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Abstract Exchange of diseases between domesticated
and wild animals is a rising concern for conservation.
In the ocean, many species display life histories that
separate juveniles from adults. For pink salmon (On-
corhynchus gorbuscha) and parasitic sea lice (Lepeoph-
theirus salmonis), infection of juvenile salmon in early
marine life occurs near salmon sea-cage aquaculture
sites and is associated with declining abundance of wild
salmon. Here, we develop a theoretical model for the
pink salmon/sea lice host–parasite system and use it
to explore the effects of aquaculture hosts, acting as
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reservoirs, on dynamics. Because pink salmon have a
2-year lifespan, even- and odd-year lineages breed in
alternate years in a given river. These lineages can have
consistently different relative abundances, a phenom-
enon termed “line dominance”. These dominance rela-
tionships between host lineages serve as a useful probe
for the dynamical effects of introducing aquaculture
hosts into this host–parasite system. We demonstrate
how parasite spillover (farm-to-wild transfer) and spill-
back (wild-to-farm transfer) with aquaculture hosts can
either increase or decrease the line dominance in an
affected wild population. The direction of the effect
depends on the response of farms to wild-origin infec-
tion. If aquaculture parasites are managed to a constant
abundance, independent of the intensity of infections
from wild to farm, then line dominance increases. On
the other hand, if wild-origin parasites on aquaculture
hosts are proportionally controlled to their abundance
then line dominance decreases.

Keywords Host–parasite population dynamics ·
Discrete-time models · Spillover · Spillback ·
Aquaculture · Salmon · Sea lice

Introduction

In recent decades, exchange of diseases and parasites
between wild and domesticated animals has become a
prominent concern for conservation and disease emer-
gence (Daszak et al. 2000), as well as management of
pest species in food production (Bengis et al. 2002;
Costello 2009). The occurrence of “spillover”, trans-
fer of infection from wildlife to domestic hosts, and
“spillback”, transfer from domestic hosts to wildlife,
has been demonstrated in a wide variety of taxa
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with migratory life histories, including terrestrial mam-
mals (Cervus canadensis, Bison bison, Saiga tatarica;
Cheville et al. 1998; Morgan et al. 2005), birds (Anser-
iformes:Anatidae; Gilbert et al. 2006; Muzaffar et al.
2006), and fishes (Oncorhynchus gorbuscha, O. keta;
Krkošek et al. 2006, 2007b). Host migration plays an
important role in determining the effects of spillover
and spillback on conservation (Morgan et al. 2005;
Krkošek et al. 2007b) and disease spread (Kilpatrick
et al. 2006). Foundational host–parasite and epidemio-
logical models, however, do not include host movement
or migration (Morgan et al. 2004). Thus, efforts to
understand the role of host migration in parasite and
disease systems often employ complex tools, e.g. data-
intensive statistical models (Kilpatrick et al. 2006) or
parameter-heavy, spatially explicit simulation models
(Morgan et al. 2007).

One application where simple models are successful
in understanding the effects of host migration and dis-
ease exchange is in linking the declines of wild salmon
populations in Europe and North America to their
association with sea-cage salmon aquaculture produc-
tion (Ford and Myers 2008). One proposed explana-
tion for the declines, at least in the Pacific, is that
spillover and spillback of parasitic sea lice (Lepeoph-
theirus salmonis) between wild salmonids and farm
salmon leads to infections of juvenile wild salmon in
early marine life (Krkošek et al. 2006, 2007a; Costello
2006, 2009). Without farms, infections do not occur
until later in life because the migratory behaviour of
salmon results in a spatial separation of juveniles in
early marine life from adults and their parasites, a char-
acteristic termed migratory allopatry; host migration
creates a barrier to adult–juvenile transmission during
early marine entry (Krkošek et al. 2007b). Studies of
sea lice and salmon have described how aquaculture
can break down this migratory barrier when farms con-
taining adult fish are placed on migration corridors for
wild juvenile salmonids (recent reviews: Krkošek 2010;
Costello 2009). Rather than develop complex, spatially
explicit models of host–parasite population dynamics,
these studies have focused on the consequences of
infections during early marine life (that are due to the
interaction of host migration and aquaculture). Using
this approach, Krkošek et al. (2007a) demonstrated
declines in pink salmon populations associated with
epizootics in aquaculture regions. Another theoreti-
cal paper reports a probabilistic analysis of infection
pressures generated by various stocking levels of farms
to explain these declines (Frazer 2009). To date the
primary focus, however has been effects on equilibrium

abundance of wild hosts. Salmon farming effectively
augments host diversity, and according to epidemiolog-
ical theory, this should affect behaviour of population
dynamics as well (Dobson 2004).

Here, to understand the implications of parasite
spillover and spillback with farm hosts for popula-
tion dynamics, we introduce a model for the host–
parasite system of wild pink salmon and parasitic sea
lice. In keeping with the approach of earlier work, we
use the classic Ricker (1954) model for pink salmon
population dynamics, which we couple with a simple
transmission model derived under the assumption of
migratory allopatry. This permits a rather simple, spa-
tially implicit, formulation of the model as a system of
discrete-time equations. Because pink salmon have a
2-year lifespan, even- and odd-year lineages breed in
alternate years in a given river. These lineages can have
consistently different relative abundances of adults, a
phenomenon termed “line dominance” in the salmon
literature (Groot and Margolis 1991). Mathematically,
line dominance arises in our model through a period-
doubling bifurcation, which links the degree of dom-
inance with the strength of inter-lineage interactions.
To understand the effects of introduced aquaculture
hosts on wild host population dynamics, we focus on
changes in this dominance relationship, demonstrating
that a line dominance naturally maintained by negative
density-dependent interactions between lineages can
be altered by the introduction of farm hosts.

Models

Sea lice are native copepod ectoparasites common on
both adult wild hosts and in sea-cage salmon aqua-
culture (Costello 2009). These parasites have a direct
life cycle, being transmitted primarily as planktonic
larvae that become infective copepodids after surviving
through a naupliar period lasting between 1 to 9 days
(Johnson and Albright 1991). Once the copepodite
attaches to a host fish, lice develop through a sequence
of attached chalimus stages before becoming motile
pre-adults and adult lice. Adult lice reproduce sexually
on a host fish, with the female extruding eggstrings
from which nauplii hatch, completing the life cycle. The
feeding activity of lice on host surface tissues can cause
morbidity and mortality of host fish, as well as sublethal
effects that may influence survival via predation risk.

Pink salmon, like many fish, display migratory
allopatry in which juvenile fish are spatially sepa-
rated from adult fish due to differences in habitat
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requirements, food supply, natural enemies, and mi-
gration. With a 2-year generation time, a pink salmon
population consists of two distinct lineages, or year
classes, that use river (breeding) and ocean (maturing)
habitat sequentially in time. Without farms (Fig. 1a),
pink salmon of different lineages potentially interact
through two means: (1) through effects on the environ-
ments (river and ocean habitat) that are sequentially
used by the juvenile and adult age classes in alternate
years, and (2) through transmission of a specialist par-
asite from adult hosts to juvenile hosts, i.e. between
lineages.

Interactions of the first type occur through changes
in the biotic or abiotic environment of the river or
ocean habitat due to host density and include a variety
of mechanisms proposed by Ricker (1962) to explain
line dominance in pink salmon, including direct sup-
pressive interactions between lineages, fouling of the
rearing environment by large runs, and competition
for food in ocean habitat (Groot and Margolis 1991).
Interactions of the second type occur due to parasite
transmission, when the offspring of parasites associated
with adults of one lineage infect juveniles of the other
lineage as the two age classes of host temporarily share
space during migration. These “infection windows”
are shown as shaded regions of Fig. 1a between the
river and ocean habitat. We assume that the density-
dependent interactions of both types act to increase
mortality.

Introduction of farmed hosts to migration routes
between river and ocean habitats (Fig. 1b) can lead
to infection of hosts early in life. Juveniles migrating
out from the river are infected earlier in time and
closer to the river in space by “spillover” infection
from farms than when farms are not present (Fig. 1a).
Farm infection status may, in turn, be influenced by
“spillback” infection from parasites of wild adult hosts
to farm salmon. In this case, the farm provides a route
of transmission within a lineage that is not present
without farms (Fig. 1a). This intra-lineage transmission
mediated by the farm is shown in Fig. 1b. When adult
hosts migrate from ocean to river, they bring parasites
that influence farm infections. These adult hosts breed
to produce juveniles that out-migrate and receive in-
fections from farms. For example, in Fig. 1a adults of
dash–dot lineage are migrating to the river at census
time t. These adults breed, producing offspring that out-
migrate and receive infections from farms just before
census time t + 1.

We derive two models here, one for the case with-
out farms (Fig. 1a) and one for the case with farms

(Fig. 1b). We track numbers of wild adult (A) and
juvenile (J) hosts, and average abundance of juvenile-
associated parasites Pw. We are concerned with the
parasite population attached to hosts, which provide
a convenient sampling unit of the parasite population
(Hudson and Dobson 1995). Thus we track parasites in
terms of average abundance per host. In our models we
census the salmon and parasite populations just after
summer sympatry of juveniles and adults. That is, after
the period of transmission from adult-to-juvenile fish in
coastal marine environments.

