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ABSTRACT

Process identification is a very tmportant branch of automatic control because it
Renerates the dynamic models required for successful prediction, control, real-time op-
timization, fault detection etc. Successful identification and control provide economic
gains, dependable quality, optimal production, tmproved safety and reduced environ-
mental compact, etc, in industsial applications.

Currently the most widely used identification methods are the Recursive Least-
Squares (RLS) type algorithms which include the basic RLS algorithm and its variants.
Hmm.bmammmmmmmswmuumedmgm-
Uanyumtabkmma.msmsmyhmmnumamlpmblﬁnjmmﬂl
industrial applications, especially when implemented on digital computers with finite
dahhgﬂuaM/wwnhhmemuMmbkawmwkhmwmi
mon in industry.

mmumamamwwmmmmmm
lwmm.mmmmm.mmmmwm
parameter vectors normally used in RLS identffication algorithms, a structure is devel-
wmmmnmmmwmmw;; oS
mmfthMﬁmMalwamwm-ﬁm
Wmmwmmmwmummﬁwm
unm-mmmnahmwuunmwwmmm;m
more compact and convenient structure that provides much more information than the
the aigorithm with superior numerical performance. In addition, the AUDI algorithms
provide some useful features that the RLS type algorithms do not have, such as stmulta-
mmmdmmmmmmmm&h
mdmmmmmwto—mm

Ahﬁdﬂnmmmw'hummmﬂg
mwmuwuwmmnmmmmm!
mmmmm-mmmmmmm
mﬂn“dhm”dmmmmnﬁm
Multivariable control is a major concern in industry, but multivariable identification is
a dificult step. The AUDI structure has been extended to the MIMO case and a MIMO
version of the AUDI algorithm fs presented.

Careful analysis of the AUDI structure leads to new insights tnto the information for-
mmumqummmmmﬁm&
design and interpretation of information forgetting mechanisms for recursive identifice-
tion.
mmw-n-.w«twwm*
mmmummmmmmmmwe_ﬁ
mm-mmmmummmu&
rithme are very promising for adustrial applications. The AUDI approach i Tecom-
w.am&mumwuwm
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Chapter 1

INTRODUCTION

tification methods called the augmented UD identsfication (AUDI) methods. The

AUDX method fs an efficient reformulation of the familiar least squares estimator,
but are superior to the existing recursive least-squares (RLS) type methods tn almost all
aspects, especially for real-time applications. This chapter provides a brief tntroduction
to recursive identification and an overview of this thesis.

TMMW@MWNNMd.mMﬂydM

1.1 Imntroduction to Recursive Identification

Process identification is the fleld of modeling dynamic systems from experimental data.
More preciscly, identification §s “the determination on the basis of Input/output, of a
mm.ma—ammmmmmunm
alent” (Zadeh 1962). The basic concepts of process identffication are Slustrated by
Figure 1.1. In both batch and recursive applications, identification of the model are
based on measurements of the process input and output variables.

(a) Batch idertiicalton
Figure 1.1: The Principle of Process identification
An accurate and reliable dynamic model is necessary for applications such as model

based control, adeptive fillering, prediction and fault detection. In the field of process
control, more and more industirial control systems are changing from the “tradittonal”



PID feedback Joops to more advanced model-based controllers such as Dynamic Matrix
Control (DMC) (Cutler & Ramaker 1960) and Generalized Predictive Control (Clarke
& Mohtadi 19687). However, in most cases, developing the process mode! s the most
important and also most difficult and time-consuming part in developing a model-based
controller. Therefore this thesis addresses an important current problem in industrial
process control.

The typical procedure for process sdentification s fllustrated in Figure 1.2, where
it is seen that process identffication usually consists of the following steps (Isermann
1960, Fang & Xiao 1968, SGderstrém & Stoica 1989):

1. Experiment design. This may include the determination of input/output variables,
input excitation signai(s), sampling time, duration of identification, open-loop ver-
sus closed-loop identification, on-line or off-iine identification, efc.

2. Data collection and pretreatment. The main task of data pretreatment is to remove
any drift or bias (D.C. component) and filter out undesirable components such as
high frequency noises. Proper pretreatment of input/output data can significantly
improve the identification results.

3. Structure identffication. A suitable model structure must be assumed before the
structural parameters are identified. The structural parameter for a single-input
single-output difference equation model! s just the model order, while for a - ults-
mput multi-output difference equation model, the structural parameters are a set
of invariants, calied the structural indices.

4. Parameter estimation. After the model structure is determined, the mode! parame-
ters can then be estimated. The most widely used method for parameter estimation
has been the recursive least-squares (RLS) method. However, as discuseed later,
the least-squares method has serious drawbacks in real applications. The AUDI
famfly of methods developed in this thesis are recommended as replacements for
the RLS type methods for real applications.

8. Mode! validation. In practice, the identtficd model is always only an approxima-
tion to the real process. Therefore the identified model must be validated to see
whether & s an adequate represeniation of the actual process. If the mode! §s not
acceptable, then the identtication procedure must be repeated.

The classical approach to identification fs the so-calied batch or off-ine method, |
which all the input/output data are collected first and then used stmultaneously to
find the parasneter eotimates. However, i process application, the process model is
usually requived for calculations or decisions that must be made on-ine. Obwiovely,
the model should alweys be up-to-date, and thus &t fs necessazy to update the process
model every time a now oot of input/cutput is ebtained, which loads to the concept
of en-Ens recursive identiication. Recursive kisatification has meny adventages over
baich methods, the most tmportant of which are thet recursive identtication methods
have lower computational and smelier memory requirements. One disadvantags of mest
recussive methods s that the decision regarding medsl structure must be mads a priort,
which fs wsually nct possible. However, the AUDI method proposed in this thesis soives
(at loast pastially) this problem.

Recursive identification f» the cornerstens of almest all model based adaptive con-
trolior where the control action fs based on the most recent medel. A typical adeptive
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control configuration is shown tn Figure 1.3, which makes # obvious that the param-
cter estimates are a prerequisite for the control action calculation. The success of any

mmnm-m

pm:n;:ip,,, mmmhemnwmmgﬁgm
ing the effects of model maccuracies (Clarke & Mohtad! 1987). In other words, ff the
miﬁmnﬂmhmﬁmbﬂﬁﬁnmm
will be stmplified.

Currently the most popular identification methods are the RLS method and its many
variants, such as extended least-aquares (ELS) method, the instrumsental vartable gV)
method, eic. However, a common problem with all these LS type methods fe thet they
may have serious numerical problems when implemented on digital computers with fi-
nite data length or applied to large-dimension probiems such as multivariable processes,
mhﬂm“ﬂ“hﬂcﬂnﬁ:m Shah &
Chuett 1901). The inconvenience dmmmnmm&
mmwn&m&m:rm sedback
also add dificulties to RLS type methods in real applications. Because of the Smportance
dm“ﬂnﬂﬁ*“pﬁ“ﬁ“q
Mnﬁﬂﬂﬁbmﬁﬁﬁmﬁmﬁp

The maia contribution of this thests is a family of new identtication methods called the
AUDI methods which are superior to the widely used least-equares methods ta ahmest
ﬂl“ﬁ““_l““ﬁ““ﬂﬂl
oot of versattle, reliable and eficient identtication methods for practioal applications.



1.2.1 Contributions to Identification Theory

The AUDI methods are based on least-squares principles but have a different formu-
lation that leads to a special and interesting structure called the AUDI structure. The
AUt structure explicitly contains all the parameter estimates and corresponding loss
functions of all models from order 1 to a user-specified maximum order n. The AUDI
methods based on the AUDI structure possess the following features which are superior

to their RLS counterparts:

1. Simultaneous identification of model parameters and loss functions for multple
models of different orders from 1 to a user-specified maximum possible order n,
with computational effort equivalent to an sth-order RLS method.

2. A compact, convenient structure for easy interpretation and implementation. The
implementation of the AUDI approach consists of the following straightforward
steps: collecting data from process, constructing and decomposing the augmented
covariance matrix (A\CM), then all the required parameter estimates and the cor-
responding loss functions of all models from 1 to a maximum » are obtained from
the parasueter matrix // and loss function matrix D.

3. Excellent numerical performance. The AUDI structure, which is inherently a UD
factorization, is numerically very stable. It overcomes the numerical inferiority of
the RLS type methods, and thus can provide consistent estimates of high accuracy
under most circumstance.

4. A convenient basis for practical integrated extensions. The information provided
by the ALUIX structure provides the basis for extensions such as an on/off criterion,

estimation of signal-to-nolse ratio, information forgetting. This is represented by
th b the ormation| s igre 1.

In summazy, The ALY {pe methods are superior 10 RLS fype methods in almost every
respect, and are thus recorwnended for use in place of RLS (ype methods for all applica-
tions. The AUDI type methods are expected to take over the monopolistic position that
has been heid by RLS type methods for 50 many decades.

The AUDI famfly of methods includes AUDI-LS, AUDI-ELS, AUDI-IV and the MIMO-ALDI
methods. AUDX-LS is the basic version of the ALUDI method which fs used for identfica-
tion of processes with white noise. It is also the method that s used for interpretation
and analysis of the AUDI family methods. The AUDI-ELS and AUDI-IV methods are the
RLS counterparts of the extended least-squares method and the instrumental vartable
method and hence can handie colored process nolse. The MIMO-ALDI method is an ex-
tension of the ALDI method to multivariable process. The ALDI structure makes the very
complicated problem of identifying the multivariable structural indices and parameters
much easier. The extension of AUDI methods (o other forms fs also straightforward.

Adeptive methods for tracking time-varying systems are usually equipped with a sult-
able tnformation forgetting mecheniom. Information forgetting has been a very active
but also very dificult fleld. New insights tnto the principles of tnformation forgetting
for thme vesying process are gained from the ALDX methods. Simpler and more conve-
nisnt guidelings for information forgetting are provided and a gemeralined information
forgetting scheme i» given tn this thesls.

Nolss statistics of the process §s very tmportant for many appiications such as Kelman
filtering and minimum vartance control.  Stmultancous estimation of nolse vasience,



mmmmmﬂimmmgnheeﬂmegm
AU methods.

The ALDI type methods are practically ortented and have great potential for industrial
lpm mmmmmmm-mmEpﬁ

age designed for real industrial use. The package was evaluated with real industrial
mum-mmwmmm Themuhmvﬁy
encouraging and in most cases equalied or exceeded those from other identifi
packages mciuding the commercial DMI package.

Sme']ﬂﬁﬁﬁﬁm‘thﬂ“hh:kﬁdhmmm-
input data design, iInput/output data filtering, “bad" data handling, are aleo investigated
and some guidelines are provided,

1.3 Organisation of the Thesis

This thesis is organised as follows. Chapter 2 is devoted to the dertvation and diecussion
of the AUDI structure, which s the basts of the whole thesis. Model order determination
and mumerical properties are also briefly discussed. In Chapter 3, the basic least-
squares form of the AUDI method (AUDI-LS) fs developed and compared with the recursive
least-squares.

The extended least-squares version (AUDI-ELS) and the instrumental vartable version
mmdﬁmmnmnmiﬂsm Com-
perison with AUDI-LS are provided in each chapter. hm&ﬂnmm
hmﬁmm:mhﬁdm&e-ﬂd ppresen

hM‘i Mﬂmdtﬁm-ﬁdh“hWﬁ
mation forgetting mechanisme for thme-vas ing processes. Guidelines for designing new
mmﬂ—-mm mamnm-ﬂdﬁ

_ﬁ.rﬂmmmmmm_ﬂ"d
for future extensions.
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Chapter 2

THE AUGMENTED
UD IDENTIFICATION METHOD

east-squares parameter estimation methods involve matrix inversion and thus are
mmmmmmmm“nﬁﬂm

mﬂuhﬁm Humnﬂehﬁemﬁutmm-bmdm
the correct model order can be easfly estimated and the correct model can be selected

among the multiple models.

mﬁhmmﬁ.ﬁmﬁﬂhi-ﬁﬁmm:n
inear regression. Least-squares e jon, which has been widely used for many years,
is the dominan mmnmmm:ﬁ#mﬂﬂ-ﬁﬂ:dﬁ
tlﬁﬁy ﬁghﬁmnﬂhﬂwhﬂmﬂ“nnﬂm
) d&ghﬂmaﬁn_ﬂhtﬁsmmtmﬁﬁ—
n“dﬁ:ﬂﬂﬁﬁidtﬁhﬂ_—mm A detafied mwvey
m&ﬂ““ih“ﬂmﬂdﬁhmg

position (Docliitle’s method) fs a stable and efficient way for solving
! iitaneous equations and f» widely used fn manerical analysls (Dahiguist &
WIWLM&MImEMHMMﬁHH-
man (1977) to dertve a suumerically more stable, recursive loast-squares estinator, Le.,
the UD Factorisation method. ﬁn“ﬂlﬁm:ﬁﬂmn
ﬁgﬁ-hmbnﬂﬁi

'A_dhﬁ-hhﬁﬁm- 8. Min, D. Orant Pisher and D. Xine, 1902, A Angmented
UD identiontion Algertthen, Seternational Journal of Contrul, Vol. 88, Mo, 1, 189-311.



data and parameter vectors used in identification in a different manner than in conven-
tional methods. mﬂmmmmm“mmmmm
on model parameters and loss functions is stored in the augmented covartance matrix
(ACM), and can be made explicit by decomposing the ACM into a UDUT factored form.
The AUI structure is simple and compact and stmplifies the interpretation and smple-
mentation of least-aquares identification. Also, as shown in the following chapters, #
provides the basis for a whole family of recursive algorithms which are supertor or equal
to the recursive least-squares algorithms in almost every respects.

