optimal, strategy. But when disjunction is allowed in the hierarchy, thi$

shared control strategy can obviously lead to exg;\egsivcly long learning times, because the

student may unwittingly choose to study many more skillsihﬁn are required to achieve the

°

course goals.

2.13 Peachey and McCalla's plan-based CAl

The AIS proposed by Peachey and McCalla (1986) is of special interest here becau%
much of its underlying philosophy also scr\l}cs as the basis of the work reported in
subsequent chapters of this dissertation. Thcy share the view, stated in the introductory
chapter, that developing planning and control techniques based on the prerequisite relation,
will enable the integration (&f intelligent tutoring systems into large CAl.Qourses. The

purpose of their article was to propose the application of robot planninj\g concepts to

instmctiog?_] pifa:\t-;(ﬁng and execution. The scope of the problem addressed by their AIS was

q... Py . .
not .defined, but because details of the application of the system tp an example

course were p‘fcscnlcd, the example will be taken as fully representing the characteristics of
the problem. r

In borrowing principles which arose from the classic Al work on robot planning
systems (Fikes & Nilsson, 1971, Sussman, 1975; Sacerdoti, 1977), Peachey and McCalla
have extended Hartley's framéwork for adaptive instructional systems. In their approach,
the procedural portion of ihe teacher model, originally comprised of a flat set of
means-ends guidance rules, is subdivided into a planning component and an executien
component. The job of the planneris to exploit prior knowledge about global course
structure to generate a plan. The job of the executor is to implement ihc plan and in so
doing to respond effectively to any failures which arise.

The form of the student model was a simple list or conjunction of acquired concepts
L

(objectives) and misconceptions. The modeling of misconceptions, a major focus of ICAI -

(c.g., Burton, 1982), has been conspicuously absent from the other systems reviewed
here.

The form of the tcaching(opcrators was borrowed directly from STRIPS.(Fikes &
Nilsson, 1971). Bach operator consisted of: .

* aname

+ alist of preconditions (concepts to be matched with the student model)

39

)

- an add list (containing concepts expected to be added to the student model as a
result of the"operator action)

- adelete list (containing misconceptions expected to be deleted from the student
model as a result of the operator action) |

« the operator action to be invo!wd by the cxc‘cutor

Operators which had non-ni@clctc lists were called remedial operators, because their

purpose was to correct misconceptions. Note that, like BIP, there is theoretically a

many-to-many mapping of concepts to operators. But in the example course all add lists
&

contained exactly one toncept,-so the mapping savas one-to-rany.

The executor, which served as the drniver, mair{tajncd an ELIGIBLE list coﬁtaining
operators from the plan whosc’prccor;ditions were true in the student modci. The executor
arbitrarily chose an operator from the ELIGIBLE(list, checked to ;:nsurc that the student
model did not already contain tbé concept in the operator add list, applied the operator, and
updated the student model according to the student's performance. Only ‘when the

ELIGIBLE list'was empty, did the executor invoke the planner to generate a new plan on

the basis of the current student model, the instructional goal, and the operator set. If the

£

operator set is vidwed as implying a learning hierarchy, a plan was essentially an explicit:

representation of that portion of the leaming hierarchy relevant to the current student model.
The plan required disjunction to represent thc:"situatiox; \\"hcrc t§vo or more ppcréton had
the same add lists. The pl;mncl" generated a pla{; by starting thl} the instructional goal and
searching backward through the student model space to the current student model.

Peachey and McCalla’s AiS maligs much of two principles from robot planners: the
separation of reasoning about the problem into planning and execution phases, and the

representation in the plan of al;ernati_/e choices t_'or the executor; but they have failed to

40

make a convincing argument for the application of these principics to the solution of -

instructional problems. To demonstrate this. point, a very simple procedure is presented

here which duplica:tcs the behavior of their system on the example ;}iey present (with one

41

exception described later), but which conducts no prior search of the student model space.
This procedure assumes that the operator form is slightly modified by abandoning the

delete list and including misconceptions in the add list by prefixing them with a negation

symbol..

\
1

While the student model does not match the instructional goal do:

» If OP list is empty then \cgpy entire operator set to OP ljst.
» Search OP for operator x vmh pmoo'ﬁdj\tions matching student model and add
list not matching student model.

>

e Delete x from OP.
»

- Apply x. : §

 Update student model according to smdem"'s performance.

\

Peachey.and McCalla's procedure had the unfc)rtunatc charactcnsuc 4f, whenever a
misconception appeared, Torcing the apphcauo?\of a}l chglblc non-remedial operators
before re-invoking the planner to allow the application of the remedlel operator capable of

correcting the misconception. The procedure given here may apply a remedial operator
SN _

immediately, but will not guarantee to do so. Of course, it would be a simple matter 1o
' ¥ : : L

always give remedial operators top priority.

The significant flaw in both procedures is that, because the underlying learning
hierarchy is an AND/OR graph, they allow routes which include rcc;‘undant operators!2,
With this kind of hierarchy, a better approach is to have a planner which finds a single

route or sequence of operators which is in some sense optimal, and to re-invoke the planner

4

12 Readers with access to Peachey and McCalla (1986) can verify that their procedure is capablc of
selecting the following sequence of operators given the the plan shown on page 90:

COD - DFP - COS1 - SFP - CID - CIS - ED - ES - EQP2 - CEQP. A

In this sequence ED and ES arc unnecessary. Peachey (personal communication, September 7, 1987) agrees
thl::l the executor should not apply redundant opemtors but mamlams that they should be available in the
P

\)
[

if and when this plan fails. For example, if an estimated learning time is associated with
each operator, the task of sugh a planner might be to find the route with the minitmum total

estimated leaming time.

2.14 Conclusion had

Taken as a whole, the work reviewed here, while not comprising an exhaustive account

of the area, reveals that the study of adaptive instructional systems lacks a coherent set of

42

goals. Rather than buxldmg on previous wcgk the trend has been for each résearcher to -

design a System based on some method borrowed from dccxslon Jheory, educational

measurement, or artificial intelligence. However, recent emphasis on the prerequisite

relation may indicate the emergence of the learning hierarchy as an organizing principle.

Empirical validation of these systems is almost non-existent. The few comparative
- studies reported are plagued by flaws in method or interpretation.

Thc student models have been, perhaps necessarily, limited to simple declarative
representations. A student model in a typical AIS contains little more than an ordercd'
variable rcprcsentmg general; ability, and values rcprcscntmg ablllty schIﬁc to each
objective in the course. It is no yet clear how to mtegratc or interface a domain independent
AIS with the relan'vely well structired student models that have been dcvcloped for specific
skills (e.g., Brown & VanLehn, 1980). |
" Most of the work has aimed at adapting eid;cr the amount ofﬁin»struction or practice, or
the sequence of objectives. In most cases there was no justification prcsentedfor the

chosen goal of the adapnon process (i.e.,, what is to be opmmzed), nor was there a

discussion of ns psych010g1cal basis. For example, when Atkmson rcports that an .

opumxzed drill produced hlgher post-test scores than a random drill, we are left casung

,about for a psychologlcal explananon of thc dlffgrencc, and wondcnng whether

mammmng post-test scores is the best mstrucnonal goal

2.15 References

Athinson. R (1968) Computerized instruction and the learning process American
Psvchologist, 23,225 239

Athinson, R (1972a) Ingredients for a theory of instruction. Amerietin Psychologise. 27.
921 9]

Atkinson, R (1972b) Opumuzing the learning of @ second language vocabulary Journal
of Eaperimental Psvchology, 96(1), 124 129,

Atkinson, R (1976) Adaptive instructional systems Some attempts to optimuze the
lcarning process. In DL Klahr (Bd), Cognition and instruction. New York. Wiley.

Atkinson. R . & Paulson, J. (1972) An approach to the psychology of instruction
P,\‘\‘(\hu{ugi(‘al Bulletin, 78(1), 49 61.

Barr, A .\Bcurd_ M . & Atkinson. R (1976). The computer as a tutonal laboratory: The
Stanford BIP project. Internanonal Journal of Man-Machine Studies, 8. 567596

Bracht, G. (1970). Experimental factors relating to aptitude treatment interactions. Review
of Educanional Research, 40(5), 627-645.

Brown. J., & Vanlehn, K. (1980) Repair theory: A generative theory of bugs n
procedural skills. Cognirive Science, 4, 379-426.

Burton, R. (1982) Diagnosing bugs in a simple procedural skill. In D. Sleeman and J. S.
Brown (Eds) Intelligent autoring systems. London: Academic.

Carbonell, J. (1970). Al in CAIl: An aniﬁcialiintelligcncc approach to compuicr-assisted
instruction. [EEE Transactions on Man-Machine Systems, 11(4), 190-202.

Chance, V., & Atkinson, R. (1973). Optimal allocation of instructional effort to interrelated
leaming strands. Journal ofMathemau'caI Psychology, 10, 1-25.

Cook, D. (1961). Teaching machmc terms: A glossary. Agd&ovzsual Instruction. 6,
152-153.

Cronbach, L. (1957). The two disciplines of scientific psychology American
Psychologist, 12, 772-775.

Cronbach, L., & Gleser, G. (1957). Psychological tests and personnel decisions. Urbana:
University of llinois Press. :

Cronbach, L., & Snow, R. (1977). Aptitudes and instructional merthods. New York:
Wiley.

Dcwcy, J. (1976). The child ar.d the curriculum.In J. Boydston (Ed.) John Dewey: The
middle works 1899-1924 (p. 273-291). Southern Illinois University Press.

Ferguson, R. (1970). A model for computer-assisted criterion-referenced measurement.
Education, 91, 25-31.

43

J\/

Ferguson, R, & Novick, M. (1973). Implementation of a Bayesian system for decision
_analvsis in a program of individually prescribed instruction (ACT Technical Bulletin
Nb. 60). The American College Testung Program, lowa Cuty.

Fikes, R, & Nilsson, N. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2, 189-208.

Gable, A & Page, C. (1980). The use of artificial intelhigence techniques in
computer-assisted instruction: An overview. Internanonal Journai of Man-Machine
Studies, 12, 259-282.

agne, E. (1985). The cognitive psychology of school learning. Toronto: Little, Brown.

yagne, R, & Paradisc, N. (1961). Abilities and learning sets in knowledge acquisition.
‘ Psvchological Monographs, 75(14, Whole No. 518).

Glaser, R. (1977). Adaptive education Individual diversity and learning. New York: Holt,
Rinehart and Winston.

Glaser, R, & Resnick, L. (1972). Instructional psychology. Annual Review of
Psvchology, 23, 207-276.

Gould, S. J. (1981). The mismeasure of man. New York: Norton.

Gregg. L. (1970). Optimal policies or wise choices? A critique of Smallwood’s
optimization procedure. In W. Holtzman (Ed.), Computer-assisted instruction, testing,
and guidance. New York: Harper & Row.

Groen, G., & Atkinson, R. (1966). Models for optimizing the learning process.
Psychological Bulletin, 66(4), 309-320. /

Hanley, J. (1972). The adaptive control of/Iearning tasks (extended version of B.P.S.
lecture). University of Leeds Computer Based Leamning Project. N

Hartley, J. (1973). The design and evaluation of an adaptive teaching system. International
Journal of Man-Machine Studies, 5, 421-436. e

Hartley, J., & O'Shea, D. (1973). Towards more intelligent teaching systems.
International Journal of Man-Machine Studies, S, 215-236.

Heines, J., & O'Shea, T. (1985). The design of a rule-based CAI tutorial. International
Journal of Man-Machine Studies, 23, 1-25.

Holland, J. (1977). Variables in adaptive decisions in individualized instruction.
Educational Psychologist, 12, 146-161.

Kingsbury, G., & Weiss, D. (1980). A comparison of adaptive, sequential, and
conventional testing strategies for mastery decisions (Research Report 80-4).
Computerized Adaptive Testing Laboratory, Psychometric Methods Program,
Department of Psychology, University of Minnesota.

Koffman, E., & Perry, J. (1976). A model for generative CAI and concept selection.
International Journal of Man-Machine Studies, 8, 397-410.

Lindvall. C.. & Bolvin, J. (1967). Programmed instruction in the schools: An application
of programming principles in Individually Prescribed Instruction. Yearbook of the
f\/'mmnu/ Society for the Study of Education, 66,217-254.

Mofrill, M. D_. Schneider. E., & Fletcher, K. (1980). T/CCIT. Englewood Chfts NI
Educational Technology.

{ _ A
Nhkayama, K, & Higashibara, Y (1986). How 1o mairtain human tnteraction and
individualized learning in a large classroom with microcomputer based CAl. Paper
presented at the World Congress on Education and Techndlogy, Vancouver.

Newell, A., Shaw, J., & Simon, H. (1960). A variety of intelligent learning 1n a general
problem solver. In M. Yovits & S. Cameron (Eds.), S¢lf-organizing systems 1p.

153-189). New York: Pergamon.
&).
Novick. M., & Jackson, P. (1974). Statistical methods for educ al and psychological

research. New York: McGraw-Hill.

Novick, M., & Lewis, C. (1974). Prescribing test length for criterion-referenced
) measurement (ACT Technical Bulletin No. 18). The American College Testing
Program, lowa City.

Rich, E (1983). Artificial intelligence New York: McGraw-Hill

Ross, S. (1984). Matching the lesson to the student: Alternative adaptive designs for
individualized leaming systems. Journal of Computer-Based Instruction, 11(2), 42-4%.

Ross, S.. & Rakow, E. (1980). Adaptive design strategies for the teacher-managed course.
Journal of Instructional Psychology, 7, 13-19.

Ross, S., & Rakow, E. (1981). Leamner control versus progyam control as adaptive
strategies for selection of instructional support on math rules. Journal of Educational
Psychology, 73(5), 745-753. -

Rothen, W., & Tennyson, R. (1978). Application of Bayes' theory in designing
computer-based adaptive instructional strategies. Educational Psychologist, 12,
317-323. . A ‘

' \
Sacerdot, E. (1977). A structure for plans and behavior. New York: Elsevier.” ™ ™~

Samuel, A. (1959). Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 3, 211-229.

Skinner, B. F. (1958). Teaching machines. Sciencex128, 969-977.

Smallwood, R. (1962). A decision structure for teaching machines. Cambridge, MA: MIT
Press. |)

Smallwood, R. (1970). Optimal policy regions for computer-directed teaching systems. In
W. Holtzman (Ed.), Computer-assisted instruction, testing, and guidance. New York:
Harper & Row.

Snow, R. (1980). Aptitude, leamner control, and adaptive instruction. Educational
Psychologist, 15(3), 151-158.

45

N
\

Steinberg, E. (1977). Review of student control in computer-assisted instruction. Journal
of Compurer-Based Instruction, 3(3), 8§4-90.

Sussman, G. (}975). A computer model of skill acquisition. New York: Elsevier.

Tcnnyson», R., & Rothen, W_ (1977). Pretask and on-task adaptive design strategies for
selecting number of instances in concept acquisition. Journal of Educatienal
Psychology, 69(5), 586-592.

Tennyson, R., & Rothen, W_(1979). Management of computer-based instruction: Design
of an adaptive control strategy. Journal of Computer-Based Instruction, 5(3), 63-71.

Tennyson, C., Tenﬂyéon, R., & Rothen, W. (1980). Content structure and instructional
control strategies as design vanables in concept acquisition. Jaurnal of Educational
Psychology, 72(4), 499-505. ’ .

Tennyson, R. (1981). Use of adaptive information for advisement in learning concepts and
rules using computer-assisted instruction. American Educational Research Journal,
18(4), 425-438. ~

Tennyson, R., & Park,O. (1984&? Computcr~ba’$€d adaptive instructional systems: A
review of empirically based models. Machine-Mediated Learning, 1(2), 129-153.

Tennyson, R., Park, O., & Christensen, D. (1986). Adaptive control of learning time and
content sequence in concept learning using computer-based inqpruction‘ Journal of
Educational Psychology, 17(4), 481-491. /!

Tobias, S.'(1976). Achievement treatment interactions. Review of Educational Research,
46(1), 61-74.

. Wenger, E. (1987). Ardificial intelligence and tutoring systems. Los Altos CA: Kaufmann.

Westcourt, K., Beard, M., & Gould, L. (1977). Knowledge-based adaptive curriculum
sequencing for CAI: Application of a network representation. Proceedings of the
Association for Computing Machinéry, Seattle WA, p. 234-239.

Wilkinson, A. (1§83). Learning to read in real time. In A. Wilkinson (Ed.) Classroom
computers and cognitive science. New York: Academic Press.

46

Chapter 3
A Method for Sequencing Instructional Objectives which Minimizes

Memory Load!3 | y

Since its emergence in the early 1960's, Gagne's learning hierarchy (Gagne, 1962,
1968; Gagne & Paradise, 1961) has been one of the most widely accepted and influential
concepts in the field oflinstructional science. A learning hierarchy consists of a set of

instructional objectives (or Ia\sks. or skills}uiid a set of prerequisite relétionships
connecting the objectives. Gagne and Briggs (1974,/p. ll.(Klolcd that "a prerequisite skill
is integrally related to the skill which is superordinate to it, ih thegignse that the latter skill
cannot be done if the prcrcquis‘k/e skill is not available to the learner”. In practice, because
cach objective if associated with a odule of instructional treatment, the learning hierarchy
specifies a partial order for presenting such modules to a student.

Leaming hierarchies are normally generated by a subjective process in which the

tructional designer starts with goai objectives and recursively breaks them down into
prerequisite sub-objectives. This proécss-tcrminatcs at sub-objectives assumed to be
already mastered by the studcnonpulatjon at which the instruction is aimed. |
* S;ijcct matter experts do not always agree on the partial ordering of a given set of
objMo several 7ncthods, reviewed by Reckase and McKinley (1982), have been
proposed for using ‘ﬁdata to empirically validate learning hierarchies. Most of these
methods (e.g., Dayton & Macready, 1976; Airasian & Bart, 1975; Gagne & Paradise,
1961) are .bascd on the princiBlc that a response pattern in whic}yftﬂ;jcctivc 1s passed and
the prerequisite of the objective is faih_:d cor\itn'butcs co:tradictbry evidence. Procedures for
Eunomatigally generatjng learning hierarchies from test data (Macready, 1975; Bart & Krus,

1973) are based on the same principle.

—

—

4

3 A version of this chapter was published in Instructional §cience (Nesbit & Hunka, 1987).

bt -~

47 T

Once a validﬂlcaming hierarchy has been ebtained, it is used to derive a sequence of
objectives to be followed by the student. Even when a learner control p}llilosophy prevails,
the instructional system should be able to recommend a sequence. Tennyson (1981) found
that the achievement of learners allowed to control the amount of instruction was
significaktly lower than that of leamners in a program controlled treatment, unless they were
jvised on‘whcn to terminate instruction on each objective in the lesson. When the
objectives are hierarchically related, advice on the best sequence of objcctivc§ may have

b]
similar value. \>

The main purpose of this chapter is to propose a criterion for selecting a sequence of
objectives from the many scq{cncé.? which are often permitted by a learning hierarchy.
Before describing this critcn'on}nQ) sequence generation algorithm which exploits,it, a
brief excursion is taken through some simple graph theory definitions as they apply to
learning hierarchies. To provide a practical orientation for this discussﬁion, the sequence
generation algorithm, together with certain graph algorithms noted in the following section,

can be viewed as forming the first rudimentary facilities for a hypothetical computer

assisted instructional design toolkit.

3.1 Learning hierarchies as acyclic digraphs

As other authors (Heines & O'Shea, 1985; Stelzer & Kingsley, 1975) have observed, a
learning higrarchy can be formally represented as a directed graph (digraph). A digraph
consists offa set of nodes and a set of ordered ;;z)iirs (u,v), called arcs, where u and v are
distinct members of the set of nodes. When a digraph is used to model a leaming hierarchy,
the nodes represent instructional objectives and the ﬁrcs show the prerequisite relationships
between the objectives. |

Figure 3.1 shows a simple digraph-with three nodes: A, B, and C. In interpreting the
arcs, which are represented by armm say that A is the parent of B and C.»an\d that B
and C are the children of A. If this digraph were representing a learning hierarchy, it would

48

-

tell us that both B and C are prerequisites of A. In other words, the learning hierarchy can
be used to partition lhe, set of 3! linear arrangements or sequences of the three objectives
_ into two mutually exclusive subsets: the set of instructionally valid sequences (BCA, CBA)
and the set of instructionally invalid sequences (ABC, ACB, BAC, CAB). An
instructionally valid sequence is an ordered list in which all objectives in the hierarchy
appear exactly once, and in which every objective occurs at some position after all its

r

prerequisites. Valid sequences are said to be ‘permitted’ by the learning hierarchy.

Figure 3.1 A simple digraph.

The convention followed here is that arcs point toward prerequisites. The opposite
direction may seem more natural, as it is suggestive of the movement of students through
the hierarchy, but it is less convenient for defining certain types of learning hierarchies and
for describing the algorithms presented in this chapter.”

