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Abstract | \
In adaptive control, the parameterf that (appear in the
mathematical model of the process can be identifiéd by usiﬁg
different idenfification algorithms usually on an on-line
basis. Insufficient kno#ledge of the process paraﬁeters/;n
an explicit control design or of the controller parameters
_in' an implicit one can have catostrophic results on the

{

performénce of the controller or the stability of the closed

_loop system. Proof of . global stability of a closed loop

control system is not an easy task. Only a few. of the

proposed conﬁrol élgorithms have been proven to be glgbally

stable. One of' the most. common " assumptions® in proving
; °

stabilik% equires that the controlléd Systgm must be

min}mum phase.

In 'this. thesis, a least squares ideﬁtification scheme
‘is‘shown to codverge_to the‘ true pafameter values of a
stable open loop system if a persistently exciting syStem
input and a variable fogetting factor. less thaﬁ one are
used.' A pole-assignment control algorithm is proven to be
,globaily stable for both minimum and nonminimum phase
systems despite the presénce‘of bounded disturbances. The
use of a persistently exciting signél is essential ;in
proving 'stability for the closed loop system controlled by
the pole-assignment algorithm, The problem of iarge process
time-delays is hanaled by using‘é Smith predictor. For a
‘particular class of processes, this pqle-assignment

AN

. . - N\ .
algorithm is shown to take the form of a three term velocity



type adaptive PID controller. Simulation and experimental
results on a batch solution methylmethacrylate polymerizer
demonstrate the usefulness of this pole-assignment control

algorithm.

vi
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1. Introduction and objectives

This chapter is provided as}a guide to the variety of topics
covered 1in 'thig thesis since the subject being treated
requires knowledge in ﬁhe areas of process identificatién
and parameter esﬁimation, ‘adaptive control, polymer
chemistry‘and engineering,"as well as process computer
control. However, the ultimate objective of this study is to
experimentally evéiuate the performance of an édaptive
control algorithm which has been proven to be globally
stable. The controller performance is evaluated by
controlliné the monomer conversion in a batéﬁ polymerization
reaétor of methylmethacryfate.

The conventional three term PID controller is the most
commonly used control algorithm in chemica%; processes and
this is likely to remain so- in the foreseeabie future. There

are however situations where ﬁhis controller does not
perform satisfactorily. Processes 4with highly‘non-linear
dynémics,l time-varying characteristics  and strong

1]

interaction between the state variables areipiﬁfigﬁlt to

”
¢

control by the fixed gain PID controller- or‘ even‘wi§wvw
cqntréllef with gain scheduling. In such caées‘ periodic
retuning o% the controller gains is needed. Instead of
having ‘skilled operators do the periodic tuning of the
controller, it is a better idea to use a controller whic@ﬂ“
can tune or édapt itself as the process dictates.

In adaptive control, thé mathematical representation of

‘the controlled process 1is of prime importance. It is very



well known that the exact process model 1is not aihays
available or 1if it 1is, it may be so cSmplex that its
usefulness is limited. In such cases, a model must be
assumed. The assumed model must combine all the knowledge
abou? the process in a wusuable form but with a minimum
degree of complexity. The different coefficients appearing
in the matﬁematical model of the process are experimentally
identified based on measurements taken from ﬁhe process.

Since its early introduction, the area of adaptive
control hasv grown rapidly and there are a number of
different adaptive control algorithms proposed in the
literature. Most \of these contgol aléorithms have been or
were initially proposed withqyt any proof of stabiiity of
the closed 1loop system. It was not uhﬁil récently.that
stability results have appeared for a‘restricted number of
adaptive control algorithms. Some of»the proposed control
algorithms involve pole-zero cancellation. This has given
‘rise to,a misapprehension that nonminimum phase systems can
poseAipsoluble problems with the application of adaptive
control. Pole assignment control algorithms are a particular
class of adaptive contfol algorithms wpich partly overcome
this problem by shifting the closed loop poles to desired
‘locations and can conveniently handle nonminimum phase
systems. | |

It is the objectivé of this thesis fo study the scope
‘and 'significance of persistently e iﬁing signals .in

adaptive system identificationmand control: as well as a



particular type of pole-assignment algorithm, understand its
limitations, impose sufficient conditions for ﬁhe global
stability of a closed loop system under its control and
evaluate -the performance of the resulting algorithm by
simulations as well as experimental applications. Tﬁis
thesis has been divided into six chapters.

In Chapter 2, the identification scheme that will be

- ) i .’ . . . . .
a Tm@d in this worh{is”presented. This identification scheme
| =

!

is a variant of 6§e least squares algorithm originally
0 iy

Y g
P

{ Different forms for the original least

squares algorithm ke presented. The need for using a

X329

variable forgeﬁtim§§"actor is also discussed. The usefulness

derived by Gauss

g,

. tcafiﬂg{?' .1 algorithm used in this work is
o BN TR
b

3f the in

o ,,_‘g:«‘ s
ing
prediction error and the parameters estimates. It 1is also

establishe

convergence properties for the

demonstrated‘ that the use of a persistently exciting signal
and a ‘vafiable forgetting factor less than one  are
sufficient ,conditions for the converge of the parameger
estimates to their true values.

In Chapter 3, .an adaptive pole-assignment control
algorithm is discuSsed.\Local stability results requi;ing
good apriori knowledge about the true proces% parameters are
derived for both .minimum and nonminimum phase systems
despite »the presence of bounded disturbances. These local
stability results ;re extended to global stability results
if a fixed gain controller able to stabilize the system and

a persistently exciting reference signal are used.



In Chapter 4, the adaptive pole-assignment control
algorithm presented in the prev{gus chapter is modified in
order to easily handle large time delays. The idea is to use
a Smith predictor §or dead.time compensation. By including a
Smith predictor in the closed loop system, ﬁhe time delay in
its éharacteristic polynomi~® s cancelled. This mékes the
control algorithm computationasi; more efficient. It is also
shown how the pole-assignment algorithm with a Smith
predictor can take the form of a three ‘term velocity type
adaptive PID controller for a particular class of processes.

In Chabter 5, the performance of the pole-assignment
algorithm is evaluated both experimentally and by simulation
studies. The system under control is a batch reactor for the
solution polymerization of methylmethacrylate. We are mainly
inﬁerested in controlling the monomer conversion within the
reactor. Weight average molecular weight control is
demonstrated by simulation studies. The batch reactor i;
also contrdlled by using a fixed gain PID controller and a
self-tuning controller. The results of these two algorithms
are used for the comparison of the control performance of
the adaptive pole-assignment control algorithﬁl

The final summary and overall conclusions of this

thesis are discussed in Chapter 6 followed by suggestions

for future extensions to this study.
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2. ldentification methods

2.1 Introduction

An adaptive controller adjusts its parameters on the
basis of information obtained during the control period so
as to accommodate for changes in system parameters due to
operating condition or environmental chanées. A controller,
designed to control a linearized perturbation model 62 a
process, will not perform well as the steady state changes
due to changes in Qhe process and operating conditions.
Also, the nonstationafy nature of many processes 1s another
reason for using adaptive control.

Although the reasons for using adaptive control were
obvious, the first adaptive control systems were not
introduced until the late 1950's. The primary objective was
to design aaaptive controllers for use 1in autopiiots to
_improve the performance of aircraft over a wide variety of
operating conditions, The very first attempts in
establishing power ful and useful controllers were
unsuccessful due to the poor hardware and the lack of
adequat; theory.

It was not until 1973, when Astrom and Wittenmark
(1973) presented the first landmark paper on self-tuning
requlators. This paper revived the interest 1in adaptive
control. Since then, due also to the rapid progress in
computer technology and to the already developed control

theory during 1960's, a number of adaptive controllers have

5



been introduced (Landau (1973), Martin-Sanchez (1974),
Monopoli (1974). Clarke and Gawthrop (1975), Fewer and Morse
(1978), Gobdwin and Ramadge (1979), Narendra and Lin (1980)
to name’ a few). Also, some successful applications of
adaptive control have been reported (Cergell and Hedgvist
(1974), Borisson and Wittenmark (1975), Seborg and Fisher
(1977), Dumont and Belanger (1978), Johnstone et. al.
(1979), Cergell and Hedgvist (1974), Borisson and Syding
(1976), Jutan, Wright and MacGregor (1984), Morris and Nazer
(1977), Landau and Coutriol (1972), Martin-Sanchez and Shah
(1984) to mention a few).

In most cases, the design of an adaptive controller is
based on the ideas of the <Certainty Equivalence Principle
(Astrom (1970)). According to this principle, the controller
is designed as if the pr0ceés parameters were known. Since
we do ﬁot know the exact process parameters we use, in the
control law, estimates of them. So it becomes clear that
"good" estimates of the process parameters is a prereguisite
for good control performance. In other words the process of
parameter estimation is very important in adaptive control.
-Because of it, a lot of effort has been devoted iﬁ this area
during the last two decades. The result of this effort is a
large number of papers specifically discussing various
aspects of theiparameter estimation on line problem (Eykhoff
(1974), Landaﬁ (1976), Lung (1977), (1981); Isermann (1981),

o

Kumar (1983) to name a few).



Parameter estimation is defined by Eykoff (1974) as the
experimental determination of values of parameters that
govern the dynamic and/or non-lipear behavior, assuming that
the structure of the process model is known. The estimation
procedure can be performed off-line or on-line. The off-line
estimation requires a priori collection of input/output data
and gives estimates with higher precision (Astrom and
Wittenmark (1984)). The on-line estimation gives the
estimates as the measurements are available and is the
method that is used in practice.

Parameter estimation can be done only if a Yeans of
mathematical description of the process is available. Thiﬁ
introduces th dea of a model. The model must describe ;hé\
essential characteristics of a process and provide wuseful
information about 1it. This is very important qpnce further
‘control decisio;s will be based on this 1information. There
is no need for the model to be complex. The degree of
complexity must vary on the way that we use it. A model can
be obtained by applying the laws of physics, ch;;istry or
suitable conservation balances. This approach of model
building is not always easy. It requires a deeper
understandiqg of the process which is not always avaalable.;
Sometimes this understanding cannot be expressed in .a
mathematical way or if it can be expressed, the complexity
of the resulting model is such that its uSefulpess becomes

guestionable. A particular class of models, commonly used in

adaptive control is that of Autoregressive Moving Average



(ARMA) © models. Before we procb%d with the estimation of the
parameters, the structure of the model must  be defined - or
‘ éassumed ‘ Also' the experimental conditions, under which the

s

E estlmatlon w1ll -be done, must be determined. Open-loop

CO;éltlonS should be prefer%ed but identifieation under

closed loop conditions is usually the case. In the = latter
b4 .

case, by keeplng the whole system close to a de51red state

- We'fes%rict the 1npgt/pntput 51gnaks. These signals W111,not

contain enough information or will not be able to excite all

the sysfem modes. Excitation of the system modes is a
»'requirement for’paremeter~estimati6n.

Since .the processﬁ parametersh are net known, the
judgement of the vestimatea 'pafameters is based on some
~criteria. Dependingien\the efiteria, aifferent‘madaptetien
laws can be ‘derived.‘Fer instance, a criterfon can define
the eur:enﬁ best eSLimete of the true parametef vector as.
thet',vector which 1is closest to the pfeiions parameter
‘vector. By satisfying this criterion, we. are led itb the
ﬁrojeetion algorfthm. By minimizing the sum of>the squares
'of"ﬁhe prediction errors, the least squares alge:ithm
results; It must be mentioned that the prediction error.is
‘deflned as the dlfference between the process output and the
'estlmated model output'. In this case,uboth the process. and
the model are. subjected to the inpntv signal but bnly'ithe

process-putput‘is corrupted by noise, if present.

v



2.2 The least squares aIgoring
One of the most frequently used identification
algorithms is the least squares algorithm. This section is

devoted to a description of this algorithm.

. Consider a discrete time, single input/single ouEput,,

linear dynamic system described by a Deterministic

| ?wk@toregressive Moving Average (DARMA) model as

iy .
PR

Az y(0 = BT u(k) (2.1)
whefe @?% | ‘

A(z") =1 -a, z°' = ... - a, z°" 2 ; (2.2)

B(z"') = baoy 277" + L.+ byum 20T 0 (2.3)

u(k) and y(k) are the inﬁﬁt and the output signals at the
_discrete time instant k; 4 is theutime‘deléy (d20).

9

The system (2.%) can be written in a compact vector form as
_ ! )
y(k) = w(k-1)'0, e  (2.5)
where |
Y(k-1)t = [y(k=1) ... y(k-n) u(k=a-1) ... u(k-d-m)]
| (2.6)

Q(t) = [81 ees dp bd*1_--- bd+m] (2.7)

R
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Assume that a model gbproximating the actual process is

described by
(k) = w(k=1)"8(k=1) - o / (2.8)

where §(k) is an estimate of the process output when ‘the
estimate, O(k-1), of the true parameter vector, 8o, 1s used.

The vectorlﬁ(k-1) is’given'by

b(k-1)" = [4,(k=-1) ... &n(k=1) By. 1 (k-1) ... By.m(k=-1)]
‘ (2.9)

The prediction error e(k) is defined by

e(k) = y(k)-g(k) o : (2.10)
As it was previously mentioned, in least squares the
sum of the sguares of Ehe prediction errors must be minimum.

In other words, the loss function

(2.11).

must be minimal.. -

Instead of minimizing the loss function (2.11) we can -

minimize ‘the following function

~ 1
e(i)r + — [6-8(0)1% P(O)-' [6-8(0)] (2.12)
=1 2 :

Jk(g) =

= ™M =

1
2

A
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By minimizing the loss function (2.12), a penalty 1is paid
for the initial gquess, 8(0), of the true parameter vector
9o. The matrix P(0) is a weighting factor for)\the guess
5(0). It reflects .our cbnfidéncé'about the initial gﬁess.
.Large values for the elements of 2(0) cdrrespond to a poor
guess while small values correspond.to ai’good initial guess.

The algorithm which minimizes the loss function (2.12) 1is

giveﬁ by
(k) = B(k-1) + K(k) e(k) | C(2.13)
P(k=1) ¢(k-1)
K(k) = ==-=========—=—=mm—mmmo oo - | (2.14)
: 1+ y(k=1)* P(k-1) ¥(k-1) '
p(k) = P(k-1) - K(k) ¥(k-1)*B(k=-1) . (2.15)
9]

where K(k) is the estimator gain vector.

In the minimization of the loss function (2.12) all the
available datala:e taken into account. At least this is not
desirable for a time varying\process. Since ¢1d data do not

correspond to the present state of a time varying process,

they must be discounted. By minimizing the loss function

A e(i)® + — [6-8(0)1tR(0)'[8-8(0)] (2.16)
1

1
2

'the_past data are exponentially discounted if the forgetting

)]
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factor A is less than one. The speed of: adaptation 1is
determined by the asymptotic memory length (Clarke and

i

Gawthrop (1975))
N = —— “ R (2.17)

which means that the past data are forgotten after N

1

sampling intervals. In this case,

4

8(k-1) + K(k) e(k) | »(2.18)

9k) =
P(k-1) ¥(k-1) : f
K(k) = ==-=2--=-=c=---———=—m——oooo- L(2.14)
A+ y(k-1)" B(k=1) ¥(k-1) :
o ‘ . | | *
P(k) = — [P(k=1)-K(k) ¢(k-1)* P(k-1)] (2.20)
A : ,

Thé application of the exponential data discounting also 1is
heipful for a time-invariant process durihg the transient
state. After steady state conditions have been éstabliéhed,
-thé use of constant forgetfing' fac;or, creates a problem
often referred to as "blow-up". The covarianée matrix grows
expohentially fast and the 'system becomes sehsitive to
dis;urbances énd susceptible to cbmputational errofs (Astrom
and Wittenmark (1980)). The use of a variable forgetting
factor (Fortesque, Kershenbaum and Ydstie (1981)) is one way
to overcome this problem. The idea is quite sgfaighbforward;

During the transient  state, when there 1is a 1lot of

2
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information about the system, a forgetting factor can be
used. During steady-state operation, when little information
is obtained about the system, the forgetting factof should . |
go to one. In this way,’the "blow up" problem is eliminated.
But " the next. problem%;is to find a way of adjusting the
forgetting factor. The~forgettiﬁg factof is chosen.in such a
way that a scalar measure of the information content of the-
regfessor is kept constant. In a mathematical form, the law

~ of adaptation of the forgetting factor is given by

i}

Ak) .= 1 - [1 - ¢t(k=1) K(k)] e(t)? / Z, (2.21)
and &

AK) = hmio i AK)SAmin (2.22)

wherg Zo, is . related to the sum of the squares of the
prediction errors. It is given by: |
Lo=0§ No ) _ (2.23)
where o} is the expected measurement noise variance (¢3=1 if
noise is not present) while N, corresponds to a nominal
‘asymptotic mémory length and controls the speed of
. _ . \ - -
adaptation. N, is a user defined parameter.

It is obvious from thé previous discuésion that
different identification algorithms result, depending on the
criterion wunder minimiZafion. Before an 'identification
scheme 1is wused for parameter eétimation, in a closed-loop

control system, it must be sure that it guarantees some

useful properties like boundness of the parameter estimates,
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asymptotic convergence of the parameters and minimization of

the prediction error.

2.3 Stability.Analyéis
In this section we shall prove that the jdentification
scheme used in this work guaranfees |
a. Boundnéss of the parameters estimates.
b. Asyhptotic convergence of the pérameters.
c. Minimization of the prgdiction error for a stable
open loop process.

The identification scheme wused in this work is the
recursive least squares algorithm with‘a variable forgetting.
factor as proposed by Fortesque et..al. (1981). The equation
that updates the estimator gain vector 1is siightly different
than equat}on. (2.19), 1instead of equation (2.19) -equation
(2.14) is used.

In summary, the equations used in order of éxecution

]

for the open loop identification of a 'DARMA process are

given by:

Process: y(k) = w(k=1" o | | (2.24)
Model: (k) = ¢(k=-1)" 8(k-1) (2.25)
Prediction :

Errors e(k) = y(k) - 9(k) (2.26)
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Estimator | P(k=1). y(k-1) ‘
Gain: (k) = -==-———=--—=-m-—=—————o—mo- (2.27)

=

Parameter i |
Adaptationt  H(k) = 8(k-1) + K(k) e(k) ' (2.28)
Forgettihémwwﬁ1 e(k)?
Factor: © A(k) = 1 = mmmmem—oms—smmo—m—moo e (2.29)
) [1 + g(k=1)*B(k-1)¥(k=-1)]1Zo

or

i A(k) = xmin  if  A(k)<Mmin

with

Zo = 03 No

Covariance

Matrix: P(k) = - [P(k-1) - K(k) ¥(k=-1)* P(k-1)]
k) ' .

1
N
“(2.30)

™

where Amin is a minimum value for the forgetting factor. All
the other parameters ha;e the same meaggng as they were
defined in the previous section.

Stability results fo; least squares algorithms in an
open loop identificationj problem have been derived by
different investigatoré. Johnstone (1982) has studied a
least squareS'identifiqation scheme with constant forgetting
factor. Cérderéf'énd Méyne (1981) used a ieast sqguares
identification algorithm with variable forgetting factor in
a closed’ loop system. They proved stabiiity for the closed
loop system by deriving useful broperties for the

identification scheme. One of their assumptions was

requiring an upper bound for the trace of the covariance

P
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matrix for all times. Our stﬁdies on the stability of the
identification scheme (2.24) to (2.30) presented by theorem

2.1 can be considered as an extension of Johnstone's work
when the forgetting factor is variable and not constant. In
contrast with Corderq’s work we do not impose any

restrictions on the trace of the covariance matrix.

\

Theorem 2.1
Under the following assumptions:
A1] The process is given by eguation (2.24)
A2] The system 1is stable (for bounded {u(k)}, it gives
bounded {y(k)}).

23] The input sequehée'{u(k)} is bounded

the above mentioned identification algorithm, described by

X < b
equations (2.24) to (2.30), guarantees that

/

P1] ||Qofg(k)Ll,s |lgo'§(0)‘|b (2.31)
2] lim [g<k5¥é}k—1>] -0 (2.32)
P31 lim e(k) = 0 - | | (2.33)

Proof:
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Define: 6(k) = 8o - 8(k) , (2.34)
, >

From equations (2.24) to (2.26) and (2.34)

e(k) = y(k=1)* 8(k=1) " (2.35)

Equations (2.27), (2,28), (2.34) and (2.35) give

"Also, from equations (2.27) and (2.30)

A(k) P(k) B(k=1)"' 8(k-1) =

—_— - ——— ———— - — e T

[ P(k-1) w(k-1) ¥(k=1)" |
I -
1+ k=10t B(k-1) y(k-1)}

.8 (k-1) (2.37)
Equations (2.36) and (2.37) give

P(k) '6(k) = A(k) B(k-1)"" 8(k-1) (2.38)
Also, |
P(k)-' 2 A(k) [B(k-1)"" + y(k=1) g(k=1)*] (2.39)

The validity of equation (2.39) can be proven by using the
matrix inversion lemma (Fianklin and Powell (1980)), through

back substitutions. According to this lemma
[A+BCD]-' = A-' .- A~' B [C"*" + DA™' B] DA™’ a (2.40)

If

A= P(k-1)""
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B = y(k-1)
C =
D = y(k-1)"

then through substitutions %nto equation (2.40)
[P(k-1)"" + y(k=1) glk-1)*]"" = P(k-1) - P(k-1) ¥(k=-1)
[1 + g(k=1)* P(k-1) ¥(k=1)]"" .
L (k=1)t B(k-1) |
or r
P(k-1) ¢(k-1) ¢(k-1)* B(k-1

P(k) = --—-- [E(k-1) - -——*———-—-~—--—-—-—--—-~——--q(2.40a)
1+ y(k-1)* P(k=1) y(k=1)

But equation (2;40a) is the adaptation law for the
covariance matrix. This proves the wvalidity of equation
(2.39).
Now define the Lyaponov type scalar function V(k) as
v(k) = 8(k)* B(k)~' 8(k) (2.41)
From equation (2.38)
8(k) = A(k) B(k) pP(k=1)"" 8(k=1) (2.42)

Equations (2.41) and (2.42) give

V(k) - V(k-1) = [A(k) P(k) B(k=1)"" 8(k=1)1" P(k)""
S LIAK) B(Kk) B(k-1)"" 8(k-1)] - ‘.
- 8(k=1) p(k-1)"" B8(k-1) |
- (k-1)" [{g(k~1)“}‘ A(k) {A(k) B(K)'} B(k=1)""

- E(k—1)“] 6(k-1) (2.43)



Equation (2.40a) gives:

1

\ P(k=1) ¥ (k=1) ¥ (n=1)

N opy = plem) ! _ L
Vo(k) BOe) P(x \) LT 7G-Df PG-D) 70G-D) (2.44)

i

]

Equations (2.43) and (2.44) give:

V() = V(x=1) = B0 R Ge=D TN () 2G|

U
P(k-1) ¥ (x=1) ¥ (e=1)" -1 -1
- TSGR TeD « P(x=1) * - B(k-1) 6 (k-1)

( .
V() (k-1 BGeD) T B(e=1) T B(k=1)T

= Te- " A () P(e=1)7 -
= ‘ = 1 + ¥(x-1)T P(k-1) ¥(k-1)

L

- E(K—l)—ﬂ §(x-1) (2.45)

From eguation (2.39) we can conclude that the covariance

matriz P(k) is a postive definite and symmetric matrix,

provided that P(0) is also. Then, equation (2.45) gives:

v Yy (k) ¥(k=1) ¥(e=D) T }
(k) = V(k=1) = 8(x=1) "} {x ()-1} B(k=1) "= 7 F-D)T B(e-D) ¥(x-1)

-

1

CBe-D = O (0m1} BeD T RGe-DT B(ke1)

Vo (26D BeD] T ree-DT D)
T+ ¥ (DT Rk=1) ¥(k-1)

A (k) [E(K—l)r §(K-l)]2
= { A(K)—l} V(K_l) - 1 + E(K_l)r E(K—l) E(K—l)
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then

YORETCE §<K-1>}f

N = . 2.46
V(k) = A (K) V(R"l) - 1 + E(K-l)r E(K—l) E(K;_l) ( )

Equation (2.46) means that the scalar function V(k) is
nonincreasing. By definition, V(k) is a nonegative function.
So, for large times (k==) it must converge.'Supgpse that V,

is its limiting value. Then, equation (2.46) gives:

il
L

\ v [ 10D B | (2.47)
[1 - ) ]Vc T T T A ¥(e=DT PGe-1) ¥(-D) B

Since 0<A(k)<1, the 1left hand side of equation (2.47) 1is
positive or zero irrespective of the value of V . The right
hand side of this equation can be negative or zero. It must
be noted that at this point nothing is said about the
convergence of A(k) or of the right hand side term of
equation (2.47). But since equation (2.47) must be valid we
conclud?,that both sides are zero as k-+=. This automatically
means that both the above mentioned terms converge. In

particular,

e 2 [2eD T Hee)] . 2 5)
cro 1+ ¥(k=1)T P(x=1) ?(x~1)

since A(k) is bounded (0<A(k)<1) equation (2.48) means that

~
<

in [\g(K-l)"_%(K-u]
x+o 1 + E(K—l)T E(K—l) E(K—l)

(2.49)




or

L im e(r) "
e TH Fe-1)F BG-D) #neD) - 0

if equation (2.26) is taken into account.