By “transmission” we mean infection of juveniles
by copepodid-stage offspring of mature parasites on
adult hosts. In a well-mixed coastal environment, the
probability that any one larva both survives to become
infective and attaches to a host is low. Furthermore,
the number of juveniles at census is attenuated from
the large numbers at initial out-migration. We use
an approximation that assumes the number of juve-
nile hosts is low relative to the inverse probability of
any one infective larva becoming a mature parasite,
which enters our model as a transmission coefficient.
The approximation states that the average load of
juvenile-associated parasites Pw following transmission
increases with the number of mature parasites on re-
turning adults at time of transmission. This approxi-
mation reflects the basic physics of lice transmission,
that more mature lice in a region produce more in-
fective copepodid larvae and increase the equilibrium
level of infection (Frazer 2009). The local concentra-
tion of infective larvae produced by mature adults is
termed infection “pressure” (Krkošek et al. 2005). A
full derivation of our transmission approximation is
given in Appendix 1.

Importantly, our models substitute temporal hetero-
geneity in transmission for the spatial dynamics of mi-
gratory hosts. This captures the main effect of space and
migration on host–parasite dynamics without farms:
determining the timing of adult–juvenile transmission.
Thus, our transmission function is derived by assuming
that infection occurs only within “infection windows”
that are brief relative to the yearly census time and
defined by periods of sympatry between wild juveniles
and adults: farm-wild transmission requires sympatry
with farm adults (Fig. 1b); wild–wild transmission re-
quires sympatry with wild adults (Fig. 1a).

Host–parasite system with migratory allopatry

To model the farm-free case (Fig. 1a), we begin with
the Ricker (1954) model, which for a species with a
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Fig. 1 Schematic depiction of interactions between two lineages
of wild host without (a) and with (b) farm hosts. The solid and
dashed–dotted lines correspond to the two lineages, dashed lines
correspond to the parasite population. The y-axis depicts spatial
extent of migration between breeding and maturing ranges, the
x-axis depicts continuous time (τ ). Without farms, parasite trans-
mission is only inter-lineage, from adults to juveniles, and occurs
in space and time within the gray “infection windows” as adults

of one lineage share space with juveniles of the other. Infection of
juveniles by adult-origin parasites during inter-lineage transmis-
sion and subsequent parasite-induced mortality is depicted in the
dotted boxes at each census time (t, t + 1, t + 2, . . . ). With farms
(light gray bar), static in space and acting as reservoir hosts, both
inter- and intra-lineage transmission can occur, with the latter
mediated by farm hosts. Intra-lineage transmission through the
farm is shown as short dashed lines within the light gray bar

2-year life cycle like pink salmon is At+2 = Ater−b At .
The parameter r is intrinsic growth rate of the host and
the term exp(−b A(t)) represents density-dependent
mortality arising from competition for food among ju-
venile salmon or increased mortality of eggs at high
spawner density. To this classic model, we introduce
age structure to track both adult and juvenile fish.
We also add two forms of general negative density-
dependent interactions between lineages. The first,
exp(−c0 J(t)), represents reduced survival of juveniles
due to lagged influences of prior-year populations on
the nursery environment. Such an interaction could
occur if detritus from large runs fouled river habitats
(Groot and Margolis 1991). The second, exp(−c1 A(t)),
represents reduction in survival of juveniles to become

adults due to lagged influence of prior-year adults on
the marine environment. This type of interaction could
be due to direct suppressive effects, e.g. cannibalism,
or to competition for food at sea during summer sym-
patry (Groot and Margolis 1991). We also add a term
for parasite impacts on juveniles, exp(−aw Pw(t)), con-
sistent with the parasite impact term used in empiri-
cal studies (Krkošek et al. 2007a). Finally, we add a
model for average parasite transmission between wild
adults and juveniles. This function is a combination of
transmission, during the period of summer sympatry
(the infection window of length �w), and growth of
the parasite population during the period of allopa-
try (the remainder of the year, of length 1 − �w);
see Appendix 1 for the derivation. This gives our full
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host–parasite model for pink salmon and lice without
farms,

J(t + 1) = s0s2 A(t) · elog( f )−b A(t)
︸ ︷︷ ︸

Reproduction of lineage

· e−c0 J(t)
︸ ︷︷ ︸

Effect of other lineage

(1a)

A(t + 1) = s1 J(t)
︸ ︷︷ ︸

Survival of lineage

· e−c1 A(t) · e−aw Pw(t)
︸ ︷︷ ︸

Effects of other lineage, parasites

(1b)

Pw(t + 1) = βw�wk
︸ ︷︷ ︸

Inter-lineage transmission

· λ(1 − �w)Pw(t)
︸ ︷︷ ︸

Parasites per adult

· A(t + 1)
︸ ︷︷ ︸

Wild adults

, (1c)

where s0, s1 and s2 are survival probabilities, and f
is the expected fecundity of salmon. Note that we as-
sume inter-lineage negative density-dependent effects
are less strong than the intra-lineage negative density
dependence of the traditional Ricker model, i.e. c1 < b .
Table 1 summarizes our notation.

We introduce a scaling of Eq. 1 to obtain the non-
dimensional equations,

N0(t + 1) =N1(t)e
r−N1(t)− c0

s1b N0(t)
, (2a)

N1(t + 1) =N0(t)e
− c1

b N1(t)−P(t)
, (2b)

P(t + 1) =ηP(t)N1(t + 1). (2c)

Dynamical variables are N0 = bs1 J, N1 = b A and P =
aw Pw. Host growth rate is er = s0s1s2 f . The non-

dimensional parameter for parasite-mediated density
dependence is

η = βw�wkλ(1 − �w)

b
. (3)

Host–parasite system with farms

The parasites originating from farms affect the ju-
veniles prior to census, which follows the period of
summer sympatry between wild adults and juveniles in
coastal marine waters (Fig. 1b). Farm-origin infections
occur during a period of sympatry between wild juve-
niles and farms of length � f . The resulting model has
modified transmission (Eq. 4c) and adult-to-juvenile
(Eq. 4a) maps,

J(t + 1) = s0s2 A(t) · elog( f )−b A(t) · e−c0 J(t)

· e−a f β f � f kN P f (t+1)

︸ ︷︷ ︸

Parasites (farm-origin)

, (4a)

A(t + 1) = s1 J(t) · e−c1 A(t) · e−aw Pw(t) (4b)

Pw(t + 1) = βw�wkλ(1 − �w)Pw(t)A(t + 1),

+ β f � f k
︸ ︷︷ ︸

Farm-wild transmission

· N P f (t + 1)
︸ ︷︷ ︸

Total parasites on farm

. (4c)

With farm-origin infections the model differs relative
to Eq. 1. At census, juveniles J are decreased, while
their average parasite load Pw is increased. The effects
of farm-origin and wild-origin parasites on juvenile wild
fish in our models are not equivalent, and accordingly

Table 1 Summary of notation for salmon–sea lice model without farms

Symbol Meaning Units

J(t) Juvenile hosts at time t [host]
A(t) Adult hosts at time t [host]
Pw(t) Mean mature parasites per juvenile at time t [parasite][host]−1

f Fecundity of salmon –
s0 Density-independent survivorship of juveniles prior to transmission –
s1 Density-independent survivorship of juveniles during transmission –
s2 Density-independent survivorship of adults post-transmission –
r Intrinsic growth rate of host at low density r = log f s0s1s2 –
b Density-dependent mortality of host associated with reproduction [host]−1

c0 Negative density-dependent effect of prior-year juveniles on current-year juveniles [host]−1

c1 Negative density-dependent effect of prior-year adults on current-year adults [host]−1

aw Average parasite virulence (wild-origin) [host][parasite]−1

k Infective parasites produced per adult-associated parasite –
βw Survival and attachment rate of infective parasites per host (wild–wild) [time·host]−1

λ Geometric growth rate in average parasite load [parasite][host·time]−1

�w Infection window, wild adults and juveniles sympatric [time]
(1 − �w) Maturation period, wild adults and juveniles allopatric [time]
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Table 2 Summary of notation for sea lice–salmon model with farms

Symbol Meaning Units

N Fish on farm at time t, assumed constant throughout [host]
P f (t) Parasites per fish on farm at time t [parasites][host]−1

N · P f (t) Parasites on farm at time t [parasites]
β f Attachment rate (farm-wild) [time·host]−1

� f Infection window (farm-wild), wild juveniles and farms sympatric [time]
a f Average parasite virulence (farm-origin) [host][parasite]−1

γ1 Farm input under constant management [parasites][host]−1

γ2 Farm-mediated transmission under proportional management –

these parasites are assigned separate virulences, a f and
aw. In parameterizing this model, the virulences may
differ not only in host–parasite biology, but also in the
timing of census relative to parasite-induced juvenile
mortality. While farm-origin parasites affect juveniles
prior to census, wild-origin parasites affect juveniles
after census. Thus, a f may exceed aw due to stronger
effects of parasites on smaller juveniles. On the other
hand, a f includes effects of parasites over a relatively
short infection window � f , and so may be smaller than
host–parasite biology would otherwise indicate.