With learning hierarchies, the arrowhead can be droppcd if we adopt the convention
that prerequisités alw‘ays appear lower on the page than their parents. Figure 3.2 shows a
learning hicrarchy cited by Case and Bereiter (1984). In digraphs of this form the number
of arcs exiting downward from a node is the outdegree of the node. The number of arcs
entering the node from above is the indegree of the node. For example, node A in Figure
3.2 has indegree zero and outdegree three. In learning hierarchies, nodes with indegree
zero represent goal objectives and those with outdch;cc zero represent entry objectives.

.

A pathﬁ (not to be confused with a sequence) is a list of one or more nodes, starting with

any node in the digraph, such that cachlaxccccdin‘g member of the list is a child of its

49

50

predecessor in the list. The length of a path is n-1, where n is the number of nodes in the

«path. A trivial path is a list containing only one node, and therefore having a length of zero.

Level

goal objective

Figure 3.2 A leamning hierarchy.

A digraph is cyclic if and only-if it has one or more non-trivial path‘s which begin and
end with the same node: Implicit in discussions by Gagne and others, isvth'c tenet that
learning hierarchies are acyclic. Incidentally, the absence of cycles ensu;'cs that there will be
at least one én{ry objective and at least one goal objective. So perhaps a graph algorithm—--
capable of checking whether a leamning hierarchy entered by a course designer\ is free of

cycles, should be the first to go into a toolkit for computer assisted instructional design. A

simple algorithm which tests for the acyclic propenty is described by Robinson and Foulds
(1980, p. 7\3775). -
3.1.1 Leve! numbers ’)

Somg¢times it is useful to assign a positive integer to each instructional objective
indicating its level in the hierarchy: a frequently encountered application being the
numbering of university courses (e.g., the high order digit in "Psych 100"). In graph-
theorétic terms the level number of a node in an a\cyclic digraph\may be defined as the
length of the longest path of which itis the first node. Entry objectives are the last node of
every path to which they belong, so every path beginning with an entry objective is trivial
and has a length of zero. Therefore entry objectives ar¢ always assigned to lcv;:l zero by the
given definition. h° may be prcférablc to increment all level numbers by one so that the
lowest level is ane rather than zero. Figure 3.2 illustrates lcvc} assignment by ﬂ‘liS method.
3.1.2 Inreach and outreach \

If u and v are nodes in a digraph, and there exists a path from u to v, then we say that v
is reachable from u. The inteach of a node v is the set of all nodes from which v is
reachable, including v itself. The outreach of a node u is the set of all nodes reachable from
u, including u itself. So the outreach of an objective u in a learning hierarchy is the set of
gﬂ objectives in the hierarchy which must be taken before u, plus u itseff.

3.1.3 Interpretation and treatment of inessential arcs

If (u,v) is an arc in an acyclic digraph, then (u,v) is inessential if there is a path from u
to v which does not traverse (u,v), and essential if there is no such path. Figure 3.3
contains an example of an inessential arc. A prerequisite relationship represented by an
inessential arc has no effect on the set of sequences permitted by the learning hierarchy.
Therefore, if the only purpose of the hierarchy is to define this set, an algorithm which
simplified the hierarchy by detecting and deleting inessential arcs (Robinson & Foulds, p. .

85) would be a useful addition to the toolkit.

51

Prerequisite relationships are also used to implicate sub-objcctivcs as causes of fallure
when a student is unable to master an objcctivc.. If we assume, as Gagne and Briggs seem

" 1o, that mastery of an objective implies mastery of all objectives within its outreach, then
inessential arcs are indeed redundant. However, if prerequisites are allowed in the

hierarchy which are necessary for learning the new objective, but which are not

~

“ incorporated and practiced as part of it, then "inessential” arcs may represent information
valuable to the diagnostic process. It may be necessary to enable the author to specify both
types of relationships (let us call them integral and non-integral relationships), and to only
allow an inessential arc when it does not short-cut a path connected by arcs of the integral

kind.

Figure 3.3 The arc from A to C is inessential.

*3.1.4 Augmented learning hierarchies

52

As Gagne (1968) observed, a standard learning hierarchy cannot represent alternative

ways of achieving an instructional goal. One hypothesis accounting for the contradictory
fail-pass response pattern (in Which a prerequisite is failed but its parent i§ passed) which
can thwart the validation of ‘a learning hierarchy, is that a known prerequisite is sufficient

but not necessary and that students producing this pattern had mastery of another sufficient

prerequisite not represented in the model. This limitation can be overcome by a
representation, used both in the task models of Heines and O'Shea (1985) and in Pask’s
entailment structures (Pask, Kallikourdis, & Scott, 1975), which would indicate that any
one of a specified set of sub-objectives can serve as a prerequisite. In other words,
hierarchies augmented by such a representation are AND/OR graphs, allowi‘;xg for both
conjunction and disjunction of prerequisites where standard Gagne hierarchies allow only

conjunction. The work reported here deals only with standard conjunctive hierarchies.

3.2 Memory load

The set of sequences of iqstructional objectives permitted by a learning hierarchy can be
surprisingly large. For Q&flc,y the learning hierarchy in Figure 3.2 is a partial ordenng of
only 14 objectives, yet it all(;\vs about 1.6 million different sequences. In fact, the ndmber
of permitted sequences is often so large that computer programs attermnpting to count them
by exhaustive search will not terminate within a reasonable period of time. Are there criteria
available for selecting the most instructionally effective sequence from this large sej?

Posner and Strike (1976) reviewed and categorized many of the principles for
sequencing instructional content which have been proposed in the last eighty years.
Although the learning hierarchy principle has dominated in recent years, other principles
worthy of consideration include the ordering of objectives from most familiar to least
familiar, from least difficult to most difficult, from most interesting to least interesting, and
so on. Several different sequencing principles have been used in ICAI programs (Wenger,
1087) . If the learning hierarchy is given top priority, other principles can still be invoked
within the constraints L imposes. Gagne and Briggs (1974) suggest that resource
availability determine sequencing after the constraints ofothc learning hierarchy have been
satisfied. This chapter proposes a new scqu?ncing principle which may be viewed as an

extension of the learning hierarchy principle.

53

Although all permitted scquénccs' ensure that when the student begins to learn a new
objective the prcrcquisitcs will have been mﬁstcrcd at some previous time, ‘i is possible that
some or all of the pfcr;:quisilcs will have been forgotten. The probabi'ityof forgetting is
known to increase with time as a result of interference from other learning. Therefore, one
approach to finding a "best” sequence is to minimize the instructional time elapsing between
when an objective is learned and when it is needed for further learning.

Mémory load is an attempt to provide, for the practical purposes of the instructional
designer, a relative estimate of thé retroactive inhibition effects contributing to the forgetting

" of prerequisites in a sequence with an underlying hierarchical structure. The term memory
load was chosen because sequences subject to greater interference presumably place a
greater burden on the memory ability of the learner.

Suppose an estimated leamning time t i; associated with each objective. A memory load
value can be obtaincd by any permitted sequence of objectives:

m g
memory load =)IED) G (equation 3.1)
i=1 j=1
where m is the number of arcs in the hicrarchy, q; is the number of objectives intervening
between the parent and child of the ith arc, and t;; is the éstimated learning time of the jth
objective intervening between the parent and child of the ith arc.
The following sequence is permitted by the hierarchy in Figure .3.2: %
NMKLJIGCFEBHDA

T

54

As;suming that all objectives have a learning time of 1.0, the memory load for this sequence

is 16.0, which happens to be the minimum memory load for the hierarchy. Tl'lc arc from A

to Ci$ strctchcd by five intervening objectives, so it contributes 5 0 to the memory load.

The arc from D to H has no intervening objectives, so it contnbutes 0.0 to the memory

load.

3.3

Deficiencies of memory load as a model of forgetting

The utility of minimizing memory load in the instructional design process depends on
a

the accuracy of memory load as a predictor of forgetting. Four potential sources of error are

apparent:

1.

Time spent in activities external to the learning hierarchy is a cause of forgétting,
but is not captured by the memory load model. So one expects that the accuracy of
memory load as a predictor of forgetting will vary with the degree of intrusion of
external activities at course delivery time.

Some objectives are simply more memorable than others, but the memory load
model fails to differentiate between them. Many psychological factors will come
into play to vary the likelihood that a specific objective will be remembered by a
specific individual. For example, objectives which the student finds interesting are
likely to be remembered longer than those which are boring. If anjobjective is
known to be relatively resistant to forgetting, one can afford to allow it greater
separation from the objectives having it as a prerequisite in order to shorten the time
'spanncd by more sensitive prerequisite relationships.

The probability of forgetting usually increases as a non-linear function of time, but

- the memory load model assumes linearity. One expects intervening objectives to

vary in the strength with which they interfere with memory for the prerequisite. It is

conceivable that some intervening objectives may help the student to recall the

prerequisite (negative interference). Thc;cforc, one cannot even be ;urc that the
probability of forgetting will be a monot y increasing function of instructional

time.

. The definition of memory load given by equation 3.1 is really the total memory load

associated with a sequence, not the memory load currently experienced by a student
ata partécular poim in the sequence. As the student progresses through the sequence

this current"memory load may increase or decrease. No consideration is given here

55

to the distribution of total mcmdry load over the sequence, but this may turn out to
be an important factor. For example, if we assume that’t;e student has a memory
load threshold above which forgetting starts to occur, then it is plausible that
objectives arranged in a sequence with a uniform distribution of memory load
would be learned more easily than the same objectives arranged with an equal
memory load having a peaked distribution.

These deficiencies suggest that a more acgurate model could be constructed which
would include as parameters some of the factors ignored by the current model.
Unfbnunatcly though, the additional infc‘)rmarion required by such a modc1~is usually
unavailable to the instructional designer. However, there is reason to expect that when the

instruction is delivered by computer, the frequency with which each prerequisite is

forgotten could be recorded and fed back into the sequence planning process.

3.4 A sequencing algorithm which minimizes memory load \

Consider tk;c problem of finding any sequence pcﬁnitfcd by a.given lcar?tin g hierarchy
such that the sequence has the r’ninimum merhory loaa. The huge number of sequences
permitted by many learning hierarchies severely limits the usefulness of methods relying on
an exhaustive search of the sequence space. A prelimi..ary study which applied A* search!4
ysing a heuristic based on the minimum possible memory ’loadz associated with an objcétivc
not yet included in the sequence, found that even this approach is frequently defeated by
combinatorial explosion. - .

Thc‘ideal solution would be a more direct one which would avoid sbarching the

sequence space altogether. Unfortunately. no a]gonthm of this typehas been found which

succeeds with leaming hierarchies in generallS. However, a simple and efficlent algorithm

14 Sce Baffr and Feigenbaum (1981, p. 64) for an introduction 10 A‘
. 15 Even and Shiloah (1975) proved that this problem, the optimal mngemenl of podes in‘an acyclic

digraph, is NP-Complete. NP-Complete problems are those that have no known sigorithm which will :
always provide a solution in polynomial ﬁme.mdmeqnivnlentmotbuNP—Completeproblepsin;he '

¢

56

1y presented here which is conjectired 1o generate a minimuim merory load sequence for a
subclass of fearmng hierarchues called learmueg trees

A tree 1s an acychie digraph contaming only nodes having indegrees less than or equal to
one, and exactly one node having indegree zerg. Any learming hicrarchy satisfyig these

\

restnctions 1s a Jearming tree It tums out that learning trees are a tairly frequent form of
lcarning hierarchy An informal survey of 49 learning hierarchies cited in 14 documents
(Bnégs, 1972 Bnggs vgcr. 1981, Case & Bereiter, 1984, Dick & Carey, 1978,
Edney. 1972, Gagne, 1962, 1965, 1968; Gagne & Briggs. 1974 Gagne & Paradise, 1961,
Hemes & O'Shea, 1985, Riban, 1969, Walter, 1965, Wollmer & Bond, 1975) found that
31% were learming trees, S9% were non trees having only one goal objective, and 10% had

muluple goal objectives,

Table 3.1 The GENERATOR algonthm

1) To each node (objective) in the leaning tree assign the value T, the sum of the
estimated leaming times (1) of all nodes 1n 1ts outreach.

2) Ininalize the sequence to be a n}! string of nodes.

3) Invoke the-following recursive p ‘7urt‘ SUB_GENERATOR passing it the goal node
of the learning tree. =

procedure SUB_GENERATOR (a : node});
var B : node; ‘
begin
while o has any unmarked child do
begin
 « unmarked child of a with greatest T,
SUB_GENERATOR (B);
end;
append a to sequence;

mark
end;

sense that if an efficient algorithm is ever found for just one NP-Complete problem, efficient algorithms for
all the others could be immediately derived (Garey & Johnson, 1979).
4

57

GENERATOR, an algorithim which finds a minimum memory load sequence permitted
by a leaming tree, is given in Table 3.1. When applied to learning trees, the effect of the
algorithm is to find a permitied sequence of objectives with a) the objectives belonging to
the same outreach positioned contiguously, and b) the prerequisites of any objective
ordered such that a prerequisite having an outreach with a greater total learning time will

precede one having a lesser total learning time. Steps 1 and 3 are essentially depth-first

S8

,-/

searches of the learning tree, so the time complexity of GENERATOR 1s O(e), where e i9¢

the number of arcs in the tree.

3.5 Generalizing the algorithm to deal with non-trees

When no procedure is known for obtaining an optimal solution to a problem, one is
often forced to rely or; m;thods that obtain solutions which are at least better than those
resulting from an unguided search. In the hope of obtaining such a mcxhcl)d, a version of
GENERATOR was developed which differs frgm the vérsion given previously in only one
respect: the node B, passed in the recursive call to SUB_GENERATOR, is the unmarked
child of a having the greatest value T,/P,, where node k is any unmarked child of a, T, 1s
the sum of the estimated learning times of all nodes in the outreach of node k, and P is the
number of unmarked nodes nor in the outreach of k which are parents of nodes that are in

the outreach of k. It should be clear that P 2 1 because the parents of any node k cannot be

in the cutreach of k, and cannot be marked if k is not marked. In the case of trees, Py = b

for all k, so the algorithm reduces to its Qginal form.

) Consider the application of the modified version of GENERATOR to the example in
Figure 3.4. The nodes are labeled with their T values and initial P values. The sequence
generated by the algorithm is:

EDCBA.

Note that, unlike the original version of GENERATOR, the modified version is constrained
to choosing E rather than D as the initial node because Ty/Pg > Tp/Pp,.

-

Figure 34 A hierarchy with nodes labeled by GENERATOR

Tests were conducted with several published examples of learning hierarchies which
are not trees to see whether the modified version of GENERATOR holds promise as a
heunstic method. The results of the tests are summarized in Table 3.2 Bccat{se it 1s only
hierarchies permitting a large number of sequences which pose a problem, the hierarchies
with the largest number of objectives of those hierarchies surveyed were chosen for testing.
With the exception of hierarchy 15 (H15), which had one of its two goal objectives deleted,
only hierarchies having exactly one goal objective were used. Estimated leamning times are
not usually given with published examples of hierarchies, so objectives were simply
assigned a learning time of one (except for those in H3 and H19 which were assigned
random learning times).

All programs were written in Pascal and executed on a Digital Equipment Corporation
VAX 11/780 minicomputer. On th‘is machine, GENERATOR consumed less than 100
mill:seconds of CPU time per Me@hy.

.

Entries in the "no. of sequences”, "max ML", "ave ML", and "min ML" columns were
obtained by a depth-first exhaustive search program which counted sequences and kept

track of the maximum, average, and minimum memory loads encountered. An arbitrary

59

60

upper limit of 12 hours was set on the CPU time required by the depth-first search. In
cases where this search was not completed in the allotted time, the accumulated count is
presented as a lower bound on the number of permitted sequences, and a random search
program was run for another 12 hours to get more accurate memory load esumates.

A second phase for the sequencing algorithm was developed, called SHIFTER, which
incrementally improves a sequence produced by GENERATOR. SHIFTER steps through
the sequence, and at each node tests whether the node can be moved to any new position
such that memory load is decreased. SHIFTER only terminates when no single node can be
moved to improve the memory l‘oad Like other hill-descending methods, SHIFTER gets

snagged on local minima.

Table 3.2 Performance of GENERATOR.

Hierarchy (H) no. of no. of max ave min GENERATOR SHIFTER
nodes sequences ML ML ML ML ML
1) Gagne & Briggs (1974, p. 117) 15 90090 29 22.0 9 9 9
2) Edney (1972, p. 103) 29 21790000 2270 2411 <122 67 67
3) Edney (1972, p. 103) 29 21790000 217752 124034 <6883 2733 2733
4) Gagne (1962, p. 359) 10 756 22 17.0 9 9 9
5) Gagne & Briggs (1974, p. 118) 9 480 24 18.2 10 10 10
6) Gagne & Briggs (1974, p. 114) 11 480 24 198 IS 15 15
7) Riban (1969, p.119) 1 16800 35 264 12 12 12
8) Gagne & Briggs (1974, p. 116) 12 a4 15 133 1 1 1
9) Case & Berciter (1984, p. 145) 14 1570140 57 435 16 16 16
10) Dick & Carey (1978,p.29) . 9 52 12 108 9 10 9
11) Walter (1965, p. 52) 16 16200 40 316 20 21 20
12) Wollmer & Bond (1975, p.8) 16 6336 53 455 39 41 39
13) Gagne (1965, p. 181) 18 3380 ° 83 728 60 64 60
14) Dick & Carey (1978,p46) 18 23990000 271 527 <23 23 23
15) Gagne & Paradise (1961,p.6) 23 22700000 2149 1123 <64 46 46
16) Briggs (1972, p. 121) * 23 22680000 2104 748 s44 44 44
17) Walier (1965, p. 49) 20 23440000 2134 1060 $82 96 82
18) Gagne (1965, p. 150) 20 23550000 2147 1292 <98 124 108
19) Dick & Carey (1978,p. 46) 18 23990000 23906 27439 <1176 _ 1171 _ 1171

\

\

H1 through H3 are the only learning wrees in the sample. They were included to
demonstrate the effectiveness of GENERATOR when applied to hierarchies of this type.
The search program was able to complete an exhaustive search of the sequence space of
H1, and a comparison of columns reveals that GENERATOR did produce a minimum
sequence. In the case of H2, GENERATOR produced a sequence having a memory load
much lower than that of the best sequence found by the random search program. H3 1s the
same hierarchy as H2, but with randomly assigned learning times (integers between 1 and
100).

H4 through HY are hierarchies that could be thoroughly searched and for which

GENERATOR produced minimum sequences. H10 through H13 are those that could be

61

thoroughly searched but for which ‘GENERATOR did not produce a best sequence. -

However, in these four cases SHIFTER was able to improve the generated sequences to
obtain minimum sequences. ‘

H14 through H19 are hierarchies whose sequence’ space could not be thoroughly
searched within the allotted time. H19 is the same hierarchy as H14 except that, like H3, it
was assigned random learning times. H15 and H18 are particularly noteworthy: the former
because its result was considerably better than that of the se;rch, and the latter because its
Iesult was considerably worse.

To summarize the results in Table 3.1, for 9 of the 15 distinct non-tree hierarchies
GENERATOR produced a sequence as good as the best found by a dcpth:ﬁrst or random
secarch of the sequence space running for up:\'to 12 hours of CPU time. For 5 of the
remaining 6 hierarchies, SHIFTER was able to improve the scquénce produced by
GENERATOR to obtain a sequence as good as that found by the search programs. The
sequence produced by GENERATOR was under the estimated average memory load for

the hierarchy in all cases.

3.6 Conclusion

The evidence seems to support the hypothesis that ﬂ-’lC generalized version of
GENERATOR is useful for finding sequences with low memory loads when given
learning hierarchies with a single goal objective. With what is presently known, perhaps
the best strategy for sequencing objectives when one has allotted a fixed amount of CPU
time for the task is to first obtain a sequence from GENERATOR,. improve it with
SHIFTER, then spend the remaining time randomly searching the sequence space.
Whenever a better sequence is found an attempt should be made to improve it with
SHIFTER. Although it is slower and cannot examine as many sequences, random search is
. preferable to 3n ordered depth-first traversal because it is not localized to one region of the
sequence spate, and the sequences it sees will have a wider range of memory loads.

There are several problems which might be included on an agenda of future research in
the area. One essential but arduous enterprise will be empirically validating the utility of
memory load as a criterion for sequencing instructional objectives. Several studies,
involving instructional treatments covering various subject areas, will be required before a
convincing conclusion emerges.)

When memory load is viewed as a model of forgetting in the instructional process,
inherent sources of error become evidént. By inciuding relevant information that can be
" known or estimated at course design time, it is possible that a better model could be
developed which is still usable as a tool for instructional planning. Throughout this chapter,
the relation between instructional objectives and their surface manifestations which are
presented to the learner has been assumed to be one-to-one. However, there is no essential
incompatibility between the approach followed here and systems which allow a many-to-
many relation between objectives and the instructional modules presented to the student
(e.g., Smallwood, 1962; Westcourt, Beard, & Gould, 1977). |

There is room for more work on algorithms for finding minimum memory load

sequences. A major disadvantage of GENERATOR is that it cannot plan the remainder of a

-

-

63

partially completed sequence. An algorithm capable of finding a low memory load
completion of a partial sequence could be used at course delivery time to fit the instructional

plan to the current state of the student model.