From equations (2.29) and (2.50) we conclude that

lim A(k) = 1

k >0

| 4
Now define the scalar function W(k) as

k
W(k) = { A(i)- '} Vv(k)
i=1

By multiplying equation (2.46) by

-

k _
{m x(i)" '}
i=1

o

the following results

k-1

-1
&n oA ) Ty 2

W(k) = W(k=1) = 777 ¥ (x=1)T B(r-1) ¥(x-1)

Equation (2.53) means that the scalar

nonincreasing. By definition W(k) 1is nonegative.

these imply that W(k) will converge as ko

its limit, the following is valid

oA @w™h [?(K—I)T B(K—l)}z

2im  i=1 " B

e T+ (1) T P(e-1) ¥(e-1) -0
D - .

21

(2.51)

(2.52)

(2.53

function W(k) is

»

Both of

Regardless of

(2.54)
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hat
Sth

Equation (3.39) imélies t
‘ v ()

() A -1 < - 2.55
0 gy | G | < - [gw ] 2:5%)
[(P(k)-"] is the minimum eigenvalue if p(k)

- where Amin
written at dif‘erent time instants, gives

Ineqﬁglity (2.55),

2y

Y-l A {g(K—ZYI} s *_H;m {E-W-l)_ll

min

vy [ z«ofll : *_min{zm“l]

kil

The above set.of inequalities implies th;t

k=1 . :
X 3 | - cL
{gél' (1)} in [2(0) ‘] < Amin [E(K‘l).fl (2.56)
or that - | e
: | ) .K'_l ‘ .
S R L 1yt —t —_— (2.57)
Nmhin [g(f—l) ] i=1 » min [E(O)" ] ‘
¢ . . ) . = |

By using ihequality'(2.57),,thé following‘Can be obtained

k=1 v R ‘

-1 o 2 -1 . .
M@ h et %—U} a ™ [w-lf Y-’
i=1 . : N i=1 : : - ; =

Y(c=1)T ¥(x-1)

I + ¢(x-1)T B(x-1) ¥(x-1) T+ ., BGD

o

R
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k-1 -1 2
A }[ g<K-1>T’§<K—1)]
> _d=1
1 ¥ (k=1)T ¥ (k-1)
-1
VA [g(Kfl) ]
k-1 N ol ‘ " 2
moA@T ) [ge-nT e(K-1>]
> _d-1 [x \ B
k=1 -1
L+{n Ay 1 ¥(k=1)T ¥(k-1)
i=1 X [P(O)_l]‘v' ’
min| =

'

tv

n 2.
[1-D7 §e-n]
Dl Hw ¥e-DT ¥k-D)

. B

where dmax[P(k-1)] is ﬁhg maximum eigenvalue of P(k-1) and u

(2.58)

o

is defined by
~. & 1 ’
Y -1
Ty

Equation (2.54) and inequality (2.58) imply that

 ¥een)
L ?(K—l) Bk~ ] = .
© Lim [— - 0 (2.59)
<) (k=D T ¥ D)
which 1s equivélent to
2im e(x)? =0 ‘ :
ke 1o+ ¥(k=1)T Y (k-1) o - . (2.50)

1f the assumptions A2 and A3 are valid for an& open = loop
cvstem described by (2.24)  then the regressor Y(k) will

ways remain bounded. This, by taking into account equation
[3 . - .

(2.60), means that _
2im e(x) =0
Koo

55

L



and property P3 is proven.
Next prbperty P2 will be proven.
Equation (2.36) implies that

B(k-1) ¥(x-1) 9(e=1)T §(x-1)

Yy 7 Ble-1) = -
‘ T+ ¥(x-1)T B(x-1) ¥(x-1)

Then

180 =8(x-1) |2 =

: 1 ' .
B 1;(v<—1)‘£(+<—1)‘£(»<--l)T 2_5(}<-l) t \__ E(K—l)‘}_’(K—l)‘f(K—l)T‘%(K-l)

T T T BGeoD) E(e-D) || T+ EeeDT EGD ¥ (<=1)

e
r

¥ (k-1)Te (k1) ¥(x=1)T g(K-lﬂ P(e-1) ¥(x-1)¥ (=D EGe-D)
[ ¥ ¥(-D)7T B(e-1) ¥(x-D) T ¥ ¥(c-1)T B(x-1) ¥(x-1)

2 T ¥ |2
Y (k=1)T RP(x=1)" ¥(x-1) ¥ (e=1) T G- | @.6D
T+ ¥(e-1)T B(k-1) ¥(x=1) I+ 21T RCeml) ¥(k=l)
+
o 2 . '
¥(e-1)T PR-1)" ¥(k-1) . F [E(K—l)] F(k=1)T P(x-1) ¥(x-1)
I+ ¥(e-1)T B(x-1) ¥(x-1) ~ ™% % I+ 9(x-1)T P(x-1) ¥(x-1)

A

< [E(K—l)]

lrl
—);nin [ E(K—l)_ﬂ

B k=1 = )
£ {I A (i) T} o1

;;@. ) e ‘ = '\—min_[ lz’(o)_l] (2.62)

A
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Equglity (2.61) and inequality (2.62) give

)Y "l . 5
1360 - §G=D 12 < 1 {; vy Th [Y(K-l)T @(K—l)]
\mi [P(o)—l] = L+ #G=1)T B(k-1) ¥(x~=1)
nt= -

The above inequality and the equation (2.54) imply that

vim [ [8() - Be=D[]2 =0
K>

which is equivalent to
vim | [80q) - §k-1) ||

]
o

Tl

The above eQuality proves property P2.
Figally, property Pl must be proven.
Equation (2.46) implies that
V(k) € A(k) V(k-1) - (2.63)

From ineguality (3.63), it is easily obtained that

K .
V() = {1 A} V(o)
. i=1
which implies that

< K A -1
YT ¥ T A @) §@F 2 E)

' i=.'1

er
& ,
Lo el £ 6 e Ly [ee T e
RGO W) N ORI L
-~ or .
_ L
ol < e E97] Eol?
mi [g(o)-ll
in
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a or
TE IR IO : (2.64)
where
v [P'(o)-l] E
,(1 = max =
Y -1
N min [E(O) ]
is the condition number of P(0)-' . Usually, k; is chosen to

be equal to one. For k;=1 , inequality (2.64) gives
r\l .
180l < HE@]]

This inegquality proves property P1.'I£ also implies ﬁhat the
norm ©of ‘the paraﬁeters estimates, given by this algorithm, ,
will never be worse than that of the initial éuess_Q(O) for
the true-‘parameter vector fo. ,

Dé;pite its useful properties, the above analysed
identification algorithm ‘qannot gﬁarantee that the
parameté?é will éonverge to wthe true ones. In process
ideﬁtification the objective is to estimate the .trqe
parameter values'\in 'a finite time and not Jjust have
asymptotic convergence of the parameters (to any value that
reduces the prediction error to zero). The next'question 'is
to see if there are any conditions under which the estimated

‘parameters converge to,the true ones. This is discussed 1in

Athe next section,
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2.4 Exponential Convergence

In a‘blosgd loop system we are primarily interested 1in
keeping an output close to a dgsired value or to force an
output to follow a desired trajectory. There are many cases
where this objective can be achieved with only
asympototically converged parameters (i.e. true parameter
convergence is not a necessity). In any case, this does not
mean that knowledge of the true parameterﬁ»is not desirable.
As - it was previously mentioned, the idea of the certainfy
equivalence principle has been widely used in adaptive
control.  Obviously, fast identification of the true
parameters will shorten the transient phase -of | the
controller. The controller will converge to that one for
which some stability results of the closed loop .system have
been derived. There are many cases (i.e. a pole assignment
‘algorithm) where global stability of the closed loop system

’

can be proven only if exponential convergence to the true

parameters 1is guaranteed (Anderson and Johnson (1982),-

Anderson and Johnstone (1983)). Also systems which are

exponehtially‘ #%bnvergent exhibit improved 'robpstneés
properties (Johnstone (1982)). For the simple identification
prbblém, exponential convergence to the true parameters can
be defined as the desired objective;

The identification scheme, analysed in the previdhs
section; cannot guarantee‘that exponential convérgence will
%ccur. It is our objective to seek <conditions under which

the 1identification  scheme used also guarantees exponential
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converéence,

Identification of a process cannot be achieved unless
the input signal excites all the modes of the system. So,’
the input-signal must hav? sufficient energy to do it. In
other words it muét'be-persistently exciting. But how is a
persistently exciting signal defined? Roughly speaking, a
signal is persistently .exciting if it is different than
zero., The next questiqn is: are all the honzéro signals
»pérsistently exciting? The answer is negative. For example,é““
let us consider ‘the coﬁstant unit signal i.e. u(k)=1 for all
k. Then equations (2.1), (2.2) and (2.3) give that

.y(k)=a1 y(k-1) * oot oag y(k-n) + bg.s + .... byem
It is . very easily seen from  the above equation that‘we
~cannot identify each of the b's pafameteré but'ohly the sum
of them (Astrém (1966)).

The next step; is to ‘try to define a persistently
exditihg signal. 'Cdnsider ..tﬁe equation (2.47). This
,eqﬁation, for A(k)<1, giveé that v,=0 So, for k(k) less than
oﬁg,”ﬁthe Lyap6nov type scalar functionvv(k) converges to

zeto. By definition

v

V() = 36T BT 80

Since. our objective is to get an estimate of the true
procéss parameters, at the-limit we want V(k) to approach. to
zero not because P(k)™' approaches to zero but because 8(k)

becomes zero. From equation (3.39) it can be shown that

V(i) ¥(k-1) P(k-1)T _ (2.66) -

P = (D) BT+
3 | .

e A
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The matrix P(k) ' will be kept away from zero if

(2.67)

- K
p, < A, L ¥(k=1i) ¥(x~i)T
i=1 '

where p4 is a suitable positive number. On the other hand we
want to identify the correct paraﬁetérs by wusing bounded
signals only. This means that the ;egressor‘g(k) must be

" bounded. Under this requirement, inequality (2.67). gives

- K : ‘
p . . o
l=

where p, 1s ,a suitable positive number. The previous

‘analysis is quite empirical but it gives an insight into the
¥ Co

definition of a persistently exciting signal found in the
literature.
According to Anderson and Johnson (1982) a signél u(k) 1is

said to be persistently exciting if

( u (k) 1
J+S ol
o <pyl < T u(x=1) {u(K) u(k-1) ...u(xk=-p) | < o, (2.69)
J . : _ _
] u(x—=p)

for somevpg, ps, p, S and all j. With s, we denote the time

_interval over which th signal 1is persistently exciting.

'

Since  inequalities between matrices are not allowed,

inéquality (2.69) 1is wvalid ohly in terms of minimum

y

eigenvalues.
. )
In the sequel, we shall prove that the ®identification

scheme (2.24)  to (2.30) is exponentially convergent if the

regressor. y(k) is persistently exciting. A similar result
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has also bee& derived by Johnstone (1982). Our reslt,
presented by“Theorem 2.3,rcan‘be considered as an exﬁension
of Johnetone‘s work for the case that a variable forgetting
factor is used. Before we prove Theorem 2.3, the covariance
matrix must be provehkto be bounded from above and below.
This is done in the following theorem.
Theoreﬁ_Z.Z

I1f the regressor is persistently exciting in the senee
that for some constant integer s and all j there exists

positive constants p, and p. such that:

2.70
0 2 01; <z ¥ (x-1) E(K—l)r < p, I <= ( )
k=J “
then, for all kzs+l
1
0 [ A B l] 2 k-1 8§ 1
o< 1| min. I<B() <A r  P(i) 4 1 al
1 1 S+l e T 1 -\ -7
(’“r) (’T") -1 max
min min

where Amin and Amax are the minimum and maximum allowable
values for the forgetting factor, respectively.

More specifically: 0<AminsX(k)<Amax<!

Proof:

From equation (2.3S) we can conclude that

L) #(em1) ¥GemDT < RGO (2.71)'

The comparison of the matrices, in inequality (2.71), is 1In
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terms of minimum eigenvalues. It simply means that the

matrix P(k) ' 1is more positive than the matrix A(k) y(k-1)

L]

y(k-1)*'. Inequality (2.71) also means that

i+s s -1
P owe-l) ¥(e-DT <L L R (2.72)
- - . T—‘_' .
=] K=y (K) ~
Inequalities (2.70) and (2.72) give that
j-.G-s J -
o < o) I< I 1 E(K) ! (2.73)
K=j X (K) '
orlequivalently
1l ~1 . -1
S S U 100 Rl U YOr S w SR TS
N6 v (5+1D) “(G+s) |
(2.74)
Also from equation (2.39)
-1 -1 ,
ANx) B(x=1) < B(9) (2.75)
By using (2.75), ineguality (2.74) can be written as
< 1 1 1 P(its)
RENE . S U i {CT
j+s jts _J+s
- 1 A (k) 1 A (k) 1l A ()
K=5 k=9+1 k=j +s . (2.76)

E

At this point we introduce a lower bound, Amin, for the
variable forgetting factor A(k) such that
Amin € A(k) for all k (2.77)

Inequalities (2.76) and (2.77) give

o, I ¢ 1 1 1 PG +s)
1 [ el + = + e + — = (2.78)

min min min



1f S,., stands for the summation in brackets

(2.78), the following will be valid

541 1
! _r[ 1]5 -1
\ \ }
. . . L .
bj+s min min
L -1
\
min
Then
R S
w \ _l
y < 1 min 1 2 B(3+s)
1 1 45T
R e B
nin min
or
1
\ -1
> <1 min 1< P(x)
+
B 1 oM
e
min min

for all kxs+1 and this completes the proof.

in

32

inequality

(2.79)
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*In order to prove the upper bound of P(k) ', equation (2.39)

is used. From equation (2.39)

.
PGOT < A0 pk-DT 4 ¥(k-D) B(emD)T
or
i+ i+s - j+s )
; ° P(K)-l < A (k) E(K-l) : + I ¥ (x-1) ‘_{'_(K—-l)1
K=j - - K= , K=rj
and by using (2.70)
j+s _ jts -1
TPt < I (o) Blk=1) + 0, I (2.80)
<=3 k=j

If we impose an upper bound \max for the variable forgetting

factor A(k), inequality (2.80) will give

R(H 7L+ B+ 4 L+ g_(j+s)f1 <
A pG-1)"" + p) Tt o+ p(5+s-1) (2.81
nax P(G-1 P (5 Ce. =(j+s— ) + a, I . .
Inequality (2.81) gives
, -1 ' -1 ;
P - . - ) . . -1 . -
BG-T + ..+ BGRs-DT < A [g(j-z) + o+ RG]
-1 -1 -1 -
B(1) | + ... + B(s+l) < *max-[ P (o) + + B(s) l ta,l
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From inequality (2.80) and the set of the above

inequalities, the following results

Jt+s L=l s L -1

-1 oy \ + 0 [
£() max (1) ALY L T max | 0 =
’\=j i=0 B
or ’
J__L " J
P(j)—l < : ; B(i)“l + 1 - \max a. I
= - max , -, - =
i=0 I -
max
//
or ‘ T
‘/
-1 V-l S -1
P(x) < L P+ 1 a, I 5
£ S omax o - —— %2 = (2.81)
max

and thic completes the proof.

Remark 2.1

It is very interesting to see from inequalities , (2.78)
and (2.81) that £he inverse of the covariance matrix P(k)
will alﬁays remain bounded away from zero and infinity 1f
the regressor is persistently exciting. This automatically
means that the covariance matrix will remain bounded too.
So, by wusing persistently exciting signals, the "drifting"

-and "blow up" problems are eliminated.

Theorem 2.3
If the sequence ¥ (k-1) is persistently exciting then

the recursive least squares algorithm (2.24) to (2.30) with

]
oy
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variable forgetting factor

exponentially stable.

Proof:
By definition
v = J0T ™ T
Recall that

Vi) < M (k) Vie-D)

Then,
K
V(<) =< (T V(i) V(o)
i=1
or
n -1 e

Y e S < b @Y 8o) BT

i=1
or

’\min [E(K)‘l} HB(K)HZ < U.I .
) i=

and by using (2.79)

0 \ .
1 min <

{ s+l ] Hieolis < )

)‘l } -1 i=1

or

I

§(0)

&

- r _l hl
V(1)) max | R(0)

35

(Aminsh(k)<Amax<!) is

JEIONE
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B

~ Inequality (2:81) proveswthe exponential' stabil}ty ~of the
identifioetion ' scheme under the assumption that an upper
bound Amax, les% than one, for the variable forgetting
factor is ueed : "

It 1s interesting to see that the conditions, Fecessary
for exponentlal convergence of the 1dent1f1catlon scheme,
are .exactly the same as those mentloned ink the discussion
when we tried to give an 1n51ght into the deflnltlon of a
persistently excltlng ‘signal. 'It also must be mentloned
that, 1in an identification problem, the only signal that we
~can manipulate is the process input. We can force the input
to be persistently exciting put nothing can.oejsaidvabout
the regressoriﬂlt‘waé not until 1982 when AndersoJ: and
ﬁoﬁnSOn (1982) provec tnat for ; DARMAvoodei a persistently
exciting input guarantees that the regressor wiliiy be .
petsistentlytexciting. N |

Having seen the wusefulness of persistently excitiog
signals,5 the youestion to pose is: Is there any particular. _
Ttiase of persisteotly,exciting signals? Ohe type of signals,
sat}efying this requirement‘ is the periodic signals (Lioo
 (1967)),'Also,quan and Wonham (1977) discués the design of
:Enput' signals (or problggN 51gnals) to ensqre exponentlal.,
'convergence, Most of the 51gnals, -that thex,mentlon in their
work,  are perlodlc. Exponentlal convergence 1is always
desirable but in a closed+ioop system the excitation‘of the-

o C
process must ?ge minimal. At least for the continuous time

oy . :
- domain, there are theoretical results (Boyd and Sastry
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(1983)) which relate the amount of minimum excitation to the
number of parametegyg that must be identified. But nothing is
kno&n about the reduired energy of the persistently exciting
signals. | . o

Having analysed the ‘recursive. least>' squares
identificaton élgorithm S2.24) to»(2.30), some simulation
fesults are presented, in gﬁe next section, to illustrate

its performance.

2.5:Simu1ation Results
In this section, we shall examine the performance of
the identification algorithm (2.24) to (2.30) by identifying
a second order procesé. Also, the significance of different
parameters, which are user specified, will be considered.
We consider the follow1ng process:
y(k)=1.2 y(k- 1) - 0.52 y(k-2) + 0.2 u(k—1) + 0.12 ul(k- 2)_
This process 1is 1dent1f1ed under different conditions, as
shown 'in Table 2.1. In figure 2.1, the process input changes
from 1 to -1 every five sampling 1ntervals. By %Qplylng this
type of input, the process output responds with a trajectory
which 1is in figqure 2.2. From figure 2.2 {t can be seen that
the proCess and modél outputs match Very wéll fro@-the very
beginning. This is due to the exact estimation of the’true
pfoces; parameters, as it cad be seen from figures 2.3 and
2.4, The trajectory of the{férgetting factor can be seen in
figure'2.5.:After‘the first iteration, the forgetting factor

drops . abruptly because of the prediction' error. The
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forgettlng factor goes to its upper -limit, when the

prediction error becomes zero. By comparing fiqure 2.3 with
figure 2.7 and figure 2.4 with figure 2.8, we can see the
effect of the parameter No, when all the other parameters
aré kept constant. We can’see that a large variation of t%é
N, does not cause any 51gn1f1cant change in the estimation
ofA the parameters. We cannot generalize it 51nce,Ain our
case, the prediction error becomes zero very fast.

Next 'we want to illustrate the effect of the initial
value of the//covariance matrix on the identification
perfbrmance. Figures 2.9 and 2.10 have been drawn under the
same conditions as the figures 2.3 and 2.4 have except that
the initial covariance matrix is 50 I instead of 10°¢ L. The
{covariance matrix reflects our confidence about the initial
parameter vector §(0). A small initial value means that our

'gﬁess fot §(0) is good. So,v the estimation must proceed

slowly as >it appears to do in figures 2.9 and 2.10. In

-,

figures 2.3 and 2.4 the large initial value  fo
covariance matrix leads to sharp changes for the
@

‘estimates between successive sampling . instants.

Figures 2.15 and 2.16 have been drawn for

forgettlng fact r less than one (Mmax=0.9) The process 1nput”
used 'in this simulation run is of thé 1nput form shown in
figure 2.1. Despite the large number of 1teratlops.(1500 in
this case), Ehe "blow up"” problem‘hqs been avoided because
the eXciﬁation introduced by the input signal assures the

* “boundness of the covariance matrix. This agrees with
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inequalities (2.79) and (2.81) which have been derivéd under
the assumption that the regressor is persistently exciting.
The same simulation run has been repeated with a constant
input signal equal to one. The ."blow up" problem occured
after 249 iteratibns because of the insuffiéiént excitation,

Figures 2.13 to 2.16 have bgen drawn under théJLsame
conditions as. figures 2.17 to 2.20. From these figufes we
can conclude that if we do not excite the process quite
frequently this. can lead to the "blow up" problem. By

appiying a stepwise input which -changes from 1 to -1 every

200 sampling intefvéls; the "blow up" problem occurs after
131 iterations (figure 2.13). This probiem can be avoided if

we apply a more exciting (or dynamic) input (figure 2.17) s

So it is not always wuseful to |wuse pegsistently exciting

'signals i.e. one could only have -a stationary step-input and

yet not have convergence. For exponential ' convergence one

§gnitude as well as the

3 ¢

gence has taken place then a

that are "exciting" in the’

frequency content. Once conver

“practical approach to prevent the 'blow-up' problem in the

[ .
absence of persistent excitation is to change Amax=1.0.