2.2 Process Models

A model s “a repr ation of the essential aspects of an existing system (or a system
mumwmmmimmmnmm (Eykhofl
1974). mmmmmmmmmhwm
ulmodeh.ﬁnhemedd:pmdﬁgmtheuhjealveﬂﬂn,, ] 1
models are quantitative representation immmudugmlm
Mmhﬁﬁ&ucﬂ;ﬁdmmmmm“hﬂﬂm dy-
namic/static, deterministic/stochastic and continuous/diecrete-time. The focus of this
tlnﬁwlhemhm discrete-time, dynamic, difference equation models,

The process to be modeled can be de-
picted as in Figure 2.1, where «(t) rep-
resents the process input and y(t} is the

process output. The nolee/disturbance

Mhﬁemﬂpﬂhmw
e(t) and the nolee ted . PROCESS |
mpluentedby:(t) m

() =y(t) ¢ e(t) Figure 2.1: The Process
In practice, the measurable output i always corrupted by noise, thus the processes
investigated are stochastic processes.

Depending on the objective of the identification, different mathematical models can
bemedtodegﬁﬁﬂglﬁgm MMMMMi“m
mmm hnﬂmhﬂn&lxmdhm“u
widely used in Generalised Mintmum Variance (GMV) control mam:m
mwmmm M&mnm, ms. The FIR

mmm-mmmm (Cutier & Ramaker 1960) and
the Multivariable Optimal Constratned Control Algorithes (MOCCA) (Sripada & Fisher
1006). The following general least squares format, also called the Mnear regression
format in statietics, can be used for both models

s()=A"(1) 0 ¢ o(t) a.1)

where A(t) fs the daia vecior and ¢ is the parameter vecior, v(f) Is assumed to be
se10-mean white noise. The variance of the process outputs and nolse are represented
by ¢,,e, respectively, and are usually assumed to be yunknown a priort. Most Mnesr




MWMMNWNMMMMMKVMEH
throughout this thests. For example, for the ARMA model repres

2()ras(t=1)¢ ... taus(t—n)shu(t—1)¢--- ¢+ byu(t —n) + v(t) (2.2)
the data and parameter vectors in (2.1) are defined as
h(t) = [-2(t-1),-2(t-2),---,—2(t=n) ,u(t~-1),u(t=2),.--,u(t=n)17(2.9)

b = [a1,03,---,80,0,03,:--,8a)" 2.4)
For the FIR model representation
() eayu(t—1)+ogu(t~2)¢--- ¢ g u(t —n) ¢+ v(t) (2.8)
the data and parameter vectors in (2.1) are defined as
A(t) = [u(t-1),u(t=2),---,u(t-n+1),u(t-n)]" 2.6
0 = (51,03, - ,80-1,80)" a7

In this chapter, the ARMA model (2.2) is used to introduce the augmented UD den-
tification structure for the sake of stmplicity in notation. However, the AUDI structure
mmamwmuwwmmmman For
instance, as shown in Chapter 4, the CARMA or ARMAX model representation, in which
thembetumhmhmwlﬂembe.mbemﬂwﬁnnmmm
form, which is then in the same form as the least-squares format (2.1). Other model

3.3 Least-squares Estimator
mmmu.u:mummmmmhmum

mmwmmmmmmmm

Consider the ARMA model (2.2) and assume that the process nolse v(¢) fs sero-mean
white noise, with variance ¢3. Given the time series data representing the process mput
-(t)MW:(t).hmthMihﬂhmm
of § that satisfies the equation (2.1) n the sense of minimising a specific loss function
(cost function). Different loss functions lead to difierent methods. For the least-squares

method, the quadratic function fs used, Le., the least-squares cotimate s
defined as the vector fs that minkmnises the following loss function
J(t.h -):c'u) -2 [+« -w ) @as)
= i

where / s one of the parameter estimates and ¢(t) o5(¢) ~A" (¢) ) fa calied the restdual,
estimation ervor or equation erver. Cbviously, the loss function J(t,#) t a fmction of
both time ¢ and perameter estimate /, and the residual ¢(t) 15 a Incar fumction of the
parameter estimate /. The mintmum loss imction corresponding to 425 15 represented
by J(t) and ts a function of time only

102X st ¥ s’

=

10



Theerem 3.1 (Least-equares estimate) For the loss function J(¢,§) given by (2.8), the
unique mintmum point of J (t,6) (s given by

-1

¢ $

51.:(!)-[2h(j)h'(j)] I EIE) (2.9)
i FLI

under the condition that 3°;., A(j) A’ (j) s positive definite. The corresponding minimum
value of the cost function is glven by

s J
J(0) =) 2() -84 (1) (Z h(j) h'(j)) bus(0) (2.10)
s js1

Progf: Based on formula (2.8), assuming that ¢, s(t) mintmtzes J (¢, #), then
awh, 8 (

_'—l‘u'g

'
% Y () -h'(j)i(t)’) =0

%1

$ s
(Zh(j) h'(j)) () =) AG) 2() (2.11)

=1 |

Equation (2.11) is also called the normal equation in lincar regression (Gerald &
Wheatley 1964, Siderstrom & Stoica 1989). If 37, A(j) A" (j) is positive-definite, equa-
tion (2.11) immediately gives (2.9) by a inverse. Substituting (2.9) into (2.8) and then
expanding it leads to (3.10). T%., A(j) A" () is usually calied the information matrix or
data product moment matrix and is represented by R(¢).

From now on, for simplicity of notation, we will drop the subscript ‘25’ in §,s and
divectly use § for the least-squares estimate.

Remarik 1. Assuming that the input u(t) and output :(¢) satisfy (2.1) and v(¢) i white
noise with sero-mean and variance ¢2, then

1. §(t) fs the best Mnear unbiased estimate (BLUE) of the parameter vector ¢ in (2.4).
2. The covariance matrix of the parameter estimates §(¢) ts given by

-]
)
cov(i(t) }=e3 | Y A(H) u’(j)]
]
¢ =]
Define P(t) = |3 A()) h'(j)] . Since P(t) 1s proportional to the covariance ma-
]
trix, s called the covariance matrix.

3. An unblased estimate of ¢2 is given by (lsermann 1081, Goodwin & Payne 1977)

s

0’(‘)-‘_‘

where d 1s the dimension of #(¢).

11



Remnark 2. With the best linear unbiased esttmate #(¢) for model (2.2), the residual term
c(t) =5(t) —A" (1) 0(1)

is orthogonal to the space spanned by the data vector A(t).
For proof of the above remarks see S8derstrém & Stoica (1989).

2.4 The Augmented UD Identification Structure

mmmmuﬁmmﬂmmmmmmmp
rameter estimate for process (2.1) when the matrix 3-7., A(j) A (§) 18 pe nite,
mwmmmmmmmmmm
the least-squares estimator in a different way which leads to a simpler, more compact
and convenient structure and provides much more information than the least-squares

(i)-tssﬁ—-) 8t —n),.- -,—:('iﬁl),i(tﬁl) =3(0))° 2.12)
mm&:mmnc)umhmﬂmm the elements
of the au ted data vector p(t) are grouped i (s, «} pairs and the current process
m;(n-m::mmmm As a result, the augmented data
vector exhibits the following “shift structure® (Ljung et al. 1978, Ljung & SSderstrém

1983)
(1)-(“3)) (2.193)
A more detafied discussion of the “shift structure” ts included tn Appendix A. The data
vector defined by (2. 12) fs the basis of the AUDI structure developed in this section. Many
of the AU vartants differ mainly in the formulation of the augmented data vector.
Now define a new matrix, the sugmented covariance matrix (ACM), as follows

=1
[ ]
G(!)-['Er(j)p'(j)] (2.14)
= (3a¢1) x(3a41)
Note that the augmented covariance matrix (2.14) has a structure simflar to the covars-
ance matrix P(¢) in least-squares estimation, but with an sugmented dimension.
Decomposing the ACM fnto a UDUT factored form produces (proof see Appendix A)
C()=U(t) DU (0) (2.18)
where Ult) §s an upper triangular matrix with all the diagonal elements equal to unity,

1 &{® § iil! " ... (._n .)i
1 1) 1) -—I)
‘.l zl) 7 n-)
. i -—l) ‘i) o
Uwe .-n (3.16)
f 1 _'f"
o 1 J(liﬂ)x(hﬂ)




D(t) is a diagonal matrix, with the form
D] diag [/ 0, L@@, SV LV s Ww] @i

The bracketed superscripts represent the model orders, e.g., §(*) represents the ests-
mated parameter vector of the sth order model. Further information on the U(1) and
D(t) matrices fs summarized tn the following remarks.

1. The U(t) matrix is calied the parameter matrix and represented by 4. Each column
of the parameter matrtx i/ contains the parameter estimates of a specific model.
For instance, the last column

‘(')(I)A [i(-) (-) .’:)]

mate given by (2.9). &lﬂ‘lyﬂiemﬁ

has a form simflar to (2.4) and fs the estimated parameter vector of the jth order
model! of process (2.2).

2. The o clements in the & matrix are parameter estimates of another model type and
will be discuseed later.

3. Define D € D-1(1). momumummmmm
diagonal clement is the loss function of a specific model co y
in the parameter matrix 4. m_ﬁ.mum 1)), ithgl:j::
function of the ath order model that 1s defined by the parameter estimate §(*) (1)
in the parameter matrix . J(*) (¢) 1 calculated in exactly the same way as (3.10),
aeeAMAiuam hﬁb &gﬁhm«ﬂ‘mn—ﬁmm

mﬁmumnamm

mmmmudﬁdﬂ-ﬂ'bﬂ_gmd&m“ﬂh

hrlmﬂbc&du
p(t)olu(t-4) ,u(t-3),—s(¢ —32) ,u(t-2),—s(t ~ 1) ,u(t - 1), =5(0))’

ently.

From the above remasks &t ts seen that the augmented covariance matrix implicitly
“accummulates” all the information about the model parameters and lose functions and
thus this matrix i also called the mformation accumulation matrix GAM) which is mere
wnmmmmm*ﬁ-nm&




’,:’;:mummgmﬁmmp This decomposed
Acuuahiugmupff* n structure, where UD indicates that this
unntmmﬁmammmmmﬁi,:””, of the AUDX
structure, Le., the recursive ALTI algorithm (Chapter 3), is simflar to Bierman's UD Fac-
Mm m:m muﬁmmmmpumm

3.5 Decomposition

eter estimates and lose functions. Therefore, all that §s required for augmented UD
Whenever needed, a UDUT-decomposition can be applied to extract the required infor-
mation.

MMiugmmmewmmmmmm

]
sm-Lmep*m] (2.18)
/=1 (3a41) x(3n+1)
Rt contains the same information as the ACM in (2.14). The information about process
mﬂhm:ﬂhm_‘hi&mmm
(Dahiquist & Bjieck 1974). When the AIM 1 oym ral, the LDLT d
(Dahiquist & Bydrck 1974) can also be be used. htﬂﬁﬂ.tﬁeﬂnﬂhlﬂﬂ'
decomposition will be used because the UDUT dec on can take advantage of
Bierman'’s UD Factorization algorithm m:m:mmmw
descrbed Iater. m&gm“&mrﬁgHHmhm This
mﬂ“ﬁ:m-ﬁﬂlmlﬁ decor ftion techniques and show that these

RU- i 1. Let S be a given » x » matrix, and denote by S,
ﬂeizdmﬁdhﬁMd'ﬁhbmﬁmhs '
det(Sy) AO fork=1,2,.--,d-1, mm-ﬁﬁim;,,,,,, L wlormat
L and a unigque upper-tria natrix : L

2 uﬁhrﬁlm Smlﬁhmmmsil.mm
where D (s a dingonal matrtxand U tsa u ;

S YSes "',j,,f:iuﬂ.!ﬁlﬁSﬁﬁhmmﬁﬁ
ms-zm.' where L and D are the same as above.

Progf The above theorem can be enslly proved by indu
found ta Dahiguist & Bylirck (1074).
Theorem 2.2 tmmediately lsads to the following theorem.

Thossem 5.8 VDU Decompesition) Lot C(t) be the symmetrical augmentsd cov
ance makrix it (2.14) with dimension d x d, where da3a ¢+ 1. mgc.mﬁgn
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matrix formed by the tntersection of the first & rows and columns 1 C(t). Under the
condition that det(Cy) /o0 for k=1,2,---,d - 1, C(1) can be uniquely decomposed into
C(t) =U(t) D(t) UT(t) form where U(t) is a unit-upper-triangular matrix, and D(t) (s df-
agonal.

Progf: The proof of Theorem 2.3 is stmflar to the proof of Theorem 2.2 and thus s
omitted here.

The steps required to carty out the LU- and/or UDUT-decomposition are summarised
in Table 2.1, where C; (t) s the (i, jith element of the ACM and S, (¢) 18 the (i, jth element
of the AIM matrix. / stands for the identity matrix. Notice that the ACM is the inverse

Table 2.1: The LU and UDUT decompositions

The LU-Decompesition The ﬁii Decompesition
L(t)=1,U(¢) =1 U(e)=1,D(t) sl
forisl ton for i=n downto 2
for j=l toi-1 Dy (t) =Cy(t)
a=0 a=1/Dy(t)
fork=1t0j-1 forjslteoi-1
asa + Ly ¢ Up; (1) PeCy(t)
Ly (t) =(Syy (t) ~a) JU;4(2) Usi(t) =a®
p=0 for k=1 te j
fork=lteoi-1 Crj (t) =Ciy(t) —pU (L)
Pep ¢ Ly (t) Ups(t) Dy (t) =Cyy (1)
v!! () -ﬁ; )-p
of the AIM
C(t) =S~1(¢)

The UDU"-decomposition of the augmented covariance matrix and the LDLT-
decomposition of the augmented information matrix are given by

UD:  COSUW DU, =» {::71(-")«)

LDLT SO sL@ODWL'(1), = ::z;;(:;o

L SO=LOUW), = :::;(z‘z)m
aty S, - | 0L

where “~"" stands for transpose and taverse. The verse of the lower-diagonal matrix
L(¢) ts always avafiable and stable, and inverting L(t) requires much less computation
than fnverting a full matrix. A formula for taverting a lower-triangular matrix fs gven
below and can be used to calculate the taverse i /=L-"(¢) (Dahiquist & Bjdeck 1074)

=3
- )
~ gh.“ u’. ,.lnzv"'i.

u"c 1ot ' j,jo b, m (2.19)




where &; stands for the element of identity matrtx, Le.,

1 when isj,
b O otherwise.