3.7 References

Airasian, P., & Bart, W. (1975). Validating a prion instructional hierarchies. Journal of
Educational Measurement, 12, 163-173.

Barr, A., & Feigenbaum, E. (1981) The Handbook of Artificial Intelligence (Vol. 1). Los
Altos CA: Kaufmann.

Bart, W., & Krus, D. (1973). An ordering theoretic method to determine hierarchies
among items. Educational and Psychological Measurement, 33, 291-300.

Briggs, L. (1972). Student’s Guide to Handbook of Procedures for the Design of
Instruction. American Institutes for Research.

Briggs, L., & Wager, W. (1981). Handbook of Procedures for the Design of Instruction.
Englewood Cliffs, NJ: Educational Technology Publications.

Case, R., & Bereiter, C. (1984). From behaviorism to cognitive behaviogsm to cognitive
development: steps in the evolution of instructional design. Instructional Science, 13,
141-158.

Dayton, C., & Macready, G. (1976). A probabilistic model for validation of behavior
hierarchies. Psychometrica, 41, 189-204. \

Dick, W., & Carey, L. (1978). The Systematic Design‘ofl'nstruction. Glenview, IL: Scott,
Foresman & Company.

Edney, P. (1972). A Systems Analysis of Training. London: Pitman.

Even, S., & Shiloah, Y. (1975). NP-Completeness of Several Arrangement Problems .
(Dcpartmcm of Computcr Science, Technical Report #43) Haifa, Israel: Technion

Insttute.
Gagne, R. (1962). The acquisition of knowledge. Psy?hological Review, 69(4), 355-365.
Gagne, R. (1965). The Conditions of Learning. New York: Holt, Rinehart, & Winston. |
Gagne, R. (1968). Lcami;xg Hierarchies. Educational Psychologist, 6(1), 1-9.

Gagne, R., & Briggs, L. (1974). Principles of Instructional Design. New York: Holt,
Rinehart, & Winston.

Gagne, R., & Paradise, N. (1961). Abilities and Learning Sets in Knowledge Acquxsmon
Psycholog:cal Monographs 75(14, Whole No. 518). - ,

Garey, M., & Johnson, D. (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. San Francisco: Freeman.

Heines, J., & O'Shea, T. (1985). The design of a rule-based CAI tutonal. International
Journal of Man-Machine Studies, 23, 1-25.

Macready, G. (1975). The structure of domain hierarchies found within a domain
referenced testing system. Educational and Psychological Measurement, 35, 583-598.

Nesbit, J., & Hunka, S. (1987). A method for sequencing instructional objectives which
minimizes memory load. Instructional Science, 16, 137-150.

Pask, G., Kallikourdis, D., & Scott, B. (1975). The representation of knowab
International Journal of Man-Machine Studies, 7,15-134.

Posner, J., & Strike, K. (1976). A categorization scheme for principles of sequencing
content. Review of Educational Research, 46(4), 665-689.

Reckase, M., & McKinley, R. (1982). The Validation of Learning Hierarchies (Research
Report ONR 82-2). lowa City: The American College Testing Program.

Riban, D. (1969). An investigation of the relationship of Gagne's hierarchical sequence
model in mathematics*to the learning of high school physics. Doctoral dissentation,
Purdue University (University Microfilms No. 70-8957).

Robinson, D., & Foulds, L. (1980). D:graphs Theory and Techniques. London: Gordon
& Breach.

Smallwood, R. (1962). A Decision Structure for Teaching Machines. Cambridge, MA:
MIT Press.

Stelzer, J., & Kingsley, E. (1975). Axiomatics as a paradigm for structuring subject
matter. Instructional Science,3, 383-450.

Tennyson, R. (1981). Use of adaptive information for advisement in learning concepts and
rules using computer-assisted instruction. American Educational Research Journal,
18(4), 425-438.

Walter, K. (1965). Authoring individualized learning modules: A teacher training manual
< (Title III, E.S.E.A). Kensington, MD: Project Reflect.

Wenger, E. (1987). Artificial intelligence and tutoring systems: Computational and
cognitive approaches to the communication of knowledge. Los Altos CA: Kaufmann.

Westcourt, K., Beard, M., & Gould, L. (1977). Knowledge-based adaptive curriculum
sequencing for CAI: Apphcanon of a network representation. Proceedings of the

Annual Conference of the Association for Computing Machinery, Seattle, WA
October, p. 234-239. “ o

Wollmer, R & Bond, N. (1975). Evaluation of a Markov-decision model for instructional

sequence optimization (ARPA Ordcr No 2284). Los Angeles: Umvcrsuy of Southern
California.

»

64

/ ' Chapter 4

.

Inductive Learning and Adaptive Instruction!®

In addition to their use in the sequencing of objectives, learning hierarchies can serve a
valuable diagnostic function. When the student exhibits difficulty in learning an objective,
the learning hierarchy points to prerequisite objectives which may have been forgotten or
never mastered (Heines & O'Shea, 1985). In this case the instructional system can either
review all the prerequisites, or it can try to be more adaptive by identifying which of the
implicated prerequisites are actually in a state of non-mastery. The cost of the adaptive
strategy is the time and tedium of the testing required to determine the studcn‘t's
undcrstandin g of each 0{ the implicated prerequisites. .

The major premise of the project reported here is that prior information about the
student can be used by a set of Classification rules to reduce the amount of required testing.
Course authors cannot al»-vays be expected to provide an accurate set of classification rules
at the time a course is being designed, so an inductive learning procedure (ILP) is presented
in this chapter which refines the rules given by the author, or learns a set of rules from
scratch if none are provided.

ILP can be viewed as replacing the ad hoc conditional branching that authqrs are
supposed to specify in conventional CAI programs (e.g., Feingold, 1968) with an
empirically justified decision process. When an author uses an authoring system to specify
a conditional branch, he is stating a hypothesis about the class of stﬁdcms reqdi/ﬁng review
of, or introduction to, a particular objective. For example, the following conditional
branching statement represents the hypothesis that the students who should review unit_x

are those who have a response time greater than ten seconds and have not been in unit_x

“within the last four days:

16 A condensation of chapters 4 and § has been submitted for presentation at the International Conference
on Inttlligent Tutoring Systems, Montreal, June, 1988.

65

IF responsc_time > 10 sec AND time_since_unit_x > 4 days THEN GOTO unit_x
If the hypoahesis is wrong, over the years that the CAl program is in use, many students
may experience the boredom of a lesson they do not need or the frustration of missing a
lesson they do n’c\cd. This situation can arise, not only when an incorrect hypotheses is
entered originally, but also when shifts in the student population render an originally valid
hypothesis inappropnate.

Unlike conditional branching in conventional CAl, the decision process described here
gives students a test on the indicated objective. The test is necessary to provide a basis for
ILP to improve or cénﬁrm the current set of classification rules. If the test is failed,
confidence in the current set of rules is increased and the student enters a unit covering the
objective. If the test is passed, ILP tries to modify the current rules to accommodate the
disconfirming evidcncc‘ and the student is tested on one of the other prerequisites implicated
by the learning hierarcﬁy.

This chapter focuses on the design of ILP, and shows how it relates to previous
inductive learning programs. The description of ILP is preccdéd by a section reviewing
some of the morc/promincm and relevant inductive learning research. ‘

4.1 Inductive learning

When organisms learn to behave appropriately to a class of objects in their environment
as a result of experience with objects forming a proper subset of that class, they are said to
have learned 'by induction' o om- examples'. This kind of learning has long been
viewed by philo:ophcrs and psychologists as central to forms of intelligent behavior
ranging from the formulation of scientifi® theories to the ﬁapnﬁn of animals to changing
environments. ¥ : ‘ ‘ '

In the field of A, conjecwure by Von Neum and others copcc_rning the complexity of

designing a complete intcgcncc relative to that of designing an initial kernel which

incrementally approaches intglligence through' le@ing. has resulted in a search for a theory

IS

66

and methodology of machine learning. The study of machine learning, which includes
inductive leaming, learning by analogy, and 'learning by being told’, is now a burgeoning
sub-field of Al (Dietterich, 1982; .Michalski, Carbonell & Mitchell, 1983, 1986). In their
comprehensive bibliography, Utgoff and Nudel (1983) listed 572 publications dealing with
machine_learning. A more recent mackine) learning bibliography (Kedar-Cabelli &
Mahadcvjan, 1986) lists over 300 books and articles published between 1980 and 1984, 86
of them :Conccrncd specifically with inductive lcafning. Although a strong theory of
machine leprning has not yet emerged, certain K{inci‘plcs of inductive learning have been

succcss?@fy applied to problems as diverse as diagnosis of plant disease, symbolic
imcgratio;, scientific theorizing, and language aa&uis;iion.

The recent growth of interest in machirgcA learning is partly a reaction to the expert
system paradigm which dominated Al in the 197('s. While acknowledging the success of
many expert systems, Langley (1987, p. 99) points out that their expertise 1s limited to
highly specific domains, and that research into the mechanisms of learning provides "hope
that our final theory of intelligence will consist of more than a few basic search techniques,
along with the statement that domain-specific knowledge can be used to direct 6ne'§
search”. |

Work in machine learning is alsc motivated by practical considerations. Michalski
(1983) mentions two types of applications which he hopes will result from work such as
his on the more fun@mental aspects of inductive learning:

. Building knowledge bases for cxpcr{ systems. The conventional method of

developing expert systems (that is, by encoding rules or information obtained by

interrogating human experts), is“a very tedious process which places a rather severe

67

limit on the size of knowledge bases so obtained. Michalski would break the -

knowledge acquisition” "bottleneck™” through the use of inductive learning.
. Exploxfatory data analysis in the experimental sciences. Inductive learning methods

thay extend the automation of scientific work past that presently available with

statistical techniques §uch\\as regression and factor analysis. Michalski's hopes for
this area of application rest on the ability of inductive learning methods to unc'é\'cr
hidden logical structure in experimental data.

Classification rules developed by an inductive learning system can be more accurate
than those obtained directly from human experts. Michalski and Chilausky (1980) rcponcd‘
an experiment in which their inductive learning system AQ11 was applied to the problem of
discovering diagnostic rules for 15 soybean plant diseases. The goal of the project was to
compare the performance of rules obtained tﬁrough consultation with a plant pathologist
with the performance of rules gcncratcd by AQ11. AQ11 was supplied with descriptions of
290 diseased soybean plants, along with an expert's diagnosis of each plant. Here is one
diagnostic rule learned by AQ11 for the disease Bacterial pustule:

(leafspots=present & leafspot_size=large & stem=normal & roots=rotted) OR

(time=may & prccipitatjonz'nonnal & leaves=abnormal & leafspots=present.yellow)

=> bacierial_pustule }. -)
The expert-generated rules and the machine-generated rules were both tested on an
additional 340 examples of diseased plants. For each plant, the rules gave a list of
alternative diagnoses. The machine-generated rules put the correct diagnosis at the top of
the list in 97.6% of the test cases, in contrast to only 71:8% for the expert-generated rules.
4.1.1 Inductive learning by parameter adjustment

The carliest machine learning systems can be characterized as using classified examples
to obtain polynomial discriminant functions (Nilsson, 1965). In psychological terms, the
weights or coefﬁcicnt‘s learned by such a system represent strengths of association bctween'

features describing the examples and example classifications. Leamning by parameter

68

adjustment has played a major role in neural modeling, cybemnetics, pattern recognition, -

control theory, statistical decision theory, and related studies which arose with advent of

clectronic computers in the post-war pmod.

The study of artificial intelligence has its roots in the neural models, or self-organizing
systems, pioneered by McCulloch and Pitts (1943). Tye neural modeling, or connectionist,
approach emphasized parallelism and the simulation and application of biological

/

mccﬁlisms for adaption. Interest in the connectionist approach waned in the Al
nity partly as a result of Minsky and Papert's (1969) analysis showing certain

com

fundamental limitations in the abilities of Rosenblatt's (1958) perceptron, the most

influential of the early neural modeling systems. Perhaps because of the availability of

much more powerful parallel computing hardware, interest in connectionism has recently

been rekindled (Rumelhart & McClelland, 1986).
The inductive leamning systems reviewed in the following sections learn concepts
expressed in a logical or quasi-logical language, or semantic nets which are easily translated

into such a language. According to Carbonell et al. (1983) these systems differ from the

69

earlier parameter adjustment systems in that they can learn "symbolic representations™ '

expressing "higher level knowledge”. Whether or not one accepts such claims, it does seem

that authors would be better able to express their hypotheses as logical statements than as

neural networks.
4.1.2 Inductive inference and &scription spaces

The process by which human teachers adapt their tutbring skills to particular
instructional settings can be v&:wcd as a kind of inductive inference or lcarniné. In this
case, the examples are events involving the success or failure of various instructional
treatments ‘applied to differing types of -students. Although in this section (and in all
subsequent sections prior to scctior;'4.2)_thc problem of constructing computer programs
- capable of inductive learning is discussed in general terms, the reader may find it useful to
consider how each of the points covered relates to insquctional applications.

Deduction and induction are complementary and reciprocal forms of logical inference
which philosophers have studied and argued about for centuries. Deduction involves

reasoning from general assertions to specific conclusions via established rules of inference

4

70

L ‘ . :
such as hypothetical syllogism, modus ponens, and so on. DcQuctiyc inference is useful
because it is truth-preserving: if the premises are true then the conclusion must be true as
well. HoWwever, deduction is sometimes said to be limited by the constraint that what the
conélusion stdtcs is always implicitly contained in the ‘prcmiScs, and that therefore
deduction cannot generate new knowledge. .) .

Induction, on the other hand, involves 'going beyoid thc_inforxhation given'. The
rules of inductivé, in‘fcrcncc are prcéiscly the reverse of those for deductive inference. For
chmplc, consider the simplification rule (Kalish, Montague & Mar, 1980, p. 60) from’
dcductivc logic: . ,5,‘1;‘; :

* (6 AND \y) THEREFORE ¢

To use this as a rule for inductive mfercnce ¢ is taken as the prermsc and ¢ AND V) as the
conclusion. If ¢ is false, then (¢ AND \y) W111 also be fhise. For example, if ordcrcd_pxzza_
is false then (ordered_pizza AND no_bugs_m_program) is falsc rcga.rdlcss o(the truth of -
no bugs in_program. It is the falsehood-preserving quality of inductivc inference which is
behigd Popper's (1959) ‘observation that scientific theoncs can be fa151ﬁcd by experiment,

but not ;ﬁvcd

Simon and Lea (1974) cast inductive learning as scarch for a true.hypothesis thmugh a

¥ ’

hyfpothesis space (or dcscnpuon space) guxdcd by cxamplcs Inductive mfcrenec can be
viewed as simply a strategy for rcstncnng the §caxch through the hypothesis space by only
considcrihé th(ose _hypotheses which agree with (i.e., deductively infer) the known .
cxamj)lcs of cburse, the primary-limitation of this principle is that there inay be many-false
hypothcscs wh:ch agree w1th the known examplcs Thc mterprctanon of mducnve leammg |
as search umﬁes the problcm with other areas of Al and, to some cxtcnt dHows thex;{ }

methods to be brought to bear, = -

The language used to spemfy hypolhcses or concept dcscnpuons is 1mponant because lt

- defines the size and stmctnrc of the deanpuon space A highly expressxve language -

defines a large and - perhaps mfmite descnpnon space. A very resmcted language may

-t

»

define a small descnption space which can be exhaustively searched, but it nm‘_\' not be
capable of expressing the range of possible concepts demanded by the apphicaton Tdeally,
one wants to use a language which can express all and only those concepts necessany te the
applicauon.

The probicin ot deciding when an example matches a concept description can often be
stmplified by specifying examples in a language which is a subsct of the descripuon
language!’. This technique, kn.own as the sifgle representation trick (Dieferich,
19%2), has t\xcn widely used inhachmc lcamingp?)gra'ms .

Mitchell (1982) provided a set theoretic imcrphl\z;tjon of the structure of the description
space based on the 1dea that when a descnption D1 d;:fmes a sct of cxam;;les which 1s a
proper superset of the get of examples defined by descniption D2, then D1 1s more-general-
than D2 The more-general-than rclatior;,imposes a partial ord;ring on the description
space. Mitchell pointed out that “this partial ordering provides a powerful basis for

N

organizing the scamh‘ through the [description] space”.

T.O make these ideas more concrete, let's consider a very simple de‘schption‘language
capable of describing classes of objects having the attmbutes-of size (BIG or SMALL),
color (RED, BLUE, or GREEN), and shape (ROUND or SQUARE). In this language,
concepts (ic., élasscs of objects) are properly dedcribed by a conjunctiort of attribute-
vaAIue pairs (e.g., sizc=BIG & color=GREEN), but it happens that we can drop the
attribute ﬁamc without introducing amt;iguil‘.y (BIG & GREEN). Figure 4.1 represents a
pgniqon o‘f the description space arrgnged<n a hierarchy with the most general concept at t};c
to)p (level 'O) and the most specific ;:or;ccpts at the bottom (level 3). A picture of the entire

description space would show 12 concept descriptions at level 3, and 16 concept

descriptions at level 2. A line connecting two concepts indicates that the hj gher concept is

v

17 This means that the set of all expressible cxamp\cs will be a subset of the set of all expressible
descriptions.

72

more- gencial-than the lower concept. The most general concept covers, or matches, all

examples, and each of the most specific concepts covers a single distinct example.

level

0

2 [rReD & sQuare | | BiG & sQuaRE | | BiG&BLUE | [smaLL & ROUND)
- L
3 BIG & RED & SQUARE | |BIG & GREEN & SQUARE| | BIG & BLUE & SQUARG, |

Figure 4.1 Part of a description space partially ordered by the more-general-than relation.

4

4.1.3 Learning conjunctive concepts '
In their seminal psy.chological étudy of concept icarning, Bruncr et al. (1956) asked

s;ubjccts to form concepts from positive and negative examples easily represented by

attribute-value pairs. They found that on¢ of the most frequently used strategies worked as

follows:

~

E]

1)~ initialize the description of the concept to equal the first positive example
encountered
. 2) cvcry time a new positive-example is encountered compafe it to the current ~~ -~

dcscnpnon ‘and delete from the current description any'nﬂnbn‘é value pairs which

wwnh the new é)_umplc e

b ..‘- .

This strategy finds the most specific generalization of the known posﬂivc examples.
It can be apphed quite successfully to problems like that represented in Figure 4.1 For
inslancc..df the current descniption is BIG & GREEN & SQUARE and one encounters the
example BIG & RED & SQUARE, then the new description is BIG & SQUARE.

Like the other learning strategies considered in this section, this simple generalization
procedure is incapable of learning disjunctive concepts such as GREEN & (B1IG OR
SQUARE). Bruner et al. found that, in fact, humans have considerable difficulty leaming
disjuncuve concepts from examples. Another significant shortcoming to the strategy 1s that
1t does not take advantage of information provided by negative examples.

Winston (1975) extended this basic generalization strategy to the leamning of structural
descriptions. Structural descriptions can represent concepts consisting of inter-related
components and can be distinguished from attribute descriptions, like those depicted in
Figure 4.1, which -rt:prcscm only global propsnics (Dietterich & Michalski, 1983)18.
Winston's program, ARCH, used semantic nets to describe concepts from a blocks world.
When a new positive example was éncountered, ;hc furst Step was to find a mapping

between components in the current description and components in the new example, then

the descriptién was generalized to cover the example. Sometimes negative examples were

encountered which matched the current d;scription, indicating that the mapping used in a
previous generalization had been inappropn:atc. In this case the progrglm backtra'ckcd t\o a
previous generalization step and chose an alternate mapping. Thus, ARCH can be
chafactcn'icd as performing a depth-first search of the description space, a search made
necessary because the description language permitted more than one most specific
generalization. To forc§t;ll combinatorial explosion in the, number of descriptions
considered, ARCH required a rather sympathetic source. of examples (Dietterich &
Michalski, 1983).

.

18 Dicu;rich and Migpl ki noted thag, in principle, one can represent structural descriptions by attribute
value pairs, but this tend¥ 1o result in an unwieldy explosion in the number of attributes.

3
»

SPROUTER (Hayes-Roth & McDermott, 1976) learned conjunctive structural
descriptions similar to those learned by Winston's program. But SPROUTER used a
beam search procedure to consider several most specific generalizations simultancously.
Beam search, illustrated in Figure 4.2, is a non-exhaustive search which offers a
compromise between depth-first and breadth-first search in problems where a heunstic
utility function is available for ordering the descniptions ur-xdcr consideration. When a
positive lcthplc is encountered: (1) all generalizations needed to cover the example
(including descriptions already matching the example) are put into a list, (2) members of
the list matching any known negative examples are deleted, (3) the list is ordered
according to the utility function, and (4) the list is truncated to some number of
descriptions (the maximum beam width) fixed by the user. The list becomes the new set of

current descriptions. When a negauye example is encountered, it is compared to all current

descriptions, and any descriptions which match it are deleted from the set. The use of

heuristic directed beam search made SPROUTER more robust with respect to the order
and quality of training examples than ARCH. Also, the elimination of backtracking meant
that SPROUTER did not need to store p-rcviously encountered poéitivc txamples,

although it still had to store all negative examples.