TABLE 2.1

Summary of the simulation results illustrating the performance of

X

Simulat¥on Run  No

identification scheme.’

P(0) Amax

Amin Figure Number

1 10°
2 1000
3 ) 10
4 10
5 10
6 10

10¢ 0.98
10°¢ 0.98
50 0.95
10°¢ 0.95
10¢ 0.90
10 ¢ 0.90

| 0.9 (2.1) to (2.6)

0.9°  (2.7) to (2.8)
0.9  (2.9) to«(2.10)
0.9 (2.11) to (2.12)

0.7 (2.13) to (2.16)

- 0.7 (2,.17) to (2.20)

40
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2;6_Conclusion§ | _

In this chapter we have S?%sented the identification
scheme which will be wused in the rest of this work.
Initially we presented its derivation and juétified the need

in using a variable forgetting factor. Subseqdéntly we

established its usefulness by proving properties P1 tO'PZ; A

grafOT a c¢losed loop system, has been done by
Cordero ™ ¥ Mayne V(1981) but they require the covariance
matrix tb:-é’bouhded in order to prove the stability of the
identificqtion scheme.' In our work, we have.removed this
assumptiéh. After justifying the need for exponential
convergence of an identification schemé, wé prqved thét the
identification scheme used in this work 1is exponentiallj‘
convetgent if the regressor is persisténtly exciting and the
forgetting‘ factor is léss. than one. The analysis on
. exponential cdnvergence led us to the conclusion that the
"blo& up" problem can be avbidea if persistentiy‘ excitihg
signals are used. Despite its complexity, vdue‘ to; thei
variable forgetting factor, tﬂis analysis can be conéiaéred
as a direct éxtension ’éE dohnstone's results in the case
that a variablg forgetting factor 1is ﬁsed. Also we tried to
give an insight into | the definition of Va persistently
exciting signal. Finally, simulation results illust?ating
the performance  of the identificatién scheme have been

presented. A »



3. Pole-assignment control algorithm (PACA)

Q

3.1 Introduction
.The vcgﬂventional three term (PID) controller is
unqﬁe%??onably the most common regulator in industry.
Des&ité ghis, ;therq' are many cases where this simple
cod%rolleé;cannbt perform verf well. There are processes
wheré it is more advahtaéeous .to use more éomplex
‘cbntrollers. Thé time,varying nature of many processes is
the main reason for using more complex'contrdllers such as
adaptlve controllers. Since its introduction (Kalman (1958))
. thg area of0 adaptive control has grown 5ubstant1ally AL
number of different adaptive control strateqies has been
1ntroduced 'All these controllers can be separated into two
classes frbé\ design point: of view. One cla?%ﬁfvis
characterized by Ehe dlrect method of design; whiie the
other one by the indirect method The "basic conflguratlon of
a direct method can be seen in figure 3.1. ' é
According to this design pfocedure the controller parameters,
are’ directly estimated and used té calculate thq‘gaiﬁ;uéf
the control,bioqk. The estimation or identification‘ Blbck
does not ;requife any Vexplicit knoﬁledge “of the process
parameé@fs. ThlS ‘method: which is also called 1mp11c1t design
method‘ (mostly by the European' authors) was, orlglnally_

proposed by Whita%sr in 1958, The MRAS and APCS cont:ollers

are two representa%ives of this design method, -



-
v't‘* .
adjustment - ‘
% mechanism = 2 B
Yo : ;o u ‘ Y
—~@—_— regulator . process
(+) '
(=)
Figure 3.1 - General Structure of Direct Method
Thevbasic structure of the indirect or explicit method
is as follows: : “ o :
- ’ N . . ] .
R control e parameter . -
. design ' " | estimation ‘
outer’
loop
Y —— u : y
' .regulator - process .
' RNEN ; —
inher»
loop -
7

-ﬁ.:vrigure 3.2 = General Structure -of Indirect Method

TR
L 5 g



54

According to'thi% design method, the process parameters
are estlmated exp11c1tly. From estlmated process parametets
the controller gains can be calculated (indirect process of
calculatlon) The self tuning regulators (Astrom  and
Wlttenmark (1983)) are an example of this de51gn method.

It is usually very difficult to argue which is the best
~design method. Obviously, in the indirect method 51nce we
know the process parameters it is easy to construct the
control 1law. On the other hand, the ‘directl method is
computationally more efficient. Despite the design method,,
‘the stability analysis of the cloeed'loop syéteﬁ; under
adaptive control, was and stili remains a real. prOblem.
Stability - has been proven for a class of controllers but
under some assumptionsﬁ One usual assumption.-is "~ that the
process is assumed to be stébly invertible i.e. be ‘minimum
phase. Sioce many.practical processes exhibit some" form‘#of
nonminimum phase behavior depending ‘on the choice of the
sampiing time, this appearea to restrict the usefulness of
adaptive ‘control. ' However, during ‘the last  few years new
algorithms have been‘suggested (Edmunds (1976); Wellstead
et.al. (1979a, J979b), Alllndlna and Hughes (1980) Astrom
(1980), Astrom and Wittenﬁérk (1980), GoodW1n and Sin
(1981), Elliott (1982), Elliott et.al.(1983), Clarke (1982),
Anderson and Johnstone (1983) to name a fe&)‘ which partly
overcome these difficulties and have been shown to be

effective in many cases.
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The polé—assignmeht design’method was quite well known
a long time ago (Ragézzini aha Franklin‘(19585).-But the -
first suggested usé;of explicit~pole—assignment— controllens
was  in av thesis by'Edmunds (3976). This work was further
de&aioped by Weflsgggd- et.al. (1979a, 1979b) for  the
stochastic case, Deterministié éérvp designs.were'cqhsiaered
in.AstrSm(1980) and Astrom and wittenmark‘~(géﬁal. Goodwin
and Sin (1981) suggested a quite simple ald@%?ﬁhm for the
deterministic case;‘Local stability-results\hé%éj‘%lgo been
presented in their work. Elliott (1982),presetxéd é direct .
adaptive pole-assignment algorithm for noﬁ@ihimum phase
systems without any stability prqdf. Elliotﬁ et;al;J(1982)
presented similar résults bﬁt for the muléivariable case. In
v1983, Elliott et.al. (1983) 3preséntgd a.hybrid adaptive
._codtrolle; for assigning the closed loop poles~0f‘ a single
input/single output continuous  time system. The resulting
closed loop system Qanshown to be globally stable when the
reference signal was persistgpt;y. exciting.b It must be
mentioned that their stability analysis is wvalid only for
sinusoidal éxcitatidn” and tﬁis is‘a signifiqant érawback.
The second drawback is related to the sampling énd-parameferw
update scheme. A gey,to the proof was the use of é Speciai
hybrid samplihg and;xconpfbl parameter update scheme. It
required that the control'parameters remain constant while
N29n-1 sampfgs were processed (n 1is the order of. the
open-loop, systgm). Obviously this :conStrgint limits the

speed of adaptation. The pole-assignment algorithm presented

b 2
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By Anderson and Johnstone (1983) 1is 2 version of the,

&

algorithm of Goodwin and Sin (1981 . The ‘whdle ‘design is
base& on the: deterministic case and the structure of tﬁe
_co%trol law is such that global stability can be proven if a
number of_-fixed cdﬁtrollers and 'a pérsistenﬁly exciting
signal are used. | s

In this. work, the péle—assignment algorighm presented
bf,Goodwin and sin (1983) will be considered since it is
very simple and uses the ciaSsical approach (it can be found
in many tgxts).where,the control objective 1is to‘locate' the
closed loop poles at prespecified locations. Our objective
is to exténd the spébility analysis presented*by Goodwin and
Sih (1981) to the sfschastic casg.‘The theory rélative to

)

this control algorithm 1is presented in the next section.

3.2 Pole-assignment Algorithm
Consider a single input/single output linear discrete

time-invariant system which is cofrupted by a bounded

-

disturbance and is described by *

a(z7Y) y(k) = B(z71) u(k) .+ n(k) o (3.1)

where =z ' is the time delay opefato:, {&(ﬁ}lland {y(k)} ére

the inp¥t and output séquendes, ,;(k) ‘i§ the g0unded
ﬁdisturbancg at the discrete-timeniﬁétaht k. The polynomials
a(z"') and B(z")xape given by

_ ) - : - (3.2)
Az 1) =1 - aj z o, - ap Z n..

_ B(z—l),i b3+ 2=d-1 + ..+ D3im 2~ (m+d) : (3.3)
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-

where d is the time delay (dz0). Supposer that we try to

control the system by using the following control law

Liz7ly u(k) = p(z~1) (y" (k) - y(_ki] (3.4)

4

'.Vhere L(z-') and P(z"') are polynomials>in the z~' operatof
‘representing the‘denominator”and ﬁumératdr,‘respectively, of
the controller ’transfer function -while y* (k) is  the
reference input signal. | | |

~ The closed‘iqop control configurafion is gé‘follows:

x,
i

* -
y (k) e (k) Pz ") Cou(k) z B(z ™) + v
- Lz h T Azl [T ——

. Figure 3.3 - Closed Loop Configuration

In figure 3.3, e(k) is the tracking error defined by

V.

* l .
(k) =y (k) - y(k) _ S (3.5)

m
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while

~(m+d)

1 + +‘bd+m A | X (3.6)

By(z™1) = by, 27

We can easily find that the transfer function between y(k)

and y*(k) 1is given by

‘P(z—l) z—vd B (z—l) E
Xé&l— = =T = E = - S (3.7)
y. (k) L(z l) A(zgl) + P(zATB zﬁd B, (z 13

At least for the deterministic case, if our objective were
to have the system outpﬁt, y(k), follow the reference signal

1

y*(k) exactly this would mean that,

Liz7h az™h + pez7l) 279 By(z7l) = p(z7l) 279 gy(z7])

I

_ (3.8)
Equality (3.8) means that some poles of the <closed 1loop

system have been assigned to the open loop zeros. In this
~case, the closed loop system will have unstable poles 1f the
zeros of B,{(z-') are 1inside the unit circle i.e. if the
gystem is nonminimum phase. The idea of pole-assignment
cbntrolw is to move the cioséd loop poles: to desired
locations such that the closed loop system is’stable. If the

location of the desired closed loop poles is described by a
stable polynomial A'(z"),;then*~we have to estimate the’

g
controller by‘solving the foldbwing equation:

L(z™1) A(zf?),+ P(z7h) 279 By(27]) = a%(z7]) (3.9)

The gquestion ndg\is if we can always solve equation (3.9).

&
X
Pk Wt Ry
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The following lemma, taken from Wolovich (1974), guarantees

solution of equation (3.9) under some assumptions.

Lemma 3.1
If A(z"') and B(z"') are relatively prime polynomials

of the form

az™ly =1 - aj 27t - L - apb z° " ; a, A0
\

-(m+d)

1-4
+bd+mz : bd+m7£0

I N, R
B(z ) = bd+l Z e
then there exist unigue polynomials L(z-') and P(z"') of the

form

L(Z—y) = 1lg +‘ll A T | —r+l

~1y o . - i
P(z ) = lO + llz 1 + ...+ lr—lz r+1

with r= max{n, m + 4} such that
Liz™l) a(z™h) + p(z7l) B(27)) = a*(z7))
where A*(z-') 1is an arbitrary monic polyhomial of degree
2r-1. -
Proof

See Wolovich (1974).

In the general case where r=max {n, m+d}, equation’
. ‘

(3.9) can be written as



- ‘ - ( 1T i
1 0 Yo 1
» 1 by 0 ) N
ol ' by
. 1 0 fre1
dr-l . Ty broy : by Po (= (3.10)
-1 ‘ br—l .
L ) ar-1 br-l Pr—lj d;r—l
' JL L
< ,

Pole-assignment equation in matrix-vector form.

F&uation (3.10) can be solved analytically by using
/ ' ’

different techniques such as Gaussian elimination or

&

Decomposition method. The uniquehess of its solution is,
guaranteed‘ by the above lemma (Sylvester's theprem) since
A(z;‘) and B(z-') are prime polynomials.

In a closed loop system since we do not know the true
précess pérameters, we have to estimate them on line. Then,
accordng to the Certainty equivalence principle we use them,
as 1f they were the true proceés parameters, to calculate
the controller parameters by solving equation (3;93. The
identification scheme analysed in the previous chapter 1is
used for the identification process. Equation (3.10) is
solved analyticaly byvusing the decomposition method.

In summary we have

Process:
y(k) = o(k-1T 85 + n(k) (3.11)



Model:
y(k) = ¢(k=-1)T B(k-1) (3.12)
Prediction error:
e(k) = a(k) - y(k) (3.13)
L ]
Gain:
P(k=-1) ¢(k=1)
K(k) = T =
1 + ¢(k=1)" P(k=-1) ¢(k-1)
(3.14)
Parameters;
Bk} = Bk-1) + K(Kk) e(k) (3.15)
Forgetting Factor:
2
VKD = Ajay - — 2l (3.16)
oy + Gk=1)"RB(k=-D)o(k-1)1%,
or
AMK) = Apin 1E A(K) < Apip
XO = O'% NO
Covariance Matrix: N
| o P(k=1) ¢(k=1)T P(k=1)
P(k=-1) = —— [B(k~-1) - — ‘ ]
k) 1+ ¢(k-1)7 g(k—l)}l(k-L)
E , (3.17)
Pole-assignment equation:
.,’ . _1 B . -l ’ * » A
Lz " ,k) ulk) = P(z *,k) [y (k) - y(k)] (%.18)
Control law:
v LlzTh ) uk) = BezTl,k) (yTik) -ry(k)] (3.19)



-0 if : D S
. . ¥ VU
by = 0 if i <.d+l (%his reqyires knowledge of a)

b: = 0 if i > m+d L

1
B30T = laj(k) ... ap(k) By(k) ... Bo(k)] (3.22)
Atz7lk) = 1 = 4k 27l - Ll - A (k) 27F (3.23)"
Bzl k) = By(k) 27l - L. - BL(k) 27T o (3.24,
Liz7l, k) = Igtk) + Iy(k) 271 & + 1._1(k) 27 771
(3.25)
‘ 1
P(z7l,k) = Bo(k) + By(k) 27l v L. B__q(k) 27(rohy
(3.26)

It can be easily seen that the on-line implementation: ofﬁ'g‘

this control algorithm presents some probléms.~Eyén‘if the

polynomials A(z ') and B(z ') are prime, there is d&::‘f

guarantee that the polynomials A(z“,:k) and B(z",'k) williln

be prime for all k. For the time instants when these ar%'not‘

prime, equation (3.18) will not have'a unique solution. Gne

way of avoiding this problem is to assume (Goodwin and Sin A

o

/

B

RN
'.*.
5

v
k4

.
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»

(1981)) that our initial parameter vector §(0) 1is within a
region, in the parameter vector space, such that egquation
(3.18) is always solvable. Of coursei this requires good
apriori kndﬁiedge of the process under control. '
Based ‘on this approach they provgd local stability of
.t clos;d loop system for the deﬁerm(ﬁfjtic case. In the
nexﬁ section, we shall -use the same assumption to prove
local stability (boundness of {u(k)} and {(k)}} in the
presence of bounded disturbances. We sh3ll also discuss the
possibility of ?eméving this | aséumption and then

conjecture/speculate on global stability results.

3.3 Stability Ana1y525'

In this séction, we shall prove local stability of the
control algorithm proposed in section- 3.2. We shall |use
different ways to approach this problem in the deterministic
and the stochastic cases. The reason for this 1is that the
stability analysis 1s based on the convergence of the

~estimates of the process parameters. The <identification
- scheme‘ as it was proposéd in the second chapter can only
| guarantee convergence of the estitates of the process
parameters in the noise-free .case.h If we still want

WYy
NY. .. .
convergence of the parameter estimates in the stochastic
S 4

"

case, we have to modify the identification scheme. The idea

is to stop adaptation when the predictian error e(k) becomes
less than a function of the upper bound of the noise. This

| !
idea has been introduced by Martin-Sanchez (1983) who used a

@

-
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projection algorithm. For the deterministic case, the

identification scheme given by equations (3.14) to (3.17)

v

will be used. In the stochastic case, equations (3.14) aps .

(3.17) will be substituted by the folldwing equations.

| g(k) B(k=1) & 1y °
K(k) = . | (3.27)
1 + plk) ¢(k-1)" B(k=1) ¢bk-1)

and
‘ . . N Lo T
N o (k) R(k=1)e(k=1) g(k=1)" Rx-1),
P(k) = (P(k=1) =~ : '
200 = ey 1R L+ ptk) (k-1 ROCL) skl

[ 4

' . ~ . . . v
respectively. The scalars- p(k), which are-positive numbers,
are defined below and used ‘'to determine a criterion for
stopping or continuing parameter adaptation .which is

essential for the proof of stability. We deﬁihe;

\

' » - ‘ ) @,‘.
~al plk) = 0 if and only 'if
le(k)| < Alpy, Bps K) € 28y < @ c, (3.29)
ﬁ‘ ’ Al £ //}
A - -
C . ' . .
©and | 3 : S B

G - 2+ 20y w(k=1)TR(K-1) e(k-1)
Ce K AEY s Bpr K) = T - A
o ‘ 2 % 03 Glk-1) P(k=1) ‘¢(k=1).

b 13:30)

- s |
B .. ;é . . . : ER . > . ‘ y ';: - c’) : “' . 3 : .
with, 0 ¢ py < @~and by 2> max|n(k)| . S (3 1)
' SR 0< k ¢ = '
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where p; is a lower bound for the ;calars‘p(g) and Ab is an®
estimate of a constant upper bound on the absolute value of

the bounded noise, n(k), affecting the sYstem.‘ :

bl o < o(k) < pplk) < p, < = if and only if

!

H

wlll stop adaptatlon when' |é(k)| is less than

Aoy, Aps k)

P

r-

« (3.
. T

or egual

to

Durlng periods when |e(k)| is greater than

S .
the scalar o p(k) is chosen 1in

" e
~ s 2

C am-

such

o

a
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LIS

way

k)‘) A,(pl, ‘Ab’ k) > Ab # (3.32)
where pb(k) is defined. as follows: , v R
11 eplk) = py iE elk)| > aloys Bpe k) (3.33)
, | ¢ﬁ  (k@1 - - |
21 pplk) = & ﬁ? ‘ . (3.34)
| (20, +* e (KA, % wl & -1 ,p(k 1) Glk=1)
b 4@ 1" 5
if calpys by k) < Jel(k)] < alpyr by K)o S (3.35)
o . ’
Accordlng to the deflnltlon of pb(k), *in equati@hs (3.33)
and (3.34), it can be proven (Martin- Sanchez (1983)) that
for all p(k)#0, the following condition is verified:’
B ) & P 3
2 S I S T S
S et > aletk), Ay, k) = p(k) ¢(k=1)" P(k-1) ¢(k-17 %éﬁ
R ' o ' . A
, ¢ 2%k wlk-D)Y Bik-1) gk-1) D
. | I (3.36)
The éBbve modified - least squafestidéntification‘angriihm :
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%" . . e 6 6

‘that inequality (3.36) is satisfied. For this particular

identification ’spheme, we can prove that the norm of the
parameter error vector will be degreasing function over time

in the sense that S e
800T k=171 Bk) ¢ 3(k-1)T B(k-1)"F B(k-1)

for all kz1, if the adaptation is on.

a

Lemma 3.2 ’

Along the solution of the modified least squares

- algorithm

00T pk-1"1 Bk < Bk=1T pk-1971 Bik-1) Yoke> 1
| o/ . | L (3.37)
during periods of adaptation.

Proof: .
We 'define .the a posteriori“pgedicﬁion error e(k/k) as
ewqgfym)—gmquQW)=QWAJTQK)¢nmr  (3.38)

. . Q

Equations (3312),'(3.13)>énd‘(3.38)) give that
etk/k) - e(k) = o®-1)T [B(k-1) - B(x)]

+

€

- or

elk/k) = e(k)
» L+ plk) s(k=1)T R(k-1) ¢(k-1)
‘ . A

(3.39)0

opUsing equation (3.15).

From equations (3.15), (3.27) and (3.39), we get that

-

Bk = Blk-1) + plk) B(k=1) u(k=1) e(k/k) . = (3.40)¢
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.
which means that

&

S(k) + p(k) B(k-1) u(k-1) e(k/k) = B(k=-1) | NEWEE

(5

By multiplying egaution (3. 41) by 8(k) P(k-1)"', we get

50T ple-1971 Jky + o(k) _@(k)?g(k—.l) e(k/k) =
' » " g Pl
30T pk-1)71 Bk-1)

or

3007 pk-11"F Bx) = (B(k-DT - a(k=1)7 Blk=1) o(k) e(k/k)]
. A | .
p(k-1)"1 B(k-1) = p(k) elk/Kk) 00T w(k-1)
= 3(k-1T p(k-1)"1 B(k-1) - (k) e(k/k) G(k-1)T B(k-1) -

p (k) e(k/k) w(k-1)T Bx) LV

-

=8(k-1)7T B(k- 1971 e(k S1) - 2p(k) e(k/k) w(k-1)T e(k) -

> p(k)2 e(k/k)2 o(x-1)T B(x=1) o(k-1) (3.42)
Since we require:
30T pix-1)"L Bk) < 8(k-1T px=1)71 F(k-1)
guation (3.42) implie¥® that - ‘ .

—2e(k/k) u(k=1)T B(k) - p(k) e(k/k)?

® |
or . ) . B . . ',__\.‘7 | . . E .
-2[e(k/k) - n(k)] e(k/k) —'\p(k k/k (k 1)
“‘, . . _4'7 T |J‘ ‘A . )
P(k=1) a(k=1) <0 . o
. . ‘ '/

O
"~

2 n(k)| < le(k/k) ] 12 + pdk)a(k=-1)T B(k=1) @(k-1)]
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,I§<k/k)| > 2{n(k)]| R o)

2 + (k) .w(k-1)7 B(k=1) (k-1)

Prom (3.39) and (3.43) we get

2+ 20(k) o(k-1)T B(k=1) &(k-1)

le(k)|] »

//
in(k)]  (3.447
2 + p(k) g(k—l)T P(k=1) ¢(k=-1) . , > ‘

Inequality (3.44) is valid since condition (3.36) is always
valid for every p(k)#0. This proves lemma 3.2.

1f we assume that we also know the minimum value, A, of the

.. wupper bound Ab and that

.

ﬁ“ Apy = Ap = ¢ where 6 > 0
A = max Ink)# |
_ © 1<Kk<w C '
we can follow the same lines as in Martin-Samchez (1983) to

P . ‘ . ,
prove that if the numbé@ggf rime instants for which p(k)=0;

tends go infinity, then
- A5

4 Mim oek/g) =0 - s L Q
. 4 m‘ , . l' .

K+ Cd o o Lo
o | ) ¥ ?& . Y %Q?E
and s . k ;
. e
. .. ‘ “y . ’ % R
©@im | 18(k) = B(k-n){i < 0., s any finite n
RN : SR ' v.

v

The latter implies asymptotic cbnve:gence of the parametér"

estimates in the limit.
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| : Having proven these preliminary results, we ‘shall
.proceed in proving local Stablllty “of the closed loop system
under pole a551gnment control 4ﬁe problem related to the
'solvablllty 'of the pole-assignment equatlon (3.18), during -
‘the trangient state of fhe system, can be ayoided ;f we'

" assume good knowledge = about the process parameters. Tne
foliowing lemma, ° presentegg“in' Goodwin and Sin (1981),
overcomes the solvabilfty problem oi-equation (3.18) during

the t:ansient state.