The number of parasites per juvenile, Pw, is the sum
of contributions from parasites hosted by wild returning
adults (first term) and by farm hosts (second term).
For consistency with our method of tracking parasites
on wild hosts, we describe farm infections as average
lice per farm fish P f times the number of fish on the
farm N. We assume throughout that the number of
fish on the farm, N, is constant. With this assumption,
controlling the number of parasites per fish on the farm
is equivalent to controlling the total number of parasites
per farm, i.e. the infection pressure. Table 2 summarizes
notation for the system with farms (Eq. 4).

The number of parasites on the farm N P f depends
on several factors. Farm infections are influenced by
the wild-associated parasite population. Perfect infec-
tion control, i.e. P f = 0 is not obtainable, and man-
agement of infections on farms can proceed in two
broad ways: control lice abundance to a constant level
or to some function of the number of parasites from
wild hosts. The simplest mathematical expression of the
first case is that the number of parasites per fish on
the farm is a constant each year P f (t + 1) = γ1. For
the second case, the simplest assumption is that farm
status depends linearly on prior-year wild infections,
P f (t + 1) = γ2λ(1 − �w)A(t)Pw(t − 1), where the ex-
pression on the right hand side of the equation is the
number of adult-associated parasites at time t. The
index on variable Pw, the average number of parasites
on juveniles tracked in model (Eq. 1), is lagged 1 year
relative to the index on variable A, the adults, to obtain

the number of parasites on adults at time t. Combining
these expressions, parasites on farm hosts are the sum
of two terms, a contribution from constant management
and a contribution dependent on wild-origin infection:
P f (t + 1) = γ1 + γ2λ(1 − �w)A(t)Pw(t − 1).

We also introduce a scaling of Eq. 4 to obtain non-
dimensional equations

N0(t + 1) = N1(t)e
r−N1(t)− c0

s1b N0(t)−φ− a f

aw
η f N1(t)P(t−1)

, (5a)

N1(t + 1) = N0(t)e
− c1

b N1(t)−P(t)
, (5b)

P(t + 1) = ηP(t)N1(t + 1)

+ η f N1(t)P(t − 1) + φ, (5c)

where scaled dynamical variables are as in Eq. 2.
Note that the ratio of virulences a f

aw
appears in the

non-dimensional model. This scaling introduces a non-
dimensional parameter that represents farm-mediated
transmission,

η f = β f � f kγ2λ(1 − �w)

b
, (6)

which incorporates the effect of prior-year wild in-
fections on farms. The scaling Eq. 5 also introduces
a non-dimensional parameter that represents constant
infection pressure from farms,

φ = awβ f � f kγ1 N. (7)

Methods

We analysed the dynamical behaviour of systems with-
out farms (Eq. 1) and with the effects of farm hosts
(Eq. 4). Our focus was on line dominance relationships
between host lineages, specifically how farm hosts can
change these relationships. Because model (Eq. 1) in-
cludes both adult and juvenile hosts in each year, it
represents both lineages. The adults, A(t), in model
(Eq. 1) represent the odd-year lineage in odd years,
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and the even-year lineage in even years. The oppo-
site holds for the juveniles J(t). Mathematically, line
dominance corresponds to a two-cycle system (Eq. 1).
In Eq. 1, transition from a fixed point to a two-cycle
system occurs through a period-doubling bifurcation.
Thus we use stability and bifurcation analysis, with a
combination of analytical and numerical methods, to
analyse changes to dominance induced by farm hosts.

In Eq. 1, density- and parasite-independent survivor-
ship is partitioned among host-age classes according
to terms s0, s1, and s2. We show in Appendix 2 that
this partitioning does not affect equilibrium dynamics,
which are governed by a combined host growth pa-
rameter r, where r = log( f s0s1s2). The empirical esti-
mate of host reproduction r for pink salmon is r∗ ≈ 1.2
(Myers et al. 1999). Our interest is in the biological
interpretation for pink salmon. Accordingly, we focus
on behaviour for r < 2 because above 2, increases in r
will drive a period-doubling cascade. When numerical
analysis required fixing a value for r, we use the empir-
ical estimate, which is consistent with the range of pink
salmon population growth rates estimated for numer-
ous stocks from Washington through Alaska (Dorner
et al. 2008).

Without farms, the behaviour of the model (Eq. 1)
depends on host population growth rate r, on negative
density-dependent interactions between hosts, i.e c0

and c1, and on parasite-mediated interactions summa-
rized by the non-dimensional parameter η defined in
Eq. 3. For systems with no nursery competition (c0 =
0), the farm-free system (Eq. 1) is amenable to standard
analysis of qualitative behaviour from the theory of
dynamical systems (Hale and Kocak 1991). Because of
our assumption that inter-lineage density dependence
is less strong than intra-lineage density dependence, we
require c1 < b . Full details are in Appendix 2. When
c0 > 0, transcendental equations define the equilibria
so we use numerical tools.

With farms, the dynamics are governed by model
(Eq. 5). The modified parasite dynamics (Eq. 5c)
include parameters η f , representing farm-mediated
transmission under proportional management defined
in Eq. 6, and φ, representing farm input under constant
management defined in Eq. 7. Relative to the case
without farms (Eq. 2c), the parasite dynamics (Eq. 5c)
include two additional terms. The second term, when
η f > 0, modifies the dynamical structure of Eq. 2 be-
cause its effect depends on the values of dynamical
variables. The third term, when φ > 0, is independent
of dynamical variable values and is assumed constant
at each time. We examined two cases: where parasites
are managed to a constant abundance, i.e. η f = 0 but
φ > 0, and where parasites depend on prior-year wild

infections, i.e. φ = 0 but η f > 0. For the first case, an
analytical solution for the equilibria is impossible, and
in the second case it is difficult. Therefore for both, we
used the numerical continuation package cl_matcontM
(Dhooge et al. 2003) to compute stability diagrams for
the location of the period-doubling bifurcation as a
function of the farm parameters, η f or φ.

Numerical computation of a period-doubling bifur-
cation also gives a quantitative prediction of how domi-
nance varies as a function of the parameters with which
we conducted bifurcation analysis. Dividing the equilib-
rium abundance of the non-dominant line by that of the
dominant line yields an inverse measure of dominance,
the “equivalence ratio.” An equivalence ratio of unity
means that both lineages have the same equilibrium
abundance, which occurs at a fixed point of Eq. 1.

Results

For a migratory allopatric host with a 2-year lifespan
and no farms, negative density-dependent inter-lineage
interactions of sufficient strength can result in line
dominance. These interactions include both parasite-
mediated and environment-mediated negative density
dependence, and a sufficiently strong combination of
these is enough to produce line dominance. As shown
below, introduction of farm hosts can either decrease or
increase the line dominance, depending on the manner
in which farm management responds to wild-origin
infections. If farm management controls parasites to a
constant abundance regardless of the intensity of wild
infections, the presence of the farm increases line dom-
inance. On the other hand, if farm control of infection
is only proportional to the intensity of wild infections,
then the farm’s presence decreases line dominance.

Host–parasite dynamics without farms

Without farms, the model (Eq. 1), has several dis-
tinct qualitative behaviours that depend on parame-
ters governing host growth, r and on negative density-
dependent interactions between hosts, i.e c0 and c1.
Parasite-mediated interactions also influence system
behaviour, and though Eq. 1 has many parameters
governing parasites, these are summarized by the non-
dimensional parameter η defined in Eq. 3. Negative
density-dependent inter-lineage interactions, both gen-
eral, ci, and parasite-mediated, η, have similar quali-
tative effects on dynamics. Stability diagrams for two
pairings of parameters are in Fig. 2. The dashed lines
in Fig. 2 separate regions labelled “stable,” where both
age classes of the host has a constant abundance at
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Fig. 2 Behaviour of host–parasite system without farms in para-
meter space. In the “host-only” regions, the parasite population
cannot persist. In the “stable” regions, the system (Eq. 2) has
a stable 1-year periodic equilibrium. Along the dashed lines,
this equilibrium bifurcates through period-doubling to a 2-year
periodic equilibrium. Above the dotted line, which corresponds
to a Neimark–Sacker bifurcation, cycles of period greater than
two occur. The 2-year periodic behaviour in the “dominance”
regions corresponds to line dominance, see Fig. 3. The panels
show different parameter spaces: inter-lineage transmission η and

host growth r (a) with changes due to various values of scaled
inter-lineage negative density dependence (coefficient c1

b ) given
in legend and c0 = 0; and inter-lineage transmission η and scaled
negative density dependence c1

b (b) for r = r∗ = 1.2 and c0 = 0.
Note that within the “host-only” region, for r > 2, increasing r
drives host dynamics on a period-doubling cascade consistent
with the Ricker equation. The period-doubling and Neimark–
Sacker bifurcations were identified and curves computed by
numerical continuation using Cl_matcontM (Dhooge et al. 2003)

every time step, from regions labelled “dominance,”
where age-class abundance alternates between rela-
tively abundant and less-abundant years. Two-year
lifespans mean the hosts exist in lineages that breed
independently, e.g. the odd- and even-year lineages in
pink salmon, thus behaviour in the “dominance” region
corresponds to constant abundance within a given lin-
eage, but with abundance differing between lineages.