—— direction of searcch——)
Figure 4.2 A beam search with maximum beam width = 2.

74

-

Mitchell's version space approach to inductive learning (Mitchell, 1977; 1982 Mitchell,
Utgoff, & Banenji, 1983) can be viewed as a logical culmination of the methods reviewed
in this section, and for this reason has been widely citred and discussed in the machine
learning literature. In a sentence, what separates the version space approach from previous
methods is the realization that, in general, there is no reason to focus primarily on positive
examples, and that certain advantages result from treating positive and negz:tive examples in

a symmetric and complementary fashion.

most general
descriptions

most specific”
: ~ descriptions
~examples r

Figure 4.3 The boundary sets S and G are used to compactly define the version spjacc.

In Mitchell's terminology, the version spacc-is the set of descriptions which have not
yet been ruled out by the examples. Before any examples are encountered, the version
space is equivalent to the entire description space. Examples have the effect of climinatiﬁg

descriptions from the version space, until (one hopes) there is only a single description

left and the procedure can terminate to report with confidence that the concept hds been

learned. Of course, in most conceivable applications, the description spacc»i’é’.r too large

to be stored explicitly and exhaustively searched. As shown in Figure 4.3, Mitchell

75

76

cxp]oits the partial ordering of the descniption space by compactly representing the
verston space with two boundary sets: S, the set of most-specific-generalizations; and G,
the set of most-general-specializations.

A candidate elimination algorithm updates the boundary sets when a new
example is encountered. A positive example e* will (1) cause descriptions in S which do
not cover e* to t;c replaced by descriptions generalized just cnéugh to cover e* but
constrained to be more specific than, or equivalent to, at least on¢ ,dcsci‘iptibn in G, and (2)
cayse descriptions in G not covering e* to.be deleted. A negative examplt e- will (1) cause
descriptions in G which cover e to be replaced by descriptions speclalized jugt enaugh to
exclude e but constrained to be more general than, or equivalent to, at least ‘one description
in S, and (2) cause descriptions in S which cover e- to be deleted. The learning process -
halts when S and G have converged to both contain ghc same, single description. The need

for the deletion operations will depend on the structure-of the description spage.

»
! -

Table 4.1 The candidate eliminatiop algorithm l¢aming a simple concept:

Example ' Classification ___ Version space
1) BIG & GREEN & SQUARE + S = (BIG & GREEN & SQUARE)
~ G={) ' X
2MSMALL & RED & SQUARE : § = (BIG & GREEN & SQUARE] X
N : G = (BIG, GREEN}
3) BIG & BLUE & SQUARE . * S=(BIG&SQUARE] ’
. B _G=(BIG]

4) BIG & BLUE & ROUND . $ = [BIG & SQUARE)

' T G = [BIG & SQUARE)

'I:ab_lc 4.1 shoW; how the candidatl;:‘ climination algorithm is guxded by four ciamglcs to
ledm a concept from the description space réprcsented‘in Figure4.1. In shnpl;dcwdﬁﬁoq - -
languages of this type, S neéver contains more than one membér and negativ& examplés o
cannot cause deletion of elements from S. Notice that after the second example. therc ara v
vtwo specializations (BLUE, and ROUND) which exclude the ncgatwe example but.w“hlch Ry

‘.

¢ (et & &

cannot become members of G because they are neither more gencr';x] than, nor equivalent
to, the desaription in S.

Two important advantages of the version space approach over previous methods for
learning conjunctive concepts are that no cxamplp[nccd to be saved, 'and that 1t can 1dentify
when a trué déscription of the concept has been obtained. The ’;crsion space approach
appears to provide optimal lc}arning performance in description spaces of the kind illustrated
in Figure 4.1, but is often impractical for more realistic applications. For instance, it may
be that L};erc are many different ways of expressing the gamc concept, and that the
cquivalence of any two cxprcssion\s is generally undecidable. In such cases the program
may be unable to dcthcnninc when it has finished learning. The vcrsion.spacc approach will
not work with.languagcs permitting unrestricted negation because, in the case of such a
languz;gc, G will always only contain a singlc‘ description consisting of the conjunction of
the ncgatioﬁ‘of all negative c‘xamplcs.' Also, for many applications, S and G are simply’too

. - ®
large to be maintained and searched. In these situations one must prune the search, perhaps

77

as iff SPROUTER:\a,nd'thus to some extent relinquish the advantages of the version space -

approéch .

4. l 4 Learmng disjunctive concepts

*

Somc apphcanons of mductwc lcarnmg require a dcscnpnon language permitting both *

d153unc§on and con]uncnon But for both humans and machmcs, admmmg d1s1unct16n can_
make the learmng task much more difficult. Onc rcason is that the most specific.
gencrallzanon will simply be the. dxs_;unctlon of all posmvc examples cncountercd known
as the trivial disjunction. Thus, thc standard version space approach cannot be. apphcd

bccausc S and G will not converge. Thc whole purpose of inductive: lcarmng is to make

mfcrcnccs about cxampdcs which have 'not been samplcd and unlcss trivial disjunction is-

avoided, mducuvc learning is rcduccd to merely rote lcammg C e 1 ‘

L

78

One way of simplifying the problem is to restrict the learned descriptions to a
disjunctive normal form (DNF). DNF expressions are disjunctions of conjunctive clauses,
such as (with v as the symbol for disjunction):

(GREEN & BIG) v (GREEN & SQUARE)
 This is not necessanly a serious restriction because for every cxprcssign in standard logical
form Ehcré exists an equivalent éxprcssion in DNF. One cah imagine a module in the
system which tries to convert learned DNF expressions into more compact and human-
readable standard logic cxprcsvons for output to the user.

Three goals or desired properties can be set for DNF descriptions learned from positive
and ne éativc examples:

+ consistency, which is satisfied by the exclusion of all negative examples

« completeness, which is satisfied by the inclusion of all positive examples

« parsimony, which is satisfied by minimizing the number of conjunctivg clauses
The trivial disjunction is consistent and com;ﬂete but, assuming a better solution exists,
completely without parsimony. |
4.1 41 Disjunctive version spaces

Mitchell suggested a modlﬁcanon of the vcr51on space approach to allow learning of

. DNF descriptions. The proccdurc assumes that the set of posmvc cx‘plcs (POS) and the
set of negative etamples (NEG) are known a priori. It follows a stratcgy, refcrred to here as
the positive example dclcnon strategy (T able 4: 2) whith tn:ats each conguncnvc clausc as a
separately learned sub-dcscnpuon ' . _ \ ~

When using thxs strategy with the version spaces approach, in: stcp 3 the most specific |
set S is set to contain e*,’and the most general set G is initialized wxm.hc most general | .

. clause. The candxdateelnmnanon algorithmi is apphcd with every cxample in NEG. This-has’ o
no effect on S but will develop G.The final DNF qescnpnoq learned will W /tfn the
order of the positive examples selected in step 2 and the clause selected ifi step 4. There is
'no guarantee that the learned description will be the most parsimonious. - |

—_— . .) C .

Table 4.2 The positive example deletion strategy.

1) Initalize the description to have zero clauses.

2) Select an example e* from POS.

3) Develop a set G of clauses whic.h cover et and exclude all members of NEG.
4) Select a clause D from G. .)

5) Append D 1o the description by disjuncuon.

6) Delete from POS all examples covcrodAby D.

7) If POS is empty then halt, else go to step 2.

-

>

The requirement of prior knowledge of examples can be a nuisance when the task is to

incrementally learn from a streant of positive and negative examples. Unless all negative

examples are available for every iteration of step 3, a clause could be learned which is not _

copsistcnt. This means that to maintain consistency, the learning process must start from
scratch every time a new negative example is encountered.

Mitchell et al. (1983) seem to ha.ve abandoned the consistency requirement in the design
of LEX, a program which learns heuristics for solving symbolic integration problems from »
a strl:ar_n of examples. LiSX ssarts with a single specific set S, aﬁd allows posit.ivc
examples to generalize S and négative examples to Spec{alize G, until a positive example is
encountered which cannot be a,écommodatcd by a generalization of S;. Af this poirt an
additional specific set S 1s created and initialized with the¢ new example. Each subsequent
positive example is either assigned to one of the existing Specific sets (possibly sérving to
generalize it), or it starts its own specific set if gcncralizat“ of one of the existing specific
sets is not possible. The description space of LEX is such that each specific set contains
only one sub-description, so the learned DNF déscripZDﬂ

mcmbcfs of all speciﬁc sets.

L 3

Mitchell et al. did not discuss the troublesome case of a new negative example which

aatchcs one of the specific sets. Consistency is sacrifited if the example is ignored, but
. \ -~

\

79

N
is simply the disjunction of the

completeness may be lost if the specific set is somehow specialized to exclude it. Bundy et
al. (1985) list several flaws in LEX, and point out that they stem from LEX's inability to
properly assign positive examples to clauses:

The new shell [clause] gets preferential treatment when it comes to allocating the new
positive instances [examples] between shells, whereas the old shell gets preferential
treatment when it comes to allocating the old positive instances. There is no reason to
assume that this is the correct division of positive instances. Negative instances, of
course, apply to both shells. The ad hoc nature of the division of the positive examples
makes it very unlikely that LEX will learn the correct disjunctive rule. . .. We know of
no way of ensuring that the division of instances is performed correctly 't first time so
that the program never needs to backtrack and reassign the instances. Storage of all
training instances is required to enable this backtracking. (p. 168-171))

4.1.4.2 Michalski's inductive learning methodology

*

Michalski has developed a very extensive methodology for inductive learning

»

(Michal‘ski', 1983), which has strongly influenced the design of the inductive learning

procedure presénted later in this chapter. The summary given here attempts to cover only
p r *)

the most fundamental and relevant aspects of his methodology, and necessarily provides a

simplified view.

In the tefrminology of inductive learning, bias is any aspect of the learning system, aside
e -

from the examples, which influences the selection of concept descriptions (Utgoff, 1986).

80

Bias is important because it is often the case that the examples are not sufficient for concept

selection: either many descriptions .exist which are pbmpl_c_ic and consistent, or no
descriptiops exist which are f:otnplctc and consistent. Bias can be introduced in the form of
restrictions inhefrent in the dc)scnptmn language and dcscnpnon spacc search heuristics,
cxphcn concept selection criteria and S0 on.

Two pnnmplcs seem to serve as the foundation of L'iiéhalslﬁi's"work’

1) Thereis a need for a gcncral inductive lcarmng system that is applicable to many "

different domams. General. apphcabqhty demands-that-this- systcm work with ap -

cxprcsswc and rclanvcly unmstncted descnptsn language, "with provxsxon for

domaln-speclﬁc bias introdiiced by:hc user as background knowledge. -

= .]

W

v

" 2) Inductive learning systems should have a, "bias toward comprehensibility”, that is,
they should tend to learn concepts which are understandable to humans, and can be
readily translated into natural language. For instance, sentences in the description
language should contain only a few conjunctions and disjunctions, and no more
than one level of parentheses. This bias emphasizes not only that humans are often
the consumers of learned concepts, but also that they can be a vcry‘uséful sourcé of
feedback and domain-specific knowledge throughout the leaming process.

L]

Michalski designed a description language to facilitate inductive learning called

annotated predicate calculus (APC). APC is in $everal rc§£>ccts Mmore expressive than,

3 standard first order predicate calculus. For instance, in addition to the standard univc‘rsal

and existential quantification, it permits a numerical quantifier. Instead \of having to

- descnbe a biped as: , ¢

i | Ix Iy [leg(x) & leg(y) & x=#y] - v
ons can use a more natural expression something like:
3(2)x [leg(x)] .

APC expressions are composed of quantifiers, logical csnnectives (&, v, ~, =, o),
and descriptors (predicates, variables, and functions). Descriptors are either defined by the
user, or -ax¢ built from user-defined descriptors by a process of ’c.onstructiv'e
generahzati‘on With each descriptor they dcfmc users.alsq,supply an annotanon, which
indicates auxxhary badkground information about the descriptor such as its.domain and
type. In standard predicatc logic, much of this information would have to be represented as

- additional axioms. . ’ ' »

Michalski's in:tho@ology recognizes three types of descriptors. Simply defined these

81

-~ are: nominal descriptors; which have an unordered value set; linear degcriptors, which have

a totally ordered value set; and structured descriptors, which have value sets whose

A}

members are arranged in a generalization tree: ’

»

AY

82

a)

[SPR[NQ_J‘ [sUMMER] | FALL | [winTER]

b)

’

| SPRING.FALL || SUMMER..WINTER] , \

NN 3

[sPrING..SUMMER || summER FALL |[FALL. WINTER |

N\ /\

SPRING SUMMER [FALL | wmﬂ
c) ’ A s
N
[Eeoumox | . soLsTicE |
| sPRING | | FALL _J [summer || WINTER |

Figure 4.4 | Generalization hierarchies dctcrmined by specifying attribute typc‘_

Ch L i

kae other kmds of annotation, descriptor typing is Just a way of allowmg the user to

__supply valuable background knowl@dgc which' will bxas the lcammg pmcess. It can bc

.~ viewed as a way of spccxfymg a gcncrahzanon hlcrarchy over the valuc sct for the

dcscnptor Consider the vanablc SEASON thh the valuc sct {S}’RING SUMMER, FALL '

WINTER]. thn SchIﬁCd as a nominal variable it has an 1mphc1t flat gcnerahzamm '

———

‘ «hxcrarqhy as shown in Fxgure 4 4a. When specxﬁcd as an ordered variable it has the irplicit

gencrahzanon hierarchy shown in 4.4b, If nexther of these captm'e thc user's intuitions

about how the values should be. generahzed the hierarchy can be gwe%‘%xplihtly as !

83

structured variable as shown in Figure 4 4c. Because the structured type may also include
linear nodes (not illustrated here), it is really a combination of the nominal and linear types.

In order to facilitate inductive learning, both APC and its predecessor VL; (Michalski,
1973, Michalski & Chilausky, 1980), are fundamentally disjunctive normal forms.
However, they do a]lfow restricted "internal disjunction,’, which can be particularly useful
in expressing rangcs‘ on linear descrjptors. For instance, 'a.‘VLl rule learned by AQ11 for
diagnosing the soybean plant disease anthracnose contained thc term [time = A:ug..Oct],
indicating a period in the growing season from August to Octo'gcr inclusive.

Michalski views inductive learning as staic-spxc search where the initial state is the
collection of examples, and the goal state is an' APC assertion that implies the examples -
(ie, is consis‘f«‘em and complete), satisfies uécr-supplicd background information, and. .
satisfies a usc}-supplidd preference critcp'qn. There are three typc.s of rules which can be
applied in conducting the search: generalization rules transform a description info a more -
general description, reformulation rules transform a description into a logically ;:quivalcnt
description, and specialization rules transform a description into a less gcr;cral description.
Although reformulation and spccialiiation rules (the tru\th preserving rules of deductive

logic) are useful in inductive learning, it is the generalization rules which are of pn'rqary
importance. | ‘:m

A few ¢xamples are given here of gcncralizatio} rules used in Michalski's X
mcthodology.\Thc symbol ::> is used for an implication linking a concept description with,
a concept name. The symbol k i.s interpreted as "generalizes to". A and B im’iicatc arbitrary
APC expressions. K indicates a predicate asserting the name of a concept. |

* The dropping condition rule:

-

_V . "A&B:>K K‘A > K
. Theaddingaltcmative;hﬂg; ' h o
A:>K k AvB:>K

+ The closing interval rule: | |

4,0

Pl

-
-

4 “ - R
(A& L=c::>K) & (A & L=d :> &) K (A & L=c.d"::> K) .
(A& .

where L is a linear descriptor, and ¢ and d are values of descriptor L such thatc <

d. The term L=c..d means "L has a value no less th‘an ¢ and no greater than d".

* The climbing gcncmlizati(;n tree rule: e .

(A&S=c:>K) & (A & S=d:>K) K (A & S=f :>K)

where S is a structured descriptor, and f is the most specific node havin&nodcs c

L]
and d as descendants. ¢
There are also rules for constructive generalization which generate new dacriptors and
L .

-«

thereby transform the descrigtion space. For instance, the gcnqrating chain px:opcrties rule

is applied to transugc relations to construtt descriptors 1dcptxfy1ng Hﬁ cxtrcma of the

applied to construct the dcscrxptors MOST_ABOVE(X),: meamng : top , and
LEAST ABOVE(x) meaning "bottom Previoug work with constructive gcn;zrahzanon
(e.g., Lcnat 1983, p. 252) has shown the value of this "find extrema” hcun,snc o l

Michalski's mcthodology requires that the user spcc1fy prefcrencc cntcng/ for evaluating

the many dcs¢nptions that may be goncratccj_ by applicatio

reformulation, and generalization rules. Thc/user selects cn'tc‘
© v

include consistency, complctcnéss, case of comprchcnsmn cost of cya]uatmg dcscnptors,

‘ 7 mcnu whxch may

-

and sp on. The selected criteria are combined i ina sequcnc; of criterion-tolerance pairs:

(c1a t1) (c2, 12) .. ‘ o <

<

- relation. In a blocks world with a user supplied descriptor ABQVE(X,y), thns rule’could be

’ ﬁspcexahzauon, 7

'y

84

The tolerances are expressed as perccntag’és Aof-vthc-critcrion measure. When a ndmhcr of U

dcscnpuons are undcr consldcrauon, they are.ﬁrst cvaluated on cntenon 1, and thc best |

4

- e =

evaluated on ¢ and so on, until only one descnpuon is nctamcd or thc sequence of cmena

) 2 e e
is exhausted. . - oo : : P : -

.

The inductive learmng aigon«'pmposed by chhalsla focuses on the generanon of 2
set of descriptions ¢alled astar. A star; dcnoted G(eﬂNBG) whére etisa pomive enmple

4

and NF o the setaf negative examples, is the set of all maximally general conjunctive
clauses in APC matching e* but not matching any members of NEG. In practice 1t 1s

necessy to aun for a bounded star Ge*INEG,m) containing only the m most preferable

-

descripuons in Ge *INEG)

Michalskr's learning algonthm is quite similar to Mitchell's disjunctive version spaces
approachan that it also uses the posiive example delenon strategy outhined in Table 42 1n
Michalskr's mcxhodnlogyA the bounded star G(e*INEG,m) substitutes for the set G 1n step 3.
In step 4. D s selected according to the preference criterion. Also, reformulation rules are
appled to the final description in an anc:mpl to derive a Comrac’tcd €XPresagon.

The major difterence 1s that, while Mitchell's candidate ;\immanon algorithm is.on]y
pracucal for very resgricted description languages, Michalski gives an efficient star
generation procedure t;ascd on beam search which works within APC, an cxprcs;ivc all-
purpose lartguage. The star generation procedure 1s summarized as follows:

1) Create a set PS-(partial star) whose members are all sirlglc—dcs(:ripmr

Jgeneralizations of e*. For instance, if e* is BIG & GREEN\& SQUARE. then PS =

{BIG, GREEN, SQUARE}. Constr:ctive generalization rules may be applied at

this point to introduce other single-descriptor gencraliza‘tions. Throughout this and

subséqucn{ steps, PS 1s ordered according to the preference criteria and truncated to
contain the best m descriptions. ¥

2) Descriptions in PS are tested for consistency and completeness. All consistent and

complete descriptions are taken out of PS ‘and put in a SOLUTION list. All

consistcm‘ but incomplete descriptions are taken out of PS and put in a

CONSISTENT list. If the size of the CONSISTENT list exceeds a user-supplied

- parameter, or the cpu time cxcccgﬁ some bound, then go to step 4.
3) Apply specialization rules to the descriptions in'PS in an attempt to make them

consistent. Go to step 2.

RS

4y Apply generahization rules to the desenptions in CONSISTENT 1o make hem more
complete
5) The final bounded star G(e*INEG.m) 1s apparently a union of the S()I,U'I‘l()é list
with the best desenpuons from the CONSISTENT hat
4.1.4.3 Learning decision trees
Huntet al (1966) developed a concept learming system (CLS) which has more recently
been refined and apphied to chess end game problems by Quinlan (1983). The task
addressed by CLS, and Quinlan’s ID3, is to learn classification rules from examples
cxprc\'«cd as attnbute vectors, and to use those rules to classify new examples It is

assumed that the atunbutes are nominal vanables withgather small value sets
&

GREEN

/ *

Figure 45 A CLS/ID3 decision trec.