Lemma 3.3

gy 'Ja!£:g1on in the parameter space centered
sty |

Ay T e AR 4 . . s T e . :

Refing Madious g20, such that if fogds.within this

then equation (3.18) 1s‘solvable for all k and both L(z ', k)

, and P(z k) have bounded coeff1c1ents.

A4 ]
. ) . ‘.

Proof: , _ ‘
éeevproof'dn Goodyin and §in‘(198i). '
v wour stability result will Sé‘-gased on--the following -
# assumptions. | | |
A1) r=max {n, m+d} is known
A2] n(k) is bounded noise for all k‘with Ab
an upper bound. A . | ‘ .
A3] y;(k) is a‘boundednreference signai for J%y/k,
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“ | NEEE ' P w700
’ . - C ,ﬂ«WwQﬂ ‘
- . . ot ! f“". o
AQ] A*(z ') is a stable monic polynom1al of degree 2r-1 @gi
:AS] Lemma ‘3.2 is satlsfled " _ ’ S
A@ﬁ Process parameter adaptatlon is turned on or off ‘ 5.
“accord1ng to the modified least squares identification
algorithm.

A7] A fixed galn controller abPe to stablllze the system is
used when the parameter adaptatlon is on. | ' e

Based on these assumptions, the following theorem can

be proven. R o ' ’
‘ * e . ) B . . '

Theorem 3.1 . Bnal
If the assumptions AT to A7 ar& satisti
. - ) o ’!’% p T

(3.11) to (3.26) is stable in the sense tpat~-J o i
a] {u N}'yis bouhded : L .;_rz')' ;y§f4g¢* ’%gr‘
bl {ﬁ§kk} is bounded y R
cl Thy" fixed gain controller will be used only )
f;n%kely often. B | o .
Proof: S % : ) | ' :
W; define ¥ ’ -- | : ‘” .l
AB = X ajtk) By(k) 2-143 = BA <3.45)'
] S |
A-B = i?ﬂ;(k) by (k=1) z’l ] ;‘MA& m (3. 46)
.d é =B (z71, x-1) " 3 47)
e Lol
. Note that Z\fs = A+B = _§1§ ‘, n m oo )
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when A, B are time invariant ,

We also have

Ay (k) = Bu(k) + n(k) . (3.48)

d* .
Lu(k) = Py (k) - Py(k) (3.49)
AA ’ A A »*

The préaiégion error, e(k), is defined in ‘equation (3.13).

We have
e(k) = y(k) - y(k) 4
= y(0) = o(k-1)T B(k-1) B
sy T VR (KRR (e)n = B g ihel) Pk-r) -
’ 1 (k=1) u(k=1) - - (k=1) ul(k-r)
\
= -ap(k=1) 27h - 0 = & (k=127 yik) -
(b (k-1) 271 + + b o(k=1127F] u(k)
or 2 -~
Cr

;E> e(k) n‘\jk) - BU(k) . ; - (3.51)

We also define the aux111ary signal w(k) as
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2
. “

e | RN (3.52)
wik) = APy (K) | y

Equation (3.52) gilves that

i
o= B
.
o
ol
x

wik)

[A.P - AP)y(k) L

= A Lu(k) + B Pik) +

(A-P = APly(k) -

= ALu(k) + BPu(k) + Pe(k) +,»[£,-£$—: }A\I:]u(}d- +

Send

Peen

3>
L]
>
i
Ty
o
c
-
+

= Alu(k) + BBu(k) + Pe(k) + I
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or
wik) = A"u(k) + Pe(k) + [AeL - ALJu(k) + [A+P - AP)  y(k) &
[PeB - PBJu(k) ~ (PeA - PAly(k) (3.53)
We define the auxiliary signal x(k) as

x(k) = BsPy (k) (3.54)

Equatioﬁ (3.54) giveg
x(k) = é;ﬁy*(k) T
= BeLu(k) + BePy(k)
=.éﬁk(k) + [BeL - éﬂ]u(k) + BPy (k) +
| [é-ﬁ'5 BBy (k)
= BLu(%) + ALy (k) - fB(k) + (B-L-BEJu(k) +
éﬁl;(k);;'iﬁg(ﬁq +;ﬁe(k)

= ALy (k) + BPy(k) - fe(k) + [

0>

L - gﬁlu(k) 4
(BB - BBly(k) - Aly(k) + "

L. [Ay(k) - Bu(k)] # BLu(k),

= Aly(k) + BBy(k) - fe(k)

T a,.A“ -

or
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,

Equations (3.53) and (3.55) give that

: . .
.~ r t
“iar = Pokr | AT e AL - ALY e gDen - By Aeb = APY - Den - DA oo

|
r
xik) ¢ Le(k) ¢ (Bl - BL) - Lew - LB AT e e - BB » ILea - LA v
L ) , o
") it
{3.561}

Equaticn {3.56) can be regarded as a linear time var&ing

dynamical system having inputs {w(k)}, {x(k)} and {e(k)} and

outputs {u(k)} and {y(k)}. Inequality (3.29) means that the

polynomials Alz-',k) agg B(z-',k) will have bounded

coefficienss for all k. Also g has been chosen as in' Lemma

3.2, Then, Lz ', k) and P(Z‘T,k) will have bounced

coefficients for all k. Diiring periods when the adaptation

is off, the square brackets in equation (3.55) will be zero.

In this c‘uation (3.55) reduces to. the following one

o

. b r U ““ - ; 1
A - *
wik) -~ Pe(k) | |a" 0 | julk).
v = .; - (3.57)
x(k) + Le(K) 0 A" v (k) ' o
L 4 - L P L p

’

=
.
“.

The sequences {w(k)} and {x(k)} will be bounded since the
polynomials A(z™',k) and Bz~ , k), L(z=',k) and P(z ' ,k)

have bounded coefficients while the sequence ;@J(k)}, by

Vassumptién, is bounded. Then the sequences {u(k)} and y{(k)}
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¢ ‘ 4
will not grow faster than linearly with respectl ‘tos e(k).

: RPN * \3“ 4 5
This means that the sequence {|[|¢(k=-1)[!} wibﬁ be "lirearyy
R LR &
bounded by |e(k)|. d S : N A %a
| " S AN
Then, : ' v B T
A . g , o
lo(k=1) || < C + Cp » max  le(<)] s (3.88)
0< 1k ' %,
‘where )
0 ¢<C <= and 0 < Cy < MY ' Lo

During periods when the parameter adaptation is off, we
ha ve ./-A' “i%*‘,

le(k)| < 28y

For such periods of time, inequality (3.58) implies that the
sequences {u(k)} and {y(k)} &re bounded. At the limit, since

convergence of the parameter estimatés is guaranteed'bg the

[l
¥

identification scheme, the sequences {u(k)} and {y(x)} Xill
also  be bounded. If -the adaptation is | bn, the » fixed
controller guarantees - stability | of Vthéﬁfgsystem, by

assumption. The problem is how someone can shorten the time

. period over which the fixed gain controller. is wused: This

3

can only be done, if the,d‘te of the parameter converdence
is increase®. This implies that a bersisteﬁtly exciting
reference signal must be used. In the detegmihistic case,
the unmodified identification scheme “the second chapter“

can be used. This identification scheme guarantees

propertiés P1 to P3. For this case, inequality

S

13.58) will =,

Ty
PR
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also be valid. From equation (2;60)‘and ihéqdality (3.58) we

can conclude that the sequences {u(k)} and {Y )} are -

bounded as well as the predlctlon error goes to zero, on

]
using the Key technlcal lemma of G&odwln, Ramadge and Caines

]

(1980), Still, the stablllty is asymptotic because property
P2 is valid in the limit. It seems reasonable ~to seek for
conditions to shorten the puneq.i~:od over whlch property P2

o

does not hold. In the next st e shall show that a

persistently exciting referg ignal, desplte the presence

- of bounded noise or not, C*:;ﬁ ;d to a persistently exciting

-
regressor. For the least"S

.

a forgetting factor less 1

'pares idpntification scheme with

Chapter 2, that exponentially fast estimation of the true
process parameters 1is possible. In such a case, the closéd
loop system will  become exponentlally sgable if no
disturbances affect it'while in the stochastic case the
total time period ove;\which the fixed gain controller is
used will be kept as low as possible,.
Q

34 Global Stabilit§

The previous stability analysis . is loéal in nature
since our initiai parameter véctor 9(0) must pe close enough

. / N -
to the true one. Instead of having a good initial parameter

-

vector 6¢0), suppose that we start controlling the process
with a fixed controller and run the identification sch®me 1in
"a passive made. In the deteministic case, we shall turn to

the adaptive pole-assignment controller only when  the

n one, it has been proven, . in .

b4

N
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L ' s

parameter estimates get into the region g of the parameter

!

vector space.mentioned in lemma 3.3. In the stochastic case

»

.maybe the time reguired to get into this region g is greater

" than that of the deteministic case. The use of persistently

W,

yﬁexc1u1ng regressor will shorten this initial period for both

)

the detemlnlsplc and the stochastic cases. In a closed loop
éﬁ;stem, wé" can only manipulate the reference sighal. If we
prove that the regressor is per51étently exciting - when the
reference signal is so, then the identification’ sqheme will
force the parameter estimates to “get into the EEgien. g
exponentially fast. In this case, ghe whole’ system will be

globally asympotically stable. This will be obtalned through

the following two preliminary lemmas.

Lemma 3.4 E "

Suppose that ®%je system is described by equation

(3.11), with ¢(k-1) and 8o appropriately defined, and that

the control law is given by equation (3.19). Suppose that

there exiStS Yo, ... » Yzr .3 not all zero, such that
4’ . i
YO Y1 e+ Y2r-l y (k) < C (3.59)
. y{k-1)
.
(k=2r+1l)
(P - L y J
‘ -
for all k' e[j+r, j+s+1] o L .
| " 2 B ‘

A
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v .
Y
.

Then,’there exists 8o, +.e. , 84r-2, nNot all zero, such that

i o]
. : *
650 61 e 54r_2] y (k) <@ c+ M ||yl (88)pay *
v (k-1)
‘ 2r max,{\yi\}-
l ) : R ,
v y¥ (k-dr+2) ie(0,2r-1] ‘
. .Zr max _ {11|11(J4‘3r“1)l} . Ab
’ Cie(l,r-1] ~
“ ’ (3-60)“
for all k‘f[j+3r-1,mj+s+1] '
where @ and ¢ are constants dependentﬁbﬁ, g
. . . Yy " "". . -
r, max {lljl{(§&3r—l)|}: max {LPi(3+3r—l)l}
b = T ieTl,r-1] | ie(0,r-1]
“max _{IQi[},maX' {l,]a;l}
ie{l,r] iell,r]

.ch depends.on the maximum values

M ig a constant whi
A
. ~,

max{|u(k)|} , max{|y(k)]|}

kelj-r,j+s] ke [j=r,j+s] s Q\
(Ae)ﬁax depends>oh the maximum values of

115 0= (3+30-1) | “
ahdt
s ST « .‘
~ ~ . . i
wPi(k) - Pi(j+3r—1)| (i=0, 1,...5r-1) (k=j, j+1,.oﬂ,j=5+l)

‘Pfoof
Inequality (3.59) can be written as

ly(z71) v (k)] < ¢C

’
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NS
cor all k el[j+r, /J+s+1] with : | :
' / ) : L —2r+l
-1 + z (3.60a)
..l = + o a0 ‘Y "1." .
z77) = Yo / Y12, 2r-1

=

v

This implies thet for all k e[jf?r—1, j+s+1]

‘ ' L Bgle aaee -1y,
l{i(z'l,-j+3r—l) A(z™1) - P(z™+, j+3r-1) B(g )}
- S I (gl -1

Y(z‘l) y(k)| < |L(z 1, jfBE—l) A(z™Y) y(z ).y(k)J +

»
bl

"Lng;l, }*3r*1).é(é‘lyly(z_ZB‘ytk)\ < resmax o
o ‘ ' ‘ ie{l,r-1)
./‘ » - %
{1,|f-(ﬁ+3r—l)|}o(r+l)-max ’ {l,\ai\}-c + remax
"l ‘ | iE,[l,f] ' ' ls[orr'll
N
‘ <
(1B;(3#3z-1) [}eremax (b3 [}C
| iell,r)

w
N

|
[
It
N

[
(W)

+

w
a1

I

—
[

-~
1

Law ]
N

i
P
(W
+
w
-
I

=
L<
K
+

'



4

I . . ~

Plz™Ll,3+3r-1) B(z~ 1) 1y(k) - L(z~},i+3r=-1)n(k). +

B(z~ly ((fez-1,x) - E(z71, 3+43r-1) lu(k) - (B(z7Ll, k) '~

~ &Y
. , | . .
CP(z™l, 343r-1) 1y (k) IR . :
w . . e '
[ 14
Also, for-k e[j+3r-1, j+s], we have
e gtz™h Bzl vk 4 vy Bzl Bz7lo (k-1

-~

Fooot vy iBlz7L) ﬁ(z"i,k)"y*(k-2r+lf|

r<'
/.
P

= |y(z7l) Blz7h) Bz7l k) v k)

¢ Iyiz"l) (f(z71,5+3e-1) Aa(z7l) - B(z~1,3+3c-1) B(2z"1)}

y(k)| +

Sy

+ {y(z‘l) Blz7l) (f(z71,k) - L(z73,§+30-1)) u(k)| +

v vzl Bzl Bzl - Blz7L, 3e3r-10) v |+

+ IY(z'l) t(z7},3+3r-1) n(k)| <

< r(r+l) « max {1, lii(j+3r—l)l} + max
v ie(l,4-1] iell,r)
{1,7a;]) « Cc + r? « max {|§i(j+3r—l)|} .
‘ " ie(0,r-1) - '
max {[bil} « C + 2r + max {iyyly -
ie[l,r] ' ' ie[l,2r+1]
(r-1) + max oo - 1Gese-n ] )
ie(l,r-1) ' '
max - {lu(k)|}y + 2r .+ max 't'YiI} cr .

kelj-r,j+s] ie(0,2r-1]
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T

max (byly « ¢ max{lP {kw~—'p (3+3r 1)

ie(l,r) [0, r=1] N~

max {ly(k)|} + 2r e max. vyl - .
ie[j~r,j+s+1] - : P;;l0,2r—l] ) 3
Y o+ max , {1,\ii(jt&‘-l)|} « Ap \ * E

ie(l,r~1] ‘
/ . = i
or

lv(z7ly B(z™) Bz7l,k) yi (k)] <o v Co+ M []v]] (88)pay *

A 7

2r - T + max {{y{]}y » max 1,01 ;(3+3r=d) |}
¢ ieg(0,2r-1] igl{l,r-1]
. Ay (3.61)
where
Q= r{r+l) « max {1,[ii(j+3r—1)|} e max {1’lail} +
' ~iel(l,r-1] ief(l,r-1)
50 A . ‘ '
r< o max {1P{(3+3z-1)|} =« max {Ibs 1)
lE[Orr—].] ‘ - l§[llr]

M = max max{]u(k)|} , max{|y(k)|}

kelj-r,3+s] kelj-r,j+s]

(88)ag = max ([ [1500=13(3+30-1011, B3 () =P3(3+3r-1) 1}

when 1 = 0, 1, ..., r-1 and Kk oo o3+, ..., Jts+l



I1f we define ‘ .

©(z71) = y(z71) B(z"1) B(z~l,k) | (3.61a)
we shall have \$J .
r -4 ' .
] *
8g 81 «++ Sap-2| vy (X) < Qe C+EM ||yl (A8)pax *
*
;o y (k-1) 2r « r « max {lyily o
e‘ * ‘y ‘ N .
y (k-4r+2) max {1, |13 (3+3r=1) |} = Ay
L » ie(},r-1)
' s |
(

for all k e[j+3r-1, j+s+1] which proves lemma 3.4.

Lemma 3.5

Suppose‘*ha; the system is described by equation | (3 1)

and A(z"-') and B(z-') are prime polynomlals Also, suppose
that thete exists €o ... €r-1y Mo see Troay not»all'zero
such | that
[ ] |
€0 €1 +++ EpAl Mg B} ees Tpo] y(k)‘ A < C (3.62)
y(k-1) R
y({k-r+l)
u(k)
u{k=-1)
oS
u(k-r+1)"




for all k elj, j+sl |

Then, there exists Mo «.« Hzr-1: not all zero, such that

1 -1 )
B HY o+ * uzf-l] y(K) < r » max{|b;|) « C+ méx{lni]}.Ab
' y(k=1) ie(1l,r] , ig[-l,r_‘—]_]
a . . \
|y (k=2r+1] . , \
L ]

for all k e[j+r,tj+s+1]

Proof

Inequality (3.62) means that
! .

le(z™l) y(k) + n(z=1) utk)} < C

for all k e[j, j+s]

This implies that for all k elj+r, j+s+1]

1B(z=Y) e(z7l) y(k) + aiz-l) x(z”h) ux)| = iiB(z7Y) elz™h) +
A(z—l) ﬂ(z—l)]y(k) - w(z"Hn(x) |

But

\B(z‘l)'[s(z‘l)y(k) + n(z"HHu(k)l| < r « max {Ibjly « C
D - : iell,r)

We define u(z™') such that

iz = B(z™1) c(2=Y) + a(z”h =(z™hH



then

iz hyy(k)] < r « max b} 9 + max ngl) « ap
iefl,r) | iell,r-1], C(3.64)

Wwe have ul(z-')#0 since B(z"') and A(z-')-are prime. Since

the degree of u(z"') &s 2r-1, ' inequality (3.64) can be

written as '
rod i 1
!*éiul e “2r—l] y (k) | <r . max (Ibyly = C +
» cw
y(k=-2r+l) | ‘max SRR TS

1 iel1,r-1)
. | , o

}for all k e[j+r, j+s+1]"and this gompleteglyggigroof.

" Theorem 3.2
Suppose that thé plant is described by‘equation (3.11)
and that the kpolynomials A(z-') and B(z"'), which are in
general of degree r, are prime. The control law is given. by
equation (3.19) and fu(k)} and {y(k)} are bounded sequences.

Also, suppose that



. >j+S+l [~ N 1 . :
0 ¢ Ky I< ) yok) y 0y k=10 ey T kmdre2)|
k=3j+3r-1 N

Ly*(k-4r+2)

Then §
AT '
y(k) y(k=1)...y(k=r+l)
. < o (3.66)
y(k-r+1)
u(k)
u(k-1) ~
/
ulk-r+1)
J
where
n . /K.
/;I < 3. g M.\!PJ‘ (Ag)max -Vt
/s—§r+3‘ ‘ .
1 (3.67)




and

v = (2c-1)(r=1) « max {luil) = max (1,1 gr3r-1 e
ie[0.2r=1] te(l,r-1]
™
+ Ap + 2 ¢ max {Ingl) ¢ Ap (3.68)
15[1 rr"l-]'

All the other parameters are as they were defined in lemma

5.4 while n is %he norm of &8(z7"). -

Proof 'v |

The proof of the/ upper bound of inequality (3.66)
follows from the boundness of the équences {u(k)} and
{y(k)}. So, we only have to prove e existence of the lower
limit. We shall do it by contradiction.

Suppose ~that the lower bound fails. So, there exists ¢o

€r .1, Mo ess Tp_1 ,NOL all zero, such that

€Q €] eve Ep_] Tg T eee Ty} y (k) < /oo .

o

\ . y(k_l)

Y(k—f+lf
u(k)

u(k-1)

Lu(k-—r+1)

4



for all k e[j, j+s)

By lemma 3.5, then, there exists Uy ... My 1, DOL all zero,

such that .
[HO |J.1 PR “2[‘"1} Y(k) 1 <r o max (‘bll} .
e - .
g (k=1) iell,r)
: el
/(.71 + max {“ﬁl‘} . 1'\2,)
n .
y (k=2r+1) i il o=t
| ) _
for all k elj+r, j+s+1] and !
u(Z_l) =B(z ) e(z™hH + Atz Yy z(z™ b

By lemma 3.4, there exists 6o ... 84 -2, not all zero, such

that
| ,
*
69 61 e 54r—2‘ y (k) < Q -{ r « max {\bil} .
y* (k=1) tell,r]
) 7
| /cl . ﬁ} max {lnil}}- Ay
v (k-4r+2) -
L 4
+ 5 M [lull (A8)gax *
(2r-1)(r=1) - max {Tugly o
ieg[0,2r-1]
max {114ii(j+3r—1)|} Ap

ié(1,c-1) (3.70)



If we have

n /K; ‘
/8—“ < ) T —— - (r, M “H“ (Ae)max -V . (3.71)
1 JG=-3r+3
1
( 1
‘ ) €
‘reQemax (Iply - \
' il
v = 2r , e r emax {luil;-max {l,lii(j+3r-l)l}
ie{1,24~-1} ie(l,c-1)
Ap + @ ¢ max {Inyl} < 8y (3.72)
iE[lrr-l]
| ®

2 4 .. + 52 2)1/2

no= (8% + 8y fr-

then inequalities (3.70) and (3.71) give

[, ) n YKy
B 81 eoe Bpp_ y (k) < —= (3.
01 fr-zf )t /53773 |
y (k-1)
AV
Lo -
*
Ly (k=4r+2)



Inequality (3.72) gives

jEs ¢

k=i de-l

i, !
which means that
j+8+1 [ * ] * K *
v y (k) v Oy k=) ay T (k=dre2)
k=3+3r-1 N
y (k=1)

*

| v (k=dr+2)

stnce n? =§" &

e ) y (k) vy kel ary Ckmdr ) |

-
A3.73)

Inequality (3.73) contradicts(3.65) and the theorem is

proved.

Remark 1

»

The control algorithm (3.11) to (3.26) cannct guarantee

that the output will track the reference signal y*(xk

require minimization of the tracking error, we must

i

vV, IE we

include

an integrator. In this case, equationé (3.18) and (3.19)

will be substituted by the following three equations



~

f3.74)
SEPR | Ao~ . s .
L7 k) v(k) = Plz ',k) [y (k) = y(k)], (3.75)
3 &
(1-2=1) u(kx) = v(k) : \ (3.76)

-
where wv(k) s an auxiliary signal while the~polynomials
L(z ',k) and P(z ', k) are bot? of order r-1. where r 18
defined as ( ' N .

r = max {n+1, m+d}
Because of the integrator, eguation (3.74) will have a
unigue solution if B(z ') does not have roots on the unit

circle. The control confiquration can be seen in figure 3.4.

From figure 3.4 we can find that

13

-1 -1 '
P(z ~)B(z ) *
y{k) = — - — — y (k) +
(1-z 1)A(z 1)L(z 1) + B(z l)P(z’l) /

JL(z ) (k) (3.77)




vk, et |-PEh)

_ ) 2z Podyky
- '-L(z_l) l-—z-l

u(k)

Figure 3.4. Control schéme with integral action.