The inverse of upper-triangular matrix is simflar and the formula can also be found tn

Dahlquist & Bjdrck (1974).
The above results are summarized as follows

1. Al the information about the process parameters and loss functions is contained tn
the augmented covariance matrix or its tverse, the augmented information matrix.
Therefore, the purpose of system identification is to produce the parameter matrix
U and loss function matrix D by collecting the input/output data, formulating and
decomposing the augmented covariance matrix or augmented information matrix.

2. The implementation of the AUDI method can be i three different ways

(a) constructing the augmented covariance matrix and using the UD factorization
to produce the parameter and loss function matrices. This is the recommended
method for recursive implementation.

() constructing the sugmented information ma-
trix and using the Cholsky/LU/LDU/LDLT decomposition method to produce
the parameter and loss function matrices. This method fs recommended for
batch implementation where the augmented information matrix S(t) §s more
readily avafiable.

(c) the third method fs to directly decompose the augmented data matrix with
a OR type decomposition. The resulis of the QR decomposition is the same
as the Cholaky decomposition and thus are not discuseed here. For batch
tmplementation, the QR decomposition s expected to have better numerical
properties than the above mentioned two methods. For recursive implementa-
tion, however, QR decomposition has about the same numerical performance
s the recursive UD factorisation method which is discussed in next chapter.

A schematic diagram of the different tmplementation methods of the AUDI approach
1 depicted in Figure 2.2. Note that every method starts with the input/output data
and produces the parameter matrix & and loss function matrix D. The parameter
and loss function matrices have standerd structure and interpretation no matter
which type of matrix and/or decomposition method s used.

3.6 Medel Order Determination

In system identification, & §s usually assumed that the model order s known a priort
uunummuumuuw.mdmm
cosfiicients of the diflerence oquation. In practice, however, the order of the process i
seldom exactly known a priort, or the input/output relationship may changs from time to
thme. Therefore, order determination s an very tmportant part of system identification.
Ovder tdentification 15 also referred to a8 stiruchre idenéffication i the multivartabls
case sincs & st of struchwral indicss, rather thar model order, §s used to describe the
structure of the process (Ouidorst 1975, Guidosst 1981). Incosrect model order (eg.



]

Lo ]

Figure 2.2: Batch and Recursive Implementation Methods of the AUDI Method

' erization or under-parameterization) can cause serfous problems in control
mm Eiﬂm:lhvﬁymmm”’ ently the adequacy of the model

Ahﬁﬁ@ﬂﬂﬂvﬂmﬂﬁﬂhmmnhm
pere the goodness-of-fit of the mode! to the cheerved data for different model orders &.
mmd-mhmmwﬁahnﬁmm)gngm R can
be proven (Fang & Xiao 1968) that when the esttmated model order & fs greater than
mgﬂmmmmimmmmmuu-
constant, under the condition of sero-mean white nolse. In general, for different model
orders 4, the loss function J(%) (1) decreases as 4 Increases. However, the decrease of
the loss function J ceases to be significant when A becomes greater than the true model
ﬁ&rﬁ.
miﬁ)mmmmhﬁmj ) (¢) for all models from order
1 to a user-specified maximum possible order n. The appropriste model order fs then
chosen as the one for which thet the loss function is not significantly grester than the
one for the next higher order.

In the previous sections, it was shown that the AUDI structure contains all the model
mﬂmﬁhﬁmhﬂnﬁﬂmm:hm This
hﬁ:ﬁﬁmmﬂdhnﬂﬂm ptermin as discussed above.
Therefore, order dete mﬁmmum:ﬁﬂﬂ
‘ﬂib“ﬂdtﬂ““ilﬁﬂﬂmm
imnpi_dm:hlhﬁ_ﬂi_hhhmim
J(%)(6) 1o significantly smalier then J(%), The significance can be cheched using
Astrém's F-test method (Astrém& Kykholf 1971). A detafied description of the P-test
method can be found in many books, eg., Fang & Xiao (1908), Sideratrim & Sicica
(1900).
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rion (AIC) (Akatke 1974, Akatke 19681), and the Final Prediction Error (FPE) method,
eic. The principle of these methods s different than the F-test method, but &t can be
proven (S3derstrim & Sitoica 1989) that they are equivalent to each other and can be
interpreted in terms of the relationship between loss functions and model orders.

Ancther important consideration is time delay determination. The determination of
process time delay is quite simflar to the determination of model order. Assuming a
possible range of the value of the process time delay, by explicitly identifying all model
with different time delays in this range, the delay that leads to the smallest loss function
fs the estimated process time delay.

If the time delay changes in the vicinity of a nominal value and this nominal value is
mmmm!ﬂm&memmnd:byhmm The AUDI
method can au ically compensate the small changes in time delay by adjusting the
mmmﬂmmmm This is an important advantage of the AUDI
method over the conventional least-squares method.

Consider a process represented by the following SISO Mnear difference equation model
() =152(t=1)+0.72(t - 2) =u(t - 1) + 0.8u(t = 2) + o(t)

msmmummmmmmﬂmm v(t) is scTO-mMean
white nolse with variance ¢7+0.28 (or standard deviation ¢,=0.5). A random binary

sequence is used as the process input. Assuming the ma ) possible model order s
n=4, the following data vector can be constructed

p(t) = [-3(t-4) u(t—4),-s(t-3) u(t-3),
=35(t-2),w(t—-2),=s(t-1) u(t=1),-2(t)]°

-t
LODWLOTYO)
i
nmmmmmmmmnmu
This is a symmetric positive-definite matrix and can be uniquely decomposed into

the form
S(t)=L(t) D(e) L" (¢)

The parameter matrix I/=L~" (t) fs then calculated and shown i Table 2.3. The corre-
Table 2.4.

In the parameter matrix ¥/, the th column fs the parameter estimate of the second
order ARMA parameter vector (3.4). The third cohumn 1o the parammeter csttmate of the
first order model of (2.2) which fs

s(t) ¢ ay2(t — 1) obyu(t = 1) ¢ o(t)




93628 101.1 83083 4932 5354.1 =97 19605 -543 -1580.0 ]
101.1 5000 -3734 08 -8854 -427 -10204 -184 -8488
83083 -3734 063%9 4023 79133 479 49057 -380 10244
4032 08 4023 5002 -128.0 -24 -8105 -448 -11336
5384.1 -8854 79133 -1280 88240 934 76535 343 44128
=27 -42.7 479 -24 834 5001 -3858 -39 -9079
19005 -10204 40057 -8105 76535 -3658 80006 950 75089
=54.3 =184 =380 -448 M3 -39 960 5003 -3702
~16800 -0.8488 10244 -11336 44128 9079 73989 -3702 91718 |

(1 -00108 -0.8074 -00257 07019 00688 -00106 00023 0.0613

1 ofas4 -00210 05088 0.1104 00167 00422 0.0570

1 -00324 -15003 -0.1186 07145 00804 -0.0384
1 09801 00746 05211 0.1206 0.0081

1 00808 -15020 -0.1134 0.790]

1 09673 00800 0.5244

1 00785 -1.5096

1 o983

g
g
J
g

1343
40668

1342

154.1
order O order 1 order 3 order 3 order 4 |




Simflarly. ummsmmagMiugmmmmm
can be represented by

() +ays(t— 1)+ omz(t=2) ¢ ass(t ~3) sbyu(t — 1) + bgu(t — 2) + byu(t — 3) + v(t)

In general, column (2i + 1) of the parameter matrix I/ contains parameter estimates for
the ith order model, with i €[1,n).

Similarly, the loss function corresponding to the parameter estimates of the 2nd
mﬂHmﬁJmEmm&mﬁEﬂhMMﬂuﬂh—ﬁm
matrix D (Table 2.4), Le., 134.3. In general, the loss function of the ith order model 18
the(:i*l)ﬁMﬂ:hﬂmthehnﬁmm

mhﬁm&mﬁmmlb4mmmmum
parameter matrix I/ and loss function matrix D respectively. This is the most distin-
mm&mmmm-mmﬁmm
as will be discussed in later chapters. The relationship between the loss functions and
the model orders s plotted in Figure 2.3, from which #t fs seen that the loss functions
decrease as the model order goes from O to 1 and from 1 to 2. However, increasing the

-ﬂmﬁahaﬁhah4ﬁﬁdﬂ_hhmmﬁ-
clearly indicates that the process has socond order dynamics. Criterta such as the F-test
nﬂ&nﬁ_hﬂﬁ*-ﬂmd&nmﬂhﬁn“ii




2.8 Conclusions

,,,,, Eeammemmmmmdemdemmmrmm
m:gmmmmmﬂmmemwpmmugm
for stmultaneous order identification and parameter estimation. Tﬁ:mdee-
mmmmnmmwmmmmm

in the following chapters,
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Chapter 3
THE AUDI-LS ALGORITHM

he least-squares estimator and the AUDI structure discuseed tn Chapter 2 are

often referred to as the batch processing method., since the process input/output

data are recorded first and all the recorded data are then used simultaneously to
find the parameter estimates for the process model. For many applications, however, a
dynamic model is needed to support decisions which must be made on-line, Le., during
the operation of the process. For these applications, # is often necessary to estimate
the model parameters at the same time as the input/output data are collected from
the process. Such an approach is usually called recursive identification, sequential
identification or on-line identification.

3.1 Introduction

Recursive identification of dynamic models is the cornerstone of many adaptive systems
such as adaptive control and adaptive filtering. The success of an adaptive control
scheme s usually highly dependent on how well the recursive identtfication performs.
Much of the reluctance to apply adaptive control to real industrial processes s due
to the complexities and uncertaintics associated with recursive identtfication (Tjokro
1984). Numerous papers on improving the robustness of control law (Clarke & Mohtadi
1987, Cluett 1986) are aimed at reducing the rellance on mode! accuracy.

The basic idea of recursive identification fs that, assuming the parameter cstimate
§(t - 1) based on the data up to thme ¢ - 1, is known, then #(¢) for the current time
step can be computed by some “simple modification” to #(¢ - 1). The general updating
formula is as follows

[&]'[m]’[&]“lmﬁ?] 3.1

fication has some cbvicus advantages ever batch methods. & requires a modest amount
of memory and the requirement doss not increase with time, since not all data are stered.

1A verston of this chapter has bosn published ax 8. Miu, D. Grant Pisher and D. Xine, 1008, An Augmented
UD identtication Algartthm, Intsrmational Jounal of Contrul, Vol. 88, Ne. 1, 108-811.




The computational requ ent at each time interval is relatively low and fixed and thus
mumm;mwmmmmmm
In this chapter, a recursive implementation of the AUDI structure s developed by
modifying Bierman's UD factorization technique. The resulting algorsthm is called the
mmcm-mwmmmummmwmﬂam
ﬁﬁmﬁﬁlm:m&mmn lnﬁmherw& mmm
can be identifled at every time interval, mmmeh-hhmulﬁm

mmnmwﬂii" nth:lthe:hﬂnhmm
mmmﬁm&MuﬁE“mm

3. Low computational effort. The AUDI algorithm simultancous identifies n different
models from order 1 to », with a computational effort equivalent to that of the nth
order RLS. In this sense, the AUDI algorithm hﬂeMﬁhm

4. Simple and compact structure for interpretatios
w:ﬁmmm-ﬂmnummm

8. Easy extensions. The informative AUDI structure provides the basis for many use-
Mmm:mdm&mﬂmgﬁ recursive

s organised as follows. The recursive least-squares method and Bierman's
mmmmmmmmu Then the ALIDI algorithm s
developed tn sections 3.3. The properties of the recursive ALDI algorithm are discuseed
nmm mma&mmmmm; o ,,,;;;manmdmi

ureiv pntation of the LS estimator (2.9), Le., the Recursive Least-Squares
mm MIHD.M&,, eratrOm 1983), is the most commonly used
mmmm m-ﬂmm:&ﬁy-ﬂ

m:—m&rf ; ,,,iﬁﬂmiﬁhﬂﬁm
ummﬂ“mgmﬁ&ii!m Clarke & Gawtheop
1970, Shah & Cluett 1001). One of the most successful approaches to tmprove the nu-
mmimmﬁh-mmmm ter-
man 1077, Thernton & Blermen 1900). Bisorman's method s mathe  equivalont
to the RLS method. However, because of the different formulation, lhm
much better thean the RLS aigortthm  (Blerman 1977, Thornton & Blerman 1980, Ljung
& Ljung 1008). Surprisingly, the UD factortsation algorithe hes not been as widely used




as the RLS algorithm tn spite of its superior performance over RLS. One of the main rea-
sons may be that the UD factorization algorithm appears to be much more complicated

to interpret and tmplement.