What really distinguiskes CLS and ID3 from other machine leaming systems is that the
class-if;;cation rules they learn are expressed as decision trees. Every inner node of a

I, ! S o S
_decision tree represents a test of one of the attributes. There is a*child node for each

possible outcome of the test (i.c., each member of the value set of the tested attribute). In

»

86

classifying a new example. the system starts with the test at the root riode and branches-

down the tree applying tests in sequence untjl a leaf node is reached. The leaf nodes

- -

indicate the classification decision based on the series of test outcomes. For instance, the

conccpt’(}REF_N & (BIG v SQUARE) is represented by the decision tree shown in Figure
~

45 4 \

—

There 15 a simple and efficient procedure which will generate a @omplete and consistent

~ decision tree from a set C of classified examples, a list A of attributes, and a root node n:

build tree(C,n.A); b

ry

Iy if Cis empty then arbitrarily label node n as + ar - and retumn;
2) if C confains all positive examples then label node n as.+ }and return,
3) if C contains all negative examples then label node p as - and return;
4) select an attribute a from A and pantition C into d¥sjoint sets C;, Cy, ..., where
C; contains those members of C having the nh value of «;
S) d\clctc «a from A;
6) for each value of a:
create a new node n, which is a child of n:
call build_tree(C;,n; A);

The structure and number of nodes in the resulting decision tree will be determined by duc
order of &ttributes selected in step 4. | h)

The goal of inductive learning is-not only a consistent and complete concc’t
dcscn’pu‘c}n, but also one which can correctly claSsify néw examples. Unless some heuristic
is used to g/uidc the orc?cﬁng of attributes, the procedure described above may generate a
decision tree equivalent of the trivial disjunction, that is, g tree in which each leaf covcr{
only one or zero examples. To avoid such a tree, and to a.ifu\g)r a tree which is in some
sense minimal, CLé’and ID3 apply heuristics that try to select the attribute best separating =~
the positive and ncgatiﬁcxamples.

Quinlan, taking an information-theoretic approach, viewed a decision tree as an

information source which, given an example, conveys a message about the classification of

‘

-

-

. ~
the example. From information theory the average information content, or entropy, of the

messages is: ot . ™

q*log,q* - q" log,q
where q* and g are the proportions of posiu'vc\and negative examples in C.
All decision trees created from the same set of examples will have the same entropy.

Also, the entropy of the decision can be regarded as being didtributed over the nodes of the

decision tree, with larger trees conveying less information: per node. Therefore, in order (0.

-

generate parsimonious trees with few nodes, Quinlan adopted a steepest ascent strategy
which selected the attribute accounting for the greatest portion of the remaining entropy. %

Another diffetence between ELS and ID3 is that Quinlan has developed means of

88

drawing samples from C which enable ID3 to deal efficiently with large numbers of

examples. Quinlan found that, in a task "involvnmg 715 examples and 49 attributes, ID3
learned a decision tree containing 177 nodes in 34 sec6nds on a Cyber 72.

ID3 is one of the most efficient programs yet devised for learning disjunctive concepts,
but this advantage has been gained at the expense of si®nificant Hmitations in the
description limguagé. The most impartant of these are the restriction in the size of the
attribute value sets, and the inability of the procedure to g'encralize‘ over, é{nd re;‘);ésent,
ranges within the value sets of ordered attributc:; (as_ Michalski's mvct,hodology does with
linear descriptors). |
4.1.5 Learning from noisy examples

All of the inductive learning systems described to this point have assumied that the
examples used for learning are free from errors or noise, and tha‘t a consistent and complete

b .
description exists somewhere in thg description space. But in many potential applications of
inductive leaming, the information comprising the cxamplés is sometimes incorrect, or is

Just not sufficient to support a discriminating descriptiopn. For instance, the critic module

which produced examples in LEX (Mitchell et al., 1983) occasionally gave the wrong

y

" application considered hepe.

\
[

. . - /) -
. cladsification for an example. It is not clear what effect this had on the performance of

LEX's learning module, which had no ;pecial mechanism for dealing with noisy examples.

. L4
Quinlan (1986) invgstigated various extensions of ID3 which support leamning from

“noisy examples. The principle is that, in step 4, instead of al\ays,choosing the best

attribute to partition C, ID3 may decide that the hetrogeneity of C (mixed positive and
negative, cxarhpl'cs) is due to noise only and declare the current node to be a rieiSy leaf. The
goisy leaf is labeled with the classification (+ or -) held by the majority of the c'xa_mplcs in

C- ~

The d‘ifﬁcu]ty%x‘)mcs in deciding when there are no attributes capable of providing a
good enough pam’tioni%g of C. One strategy is to declare the npde to be a noisy leaf when
the entropy accountcd for by the best available attribix_tc is less than some selected
threshold. In applying this strategy, Quinla}n qund that any threshold setting "sufficiently
large to prevent testing irrelevant attributc§:iL'ﬁﬁcantly degraded thc’pcrformancc of the
procedure when the attributes were indeed adequatc".‘ He fm}?d that a much ‘bct'tcr approach
was 1o reject the use of an attribute for partitioning C when the attribute values held by the
examples in‘C were statistrcally indeppndcpt of the classifications of those examples.

¥

Independence was measured by a chi-square test with a confidence level of 99 p/crccnt.

89

Lee -and Ray (1986a) developed a probabilistic rule generator (PRG) that learns a

modifiéd form of Michalski's VL1 descriptions. PRG seems to be an effective ‘merger of

the methods used by Michalski in AQ11 and Quinlan in ID3. Becapse it lt';ams disjunctive -,
* G

concepts, tolerates noisy examples, and recognizes both linear and norginal attributes, PRG

|} .
comes closer than previous procedures to satisfying the requirements of the instructional
~N

.

The description lghguage is a disjunctive normal form in which every conjunctivc’

clause is weighted with an integer indicating the number of positive examples it covers.

~

Clausc's are composed of attribute-value or attribute-range pairs. For instance, the

following description has three clauses with weights of 10, 3, and 5:
&~ . N

g

P

(3

10[{ay=1..2] v 3[a2=4],_:/ 5{a;=0..1]}[a;=2..4]
Like m();t of the p\rogrélms“which learn disjunctive concepts, PRG-forms .cach%lause
separately by following the positive cxamplc\dclgt.ion sn;ategy given in Table 4.2. But
iu‘likc previous programs using this strategy, PRG does not base clause formation on a
single positive cxér\nple selected as a seed. Instead, jt does a\géne}a;l tc?‘speciﬁc trﬂadth—flrst

search guided by an entropy reduction heuristic, followed by an attempt to expand the

resulting clause to cgr€r regions of the example sbace not occupied by negative examp'es.
- A .

An important adkantage of this approach is that it does not risk basing an entire clause on

what may bhe an erroneous example, and is more considerate of global properties of the

Al
.

example set. - ' C

" Lets consider how the top-down search works with linear attributes. Like ID3, PRG
starts with the most general clause covering the entire example space serving as the root
node. For each attribute PRG obyains a boundary which best separates, according to the

\

entropy criterion, positive and negative examples prdjected on to the attribute. The

attributes are ranked by the entropy criterion and the best n are used {o form up t0 n new

- tlauses where n is the user supplied maximum search breadth!®. The new clauses are

.) -
specializations of the parent clause and each covers a sub-region of the example space

covered by the parent. The sub-region can be viewed as that side of a plane partitioning the
parent's example spaéc which contains the greater number of positivc examples. The
process is repeated using each of the new élaus_cs as a parent node to spawn further
spccializati.ons. _ : : ' -

Nominal attributes are tcm;;braﬁly "linearized" at each node so that this method can be
'fcasibly applied. T\t;is mc.ans that an ordering is ixﬁposed on the value set of a nominal

attribute according to the proportion of positive examples projected on to each value.
+) '

,

19 Actially, the usér supplies a separate search breadth for each depth of the search.

|

90-

¥ 4

I

L‘e and Ray (1986b, p. 442) recognized the importance of being able to bias rule

learning with descriptions hypothesized by the user:
N - '

There are' many situations where we would like to construct a knowledge base
initially as a set of hypotheses [clauses), introduced by a human expent, which are
later systematically modified by experimental training data events. Indeed. one
.might say that this ordering of the learning process is analogous to the theoretical
study of a problem's solution methods followed by practical experience with the
problem, wherein modification or adaption of the initial rules or hypotheses occur:
Required modifications may range from small perturbations of the hypotheses
through major or minor deletions and additions of new rules.

W his rule refinement feature is also a goal of the present study.
"However, because PRG is based on the positive example elimination strategy, it

» requires all examples to be available at the start ©f the learning process. If a new example is
{

encountered learning must start from scratch, receiving no benefit from picvious learning
The pesitive example elimination strategy is incompatible with the direct manipulation of
existing rules, no matter whether they come from the user or previous leamning. Lee and

Ray circumvented this fundamental restriction by having the user express the weight of

initial clauses in terms of number of examples, the idea being that a hypéthcsizcd clause

with a weight of n is as valid as an empirically developed clause based on n examples. To '

/
. "simulate" a clause égtered by the user, the set of pbsitivc examples was initialized with n
: »

artificial examples uni y distributed thfoughout the example space covércgi by the
- entered clal;sc. | A

\. An advantage of this method is that it allows the user a mc;ms of expressin grthc degree
of cértainty with which he believes each of th:: clauses comprising the initial dcséﬁp:ion.
‘Heavily weighted clauses are more robust and less malleable than uncertain clauses.

But artificial examples derived from a description do not bias the lgaming process in the
same way that the dcscrip;ipn itself can. We know that there are often many descriptions
that agree “(i'fh any given set of examples. When we give j}ﬁﬁdd examples as a substitute
for a description w§ are abahdoning charictéristics of the description which distingui'sh it

from other deécriptions which agree with ihqse eiamples. Jhese characteristics are just the

.
4

91

TN

kind of biasing information we hope the user will proviac. Nevertheless, PRG should be
regarded as a potential alternative to the inductive learning procedure presented in the next
section ,
S
4.2 An inductive learning procedure for adaptive instructional systems
The basic rationale for apﬁlying machine learning techniques to compater-based

instruction has been succinctly stated by Michalski:

]
Intelligent tutoring systems must be able to present material at a level of difficulty
and detail suited to the state of knowledge of the student. In order to do so, the
system must know and follow the student's fhanging knowledge. A desirable way
of acquiring this knowledge is not by repeated direct testing byt*®y learning from
clues, behavior, and the implicit model of the student during tutorial sessions. Thus
learning abilities are required not only from the student but from the tutor as well.
(Michalski, 1986, p. 7). :

One can imggine machine learning being incorporated in all of the three components of

Hartley's framework for adaptive instruction (page 11). The.expert model can acquire

\
|

improved heun'shesby analysing its own performance, as in'LEX; or by recognizing when
. ™

a stadent has obtained a better solution to a problem than the one it has provide

Kimball's self-improving tutor (Kimball, 1982). Advanced student fnodels \which

b
incorporate learning allow for different instructional strategies to be tried on the m

el so
the best can be selected for presentation to the student. Machine learning used in student
models is constrained to be an emulation of human learning, and should model forgetting
as well & acquisition (VanLehn, 1987).

A tobic which has received little attention, and one with which tl; remainder of ithis
Chaptcf is concerned, is the use of inductive learning mcghods to improve diagho tic

classification rul% in the teacher'model?0. In this approach, student models are examples

, as .

which an inductive learning procedure uses to refine heuristics initially entered by a cougse

i N

author. The hdpe is that the eventual performance of such a teacher model will parallcl t

20 Langley, Wogulis & Ohlsson (1987) applied inductive learning to the problem of reconstructing a fef
of the famous 110 bugs used in BUGGY (Burton, 1982) from primitive subtraction operators. A drawba
to this technique is that the author must be able 10 supply a correct st of primitive operators.

< .

- 93

/

of an expenenced teacher who, upon encountering a student with some problem or other,
applies diagnostic rules he has learned from experience with previous students. However,
unlike the problem of incorporating learning in student models, there is no need to be

-

constrained to reproducing the processes specific to human leaming. ¢
ILP was designed and implemented for use in adaptive instructional systems of the kind
based on learning hierarchy representations of the subject matter. It8s assumed here that the
classification rules learned by ILP are used to identify prerequisites that a student exhibiting
difficulty with an objective (let us call it the prime objective) has forgotten. The outer
control procedure, which invokes ILP, takes the following actions whenever such a .stu‘Lem
1s encountered: . ' 1 v
1) Recommendation Phase. One or more prerequisite objccuvcs are recommended for
testing by applymg the learned classification rules to the mode}*f)f the failing studcnt. R
2) Testing Phase‘. The studefit is tested on the recommended objective(s). If the result of a
test is NON_MASTERY the student is routed to the appropnatc unit for'instruction.
When all such un‘1t5 have been successfully completed the studcnt is returned to the unit
which was originally failed. If the result of the recommended test(s) is MASTERY, the
corresponding objective(s) 105 removed from further consideration. If all recommended
objectives are found to be in a state of MASTERY, then go to step 1 for a new
;r.ccorhmendation.
3) Learning Phase. The student model and the test rcsul{s are fed4nto ILP v:hich uses the
#information to improve the classification rules. w .
. £y
Th&e were 11!’66 fundamental decisions made at an early sta_g'é of the project which
strongly detcnning:d the design of ILP. First, an cxamplc‘is supplied to ILP only as a result
of a studenf being explicitly tested on a ptcrcquisitei Indirect evidence for an exdmple is not
allowed. For instance, when tests reveal mastery on k-1 out of k prerequisites, the student
model is not automatxcaay supplied to ILP as an example of a stud®nt in need of the

remaining prerequisite. Although the use of such indirect ev;dcncc could speed the lcarmng

4

& ’ v

- . 94

.

process, 1t was considered te rely too Keavily on the assumption of absolute validity of the
learning hierarchy.

Scc‘:ond, the form chosen for the examples was a sim})lc conjunction or list of attribute-
value pairs called an attribute vector. As seen in Chapter 2, attribute vectors are the
closest we have to a standard form for student models in adaptive instructional system¢.
Even in highly domain specific intelligent tutoring systems, student models are rarely more
co‘mplicatcd than lists of bug or skill names. In cases whérc lhc‘ author expresses student
models used within instructional units in a more powerful language, attributes judged to be
relevant to the objective selection problcm‘could be extracted from the more gompl/icated
form. The attribute vegjor Will contain whatever information about the student the author
chooses to include (for example, scores on aptitude tests, sex, age, objectives mastered,
responses, and so on). The assumption is that this information will provide a better than
chance basss for instructional control decisic;ns.

L T'hir’d, it was decided that classification rules hypothesized and directly entered by
authors should be given high pri\ority as a means of biasing the learning process. It was
believed that this form of backgrdund knowledge offers the best starting point for the state-
space search conducted by ILP. a

The qualities which characterize this inductive learning task are:

» Single concept ka:ning_. It is possible that a student failing a unit has forgotten more
than\onc of the prerequisite objectives. This means that hypotheses about different
prerequisites are not in competition: a test confirming that one prcfequiéite has been
forgotten docs_nbt disconfirm predictions that others have been as well. So, where-

-4
«there are k prerequisites to be considered, the problem can be broken down into k

7/

single concept learning subproblems.
~* Incremental rule refinement. Students passing through the testing phase constitute a
" stream of cxamplcs for the learning phase. The lcammg procedure should try to

v _imprave the classification rules after each new example. If ILP waited until some

¢
large set of examples had been \colle'cxcd, students represented by ‘this sct.'»w.ould not
benefit from pam'alhly learned rules. |
oM

Shifting of target concepts. Student populations may fluctuate over time
necessitating changes in the classification rules. However means should be
available to the author qn_ébling him to (a) recognize when conditions are stable and
(b) disable the tcst‘ing and learning phases until he has reason to believe there is a -
change in the student population. ’
Passive example acquisition. ILP has no control over the order and kind of students
it 'cncc;umers, so unlike some learning systems, it cannot accelerate concept
discovery by cohducting experiments (i.e., gathering c'xamplcé) in critical r'egioﬁs

* of the example spécc.

Disjunctive concepts. ILR must be capable of learning digynctive cqncepts because

there may be several reasons why a prerequisite is not mastered, an

expect positive examples to cluster,in disjoint regions of the exampl

we should

Bundy et al. (1985) observed, in order to support learning of d‘SJUDCI ve concepts -

the learnin; g system should kccp all examples encountered.

Noisy examples. The information used to construct and categorize the attribute
vectors will be obtained fronLeduga\ti(:nal tests and from other means of observing
students. Because these sources are subject to systematic and 'random error, the
system must be able to tolerate situations where identical attribute vectors are
categorized differently. In fact,‘c'vcn when there is no error, thcré is no guarantee
that the set of attributes chosen by the author will provide a sufficient basis for
" discrimination between positive and negative examples.

Linear (.)r ordered attributes having large value sets. It seems clear ihat attributes
cannot be restricted to thc_:nomin;l type. Authors will Want to use ordered atributes
such as aptitude scores and'rc‘.sponsc latencies. The need tol shpport ordered

attributes eliminates the CLS/ID3 approach from consideration for this application.

AN

If some variation of the positive example deletion strategy were followed, it would

~t

seem necessary to (1) redo the entire learning pfoccss after each example and*(2) introduce
the author's hypothesized description only indirectly by initializing the example set with
\artificial examples derived from it (aftcr Lee & Ray, 1986b). Instead, ILP starts the search
\§t the description learned after the previous example and tries to improve it by applying
generalization or specialization operations. Examples ﬁﬁgratc between states of agreement

-and disagreement with the current rules, as the description is modified. Butunlike LEX,

ILP keeps track of the state oﬁach example and uses disagreeing cxémp]cs to guide the

3

application of operations.

-

4.2.1 Classification rules ‘and recommendatian criteria
The classification rules learned by ILP can be viewed as having a production rule
format:
<con junctive_clause> <certainty_factor> =>\ <prerequisite_name>
A certainty fac;.or 1s assocl,iatcd with each clause. The certainty factor (CF) is an estimate of

the probability that a student matching the clause really is in need of the prerequisite:

CF o= POSCOV__
POSCOV + NEGCOV

Wherc POSCOV is the number of students matching (covered by) thc\ clause who were
found to not have mastery of the prerequisite, and NEGCOV is the m;mbcr of students
matching the clause who were found to have mastery of the prerequisite.

It is conceivable that the rules could be chained to perform a kind of deductive
reasoning about the student, with certainty factors being combincq according to one of the
mf:thods described by Spiegelhalter (1986) for.dealing with uncertaihty in expert systems.
One such application would be a system which chained downward in the leamning hierarchy
to identify non-mastered prerequisites more thén one level removed from the failed

,objective. However, this prbjcct deals only with immediate prerequisites, and omits

consideration of rule chaining.

96

L 97

In the recommendation phase, the current student is compared to the left hand side

(LHS) of all c.um:nt rules. If none of the rules match, one prerequisite is randomly chosen
as a rccommendz;tion“. If one or mor;t rules match, the prércquisitc indicated by the
matching rule with the greatest CF is automatically recommended. Other matching rules
will result in a recommendation only if they have CFs greater than a threshold supplicd by
the course author. This threshold will presumably reflect the author's subjective weighting
of the cost of taking an extra pretest versys the cost of returning the student to theoriginal
objective with one prerequisite still not mastered.

4.2.2 Attributes

/

For each node in the learning hierarchy having more than one prerequisite, the author

specifies a set of attributes which will comprise the attribute vectors used by ILP for |

building classification rules for that node. Some of the morg common attributes, such as

time_sir_lcc_mastcry_unit_x, would be avéilable from a menu. Others may have to be
collected by proccdur?s written by the auithor.)
The author also qctcmﬁncs the types of the specified attributes. Following Michalski
(1983) let us differentate three types of attributc‘s: nominal, ordered fwhich Michalski calls
“linear), and structured. Support for structured attributes, while probably an important
feature for ;ractical use, was not implemented because it is just a combination of the
lcamir; echanisms for nominal and orderéd attributes, and did not seem ﬂcgcssary for
- testin gg:fundamema] bqhairior of ILP.

The typing of an attribute determines how ILP will treat the attribute when it generalizes
and specializes descriptions. Determining tflc‘ type of attributes is one way. the author
contributes background knowledgc that biases the learning process. Determining attribute
types is not a well defined task, and attributes may ofgcn seem to be on the borderline

between types.

21 An alternative to random selection is considered in the next chapter.

e) T a
L4 .

9y

4.2.3 The deseription languape

There mav be several ('l;l\\lfll ation rules relating to cach prerequisite (re . with the
Came nght hand side) The disjunction ot the lett hand sides of these rules comprise the
desenipuon for that prerequistte 1t s this DNE deseniption that anthors can mitalize,
observeand modity A partial syntay of the descripuon fanguage s given concisely by the

]

following Backus Naur statements

<descnipnion> = | <clause > | <cf> T} <clause > | <cf> v <desenpuon »

<clause> = <term> I <term> & <clause » v

<term> . = <attrtbute name > = <attribute value range> | <aunbute name > <aunbute value -
<attnbute value mange> = <attnbute value> <attnbute value >

<cf> = (<poscov>/<sum of poscov negcovs) O ¢

An example of a description 1s:

[response on atem 3 = sugar(6/7) v lage = 4 S & latency on wtem 3 =3 8] (27417
Certnty factors are maintained by the system and are not entered or modified by the
author Aunbute value ranges are permitted only on ordered atributes. Terms based on
nominial attributes are called nominal terms, and those based on ordered attr‘ibulcs are called
ordered terms
4.2.4 The inductive learning procc;dure

From the author's viewpoint ILP maintains a current best description, called CURDESC,
for each prerequisite. CURDESC is obtained by a beam search which is invoked immediately
after a new example is acquired. The beam search starts with the previous CURDESC apd
applies generalization or specialization operations to discover new descriptions, one of
which may gc installed as the new CURDESC if it is better than the previous CURDESC. The
author can fnitialize CURDESC and modify it at any time. If the author doés not supply an

initial description, CURDESC is initialized by the system to be a description with zero

- clauses.