’
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After , steady-state conditions have been established,

N

equation (3.77) reduces to the following

S BN
yk) = y o) + A2 EE D nk) - n(x-1))
- -

If‘ﬁheltracking error e(k) is defined as

e(k) = yr(k) = y(k)

eqguation (3.78) givés'Ehét
!

o [Zai Zli] N

el{k)].< 2 o A

et .| by Teyl P

3

Inequélity-(3.79) means that tHe~_tracking error

;o

(3.78)

(3.79)

will

be
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bounded, for the stochastic case. In the deterministic caée,

the tracking error e(k) will converge to zero ' ,/{

3.5 Simulation_results
.In‘this'section, a number of simulation aééults will be
presented, illustrating -the performance d% the presently
dlSCUSSed adaptive pole assignment algovlthms. Since in
,these simulation results we are concerned about the tracking
- problem, . the pole- a551gnment algorlthn/ﬁlth 1ntegral actlon

“has been used. We have . con51dered five dlfﬁerent models

s

(minimum or nonminimum phase) for pﬁe deterministic without
time delay, the deterministic wigﬁ time:delay and stochastic

cases. 8

The first simulation example studies the model

g - 1.2 z"/+ 0.52 z°2
//
. / . .
which 1s a minimum/ phase system. The second simulation
o /o : -
example has also géen considered in Cameron .and Seborg
‘ . / . ‘ '
(1983) and is the/following minimum phase system
// : °
J4809 z-' + 0.2725 z°?
G(z-i) = __________;___*__-_

1 - 1.0382 z-' + 0.2466 z~ 2%,
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The third simulation example 1is the nonminimum phase system

and has also been considered in Good\éig,and sin (1981). The
fourth and fifth simulation examples,are nonminimum phase
systems and have also been considered in Clarke (1984l;

These are the follow1ng systems

- ——— - ———

9]

N

’v

-

1

S|

1

[ |
(=]
~
N
)

+
o
~J
N
N

)
N

f“spectlvely;fleﬁﬁlt sy o ' -

In all the;51f'latlon runs, regardless of the system order,

the des1red closed ~loop characterlstlc polynomial has the
form A® (z")-‘1'+ a1v z“l By con51der1ng this form of
closed loop polynomlal we'oan effectively assign only one
of the system poles. Also, the initial parameter vector was
chosen to be equal‘to zero. Because of it, we 1n1t1aly use a
‘fixed gain controller Qdﬁring the time period when the
singularity of the Sylv?ster mattix:is limiting the solution
of the pole~assignment algorithm; N |

.1t was found that 'the control algorithm given by

equations (3.75) and (3.76) leads to unacceptably large

\
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inputs and oscillatory‘system response when a suddeﬁv set
point change occurs This can Be seen in figu;e.3.5, One way
to improve the contfoller perfbrmance‘ is to consider ithe
modified control law. ‘

L(z"',k) v(k) = P(z"",k) [y* - y(k)] ) (3.80)

(1 - 2-) ulk) = v(k) - | (3.81)
By using this control law, thé"tontrof:signai u(k) at the
discrete time k'only depends on the set.point valué,by‘, at
the same time k and not on the set point”valﬁes at ’previbus
‘time instants. The impferment in the controller performande
can be seen by compéring figure 3.5 with figure 3.6. The
fggt and exact estimation‘of the system paramgters can be
seen Vin figure 3.7. The ‘trajeciory of the. Cbntrqller.
parametérs can be seen in figure 3.8. Noté that thérfixed
gain controller has beeh used 6nl§xfdr the first three time
insténts. This .fixed-again -éontfollé;. must‘ be'cérefuiiy
chosen:sinﬁe it affectsv the ;ystém ‘response, e?pecéally
during vtﬂe,initial ttanéient state (compare figure 3.6 with
figuré 3;9 and fiéure 5.10 with figure 3.12). It 1is very
intereéting to see that.the idéntification‘scheme estimates
the true system parameters (figure 3.%1) dgspite. the flargé
variations. of the .proceséﬁinput and outpuf'(figure'3.10)a
This is in agreement with the stability analysis of the
identification scheme in section 2.3 of the second chapter;
Inste;d of using the control law (3.80) and (3.81), another
way of impfoVing the system respénse is to vary the pole

location (compare {iguref3.10 with figure 3.13). This method
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nas the disadvantage that the best pole lacation cannot e
\peasily ’found. On the other hand, the modified control lgw
u'(3.68) to (3.69) seems to be insensitive to the pole
location.

In figure 3. 14 we can see: ‘the response of- the first
nonmlnlmum phase system. . The sharp oscillations of the
system response during the 1n1t1al transient phase :can be
attr1buted ‘to the 1n1t1ally non- converged system parameters
and to the high system gain.

In figure 3.15 we have reproduced the same results as
those presented by Clarke (1984) where a self—@unlng pole
assignment al;orlthm was considered. The performance of the
proposed pole—ass1gnment algorlthm, illustrated by this
slmulation example‘ is better than the.performance‘of the
self-tuning pole assignment algorlthm presented by 'Clarke
(1984). : | | |
| Figures 3 16 and 3.17 1llustrate ‘the performance of the
pole-a551gnment algorlthm trylng to control “the ‘second
nonmlnlmum phase system taken from Clarke (1984) So far,
the performance of the pole- a551gnment algor1thm has been -
Jshown to be-excellent.~Thls is the case when there‘~is no
model mlsmatch. Figure‘3.18'illustrates the performance of
the pole- a551gnment ‘algorithm’lfor the fifth simulation
example when the denominator of the process was modelled as
a first order polynomial. It is very obvious that thls

‘control algorithm is very sensitive to model mismatch.
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’

Figures ©3.19 to 3.21 have been dfawn for three
different simulation‘examples when a ﬁime delay of three
sampling periods was added o ‘the system model. ‘fhe
performancé.of the controller can be considerd as excelleQ}

. ' G,
despite its deterioration compake;

éﬁﬁp:the one (compare with

the corresponding figures 3.6, 3.12
! B Q;. N “wa,

i
by

and 3.17) of the delay

free deterministic case.

Figures 3.22 to 3.25 illustrate the performance of the
controller trying to COhtroi the first simulaggén example
for the delay‘free,stochastic‘case. The noise added to the
system is a Gaussian noise with zero mean Qalue and variance
equal to Q.OOS.-By comparing figures-3.22 and 3.25 we can
,eagily see that the controller pefforméhcevdeteriorateé_as
the lngl of the noise increases} In figurg 3.26 we.cah see
; the tréjectories of the'forgetting factors“for two gifferent
llevels of system ﬁoise. In the stochasfic case, the
ﬁorgettiné'faétof does not converge to itsbupper limit since

the prediction error does not converge to zero.
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- 3.6 Conclusions o o 7

In this chapter we analySed a pole-assigoment control
algorithm which is based on the classical ‘pole posicioning
techﬁiques

By using the same mathematlcal tools as used by Goodwin
and ,Sln (1981), we proved local stability of a closed loop
system in the presence of bounded disturbances. The
stability analyeis is valid for‘both minimuh and nonminimum
ohase .processes. By extending Johnstone's ~work to the
stochastic case, we proved global stability of a closed loop
system using the - pole—éseignment . algorithm with
dlsturbances A modlfled control law was used to 1mprove the
control performance when sharp set point changes occur The
excellent performance of thlS controller was 1llust:ated*by_

3 number of simulation examples, in the deterministic,

deterministic with time delay and stochastic cases.
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4. Pole-assignment with Smith predictor (PASP)

4.1 Introduction

Many control loops contain ‘time delays. Transportation

of flu1ds over long distances, required time for the

completion of the sampling and ‘analysis of a measured
variable by a measuring‘vdeviCei required time for the
development of the actuating signal by the final control
element ‘are some of the reasons for the presence of time
delays in manylprocesses. The presence ‘of time delays %}
generally a serious impediment to good process control Sgd
operation Qf a.unit. A disturbance entering the system will
be detected a signifieant time after it has entered. and
upset the system. A control decision w1ll try to regulate a
situation that happened some time ago and its effect w;il be
felt by the process some time after the decision has been
taken. These are some reasons 1llustrating the effect of
time delays on the process operat1on.

In'\e late “1950's, Smith (1957, 1959) developed a

yr for a single delay in a single"loop to eliminate

" the effect of a time delay on the characteristic polynomial

of the closed'ldpp'system.zMoore et. al.”'(1920) used the

analytical solution "of the modelling:equation of a state

space model to predict the value of the state a steps

- (equivalent to one unit ‘delay) ahead. Alevisakis and Seborg

(1973, 1974) extended these results to the multivariable case 3

where only one single delay was present Ogunnalkle and Ray

122
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(1979) have analysed the general case of multivariable

systems with multiple delays. They eliminated' the time

delays in the outpUt variables by predicting certain state

variables at various specific times in ‘'the future.

"

In the previous chapter ~we introduced an explicit

adaptive pole~-assignment algdrithm. Of course, this

“algorithm ean handle time delays but the solution of

equation (3.10) at each control interval becomes a real
problem when'the time delai*is lafge (especially because of
the large dimension of the Sylvester matrix). We can imagine
the case of controlling'the conversion in a polymer reactor
hy manipulating the flowrate of cbld water around its
jacket. ThlS process can be easily descrlbed by a secund
order model. Suppose that we use a gas chromatograph as a

measurlng device (1t usually takes twelve mlnutes to sample

and perform the analys1s) and that the control interval .is

half a minute In this case the,time delay will ’be twenty
four sampllng 1ntef§als for .which the dinenslonvOf the
correspondlng Sylvester matrix (equatlon (3. 10) ) will Dbe
equal to f1fty twof It is very obvious that the solutlon of

equatlon (3.10) at each control interval will restrlct the

usefulness of this control algor1thm.

In next sectlon we. shall show how through the use. of a

simple predictor the adaptive pole-assignment algoplthm can

ecome computationally efficient, despite the presence of
large time delays. The idea is to use a Smith predictor as

it was introduced by Smith (1959).
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(4.2 Pole-assignment algorithm with dead time compensatiom
- Consider a single input/single output discrete time
linear and time invariant process described by

a(z"") y(k) = z7¢ B(z"') u(k) (4.1)
where z-' is the time delay operator, {u(k)}'and {y(k)} are
the input and output sequences. The polynomials A(z-') and

B(z-') are given by

A(z"') =1 -a, z°' - ... —a, z " 0 (4.2)

B(z"'") = bgey 2~ +,""+ bgem 2- ™" ' (4_§f
Also, d is the time delay (d=0). | | N
Assumﬁﬁthat: |

A1] d is known
A2] r é‘max{ n+1, m }

A3] a(z ") and B(z"') are relatively prime polynomials.

In a‘ Smith prediétdr, tbé‘main idea is to.compafe'the
reference signai with a‘_meaSUrgment signal that cérriesﬂ
current and not delayed information. This is shown in the
followiﬁg figurgﬂwhere'an‘ihtégrator, for steady state érror

"elimination, is also used.



125

. =1 =J =T
y (k) e(k) P(z l) v(K) 1-1 w{K) z Bii } Y .

- Liz ) 1-z Atz )

[ ‘
yg (k)
— - 915:;L e
*i . Az D)
S
Fig. - 4.1 Closed loop control system with dead time

- compensation

In the abo&é figure, y,(k) "1is the signal which -carries
_ current‘ (undelayed) information and ‘is compared with the
reference signal. This auxiliary sighal, y.9k), tends to
y(k) after paraheter convergenée hés been established.

From figure‘4;1,’ we can easily find that the transfer

function between y(k).and y*(k) is given by



/ } '

Noticé that' the timg_delay‘ferm zf‘ has been eliminated in
the characteristic polynomial.V’MJ"' o |

CIf we want to aseigh the poles' at prespecified
locations, described by the stable monic polynomial A*(z™')
- of degree 2r-1,”then'wé ha&e to solve the following'equation
T '

(1-z-') A(z-') L(z-") + B(z-') P(z"') & A"(z" ') (4.5)

with respect to the polynomials L(z-') and P(z-'). The
polynomials L(z-') and P(z"') are again of order r-1. The

control law is-given by

L(z"') v(k)= P(z"') [y*(k) - y.(K)] - (4.6)
(1-z-') u(k) = v(k) . ' ' (4.7)
X ]
In a closed loop contol system the process ‘parameters_
are estimated recursively on line and are used instead of

the true ones. In such a case, the fdllowing equations hold

Ylk=1)* 6, (4.8)

Process: ' y(k) = _

Model: §(k) = wik=1)" §(k=1) (4.9)
Auxiliary " B(z"',k) | o
output: y.(k) = y(k) + (1-27¢) —————— u(k) (4.10)

o A(z-',k)
Prediction . - o
error: _ e(k) = y(k) - §(k) o ‘ (4.11)
Pole-aésignment (1~-2z-') A(z-',k) L(z"',k) + ,
" equation: + B(z"',k) P(z',k) = A*(z"") (4.12)

Control law:’ L(z-',k) v(k) = P(z",k) . -
. a [y*(k) - y.(k)] (4.13)
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and (1-z°') ulk) = v(k) | (4.14)
where
glk=1) = [y(k=1) ... y(k-r) u(k-d-1) ... u(k=-d-r)]
9o(k=1)t = [ay ... @y basy «vr baur]
.a; = 0 if i>n
b, = 0 if i>m

B(K)* = [A:1(K) . &r(k) Baur(k) oov Byur(k)]

All the other gquantities are as they have been defined in
the previous chapter. It can be easily seen that the ofder
of the Sylvester matrix in equation (4. 12) w1ll not depend
on the magnitude of the time delay. The use of the Smlth
predictor eliminates the time delay from the characterlstlc
equation of the closed loop transfer function and makes the
solution of fhe pole-assignment algorithm computationally
more efficient. The performance of the compensator depends
on our knodiedge about the process "and the time delay.
Perfect compensation will be obtained only when there will
be no modelling mismatch and the .time'delay is exactly
known. The larger the modelling error, the.less effective ise
the compensator. The efrér in estimating'the time delay 1is
more crpcial than the modelling error for effective dead
time compensation.

Thelstability of the closed loop system with dead time

compensation will be considered in the next section. '
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Stability analysis

By using the same tdeas, as in section 3.3, we shall

initially prove local stability of the closed loop control

system with dead time compensation. For the sake of

»

simplicity we shall consider the determini¥%tic case. The

stability result is stated in the following theorem.

A

Theorem 4.1

Assume that: ;

A1l]
A2]
. A3]
A4]
AS5]

A6]

d is known.

r = max{n+1, m} is known

y* (k) is a bounded reference signal

A*(z"') is a stéble monic polynomial of degree 2r-1
Lemma 3.2 is s§tisfied |

The}identifiCéﬁion scheme stated by equations (2.24) to

(2.30) is used

Then, the control algorithm (4.8) to (4.14) is stable in the

sense that

a. {u(k)} is bounded

b. {y(k)} is bounded

Proof

We define
AB=23F4a,(k)B,(k)zi-) =84 (4.15)
A.8 =

e

/

L3 a(k) b, (k=1) z-i-i # 8.4 _ (4.16)
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2]

B = B(z ',k-1) (4.17)

We also have

Ay(k) = z°¢ B ulk) | (4.18)
L v(k) = P y*(k) - P y,(k) (4.19)
(1-z-') u(k) = v(k) T (4.20)
(1-z-') AL+ BP=2A" (4.21)
e(k) = y(k) - §(k)

y(k) = g(k=1)"% 8(k=1)

= y(k) - &,(k-1) y(k=1) - ... - ar(k=-1) y(k-r) -
- By, (k=1) u(k-d-1) - ... = bg.r u(k=-d-r)
or . ;
e(k) = & y(k) - z7¢ B u(k) (4.22)

We define the auxiliary signal w(k) as
wik) = A.B y* (k) | - (&.22)
Equation (4.23) gives

wik) = A.P y*(k)

A.L v(k) + A.P y,(k)

AL v(k) + [A.L - A L] v(k)
LA B g (k) + [A.D - A B] y, (k)
AL vik) + B P ulk) + P e(k)

+[A.L - A L] v(k) + [A.2 - A P] y. (k)
- B P ulk) - P e(k) + APy, (k)

(1-z-') AL u(k) + 8 P ulk) + P elk)

b (AL - A L] (1-z°') u(k) + [A.D - & 8] y(k)
WlA.B - A B] (1-27%) B/A u(k) = B B u(k)

- b.lA y(k) - z7% Bulk)] + APy (k)

or.
wik)

a* u(k) + P e(k) ;”',

A

+ [A.L - A L] (1-z7') B(k)
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P

+ [A.B ~ A B] y(k)

+ [A.p - A B] (1-2°9) B/A u(k)

¢t [z7* b B - B B8] ulk) |
Lo PR y(k) - P Ay, (k)]

5

After convergence of the parameters has been established,
the terms in the square brackets become zero and the above
equation redqces to the following

“A* u(k) = w(k) - P e(k) - (4.24)
By defining the auxiliary signal x(k) as

x(k) = B.P y~(k)
we can prove that

A* y(k) = x(k) + P e(k) : (4.25)
after convergence of the parameters has been established.
Now, we can wuse the same arguments used for the proof of
Theorem 3.3 to show that the regressor is linearly bounded
by the prediction error. Having proven this, we can use
equation (2.60) and. the key technical lemmma of Goodwin and
Sin (1981) to éhow that {u(k)} add {y(k)} are bounded
sequences which proves our theorem. The stéchastic case can
be treated as in section 3.4. |
Since Theorem 4.1 is based on Lemma 3.2 the stability
results stated in it are local 1in nature. By using,
initially, a fixed controller which .stabilizes the closed
loop :system and a persistently exciting reférence signal, we
can change the local stability results torglobal ones. The
mathematical treatment of the problem is quite

straightforward and follows the same lines as in sections
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3.4 and 3.5.

4.3 PID controller based on pole-assignment

The PID controll;r is the most common controller in the
industry even though in some cases a great deal of ﬁime and
effort is required to tune its parameters. On the other hand
there are a number of adaptive controllers which have been
shown to perform better than the fixed gain PID controller
in many cases. Despite 'this, only few of them have been
applied to an industrial environment. The main reason for
this is the complicated structure and unfamiliarity with
these adaptive schemes. Because of this, there is a 1lot of
incentive in designing adaptive PID controllers that are
able to adjust their gains according to the process
requirements.

In the past, some authors ( Wittenmark (1979), Isermanﬁ
(1981), Andreiev (1981), Banyasz and Keviczky (1982),
vCameron and Seborg (1982), Gawthrop (1980, 1982) ) have
proposed adaptive PID controllers. In most of the céses, the
adaptive PID controllers have been derived for processes
without timé deiays.

In this section we shall derive, based on certain
conditions, an adaptive PID controller based on the
pole-assignment control algorithm with the dead time
compensation feature discussed earlier in section 4.2
For the following analysis, we require thét

]
*n

al
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All n = 2
A2l m = 2
A3] d is known .

In this case

r=3 ‘ .
while ;
J
L(z-') =1+ 1, 27" + 1, z"? "!
'} Q: 1‘
P(z"') = po + py 2°' + p; 2°° A R
'
P
* - » -5 e D
A*(k) = 1 +a*y z°' + ... *+ a"s z AL
Also, the control law will be given by ‘i;ﬁif :
(1 + 11 z- '+ lz Z_z) V(k) = (po + P z" ' + pz’ X&’—‘Z)
[y*(k) - y,(k)]
and :
(1-z-') u(k) = v(k)
The above two equations can be combinedl to give ¢ &
(1 + 1, z='" + 1, Z'Z)IVU(k) = ("po + py 27" + p, z—z),
L e(k) (4.26)"
L. .~ " ‘
where . * % . d
<u(k) = u(k) - ulk=-1) ﬁ ‘ (4.27) » 7
e(k) = y*(k) - y.(k)
At this point, we make the following assumption that
1 + 11 z- ' o+ 12 Z_2 = 1 + 11 + lz =Zli (4.28)

The above assumption is valid for steédy state conditions or

for the case when the input changes very 1little between
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successive intervals. Under this assumption, equation (4.26)

gives | w’ ' T
wu(k) = (yo * y1 27" % 72 z %) e(k) (4.29)
where
Po
Yo =
Y = - ' '
; Ll
, P2 .
Y2 = g
| 1,

_We can easily see that equation (4.29) is the equation of a
velocit; fypeJ PID controller. The Qelocity-tyge PID

o« £l

controller is givern by

“u(k) = ke Te(k) - e(k=1) = 7./7; e(k) | ,
+ r4/1, (e(k) - 2 e(k-1) ; e(k-2))1  (4.30)
or in a more cempact form R o :
Sulk) = ke [(1 + 14/r0 * 7./7))
L1+ 2 i/t 2 |
¢ r/ry 2] e(k) o _' (4.31)
where km‘ls the . proportlonal galn, T 13 the 1ntegral galn,
T4 15 the derlvatlve galn and T, 1s the sampllng tlme
By direct comparison between equations (4 29) and (4.31) Qe
get |
u km (3 + 7y/7, + 7./75) = Yo
Tk (14 2 74/7,) J{- Y

km' Td/T& = .'YZ
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The above system of equations can be solved with respect to

Km» Tq/T.‘and r./T, to give

Ky = = (yy + 2 y2) - (4.32)
o b
) T4 Yo ¥ %1 *t Y2 ' o
Fao= = - - ' (4.33)
T, Y1 + 2 ¥z ’
) T Y2 oy, o

T Y ; 2‘72
| where 7, and 7, can be considered as reduced derivative and
integfal géins respectively.
I1f we want to avoid the derivative kick when a set péint
change occurs, the‘following control equation éan be used
Sulk) = ke [ys(k=1) = yu(R) + 3000 (k) +
e a2 g (=) = ya(R) - oga(k-2))) (4.35)
In ;b:ieﬁq we can say.that a PID controller has been derived
~based on %ole—assignment technigues. The cont{pller has been
derived %or a particulg% élaés‘ of pfocesées and it can
handlevlaégekbut known timé‘delaygl From equations (4.32) to
(4.35) it can be seen that the calculag}onwof'the control
actioﬁ does not require knowledge of the ggﬁpling,time. This
‘does not mean ‘thaf the sampling time doés not affect the
control action calculated from this control law. Thefe is an
indirect effect bf the sampling time on tﬁe contrél action

u(k) through the 1’s and p’s parameters.
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4.4 Simulation results

In this séctién; three models from those mentioned in
the pgevious chapter will be considered to illustrate the
‘performance of the pole-assignment with the dééd—time
fcompensation feature algqrithm under different cases. The
same models will alsolbe Qsed to illustrate the performancé

" of the adaptive PID controller mentioned in section 4.4.

Theselmodels are:

z-% (0.4809 z-* + 0.2725 %)
Model 1: G(z"') = ——===---——=--———m-m——— -
1 - 1.0382 z-' + 0.2466 z°°

. z~9 (0.2 z-" + 0}12 z %) .
Model 2: G(z ') = ——=-=-—-=—----mm-e—o————r -

Model 3: G(z ') = —mmmmmmmmmm—tm e m e ———— D
- 1 =¢0.7 z°' + 0.72 277 :

¥

In all the simulation runs, we have considered.a c18sed

loop desired‘polYnomial A*(z" ') of the form:

A*(z-') = 1 + at z°!
By assuming a first order closed ‘loop desir we
can manipulate the location of only one pol “test of

ythewpolé?jyfe cancelled with the glfsed 'loop»'zetos. The
“initial parameter vector was éﬁoéen\ to be equal £o zZero
rwhile a fixed gain controller wés,initially used.

& It‘ican . be seen, from fiéﬁre 4.2, that the control law
'(4713) to (4.14) creates large overshoots when a set point
change occuré. ‘By modiinng the ccntroll law, as in the

- previous chapter, we can greatly improve the performance of
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the controller (figure 4.3). The fast convergence of the
prdcess and control parameters to their true values can be
seen in figures 4.4 and 4.5 t »Process input ’and output
tra}ectories for models 2 and 3 are shown in figures 4.7 and
4,8 . The correspondiné parameter trajectoriegj,show fast
convergence, as in figures 4.4 and 4.5, and is not
reproqmced here for the sake of brevity. Figure 4.6 has been
drawn for the first.simuiation‘example when the time delay
:;is three sampling intervals. ‘This figure illuetrates the
fact ‘that‘ the performane;of the pole;assigument algorithm
with the dead time compensation feature compares very well

with that of the simple pole-assignment algorithm (figure
'

3.9) discussed in the prev1ous chapter.‘ By uSing a Smith

predictor, ‘the~ blg advantage 1is that the order of the‘

controller does not depend on the'erder of the ‘time‘ delay.