3.2.1 The Basic RLS Algorithm

The recursive least-squares algorithm is one of the recursive implementations of the
lcast-squares estimator (2.9) and has been widely accepted in many fields. Detafled
derivations and discussion of the RLS algorthm can be found in almost every text
book on parameter estimation (Goodwin & Sin 1964, Ljung 1987, Ljung & S3derstrom
1983, Siderstrém & Stoica 1969). Therefore only a brief review s included here for
comparison with the ALDI algorithm.

Starting from the normal equation (2.11) in Chapter 2, remember that the conve-
nience matrix

-1
¢
pw-['z: h(j) h'(j)] (32)
=)
trivially
PY(0)=P=2 (4~ 1) ¢ A(t) A" (8) (3.39)

It then follows from the least-squares estimator (2.9) that

t=]
i© = PO Lz:m)x(j)uw.w]
s]

= PO [P t-1ic- 1)+ A0 20
= 0(t=1)+ P(t) A(t) Ls(0) ~A"(8) 0t - 1))
Using the matrix inversion (rank one update) formula (Sderstzom & Stoica 1969)
(A+BB')-VeA~) - A-'B(I + B'A-'B)) B" A~

P(t) can be calculated as

P(t)=P(t~1) P(t-) h(2) A"(t) P(t-1) (3.4)

1+A7(0) P(t— 1) A(0)

Denoting s(t) =1 + A7(¢) P(¢ —- 1) A(t) and K(t) =P(t) A(t), the complete RLS algorsthm
is then given in Table 3.1, where X(t) is the Kalman gain vector. s(t) §s calied the

Table 3.1: The Recursive Least-Squares Algorithm

SN O PA=DIRO T soalng factor

P(t)sP(t~1) =Pt~ 1) A(8) s~ 2 () A" (¢) P(s - 1) coveriance update
K(t)=P(t) A(t) : Kalman gain

$(0) ob(t - 1) ¢ K(t) Ls(e) -A"() §(t - 1)) : pasameter update

scaling factor in this thesls for reasons stated later. Initial conditions are usually taben
a8 P(0) =¢*] and #(0) <0, whare ¢ 15 a largs integer. Clearly the parameter update i



rw&almmmm&iﬁxlﬂmhmmnkmmm
prediction error (innovation) is given by (t) =2(t) =A"(¢) #(t - 1),
MMHERLSMMMESI it is found that the updating of the co-
variance matrix may involve a subtraction of two almost equal matrices with very small
magnitudes. ﬁimeuﬂymlmm cal performance when implemented
on digital computers with round off errors m&m:m Problems occur
most frequently due to the covariance matrix becoming fll-condits oned, or non-positive
definite. In order to achieve more robust numerical performance, Bierman (1977) and
Thornton & Bierman (1960) proposed the UD factorization algorithm. It s also dis-
cuseed at length by Ljung & SOderstrém (1963). In Ljung (1965b) and Ljung (1985) ,
mpﬁumdmenmﬂmdmemsmmgmmm

m’-mmm mlm m&mlm

mmmﬂ-mmﬁuﬁmmwmmm
presented in the RLS method (Table 3.1). mﬂmmhm
ance matrix using equation (3.4), a UDUT factored form of the cova matrix,
P(t) sU(t) D(t) UT(t), is used. At every time lntav:l. U(t) and D(t) iﬁ m h
stead of directly updating P(t). The UD facto jon preserves the positive

dﬁmF(t)mﬂﬁmhetIEmﬁﬁﬂ"i,
stepwine mplem ***ﬂm&tﬂ:mm-m;
maam:mmm liscussion can be found in, eg.. Ljung &

Table 3.2: m&mmm

I-U"(t- 1) p(0), giD(t -1){ fo=1 : mfw
Fer j=1 te d, do

By=By-1 + 138

Dys(t) =Dyy(t - 1) f;-1/B;
pi==ly/Py-1, vy=g
Perislte j- 1,40

Uig(8) =Uy (0 = 1) ¢ wyp; : covariance update
mem ¢ Uyt -1)
n
R(c):-( ).K(i):-i’(t)/& : Kalman Gain update
v

S odt—1) ¢ K@) L) A" bt - 1) e

e ,,,,,,m:nﬂd’ﬁeumnmm

' t ,,mnmmmmauﬁmm
of the covartance matrix P(t), Expertments shows that for digital computer tmplemen-
tations, (o cbtain the same numerical accuracy, the UD algorithm can use about half

27



the word length required by the RLS algorithm (Higgund 1963, Thornton & Bierman
1980, Morris, Nazor & Wood 1969).

3.3 The Augmented UD Identification Algorithm

The AUDI structure in Chapter 2 permits a novel interpretation the Least-squares esti-
mator (2.9). In this section, the implementation of the AUDI structure is discussed and
the AUDI-LS algortthm s developed.

In the recursive implementation of AUDL, all that is required at each time interval
s updating of the augmented covariance matrix since all the mmformation on model
parameters and loss functions is implicitly contained in the ACM. Expreseed in terms

of the ACM, the update equation fs

C' (1) sC1(t - 1) + p(8) " (1) (3.5)
Obviously, (3.5) has the same form as (3.3), except that C(t) §s defined differently
than P(t). Therefore, the UD factorization technique can be directly used for updat-

ing C(t). Since C(t)sU(t) D(t) U'(t), the ACM updating formula (3.5) can then be
rewriiten as (Bierman 1977, Ljung & SOderstrim 1983)

U@) DY U () sU(t-1) |DCe - 1) --’-;—' UT(t-1) (38)

J = UT(t-1)ep(0)

g = DGt-1)/

B = lefyg
The updating of the ACM can therefore be accomplished by solving the above equa-
tions, at every thme step. Following the dertvation of Bierman's UD factorisation

algorthm, the final recursive ALDI algorithm s obtained as shown in Table 3.3.
C(0) =U(0) D(0) U"(0) =] 18 used for algorsthm initialization where ¢ s a large in-

Table 3.3: The Recursive AUDI Algorithm
D~ e e e
JoUT (4= 1) p(t), g=D(t - 1)/, fo=1 : inmovation sequence

for je1 00 d, do
Biohy-1 + fisy : scaling factor
Dys(e)sDys(t - 1) 1 /5y : loss function update
pio=f3/Ps-1, v5ogy
for i=] to j - 1, o akip for j=1)
U (8) oUgy(t = 1) & onpy : pasamester update
ney ¢ Uyt~ 1)y : Kalmen gain matrix
Usy(t), DeD1(s) : result metrices

teger. This is equivalent to setting P(0) so®7 and ¢(0) =0 i the basic RLS algorithm



(Table 3.1). Note that the AUDX algorithm (Table 3.3) omits the last two steps of Bier-
man’s algorithm (Table 3.2), because essentially the last two steps in Bierman’s method
repeat previous steps for a higher order model, In the AUDI algorithm, this is done by
including the current output data :(¢) in the data vector (2. 12) and thus increases the
dimensions of vartables such as /,9,U (1), D(t) by 1. The updated parameter vector ¢ in
the last step of Bierman's method s included in the last column of the U(¢) matrix s
the AUIX algorthm. This fs explained more fully in next section.
m&mmmm&wm:mmm thefr
interpretation fe quite different. Bierman's method is used as a stable way to perform
meupdned‘mmmnﬂhhuhﬁﬂ The U(t) and D(t) matrices
are fust temporary, intern ition and do not have any physical
sig  wnce. mmmmmmmmnmanmu
must be carried out. However, in the AUDI algorithm, the U(t) and D(t) matrices
mmanmmﬂmmmmmm;
are the purpose of identification rather than temporary matrices for computation. Thus
mng’:,:,,,;'hndﬂgmmmaa;mm-mh

mwmammmmhm-:m

1. mnmmmh&ummnm: aultan
mmmi-mmummmﬂhm

mmmmimmhm;ﬁﬁmm

n&n:ummtnm arameterization

cursive, from lower order to high order. mmﬁ—-gmm
with clements of the diagonal loss function matrix being too large or (00 small.
m—mmﬂtﬂw—ﬂhﬁmmmm
small clements in the loss function matrix which may cause numertical pro ,
However, this does not affect the accuracy of the lower order models since the loss
Mﬂmmmnﬁmhm That fe, uniike the conven-
tional LS type algorithme, num jems due to over-parameterization do not
mmmmmm

3. A simple matrix regularisation technique such as that suggested by Ljung &
SOderstrim (1983) can keep the augmented covariance matrix well-conditioned.
ﬁﬂﬂiﬁmhhmmmﬂ&mm
only thet part needs regularisation. Matrix reg jon can be caslly dome with
ﬁﬂﬁﬁﬁﬁ“ﬂl““ﬁﬁ“i
the loss function matrix. This requires very Nitle extra computation and thus 9
alweys recommended Ofu & Fiaher 1004).

4. A forgeiting factor can be very cssfly introduced fnto the AUDI algortthm &9 track
(ime-varying parameters. Qiven the forgetting factor A(f), the AUDI algorithm with
forgetting factor fs cbtatned by making the following changes to Table 3.9

Ae10 » A0
Dyy(0)=Dyy(t = 1) 841 /B » Dyy(t) sDyy(s=1) 8-y /B/M(0)




where = means “change to". (Forgetting factors are discuseed further tn Chap-
ter 7).

ﬁ:mm jorithm presented in Table 3.3 §s quite im

the aigorithm hmﬁmhﬁmmﬂnﬂthm&emﬁhnhmad
mx;@mmm

Table 3.4 ﬁmhﬂtﬁmmm

JeUT((~ D (1), g=D(t~ 1) f, fo=1 : movation
for j=l1 to d
Py=By-1 ¢ fy8; : scaling factor
Kyj=~9;/P; o ,
fori=1 te j - 1, (skip j=1)
Uy(t) sUy(t = 1)+ Ky f; : parameter update
Kign1*Ky ¢ Uyt = 1) Kyy  : gain update
Dy;(¢) =Dyy(t - 1) By_1/P§ : loss function update
u-um - r-p-'m - o )

Uiy (0) sUy(t = 1) + Ky f;

m;ﬁu-—emm-nn This means that in the ALDI algortthm, the
',gﬁu:mnﬂﬁyhnﬂvﬂ.Mﬂd’hm“
‘(ﬂ.&!ﬂﬂ&.lklﬁhﬁ“h“”,f onds to the Kalman gata
theﬂrﬁinn&:

F (lll) 1 1 —stt-m) ]
u(t - n)
5!-) i 1 a . "

: . 2|10 3.7)
i(-sl) afo=1) glo-1) u(t-1)
‘(i, ‘.(-) ‘-(-) “_2 1]t =3(t) o
mmmmﬁmmﬂmnﬁhmm

and thus are defined as the forward modisis. For example, the Srd model in (3.7) can be
rewritien as

o =5(t = w)
ﬂ{l),l}!’,u[ w(t-n) ]-0
=s(t=ne¢l)
s(t-ne l)*é“ﬂlsn) !‘é‘)uﬁin)



for stationary tnput/output, this is equivalent to
' 2(0) ¢ 6V 5t - 1) =d{Vu(e - 1)

This fs clearly the first order model of our process (2.2).

The even-numbered models in (3.7) uses the past inputs and output to predict the
future tnput. This is the tnverse of conventional mode! definitions. and is thus called
the backward model. For example, the 4th model tn (3.7) can be rewritten as

-z2(t - n)
uw(t-n)
-z(t-ne¢l)
u(t-n+l)

which is equivalent to, under the condition of stationary input/output
o)+ 680wt - 1) 2a§V2(0) ¢ 602t - 1)

(51(')-5:(')-59)-” «0

The backward model is not used in most appiications and hence can be regarded simply
as suxiliery information. However, under closed-loop. the backward mode! gives the
dynamics of the controlier.

By comparing the AUDI algorithm n Tabie 3.3 with RLS tn Table 3.1, &t s clear
that the AU algorithm s an order-recursive method. The order recursion fs shown n

ga ...ﬁ
i

Y S
. 7"

Figure 3.1: The order recursion of the AUDI algorithm

Figare 3.1 and can be explained as follows. The first model, Le., the first row & (3.7),
hes a single parameter that fs fined to 1. Therefore, the parameter update s omitted



by including “skip for j=1° in the AUDM algorithm. Based on information of the first
model, the Kalman gain (K3 in Figure 3.1) for updating the second order model tn (3.7)
can then be calculated as in Table (3.4). The parameter cstimates (P3 in Figure 3.1)
of the second model are abtained by using this Kaknan gain to update the parameter
maitrix U as shown in Table (3.4). After the parameter estimates of the second model
are obtained, the Kalman gain (K3) for updating the third model fs calculated, then
mmmﬂdhm-ﬂa;mﬂ&mnm
recursion carties on until the parameters of the lnst model are update
mnmnmynmmnmmimmm
and order-recursive. The recursion in Figure 3.1 also shows that the last two steps in
Bierman's UD algorithm (Table 3.2) stmply repeat previous steps at a higher order level
and are thus redundant.

3.5 Comparisoa of AlIX and RLS

The ALDI algorithm s 2 sknultancous order and time recursive algorithm. At every time
ﬂmﬁ:ﬁkmmhmﬁaﬁg&enﬂlﬁmmm
lower order model to the highest order model. However, for each order, the method
“ﬁmmimﬂnmﬁmm The
mwmnmmm-mmm&m
tion. This fs scen through the following comparison between the
mmﬁﬁkaénﬂﬁebﬁrﬁsmnmal

1. The vector —/ tn AUDI algorithm (Table 3.3) fo the mnovation sequence of the
parameter estimates in U(1), Le.,

=fsUT(t=1) (1)
This is an analogous form of £(¢t) =2(t) —A" (¢) §(t— 1) in the least squares algorithm
(Table 3.1), but for all orders from 1 to =.
Frogf: This is cbvious from the definition of U (t—1) and ¢(t) in the AUDI algorithm.
2. The vastables 4, i the AUDI algorithm (Table 3.9) are called scaling factors, and are

analogous to the vartable +(¢) tn RLS (Tabie 3.1), with j €(1,n). They determine
the convergence rate of the ACM or P(t) matrix.