99

The author has control over the search through four parameters which can be changed
1 v . \
atanyv unx i
< nmuamum bearm width (max wadth)

< maxiumum depth of search (max depth)

« maxtimnum number of clauses in description (man clause)

« a waight used in the preference entenion which gives the cost of including one
ncgative example relative o the cost of excluding one positive example (w)

In gencral, the settngs for max width and max depth will depend on the amount of
available cpu nme and fast memory. Theoretically, max clause is the author's estimate of
the maximum number of different clusters of students lacking the same prcrcqilisnc But,
as this 1s a difficult quanuty to estnmate, 1t may in pracuce simply reflect the author's taste
for detail. A higher value of max clause will tend to produce a more dectailed
descripuon The parameter w allows the author to bias the trade-off between completeness
and consistency tn situations where both criterion cannot be satisfied.

In order to guide leaming and caloulate certainty factors, ILP maintains four lists of
examples for each description:

PIN containing pin_num positive éxamples included by the description

PEX containing pex_num positive examples excluded by the description

NIN containing nin_num negative examples included®y the description

[¢]

NEX containing nex_num negative examples excluded by the description

Each member of PEX violates the completeness of the description, and each member of

NIN violates its consistency. Descriptions are ranked during the search according to how

well they minimuze the cost:
pex_num + (® x nin_num)
Among descriptiona with the same cost, those with fewer clauses are preferred in the

interests of parsimony (p. 78). This simple measure for ranking descriptions is referred to

1O0)

as the preference criterion. Exceptin spedial cases where the authdt may place greater
importance on consistency than completeness, w should probably be setto one

The structure of the descniption space scarched by ILP 1s determined by two

. . <y
generalization operations and two speciahization operations which ILP can invoke. Each
operation takes as input a dc.xcn’}mn and an example Generalization operatnons are passed
« -

a posiive example excluded by the given descniption, and specialization operations are
e

passed d negauve example included by the given description

The generalization operations are:

GENERALIZE (T AUSES (D : de_\(‘rﬂ)tinn_ e’ example)

For each clause in D
return one new description by making a copy of D and generalizing all terms in the
clause which do not match e*. Generalization is accomplished by deleting nominal
terms and widening the value ranges of ordered terms just enough to include e*.

Ordered terms are dropped whenever their value ranges are extended to cover the

entire value set;

CREATE_CLAUSE (D : description, e* : example)

Returm one new description D’ constructed as follows:

1) make a copy of D called D, ?

2) If the number of clauses in D' chals ,ma;_clause then delete the clause in D' with
minimal utility POSCOV - (W x NEGCQOV);

3) Convert ¢* to a conjunctive clause-and join it to D' by disjunction;

To 1llustrate how these operations work, suppose the current description D (without

certainty factors) is: -

[A=1& B=2] v (A=2 & C=2.6]

where A and P are nominal attributes with the value set {1,2,3) and C is an ordered

atribute. Suppose there is a positive example e*not covered by D: .

¢

" (A=1, B=1, C=8)

Applying the GENERALIZE_CLAUSES operatio;x will result in two new descriptions:

101

[A-1] vIA=2 & C=2.6]

[A=1& B=2] v [C=2 §]
The GENERALIZE (‘LAUSF.S«;pcralioﬁ combines the functions of Michalski's dropping
conditions rule and closing interval rule. If support for structured attributes were provided.
this operation would also encompass the climbing generalization tree rule.

Applying the CREATE_CLAUSE operation to D will result in one new descnption
(assuming max_clause is greater than two):
[A=1 & B=2] v [A=2 & C=2..6] v [A=]1 & B=1 & C=§]

The CREATE CLAUSE operation serves the same function as Michalski's adding altemnative
rule. except that in the case where CREATE_CLAUSE must delete an old clause, it is
possible, and ;n fact likely, that the new description will not be more general than D.

The specialization operatons are:

SPECIALIZE _CLAUSES (D : dcscn'ption; e :example)

For every clause in D covering e
for every attribute a

If « is nominal and appears in term t of clause then .
for every value v of a not matching ¢ ¢reate one new dgscription by making a
copy of D and setting v as the value in term t;

If a is nominal and does not appear in clause then]
for every value v of a not matching ¢- create one new description by making a

opy of D and inserting in it a new term with attribyte o and value v,
If a 1s ordered and-appears in term t of clause then create as many ;s two new
« ‘descriptions by making copies of D and raisi{\g the lower bound aqd/or
‘ lowgr'm g the upper bound of the value range of t-just enough to exclude ¢ ;

If a is ordered and does not appear in claus¢ then create as many as two new

descriptions by making copies of D and inserting in cac}.l a new term with

attribute a and a value range justexcludinge ;. -

DELETE CLAUSE (D) - description: e : example)

For every clause in D covering ¢ return one new description which excludes E by deleting

the clause: N

Again, suppose the current descniption D is:
> [A=] & B=2] v [A=2 & C=2.6]
And suppose there is a negativ¥ example ¢? covered by D:

. (A=2, B=2, C=4)

Applying the SPECIALIZE_CLAUSES operation will result in séveral new dascriptions 1n

which the second clause is specfilized to exclude e :
-

[AZ] & B=2] v [A=2 & C=5.6]
|A=1 & B=2] v [A=2 & C=2.3]
[A=1 & B=2] v [A=1 & C=2.6)
[A=1 & B=2].v [A=3 & C=2.6]
[A=1 & B=2] v [A=2 & B=1 & C=2.6]
[A=] & B=2] v [A=2 & B=3 & C=2.6]

Note that, in cases where the negative example is covered by more than one clause, the *

»

new description as a whole will still cover e . In such cases, further specialization
operations must be applied to exclude e- . Evcr{with this restricted kind of specialization,

4 . o -
SPECIALIZE_CLAUSES tends to generate considerably more new descriptions than
N

GENERALIZE_CLAUSES. In order to avoid the rapid proliferation of descriptions i)y this
14 . .

operation, the author is recommended to minimize the number of attributes and the size of
the value sets of nominal attributes. '
Applying the DELETE_CLAUSE operation to D will result in one new description:
~ _ {
[A=]1 & B=2]

All descriptions created in the search have exactly the same set of examples as

CURDESC, although they may be partitioned between the four example lists diffcrcr;tly. For~

cach description, examples in the PEX and NIN lisgs have a flag indicating whether they have
“

\

103

been tried, that is, have served as the basis for gcncraliution.or specialization operations.
When an ex;xmple 1s used for generalization or specialization it is set to TRIED. When a new
descripuor is created all its examples are initialized to I&_TRIED_ An éxanﬁplc will only beﬁ
used for a generalizatidn or specialization operation if it is NOT_TRIED. Thé
TRIED/NOT_TRIED flag enables ILP to avoid searching & region of the description space
which has already been scarchcd,~unlcss new conditibns warrzint it.

For the sake of simplici&y, it is’assumed that ILP and the classiﬁcatic;n rules it leamns
reside in a central computer connectcx-i to student workstations or terminals. From time to
time the workstations request recommendations from the classification rules. The
go;kftations do the recommended tests and transﬁit the results back to ILP in the form of
classified examples. One student may generate several examples, one for every prerequisite
on which he is tested. Each example is pushed on to the front of one of the example lists
(PIN, PEX, NIN, NEX) maintained by the CURDESC of the prerequisite on which the example
is classified (recall thfn there is one CURDESC for every prerequisite). When a Anew éxamplc L
is pushed on to an example |ist, it is set to NOT_TRIED. .

- 1LP is activated after a set of examples generated by a sm@cnt is received and assigned
to the example lists.\If subsequent examples are received while the l‘ca'ming process
triggered by the first set is still active , they wait until ILP is finished beforebeing assi.gncd
to example lists and acuvanng ILP again,

ILP examines every CURDESC, including those wfuch dxd not receive new cxamplcs to
judge whether cpu time should be invested in trying to improve them. The learning process
is applied to all CURDESCs with NOT_TRIED examplcs in their PEX or NIN lists. In trying to
imbrovc each of these éURDESCs, ILP makeg use of two lists of déscﬁp;?ons: DESCLIST
w};ich is ihitializqd with the CURDESC as its first and only member; and TEMPDESCLIST,
which serves as temporary storage for new descriptions. ILP makes 8 number of ~pasescs
through DESCLIST, in which the following procedure IMPROVE_DESCRIPTION is applied to

each of its members: ' . o

104

% : ' -

IMPROVE_DESCRIPTION (D : dcscription)

If D has at least one NOT_TRIED example in its PEX listgand none in its NIN list then do -
GENERALIZE(D) ' S ‘

Else if D has at least one NOT_TRIED example in its NIN list but none in its PEX list then do
SPECIALIZE{D) ‘

Else if D has NOT_TRIED examples in both its PEX list and its NIN list then
If pex_num 2 x nin_num do GENERAKIZE(D) else do SPECIALIZE(D);

GENERALIZE (D : description)
~ILet e* be the first NOT_TRIED example in the PEX list of D; i

-|Set e* to TRIED;)
Do CREATE_CLAUSE(D, e*) ahd put the resulting description in TEM&’DESCLIST;
Do GENERALIZE_CLAUSES(D, e*) and put the resulting descriptions in TEMPDESCLIST;

SPECIALIZE (D : dcécription)
Lete be the ﬁrst‘NOT_TRIED example in the NIN list of D;

Sete to TRIED; N
Do DELETE_CLAUSE(D,e") and put the resulting description in ’IgMPDESCLIS‘T; .

Do SPECIALTZE__CLAUSES(D,C') and put the resulting descriptions in TEMPDESCLIST;

Each pass through DESCLIST is one level of the beam search. After each pass,

TEMPDESCLIST is merged into DESFLIST. Thcn, after 'being sorted according to the
preference criterion, the new DESCLIST is truncated to contain no more than max_width \
members (see Appendix A). The beam search halts when max_depth passes have. been
completed, or prior to' that if there are no NOT_TRIED examples in the PEX or NIf\J lists of
z;ny of the descriptions in DESCLIST. The first description in DESCLIST becomes the new

CURDESC.

<

To summarize, ILP starts a beam search with a single description which is either the
result of a previous learning episode, or has been entered directly by the author. Tﬁc_scarch
is determined by pruning according to the preference criterion, and also by a homeostatic

heuristic which maintains a balance (calibrated by the @ parameter) betwécn positive

r——

examples excluded and negative examples included by the description. For instarice, when
. \" LY

»

[

105

the positive examples excluded outweigh the negative examples included by a description,
lhi‘.\ heuristic forees the search into more general regions of the description space.

ILPis dcsigneq to learn disjuncti«vc descriptions, tolcratc‘noisy examples, and dc.al with
multi-valuéd and ordered attributes. The most prominent feature distinguishing ILP from

previous learning programs is its degree of emphasis on incremental refinement of a user-

supplied description. The need to support incremental refinement has led to the

_abandbnmcm of the positive example deletion strategy used extensively by previous

A »

lcaming progra?ns, and to L\he adoption of a strategy which biases learning with hypotheses

entered by the author. It is possible to imagine cases where the author's prior knowledge is
a .
/

- so poor that the advantages of this approach are nullified. 'Ultﬂ#atcly, the best learning

procédure for the instructional application described here will depend on the prevalence of

such cases.

>

4.3 ° References

Arucles referenced as Machine learning I or]Wachiné Iearnigﬂ appeared 1n one of the
following: ‘ -

Michalski, R., Carbonell, J., & Mitchell, T. (Eds.). (1983). Machine learning: An
artificial intelligence ap‘;‘zroach (Vol. 1). Los Altos CA: Kaufmann.

Michakski, R., Carbonell, J., & Mitchell, T. (Eds.). (1986). Machine learning: An,
artificial intelligence approach (Vol. 2). Los Altos CA: Kaufmann,

E]

Bruner, J., Goodnow, J., & Austin, G. (1956). A sr;tdy of thinking. New York:‘?Wilcy. :

Bundy, A., Silver, B., & Plummer, D. (1985). An analyt\ical compérison of some rule-
lcan\ling programs. Artificial Intelligence. 27, 137-181."

Burton, R. (1982). Diagnosing bugs in asi ple procedural skill. In D. Sleeman, J. S.
Brown (Eds.), Intelligent tutoring systems. London: Academic Press. ’

Carbonell, J., Michalski, R., & Mitchell, T. (1983). An overview of machine learning.
Machine learning I. o - - .

Dietterich, T. £1983). Learning and inductive inference. In R. Cohen & E. Feigenbaum
(Eds.), The Handboo!x of Artificial Intelligence (Vol. 3). Los Altos CA : Kaufmann,

Dietterich, T., & Michalski, R. (1983). A comparétivc review of selected methods for
lzaiing from examples. Machine learning 1.

e 106

Feingold, S. (1968ﬁ§lanil -a language for CAL Daranation. 14 (9), 41-48.

Haycs Roth, F., & McDemmott, J. (1976). Learning structured patterns from gxamples.
Pmucdmgs of the thirdYnternational joint conference on pattern recognition. p/419-
"423.

Hunt, I~ , Mahn, J., & 9(0116 P. (1966). Experiments in mduamn New York: Academic
) Pres% i

Kalish, D., Momaguc, R, & Mar, G. (1980). L'ogi(‘: Techniques of formal reasoning.
New York: Harcourt Brace Jovanovich. L

Kimball, R. (1982). A self-improving tutor for symbolic integration. In D. Sleeman & J.
S. Brown (Eds.), Intelligent tuwtoring systems. London: Academic Press.

Langley, P. (1987). A general theory of discrimination learning. In D. Klahr, P. Langley,
& R. Neches (Eds.), Production system models of learning and development -
Cambnidge MA: MIT Press.

Langley, P., Wogulis, J., & Ohlsson, S. (1987). Rules and principles in cognitive
dndgnosxs In N. Fredencksen (Ed.). Diagnostic monitoring of skill and knowledge
acquisition. Hillsdale NJ: Erlbaum. o

<

Lee, W, & Ray, S. (1986a). Probabilistic Yule generator: A new methodology‘of variable-
valued logic synthesis. Report No. UIUCDCS-R-86-1264. Department of Computer
Science, University of Illinois at Urbana-Champaign.

Lee, W., & Ray, S. (1986b). Rule refinement using the probabilistic rule generator.
- Proceedings of AAAI-86, p. 442-447.

Lenat, D. (1983). The role o}\hcun'stics in learning by discovery: Three case studies.
-Machine learning 1.

McCulloch, W., & Pitts, W. (1943). A logical calculus of ideas imminent in nervous
activity. Bulletin of Mathemarical Biophysics, 5, 115-133.

'Michalski, R. (1973). Discovering c]asmﬁcanon rules using variable-valued logic system
VL. Proceedings of the Third International Joint Conference on Artificial Intelligence.
p. 162-172.

Michalski, R., & Chxlausky, R. (1980). Learning by bemg told and lcarmng from
cxamplcs An experimental comparison of the two methods of knowledge acquisition in
the context of developing an expert system for soybean disease diagnosis. Internanonal
Journal of Policy Analysis and lnformanon Systems, 4(2), 125-161.

Michalski, R.-(1983). A theory and methodo]ogy of inductive leaming. Artificial
lntelltgence 20, 111-161.

Michalski, R. (1986). Undcrstandmg the nature of learning: Issues and research dxrectwns
Machine Ieammg 11 -

-

/Mmsky M., &Papcrt S. (1969). Perceptrons Cambridge MA: MIT Press.

>

I\gitchell, T. (1977). Version spaces: A candidate elimination approach to rule learning.
Proceedings of the Fifth International Joint Conference on Artificial Intelligence. p.
305-310.

Mitchell, T. (1982). Generalization as search. Ariificial Intelligence. 18, 203-226.

Miwchell, T., Ytgoff, P., & Banerji, R. (1983). Learning by experimentation; Acquiring
and refining problem-solving heuristics. Machine learning I.

Nilsson, N. (1965). Learning machines. New York: McGraw-Hill.

O'Shea, T. (1982). A self-improving quadratic tutor. In D. Sleeman & J. S. Brown
(Eds.), Intelligent tutoring systems. London: Academic Prcsg./

Popper, K. (1959) The légic of scientific discovery. New York: Basic Books.

Quinlan, J. R. (1983). Leaming efficient classification procedures and their application to
chess end games. Machine learning I.
]

Quinlan, J. R. (1986). The effect of noise on-concept learning. Machine learning I1.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storige and
organization in the brain. Psychological Review, 65, 386-407.

Rumelhart, D., & McClelland, J. (1986). Parallel distr;buted processing: Explorations in
the microstructure of cognirion. Cambridge, MA: MIT Press.

Simon, H., & Lea, G. (1974). Problem solving and rule induction: a unified view. In L.
Gregg (Kd.), Knowledge and cognition. Hillsdale NJ : Lawrence Erlbaum.

Spiegelhalter, D. (1986). A statistical view of uncertainty in expert systems. In W. Gale
(Ed.) Artificial intelligence and statistics. Reading, MA: Addison-Wesley.

Kedar-Cabelli, S., & Mahadevan, S. (1986). Bibliography of recent machine learning
research. Machine learning 1. .

Utgoff, P. (1986). Shift of bias for inductive concept learning. Machine learning I1. 107-
148.

Utgoff;. P., & Nudel, B. (1983). Comprehensive-bibliography of machine learning.
Machine learning 1.

107

VanLehn, K. (1987).'Lca1"ning one subprocedure per lesson. Arrificial Intelligence, 31(1),
1-40. -

Winston, P. (1975). Learning structural dcs'criptioﬁs from examrlts. In P. V\ﬁnston (Ed.)
The psychology of computer vision. New York: McGraw-Hill. g

- Chapter 5 !

Performance of the Inductive Learning Procedure
A)

The purpose of this chapter is to present information on the performance of ILP ander
various Controlled conditions. This information provides a better understanding of the
workings of ILP, and suggests some guiding principles for its use in real instructional
environments. The chapter also proposes several improvements to ILP aimed at correcting
deficiencies uncovered by this evaluation. A

ILP was implemented in Pascal on a VAX 11/780 minic\omputcr running the VMS
operating system, with maximum virtual memuory stze set to about 11 megabytes. The VAX
11/780 is usually considered to have a speed of about 1 MIPS. Computers of this class are
now comrhon in even the smaﬂ\er\post-sccondary educational institutions (Hunka, 1987).'

Current trends indicate that, within a few years, computers of somewhat greater power will

be widely available.

input
file ' L4

N ——

module /motmre\

output
file

Figure 5.1 Modules and ﬁlcs‘developcd for performance evaluation.

n
Figure 5.1 shows the program modules and data files that were-active at run\t'imc. The
main module initialized the programjmg input data, managed file I/O, and simulated the

recommendation and testing phases described in the previous chapter. The learn module

108

)

dealt with the learning phase, which is the main focus of this investigation. The inpu(t’ file

contained the user-supplied parameters: ‘

* max_width (maximum beam width)

. maxﬂdc-pth (maximumdepth of seargh)

. n;ax_clausc (maximum number of clauses irdéscription)

* o (the cost of including one negative example relative to tﬁc cost of excluding one
positive example)

as well as definitions of the attributes, initial descriptions, and a set_of categorized

examples. The output file saved a trace of the perforiance of the program, primarily

serving as a record of incorrect recommendations.

%

5.1 A close-up vigw of ILP at work

) '

109

A visual interpretation of the behavior of ILP can be presented for problems involving:

two ordered attributes. In this interpretation, a concept description is depicted as a set of
<4
rectangles occupying a two dimensional example spaéc. Each rectangle corresponds tc a

-t
clause in the descrip:ion language representation.

This close-up view is useful for confirming that ILP behaves ir a reasonable manner on

some very simple learning tasks. For instance, where positive and negative examples are

linearly separable, we expect to see ILP form a description approximately covering a region
bounded by a linear discriminant func;ion. This problem was posed to ILP by assumipg
two concepts P1 and P2, and two ordered attributes X and Y both with the value ;et
(0.1,...,99). 100 examples of the form (x,y) were uniformly scattered throughout the
~example space. Examplés satisfying x > y were assigned to P1 and all others were assign'cd
to P2. ° . N
Although in this case the concepts P1-and-P2-are (somewhat (ﬁmaturally) mumally

N
exclusive, recall that ILP does not assume that they will be. This means that unless an

prerequisite is a negative example for the other. -

J

110

indorrect recommendation 1s made, ILP will not recognize that a positive example for one

The categorized examples were sequentially fed to ILP in random order. The

parameters were set as follows: max_width x 12, max_gcpth =6, max_clause = 10, w = 1.

L -

90 B i .

804

70

60

attribute 50’
y) SO OO -3
40

307

4

20
104 e

0 M T M T b L] v T b4 T v T

0 10 20 30 40 S0 . 60
attribute x_

Figure 5.2 Descriptions learned after 9 examples.

1ol JFS—
90.
804
70 ' 3

60. -
attribute - * .
y S0; o
40/

30

) gl

20
104
0 Bl ;’

—

0 10 20 30 40 50 60
attribute x

Eigure 5.3 Descriptions learned after 10 examples.