In the “stable” regions of parameter space shown
in Fig. 2, dynamics of the system (Eq. 1) are a 1-
year periodic equilibrium. In the “dominance” regions,
dynamics are a 2-year periodic equilibrium. Transition
between these regions in parameter space is through a
period-doubling bifurcation. The bifurcation arises as
negative density-dependent interactions between host
lineages increase in strength. Dominance results from
a sufficiently strong combination of general negative
density-dependent interactions, ci, between host lin-
eages and inter-lineage transmission, η. In our model,
inter-lineage transmission acts as a form of parasite-
mediated negative density dependence. Parasites have
a negative effect on juvenile hosts that increases with
the average parasite abundance per juvenile Pw follow-

ing transmission. Parasites on juveniles arise through
inter-lineage transmission from parasites of adult hosts,
and Pw increase with the absolute abundance of para-
sites on adults. Because we track the average parasites
per host, the absolute parasite population is larger
when the abundance of adult hosts is greater. Thus,
increased abundance of adult hosts in one lineage result
in increased infections in juveniles of the other lineage,
a negative density-dependent interaction between the
lineages.

A sufficient combination of the two types of negative
density dependence (general and parasite mediated)
will induce line dominance. Figure 2a shows stable and
dominance regions in parameters space of intra-lineage
transmission and host growth. For moderate values of
r, sufficiently strong intra-lineage transmission results
in dominance. Increasing general negative density de-
pendence, e.g. c1 in legend, reduces the strength of
transmission needed for dominance. In the “host-only”
region there is no stable equilibrium with coexistence
of the parasite and host at positive abundance. In
the “cycles” region, equilibria with periods that ex-
ceed 2 years occur. Figure 2b shows the regions of
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qualitative dynamics in the parameter space of inter-
lineage transmission (parameter η) and the negative
density-dependent interactions that occur between lin-
eages in the ocean habitat (parameter c1), explicitly
illustrating the trade-off along the dashed line. The re-
gions of host-only dynamics, stable one-cycle dynamics
and dominant lineage dynamics shift with changing c1

but maintain their qualitative relationship. Numerical
examination of behaviour for c0 > 0 confirmed that the
qualitative nature of the effect of c0 is similar to that of
c1. See Appendix 2 for analytical details.

Figure 3a shows a numerically computed bifurcation
diagram for adult hosts with inter-lineage transmission.
The bifurcation branches in Fig. 3a predict the equilib-
rium proportion of dominance as a function of η for
ci = 0. Dividing the equilibrium abundance of the non-
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Fig. 3 Line dominance arises through a period-doubling bifurca-
tion. Bifurcation in system (Eq. 2) for adult hosts in η for r = 1.2,
c0 = 0, c1 = 0 (a) shows single period doubling with increasing
η, (η = 2.5 for this value of r), and period-two dynamics for a
large range of η > 2.5. The period doubling occurs in the ηr
plane for η = 2.5 along the black dashed line of Fig. 2a. Model-
predicted equivalence ratio as a function of η (b), computed
by dividing lower branch by upper branch. The ratio is 1.0 for
η < 2.5; intermediate equivalence ratios occur only for a small
range of η

dominant line by that of the dominant line yields the
“equivalence ratio,” which varies with η. Thus, viewed
with line dominance in mind, the bifurcation branches
give the equilibrium dominance relationship of the
lineages as a function of the bifurcation parameter η.
Figure 3b shows the equivalence ratio computed for
adult hosts. Movement from the “stable” region into
“dominance” in η rapidly increases dominance, shown
by the decreasing equivalence ratio plotted in Fig. 3b.

Furthermore, the relationships between host density,
parasite abundance and density dependence permit
quantitative descriptions of how strong these interac-
tions must be to induce line dominance in the non-
dimensionalized version of Eq. 1. When dominance
does occur in host–parasite systems governed by Eq. 1,
the more abundant lineage experiences proportionally
less mortality due to inter-lineage negative density de-
pendence (whether mediated by parasites or not) than
does the less-abundant lineage. See Appendix 3 for
details.

Host–parasite dynamics with farms

The introduction of farm hosts, acting as disease reser-
voirs, causes changes in system dynamics from the
model given in Eq. 2 to that given by Eq. 5. The
qualitative nature of the change depends on the rela-
tionship of farm infections P f to wild hosts and their
parasites, i.e. dynamical variables J, A and Pw. Farm
infections are influenced by prior-year infections of
wild adults. Infection status the next year, however, is
dependent on management of infections on farms that
arise from parasites of wild salmon. Using Eq. 5, we
examined two cases: where parasites on the farm are
controlled to a constant abundance φ > 0, η f = 0, and
where parasites abundance on the farm is linearly pro-
portional to previous-year wild infections φ = 0, η f >

0. Through numerical bifurcation analysis we examined
the changes induced by farm hosts in terms of shifts
in the boundary between the stable and dominance
regions, i.e. the onset of period-doubling, which without
farms corresponds to the dashed line in Fig. 2a.

Figure 4 summarizes the effect of constant and
proportional management of infection on the loca-
tion of the onset of period-doubling and resulting
line dominance relationships relative to the transmis-
sion parameter η. Figure 4a gives the numerically
computed continuation of the period-doubling curve
in the φη plane with constant farm input φ. For
fixed η, farm input moves the system further into
the period-doubling region, increasing line dominance.
Numerically computed bifurcations and resulting line
dominance profiles shown in Fig. 4b confirms the
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Fig. 4 Constant (row 1) and proportional (row 2) management of
infection of farms have opposite effects on dominance. Stability
planes for system (Eq. 5) giving changes in the onset of period-
doubling (dashed lines) in η-space for constant management (a),
i.e. changing farm input φ and proportional management (c),
i.e. changing farm-mediated transmission η f . Equivalence ratio
as function of η computed for r = r∗ = 1.2, c0 = 0 and c1 = 1
and assuming aw = a f with constant management (b) for various

values given in legend of constant input φ, and proportional
management and d for various values given in legend of farm-
mediated transmission η f . For constant management (a, b), the
locations in parameter space where period-doubling in η causes
line dominance for different φ are labelled (a) and (b). For pro-
portional management (c, d), locations where period-doubling in
η causes line dominance for different η f are labelled (c) and (d)

suggestion of Fig. 4a that constant input from farms
increases dominance at equilibrium.

Under proportional management a farm acts as a
transmission route within a lineage. This has an effect

opposite of constant farm input. Figure 4c shows
the numerically calculated continuation of the period-
doubling point in η f η plane with farm-mediated trans-
mission η f . For fixed η, increased farm-mediated
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transmission moves dynamics away from the period-
doubling region, decreasing line dominance. By recom-
puting bifurcations in adult numbers for various values
of η f we numerically computed the effect of farm-
mediated transmission on the relationship between η

and dominance, as shown in Fig. 4d for values of η f

given in legend. This computation confirms the sugges-
tion of Fig. 4c that a farm under proportional manage-
ment decreases dominance at equilibrium.

Intuition suggests that the negative effect of in-
creased parasite load on juvenile hosts means that in-
creases in φ will decrease equilibrium host abundance.
Structural stability of Eq. 5 permits analysis with φ as
a bifurcation parameter. Numerical bifurcations in φ

for values of r < 2 revealed that increased φ drives
down equilibrium host abundance. Above a critical
level, which depends on η, constant farm input results
in host extirpation (equilibrium abundance of 0) for the
deterministic model analysed.

Discussion

The effect of salmon aquaculture sites as reservoirs for
sea lice have long been recognized (Tully and Whelan
1993; Costelloe et al. 1996). Empirical studies have
demonstrated that declines in wild salmon populations
are associated with aquaculture (Krkošek et al. 2007a;
Ford and Myers 2008). Recently, Frazer (2009) intro-
duced an equilibrium theory for effects of a farmed
hosts on sympatric wild hosts via a directly-transmitted
parasite, demonstrating that increased farm host den-
sity and infections of wild juveniles can combine to
explain observed declines. Such infections of juveniles
arise when farms act as reservoirs and break the al-
lopatric barrier to parasite transmission that is formed
by the migratory life history of pink salmon under
natural conditions (Krkošek et al. 2007b). Though these
infections are a consequence of migration, the analysis
of Frazer (2009) did not include salmon population dy-
namics, so the inferred effect of reservoirs was limited
to a decline in equilibrium abundance. Other analyses
have coupled lice infections to models of population
dynamics (Krkošek et al. 2007a, b, Krkošek 2010), but
have not combined these with models for louse trans-
mission. Here, we developed a host–parasite model
that couples population dynamics of pink salmon with
a simple transmission model incorporating temporal
heterogeneity in transmission driven by migratory al-
lopatry. We found that, in addition to declines in aver-
age population abundance, spillover and spillback with
farms can alter patterns in population dynamics, either
increasing or decreasing line dominance.