3. The parameter updating in the AUDI algorithm (Table 3.3) i done by updating the
matrix
Uy (8) sUy(t = 1) ¢ mypyolys(t = 1) ¢ ﬁif,

or
U@y sUt - 1)+ K(2) $(t)
in the compact AUDI algorithm (Tabie 3.4), 1 in the same form as thet in RLS, with
n/Py or K(1) being the Kalmen gatn.
Dy () =Dyy (¢ ~ 1) By-1 /P4



is the same as updating of the loss function J(¢) tn RLS, Le.,
J(t)sJ(t—-1)+:(t)e(t)

where is:(1) -A" (1) é(t - 1) 1s the innovation (prediction error) sequence and
e(t) =z(t) —A'(t) 0(¢) 18 the residual.
A comparison of the features of the AU algorithm and the RLS algorithm s sum-

marized in Table 3.5 (some of the features summarized tn Table 3.5 are not discussed
until later).

3.6 Simulation Examples

2(t) -1.82(t - 1) +0.7:(¢t — 2) su(t — 1) + 0.8u(t - 2) + v(¢)

where :(¢) and u(t) are the process output and input respectively; v(() is white nolse
with zero-mean and variance ¢220.25. A random binary sequence (RBS) s used as the
process input. Assume the maximum possible mode! order is 4, then the following
augmented data vector s constructed

p(t) = [-2(t-4),u(t—4),-23(t-3),u(t-3),
-3(t—2) ,u(t-2),-s(t - 1),u(t-1),-2(¢))"

Assume the initial condition to be C(0) sU/(0) D(0) U’ (0) =10°], which is equivalent to
seiting P(0) =10° and #(0) =0 in the RLS algorithm. Using the recursive AUDI algorithm
presented in Table 3.3, the converged parameter matrix fs shown in Table 3.6. The loss
function matrix is shown in Table 3.7. Note that the results are exactly the same as the
results of the batch AUDI method in Chapter 2 (Tables 2.3 and 2.4).

correct model order) are plotted in Figure 3.2. It is seen that the estimated parameters
different model orders are plotted i Figure 3.3. It s seen that significant decreases
in the Joss functions can be cbeerved when the mode! order increases from O to 1 and
from 1 to 2. However, a model higher than 2nd order does not reduce the loss function
the F-test give the same estimate of A=2,

Figure 3.4 gives the trajectorics of the steady-state gaine for different models. X is
and loss functions as good as the mode! with the corvect order.

3.7 Ceaciusiens

1. The AUIX algorithm 13 a reformulation of the least-squares estimator, but tmple-
mented in & more efficient menner.






Table 3.6: Parameter matrix U(t)

[ 1 -00108 -0.8974 -0.0237 0.7019 003586 -00106 00023 00612
1 09284 -00210 05068 0.1104 00167 00422 0.0570
1 -00324 -15003 -0.1135 0.7145 003504 -0.1384

1 09891 00746 05211 0.12968 0.0081

1 006868 -150290 -0.1134 0.7991

1 089873 00890 05244

1 00785 -185036

1 09803

1)

Table 3.7: Loss function matrix D(t)

" 8362.8
496.9
1587.3
498.1
1343

4949




al=-1.8

#8070 180 200 280 300 30 400 480 500
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Figure 3.2: The parameter trajectory using recursive AUDI algorithm




18t order

80 100 150 200 250 300 350 400 460 600

- The AUDI algorithm provides simultaneous estimation of the parameters and loss
functions for all model orders from 1 to n with a computational load equivalent to
sth order RLS.

mmmmmﬂmmm:m

mhﬂﬁmﬁmm‘mmdm munm
variance or N/S ratio, and stability/convergence analysis.
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Chapter 4
THE AUDI-ELS ALGORITHM

hem&n:d'ugmmmmmummm
jorithm, s an extension of the AUDI-LS algorithm presented in Chapter 3. The
-gmmmmmm-mmmﬂ
l’ﬂummhvm ﬁ&zmﬁ“mmlmm
such as the ELS algorithm (or the i
mmummmummm:—:m—mm—u
algorithm, Le., clear and compact structure, excelient numerical properties, sknultane-
mma-ﬂmﬂh—mmmmm
mmmmﬂmm [Unfortunately
computation and the performance

The ALUDI-LS algorithm developed in Chapter 3 #s appropriate for model (2.2) where the
process nolse v(¢) is sero-mean white nolse. The AUDI-LS algorithm fs casy to apply
ﬂﬁmmmmm:hlmmhﬁm
mmhmvmm tﬁgmmhm&mg
method will give biased parameter estimates (S0derstrOm & Stoica 1960). However, the
AUDI-LS or LS algorithms can be modified in different ways to overcome this drawback.
ﬁmhﬁm-ﬁﬁ_jhmm-ﬁﬁmmm
monly used modifications. The entended least-squarcs method (Panuska 1908, Young
1908, Ijung & Siderstrim 1963) Mtroduces a peeudo-inear structure for eatimation
which results tn unbiased estimates, R s actually an extension of the basic least-
squares method (2.9) tn Chapter 3. Since a pecudo-inear regression structure s used,
the ELS method sufllers from some additional numerical problemes as well as the mumer-
ﬁﬁh“h&i‘ﬁ“ﬁﬁdhﬁma

‘A“dﬁ*hi_ﬂg lfh.n.h:iﬂ.ﬁﬂh 1900, A Resuretve




4.2 The Pseudo-linear Regression Model

(t)eayz(t=1)+-- . tapz(t—n)shu(t~1)¢...¢ byu(t —=n) ¢+ e(1) {4.1)
e(t)su()+dyo(t = 1)+ .. +dyvl(t = n) (4.2)
or its polynomial form
Alg™") 2() =B(g~") u(t = 1) + D(g™") u(0) (4.3)
fs widely used in many implementations, where

A(i‘i) = i *-!ii‘! & ;;..‘.‘-!ii
By hele o ebg™
D(¢7") 1edig ¢ -0 dog™™

«(¢) and s(t) are process input and output respectively. ¢(t) 1s colored process nolse
which is represented by the moving-average of a sero-mean white nolse sequence v(t)
with vartance ¢3. mmammmunmﬂ with i €[1,n]). This
wammmmmﬁr;; easive and Moving Average
with an eXogenous signal, or CARMA model for Controlied AutoRegres ive and Moving
Average model. mmmmmmmmmm
(GPC) (Clarke & Mohtadi 1987)

D(g™") v(t)

Al 2()=B(g™ D u(t-1) ¢ Iy

4.4)
ﬁhmtﬁhmiﬁm:i
ACe™Y) Az(0) =B(g™") Au(t - 1) + D(¢~") w(2)
Obviously, model (4.1) can be written in the least-squares format as follows
5(t) =A"(8) b + (1)
At) = [—3(t-1), -, ~s(t—n),u(t—=1),::.,u(t=n),v(t=1),....0(t - n) J4.9)
b = (o), - ,a0,by, 0 00,dy, 0 dn]" “.8

The least-squares estimator (2.9) can be used directly to obtain an unbissed estimate
#(¢) of the parameter vector 6. However, the problem fs that the nolse terms v({ -
1),9(¢=2),-.,9(t - n) i the data vector are assumed to be whits noise sequence and
ase un-measursbie. To get arcund with this problem, the white nolse terme are replaced
by the estimated prediction esTors or residuals. This leads (o a pecudo-linear regression
hm&tm“ﬁiﬂdhﬁ“ﬁﬂnmmd

Mwl’lﬂ-ﬁ&ﬂ (S5derstrom & Stokca 1900). The ELS method fs alee
called Panusha’s method (Passuska 1908, Panuska 1000), or the axtencied matrtx mathod
(Talmon & Ban Den Boom 1973).
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4.3 The Extended Least-Squares Estimator
The extended data vector in (4.5) §s rewrititen as
A(t)s[-2(t~-1),.--,~2(t—n) ,u(t-1), ... w(t~-n) ,6(t=1),.--,6(t-n))" (4.7)

Using the basic least-squares algorsthm (2.9), the unbiased parameter estimates of &
can be obtained as

g

which s in exactly the same form as (2.9) except the data vector A(t) is constructed
differently. The estimated noise term §(¢) fn the data vector is repiaced by the residual

-1
¢ ¢
0] -[2 h(j)h'(j)] YoAG) () (48)
=

#(8) =e(t) € 2(0) —A" (1) 6C0) (4.9)

Clearly i(t) 1s a function of both time ¢ and parameter estimates #(t), therefore #t is no
longer a incar problem, but rather, a pseudo-knear problem.

The recursive implementation of the extended least-squares algorithm, Le., the Re-
cursive Extended Least-Squares algorithm (RELS) takes a form very close to the RLS
method (Table 3.1). Detafied derivation and discussion can be found in, for example,
Solo (1979), or Ljung & Siderstrim (1983). Compered with RLS, the RELS algorithms
identifies the noise mode! parameters d; as well as the process mode! parameters o; and
&. with i €(1,n). The compiete algorithm fs summartsed in Table 4.1.

Table 4.1: The recursive extended least-squares algorithm

A =l=-s(t=n),5(t=n),u(t—n), -,

-2(t-1),6(t-1),u(t-1))" : data vector
0(e)=8(t - 1) ¢ K(t) (s(¢) =A"(8) §(t - 1)) : parameter update
S(t)=1+A(t) P(t-1)A(2) : scaling factor
K(t)sP(t) A(s) : Kalman gain
P(t)=P(t-1) =Pt~ 1) A(t) S2(t) AT (¢) P(t~ 1) : covartance update
$(8) =a(2) -A" (0) §C1) : nolse estimate

The estimatod parmneters agymptotically converge to their true values under the

(sufficient) condition that the filter
1 1
D(gH " 3
s strictly positive real (SPR) and mput/output data are described by the

model (4.1) (jung & S3derstrim 1963). Further discussions on the convergence prop-
esties can be found in, ¢g., Ljung(1977) , Moore (1080) or Sclo (1979) .



4.4 The AIIX Form of the ELS Algorithm
4.4.1 The AlIX structure for ELS

mmmimhmmgmmhmhmaﬂs@umnmu:
multiple mode! structure and the excellent numerical performance of AUDI-LS,
Define the augmented data vector as

p(t) = [=20t-n),é(t—n) u(t-n), -,
—2t-1),9(t—1),u(t—1),-2(D))" 4.10

Note that the components of the regressor vector, A(t). are arranged in triplets (2,0, ),
and the parameter vector & is also arranged in tripiets (s, d, ). In comparison with (4.7)

corof MO
p) (— m)

ﬁemﬂmmhﬁm&m-gwmmﬂhﬁmmm
defined as follows

=1
_ [ -
cwe LZw(j) ?'(i)] (4.11)
(3n*1)x(2m*1)
m&wmammﬁmmm)mumm
sion of the augmented covariance matrix. Decomposing C(t) into the UDUT factored
form yields
C)=UUt) D) U’ (1) (4.12)
r matrix /U (t) has the form of

u = Q)

1 A ;,(n; ,m g{; ?; 5{-;‘
1 ale p X b
: 1) 1) 0) ()
1 's ﬂz :31) ;3-)
. 1 “i;) :3:; 4.19)
[is) -)
0 1 &ﬁl—I “i-—)l
1 ]

D « ding[s ), ), 1@,
Iy, 1My, LV qq) ... P =1 gy gln=1)¢y) .J‘-)m] “.14

mnm&nm—umnma



1. The parameter matrix ¥/ now contains three types of model parameters, namely,
¢, & and §. The process model parameters, from first order (#(!) (1)) to nth order
() (1)), are contained in the parameter matrix 4. They have a form simfiar
to (4.6). To be more specific, the parameter estimates of the ith order model are
contained in the (3i + 1)st column of the parameter matrix, with i €(1,n], eg., the
nth order parameter estimates

'-(.)(‘) s ['.l(.)'..’(.)‘“.".(&.)]'
-1
$ [ ]
= MG ] YA )
sl sl
are contained in the (3= + 1)st (last) column tn the parameter matrix with dimen-
sion 3», which corresponds to (4.6).

2. The a parameters are the parameter estimates of the backward models (see Chap-
ter 3). The A parameters are estimates of yet another kind of model and will be
discussed shortly.

3. The loss function matrix D contains the corresponding loss functions of the above
three types of model parameter estimates. The J elements are of most iterest
because they are the loss functions of the process models. For example,

$ ]
103 s Mo ] T o

sl i

ts the loss function of the nth order model. J(*)(¢), with i €[1,n), ts the loss
function of the #h order model and 1s contained i D as the (3¢ + 1)st diagonal
clement.

4. The L and ] clements in the loss function matrix are the loss fimctions for the other
two kinds of models mentioned in Remark 2, and will be discussed later with the &

and A parameters.