This makes the control algorithm 'computatiomallywmmgre

efficient. The same 51mu%§E§on examples have been "used to

illustrate the performanc of the controller in a,stochastic

.environment. The noise con51dered was a Gaussian noise with

zero ‘mean and varlance,of 0.01 . Figures 4.9 to 4.13 show

the performance of  the contr%%ler and the process and

controller parameter . trajectories for the simulation

examples It can be said- that the presence of noise,

deterlorates the control performance only durlng the initial

transient state, The presence -of noise deterlorates and

delays the convergence of the parameters. This makes the

Smith predictor lessAeifective an@rQCnsequently affeéts the
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whole control algorithm. The control performance is improved
as the convergence of the process parameters improves.

Figures 4.13 to 4.26 illustrate the performance of the

PID controllér. We have considered the deterministic case

without time delay, the deterministic case with. a time delay

of five _sampllng 1ntervals and the stochast1c time delay

free case. The no1se conSldered was gau551an with zero mean

. and variance of 0. 01 . Flgures.4 14 to 4.

‘

the determlnlstlc t1me delay free case. The performance of

the PID"ccntroller .can. be con51dered as excellent for all

the simulation examples (minimum or nonmlnlmum‘ phase

18 are referred to-‘

systems). Since the, derivation

based on assuhption (4.28), its

when sudden set poift changes

" satisfactory. It must be mentioned

this®controller heavlly depends on

performance

of the PID controller.is.

deteriorates
still remains’

occur buti:

that the performance of"

the locatioh of the pole.

ThlS is true since the pole locatlon affects the response of

the system (fast or slow) and
assumption (4.28). Figures 4.19
perﬁormaqce of the adaptive

:":‘v . . . g
deterministic with %?tlme delay of

case. The presence of

‘output. The auxiliary output y. (k)

the process output in- the

arameter convergence
removed from

‘delay has been .

function,

time
has been established.
the

the gains of the controller are identical

‘this may violate the-
to 4.21 illustrate the
PID controller for the
five sampling:.intervalsj

the delay affects only the process

is exactly -the' same as

delay free case after

Since the

closed loop transfer

"to - the

“time
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gainsvof the system without the time delay. Figures 4.22 to
4.26 illustrate | thé performance of the adaptive PID
controller iﬁ the stochastic case. In this case the time
deiay 'was '~ zero. The pq;ﬁormaﬁce of the controller for all

the simulation examples can be considered as excellent.
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4.5 Conclusions
| In this chapter we uSed.a,smith predi;tor to make the
pole a551gnment control algorgthm dlscussed in the rhird‘
chapter computatlonally . more eff1C1ent . for handling
processes with large’ t1me delays. Thls control algorithm has
'bean«aé;oven globally stable ‘if a per51stently exc1t1ng'
signal is used. ftihaslalsa been ahown that under certain,
assumptions 'thia pole a551gnment algorithm with the dead
time compensatlon feature can take the form of a velocity
tYpe convetional three term adaptive PID controller for a;
Iparticdlar glass af processes; The excellent peerrmanae of
v‘rhése‘ aaaptive control algorlthms has been illustrated by

. . SV ‘
simulating ,minimum and ‘nonminimum 'phase system$ ' under,

-

different cases. - o o _ o : -5

4 .
Y
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5., Evaluation of adaptive control sté&tegies
’ - . t
5.1 Introduction
The srmulation resoltsl presehted ih the vpreviOUS
chapters prove that »the 'proposed pole-assignment.control
algorithm‘can easily handle minimum ’or' nonminimum ‘phase
.systems under different operatlng condltlons. ThlS motivates
:us to apply this control algorlthm in a more compllcated and
dlffrcult to control chemical process. The polymerization
prooess of %ethYlmethacrylate in- a . batch polymerizer is
chosen as such .a process. The batch solution polymerization/
reaotor] under tinvestigatioh has highly nonlinear and
@time—varying character'isti.cs. |
- Currehtly some'one hqnﬁred‘mitlioh metric tons per year
of synthetic poiymers are produced\in the world in_a wige
variety of polgﬂ;rlzatlon 'reactors.a\But puntil recently
"polymers were mainy manufactured in batch reactors frop

3

"‘?afalthfully prepared rec1pes sca]xed up from the c&st's-
ve of

~beaker" 5&§ay (1983 ). Soi thene i's a 1ot of 1nce
1mprov1ng'our kngtledge abou& thgﬂeﬁﬁlneer1ng aspects of the

1 polymerization processes. Usually,wsomeone is interested in
operatlng the polymerlzatlon§reactor in suchia way that the
af1na1 product has de51rablel§.6pert1es whlle the operatlng

~ cost is kept ,minlmum ~ The benef1t5‘ of - automatlon and'
toﬁputer control -of polym;rlzatlon reactors as well asﬁ%h ﬁ%
state of the art of control inh this ‘area _haxg b#en
emphasized and reviewed by many authors (Amrehen;(1977)n

» N

. . N Pl . Y e - :;’
‘,165 “. , ' ) ' ‘:J
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Hoogendoorn and. Shaw (1980), MacGregor et. al. ‘(1983)) « In
most of - the cases, optlmaT control theory has been applied
and open loop ,control“*gtrategles heve _heen der;ved to
produce a polymer 'with desirea‘ffinel propertles "in an
%ptimal'manner (Hell (1960), Ray (1967)( Osakawa and Fan
(1970), Thomas (1984), Thomas and Kiparissides (1984) to
name a few of the: ﬁﬁ%estigators). Although many optimal
control strategles have been presented in llterature, only a
few of them have been applleq‘experlmentally (Chen et. al,..y

((1978), (1980), (4981), Ponnuswamy (1984)).

Or the other hand there are some works where feedback

been applied to polymer reactors. Keyes end‘
,plhapplied.an adaptive congﬁggrtechniQUe for the
"Jsuspension'PVC production. First, they developed
'ﬁahear.process model apd secondly derived a regulétor
from the modelk utilizing variational‘ teohniqueg, Joignd
'Banhoff (1976) both experihentéliy and by simulation stUdied'
the *solution polmerization *of vinyl acetatehin a‘CSTRh by’
using the Kalman ' filter. Kiparissides (1978) . derived
| suboptimai. stochestic %control:policies by solving a linear?'
‘*quadratlc optlmal control problem, “r a continuous‘ latex
‘reactdr. K1par1551des and‘gﬁgh (1983) evaluated two .adaptive
control algorithms and a fixed gain PID controller - to a
" batch sospension PVC reactor. Despite the nonlinear ?nd B
time-varying characteristics of the reattor, thej'?obtained }‘

exoellent control wusing either one of ghe two adaptive

[N

1

control strategies which periorn7ﬁ b tteg\ than the 'PID
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controller ThlS work has been extended by Cluett ﬁ& .
(1984) ‘who used ‘globally stable. Adaptlve Predlctlve

Control System (APCS) for . setpoint track1ng and constant‘

rate control
The small number_ of -exper1mental 'applications of
processi control in thebarea of polymers has been ‘attributed
to the lack of deVelopment of on-line measurlng devrces. The
w,
v1scous nature of the polymer mixture is the main reason for

the dlfflcult of on line: measurements Itgis ant1c1pated
y -

that this problemn’w1ll pe solved soo - that the 1980'5
««& ’

“will see the appllcatlon of . a’vanced control strategies fin

Nk
o
¥

.v‘ ‘;:'

the polymerization 1ndustry CﬂacGregofﬁiﬁ9ﬁ"
> e bt bt

‘ . ’ cwea? B Q}" 'u
N Y T -
- 5 )

S. 2 Experlmental Reactor System "
'In - this  section, we shall briefly present the

experlmental system used. in this. work. For‘ more details

vabout this system, someone should be referred to Ponnuswamy

(1984); é ?schematft representataon of - the experimental

sett-up i%own in Figure 5.1
w : -

. %
The reactor is a five liter jacketted ¢ylindrical glass

vessel. Its inside diamefer is 152 mm while its heig?t is

280 mm. The glass vessel s calibrated and marked to. show

. ) "“"QHA v
the volume ﬁthe reaction mixture 1&5“’ meac‘:’to‘r.

v

The m1x1ng of the reactants is done by a stirrer ‘motor
Q y

assembly mounted on the reactor. The sq eed of the stirrer is

kept constant thro ghout the course o%ipolymerlzatlon by ‘a
1 A . . «.(;
controller which power to the motor
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Durlng the course of polymerization the load on the stirrer
increases because of the 1ncrea51ng V15c051ty The torque on
the stirrer 1is measured as a 0~-10V output 51gnal and can be
used as an indication of the 'conversion level within the
reactor.

The necessary heaEing is continuously supplied to the
reaction mixture at a constant rate. Hoﬁ water is used for’
this purpoée'and is circulated th:ough the jacketb of the
reactor by using a thermally pro?!%ted pump. The temperature‘
of hot water is measured at its inlet and outlet pointd‘bat
the reactor jacket. The constant pempe:atu;e hof water taﬁk
has a ;apacity of 25 liters while the agitétors within it
help to keep a unMorm temperature - 1ns§de;e f_

Since the reaction is exothrm}c, oollng bf¢ the
reaction mixture is heeded‘ydUrfﬁgflsgme‘ stagee oft the
polymerization procesép This 1is achieQed by using?icold\
water. The cooling water :&1ow§pthrough gusta;nless steei
coil provided inéide the reactor. The inlet fend outlet
temgeratures of the cooling waégf ‘éreijmeasuredlve51ng
thermocouples. 1Its flowrate {s adjusted by a ‘Foxboro.
feedback controller and is used as the control variable in
the conhtrol studies. |

”The viscosity of the reaction mixture 1s measured byta
v1scometer mount.ed on the top. of the reactor. The"operation
of th19 v1scometer is based on a falllng p15ton,pr1nc1ple

Dufihg‘its»Opglatlon, the piston 1is raised by' a 1lifting

‘mechanism while reaction mixture occupies the space formed *
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below the piston rod assembly. The piston is then allowed to
fall while its fallihg time is an indication of the reaction
A

mixture viscosity. Measurements of the viscosity cén be used
in conversion calculations using suitahle,correfatiens.
During the course of polymerization, the ‘reaction
mixtufe is continuously circuleted through a densitometer. A
reciprocating-revolving pumpv suitable for handling highly
viscous fluids is used to circulate the reaction mixture,
Teflon‘.tubing‘is'used Lo connect Fhe pump with the reactor.
The temperature effect’ on the density measurements iﬁﬁ
ellmlnated by performing them (at a constant temperature.
‘Because of it, the reaction mixture is f1rst passed through
a thermostatic bath before enterlng the den51tometer The
accuracy ,pfv‘the dens1éometer is 0. 0001 gr/cm whlle
measurements can be taken evefy flve seconds. Since ghe
den51ty of the reaction mixture 1ncreases[hur1ng the course
of po;ymer1zatlond it can be used as an 1nd1cat10n of-- the
conversien level within the’ reactor. "In this work, a
: O ‘ ‘ .
suitable eorreletion between densi&y and conJerion has beeh
developed. So,} the den51tom€;$ is’ used ,ash’en on-line’

A
measurlhg deVlce for tonver51on control purposes.

-

In the experlmental set-up, a Foxboro PID con%%oller is

also included. This controller 1is used in this work as a
’ 4
slave controller in a cascade control configuration. It

> . . .
" receives a remote setpoint from ths\}computer (which is
created by the mafter controller). This sidmal is compared-

with the temperaturev«within the reactor and the appropriate
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control signal (10-50 ma) is sent to an electro-pneumatic
converter. The output of this converter (3-15 psi) 1is sent’
to a diéphfagm control valve to regulate the cold water
flowrate.

After briefly describing the experimental system, the
correlation between density and conversion will be presented

. ]
in the next section.

5.3 Conversion Measurements )
| As 1t was .previously mentioned, a number of control
‘strategies have been applied to control useful properties of
the polymer during the course of polymerization. But it was
made clear that only few of them have been tested
ererimentally. Thek4main reason fer this is the difficulty
for getting on-line measurements because ef the viscous
nature of the réactlon mixture.

In this work we intend to experimentally control the

co n trajectory within a batch polymerization reactor

of methylmethacrylete by applying feedback control. So, it

is necessary to have on llne measurements of the conversion.

s thay Loy m T Mgy gt
Before we present our way of gettlng ‘'on-line measurements of

the conversion we shall mention a numSer of techniqges used”

to estimate conversion. |

. .

Between the methods availab to measure the conversion.

the most direct éethod‘ is to stop the polymerization,
.

isolate and weigh the polymer. dbviously this is not useful

for on-line conversion measurements. ~
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Since the polymer has greater denséty thah the monomer,

. ’ ‘

the, reaction volume decreases as the pdﬁymeﬁaza op process .

v

voE

EN

reaction volume ,;s” assumed it will be. easy"to calculate

“+
o

conversion from the volﬁme decrease. Still, thlS Vls nmot a

proceeds., If a llneam relatlonshlp between ﬁonverggon and

useful 'method since .in practice it is ngt easy to measure

L. SO

the exact reaction mixture volume. ' oS

Another ~method of measuring conversion .is based on

measurements of the refr%é§1ve 1ndex. In this method we

exploit the difference between the structures of the polymer

and monomer because of. rearrangement of chemical bonds.

[5has) v ')

A more ‘accurate method 1s the gas chromatography“
method. In this method we calculate the mass fraction of the

volatile components due to monomer with respect to the

volatile components due to an internal standard which is the

solvent. Despite 1it$ advantages, there is a number of

disadvantages associated w1th this method. (Berezkif"et. al.

T

(1977)). This method can be used for ‘on- llne measurements 1fj

®,
an automatic sampllng procedure 1s avaalable.

h’)

Since ’‘each method of':measur1ng " conversion ‘had its.
’ ‘e RAR N

advantages and disadvantages, it was considered ~ ‘more

practical to develep a correlation between the conversion

and @ process variable that 1is easily on-line measured.

Torque on the stirrer, viscosity of the reaction mixture or

density of it could be used ai'such process vaniables.' In
the,'experlmental system used all these variables, are

measured. Measurements of the torque were not con51dered - as

. . -
- Lo P A
. . .r:" "v' PR - .

Lo

Ty
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<

reliable because of the frdction cnithevbearing site of the

d

stirrer. Between the other two alternat1Ves, we decxded to

use the density since the den51uometer used gave fast and

*

accurate measurements. fWe ‘need fast measuremepts to avoxd

.

time delays in the closed doop control system.
There are two "ways of correlatlng conversion and

density. In ome of them;;vmathematbgal equations relating

density and conve;si no ;the»pdiymerization mixture are

developed Dbased on R s sumpt ion b@ ;deal "mixing of

‘ A
polymer, monomer & lvent. ThlS way was used by Abbey

(1981) and Schmidt {p Ray (1981) to correlate conversion
q.

-and density in--gﬁ?& case of emulsion polymerization of

methylmethacrylate.'The second way involves the development
of an empirical correlation between conversion and density.
This way will be used in this work.

In order. to develop this correlation, we Tun the

reactor under PID control while the. following empirical

"correlation - ///
961.78 p - 827.52

X = .
wes used. Im this equation, 'tﬁe density of the reaction
mixture p is in gr/cm? while the conversion X varies from 0
to 1. During this run, dehsity measurements were taking

on-line by / operating the densitome%er at a constant

temperature of 60 degrees Celsius. The corresponding

conversion’ values were calculated by using the  gas

. - {
chromq&ograph off-line. These measurements are reported on
: s

Table 5.1. ) ” )

]
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o

Based on the data of Table 5.1 an improved. &orrelat1on
between conversion and density was developed by applylng the
least squares method. This correlation is glven.~by the
AfolLowingféqua£ion |

x = 1021.756 p - 884.587 o .

In practice we found that the correlation given

’ 1}
N '!‘ABLE 5.1
Density C9nversion
gr/cm? . :
>
0.8700 3.89
0.8777 12?95
0.8917 25.62 - %
0.9034 139.57 _
g.9fi2" .\ 45.90
6?9204 59.93 “
0.9284 ~ 63.64 | - ¥
0.9356 69.30
| ( X
by the following equétiqn -
. x = 1021.756 »p -,880.587
describes better. the. polym%rization process. This

correlation will be used in all the experimental russ of
. :

this work. ~ , '
- ) ) ~ ' fj\uw”

¢ »
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. So vﬂfar," we“nave prese%ted aifferent methods -of

measuring conversion in “a. polymerization = process and

‘\ developed an empirical correlation between conversion and

density  for the ' solution polymerizetion | of

methylmethacrylate '// “

For 51mulatlon studaes purposes, a mathematical nodel

of the polymer;zatlon process must be available. In the next

section, a mathematical model describing the _polymerigetion
of methylmethacrylate will be presented.

L' . 1 . . t

5.4 Kinetic Model
» i\ :
Polymers can be <classified into two»ela551f1catlons.

One of them divides polymers ingo™conden 'sation and addition

_polymers dn the basxs of- the comp051tlonal difference

e

between the polymer and the monomer(s) . from which it was
synthe51%ed The other cla551f1catlon divides them 1nto step

and chain polymers on the ba51s of. the _m%chanlsm of the
npolYmeriiation reactions. - ©
- ~ The polymer methylmethacrylate isfclassiﬁied as(g\chain
polymer. Chain polymerization 1is initiated by’some reactive
species,produced from some compound called initiator. The
_reactiveé"species adds "to a monomer molecule to form a new
reactive center. The*process 1s. repeated to->cont1nuously
propegate _vthe reactive center. JDuriné the ‘course‘ of
polymerization, monomer, high polymer and groning 'polymer
are present 1in the reaction mixture. ‘In‘ this type of

polymerization, polymer of high molecular weight 1is formed

!
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'immMediately and remdins ‘relatively unchanged during the

course of . the process. This whigh only depends on time is
the amount of pol 4er formed. This‘~is‘ the difference of
chain pdlymeriiaﬁZon'frOm*step polyhérization where both the
molecular weight and the ahount of polymer are time
deﬁendént. . . ' /

*The free radical polymerization ¢f metﬁylmethacrylate
is a very well known process. Séveral iqvestigatgré

»

(Matheson/ét. al. (1929)j Hayden ag@«Meiyifle (1960), . Balke

4
A

(19729, ‘M:/nab'ad} and Meyerhoff (1979), Schmidt and Ray®

(1981)5fPo nuswamy (A984) to name a fewg have studied "the

ukiﬁetiés of 9this Process. In this work, the mathematical

model describing the kinetics of this process and presented

.by = Ponnuswamy (1984) 'will be wused. This model wfll‘be

bfiefly considered in the sequel.

The polymerization procéss is consisting of ‘three

/

steps: ”iqii;ftion, propagation and termination. The

“initiation “step invdlves the dissociation of catalyst into

N 3 13 3 . ‘ »
two_reactive species and the addition of one radical to a

///égnomer molecule to produce a chain. Propogation consists of,

7 the growth of this chain by the succeifive additions of

5

monomer molecules. Termination can also take place by

disproportionation when transfer of a hydrogen radical,

which is Reta to one radical center, to another radical

v

centér takes place. The result 1is the formation of one
saturated and one unsaturated polymer molecule. Finally,

termination can take place if a polymer radical reacts with
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solvent or monomer molecules. These reactions’ are called

IS

‘transfer %o solvent and ' transfer to monoyer reactions
respedtively. . ,
. v

The general description of the chemical reactions for

the polymerization of ‘methylmethac:ylaté#,.initiated by

benzoflpéroxide "is as follows:

- : ~
Ihitiatér’decomposition
K4 - ‘
I;-f—**Z'fR'i“ o
/
~Initiation
ki '
R- + M + Ry
Propogation
kp
p Rx + M nd Rx*".‘

Transfer to monomer. : .

Transfer to solvent

+ P, + R,



"t

Termination by disproportionation

Keg  *

-+ P, * ‘Py /’V . : 3

Rx' +Ry'

EE——

Terminat}dn by compination

kec

Rx' + Ry'

+ Py.y ' ;/
where 1 denotes ‘initiator \molecules, R- the 1initiator
rédicals, M the monomer molecﬁles, R,j and R, - the iive
radicals of chain length x and y'respectively S the solvent
molecule ang P, and P, dead ‘pdlymer molecules of chain
length x andvy respectively. The paraméters kd, ki, kp, km,
k, k.« and k., are the rate constants of the corresponding
reactions & The initiator efficiency is denoted by f. This
parémete: is defined. as :the fraction"of the radicals
producé& in the diséociation reaction which initiate polymer
chains. Its value is al&ays léss than one and varies bétween'
0.3 and 0.8 (0dian (1981)). - o
~ Under the following assumptions |
A1] All the reactions are irreversible!
A2] Reaction rate constants are independeﬁt of chain length.
A3] The ¢oncentration ﬂbf radicals quickly becomes and
-, remains-constant during thé course of 'polymerizafion
(quassi steady state gpproximation)

A4] The monomer consumption due to 1initiation step. 1is
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! /

negligible.
AS]%Theré are nd temperature gradients withip, the reactor.
7" A6] The quree of mik&ﬁg is infinity ‘ g '
and soﬁé order of magn¥rﬁde studies (Thomas (1981)), the .

following simplified kinetic model results:

n

al1] - b |
—_ = - ky [1] : ‘ (5.1)
: . 8 » 0 -
dx ' b “
_ =k, (1-x) [1]°°% , S (5.2)
dt |
dIJ.Q ’ ’ . ' .
= Cf kg [I] + K, [M] [11° % + K, [1]° ¢ \(5.3)
dt ‘
"dl-iz . ’ y .
: = K, S [M]* [1]°°% + Kg [M]® [1]°°'° + K¢ [M]?
- dt ' o (5.4)
where
\ L
K, = kp (2fks/k:)° % = A, exp(-E,/RT) '  (5.5)
Kz = km(kad/k‘)os = A, e}(p(—Ez/RT)‘ | | (5.6)
Ky, = k, (2fkd/‘k,)°'5‘ = A; exp(-E,/RT) “ T (SSLA
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i -
!
2kp*k, '
K, = =-—==~=====-=- = A, exp(-E4/RT) (5.8)
(2fk k,2)° °®
\.
2kpikm '
Ky = ====-==-==--=== = Ay exp(-Es/RT) (5.9)
(2fk gk, ) 5 )
(2 + ») kp? ' '
g KG Z e-mmm—se - o= As exp(-Es/RT) . (5'10)
- k" ! |
Ct =2 £ (1 - v/2) (5.11)
v = k,c / ki (5.12)

where'[I] and [M] are concentrations of initiator and
monomer,respecﬁively , X 1S the monomer conversion, t is the
,reaction time, A,'s are frequency factors, ﬁi's are
activation energies, R 1is the constant of the ideal éases
and T is the reaction temperature. The parameters u, and :UZ
denote the zeroth andbsecond moments of the dead polymer,
respectively. The system of differential equations (5.2) £o

l

(5.4) can be integrated to‘giVe the variation of [I], x, uo
and u, during the course of polymerization. The values of
the different parameters, necessary for the integration,

have been taken from>§onndswamy (1984) and are listed in

Table 5.2.