The direction of the change in line dominance de-
pends on how farms respond to wild-origin infections.
When infections on farms are independent of wild in-
fections, and farms provide a constant infection pres-
sure on wild hosts, this increases dominance; on the
other hand, when infections on farms depend on wild-
origin infection, farms provide an intra-lineage trans-
mission route that decreases dominance. Under the
assumption that farm stocking levels are constant, these
situations correspond to two management scenarios.
In the first, lice on farms are managed to a constant
abundance. In the second, lice on farms are managed
to an abundance proportional to the abundance of lice
on prior-year wild hosts, i.e. the infection pressure on
farms from wild-hosted lice.

The mechanism by which the first scenario (“con-
stant” management) increases dominance is that the
farm always hosts the same number of lice, which re-
sults in a constant infection pressure on wild fish. This
constant input has a proportionally larger effect on the
less-abundant line. This is a depensatory effect and is
thus similar to a number of additional hypotheses pro-
posed by Ricker (1962) that related dominance to other
mechanisms that can have depensatory effects, includ-
ing fishing and predation. Constant infection pressure
results from managing for constant average abundance,
i.e. γ1 because of the assumption that the number of
hosts on the farm, i.e. the stocking level N, is constant.

The second scenario (“proportional” management)
decreases dominance because the abundant parasites of
the dominant lineage have a negative effect on juvenile
survival within that lineage. This result demonstrates the
potential, when wild hosts display migratory allopatry,
of introduced farm hosts to change the structure of
density dependence governing wild host population dy-
namics. This farm-mediated intra-lineage transmission
alters the “process order” of density dependence in
the population. Turchin (2003) defines process order
as the number of population densities at earlier times
needed to adequately describe fluctuations in the focal
population. Populations governed by different struc-
tures of density dependence generally display different
patterns of population fluctuations, e.g. period and am-
plitude (Turchin 2003). Thus, in a more general context,
changes to density-dependent interactions of the type
demonstrated here might be expected to alter patterns
of population fluctuations.

Under either management scenario (constant ver-
sus proportional response to wild-origin infection),
equilibrium wild host abundance, averaged over both
lineages, decreases. This result is consistent with em-
pirical observations in wild salmon populations poten-
tially affected by disease spillover from aquaculture
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(Gargan et al. 2003; Krkošek et al. 2007a; Ford and
Myers 2008; Costello 2009). In the case of constant
input, when dominance increases the abundance of the
non-dominant lineage goes to zero while the dominant
lineage increases slightly in abundance. In the second
case, when dominance decreases both lineages decrease
in abundance but the dominant lineage decreases more
than the non-dominant lineage. Recently published
data on farm infections in Pacific Canada indicates that,
over the past 10 years, lice levels on farms in spring are
proportional to prior year returns (Marty et al. 2010).
This is our “proportional” management scenario. In
this context, the work presented here provides a predic-
tion: that line dominance in Canadian pink salmon ex-
posed to farm-origin infections should have decreased.
Testing whether this prediction is borne out by stock-
recruitment data is subject to ongoing research.

Connections to epidemiological theory

The reservoir effects of farms studied here have paral-
lels in epidemiological theory. Under the management
scenario of constant input, farm-origin infection can be
viewed as a deterministic, periodic forcing of the host–
parasite system. Forcing affects behaviour of a variety
of dynamical disease models (Hastings et al. 1993). Per-
haps the most common epidemiological application of
forced models is to express seasonality, which has broad
importance across human and wildlife disease systems
(Altizer et al. 2006). In the context of seasonally forced
disease models, the shape of continuous time forcing
has a strong influence on observed dynamics (Earn
et al. 2000). Though our study examined only one type
of constant forcing, based on management of parasites
to a constant threshold, future studies might benefit
from considering a variety of forcing functions based
on different management scenarios.

On the other hand, the scenario of proportional man-
agement results in farm-mediated transmission. This
situation has conceptual connections to epidemiology
of multi-host parasites and indirect transmission. Farm
hosts can be viewed as a new introduced species that
increases the number of parasites in coastal waters. This
accords with the theory of multi-species epidemics for
pathogens transmitted by free-living infective stages,
where host species diversity can amplify epidemic out-
breaks (Dobson 2004). Because parasites on farm hosts
are managed, however, farm hosts could also be viewed
as a type of indirect or environmental transmission with
the functional form of transmission depending on man-
agement actions. Different functions representing a va-
riety of management response to infections could result
in different dynamics. Rohani et al. (2009) showed that

for a stochastic model of disease outbreaks in migratory
hosts, neglecting the role of environmental transmis-
sion can underestimate the probability of outbreak.
Though we did not include stochastic effects in the de-
terministic system studied here, transmission through
farms plays a similar role, increasing the average inten-
sity of infection in wild juveniles in the coastal region of
the farm. In the case, we treat the regular migrations of
wild hosts and the static location of the farm mean that
the farm primarily mediates intra-lineage transmission.

Assumptions and implications

The analysis presented here rests on a great many
assumptions that should be kept in mind when inter-
preting our results. Transmission poses a difficult mod-
elling problem (McCallum et al. 2001). We assumed
that transmission occurs through mass action between
well-mixed infective parasites and wild juvenile hosts.
We applied this assumption to infection both from wild
adult hosts and from farm hosts. In British Columbia,
farm-to-wild infections occur in fjords (Morton et al.
2004), while wild-to-wild infections occur during a pe-
riod of summer sympatry in neritic waters (Beamish
et al. 2007). Because these two types of transmission
occur in different hydrodynamic environments, our ap-
proximate transmission function may not apply equally
to both processes. The mass action assumption, how-
ever, is perhaps better justified in these marine environ-
ments than in many places where it has been applied.
The difference between the transmission environments
for farm-to-wild and wild-to-wild infections would be
expected to result in lower transmission probability in
the more dispersive neritic environment. This, how-
ever, does not address the potential for a qualitative
difference in transmission between the fjord and the
neritic zone. To address this possibility, one could
build approximations based on more detailed models
of transmission developed by Krkošek et al. (2005) for
farm-to-wild transmission.

In addition, we focused on larvae in our trans-
mission derivation. For sea lice, however, some evi-
dence indicates that motile adult stages can play a role
in transmission (Ritchie 1997; Krkošek et al. 2007b;
Connors et al. 2008, 2011). In general, very little is
known about motile transmission (Costello 2009). De-
spite this, our mass action transmission function could
be adapted to describe motile transmission. The “infec-
tive parasites” attaching to juvenile hosts (Appendix 1)
would then be motile adults, this would reduce the pro-
portionality k between infective parasites and adults,
but could increase the attachment probability βw.
Because motile adults swim actively, unlike naupliar
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stages, the assumption that fish and infective parasites
are well-mixed may be less justified for motile transmis-
sion. In addition, spatial scale for motile transmission
may also differ from that of larval transmission. The
differences in transmission between larval and motile
transmission indicate that a single equation of the sim-
ple single mass action type used here may be inade-
quate to describe both processes. To consider multiple
modes of transmission using mass action, an extended
model using multiple transmission equations could be
developed. Alternatively, a single equation that is spa-
tially explicit might capture both types of transmission.

When farm hosts are present, our transmission func-
tion assumes that parasites from farms and the wild
additively contribute to total parasites on juveniles.
Contributions may be additive when parasite abun-
dance is low, but when there are very many lice attach-
ing to juveniles this likely breaks down. Thus, during
high intensity infections observed in salmon farming
regions (Morton and Williams 2003; Morton et al. 2004;
Krkošek et al. 2006), the equations used here may
overestimate the role of wild–wild transmission in host–
parasite dynamics.

Additionally, our transmission function uses an ap-
proximation that is best when the number of juvenile
hosts is small relative to the inverse probability of
transmission. Thus, the approximation is better when
the probability of transmission is lower. As discussed
above, the probability of transmission is possibly higher
in farm-to-wild transmission than in wild-to-wild trans-
mission. Furthermore, farm-to-wild transmission oc-
curs earlier in time and space (Krkošek et al. 2005),
when populations of juvenile hosts are larger (Groot
and Margolis 1991). These two facts mean that the
transmission function is likely less valid for farm-to-
wild transmission than for wild-to-wild transmission.
This is an additional reason that future work should
look to bridge between the simple transmission model
used here and more detailed models for farm-to-wild
transmission (Krkošek et al. 2005).

Another consequence of our transmission function is
that more lice on a farm result in more lice on juvenile
hosts, proportionally. This linearity is the reason that
a constant farm input acts in a depensatory manner
where the less-abundant line suffers higher average
infections from the farm. The increase in line domi-
nance seen when farm status is constant is due to this
depensatory effect. Because this theoretical increase
in line dominance is clearly sensitive to assumptions
on transmission, further work is needed to better un-
derstand whether management of farms to constant
infection pressures would be expected to increase line
dominance.

One fundamental assumption in our model is that
the populations of salmon and sea lice are closed. This
violates biological reality, as during the high-seas phase
of life, salmon populations may exchange sea lice with
one another (Beamish et al. 2007). If this exchange
equilibrates sea lice across salmon populations, this
could decrease the strength of the lice-mediated inter-
actions considered here.