4.4.23 The Recursive A Algerithm for ELS

The recursive ALDI algorithm that tmplements the ALUDI-ELS structure is simfler to the
AUDI-LS algorithm, but with some added complexity. The differences are in the construc-
tion of the augmented data vector, the estimation of process noise and the nterpretation
of the parameter and loss function matrices. The dertvation of the AUDI-ELS algorithm
1 almost exactly the same as that of the AUDI-LS encept thet the augmented data vecter
has a different structure and a higher dimension. The complete algorithm fs summertsed
i Tabls 4.3.
Note that the estimation of the noise term 4(¢) §s done i a different and more oficiont
way than thet in (4.9), Le.
(t) o~fo/ P41 (4.18)

A betef proef s 2o follows. Prom Chapter 3, & 1o known that the £ vector ta the AKX
algorithms (Tebles 3.3 and 4.9) 13 the prodiction ervor vector. R 13 then not dificult to
show, based en

U (8- 1) p(0)

“



-:(!-1) w(l-l) -(t-l) -:(t)]f : data vector

JeUT (4= 1) p(t), g=D(t=1) f, fo=] : innovation sequence
for j=1 %0 d, do
Py=Bj-1 * f;95

Dy (t) =Dys(t ~ 1) ;1 /5y
#==[i/Bj-1, vj=g;
fori=lte -1 do
wen e Uy(e=1)
$(t) =14/ Bu-r
u-um ) P-D"(t) -

JasU7,(8) p(t) == La(t) —A" () §(t = 1) I s—5(1)

where U. ; represents the last cohsnn of the parameter matrix and i(t) is the Innovatios
sequence. mmmmmsmmm:mmngm
tionship (Jung & Siderstrim 1963),

:(2)
T+ A (D) P(t- l)h(l)

since fy_1=1 ¢+ A7(¢) P(t - 1) A(t) (see Remark 2 in section 3.95),
#(0) =e(t) == f4/Pas

Now let us investigate the J parameters in the parameter matrix &, As described ear-

Iﬁ.hmmminm&mim Rewriting the ALIDI-ELS
mﬁn;-ﬁ-ﬂi; re, it o found that the AUDI-ELS s actually

identifying the following ¢ (d £ 3 + 1) models stmultancously
U'(¢) p(s) =0
or in an explicit form as shown i Tabls 4.3. The models related to the 4 parameters are

shown fn Teble 4.4. In least-squares type cotimation, the converged estinates of $(¢)
are white nolse, Le.

e(t)=

B{v() o()) Hu'{ o e iode

In addition, from the process model (4.1), & follows thet the nolse term #(¢) Is uncor-
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rameters should be zero. Correspondingly, all the loss functions for these models
mhﬁzmﬂmﬂﬁmm Le.

190 1) .. o I(‘—)-Zi’(ﬁ
Il
They are not exactly equal to each other because they each have a time shift of one time
step, leethemm(d 10).
ating the f-related computations by substitution of the known (converged)
m@mmuEmmmwm 1/3. The resulting
simpitfied AUDI-ELS algorithm is listed in Table 4.5. Note that i is the same as the AUDI-

Table 4.5: mwmgam

P ol 3(t= ), 601~ R),8(E=m), .-
-2(t=1), au-n.-a-n.-zmr : data vector

IoUT(t = 1) p(t), g=D(t = 1) £, fo=1 : Innovation sequ
for j=1 to d, e

By=Py-1 * L1

Dy () =Dyy(t - 1) -1 /5

Mi==f;/Bj-1, vyg;

for i=1 to j - 1.M med(j,3) A2. @

Uy ) =Uy(t = 1) + mpy : pu acter update
wem Uyt -1) : K2 saan gain matrix
6(8) ==fa/Pa : nr e estimation
_UsUt), DeD-'(t) _ : ve ult matrices
R e —— —

jorsthm in Table 4.2 except that the computation of the innovation sequence and
ﬁq“ithmﬂpﬁmmm

A simulstion §s carried out assuming that the process can be described by the following
5(0) = 18s(t-1)¢0.75(¢—2)»u(t~1)+08u(t=2)+e(t)
«(t) = w(t)—o(t-1)+020(t-2)

where «(t) and s(t) are prooess input and cutputs, v(t) is sero-mean white nolse with
variance ¢3:0.25. The input signal s a random binary sequence with magnitude 1.0,
mmmnmu

First the AUDI-LS algorithm s used to identily this process and the pasameter tra-
Joctories are plotted in Pigwre 4.1. The convergnd parameter estimates are shown i
Tuble 4.8 and the loss functions are included in Tabie 4.0 as the last row. Clearly the
parameter eatimates are binsed from their true vahue.

Next, the AUDI-ELS aigorithe i used under exactly the same condition as AUDI-
LS. The idenitied parameter trajectories are shown tn Figure 4.2, and the converged

47



100 200 300 400 SO0 600 700 800 ©00 1000
Time Step

Figure 4.1: Parameter Trajectories Using ALDI-LS (Biased Results)

Table 4.6: Biased Parameters Obtained Using AUDI-LS

[ 1 -0.0083 -08039 -00016 06147 001868 05088
1 10063 -00083 08080 00828 03378
1 -00048 -14083 -0.0420 -0.1964
1 00080 00377 1.0000
1 00306 -09120
1 10087
|

| 160408 90148 20004 99128 480.30 ©00.01 34808



100 200 300 400 500 600 700 800 900 1000

parameter estimates are shown in Tabie 4.7, together with the loss functions (in the last
than those of process model, as can be expected (Ljung & Siderstrim 19893).
order and then becomes flat, just as in the AUDI-LS case. Therefore, the model order
can be eastly estimated to be 2.
Now investigate the variance of noise. From Section 2.3, # is known that an unbiased
estimate of the nolse vartance is given by
J(t)
Oy
where = is the model order and J(t) is the loss function. Define

1 N
'h"—_';lb(l). lﬂ-(ﬂ-ﬁlﬁﬂ)

where the subscripts “,,° and °.;," stands for the AUDI-LS and ALDI-ELS method respec-
steps as shown in Figure 4.4, from which £ is found that the estimated variance of the
noise using AUDI-ELS converges to a value close to its true value (0.25). The lower imit
parsmeters finclading the parameter estimates of the notse model) exactly equal to thetr



Figure 4.3: Loss Functions versus Model Orders Using ALII-ELS

The stmpitfied AUDI-ELS in Table 4.5 was then used for the same process under the
same conditions, the estimated parameters are listed in Table 4.8, together with loss
functions, while the parameter trajectories are plotted in Figure 4.5. From the table and
figure, it can be seen that the simplified AUDI-ELS gives akmost the same results as the
full AUDI-ELS algorithm tn Table 4.2, but with less computation.

The ALIDI form of the extended least-squares algorithm developed in this chapter fs useful
for identifying process with colored noise, or, more specifically, for identifying processes
that can be repe led by an ARMAX model. The AUDI-ELS has the seme features as

-mm-nmmimﬂhmm
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Chapter 5

UDVT™-factored form of the 1

developed in this chapter for identtficat \ ,
mmnuwwmmmﬁmmeﬁm

Mﬁhﬁmﬁrﬂmmmlmlmme
with ly the same computational effort as the conventional IV algorithm.
mmpﬁm;mm ucture which faciiitates the interpretation
and lation of the IV-type algortthms. The UDV” factorisation technique used
uhmmmnmmmmmm
instrumental variable method.

8.1 Introduction

mmmwmmmmmmdm
mﬁmﬂhmmmﬁe:: -
squares & m gives biased estimates m&m lmﬁjlﬁk
1mm|m.mqlm The IV aigortthm has been proven to be an effec-
tive and efficient method and hes found many successful applications (Wong & Polak
1967, Young 1976). However, like the recursive least-squares algorithm, a vital step
in the recursive instrumental variable algorithm, namely, the updating of the aug-
nﬂdm“m“ﬂnmﬁ“ﬂmmmm
with very small m udes. In practical applications, especially when the system o
mmmm—mmmﬁmm
ervore and nolse, which can ¢ stely destroy the identification results (Niu, Pisher &
mnmmtm lm.m&mmn.

In this chapter, the main tdea of the AUDI aigorithme tn Chapters 3 and 4 are extended
to the imstrumental variabls method. Since the IV algorithm has a non-gymmetrical
augmentsd covartance matrix, the proposed aigorithm s significantly different then the

lhﬁnihmb!—p“-lhﬂnhmﬁlﬁ&:lh
of the NV Algarithm, Prapeinis of e 8k IRAC Syspesiom an Manilfiantion and Systom F _
“mmnmﬁﬁ-hhﬁﬁﬂﬂ-lhna—t&—lnh 1008, A

Pastored Form of the Instrumentsl Vartsbie Algarthmn, Mtsrnational Jownal of Adepties Oontvel and Synel
Prosssstng, Vol. 7, e, 4, 901273,




AUDI-LS algorithm tn Chapter 3, although the basic idea s stmilar. A UDV™ decompo-
sition technique, derived and extended from Bierman's well-known UDUT factortzation
technique (Bierman 1977, Thornton & Bierman 1960), §s used to reformulate the IV
method. The end result is a factored instrumental vartable algorithm (AUDI-IV) which
W:mumkmmﬂmmmg lnmpaﬁmwlhmem
nary IV algorithm, the AUDI-IV method has the advantage of stmultane identifying
mmmmmmmmmmnmm This
mnmmnmmmmmhmmnmgﬁ
ort or where & changes with time, e.g.. tn practical application of adaptive control. The
multiple model structure makes the algorithm non-sensitive to overparameterization tn

8.2 The Basic Instrumental Variable Algorithm

Since the conventiona instrumental variable method is thoroughly covered in many
mmmmnumamum Siderstrém & Stoica (1989),
Young (1876) and Young (1964), only a brief review is given here.

s()eays(t=1)¢..coguz(t—n)shju(t=1)¢ ... ¢ bou(t —n) +e(t) 5.1)
HOL MOY'SX10) 5.2)
where
ht) = ([(=2(t=1),---,=s(t—n),u(t=1),:---,u(t=n))" 5.3
k = E!l * IEI‘I! lb-jf ‘5:4)
(5.9)

u(t) and s (t)m&emmﬁmm o and & (i=1,2,---,n)
are model - ';e(t)hﬁmmmwhhhmhmmu
mmmuumu-ummmmm

From the least-squares estimator (2.9), the least-squares estimate of the parameter
vector & for model (3.1) is given by

r q=1
t -t
lm-LZmu'm] pILOFT) (5.8)
[T} J "l
, [ 17"
b = L}:mmux] Enmwumn(m]
L/ J u= ]
) =l
L]
. q.*[’wau) J
=)

N e(f) ®s.n

"“'M\-



When e(t) is white noise sequence, the last term tn (5.7) is

¢
hm §h(j) e(j) =0

Thus the LS estimate (5.6) is an asymptotically unbiased estimate of & i the noise ia
gero-mean and white, lloweml’e(t)beolnredmie.thgne(l)h:ﬁm:ﬂmd‘hm
values. While A(?) s a function of the process output :(t) and thus implicitly depends
on the past values of e(t) through (5.1), then #t s clear that

[ §
lim ;h(j) e(j) O

mwommmnnmm

onthethnhMeSl
CW)s(~-2(t~-1),-2(t-2),---,~2(t—n) ,u(t=1) ,u(t=2),..--,w(t=n))" (5.8
the IV estimate of the model parameters is then given by

t [ ]
=13 chHnm | Tuh (5.9
j=1 =1
$(1) 18 a consistent estimate of the model parameter & under the following conditions.
|we
0 m -:, o
—
MODEL

Figure 8.1: Construction of Inst

' .10
¥ ;;«m (j) has full rank.

{ B(((t) c(t) }=0

The instruments. s(t). can be selected in many different ways. The most widely used
instruments are caiculated using the following auxtiisry regression mode! (S3derstrim
& Stoica 1981, Wong & Polak 1087, Young 1908)

8(8) o("(2) b s.11)

which i called the auiiary model. In the batch least squares approach, the nstrus
ﬂ“““b“hhﬁﬂnpﬂ”m




hmmm&hmm“mmmﬂmemm
from the previous iteration. For recursive tm ) jons, ¥ is chosen as the Iatest
mmm(mmmmmmﬁuumm
and is updated at every time step. mm-a‘mmwmm
be found in, e.g.. S3derstrém & Stoica (1969), and coe e analysis can be found
mumasmmumamamnaau The key equations for the
recursive [V method are

[ a(t) = 14A7(0) P(t—1)¢(2)

P(t) = P(t—-1)-P(t-1)AO s~ (W PU-1)
K(t) = P@)((0) 7

| 6() = §(t-1)+ K(0) Lz(0) A" () 6t - 1))

-1
where P(1) = (Y5a; () A7 (j) | 18 the covartance matrtx and K (1) is the Kakman gain
vector.

8.3 The AUDI Form of IV Algorithm

The instrumental variabile estimator (5.9) provides a simpie and clegant way of improving
the basic least-squares estimator to produce unbiased paramet estimates for systems
with colored noise. However, by introducing a UDVT factortsation technique, it fs found
that the IV estimator (5.9) can be reformulated in a much different and more efficient
way. In addition, in the recursive implementation of the IV estimator in (3.132), after the
parameters converge, the updating of the P(¢) matrix may involve the subtraction of two
matrices with very small magnitudes and thus can be very sensittve to round-off ervors,
especially when mode! (5.1) §s over-parameterised. This may viclate the second condition
@ (5.10) and thus lead to poor identification results or even divergence. The ALDI-IV
method can preserve the second condition i (5.10) and thus can achieve tmproved
performance than the conventional IV

plicity, that the number of « parameters and b parameters in (5.1) are the same, then
the augmented data vecior can be defined as

p(t)ol=3(t—n) w(t—n),---,—s(¢ - 1) ,u(t = 1), =2(1))" 5.19

Notice the arrangement of the clements in the data and parameter vector are differ-
ent from traditional IV methods in order to generate the AUDI structure. The clements
h&l&mMu{s().u())mmhmmﬂ F10)) :cp-
pended to the data vector. The dimension of the data vector s d $ 2n ¢ 1.