J
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Table 5.2 Numeric values of model p?rameters

5

Parameter Value %arameter Value
Ay 3.751 E16 E, - 33740

Ap 1.201 E9 Ep 9630

A, > 2.113 E8 E, 1014

An 1,071 E10 Em 18394

> A, 7.85 E7 E, 15000
v 0.5 f 0.5

»

!X

The parameters v and f are dimensionless while the units of

v

the A,'s and.E,'s parameters are in and respectively.

In a polymerization process, someone is }nteregked in
the mo%fiéifr weight of the final product. The ipteresting
andy usetu prdperties which are uniquely associated with
pélymeric haterials are a consequence of their molecular
weight. In “most instances, there is .some molecular weight
raﬁge for which a given polymer property will be optimum for
a particular appliéation. So, molecular weight control is of
prime importance in a polymer process.‘Between the different
types - of molecular weights, the numbe; ave:age moleculaf
weight and the weight average molecular weight are the most

common ones. The number average molecular weight M, is

. \
defined 'a

the weight of all the molecules in a polymer

sample diV]déd by the total number of moleculesﬁpresent and
. ) § .
is given by: | -

~ ‘ (5.13)
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where N, and M, are the mole fraction and molecular weight
of molecules whose chain length is x, respectively. If we
use the weight fraction w, insteéd of the nnlé fraction Ny,
in equation (5.13) fne weight average molecular .weight Mw

L 4

and 1is given by:

Mw = L w, M, (5.14)
[ 3

Equations (5.13) and (5.14) are not useful in practical

IR 4.

applicafions B ;)bf the infinite summation. In terms of

2

v '
the zeroth and

MW [Mo] x .

M, = v : (5.15)

L Ho ‘ )

“and
/

MW u, )

Mw = —4— " (5.,16)
[Mo] X

where MW is the molecular weight of the monomer and [Mo] tis
its initial concentration.
So far, we have described a mathematical model for the

solution polymerization of methylmethacrylate. This model
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gives the wvariation of [I], x, wo, u2, My, Mw during the
course of polymerization. The control of the conversion both
experimentally and by . simulation will be studied for the
. -
batch polymerization reactor of methylmethacrylate b&
appkang different control ‘strategies. Between the two
molgcular weight averages, the weight average molecular
weiéhf will be controlled by simulation. Thesg, simulation
and experimental results will be presented #in the next
’ /
sections. :
o _,

5.5 Sim;lation Results

Several simulation results of the methylmethacrylate
polymerization system were made under pole-assignment (PA),
adaptive PID based on pole-assignment, self-tuning_ (STC) and
fixed gain PID control. The objective is to compare the
performance of the different conérol algorithms by
controlling the monomer conversion or the wéight average
molecular weight of the polymer produced within the reactor.
The kinetic model described in the previous section was used
to simﬁlate the variation of the controlled variables with
respect to the temperature which is used'as the manipulated
variable. In this simulation study, we dg not take into
account the dynamics of the reactor. Wé assume that the
temperature defined by the control algorithm can be
automatically achieved within the reactor by some means (hot
or cold water). Of course, this is unrealistic but still we

can get some conclusions about the.  performance of the



different control algorithms. The kinetic constants used 1n
the simulation studies are given 1n Tabbe_5.2. The initfal
monomer concentration was 4.75 moles/lit while the
corresponding solvent concentration, was 4.7065 moles/lit.
These concentrations correspond to a solvent to monomer
volume fraction of 0.5. Because of heating or cooling
limitations, the manipulated variable 1is allowed to vary
\between 328°K and 353°K. For almost all the simulatio; runs,
we assume that the initial témperature'of the reactants 1s
340°K. Dgtails of the control runs are summarized in Tables
5.3 and 5.4. |

| In the first case (see Table 5.3) our objective is to
follow a desired conversion trajectory. According to our
objective, the monomer conversion muSt lfollow a linear
trajectory. The control of conversion in a batch reactor
system is important because in a minimal time optimal
problem the solution is to follow a }ramp—type' conversion
trajectory. The rate at which the monomer conversion varies
with respect to time must be consistent with the heat

removal capacity of the system.
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The performance of every control aldgorithm, for the case ot
conversion control, is examined under ditferent cases. We
have examined different cases which are: the deterministic
case, the stochastic case, the determiniétic case Wwith
sudden 1initiator  addition and thé:deterministic case with
one or two set point changes,

Figures 5.3 to 5.12 are referred to the polg—assignment
control Elgorithm. . We assume that ‘the ’relation between
conversion and temperature can be adequately described by a
second order ARMA model. This model has the form

ylk)=a,y(k=-1)+a,y(k=2)+byulk-1)+b,ul(k-2) .
where the time delay 1is =zero. The process output y(k)
represents the monomer conversion4 at the discrete time k
while u(k) gtands for temperature. Since there 1is a
sighificant difference between the values that the
conversion and the temperature take on, the regressor will
contain very sﬁall and very large values. This created
problems for the estimation of the ©process parameters.
Because of it, an incremental model of the following form ‘!

y.(k)=a,y, (k=1)+a,y, (k=-2)+b,u; (k=1)+b,u, (k-2)
is wused. The incremental wvariables yi(k)’ and u, (k) are
defined as

v (k)=y(k)-y(k-1)
and

u, (k)=u(k)-ulk-1)
Figure 5.3 shows the performance of the poie assignment

control algorithm for the deterministic case. We Can see



that the controller 1is dble to exactly follow the desired
monomer conversion trajectory up to 135 minutes. For times
greater ' than 135 minutes, the controller cannot follam the
desired conversion trajec}pry.«Despite the fact that the

temperature 1is at 1ts upper limit, the*control objective

a . . bl .
cannot be achieved. This is due to the monomer depletion.

i3
&

During the initial phase of the reaction, we observe an

& a

increase in the temperature (procepirinput) profile'which 1s
followed by a small decrease. This can be'eXplained as
follows: the temperature 1initially increases because the
reactants must be brought to a temperature sufficient- for
the ignition of the reaction. After the reaction startg, the
heat of the exothermic reaction causes a érop in the total
required amount of energy necessary toy, sustain the desired
reaction rate. This drop in the energy demand is translated
into a temperature decrease. The otherwise increasing'a
temperature profile 1is due to the monome?’éonsumption. By/’
assuming that the initial temperature of the reactants is’
340°K, which 1is close to the ignition temperature, we
significantly shorten the initial heating éhase. Because of
it we do not observe any delay 1in the increase of the
conversion. .

Figure 5.4 corrésponds to the conditions of figure 5.3
and shows the variation of the initiator concentration ‘with
respect to time. According to egquation (5.1) the initiator

concentration should follow an exponential trajectory. The

profile in figure 5.4 is due to the increasing values of the
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. dissociation .constant kg because of the 1increasing

temperature profile.

Figuréé 5.5 and 5.6 shows the pfocess?‘  "&£

»

— ‘ ‘ . _
time instants 1is due to the monomer depletion. Figure 5.7

compared to f%gufe 5.3 gmphasizes the fact that  the
performance "of‘ithe‘ pple—ésgignmeht algorithm does' not
heavily erend'ﬁn.tﬁé pple,lq;ation. |
In figure 5.8 ~we examine the peffbrmance of the
controller_in'émstéchastic environment. *A Gaussian noise
with 'zefo, mean 'and deviation 'of 0.005 is adaed to the
measured conVersiohf From the previouSly mentioned figure,
“we iconclude that the controller can achieve its objective”
~but in theclexpénSe of an~-osciilatqry " input trajectory.
.,Figuré 5;9 compéred to figure 5.3 illustrates the effect of
the initiator on.tﬁq performance of the * controller and on
"fhe  whole ‘proceés uiﬁ géneral; As we previously mentioned,
,the.inifially used;initEAtor concentration is equal to 0.05
.méfes/lit; QDuring the course of pdiymérizaﬁionéﬁhe drop of
the 'initiatof' concentration and the demand to  keép a
consténtf';eaétion_’rate bcreates anvin;reasyng teﬁper;ture
.fppofilef At time t;iB;% mfn‘ we Léudéenly increase the
_initiator concehtratioh to 0i07 méles/lit (see figure 5.10).
/'This automaticaliy increases the concentration of the free
dradig5155 within éthe 'reactdr. Thi§ means that the monomer

‘consumption or in other words the polymerization rate would

. . . . 3 ) . . - . N
increase iy unless the temperature drops. Since the objective

)
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is to keep constant the polymerization rate, the controller

achieves this objective by decreasing the temperature

. (figure 5.9). | \ | | | -/

From figure 5.3, it is very obvious that the controllgr

cannot ‘achieve the final objective of 80% conversion'aféer
' /

150 minutes even if the upper limit of the temperatu;é is
used. It seems reasonable to reduce the desired final
conversion to a lower value, i.e. 75%. So, at time £=120 min

we decrease the rate of polymerization'such that a final
: /

/

conversion of 75% results. Figure 5.11 shgﬁé that the.
O - I ‘
controller causes the monomer conversion tofexactly follow

thé desired trajectory without using the qéper temperature
limit: Figure 5.12 1is éimilar to 'fgg;re 5.11 'but we
initially do not demand a high polymérizétion rate.-{&t can
be seen that the controller achieves/éhe desired objective.

The initially observed decrease ‘in ;he temperature profile

(figure 5.12) is due to the lower desired polymerization

rate. It seems that the initial temperature of 340°K is

sufficiently large for this de’sired polymerization rate.
/

In the sequel, we shal;/repeat the previously discussed

simulation runs by using ﬁéfferent control’algorithms.

Fiqures 5.13 to 5,21 use the discrete PID control
. : /'/ B
algorithm derived 1in/ the previous chapter. By examining

/ 2
these figures we can. say that the performance of ' the:

[>]

" controller is quite satisfactory although this controller
has not been designed for such control problems (tracking:
problems). We have to mention that the performance of this

. P

Py .
» -
I



190

"

con#rqller heavily dependé on the pole ldcationﬁ Therefore
this is an important tuning parameter. By trial . and error,
it was ‘found that the best pole location corresponds to the
‘origin of the,unit circle. The deterioration of the control
performance in the stochastic case (figufg 5.19) is due to
the violation of the design assumption (assumbtion 4,28,
chapter four) of this controller.

Figures 5.22 to 5.30 are refereed to. the Self—tuning
controller (STC) . Based on theSe figures we can say that, ip
all the céses, the confrollerb achieves 1its objectives.
Compaggd, to the pSﬁe—assignment and the adaptive PID,*its
contfol action is more oscillatory. A value for the
coastraining factor § La:ger than 0.01 (figure 5.24) gives a
smoother control actéaﬁ}‘figure 5.25 shows the'trajectgry'of
the controller ﬂpéféaegé;s;' Because of the timg Garying
nature of the p;5€é$g;;£ﬁénpérameters do not converge but
still the .goﬁfféilégqnaChiéYes the cohtrol objective. By
comparing figpf%&Sgééfﬁithdfiéure 5;8 we' can see that the
npolefassighm;nt id§ﬁtfo1‘?&lédrithm behayes bette;_thén the
self-tuning cdytféiiér“in ‘the stochastic case fqr this

«

i

particular,controi applicafion.
Figures 5.31 to 5.37 are referred to the” fixed gain
~three term PID controllér.,By examining these figures we can

performance of the PID

say that, in all the cases, G
controllgr is quite satisfactory. By comparing the
performance Yof this controller with the performance of the

previously analysed adaptive control algorithms, we can say
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that a very well tunégw PID controller shows a control
performance comparable to that  of an advanced adaptive
control élgorithm for this particular problem,

After examining the performance of the different
control algorithms, by controlling the monomer conversion,
we shall bresent a series of simulation résults where we are
interested in controlling the welight avefage‘ molecular
weight. Molecular weight is of prime imﬁbrtance for t@é
polymerization industryz/since it determines most of the’
properties of,tp inal product.,It'ié very obvious that a
‘satisfactory c!§;§ol performance of a control algorithm is:
necessary before it is applied in to an industrial process.
Because of it, the four previously discussed control
algorithms will be tested by controlling the weight average 
molecular weight. Details of these simulation runs are
summarized in Table 5.4. For adaptive. control purposes, it
is assumedvthat a pecona order without time delay ARMA model
describes the relationship between the -weight . average
molecular weight and the control variable which is the
reaction temperature. For the same reasons as in the'césé of
conversion control, an incremental model of the process
representation 1is wused in all- the adaptive control

algorithms.
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TABLE 5.4 Details of weight average molecqlar'weight
L control runs
\ Control algorithm type with parameters used
Pole Adaptive PID Self-tuning Fixed gain

assignment

PID

if

is achieved from the(very‘ beginning
‘ y p

Despite

process (see figures 5.40 and 5.41) the controller

termination

rate.

During

algorithm (PA) controller controller
(sTC)
na=2,nb=2 Same na=2, nb=2 kp=-0.001
conditions : t<50 min_
6(0)*=[0, 0 0, O]as in- the 6(0)'[0,0,0,0] kp=-0.01 if
t>50 min
P(0)=10°-1 case of pole P(0)=10°¢-1 i=20.s
pole at z=0.5 assignment §=0.01 ts=60.s
algorithm ‘ -
Uf=340°k except 'that: A=0.95 t.=30.s
t,=30.5s pole at z=0.99 t,=30.s - Mw.,=150000
Mw,=150000 - Mw,=150000 0O '
Figures 5.38 Figures 5.42 Figures 5.45 Figures 5.48
tol5.41 " to 5,44 - to 5.47 to 5.49
Figures 5.38 to 5.41 are referred to the pole
"a551gnment control algorlthm From figure 5.38 Qe can see
that the de51red welght average molecular weight of 150000
of the control.

run.,

the highly'nqnlinear and time varying nature of the

achieves

the control objective. In figure 5.38 we can see that after
“some oscillations during the - initial phase  of the
leymerﬁzation, | the temperature follows a decreasing
profile. By trying to keep constant the weight average
molecular weight ‘wé are mainly interested in keeping
constant the fatio between the polymerization rate and the

the course of polymerizatien..the

rate of termindtion rate decreases because of the increasing

E-4

’
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‘ » ) _ )
reaction mixture viscosity. So, it is necessary to decrease

the rate o% nolymerization in order to keep constant the
molecular weight profile. The need for hav1ng ‘a Qecreasing
polymerization rate proflle- explalns the decreasiné
temperature profile. Flgure 5.39 shoﬁ%&the variation of the
number average molecular weight durlng the course of this
polymerization control run. We have to motlce that the ratio
Mw /M, is"almost. kept constant close to the value of two.

'Since the ratib Mw /M, (polydispersxty) is greater than one,
the‘ termination ‘reactionf takes place by»both the coupling
and disproportionation reactions.

Figures 5.42 and 5.44 are referred to the adaptlve PID
controller based on .pole—assxgnment technlques For this
particular controller we can say that 1its control
performance heavilyx depends on 'the, pole location. By
compromising between a . fast 'control_'response and smali
overshoots (figure 5.42),- we found that the- best pole
location 1is at z=0.99. Fignre 5.44 shows the variationvof
the gains of the adaptive PID controller. _ ﬁ"

‘ Figures 5.48 to 5.49 are referred to the”fixed gain PID‘
controller, Figure 5.48 shows the pe(isrmance .of the
controller. which can be said to be‘quite éatisfactory;
Really} this performance has -been recelved by _us1ng a

"':.h_ﬂ PR

variable proportional' gain. “Fhe proportioﬁal galn varles;

from -0. 001 to -0. 01 for times greater than 50 'mlnutes By

q

1n1t1ally u51ng a small proportlonal gain we manage to av01d

excessive overshoots. After the desired set p01nt has been
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reached, the increesed proportionsl gain telps in making the
system to respond fast to any control errors. This fact
emphasizes.the need for using adaptive control in the case
of nonlinear and time varying processes.

In sommary, we can‘say that advanced adaptive control
can be used for the control of the monomer conversion or the
weight average molecular weight dur;ng the course of a
polymerization reaction. The excellent performance of the
analysed control a%gorithms, in this 1ideal environment,
encourages us to apply them to an experimental pilot-plant
,batchtpol&me;ization reactot of methylmethacrylate;

¢

5.6 Experimentsl Results . . )

In the previoog seotion we examined the performance of
different control aloorithms by controlling the mooomer
conversion and thevaeight average molecular weight during
the polymerlzatlon of methylmethacrylate by simulation
studies. Despite the. ideal environment under whlch we tested
the different tontrollers, these simulation studies gave an
understandlng about the polymerlzatlon process and a good
promise for an at least satlsfactory performance of the
*'voontrollers in a reel'environment.

The experimental set—up used ih this work has‘been
describeo in the previous sections and can be seen in figure
5.1. For control"pprpOSes a cascaded conttol loop is used as

in figure 5.2. The controller under consideration is used as

the master controller. It defines a remote set point for a
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fixed gain PID controller used as the slave one. This slave
controller 1is responsible; by manipulating the flowrate of

cold water to keep the reactor temperature close to that one

defined by the master controller. ’ /
Q
1
v k) Master L Slave b o vk
"ﬂ'ﬁf ~ 7 |Controllery -f 7 (Controlld T rogss Process I >
} er
Measd}ing
Device -
. .
Measuring
Device

X
. 5 \
' T T
. 5

oay
Th e v

Figure 5.2 - Schematic Diagram of  a Cascade Control *
Configuration
In our case, as Process I can be considered the monomer
conversion while as Process II can be considered the reactor
temperature. In the éxperimental s{udies three different
controllers have been considered as ﬁastér controllers: the
pole-assignment algorithm (?13, the self-tuning controller

(STC) and the fixed gain PID controller. Details of the



control runs as summarized in Table 5.5

TABLE 5.5 Details of monomer conversion experimental control

runs. '

Control algorithm type with parameters used

Pole assignment Self-tuni%g Fixed
, . gain

algorithm (PA) controller (STC) PID
na=3, nb=2 na=3, nb=2 kp=90
6(0)'= 6(0)'= _ t=20.s
T0.96499,0.275,-0.2576,, [1.26438,0.,24078, ts=60.s

0.00282,0.0001] t.=30.s

' -0.53809,0.01305,0.00042]

P(0)=10¢"-1 P(0)=10*-1, t,=30.5s
Uf=341°K ' §=0.01 xf=80%
pole at z=-0.5, t,=30.s -A=0.95, T,=30.s t£=150min
x£f=80%, tf=150min xf=80%, tf=150min Figures
‘ . 5.50-5.51
Figures 5.60-5.61 Figuges 5.54-5,53
Same conditions as na=3, nb=2
above ,
except that : 8(0)'=
6(0)*=[0.68211,0.30948, [0.,0.,0.,0.,0.,]
0.0343,0.0001] P(0)=10°¢-1,
Incremental temperature §=0.01
limits were used . xf=80%, tf=150 min
Figures 5.62-5.64 ‘Figures 5.54-5.56

Same as above except Same as above except that

that . ’

6(0) = na=2, nb=2
(0.,0.,0.,0.,0.] ‘

PID was used up to 30.5 Figures 5.57-5.59

- min .

Figure 5.65

Same as above except

that

na=3, nb=2, 8(0)"
=[0.,0.,0.,0.,0.]

PID was used up to 35 e

min : :

Figure 5.66
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For each control run preweighted quanrities of monomer
(927 gr) and solvent (1294 gr) are-loaded to the reactor.
These quantities of reactants correspond to a solvont volume
froction -ghich equals to 0.6. A'fiarge solvent volume:-
fraction is used for two reaoons: to facilitate the heat
exchange and to eliminaoe the gel effect. Having loaded the
reactants, the temberature within the reactor is raised to

)

'333°K. At that tzoo instant, a preweighted amount of

catalyst (benzoylp:roxidea equal to 32 gr is added to the

reactants while at the same , time instant control of the

‘reaction 1is takeg>fver It must also be mentioned that the
amount of catalyst d corresponds to a concentratlon Wthh

is equal to

In th‘f& quet ; & %ﬁé’ different control runs will be
dlscussed in the order that they have been performed.

Figures 5.50 and 5.51 correspond to monomer conversion
control ‘undér PID control. Details oflthis control run are
summarized in Table 5.5. The desired final monomor
conversion was 80% while the final reaction timé was 150
min. The desired conversion trajectory is a straight line
(figure, 5.50):fcorresponding to a constant .reaction rate
throughout the;polymerization course. The same figure also
shows - the actual monomer conversion trajectory. Initially
there is a nonzero value for the conversion which is due to
the conversion-density correlation :

x = 1021.756 p - 880.587

used in this work. Despite this initial discrepancy between
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Maman

the conversion given by thé correlation and the actual one,
this correlation seems to be very good as it can be seen
from Table 5.6. Because of the monomer deplgtion, the
controller cannot follow thekéesired trajectory for’ times
greater than 130 min., althoﬁgh the reaction teﬁperature 1s
kept ét the maximum possible '~ 't (figure 5.51). The same
figure shows = that the heatiny dynamics of the reactor are
very slow compared to the céoling ones. These slow heating
dynamics are responsible for the oscillations of the monomer
conversion around its desired trajectory:

‘Figureé 5.52 to 5.59 are referred to monomer conversion
control when a self-tuning controller is used ‘as the master
controller. Figures 5.52 to 5.53 are referred to the case
when na=3vand‘nb=2 while a nonzero set of initial parameters
(Téble 5.5) has been used. Eased on measurements taken
during this control run, Table 5.6 has been constructed. The
same éommeﬁts mentioned for the case of the PID controllerv
are also agbiicable to :his cése. One serious problem
éncountered in this case and in all adaptive control runs,
in general, is related to the parameter estimation when the
- process input saturates at its upper or lowér limit. Since
an iﬁcremental process model is used, the regressor will
contain zZeros during longk periods of process input
saturation. In this case, because of lack of'excitqtion} the
calculated process parameters will be in error. We solve

this problem by introducing some kind of excitation into the

regressor. Because of it, a stepwise stationary incremental
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process input is used 1n the regressor when the process
input saturates. This way of sclving the above mentiqned
problem has been proven efficient for both the sglf—tuning
controller and pole-assignment control algorithms “used 1n
this work.

TABLE 5.6 Conversion given by GC analysis and density
correlation

Conversion Conversion

' given , Given

Time (min) Density by GC (%) I by the
Q (gr/cm?) : correlation

5 0.8648 1.15 3.028
20 0.8672 } 4.75 5.480
35 0.8776 15.33 16.106
50 0.8884 . 26.75 27.141
65 0.8941 33.52 32.965
80 0.9040 42 .86 43,080
95 0.9089 47.38 48,291
110 0.9189 57.63 58.407
125 0.9269 . 65.91 66.479
140 0.9338 71.35 73.529
150 0.9377 76.10 77.514

Figures 5.54 to 5.56 are also referred to the
self-tuning contrbller. Details of this control run are in
Table 5.5. Our objective, by performing this control run, is
to examine the effect of the initial parameters set on the
performance of thevcontroller. We can see from figure 5.54
that the performance of the controller does not depend on
our choice for the initial parameters se . Figure 5.56 shows
the trajectory of the controller parameters. Despite the
large variation of 1its parameters (highly ' time-varying
process), the controller performs well 1f we take into

account the problems associated with the reactor design.
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Once again, the accuracy of the conversion-density
correlation can be seen from Table 5.7 which 1is based on
measuremehts taken during this control run, Tables 5.6 and
5.7 gives us_Eonfidence regarding the accuracy with which
the monomer conversion wiﬁhin the reactor is measured. The
observed disagreement between the conversion given by gas
chromatography and the conversion-density correlation can be
considered as acceptable.