Environmental stochasticity is thought to play an
important role in pink salmon population dynamics
(Myers et al. 1999). Here, we focused solely on de-
terministic results, but future studies should exam-
ine the role of reservoirs in host–parasite systems in
the presence of stochasticity. When noise is consid-
ered, the transient behaviour of the system is likely
to be more important than the asymptotic equilibria
(Hastings 2004). The particular values of parameters
pointed out here as resulting in dominance are based on
asymptotic analysis of Eq. 1. When transient behaviour
of Eq. 1 is considered, the region of parameter space
in which transient two cycles, and thus line dominance,
occurs may expand. Preliminary analysis and simula-
tion of a related model (Krkošek et al. 2010) indicates
that when noise is included and statistical two cycles
are considered, dominance occurs over a large region
of parameter space.

Significance and future directions

Our results suggest that when spillover and spillback
occur with wild migratory hosts, the way in which
managers of farms respond to wild-origin infections will
determine the effect on wild host population dynamics.
We were able to study interaction of wild host migra-
tion, farm hosts, and parasites by substituting temporal
heterogeneity in transmission for an explicit spatial
model. Temporal heterogeneity is common in epidemi-
ological interactions and has been a focus of intensive
study (Anderson and May 1992; Altizer et al. 2006).
The importance of space and host movement have
been studied extensively in human disease systems (see,
e.g., Grenfell et al. 2001), and recognized in wildlife-
farm interactions (Morgan et al. 2004). The model we
formulate here combines these ideas, permitting us to
study the effect of host movement through its con-
nection to temporal changes in transmission processes.
Though this type of space-time substitution may prove
fruitful in other contexts, there are also reasons to
develop explicit models of the spatial and continuous
time processes at work in the salmon–sea lice system.
The difference between constant farm status and farm-
mediated transmission is essentially one of forcing a dy-
namical system versus altering its dynamical structure.
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Future efforts to understand how infection manage-
ment in farms, and other reservoirs, can interact with
spillover and spillback to alter wildlife disease dynamics
could examine a number of different functions defining
either management response to wild infection or chang-
ing farm status over the time infections occur. Such
research, however, might benefit from modelling in
continuous time. Further, as discussed above, the spa-
tial dynamics of lice transmission may differ between
farm–wild and wild–wild transmission, and between
motile and larval transmission. Considering the full
richness of dynamics involved in these processes may
require a spatially explicit host–parasite model.

More broadly, we expect the processes of wild
host migration, spillover, spillback and management
of farms to result in changes to wild host population
dynamics in the large variety of avian, aquatic and
terrestrial systems where wild hosts display migratory
behaviour and potentially interact with domesticated
animals. Our model is specific to the system of sea lice
and pink salmon, however, and the interaction of these
processes should be explored in other system-specific
models, as well as more generally, e.g. in the setting of
theoretical epidemiological models.
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Appendix 1

Derivation of the parasite map

In this appendix, we suppress the w subscripts. The
map governing average parasite per juvenile dynamics,
P(t + 1) = β�kλ(1 − �)P(t)A(t + 1), represents two
processes, growth and transmission. For sea lice, prob-
lems of transmission (Krkošek et al. 2005; Frazer 2008)
and growth (Stien et al. 2005; Revie et al. 2005; Krkošek
2010; Frazer 2009) have been studied in detail; how-
ever, the transmission models are spatially explicit de-
scriptions of dynamics occurring in fjordic habitats over
small time scales, and the growth models consider de-

tails of parasite age structure. We neglect the details
of these formulations in favour of generality, assuming
only that transmission results from low-probability in-
fection events occurring in a well-mixed environment.
Here, we derive the map used above to approximate a
mass action process in a well-mixed environment that
is valid when transmission is based on low-probability
attachment events. Additionally, we assume that para-
sites grow without density dependence and have no age
structure.

Each year includes a short infection window �, the
period of wild adult and juvenile summer sympatry.
During the remainder of the year, the maturation pe-
riod, (1 − �), juveniles J(t) become adults A(t + 1) and
parasite population growth occurs. The total number of
adult-associated parasites at the end of the maturation
period, which we denote Padult using a calligraphic “P”
to differentiate from the variables for average parasite
abundance used elsewhere, is reduced by host death
due to parasitism and other factors, and increased by
parasite reproduction and growth. Assuming the para-
sites are uniformly distributed on hosts, decline in host
population from juvenile to adults due to parasites (1 −
e−Pw ) affects the parasite population proportionally.
Parasite population increase is expressed as a geometric
growth in the average parasites per host at rate λ over
the time (1 − �). Then, the number of adult-associated
parasites at the end of maturation and the onset of
transmission is given by

Padult(t + (1 − �)) = λ(1 − �)Pw(t) · A(t + 1), (8a)

= λ(1 − �)Pw(t)J(t)e−aP(t)−c1 A(t).

(8b)

We consider transmission during the infection win-
dow � in continuous time τ . Specifically, we consider
the process of infective parasites, ψ , attaching to juve-
nile fish, F, during an infection window of length �.
Because � is short, we treat number of juveniles F as
constant and ignore production or immigration of new
infective parasites ψ , of which we assume there are an
initial quantity proportional to the number of adult-
associated parasites at the beginning of transmission,

ψ0 = kPadult, (9)

which relates back to model (Eq. 1) through the
definition of Padult in Eq. 8. We further assume that
infective parasites ψ become attached parasites P in-
dependently from one another at a constant rate β.
Finally, for consistency with Eq. 1, where the units of
P are motile parasites per f ish, we track P = P/F
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the average attached parasites per fish. This gives the
following equations for τ ∈ (0, �),

ψ̇ = −βψ F (10a)

Ṗ = βψ F (10b)

Ṗ = Ṗ

F
= βψ, (10c)

The equation for the change in parasites per fish, Ṗ,
comes from dividing the equation for total attached
parasites Ṗ by F. Note that attachment rate β implic-
itly includes mortality of infective parasites. This is sim-
ilar to equations underlying the macroparasite model
of Anderson and May (1978), but here considered only
over a short time scale.

With a constant number of juveniles F, we have
ψ(τ) = ψ0e−βFτ and P(τ ) = βψ0

∫ τ

0 e−βFsds on τ ∈
(0, �). This expresses average parasites per fish at the
end of the infection window as a function of juve-
niles, initial infective parasites, the transmission rate,
and the length of the window: P(�) = ψ0

F [1 − e−β�F].
If β�F � 1 a first-order Taylor approximation yields
P(�) ≈ β�ψ0. For F < 1

β�
, the error in this approx-

imation is bounded by ψ0β�

e (where e is Euler’s con-
stant). Using Eqs. 8 and 9 to relate this approximation
back to the variables in Eq. 1,

P(t + 1) = β�kλ(1 − �)P(t)J(t)e−aP(t)−c1 A(t), (11)

we also note that the relevant quantity of juveniles
is J(t + 1). We use this equation under the assump-
tion that the number of juveniles falls below a thresh-
old J(t + 1) < 1

β�
, which is an inverse measure of

the strength of inter-lineage transmission. When inter-
lineage transmission is very weak, β is very low and 1

β�

is very large.

Appendix 2

Analysis of farm-free system

Using both analytical techniques from dynamical sys-
tems and numerical bifurcation analysis we find regions
where line dominance occurs in the two-dimensional
space of parameters governing (1) negative density-
dependent interactions between host lineages and
(2) host productivity. Line dominance corresponds to
mathematical two cycles and arises from stable equi-
libria through period-doubling so we focus on defining
boundaries of the region where period-doubling occurs
in parameter space. In the results of the main text, we

report how these boundaries shift with the introduction
of farm hosts.

Recall that we treat the low-juvenile case, where
N0 ≤ 1

βw� f
. We introduce a scaling of Eq. 1 to obtain

the non-dimensional equations,

N0(t + 1) = N1(t)er−N1(t)−c̃0 N0(t), (12a)

N1(t + 1) = N0(t)e−c̃1 N1(t)−P(t), (12b)

P(t + 1) = ηP(t)N0(t)e−c̃1 N1(t)−P(t), (12c)

where non-dimensional parameters c̃0 = c0
s1b , c̃1 = c1

b
relate to inter-cohort density dependence. Dynamical
variables are N0 = bs1 J, N1 = b A, and P = aw Pw.
Host growth rate is er = s0s1s2 f . The non-dimensional
parameter for parasite-mediated density dependence is
η = βw� f kλ(1−� f )

b . For the remainder of the appendix
we suppress tildes on c̃i. The model (Eq. 12) exhibits
positive invariance to R

3+. To see this, define N(t) as
(N0(t), N1(t), P(t)) then take N(t0) > 0 as initial data
at time t0. Applying Eq. 12 once, N(t0 + 1) > 0 and
repeated application of Eq. 12 results in N(t) > 0 for
all t > t0.

We assume that parameters r and η are positive
thereby restricting attention to cases where wild adult–
juvenile transmission occurs. Furthermore, we focus
attention on changes in parameters governing nega-
tive density-dependent inter-lineage interactions that
result in two cycles in Eq. 12. Mathematically, these are
period-doubling bifurcations of stable equilibria.