By defining the corresponding augmented istnunenial vartable vector as

wt)sl-2(t-n) w(t-n), .-, ~2(t—1), u(t-1),-2())* (.14
the augmented covariance matrix matrix can then be defined as

cm-LZvu) v'(j)] .19
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which s analogous to the P(t) matrix in (5.12) but with an augmented dimension and
a different arrangement of its elements.
By decompostng the augmented covartance matrix into a UDVT form (see Appendix A),
it is found that
C(t) =U(t) D(t) V" (1) (5.16)
where U=U(t) is the parameter matrix with an unit-upper-triangular form

u = U

(1 ¢ i) o o"?m S KON SO
1 @0 0 i - iV e e
1 e ‘1)(‘) ﬁ""m " J}’m
1 i@ . i“"m ¢ i
. RS i,“"m e $Vaw (5.17)
: 0 i
(] 1 if}(:)
1

mrmmtmﬂmﬂmnmmmmm
eTecTipls represent model orders. The cohunns of § elements are the parameter
m&—mmngmm

Matrix V=V () s defined as the auxiiiory parameter matrix and has a structure stmflar
to (5.17) and differs only by the presence of ¢ instead of § tn the odd numbered coluny
Vewve o
(1 0 D) o ) ... ii""(n »
1 52"(1) ’ J;: 0 - =) o
1. J Yoy ... #-1)¢p)
1 Ji)m N | S
- 1 () .19
1
0

The loss function matrix DeD~! (¢) s a diagonal matrix with the form
D = D] 7 o
- ag[/ 00,10, 1N, 10V, sM0)] s
The multipls model structure that results from this decomposition is similer to thet i
AUDI-LS and can be described as follows.

1. Thevactors, #1)(s) ..., 4= (1), which are above the diagonal of the odd-aumi
cokamns fn U/, have dimensions of 3,4,---,35. Thet fs, Jmau-ms




with i €(1,n), and
M) - if‘%ﬂ.ié“(ﬂ]f

i) = i,(")(n,i}"(:).m,i};‘—’(n]*

"(u)(‘) = .’l(i)“)j’(!)(n,,“j’(:)(‘)]r

2. Each vector mentioned above, is the instrumental variabie estimate of a particular
mmno("(c)uuwmngdugnmmm.ﬂpm—mnn
time step ¢; §) (1) 1 the IV estimate of the i** order model. Specifically, #(*) (¢) 1
m.“mwmwmﬁmmmnmmbymﬂ with a
format defined in (5.4). See Appendix A for a proof,

3. The clements J(V (1) ,...,J$=1)(1) , J() (1) tn the diagonal D matrix are al

tioned in Remark 2 and have the form of

OB MO (5.20)
f o]
where
#G) = 2() -2(j) =2 (§) —C" (/) 1)
£G) = 2(j) =i(j) =2(§) =N (j) b(t)
Proof see Appendix A.

those suggested by Young (1960) .
4. All the other clements in the I/ and D matri

not of tnterest in this chapter. The V matrix, which tums out (0 be the parsmeter
matrix of the auxiliary model, s discussed below.

To summarise the above discuseion: after the input/output data is obtained, the aug-
mented covariance matrix ts formulated according to (5.15) and decomposed according
to equation (5.10) into thres matrices ¥/, D and V. The odd-mmmbered columns of the
U matrix contain the IV estimates for all process models from order 1 (0 a, while the
odd-mmmbered diagonal clements in D matrix contain all the corresponding generalined
loss functions. MWMhh“hnl-ﬁhnﬂm
becauss all the models are produced stm

MWMMJE-EG)-QE:MB;“LH:LW
decomposition on the augmented tnformation matrix stmflar to those in Chapter 3, that
]

' UsL=" (1)
S NP NLWODWUW) =»  DeDAY) (831)
i veU-1(¢)



‘ UsL=" (1)
SW =Y e " (N=LOUW) = {D-dugv(t) (8.22)
= VaD . U-1(1)

The batch implementations are very straightforward and therefore are not presented
here.

5.4 Recursive Implementation of AUDI-IV

The AUDI form of the the instrumental vartable method can also be implemented in a
recursive manner analogous to recursive AUDI-LS.

8.4.1 The Recursive AUDI-IV Algerithm

Since the augmented covariance matrix C(¢) i (5.15) §s non-symmetrical, Bierman's
UD factorization algorithm can no longer be used. Instead, a UDV?

technique, which s a modified version of Bierman's algorithm, is derived to decompose
the non-symmetrical matrix. The updating formula fs as follows

C 1) =C(1-1) ¢ 9(t) " (8) (5.29)

W@ODOV O sUt-1)DU-DVU-D] e q()p"(t) (5.24)

Since the three matrices &, D, and V contains all the information about all the parameter
estimates of the process model, parameter estimates of the auxiiiary model and all the
corresponding generalined loss functions, formulae (5.23) or (5.24) is the only calculation
umwumummmdmmwm
The Kalman gain calculation and the explicit parameter update steps i the conven-
tional RIV algortthm (5.12) are no longer necessary. This stmplifies the tnterpretation
and impiementation of the recursive instrumental variabie estimator. The complete re-
cursive AUDI-IV algorithm s summesised tn Table 5.1. A move detailed dertvation of
the recursive AUDI-IV algortthm s included in Appendix B. The dertvation of Blerman's
UD factorisation algorithm, which is the basts of the UDVT decomposition, can be found
In Ljung & S3derstrém (1963) or Thornton & Bierman (1960).

The recursive AUDI-IV algorithm s mathematically equivalent to the conventional

84.3 Biiicient Implementation of AUDI-IV

Examination of the AUDI-IV aigorithm tn Tuble 5.1 shows that the parameter matrix
V for the auxiliary model i wsed only for the calculation of the suxiliary vartables. ¥
the computation related to this matrix could be aveided, the total computational effert
would then be reduced considersbly and a more oficient implementation of the AUDI-IV
algorithm would be cbtained.



PO s(-s(t~n),u(t—n), -, =2(t=1) ,u(t=1),-2(1)]" : data vector
n(t)=l-z(t—n) ,u(t=n), .-, —2(t-1),u(t=1),—2(t)1" : instruments
JsUT(t=1) (1), f*=V7(t = 1) n(t) : innovations
=D(t-1) 1, g*=D(t - 1) [*, =10
for j=1 to d, do
By=Py-1 + fy8} : scaling factor
Dy (1) =Dy, (t - 1) B5-1/8; : loas functions
pi==Ly1Bs=1, wjo=1} /By
vi=g;, p;:’;
forizltej-1,4d0
Ui () sV (t = 1) ¢ 405 : process model
V() sViy(t ~ 1) + v} : auxiliary model
v e Uylt-1) y : gain vector
vimg e Vyt-1)y; : gain vector
Usu(t), D=D-'(), VsV(1) ___ -

Rocall that the instruments =(t) in the instrumental variable vector 5(t) (3.14) are
tation) and do fs the parameter vector of the auxiliary model. As shown in Ljung &
. () =C" ()0t -1) (8.25)

As shown in section 8.3 and Appendix A, the AUDI-IV algorsthm simultancously generates
The parameter estimates of the auxiliary model are contained in the matrix V. Since the
true parameters of the auxiliary model are, by definition i (5.25), the latest avafiable
suxillery model 4(t) are given by

de)sde-1)

U, which are used as the parameters of the auxiliary model. Obviously, the estimates
of the sutiiary model parameters in V(t) are not necessary since the parameters of the
suxiliary model are already known to be #(¢ - 1), from (5.25). Therefore, we can directly
set the estimate 9(¢) to fts true value (¢ - 1) Le.,

V()sU(t-1) B.20
Al the computation related to the updating of V is theroby climinated, and the compu-
tational effort required at every time interval i reduced considerably. Removal of the
computation related to V from the recursive AUDI-IV algoritiun tn Table 8.1 leads to the
more officiont AUDI-IV aigorithem summarised as tn Table 5.3,



PO l—2(-m),wU-n), 21 . 8(=1) —2() )" : data vector
()=[-2(t-n) ,u(t=n), . .,-2(t=1) ,u(t-1),—-2(1)]" : mstruments

[=UT (= 1) (1), f*=VT (1 =1)n(t) : innovations
'sD(t - 1) *, fo=1.0
for j=1 te d, do
Bi=P-1 + [s8} : scaling factor
Dy (t) =Dy;(t - l)ﬁ, 1/ : loss functions

si==fi/Bj-1.  vieg}
forizltej-1,4do
Usy (8) sUy (8 = 1) ¢ o}y : parameter update
v +Uyt-1) o}
u=u(t), ‘D-D"m o __________:result matrices

hance, multiple model structure, easy inter-
mmmnm«mmaxmsmmm
mended as reyp acement for the conventional RIV algorithm in practical applications.

tion of the sim-

{ 2(t) =1.82(¢ - 1)+0.75(¢t — 3) »u(t - 1) + 0.5u(t - 2) + e(¢)
e(t) =o(t) —v(t ~ 1)+ 02e(t - 2)

Ms(ﬂmﬂ:(t)mhmmgﬂmihﬂm The
nolse sequence ¢(t) i a second-order moving average of the sero-mean white nolse
sequence »(¢) with vartance ¢3=0.25. Assume that the maximum possibie order of this
“unknown"” process i 3.

ﬁi&mﬂmiﬂhM&mthn
cter estimates are biased. For example, the trajectory of the o) parameter i plotted in
mnmt_iﬁl;&'ﬂmiqﬂnlmhhhlﬁﬂﬂ
=1.5. This confirme thet for the case of colored nolse, the AUDI-LS and convention
RLS algorthms produce biased csthmates.

Now, the conventional RIV, the recursive AUDI-IV algorithm tn Tabie 5.1, and the
meﬂ--mum“uuh_mm
“mmmimm The trajectortes of the ¢; parameter
are shown in Figure 5.3. The simulation is carried out tn MATLABD (Matieh 1008), which
uses double precision for calculations and thus no mumerioal problems wers encoun-
mmmmwmm—immym
(1983 and Ljung (1005) shows that, for single-prectsion stmulation, UD factorisation
hﬂ“hm_ﬁﬂ_hﬁmmﬁa
rithme.




Parameter a1

m ﬁ-mlyunmm‘n-hquﬁmﬂlﬂmdﬁlq,
which means thet $hs Svd columns tn Tables 5.3 and 5.4 are the parameter estimates of

&lnuﬁmmtﬂ&heﬂmmmmm&&m
order models and the 7th columns are the parame ;m&mmmm
ﬂnnMﬂTﬁhﬂ;ﬂTﬁhﬁimmmmﬁ, MRE
mﬁmwmﬂhmm-wmmmmgnm
Figure 5.2. The parameter matrix of the suxiliary model, using the recursive AUDI-IV
mﬁmm fs shown in Table 5.5, and s found to be quite close to the
parameter matrix in Table 5.3. This experimentally confirms equation (5.26).
mmﬁmmmnuh—ﬁmmp which s

D = D)
« dug|[0%03] 2026 [6783] 2926 [113] 2910 [631]]

Remember that the 3rd cloment fo the loss function of the lum-ﬁkl the Sth
clement f» the loss fumction of the 2nd order model and the last clement is the loss
function of the Srd order model. The loss fimction values decroase rapidiy as the model
order increases from O to 1 and from 1 (o 2, but tends to be flat afler order 3. This
suggeets an order of 3. However, since the generalined loss function defined i (5.90) §s
a speoial form of the conventional lose function, further Investigation ts being conducted
for a suiltable criteria for order determination with them.




Table 5.3: Parameter Matrix in the Recursive AUDI-IV Example

[ 1 0.0086 -0.8891 0.0276
1 09074 -0.00368

1 -00170

1

07110
0.4700
-1.5016
0.9863
1

0.4345
~-0.2733
-0.2716

1

0.2537
03181
0.1360

Table 5.4; Parameter Matrix in the Efficien

1 00088 -0.8875 0.0299
1 09041 -0.0076
1 -00198

|

Table 5.5: Auxiliary Parameter Matrix tn the Recursive AUDI-IV Example

[ 1 00166 -0.8861 0.0320
1 09862 -00071
1 -0.0128

1

0.7131
0.4673
-1.5020
1

0.6032
04141
-1.4782
1.0494

1

0.0483 0.4081
0.1552 -0.1407
-0.0728 1.0544
-0.0810
1 10033
1

00411
0.1747
=0.1016
0.1188
0.1001
1 1.0880

03902 1




5.6 Conclusion

In this chapter, a UDV" factored form of the standard IV algorithm ts dertved which si-
modehﬁmaderlhauurupecﬁedmaﬂnmmﬂernforpmﬂhm
noise. The algorithm has a clear and compact structure which facilitate interpretations
mmmmmmmmemmmnmmm
conventional IV algorithms. This algorithm is especially suitable for the identification of
processes with unknown model structure and unknown noise statistics.
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Chapter 6

IDENTIFICATION OF
MULTIVARIABLE SYSTEMS

recursive identification algorithm for multivariable systems is developed by ex-

tending the SISO augmented UD identification algortthm tn Chapter 3 to the mul-

tivariable case. The resultiing MIMO-AUDI algorithm has a simple and compact
structure and provides simultaneous identification of model structure and parameters,
with excellent numerical performance. A multivariable input/output difference equa-
tion model is used as the model representation for identification, and #t i shown how
the corresponding (unique) canonical state-space representation can also be generated
by a straightiorward transformation. The algorithm is easier to interpret and more
straightiorward to tmplement than the corresponding RLS approaches.