Next we want to examine the effect of the order of the
controller on its performance regarding the control of the
monomer conversion. Because of it, the previous control run
was repeated when the Stfpcture of the controller had na=2
and nb=2. Figures 5.57 to 5.59 show the performance of the
controller. Despite the reactor design limitations, a second
order self-tuning controller gives good control performance.
For this particular application, this change in the order of
the controller did not significantly improve or deteriorate
the control performance.

Figures 5.60 to 5.66 are referred to the monomer
conversion control when tﬂe méster controller was the
:pole—assignment algorithm. Details of these c0ntrpl runs are
summarized 1in Table 5.5. According to the stability
analysis, if a "good" set of initial process parameters 1is
available or a fixed gain controller able to stabilize the
closed loop system is used until the parameters coriverge to

a "good" set of ones and the singularity of the Sylvester

matrix 1is not the limiting point of it. It was assumed that
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the process can be described by an ARMA model with na=3 and
nb=2. As in the case of the self-tuning controller, the time
delay was assumed to be equal to zero. Figures 5.60 to 5.0
show the performance of the pole-assignment algcrifhm when a
nonzero set of initial process parameters has has been used.

TABLE 5.7 Conversion given by GC analysis and density
correlation

Conversion Conversion

given Given

Time (min) Density by GC (%) by the
(gr/cm?) correlation

5 0.8644 1.33 2.619

\\\9 20 0.8692 7.31 7.523
35 0.8806 19,90 19.171

50 0.8858 25.46 24.484

-« 65 0.8906 35.79 34.906"
80 0.9023 41.97 41,343

95 0.9117 50.51 50.948

110 0.9187 57.42 58.100

125 0.9262 65.92 i 65.763

140 0.9326 71.48 72.303

150 0.9362 77.24 75.981

Because of these nonzero parameters, the fixed gain
controller, Uf=341°K was not used during the whole
polymerization course.‘By comparing figure 5.60 with figures
5.50, 5.52 and 5.57 we observe an improvement in the control
performance for the case of the pole-assignment control
algo;ithm. During the course of this control run, tpe
process input follows a rather T"bang-bang" type of
trajectory (figure 5.61). We can avoid this "bang-bang" type
of control by using incremental input limits. To prove this,
the previous control run has been repeated with a nonzero

set of initial paréhters (see Table 5.5) different than that

»
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of the’ previous controol runj Whe‘process input was allowed

\

to vary at most 3°K between successive control‘ intervals.

’ Figure 5.62 shows the performance of the controller for this

particular run. The initial conversion. of the reaction
mixture used in this run has already been 5.2% since the

same reactants had been used in another unsuccessful run.

After ,the 1initial period, the control pe:fcrmance can be

considered. as satibfactory. Figure 5.63 shows that the

 “bangfbahg"“ type of control has been avoided because of the

incremental inpuﬁ ‘limits used. Figure 5.64 shows the

“trajectory of the process parameters. We observe a slowly

" time varying parameter tfajectory with the b's parameters

close to zero (low "gain" sysﬁem). Our attempt to, repeat the

same control run with Z€ro initial parﬁmeters © was

&

unsuccessful. This can be attributed to the slow variations
of the process parameters (figure 5.64).

As we previously mentioned, instead of having "good”

initial process parameters to operate  this control

algorithm, we can wuse a fixed gain' controller ablé to

stabilize the system until the parameters converge to some

" "good" wvalues. In this case the indentification scheme must

run in a passive mode. In our case, the fixed gain PID
controller previously .discussed was used as the fixed gain

controller for the first 36.5 min of _tﬁé polymerizétion

course.: The model of the process was assumed-t® have na=3 -

and nb=2 while a zero initial set of parameters was used.

After t=36.5 min the pole—assignmeht~algorithm started being

3
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used. The control performance for this particular run can be .

3

seen in figure 5.65. Compared ‘to figure 5.60 we observe a

deterioration in the control performance. The same cohtrol
run has been repeated for a second order process model.
Compared to figure 5.65, we cén say that the deteridration
in the control performance can  be attributed to. an
‘fﬁggaequate description of the process by a second order
mé&éll | |
 ;in’ sg@@ary, we can saf that the performance of the
dféferent'gdntrql algorithms is almost";he same for this
particular process. Slightly better control performance was

&

obtained when the pole-assignment algorithm with nonzero

initial parameters was used. An improvement 1in the .

nrrformance of allcontrollers would be obtained if the
heating dynamics of the controlled. system were faster. This

suggests that a modification to the existent experimental

set-up is necessary. The use of a split-range valve could be

A

one such modification.

.
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with one set point change
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5.7 Conclusions
This chapter 1is concerned with the applications of

adaptive control in the area of polymers. The performance of

‘different control algorithms such as ﬁole-assignment control

algorithm, ﬁdaptive PID based on pole-assignment,
self-tuning contro¥ler and fixed gain PID has been examined
botg experimentally and by simulation studies in a Dbatch
polymerization ‘reactor of methylmethacrylate. Monomer
conversion and weight average molecular weight control have
been studied by simulatioﬁl studies. Although all the
controllers gave excellent control performance, the
pSIe-assignment ‘algorithma seemed to give the best .one.

Experimental evaluation of the different algorithms was done

by controlling the 'monomer conversion within the reactor.

All ‘the control algorithms showed almost the same control

performance. an improved control performance would be

obtained heating dynamics of the system were faster.
: . , A

A problen rding the parameter estimation was detected
m * . -~ R

.

when the process input was saturating at its upper or lower
limits for long “pegggdsméimpimeﬁuzhe introduction of some
excitation into the regressor gave 2 séLutiQn to this
problem. ” o

Our mafn‘conclusion, based on the_ﬁsﬁUltS presented in
this chapter, 1s that- édapti;e control 1is a promising
solution to man; controi problemsﬂ‘but system design
considerations have a great ihflueﬁce on its performance. On *

R ‘ ~
the other hand, the good performance, in most cases, of a
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well- tuned PID controller and the need for gom\g tﬁpe .

\

"tuning" ‘of an adaptive mlgo,mthm are the mal?ﬂ reacsons “"r
“m “

3

the wide use of this 51mple three term controlier%‘vm\ the

d fr . . B oy .:« ‘%‘ e " - .
industry. e ) IR
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6. Conclusions and future work

Adaptive control . has been introduced to handle
. ‘ ' ‘ v‘ " ’ - p
situations where the performance ~of conventional control

C e
strategies was unsatlﬁfactory and 1nsuff1c1ent For adaptive,

“

control purposes, a.means of mathemaﬁlcal descrlption of the
{
process 1s needed The mathqmatical model must describe the

ofr‘complex1ty but inp a

process with the minimum de I

thEmatlcal dﬁscrlptlon of the

rw"’ .

usable form. Knowing -t}

process, one can then deii control law.~Them pefformance

of the control algont”pends on both the de51gn of the

control law and the ablfif} of thebldentlflcatlon scheme to

give "good" estimatef: ;f the process parameters (in an

explicit control design) or of the controller parameters (1in

an implicit one). |
The main contributions of this work are:

A1] Stability analysis and exponential convergence of the
recursive least sqguares 1identificatlion scheme with
variable forgetting factor. )

A2] Stability analysis of a Qole;assignment centrol

<t algorithm in the presénée of bounded unmeasured
disturbances.

A3] Design of a stable pole:aseignment cgntrol algorithm
with dead tiﬁe compesation.

A4] Design' of a conventional velocity type three term

‘_adaptive PID controller, | -

A5] Experim&®ntal evaluation of  the pole-assignment

‘algorithm, the self-tuning controller and the fixed gain

270

o fw - A AV TR » ST
Yoot . R Y ] . R



n

The above conclusions are explained with reference to

ol
-

PID controller on a batch solution ' polymerization
reactor of methylmethacrylate by controlling the monomer .
conversion trajectory. .

the

£

relevant chapters in more detail in the foilowing'seétions.

In chapter 2, the identification scheme used in this

QFﬁ p

4

X . : e : L SR
dork is presented. It 1s a modification. of the original

least squares -identification algorithm derived by Gauss with

a variable forgetting factor. The use of the latter makes
~ ¢

the whole algorithm suitable forgﬁiye-varying processes. It
has been shown that this algorithm guaranteesquundﬁess _and
convergence of the parameter estimates as well as
minimization of the prediction error. Theée 'properties_gare
independent of the beundness of the input/output vector.
Unlike Cordero's work’ ’981),' we do ‘not' impose \any
restrictions on t%& magnifude or bounds on the covariance
matrix. The use of ; persisfently exciting signal (procéss@
input for open loop system identification or reference
signal for a closed loop system) and the wuse of an uppér
bound (less than one) for the forgetting factor make the
identification scheme converge to gbe true br&cééé‘
pafameters of a time 1invariant or slowly time-varying
process. The convergence of thekparameﬁer estimates to the
true values 1is exponentially East. By using a persistentlx‘
excitfng‘sighal, it has beenr shown that-‘the. covariance

-«

matrix remains bounded from above and below for all the time

i

instants. This suggests that.the "blow-up" ‘and "driftihq"

. &
&

( 4

2

LY

»
P
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‘problems Céq:be avoided by using a _suitable bérsistentd&{
exciting, Si%nél. It‘was;fbund tﬁat there is a relationship
b;tweeﬁ the upper boﬁnd of the "vériable forgéttiﬁg factor
and the am0unt of“excitation'applied to thé process. "

\ It is very weillkndhn that almost all the processe§
controlled by édabtive algorithmg spow ‘some vshort "of
nonminimum phaseﬁbehaviour, A.minimum phase process can have
nonminimum ‘properties for certain choice_ of samplertimes;
Under feedback control, the clbéed‘ loop system pblésf areﬁl
éssigned, in‘thé-limit, tro the open loop zeros‘which is- rot
‘desirable for nbnminimum phase systemsx;’?ole—assignment
control algorithms with intégrai action 1is a barticu;ar
class of algorithms whiChuaVOid thé above mentioned problem

o . E _

by shifting the closed _loop system poles to desired .
locatiops while minimize the steady state érrorﬁlbecause of
the integrai action. In chapter 3, a ‘pole—aésignment
‘algdrithm is presented. Its control design 1is explicit 1in
nature requiring 'construction of the control law after the
process parameters have been éstimated. The closed 1loop
system under its control has been proved stable, despite ﬁhe
presence of,bou;ded disturbances. Although local in nature,
the stability analysis 1is applicable to both minimum and
nonminimum phase systems. The possible singﬁlarity of thé
’5ylvester matrix, until the estimates of the process
-pérameters converge to some "good" values, is the limiting

point of this algorithm. It has been shown that the problem

~can be eliminated if a fixed gain controller able to
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sigpal are used. In this case, the control‘algorith leads

to a globally stable closed loop system. A n

simulation _examples illustrate the performance’ of this
. A . .

S
\

Eont;ol algorithm,

In chapter 4, it is jségwn' how the probosed
pole-asSiénment:algorithm can becomewicémputatioﬁally more
efﬁicientv esbéc'ally in the presence of large time delays.
The idea Zs tb use a Smith predictor iﬁ ghe' clqsed loop
system. It has also’' been shéwn ho; thé pole-assignmént
a;gorithm'with the dead time cbhpensationﬂfeature leads to a
globally  stable closed 100p' system} An adaptivg PiD

controller based .on pole-assignment ‘techniques has been

derived for a particular class of p:bcesses with or without
| o

/.

time delays.' o ,f

In. ,chaptef . 5, the perfdrmancé of -the proposed
pole-assignment aigori%hm is svalha&gd ’bo;h experimentally
and by_siﬁulation studies on a_Batch solution polymerization
reactor of methylmethacrylate;’lts performance 1s compared
with that‘ of a self-tuning controller, a fixed gain PID
controller. and Ithe adaptive PID céntroller. - Monomer
conversion armrd-_ weight' average molecular weight were
considered as the vpfcéess variables under ncontfol for
simulation pﬁ%péses._fln' all the cases, the performance of
the pole-assignment algorithm was better than that of the

~

other controllers.’ Experimentally, monomer conversion has

[

only been studied. Despite the slow heating dynamics of ' the

‘

z«,
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'system, the performance ‘of all the applied -control

algorlthms can be . considered' as - satlsfactory . The'.
pole-assignment algorlthm performed better than ,the other
controllers only when a ”set of wgood initial" process
parameters was Vused 'The 4process parameter ‘-"drlftlng"
proQ“em ' when the process input sa%urates at its upper. or‘
lower vllmlts for long t1me' perlods;, was av01ded 'by
introducing 4 some excitation into tme regressor; ‘This
experimental study made clear that design problems ‘greatly
affect the performance of even the "best” control algorlthm.'

An abudance of ideas for %uture work ar1se .from this
thesis. Having seen the usefulness of persistently exciting'
signals 10 adapti&e control,-he shopld‘imprQVe our knowledge
about them. Besearch“should bep_devoted on the design of
suitable'persistently‘exciting”signals. Since limited amount
of excitation'is allow ln a cloSedlloop system, it is very .
desirableﬂto obtain the true -process 'parameters by u51ng
minimum excitation. Begause of it, two questlons should be

answered: what is the minimum amount of exc1tation' reguired

for the identificatio of\ a specific n::fer of process
. parameters and at what f equéncies should is excitation

occur. The pole-assign algorithm °~ would become

<omputationally more efficient i.e. avoid checks on the
singularity of the Sylvester matrix if it had an implicit
control law. An interesting problem is how this can be done

. without sacrificing the stability properties of the explicit

algorithm. Of course, an interesting experimental follow-up
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" . ‘
] ’

can be the weight average mof;cular weight control in the
patch Solutlon polymerlzat1on reactor. .The use of a split
range valve W1ll lmprovevthé dynamlcs -of the' experimental
system during the ‘heating and cooling periods. Thié leais to
an 1nterest1ng control problem when adaptlve algorithms are
applied because two différent models are required for the

- 't
description of the polymerization process.

[

The 1ist” of ideas for future work can go on and on.
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7.‘Nomenciature

¢

7.1 Technical Abbgeviations 7 | . <' |
3 _ : \$?/ﬁ
DC  Determinisitic Case

GC Gas Chromatography
> . p

PA . Pole-Assignment

[ g

PASP PBIe-Assignment‘witﬁ"&mith Predictor
PID Proportiohal-lntegral‘Derivaﬁive controller
SC Stoéhastié Case |
STR_ Self-Tuning Regulator

STC SelM-Tuning Controller

7.2 Alphabetic

A(z ") Polynomial corresponding to the{prOCess output
A(z"',k) Estimate of polynomial A(z™') at time k

s Coefficients of polynomical A(z""')

éy(k)’s- Estimates of a;’s at time k

A;’s | Frequency factors

A (z~") ‘Desired closed loop polynohial

ay’s Coefﬁicients of polynomial aA*{z""')

B(z-') Polynomial corresponding to the pnocess input
B(z-',k) Estimate of polynomial B(z~') at time k
B,(z-') Polynomial related to B(z"') bp: B(z“)?z'5B1(z;‘)

b's "’ Coefficients of polynomial B(z~')
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Estimates of b;’'s at time k

Constant parameter in equation (3.47)

v

Positive constant parameters

Parameter equal to 2f(1-k../k¢)

Process time delay

Number of 'zeros on the unit ci
Activation energies

Statistical expectation dperator

Prediction error

'

.

Initiator efficiency

Upper bound of parameter error vector

k=0

Identity matrix

Initiator conc@ntration

Loss function in equation ‘A.5

Loss functioniin equation (2.12)

Parameter

estimator gain

Parameter equal to A,exp(-E./RT)

Parameter
/
Parameter
Parameter
Pa;ameter

Parameter

Condition

Positive parameters in eguation (3.53)

equal to
equal to
equal to
equal to

equal to

Proportional gain

Azexp('Ez/RT)

Aanp('Ea/RT)

‘Asexp(-Ey/RT)

Asexp(-Es/RT)

Asexp(-Egs/RT)

number of P(0) "'

Dissociation rate constant

rcle

norm at
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time
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Iéitiat;on rate constant

Transfer to monomer rate constanf

Probagagion {afe uLpstant

Trahsferupo solvent fate constant
Overall,terﬁination rate eonstant ey ‘ B }
Termination by combinatien rate conseent
Termlnatlon by dlsprqaortlonatlon rate constant
Polynomlal in the denom‘%ator of- the
pole a551gnment control law ”

Estimate of polynomial L(z-') at time k
Coefficients of polynomial ;(z") ‘ ‘

Est1mates of the coeff1c1ents 1, s at time k

‘Parameter in equatlon (3 48)

Monomer concentration ‘\\\\\\

Number average molecular W 1ght - ) -
Weight average mblecular welght

Welght average molecular welght set point
Molecular’ welght of polymer molecule w1th chaln
lenght' x |

Order of polynoﬁial B,(z"")

Asymptotic merory length

Pareﬁeter in equation (2.23)

Mole fraction - of polyner molecules with chain

length x.

Order of polynomial A(z" ')

Bounded disturbance at time k

Covariance matrix at time k
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. X

P(z™ ") Polynomial in the numenator of the pole-assignment
‘/  control lav | x .

%; ‘h', Polymer molecules,wfﬂh chain lquth X

é"s _Coefficients ‘of polynomial P(z™') |

ﬁ;&gxls Estimates of the Edéfficients‘pi’s at time k

R r Cbnstant of ideal gases

R . Free radicals formed by the initiator dissociation

R, | Free radic;ls with chain length x

r Parameter equgl to max {n,m+d} = =

S : Soivent molecules -

S " Time interval of,persistentvexcitatioﬁ

T Temperatﬁre of reaction

tf . Final témeAOf reagtion gg;;éﬁéi?;

u(k) Process input at time Kk Sl AN

u; (k) Incremental process input at time k

V(k) ;yapgnov type function at time k defined in

‘équatiqn (2.41)

Ve K Limiting value of V(k) , ////////"—_NN\\\\

1 W(k) - Function defined in equation (2.52)

w(k)" Auxiliary signal at time k defined 1in equafion
(3.39) " )

W Weight fraction of polymer molecules with chain

| length x

X monomer conversion

xf Final monomer conversion

x(k) Auxiliary signal at time k defined in equation
(3.41)
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Estimated process output at time k

Process output at time k

Incremental process output at time k
Auxiliary process output at time k.
Desired reference signal

Time delay operator

N\ 2

P lyﬁomial in z-' defined in equation A.Z2
Pdlynomial in z~' defined in;equation A.3

Polynomial defined in equation (3.48a) .

_Coeffftients,in equation (3.47)

Polynomial defined in equation (3.49a)
Coefficients of polynomial &8(z™')

Lower limit of the upper bound of‘the noise
Maximum upper bound of the noise

Tracking error

Coefficiénts‘in'equation/(3.50)

Weigthing factor in the self-tuning-controller
Norm of the. vector formed by the coefficients &:’s
True process parameter vector |
Estimate of 6, at time k

Constant forgettihg factor

Variéble forg%tting factor at time k

Maximum value of the forgetting factor A(k)
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Maximum eigenvalue of a matrix

Minimum value of the forgetting factor A(k)
Mini&um eigenval&é of a matrix

Polynomial defined in equation (3:52)
Parameter equal to {Xmn[B(0)"" ]}

Zeroth moment of dead polymer

Second moment of dead polymer

Parameter defined in equation (3.56)
Parametér in equation (3.¢8)

Coefficiénﬁs in equation (3.50)
Reaction‘mixtureidensity )

Positive constants

Stopping criterion for the parameter adaptation

‘Parameter defined as: Lo=03No

Noise variqpce

positive constants in equation (3.54)

Derivative gain \
Dimensidnless.deriQative gain

Integral gain

Dimensionless'inéegral gain

Sampling time

Augmented process output defined in -equation A.5

Parameter in equation (3.48)
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7.4 Supg}scripts

7

‘ .
) Estimated value

' Matrix transpose ’ '
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9. Abpendix: Basics about STR/STC control

LN
il

A VY

¢

' p ',"\ " ! .

The pwinciple theore;ical developments of sélf—tuning
regqulators are discussed in Astrom and Wittenmark (197?),
Wittenmark (1974), Ljung and'wittenmark (1974), Clarke ;hd
Gawthrop (1975).

In this  part, a brief decription of the self—tﬁhing
controller used in-thiskwork will ‘be presented.

Assume a discrete, time invariant, single input/ single

output process described by the following ARMA model

y(k+d) = alz"') y(k) + B(z“)<7*u(k) + e(k+d) (A.1)
. . { D
\
where .
a(Z-‘) = qg t ag A S S % z " " (A.Z)‘,
Blz=') = Bo 27" + Bz 27 $ oee. * Bmoz" ‘ (A.3)

d iéathe number of whole periads of delay and it equals one
plus the integer portion of the transport delay divided by
the sampling interval. If this parameter is less than the
true number of whéie periods of del;;, there will be a rapid
degradation in the ability to control the préoéss; I'n cases

where d is unknown, overestimation rather than_

underestimation is preferable (Wittenmark (1974) ). < is

’ 297 ?
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1

s
the backwards shif}’ ope%ato{t and equals to 1-z7'. The
parameter d, is cha}acteristi;‘of the type of disturbances
(stationary or nonstationary). A value of d, greater than
zeéo always naturally leads to integral action in the
controller. The term e(k+d) is the moving average error and,
is assumed to b; uncorrelated with the  regressor .variables'
{y(k) y(k=1) ... u(k) P(k—1) ... }. The variable y(k) is
defined as the deviation of the .process output from its
desfred value while wuf(k) 1is the deyiation of the process
input from its steady staie‘value. This steady stéte ;value

need not be known if 4, is greater than zero.

The minimum variance control is given by

) alz=") : )
<Ju(k) = - y(k) (A.4)
B(z=*) i ;
-The parameter vector ’
Q_(k)' = [ @0 ... an Bo -.- Bml ‘ ‘

-~

»

is uﬁaatea'at evéry sampling interval and 1is used in éhe
control law (A.4) instead of the true‘parameters. A number
of identification algorithms (least squares in our case) can
be used to solve the parameter estimation prbblemf

- The minimun *?ariance control la; (A.4) can create
excessive oOr ;large variations in the manipulated variable.
Iné;;ad of min;mizing the variance of the process output,

Ty

3 ) .
Clarke” and Gawthrop (1975) developed the self-tuning
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N . . . T
s . .

- 'gongroller by minimizing the loss function

€ >

3, = E{[ylk+d) + Sv"’uSk')]’ = E{&(k+d)?} | (A.5)

o

r _ o]
. .

where E stands for the expectation opefator,

‘Using the definition.é% $(k+d) from (A.5) it can be shown

" that a gﬁﬁi;guning algorithm with estimation model

/
e

” ' . ‘ ) ) , Coef

,l

B(k+d) = alz"') y(k) + y(z" ') w¥ulk) + e(k+d) (A.6)
and the control law

L Calzmr) : - :

<o%u(k) = - ——— y (k) ‘ (a.7) .
;,\\ : y ( z ) ;

will have the same properties as ’deriyed'by Astrom and

o _ EEEEERL Lo

- Wittenmark (1973) for the minimum variance case. The order

of y(z~!') Mmay be larger than the order of B(z“)‘invthe
"uhcbn;rainéd case. The’paraﬁeter‘g is a weighting factor for
, thg'.Variancil of the manipulated ?ariable in the criterion
TJ,; Lérge values forrthe parameter § allow_small variations
in . thg‘ maﬁinlated, variable while sma¥lrvalués allow the
qppasite; Thé'bést Qalue fofﬂthekconstraining factor 3§ :is

uﬁknown but can be'easiiy found by on-line tuning.

\

e ;