Standard linearized stability analysis requires solv-
ing Eq. 12 for equilibria. The analytical tractability of
Eq. 12 depends on the values of the parameters describ-
ing general negative density-dependent interactions ci.
We assume ci are non-negative and treat several cases.
In two of these, one parameter is zero and at least some
analytical treatment is possible: (1) when c0 = 0 but
c1 > 0 and maturation range inter-lineage interactions
are possible, and (2) when c0 > 0 but c1 = 0. In case
(3) where both maturation range and nursery range
inter-lineage interactions are possible, i.e. ci > 0, but
the fixed points of Eq. 12 are not expressible in terms
of elementary functions. We do not consider this case
further. Biologically, this means that we treat cases
where negative density-dependent interactions occur
between lineages either in ocean habitat (c1) or in
breeding habitat (c0), but not in both.

Equilibria

Bifurcations of equilibria from fixed points to two cy-
cles through period-doubling occur from both parasite-
free NPFE and coexistence N∗ equilibria. The cases
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Table 3 Fixed points of
model for analytically
tractable cases

Case (1) Case (2)
c0 = 0, c1 > 0 c0 > 0, c1 = 0

NPFE

⎛

⎝

rer c1
1+c1

1 + c1
,

r
1 + c1

, 0

⎞

⎠

(

r
1 + c0

,
r

1 + c0
, 0

)

N∗

⎛

⎝

er− 1
η

η
,

1

η
, r − (1 + c1)

η

⎞

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

LambertW

⎛

⎜

⎜

⎜

⎝

c0e
r− 1

η

η

⎞

⎟

⎟

⎟

⎠

c0
,

1

η
, log

⎛

⎜

⎜

⎜

⎝

η

c0
LambertW

⎛

⎜

⎜

⎜

⎝

c0e
r− 1

η

η

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

treated here differ in their potential for period-
doubling bifurcations from these two types of equilib-
ria. For cases (1) and (2), parasite-free equilibria are
given in Table 3. Only for case (1) can the coexistence
equilibria be obtained analytically in terms of elemen-
tary functions; given in Table 3.

In case (2), when c0 > 0 and c1 = 0, the coexistence
equilibria of Eq. 12 are defined by transcendental equa-
tions. Specifically, let N(2)∗ := (N∗

0 , N∗
1 , P∗) denote the

equilibrium in this case. Dividing Eq. 12c through by
P∗, we see 1 = ηN∗

0 e−P∗
. Substituting this relation into

Eq. 12b,

N∗
1 = 1

η
.

By substituting into Eq. 12a, we see that

N∗
0 = 1

η
er−c0 N∗

0 − 1
η ,

a transcendental equation for N∗
0 . This equation does

have a unique solution, which expressible in terms of
the Lambert W function (see, e.g., Corless et al. 1996),
and is given in Table 3.

Stability

Standard linearized stability also requires linearizing
the system (Eq. 12). The linearization is expressed
through the Jacobian matrix of the system:

D(t)

=
(

−N1c0er−N1−N0c0 (1 − N1)er−N1−N0c0 0
e−P−N1c1 −N0c1e−P−N1c1 −N0e−P−N1c1

Pηe−P−N1c1 −N0 Pηc1e−P−N1c1 (1 − P)N0ηe−P−N1c1

)

.

(13)

We use standard local stability analysis of dynami-
cal systems. For discrete-time systems, linear stability

requires that each eigenvalue of the Jacobian matrix
(Eq. 13) evaluated at an equilibrium lies within the unit
circle in the complex plane. If the linearized system at
a particular equilibria satisfies this requirement, then
it is stable. For analysis of the parasite-free equilib-
rium, NPFE we are able to analytically compute the
eigenvalues of Eq. 13 evaluated at the equilibrium and
thus verify stability. For the coexistence equilibrium,
N∗, we use Jury’s criteria, which provide necessary and
sufficient conditions on the characteristic polynomial
of the Jacobian for stability. We do not focus on the
stability of equilibria per se, but instead on the loca-
tion in parameter space where stability is lost, through
bifurcation. Thus, results of our stability analysis are
described below in our bifurcation analysis.

Bifurcations

Throughout we focus on behaviour for moderate
values of host reproduction, i.e. r < 2, that correspond
to the situation of biological interest. This eliminates
possible period-doubling bifucations due to the host
reproduction parameter r. Such bifurcations occur in
the classical Ricker model, as part of a period doubling
cascade to chaos as outlined in May and Oster (1976).
Because our concern is line dominance, we focus on
period-doubling bifurcations that occur with changes in
parameters governing negative density-dependent
inter-lineage interactions, including general inter-
actions ci and parasite-mediated interactions governed
by the inter-lineage transmission term η.

Period-doubling (PD) bifurcations of maps must sat-
isfy two criteria (Iooss 1979, p. 12):

Theorem 1 Consider the map (μ, Xi) �→ fμ(Xi) : R
4 →

R
3 where Xi ∈ R

3 are dynamical variables and μ ∈ R is
a parameter. If fμ is of class Ck for k ≥ 2 near a f ixed
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point X∗, then a period doubling bifurcation exists at
μ = μ∗ if the following conditions are satisf ied:

(PD1) Eigenvalue location The Jacobian Dfμ(X∗)
has an eigenvalue λ0(μ) with λ0(μ

∗) = −1 and
|λi(μ

∗)| < 1 for i = 1, 2; and
(PD2) Transversal d|λ(μ∗)|

dμ
< 0.

Specif ically, there exists a unique one-sided bifur-
cated branch of f ixed points of order 2, (μ(s), X j(s), j =
1, 2) for fμ such that μ(X∗) = X∗, μ(−s) = μ(s),

X1(−s) = X2(s),
dX1
ds (0) = 1, X j(0) = X∗, fμ(X j) =

X j′ , j �= j′. The functions μ and X j are Ck−1.

Bifurcation from parasite-free equilibrium

For the parasite-free equilibria NPFE, we character-
ized period-doubling bifurcations for both case (1) and
case (2).

In case (1), c0 = 0 the Jacobian (Eq. 13) evaluated at
NPFE from Table 3 is given by
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 −rer− r
1+c1

1 + c1
+ er− r

1+c1 0

e− c1r
1+c1 − c1r

1 + c1
− r

1 + c1

0 0
ηr

1 + c1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (14)

The characteristic equation of Eq. 14 is

λ3 + λ2

(

c1r
1 + c1

− ηr
1 + c1

)

− λ

(

1 − r
1 + c1

+ ηc1r2

(1 + c1)
2

)

+ ηr
1 + c1

− ηr2

(1 + c1)
2 = 0. (15)

The polynomial on the right hand side of Eq. 15 can be
factored,
(

λ − ηr
1 + c1

)

·
⎛

⎝λ + c1r
2 + 2c1

− 1

2

√

4 − 4
r

1 + c1
+ c2

1r2

(1 + c1)
2

⎞

⎠

·
⎛

⎝λ + c1r
2 + 2c1

+ 1

2

√

4 − 4
r

1 + c1
+ c2

1r2

(1 + c1)
2

⎞

⎠ .

To find potential curves in parameter space where
period-doubling occurs, we set one root of the charac-

teristic equation (Eq. 15) to negative unity. The result-
ing curve is c1 = 1. Along this curve, one eigenvalue
of Eq. 14, i.e. root of Eq. 15, is negative unity. The
eigenvalue of Eq. 14

λPD(i) = − c1r
2 + 2c1

− 1

2

√

4 − 4
r

1 + c1
+ c2

1r2

(1 + c1)
2 (16)

evaluates to negative unity when c1 = 1. The other
roots of Eq. 15 have absolute value less than unity when
conditions on η and r are satisfied: the root ηr

1+c0
, has

absolute value less than unity when η is sufficiently
small, i.e. η < 2

r = 1+c1
r ; the other root is the complex

conjugate of Eq. 16, and has absolute value less than
unity for values of r considered here, i.e. r < 2. Thus the
eigenvalue location (PD1) criterion is satisfied for r < 2
and sufficiently small values of η. For this eigenvalue,

∂λPD(i)(c1)

∂c1

∣

∣

∣

c1=1
= −1

8
r − 1

8

4r + r2

r − 4
,

thus satisfying the transversal (PD2) criterion for values
of r considered here, i.e. r < 2.