90 100

Figures 5.2 through 5.5 depict the descriptions developed by ILP after 5, 10, 56, and

100 examples had been encountered. dauscs in the P1 description,are representcdv-as :

dotted rectangles and clauses in the P2 description appear as solid rectangles. Positive

111

examples of P1 are shown as diamonds. The filled diamonds indicate positfvc examples of

Pl »‘yQ‘h were also discovered to be negative examples of P2. Positive examples of P2 are
]

shown as crosses (+ and x). The x are positive examples of P2 which were also
discovered to be negative examples of P1. ‘

F\i_lgurc 5.2 shows the two ;*urrem dcscrip‘tions (CURDESCs) held by ILP after
processing the éth example. P1 has one c'~use and P2 has two clauses. Notice that the
smaller lausc:»of P2 covers only the single point (77,63).

The i()lh cxﬁn’lplc (14,25) falls within the large clause of P2 but, Aat:tcr an incorrect
recommendation, turns out to beloné to P1. Ad shown in Figure 5.3, this example causes a
generalization of the single P1 clause. The large P2 clause is specialized to exclude the new
example, but in so doing must exclude an old example at (8,2). This situation is resolved at

the next level of the search by creating a new clause to cover (8,2).
~——
100 ¢ s :
90 ° °
- 70] ° § |
auribute 801° ° ° *0 =8 , & -+ //\.
’ y S04 o o
v 400 © © ' * X
30, . ‘ X+
20) : ,
10] . . . s
0 E l - v ——— Yy e .
o} . 10 20 30 40 S0 €0 70 ,80 90 100
: attribute x ;)
Figure 5.4 Descriptions learned after 56 examples.

Figure 5.4 shows the CURDESCs after the 56th example has bccn\proccsscd. By this

-

time, the P2 clause in the lower left that was created after the 10th &xamplc has been

" generalized to accommodate recent examples. The 56th example at (49,%1) forced ILP to

Y. -4

!s-'crr.m' anew Clause for PLbecause neither of the two existing clauses could be g(‘\h(‘r;m/(‘d
y
o poyer it without also covenng negatve examples
bl ™
Figure S 5 shows what ILP Tearned from the entire example set Both final descripuons
satinty the cniteria of completeness and consistency, as did all CURDESCs developed
throughout the run The desenpuon for P2 achieves this with the fewest possible clauses
The desenpuon tound for PLcontains four clauses.
[x-0.41 & v- 33 99] v
(x-19 BT & v=76 99] v
d
Ix-2 14 & y=15 25] v
[x=49 66 & y=63 6X]
but there exists a solution requinng only three clauses
[x=0.25 & y=15 99} v
[x=25 .76 & v=46 99| v

[x=76 K7 & v=87 99] -

4" 100 : '
o o . . . e
: : S
° ° 0! g < Pt
80] ¢ PR : . . ° .
o o . A
b . ¢ »
60Jo o ° ° e s
auribute _) o o 0
. 50, ° ° X
y o °o° X x
4040 o° ° +
g | X x I +) +
P — . x x + +
204% %‘ x * + + +
Qy : + + +
104"
+ ¢ H + +
0 T v “v T M Yi"t T T —t r -
0 10 20 30 40 50 60 70 80 90 100
’ atribute x

Figure 5.5 Descriptions learned after 100 examples.

113

The empty diamonds occupving the intersectuon of the two large clauses were present
betore a generalizaunon of P2 covered them Thus, they were never the subject of incorrect

recommendation, and are not known to P2 as negatnve examples

x X

Figure S6 A case where a single example produces a radical change in the descnption.

Fipecially when the number of known examples 18 small, a single example mav
produce a radical change in the descnption. Figure 5.6 shows such an event observed with
a descripuon having two clauses. Positive and negative examples are indicated by + and -
This illustrates the point that although ILP is biased by the exisung descnfftion, it will jump
to the best description discovered in the search, even if it 1s a significant departure from the
existing description. In this case, the solution discovered by ILP was found after a search
four levels deep. In the first level, the top clause was specialized to exclude the new
negative example, rcsult}ng in the exclusion of the positive example in the top left. In the -
secord level, the bottom clause was generalized to cover the recently excluded positivct0
example, but in so doing was forced to cover the entire description space. In the third level,
this large clause was specialized, thus forming the final clause on the left ;idc. In the fourth
level, the small clause covering the positive example in the top right was generalized to

form the final clause on the right side. *

~
5.2 Four simulated cases for testing ILP

Four sets of examples (i.c., categorized student models) were created to test the

performance of ILP. Each case is fully doc®mented in Appendix B. The cases vary in

\

realism from Case 1which s hule more reahistie than the hineasy separable examples seen
in the st section, to Case 4, which 18 perhaps the most realistic and ditticult of the four
learning tasks Although these aruficial cases are necessary for preliminary and formanve
evaluation of 11.P, they are not regarded as a substitute for field tests with real students and
Courseware. The cases represent attempts to simulate ins(mc.tmnul situations for the
purpose of (1) catching any unanucipated behavior of ILP, (2) providing an empincal
basts for improvements to 1P, (3) determining practical parameter settings, and (4)
sugpesting ways that the author can most successfully interact wath 1LP.

Unless mhc.rwisé st;;lgd‘ the tests reported here are tniualized with a CURDESC
contaimng zero clauses. Thc pnmary measure of performance is the number of incorrect
recommendations made over the entire set of examples. Incorrect recommend;mons’mc]udc
two kinds of events: (1) a prerequisite test 1s recommended which is subsequently passed,
and (2) a student s returned to the objective with which he was having difficulty while still
lacking one or more prerequisites. Errors of the first kind were always more prevalent

- because the second kind of error could only occur when a student lacked more than one
. , -~
prerequisite. p N
Case 1 assumed six binary attributes a,, a,, ..., 8. These were nominal attributes
having the value set {O,‘i }. Thus the entire example space allowed fora}mly 26 = 64 distinct
A
examples. There were three prerequisites P1, P2, and P3, each with a rather arbitrarily
constructed target description. For instance, the target description for P2 was:
“a=1 & ;=0 & a,=0] v [a,=]1 & ;=1 & a,=1]
The other target descriptions were of similarrcomplcxity. Altogether these target
descriptions covered 29 distinct examples, about half the example space.

Fifty examples were obtaincd%y (1) using a rg{\)dom number generator to produce

attribute vectors uniformly scattered over the example space, and (2) selecting only those

vectors which matched one or more’of the target descriptions. In effect, the target

descriptions served as a filter, rejecting all student models which ILP would not encounter.

114

J |

el

The selected attribute vectors were categorized according to which target descnptions they
matched,

Unlike subsequent cases, the first 29 examples of Case 1 were sampled without
replacement. This dcpax.mrt from realism was allowed in ordeg%o more clearly demonstrate
that Il,i;'s performance exceeds that expected from simple rote learning. A rote learning

N .
procedure stores all examples encountered but does no generalization. Therefore, it exhibits
improved performance only on repeated examples.

Figure 5.6 shows the cumulative pumber of incomrect recommendations (errors) after

AN

each example encountered. The solid plot records the performance of ILP over the course
of one run. The dotted plot records the performance of a non-leaming procedure initialized
with the same zero-clause descriptions as ILP. Because the non-learning procedure could
not modify these initial descniptions, i.ts recommendations were based entirely on chance.
" There was no substantial variation between different runs of these procedures. As with all

presentations in this chapter, the runs shown here are typical.

) 60,

554

54 e '

asy{

404 e ‘

35/ e

erors 30)
254 e

204) a

154 e

10] y

54

o]

i
-
.
i
o

Y v Ty v g v T v Y ¥ Y M 1

© 5 10 15 20 25 30 35 40 45 50
s students (examples)
Figure 5.7 Performance of ILP on Case 1.

The vertical dotted line (x=29) indicates the point at which all distinct examples have

been encountered. After this point a rote learning procedure would perform perfectly, as

115

indicated by the horizodtal dotted line. Il(;wcvcr, before this point it would perform no
better than the non-learning procedure.

ILP learned a correct set of descriptions by the 17th example. The output ;ilc also
showed that all CURDESCS produced throughout the learning process wege consistent and
complete with regard to examples already encountered.

Were the descriptions discovered by ILP the same as the target descriptions? The
description learned for P2 was 1dentical to the target description. The other two were
different from, but logically equivalent to, their target descriptions. For instance, the target
dcscﬁplion for P1 was:

\[a1=1 & §2=I &a=l]v(a=1&a,=1&a,=1}
The descnption leamed was:
0[al=l & ay=1 &Kafl] via=1&a,=1 & a,=0 & a,=1]
The equivalence of these two expressions can bc\ shown by propositional logic.

In general though, we cannot expect a correct solution to be equivalent tonlesarget
dcscri;;tion because the negative examples encountered by ILP are restricted. In order to be
a negative example for one target description, an attribute vector must be a positive example
for one of the other target descriptions. For these reasons and others, comparisons between
target descriptions and learned descriptions do not provide a useful or valid measure of the
performance of ILP.

In an attempt to achieve greater realism in Case 2, a specific content was assumed {or
the primary objective. Mult;plc column addition with two addends was chosert as th
objective because student error patterns in leaming this task are understood relatively well.
For precisely this reason however, ILP would not be as useful in this domain as in
domains which have not been studied.

A rudiimcmary hierarchical analysis was performed on the addition task. It was broken

down into three sequential steps which start with the right-most column and are repeated on

cach column until the addition'is complete. Objcctivés teaching these steps became the

116

1.

prerequisiles of the pfimary objective. Tests of maStcry were posited for the primary
objecliv? an‘d each of the prerequisites. Any student not correctly answering all six
questiong of the pnimary objective tcstl was passed to the recommendation phase.

In many domairts, and particularly in arithmetic, raw student responses are the best
attributes on which to base predictions of prerequisite failure. So in this Case,.rcsponses to
the six items in the primary objective test were set u;;‘ahs the attributes to be used by ILP
(see Appendix B). They were specified as ordered attributes, mainly because the size of

their value sets {0, 1,...9999) makes them impractical for use as nominal attributes.

100, ! 4
’ 90/ _ . -

o
ot
o
.
o
.
.....

801

errors 7 04

60! .
50.

v) 3 v T v T Ll a g "

0 10 ' 20 - 30 40 50 ' 60 70 - 80 90, 1(‘)0
‘ students (examples)
Figure 5.8 Performance of ILP on Case 2.

.o \

100 attribute vectors were generated with the simplifying assumption of only one error
pattern, or bug, per student. The bugs were four compmon error patterns (Ashlock, 1976,
p. 20) and an "addition facts" bug in which students forget a few single digit sums. Three
of the common error patterns were intcrpx:ctcd'as failures of prerequisite P1, one error
pattern was interpreted as a failure of P3, and the addition facts bug as a’?ai&rc of Pi.

Although this case is in some respects more realistic than the otber cases, without the

presence of noise it is a fairly easy learning task. This is so because all error patterns except

¢

\

-

the addition facts bug produce only one distinct attnbute vector. A random process
o4

generated 46 examples of the addition facts bug, of which 43 avere distinct. The rem;m;ing

54 examples were divided roughly equally between the four error patterns.

Figure 5.8 shows the performance of ILP on Ca(,iS,Z. As before, the sohid line plots the

N
\

incorrect recommendations (errors) accumulated by>ILI and the dotted line plots incorrect
recorhmendations of a non-leaming procedure. ILP had no difficulty in g;nerating complete
and consistent CURDESCs after cach example encountered. However, because the attnbutes
were specified as ordered, there was an inappropnate gencralizatio‘n over the three error
pattetns of P1. This resulted in (1) incorrect recommendation of new negative exam‘p]es

»

covered by the general clause (2) a rather misleading description for P1. Here is a case

118

where the trivial disjunction (i.ef, the disjunction of the three error patterns) is the most

appropriate description. The problem is that the number of possible respoases to an item is
far too large for ILP to deal with the il;:m as a nominal attribute unless the author can find
some way of grouping the responses into a few categones.

Some of the ordered attributes hypothesized for Cases 3 and 4 would be expected to
have non-uniform distribuﬁon_s. To simulate these kinds of attributes, procedures were
written to generate random numbers falling in either normal or skewca (chi-square)
distributions. Normal attributes were specified by mean and standard deviation. Skewed
attributes were specified l')y mode and degrees of fréedom. For instance, in Case 3, the
attribute TSMP1 (time since mastery of prcrequiSitc 1) was spcciﬁcﬁ as a skewed attribute
’wit}‘ra mode of 5 hours and 2 degrees of freedom. Attributes such as verbal apti‘tudc and

age were hypothesized to have normal distributions.

119

700.
6504 i
I oF
5 ‘ IR
5 O‘ - . P
04
4
X
3 -
j ,-m-.-
® | \ | | '
| | L 4
| | ,,,,,m..
‘ .

T M T M T M T v T v T M T A |

0 50 100 150 - 200 250 300 350 400
students (examples)
Figure 5.9 Performance of ILP on Case 3.
2 -

450,

400

)
»
ot
ot
....

3504

«
250/
errors
200.
1501
100

50

04 . P

4 T u T T v T A T v A)
(o] 50 100 150 200 250 300 350- 400
' students (examples)

Figure 5.10 Performance of ILP on Case 4.

L]

- Theinput files for Cases 3 and 4 both contained 400 examples. Case 3 assumed f f
prerequisites and 12 ordered attributes. Case 4 assumcd three prcrcquxsxtcs and 15
attnbutc‘s © nommal and 9 ordered). The performance of ILP on these cases is shown in

Figures 5.9 and 5.10. .

\/\\
5.3 Pre-generalization)

In the version of ILP described in Chapter 4, a new example not matched by any
~ CURDESC was subject to a random‘ recommendation. But it often happens that such an
example is “"closer” to one CURDESC, and turns out to be a‘ positive example resulting in a
generalization of that CURDESC. An impro;/cmcnt was sought which wrould recommend
that the non-n'natching stﬁudcm be tested on the prerequisite most likely to result in failure.
Euclidean distance (in thg cxam’plc space) between the CURDESC and the example is not a
valid criterion because it fails to account for intervening negative examples.
After some experimentation, a heuristic was developed which recommends the
prerequisite whose CURDESC is most easily‘gen\cralizcd to cover the non-matching
example. When a C.Iause is generalized with the GENE\RALIZE_CLAUSES operation, it covers
one or more positive examples that were not previously covered by any clal;scs in the same
CURDESC. Such examples are transferred from the PEX list to the PIN list. Lc(‘us denote the
number of these examples as POS_OANED. This generalization may also force the clause to
cover negative examples which the clause did not previously cover. Let us denote the
]numbcr of such negative examples as NEG_GAINED. In ‘pre-generalizatian, the
GENERALIZE_CLAUSES operation is tcmp?rarily applied to all CURDESCS to cover the non-
matching example. The prerequisite is recommended whose CURDESC has the clause

scoring highest on the followmg criterion:

- POS GAINED
POS_GAINED + NEG_GAINED

A secondary advantage of pre-generalization is that it frees the behavior of ILP from
+ : .
random fluctuation. Runs with the identical input producian identical result.

A s1mplc experiment was performed to verify that pre-generalization docs produce

”

fewer incorrect rccommcndations. For each case, ILP was run six timcs\y_i_th)lo pre-

generalization (npg) and once with pre-generalization (pg). Parameter settings were the

N

same as for the runs presented in the previous section. Table 5.1 shows the mean and
standard deviation of the number of incorrect recommendations obtained in npg runs, the
number obtained in the pg run, and the difference between npg and pg expressed in
standard dewviation- units. Pre-generalization had little effect on Case 1, but prdduced
substantial improvement vith the other cases. This result was considered good enough to
incorporate pre-generalization in all subsequent tests.

Table 5.1, A comparisor of number of incorrect recommendations with
pre-generalization (pg) and without pre-generalization (npg).

npg sdnpg Pg (NPg - pg)/sdnpg
Case 1 143 10 15 07
Case 2 5 238 3.3 15 227
Case 3 2588 - 13.1 205 4.1
Case 4 2182 182 170 2.7 ~

5.4 The effect of varying search parameters

An early version of ILP did much less searching of the description space. It functioned
in about the same way as the current version does when mai_dcpth = 1. To verify that the
greater search allowed by the current version produces fewer incorrect recommendations,
each case was tested with varying max_width and max_depth parameters. Some of the
results are shown in Table 5.2.

Table 5.2 Effect of increasing the search on number
~of incorrect recommendations.)

! max_depth=1 max_depth=12
B ' max_width=12
Case 1 19 15 4
Case 2 17 - 15 . |
Case 3 : 199 205
Case 4 233 170 .

-) ,
Capability fof tore than one level of search was a substantial benefit ofily in Case 4.

Figuré 3.11 is presented as evidence that this benefit tends to increase continuqusly as the

scarch capability increases. A very-similar pattern was observed in Case 1. In all cases
when mz_xx,vwidth=12;‘ complete and consistent CURDESCs were always foun(i within a
dcpxr; of 6 levels, and therefore ILP never ‘pursucd the search deeper than 6 levels.
Although it is unusual that more extensive search led to slightly worse performance with
Case 3, it should be expected to occur occasionally. The reason is that the performance of
ILP on any case 1s determined by a scqixcncc of many searches, each one tcnilinating with
the selection of a single optimum descriptibn (CURDESC). In pro€essing one of the early

examples, 1t may happen that a wider searcll uncovers a current optimum, thus causing ILP

to abandon a region of the descriptian spact favored by later examples.
s

240, @ max_widith = 1

[

2304
2204

2104
erTors

2 -
00 B max_width=6

1904

1804

170/ &

a 4
- 3

»

°d T A T

1604—0"
}1‘ 6
max_depth N
Figure 5.11 Varying the search parameters with Case 4. \,

N o
F-N
-
-
o
o

5.5 The effect of noise

The introduction of noise into the examples always has the effect of degrading the

-

122

A max_width= 12 A N

performance of a learning program. In programs which assume all examples to be valid,

the effect of noise-can be catastrophic because a single invalid example may contradict and
defeat gdcscn'ption which has been built upon many valid cxamplés.
In order to investigaie how ILP fares in the presence of noise, a program was written

which corrupted input files with a given n percent of noise.
o

This means that the prdgram

altered, with a probabulity of n/100, attribute values comprising examples in the input file.
};or instance, 1f n=10 and there are 10 attribute value-pairs in each example, then we expect
one corrupted attribute-value pair per example. Substituted values were randomly chosen
frorr\lhc value set according to the distribution from which the original.values were
generated. Unlike Quinlan's (1986) procedure, the substituted value was required to be
different from the original value. Noise was not introduced into the example classifications
bgcaus.e this would have required introducing several complications and further

assumptions into the simulation of the recommendation phase.
)

6%

554

504

45

40

]

354
€ITOorS
3 04

ne
leaming

10%

‘254
201

5%

0%

.
v ™ T - v | T Y T v]

0 5 10 15 20 25 30 35 40 45 50

students (examples) ¢
) i -

ng

Figure 5.12 Performance of ILP on Case 1 with 0%, 5%, and 10% noise. "
\

|
i

120,

1004

804
arTors

604

40,

204

no
leaming

—10%
j—“'_"- 5%

0%

Figure 5.13 P rforma

700.
650]
600]
550]
500
450]
ATt 400
350)
300
250,
200]
150]
100,
50]

N
T v

30

40 SO 60
students (examples)

£

100

#Ce of ILP on Case 2 with 0%, 5%, 10% noise.

no
leamning

10%
5%

0
0

L] 2 g

50

150 200
students (examples)

100

., 250

300 350 400

Figure 5.14 Performance of ILP on Case 3 with 0%, 5%, and 10% noise.

450,

no
400/ lcamihg
3504
300
errors 10%
250/ : 5%
2004
1504 0%
1004
504
U e —
-0 50 100 150 200 250 300 350 400

students (examples)
Figure 5.15 Performance of ILP on Case 4 with 0%, 5%, and 10% noise.

Initial tests on noisy versions of Case 4, with max_depth=6, max_width=12, and
max_clause=10, occasionally exceeded memory capacity as the number of examples
became large (>300). Thus in all subsequent sessions, the search parameters were set at
max_depth=4, max_width=8, and max_clause=6. Figures 5.12 through 5.15 show how

the performance of ILP deteriorates with increasinggevels of noise.

~.

5.6 Initialization of descriptions -~
Further tests found that, with noisy examples, deScripﬁon initializatiop provided only
limited benefit. As expected, thn the CURDESCs were initialized to be the same as the

»

target descriptions, there wasl,a substantial reduction in thvc ‘number of incorrect
rccornmcndati:)ns. However, much smaller benefits wcrc‘ obtained when the CURDESCs
were initialized with only‘ partig] reproductions of the target descriptions. For instance, with
Case 4 (5% noise) ILP produced 160 incorrect recommendations when CURDESCS were
initialized with target descriptions, as compared with 250 unider the default condition.