In case (2), c1 = 0, the Jacobian (Eq. 13) evaluated
at NPFE from Table 3 is given by

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−c0rer− r
1+c0

− c0r
1+c0

1 + c0
−rer− r

1+c0
− c0r

1+c0

1 + c0
+ er− r

1+c0
− c0r

1+c0 0

1 0 − r
1+c0

0 0 ηr
1+c0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(17)

The characteristic equation of Eq. 17 is

λ3 +λ2

(

c0r
1 + c0

− ηr
1 + c0

)

−λ

(

1 − r
1 + c0

+ ηc0r2

(1 + c0)
2

)

+ ηr
1 + c0

− ηr2

(1 + c0)
2 = 0. (18)

The polynomial on the right hand side of Eq. 17 can be
factored,
(

λ − ηr
1 + c0

)

·
⎛

⎝λ + c0r
2 + 2c0

− 1

2

√

4 − 4
r

1 + c0
+ c2

0r2

(1 + c0)
2

⎞
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·
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⎝λ + c0r
2 + 2c0
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4 − 4
r
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2
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⎠ .
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To find potential curves in parameter space where
period-doubling occurs, we set one root of the charac-
teristic equation (Eq. 18) to negative unity. The result-
ing curve is c0 = 1. Along this curve, one eigenvalue
of Eq. 17, i.e. root of Eq. 18, is negative unity. The
eigenvalue of Eq. 17

λPD(ii) = − c0r
2 + 2c0

− 1

2

√

4 − 4
r

1 + c0
+ c2

0r2

(1 + c0)
2 (19)

evaluates to negative unity when c0 = 1. The other
roots of Eq. 18 have absolute value less than unity when
conditions on η and r are satisfied: the root ηr

1+c0
, has

absolute value less than unity when η is sufficiently
small, i.e. η < 2

r = 1+c0
r ; the other root is the complex

conjugate of Eq. 19, and has absolute value less than
unity for values of r considered here, i.e. r < 2. Thus
the eigenvalue location (PD1) criterion is satisfied for
r < 2 and sufficiently small values of η.

For this eigenvalue,

∂λPD(ii)(c0)

∂c0

∣

∣

∣

c0=1
= −1

8
r − 1

8

4r + r2

r − 4
,

thus satisfying the transversal (PD2) criterion for values
of r considered here, i.e. r < 2.

Bifurcation from coexistence equilibrium

For the coexistence equilibrium, N∗, in case (1), the
Jacobian (Eq. 13) evaluated at N∗ from Table 3 is given
by

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 −
er− 1

η

η
+ er− 1

η 0

e−r+ 1
η −

c1

η
−

1

η

η

⎛
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η
− c1

η

⎞

⎠e−r+ 1
η −c1

⎛

⎝r−
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η
− c1

η

⎞

⎠ 1−r+
1

η
+ c1

η

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟
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(20)

The characteristic equation of Eq. 20 is

λ3 + λ2

(

r − 1 − 1

η

)

+ λ

(

1 − c1

η
− 1

)

+ 1 − 1

η
= 0

(21)

To find potential curves in parameter space where
period-doubling occurs, we set one root of the char-
acteristic polynomial (Eq. 21) to negative unity. The
resulting curve is r = 3−c1

η
. Along this curve, one eigen-

value of Eq. 20 is negative unity and thus part of the
eigenvalue location (PD1) criterion is satisfied. The
roots of Eq. 21 are obtainable through the formula for
the roots of a cubic. The formulae that result from these
roots, however, are very long and would be tedious to
treat analytically. We use Jury’s criteria, which provide
necessary and sufficient conditions on the characteristic
polynomial of the Jacobian for stability, to verify that
the remaining eigenvalues fall within the unit circle. We
state Jury’s stability criteria from (Cain 2007):

Theorem 2 (Jury stability test) All roots of the
polynomial

q(x) = amxm + am−1 + · · · + a1x + a0 (22)

lie in the open disc in the complex plane if and only if

(J1) amq(1) > 0,
(J2) (−1)mamq(−1) > 0, and

(J3.j) |r j| < 1 for j = 1, 2, . . . m, where r j are given
by the following iterative procedure. First,
set b j = am− j for j = 0, 1, . . . m and def ine
rm = b m/am. Then, def ine anew

j−1 = a j − rmb j

for j = 1, 2, . . . m. This gives the coef f icients
am−1, am−2 . . . a0 for the next iteration.

The characteristic polynomial of Eq. 20 is given
by the left-hand side of the characteristic equation
(Eq. 21). To apply Theorem 2 to the linearization

Table 4 Conditions for
existence and stability of N∗
in case (1)

The term r3 is defined in line
J3.1. The terms r2n and r2d
are defined in line J3.2

J1. 0 < r − (1 + c1)

η

J2. 0 <
3 − c1

η
− r

J3.1. |r3| := |1 − 1

η
| < 1

J3.2. |r2n| := |1 − c1

η
− 1 − r3

(

r − 1 − 1

η

)

| < |1 − r3

(

1 − 1

η

)

| =: |r2d|

J3.3
∣

∣

∣

∣
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η
−
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1 − 1

η
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η
− 1

)) (

1 + r2n

r2d
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r2d −

(

r2n
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∣

∣

∣
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(Eq. 20), we identify coefficients of the polynomial
from Eq. 21 with coefficients a j of Eq. 22:

a3 = 1,

a2 = r − 1 − 1

η
,

a1 = 1 − c1

η
− 1,

a0 = 1 − 1

η
.

The full set of Jury’s criteria from Theorem 2 for N∗ in
case (1) are given in Table 4. Equality in condition J2
of Table 4 corresponds to the curve r = 3−c1

η
. Condition

J1 is satisfied along this curve for c1 < 1, and condition
J3.1 is satisfied for η > 1

2 . Thus, along the curve r =
3−c1

η
, for r < 2, η > 1

2 , and c1 < 1, when criteria J3.2 and
J3.2 are also met, the full eigenvalue location criterion
(PD1) is satisfied.

Because we did not explicitly compute the eigenval-
ues of Eq. 21, we could not verify the transversal con-
dition analytically. Using the numerical continuation
tool Cl_matcontM (Dhooge et al. 2003), however, we
verified that the system undergoes a period-doubling
bifurcation along the dashed line of Fig. 2a. This tool,
like many software packages for numerical analysis of

Table 5 Conditions that, if violated, result in loss of stability
through period-doubling of parasite-free NPFE and coexistence
N∗ fixed points; for analytically tractable cases

Case (1) Case (2)

NPFE c1 < 1 c0 < 1
N∗ r < 3−c1

η
–

bifurcations, solves equations that define a bifurcation
type, e.g. period-doubling, and computes correspond-
ing normal forms to identify the bifurcation (Dhooge
et al. 2003; Kuznetsov 2004).

Thus, equality in the conditions of Table 5 defines
boundaries between regions in which the coexistence
and parasite-free equilibria are stable and those in
which two cycles occur. For ci < 1 period-doubling bi-
furcations from a stable coexistence equilibrium are
possible. The dashed lines in Fig. 2 represent curves
where the eigenvalue location (PD1) criterion is sat-
isfied for the coexistence equilibrium N∗. Numerical
computations using Cl_matcontM (Dhooge et al. 2003)
confirm these curves represent the location of period-
doubling bifurcations with increasing η. In this case,
the dynamics undergo a qualitative transition from sta-
ble endemic equilibrium to dominance through period
doubling with increase in either η or c1.
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Fig. 5 Bounds on mortality of “dominant” and “non-dominant”
lineage juveniles at equilibrium of system (Eq. 2) for a parasite-
mediated and general negative density dependence between lin-
eages, and b parasite-mediated interactions only. The curves are
computed for various values of r, given in legend, and c0 = 0 at

the boundary of the dominance region, i.e. at onset of period-
doubling induced by parameter c1. For a given value of r, mor-
tality of the dominant lineage has a value below the curve while
mortality of the non-dominant lineage has a value above the
curve
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The ηr stability plane, i.e. Fig. 2a in the main text,
shows curves based on the applying Jury’s criteria to
N∗ for case (1), i.e. Table 4, and results from numerical
continuation. The structure shown in this figure indi-
cate that the governing of dynamics by r is also typical
for η > 0. For fixed r, e.g. r = r∗ = 1.2 the empirical
estimate for pink salmon (Myers et al. 1999), as η

becomes very large, a bifurcation across the dotted
line of Fig. 2a to higher-order cycles is possible. This
line corresponds to Neimark–Sacker bifurcation, i.e.
a Hopf bifurcation for maps (Hale and Kocak 1991).
Bifurcation in η is shown in Fig. 3a. The character
of the bifurcation in η is a single period doubling. In
contrast to the “cascade to chaos” familiar from the
Ricker model (May and Oster 1976), the period-two
regime is present for a large range, η ≈ 2.5 to η ≥ 100
(not shown).

Appendix 3

Differential mortality between lines when dominance
occurs

If dominance occurs in Eq. 1, the less-abundant lineage
experiences 40% mortality (or greater) due to negative
density-dependent inter-lineage interactions, while the
dominant lineage experiences less mortality. Figure 5a
shows the equilibrium mortality of juvenile hosts due
to general negative density dependence and parasitism
at the edge of the dominance region, i.e. dashed lines
in Fig. 2. The degree of overall mortality due to both
factors decreases slightly as the general negative den-
sity dependent , c1/b , interaction strength is increased.
The figure was computed for a system with where neg-
ative density-dependent effects occur between lineages
only based on adult abundance (c1 > 0, c0 = 0). In the
“dominance” region of Fig. 2a, mortality for the more-
abundant lineage falls below the curves given, while
mortality for the less-abundant lineage is above the
curve.

As the strength of general negative density-
dependent interactions is increased, the amount of
parasite-mediated negative density-dependent mortal-
ity needed to maintain dominance decreases. Figure 5b
shows this effect, plotting the mortality due to parasite-
mediated effects alone that is needed to maintain
line dominance plotted against the strength of gen-
eral negative density-dependent inter-lineage interac-
tions c1/b .
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