When mmahzcd with single clauses from the target dcscnpuons, 218 incorrect

fccommcndanons were produced. Imtlahzation with smglc terms from the target

~

o

desenpuons, perhaps the most reahsue seenano, produced the same resultas the default
condition

The n‘;.mm for the hnged oftect of titral descnpuons as that they are c.l,\ll)/'dcturmcd at
the beginning of the run by a small number of invahid examples Descnptions entered later
in the run denve stability from vahid examples already encountered, to the extent that they

agree ’\ﬁt?\ those examples —

8.7 Other observations

v

The currentimplementation showed that a 1 MIPS machine with about 1A megabytes ot

memory will allow, at every level of the beam search, about 100 descnptions to be created

and simultancously maintained 1in memory for sorting (assuming 400 examples). Since,

every descniption maintains its own complete set of examples this mit wall decrease as the
program acquires more examples<? In order for the preference cntcr;(»n to properly gudde
the search, it is important that the descrniptions spawned at each level not exceed memory
capacity. In all cases tcstc*fj here the search parameters max. c‘lausc:(), max?wiqfﬁ?& and
max depth=4 were sufficiently constraining. ILP should inform the author w(hcn n%emory
limits are being exceeded so the search parameters can be adjusted.)

The longest run consumed about 7.5 hours of cpu time. This is quite acceptable, since

1t seems unlikely that ILP would encounter more than a few hundred cxa}nples in a day.

5.8 gGuidelines for the use of ILP '

The following guidelines for interacting with ILP were suégested by further
cxpcn'men’ts with the artificial cases:

+ Nominal attributes with large value sets will swamp the search pro:css and should

_b_c avoided.

“
P

‘

22 A practical implementation would allow the user to set the maximum number of examples saved. When
thes maximum is exceeded the oldest example would be deleted.

“\‘

126

« The atmbutes should be restmicted to the few judged by the author 1o be most
"

relevant

+ Desenptions entered by the author betore any examples are avalable are quite
unstable. For this reason the minal stages of the learning process should be
monitored closely, to enable the author to re-enter descriptions when deemed
NECessary.

. Fadure of the learning process 1s generally indicated by poor completeness,
consistency, and parsimony of the learned descriptions. When this situation cannot

be remedied by entening new descriptions, the author 1s advised to develop a new

sset of attnbutes

5.9 Future research

The instability of initial descnpuons in the presence of noisy examples was the major
shortcoming ot IL.P revealed by the experiments. One possible solution is to combine
descripuon ininahzanon with Lee and Ray's (1986b) example set initalization method.
Aruficial examples generated from the description would lend stability until eflough real
examples were acquired, and thus prevent k description from being struck down
premaFurcly by the first few invalid examples. To avoid the perpetuation of an incorrect
initial hypothesis, the artificial examples could be gradually deleted as real examples are
encountered.

Another shortcoming of ILP is that the clauses it produces tend to contain more terms
than necessary. The bias toward comprehensibility should encompass a preference, not
only for the least number of clauses, but also for clauses with the least number of terms.
This problem is particularly acute when examples are non-uniformly distributed over the
value set of an attribute. A second part could be added to the learning phase which would

attemnpt to simplify CURDESC by deleting terms. .

127

128

A further improvement could be the use of indirect examples in the learning process.
Recall that indirect examples are those which can be inferred from the learning hicrarchy,
Suppose that one out of k prerequisites 1s recommended and proves to be npn mastered,
resulting in a single positive example. After being instructed on the prerequisite, the student
15 returned to lhc.prin:c objective which is passed without further difficulty, At this point
k-1 indirect negative examples can B supplied to ILP. As has already been discussed. the
validity of such indirect examples rests heavily on the validity of the leamning hierarchy.
Although the author may want to use indiré(‘t cxamp.lcs‘ he would regard them as
somewhat less credible than direct examples. Thus, the author should be allowed tuzassign
a weight to indirect examples so they could be included 1n the preference cniterion This
welght would presumably reflect his degree of confidence in the leamning hierarchy.

IL.P is entirely based on the assumption that the factdrs underlying certain aspects of
student behavior can be captured by relatively simple logical expressions composed of
available information about the student. Only field tesung with several real instructional

systems and hundreds of students will bring sufficient evidence to bear on this premise.
. .

1

5.10 References

Ashlock, R. (1976). Error parterns in computation. Columbus OH: Mermil. !
. ¢ b
Hunka, S. (1987). A survey of CAl capabilities of AVCs, colleges and technical institutes.
Division of Educational Research Services Research and Information Repon
(RIR-87-7). University of Albena.

Quinlan, J. R. (1986). The effect of noise on concept learmning. In R. Michalski, J.
Carbonell, T. Mitchell (Eds.). Machine learning: An ariificial intelligence approach
(Vol. 2). Los Altos CA: Kaufmann. %

’

Chapter 6
Application and Further Development of Memory Load Sequencing,

ILP, and Related. Procedures

The procedures developed in this thesis were designed to be supported by future
systerns facilitating the design, implementation and maintenance of courseware. In
companson with present authoring systems, such systems will be necessarily large and
complex. They are likely to include:

On-line expertise providing guidance in insc;uctiona] design and use of the system.

* Speciahized editor/compilers for vanous types of authoring activities.

Memory load sequencing and ILP are probably not practical for general use unless both
these forms of support are available! - %

One can tmagine that authors will define learning objectives within an objective editor,
and will be advised on such questions as whether to unpack an objecuve into \s\{b-
objectves and whether to categorize an objective as cognitive, affective or psycho‘moto'r (as
described by Jones and Masscy-Hick;, 1987). Similaﬂy, editors and on-line expertise
would be available for ai«iing the author in defining the global structure of the course.
Several different prerequisite relations would probably be available. For example, there
may be a distinction between integral and non-integral prerequisites as discussed on page

“51. |

The editor which supports the definition of global course structure would have access
to a syntax of admissible structure and would accept only synta’cticall) correct relations.
For example, in accordance with the thcory of learning hierarchies, a verbal knowledge
objective would not be permitted to have leaming hicmrcfny prerequisites. As discussed in
Chapter 3, such an editor would ensure that learning hierarchies entered by an author were

acychﬁc, and would also be cépablc of assigning a level number to efich prerequisite.

L]

129

130

‘The procedures developed in this thesis are only a small portion of those that may be
necessary to fully exploit learning hierarchies. Let us establisk a simple sequence of loosely
defined phases for organizing procedures of this type2*: \\

1) Planning. Given some estimate of the student's currensmastery of the learning
objcc‘tivcs, procedures in this phase try to obtain a total]y\ordcred set of
instructional treatments or modules (i.e., a plan) which will enable the student to
achieve the goals of the course in the shortest possible time. If the srudgm is judged
to have satisfied the goals of the course then exit, otherwise go to phase 2.

2) reatment The student enters the first module of the plan_ If the student passes the

odule then go to phase 1 to get a new plan, otherwise goto phase 3.

3) Drtagnosis. Using knowledge of the student and of global course structure, and

mastery tests associated with each objoc?ive, procedures in this phase try to

discover the student’s mastery of objectives relevant to the plan failure. ILP i8 one

approach to this problem. Go to phase 1 for a new plan.

6.1 Application and development of planning procedures

Even if only conjunctive learning hierarchies are permitted, and there is apne-to-one
Correspondéncc between modules and objectives, the memory load sequencingyagocedure
descrit;dd in Chapter 3 is not sufficient for the planning phasé. Each itcna‘tion Qﬂ the
planning phase should be capable of creating a plan based on new information about the
student (e.g., actual learning times) gathered in the treatment and diagnostic phases, but the
current version of the memory load sequencing procedure cannot form a plan from a
partially completed sequence. Ovcrcominé thxs limitation is the ncxt'logical step in the
dcvc]ogmcnt of memory load sequencing.

What additional modification to the planning phase can be imagined in order to
accouu%tc‘ the AND/OR hierarchies discussed on page 52? Assurre thatv for each student

23 This is really just a version of Hartley's framework (page 11).

131

and each objective/module there 1s an estimate of learning time, perhapsioblaihcd by
multiple regression. Since the goal is to minimize leamning time, an algorithm could be
developed which extracted, from the \AND/OR hierarchy, the conjunctive hierarchy with the
minimum estimated learning time. The extracted hierarchy could then be subjected to
memory load sequencing to obtain-a plan. »

. A many-to-many relation between modules and objectives has been assumed in

previous AlS such as Smallwood's teaching machine (page 15) and BIP (page 33).

Theoretically, the advantages are that:

» The more capable students can be assigned §p a module covering a set of objectives,
some of which are mot presented exl;;licitly and are to be inferred from the objectives
which are presented explicitly.

» The instructional treatment can be more natural because the author is not constrained
to creating modulcs which teach single objectives in isolation.

* Anobjective can be taught in a variety of ways, and a'student can be assigned to a’ /
module which be;t serves his or her learning style. |

in précticc, these advantaécs can only be realized when a repertoire of ATIs (attribute-

treatrhent or achievement-treatment interaccaions) is established by ATI research."Mastery-
based instructional systems seem better served by ATI research which adopts learning time
rather than achievement as the outcome measure.

Rigure 6.1a represents a structure that might be defined by an author within an editor
allowing the many—to-'many corrcspémdcnce between m_odulgs and‘ob%cctivcs. The author
supplies for each objective a list of prerequisite ob_%ectivcs, and for each module a list of:

objectives, In Figure 6.1a, objectives are shown as circles and modules are shown as

dashed boxes. ’ .

,,,,,,,,

s s s s s s rr e,

4
\
.
[
[}
[y

~A
a conjunctive leaming hierarchy partitioned by modules

I .

4

)N/]

5 }

¢. conjunctive module hierarchy
b. AND/OR module hierarchy

Figure 6.1 Transforming a conjunctive learning hierarchy into a conjunctive module
. hierarchy.

1

This kind of structure introduces further complications to#the planning phase. One
approach is illustrated in Figure 6.1. It assumes that learning times are associated with
modules and that one starts with a conju;nctive learning hierarchy. An intermediate
representation, which might be called an AND/OR modulc hxcrarchy (Figure 6. 1b),
provides # more explicit representation of alternate plans. From it one extracts th’eé
conjunctive module hierarchy A\(Flgurc 6.1c) with the shoncst estimated lcarmng time. T:hc

memory load sequencing method described in Chapter 3 cannot be applied directly to the

132

\ 133

conjunctive module hierarchy bgcause the assumption that objectives are not repeated may
be violated. Thus a modified definition of memory load, likely requiring additional

assumptions, may have to be adopted. —

6.2 Application and developmént of diagnosticpgcedmes

AND/OR hierarchies seem to present no additignal difficulty to the use of ILP in the
diagn?stic phase. If the purp'ose of the diagnbst phase is fcgérdcd,as only gathering
information relevant to failure of the current plan, then ILP need consider only the most
recently extracted conjunctive hierarchy (i.e., the one from which the plan was formed).

One can imagine ILP functioning in an environment where there is a manyxman'y
relation between objectives and modules, and where only module tests, not tésts of
individual objectives, are available. However, its use is best restricted to application: where ,
every objcctivé 1s as$ociated with a disﬁnct test or item pool.

Procedures for reasoning abow prerequisite relations could be a useful addition to the

diagnostic phase. For example, Helges and O'Shea (1985) suggested that partial evidence

for the mastery or non-mastery of a prerequisite might be provided by records of

-~

performance on other objectives having the same prerequisite. One would expect the

performance of this kind of procedure to deteriorate where there is more than one objective

covered by a module.
6.3 References , , ’ & -
Heines, J., & O'Shea, T. (1985). The design of a rule-based ‘tutorial. International Journal
of Man-Machine Studies. 23, 1-25. ' N
\

Jones, M., & Massey-Hicks, M. (1987). Expért CML: The next generation. paper %
. presented at the Computer-Assisted Leaming in Tertiary Education (CALITE)- \
Conference, Sydney, Australia, November 30 - December 2, 1987. I '

_Appendix A

This diagram is a simplified illustration of some of the data structures active durning

ILP's beam search. It shows the DESCLIST for one prerequisite after being truncated to a

max_width of two. The DESCLIST contains two descriptions, each with its own example

lists ang clause hist. There are six students shown in the student list, but only four were

tested on the prerequisite. Therefore each description points to four examples. Each

example points to one of the students in the student list. The student data structures contain

the attribute vectors. Notice that the description at the top of the desclist is more complete

than the second description in that it includes one positive example which is excluded by

the second.
prereq student list -
1
DESCLIST
- I student
] pin liS!)cham]echam le
clause list desc 2 P]

clause

student

. . N
pex hsl)q

nin]is()D
) ‘I student
nex list exampl example

clause list

desc

nin list 3=

_.n_z_h;._,]e jst exnmpleH examplq

)

134

Case 1
number of students:
number of attributes:

attnbutes:

number of prerequisites:
target description for P1:
target description for P2:

target description for P3:

Case 2

course:

Pl

Appendix B

50

o

aj, ay, ..., 8 nominal attributes with value gets {0,1)
3

[a1=]1 & a;=1 & a3=1] v [a;=] &’ar=1 & ay=1]
fa;=1 & a3=0 & a4=0] v [ay=1 & as=1 & ag=1]}
[a3=0 & a4=0 & as=1] v [a3=0 & a4=0 & ac=1)

\
Muluple column addition with two addends. The prime objective
incorporates three prerequisites (P1, P2, P3) corresponding to
the three sequential steps of the addition procedure that is taught. -

-P1 teaches the student to identify three single digits in the current

column (two digits from the addends and one digit from the
carry row which is either O or 1). P2 teaches the addition of
three digits in columnar format. P2 has the basic addition facts
as its prerequisite, so any forgetting of these will cause failure of
the P2 post-test. P3 shows how to write down the result of the
three digit addition, including what to do,with the carry digit.

multi-column additon

»>

2 P3

identification of additon of
L 3 digits to be added | - 3 digits

notation of sum

number of students:

number of attributes:

1
, I 4
.

r addjtion facts

100
6

135 | o

attnbutes:

CITOr pattems;

left-to-nghts

digits-in-adjacent-col:

borrows-right-bot:

Wrlte-carry-in-sum:

A

target descriptions:

136

In this case the attributes were simply the responses to six
addition questions posed in the post-test of the goal objective.
All six were treated as ordered attributes with value sets
{0,1,...9999}. ¢

40% percent of students were assumed to exhibit forgetting of
two randomly selected addition facts. The false additiop facts
used were randomly generated with the caveat that the final false
sum must be greater than the largest addend. In addition to the
forgetting of addition facts, four common addition error patterns
described in R. B. Ashlock's Error Patterns in Computation
were used in generating the student models. They were left-to-
right, digits-in-adjacent-¢ol, borrows-right-bot,

'wmc carry in-sum. A description and example of each follows

“Yhe student starts adding the left column and moves right. 15%
fsxudcms failing the goal post-test wcrcLe{ssumcd to exhibit this
panem Example:
74
43

18

When there is no carry digit to be added (the carry digit is zero)
the student takes a digit from the adjacent column on the left
side. 15% of students failing the goal post-test were assumed to
exhibit this pattern. Example:
46
3

13
When there is no current column digit in the bottom addend
(i.e., it is zero) then take the closest non-zero digit from the

bottom addend. 15% of students failing the goal post-test were
assumed to exhibit this pattern. Example:

8

163

The student neglects to separate the carry portion of the column
addition. 15% of students failing the goal post-test were
assumed to exhibit this pattern. Example:

-

Addition fact errors would be detected byghe P2 post-test,
write-carry-in-sum errors would be detectgd by the P1 post-test;
and the remaining three error patterns woyld be detected by the

- P3 post-test.

137

Case 3

course: Undetermined topic. This case is built on the structure of
the following hierarchy (assume that X1 interferes with
P2):

s

number of students:

number of prcrequisitcs:(4

number of attributes: ,' 12 ordered attributes

attributes; -~ value set distribution ' /

verbal aptitude (VAP) * {70...130) normal with mean=100 sd=16

spatial aptitude (SAP) . {70...130} normal with mean=100 sd=16

age in months (AGE) {40...200} . normal with mean=120 sd=12

sex (SEX) {male,female} uniform

time since mastery of P1 (TMP1) {1...100} - skewed with mode=5 df22

time since mastery of P2 (TMP2) {1...100) skewed with mode=5 df=2

time since mastery of P3 (TMP3)- {1...100} . skewed with mode=5 df=2

time since mastery of P4 (TMP4) {1...100} skewed with mode=5 df=2 -

mastered X1 (X1) {yes,no} uniform

mastered X2 after P1 (MX2P1) (yes,no} uniform

mastered X3 MX3) . {yes,no} uniform -

mastered X4 (MX4) {yes,no} uniform

target description for P1:

[TMP1=12..100 & TMP2=12.. 100] v [TMPI—ZO 100 & MX4P1-no] v [VAP—?O 95&.
TMP1=16..100]

- 138

¢

P1 and P2 both have unit X6 as a prerequisite. Thus practice on P2 aids memory of P1. P1
and X2 both have XS5 as a prerequisite. Thus practice on X2 aids memory of P1. Low s
verbal aptitude accelerates the forgetting of X5. .

target description for P2:
[TMP1=12..100 & TMP2=12.. IOO]v[TMPZ 24.. 100] v [TMP1=20..100 & MX1=yes]

P1 and P2 both havc(umt X6 as a prerequisite. Thus practice on P1 aids memory of P2..
Practice of X1 accelerates forgetting of P2.

. \

target description for P3:
[SAP=70..72 & MX3=no] v [TMP3=20..100 & MX3—n€>]\

Mastery of X3 consolidates memary for P3. Studcnts with low spatial éptitude forget P3
immediately unless X3 is entered. Others can retain P3 for 20 hours.

e

target dcscnpuon for P4: N
[VAP=70..95 & AGE=40..96 & TMP4= 10 100} v [TMP4 20. lOO& MX4=no] v

[TMP4=24.. 100] : . \
\
Young students with low, verbal apmude forget P4 rapidly. MaStcry of umt X4 alds ;

memory for P4. R

. ’\\‘ / A - (
Case 4) (k-
course: Advanced English grammar for students who are alreédy fluent

in English. Initial mastery of objectives is defined as a score of
80% or greater on the objective post-test. Each objective covers
one grammatical rule which is presented in one of three modes
(definition,example,conversation). Definition mode is an
expository frame defining the rule. Example mode is a frame
presenting a few isolated examples of the rule. Conversation
ode is an example embedded-in a conversation on some topic

initiated by the program (e.g., spo s), in which the student is
expected to yepeat the usage of the rule in his response. All
modes are followed by practice of the rule in the post-test. The
target population includes some students who have English as a

" first language, some having English as a second language, and
some who have two first languages (bilingual), one of which is
English. Also, each student is rated as reflective, normal, or
impulsive according to performance on a test of
impulsivity/reflectivity. :

number of prerequisites: 3
number of atributes: 15

attributes: ~ range distribation

-

Time since mastery of P1 (TMP1)
Time since mastery of P2 (TMP2)
Time since mastery of.P3 (TMP3)
Learning time of P1 (LTP1)
Learning time of P2 (LTP2)
L earning time of P3 (LTP3)
Degree of mastery of P1 (DMP1)
Degree of mastery of P2 (DMP2)
Degree of mastery of P3 (DMP3)

Presentation Mode of P1 MOP1) -

Presentation Mode of P2 (MOP2)
Presentation Mode of P3 (MOP3)
English Background (ENG)
Impulsive/Reflective (IR)

Sex (SEX)

target description for P1:

——000

1

..100 hours
..100 hours
..100 hours
..100 minutes
..100 minutes

100 minutes

80...100 %
80...100 %
80..100 %

{def,exam,con}

{def,exam,con)

{def,exam,con)

{first,sec,bil }
[TMP1=65..100 & DMP1=80..90] gf‘&

[TMP1=40..100 & LTP1=1..6 & DMP1=80..85] v
[TMP1=30..100 & LTP1=1..4 & DMP1=80..83]

—aale female) L

-
skewed with mode=20 df=4
skewed with mode=20 df=4
skewed with mode=20 df=4
skewed with mode=10 df=2
skewed with mode=10 df=2
skewed with mode=10 df=2
skewed with mode=85 df=3
skewed with mode=8% df=3
skewed with mode=85 df=3
nominal

nominal

nominal

nominal -

norninal

nominal

N
Students forget P1 if the time since mastery is greater than or equal to 65 hours and the
degree of mastery was less than 90%. They will also forget P1 when it has been mastered
more recently if they spent little time studying it and if their degree of mastery is minimal.

target description for P2:

-

.

B

[LTP2=1..3 & MOP2=def & ENG=first} v [LTP2=1..3 & MOP2=con & ENG=sec]

Students forget P2 if the time spent studying it is less than 3 minutes and one of the
following conditions is met. Students having English as their sole fir$t language are -
unfamiliar with the application of formal grammar, so will forget P2 when it is presénted
under the definition mode. Students who learned English as second languagechave trouble

generalizing the single example presented in conversation mode.

target descn'ptionﬁ for P3:

»

[LTP3=1..7 & MOP3=con & IR=ref & SEX=female] v [L.TP3=1..7 & MOP3=def &

IR=imp & SEXsmale] - .

Students forget P3 if the time spent stud&in gitisless

than 7 minutes and one of the

following conditions is met. The conversation mode for this objective involves sports, a
subject which is not memorable for reflective females. When learned by definition mode,
this objective is easily forgotten by impulsive males.

/