6.1 Iatroduction

Structure identification and parameter estimation of multivariable systems is a very
tmportant but rather difficult fssue in system identification. Depending on the choice
for the structure of the mvestigated system, the multivariable system can be represented
in more than one way (Eldem & Yiidisbayrak 1968). It is often assumed that there fs
enough a prior{ knowledge about the system structure so that only parameter estimation
fs required (Eldott & Wolovich 1962, Goodwin, Ramadge & Caines 1960, Morse 1081,
Dion & Lamare 1984). However, the determination of a suitable structure is a critical
st::p in system identification and is equal in importance to parameterisation. Ploneering
work on structure identification can be found in Ho & Kalman (1908) and Tether (1970).
in Ackermann & Bucy (1971) a canonical realisation procedure is developed using an
input-output description. Guidors! (19735) gives an ivariant, canonical structure for
Mncar multivariable system representation, which directly and uniquely inks the state-
space model with the corresponding input-output difference equation representation.

A versien of this chapter has boon published as: 8. Miu and D. Grant Pisher, 1901, MIMO System iden-
tication Using An Augmented UD identiiontion Algerithm, Presssdings 1001 Amerioan Contrel Conforenss,
Vol.1, 600 - 703, Beston. A revised version has alse bosn assepied for publisation as: 8. Miu and D. Grant
Pisher, Simultansous Structure identiication and Paramster Esttmation of Multhvurtshis Systems, Intorme-
tional Journal of Contul.




igorithms developed in previous chapters can si-
’,;lyﬁen&fyuumndelﬁderuﬂpmmﬂmnfﬂ@pm with excellent
numeric mmmm“wumeﬂktmy The special structure of the
mmmm tion and implementation easier than the conven-
(N!uetal.lﬁi) In this chapter. mmmum
ivariable case, and modified to perform structure ident cation and parame-
tﬁmﬂmmmmmmmly The algorithm
uses an input-output difference equation as #ts model, but & ts shown that the cor-
mmtm)wm:pﬂmﬂ:lmaHEmmﬂmn
rmation based on the work of Guidorzi (1975, 1961) .

6.2 Model Representations for MIMO Systems

Mubltivariable systems can be 1 resented by state-space models, tnput-output dfer-
ence equations, transfer function matrices or Markov parameters. A state space model is
wmmmﬂum,;p itical and theoretical support for state-

ons. In practice, however, mmput—uutput differen ,mﬁelhmueh
mmmmmmemm&ﬁrﬂeﬁMmm,
are the actual input-output data sequences. Guﬂnﬁ(lﬂ&)wﬂalhkbeheen
mmmm-ﬁmmwmmmmnmh
used to transform one form to the other. These trans is are reviewed in this
section and the MIMO AUIX algo ,,,,,ihdevehpedmsmas The example in sec-
tion6.41 ***,;,;mmmmmmmmm/cmmmm
readers who are interested tn input-output model identification only, they can skip this
section and go directly to Section 6.3,

6.2.1
Linear multivariable systems, i observable, can always be by the following
{l(!fl) s Ax(t)+Bua(l) 6.1)
s(t) = Cx(t) )

'hﬁe. :(t) nm-mwmmm u(t) and s(t) are r-
- sional output variables respectively; A, B and C are
mmmmmmﬂ (Guidorzt 1975)

An A o A ]
2 Ry o
i‘il -‘il vor Aun
Au, (i=1,2,---,m), have dimension (i x ») and A;;, (i,j=1,2, -.,m), have dimension
(4 x vy), with the following forms

r o
Au o | b T CE

L &) Sy,



Aj = | | ? (6.4)
gi;., Gy, O - O
where q;, indicates element & of the last row of matrix A;;. The B and C matrix are
[y b3 - by
by by - by

%
]

®
2

1 0 - 01
C = o - ... 0 1 O i . 0] 6.6
0 o 1 0 ---0
| 1 1
1 (n+l) (et ityy_1+1)

Any r-input m-output linear multivariable observable system i equivalent to the
above Luenberger canonical structure (Luenberger 1967). The tntegers v;, iy, - - -, b 8¢
mmmwmmmmmmmmmgm
of the model. ¥, u; are a set of invariant quantities (Guidorz! 1975). The structure
indices are related to the dimension of the state vector in the following way

3 wen
i)
v+l j<i
m{{l‘i jzi
WMIB“EIIIDEMﬂ
P(z) s(1) =Q(s) u(t) (6.7)
where P(s) and Q(z) are polynomial matrices,

[ () pa(s) - pruls) )

PGs) = Hl-(l) pg'(s) p...(:) 9

!P:l?(ﬂ B-é(S) p—-(:) ]

" m(s) as(s) - q.(s) ]
() eals) - )
Qu o [0 e el o9

| o1 (5) gea(s) - qme(n) ]

mur

)



and : ts the unitary forward shift operator. The elements of P(:) and Q(z) are polyno-
mials with the following structures ,

Pii(z) = 2 —ay, "V -~ a2z~ ai
Py(z) = ey, - —ayaz —aya, G Aj) (6.10)
"i(l) s p(']“'.‘m*l.).jl"" + ﬂ(,‘o.._q,._.n)d.z + ﬁ('l"""o-l")d

The degree of each polynomtal is given by

deg{pi(2) ) > deg{pi;(2) }, J>i

deg{pu(s) } > deg{p;(2)},  j<i (6.11)
deg{pu(2) ) > deg(pi(2)),  j pi '
deg{pu(z) ) > deg{g:;(2) )

Mmmthatforanvenm.ﬂnmdmedmulelunemm(&mhdvm
higher than the degrees of the elements to the right of them, and not lower than the
degrees of the clements to the left of them. This characteristic leads to the special
structure of Ao in (6.16) of section 3 which is essential for the implementation of the
augmented UD identification structure.

6.2.3 Transformations

mmmwwmw.n)mmdnmmw-
tation in (6.7) are equivalent and can be uniquely converted from one form to another
(Guidorzt 1975). From (6.10). & is clear that the coefficients of the py;, (i, j=1,2,- --,m)
are directly related to the elements of the A matrix tn (6.3) and (6.4). The coeffictents of
&; In (6.10) are defined by

i Pa - b
Bemps| B P2 P (6.12)
ﬂll pn’ s Aw
where the matrix M is given by
[ -4 - oo =611, 1 l . l ~8im3 e s =Gimn. 0
-e11,3 -8114 1 | . l ~81m3 cee ees 1)
. | 0 .
. | * ' “Slm, .
-e11,, 1 | - o
1 | - 0
P
-am1 3 cee vt =Gl e 0 l oo l —Gmm3 et =G e 1
—8m1 3 . ‘oo (1] ' ves I —Gmm3 ver  eee ) |
: T | :
—mion; O I | —tmmea 1
o ' s ' | d
(6.13)
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ese Lransformations are very useful for system identsfication. Input/output difference
mmmhﬁﬂmmm“mbmhmmm

itification, stnce they can be identified directly from the tnput/output data sequence
dthe-yll.em The corresponding state-space model, if required, can then be easily
and uniquely obtained from the identified input-output model (6.7) through the above
sformations. One example is presented in Section 6.4. Note that f the tnput/output
m-mmmﬁ-mmmm

The SISO augmented UD identification algorthm developed in Chapter 3 is a recursive,
mmmmnﬁmmf operties and provides simultaneous
: rde eters. This algorithm s superior to the widely
Mmkﬁmm MEMIHMQ&
ica 1969) tn almost all aspects and is thus recommended for use tn place of RLS for
allgmh;:um: (Nfu et al. 1992). mmummemm;mm
rariable case and provides simultaneous identification of model structure (L.e.
mmﬂmmmmn,n,)gﬂn@mm

6.3.1 The Augmented UD |

The r-input, mManmwﬁﬂmxmm
the following input-output difference equation model

Ags() + Ays(t— 1)+ . ¢ Aus(t=n)sByu(t=1)+-.. ¢+ Bou(t — n) + v(t) (6.14)
where

[ 2 (t) uy (1)

»n(t) wy(t)
sos[ %7 [0 wwe] ™ (6.15)

2 (t) w(t) ]
mugmmmmmmmvm is m-dimensional uncorrelated white

mmmmwnm-m-mmmm
sponding to the m output variables. The model orders of cach subsystem determine the
mmmh-mm

f j;;mmnmiﬂ-aﬂﬁ_mih-

38 plus the ko onding to each model. The

um-uhmumﬁmummhmm

(which fn turn defines the structural indices, ». of the MIMO system). In spite of the

lasge number of identified param eters, the computational load fs comparable to using
muum-—mm;&.

Based on (8.11) and the comments following &t &t fs clear that the Ao matrix has the




following special form
mo 1 0
e Coe (6.16)
L amio omap - 1
The element a,; 0 equals zero If the tnequality tn the second formula of (6.11) holds, that
is
a;00, Hf deg{pii(z)} > deg{pi;(2) ), forj <i
and a;;0 does not equal to zero when the equality holds, Le.,
ay0 A0, o deg{pu(s) )odeg{pi;(2)), forj <
Ay, By, (i=1,--.,n) have the forms

[ @11 @34 0 Olmy
a1y 6y - Gamg

A = (i=1,2,...,n) 6.17)

L Omld @mii ' CGmmi J
[ b by oo by

b bl o, 6.18

.Eu by - 5-',‘
Similar to the SISO case, the augmented data vector for the AU algorithm ts defined as
[ —s(t—n) |
ul(t—n)

o(l) : (6.19)
T e

a{t-1)
1))

or in a more explicit form
P(‘) 5 t‘“(“i—)iigﬁ--)i‘“lél_(i‘ﬂ)i -l(‘i-):ﬁ,(l"i)n‘“i-f(cé-)i

!il(': !)lgi(t- .)l"'lili('! l)! -l(lg l’l‘l(" i)n'“i-f(ii !)i
iﬁ(‘)i—-(‘):"i!iﬁci)j§

where s and u are defined by (6.185).

G(G,)!EAE-E-;-".A;.B!.A@]’ (SM)

0" () () =v(t), or ¢’ (1) O(t)=v'(2) (631)

where 0(t) s matrix with dimension mx [(m ¢ r) n ¢+ m), and p(t) is a vector of length
(mer)nem,




Define the augmented covariance matrix as
=} .
L
Clt)= LZ pG) " (.1')] (6.22)
o

with dimension [(m + r) s + m] x[(m ¢ r) n + m), and decompose # into UDUT form
C()=sU) DU (1) (6.23)

where U(t) o a unit-upper-triangular matrtx and D(t) is a diagonal matrix. This fac-
identification. &/=U(¢) fs the parameter matrix and has the form
u = U@
(1 03 Oy Oy - Ou Oy )
1 b 0 - Bu &y
1 0 - 034 Oy
L Y (6.24)

0 1 0414
1

dxd
where d $(m ¢ r) n + m. D=D(¢) 18 alled the loss function matrix and has the form

D = D'
. dﬂ[&i(ﬂ(i).l(ﬂ)(t).J(‘)(t),E(!)(!)w-.lf(""‘)(!).J(—“’(i)] 6.5

10w - dng[1w0), 50,19 W)

LD0 - ang[tP0,0@,...,.190)
The superscript in parenthesis represents the model order, g.. 3U)(¢) 1o the loss
in (6.24) contain the parameter estinates for all models of order 1 to » and the loss
functions in (6.25) are used to select an appropriate model order.

For multivariable systems, the dimensions of the parameter matrix & and loss function
matrix D can become very large (Le., (m + r)n + m) and thus careful terpretation
mm&um:mmm:mumu
1. The i/ matrix is a unit-upper-trisnguiar metrix 90 the nonseso part of cach column
a_hlhﬂilﬂh“iﬁihﬂﬂiﬁ:nﬁii
d=s(mer)nom,
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‘\
\ Y

2. The blocks denoted by Mo, My, -- -, M,, consists of m columns each, and are called
M-Blocks thereafter. The blocks denoted by Ro, Ry, - -, R.—; consists of r columns
each and are calied the R-Blocks.

3. Each block fills the space above the unitary diagonal clements and has a different
mmmmm—mm-:mnn is triangular with m
columns which contain 1,2, - -+, m clements, Le. the number of clements equals the
column number. The Ro-block has » cohsnns containing m + 1 to m + r elements
from left to right, the M;-block has m columne containing m ¢+ r+ 1 tom ¢ r ¢ m

clements from left to right, and s0 on 8o forth.

lhﬂuﬂhmﬂnﬂmmﬁbuﬁiﬁmd’ﬂgnm
systems of (6.14). hﬁﬂhh-ﬁ“ﬁmﬁ-mmm
the m subsystems in the multivariable

More spectiically, mn,mmmmm&mmm
models of each of the m subsystems of (6.14). The M, - -block contains the parameter
estimates of us¢ nth order models. The identity of the parameters in each M-block
is defined by (6.20).

u!v the loss function matrix D s also partitione
mnmm-gﬁh&mmm a dimension d x d, where
do(m ¢ ) n ¢+ m, and each clement fs the loss function of a specific model.

3. The blocks denoted by Mo, My, -, M, in Figure 6.2 are diagonal matrices with m
claments, and are called M-Blocks. (The same name as in the parameter matrix fs
used to indicate the close connection with the M-blocks in the parameter matra.
The blocks denoted by Re, R;, - - -, R, are dingonal with r clements, and are callod
the R-blocks.

L''0 blocks, as shown in Fyg-



0 e

N J /

Figure 6.2: Partitioning of the Loss Function Matrix D

3. The M-blocks of D are the loss functions correspo D
(M-blocks) in the parameter matrix 4. ’lhnth.thenmeheﬂ:dﬂiem-
block of D are the loss functions corresponding to the first order models, contatned
in the M;-block of the parameter matrix. The M,-block of D contains the m loss
functions for the nth order models of the m subsystems of (6.14).

4. The structural indices »,4, - -+, ¥, of the multivariable system correspond to the
model orders of each subsystem tn (6.14), and hence can be determined by finding
the appropriate mode! order for each subsystem. Hmethhliﬁmd'ﬂ-
uodehﬁrudld’lhenmm;;: i
is casy, using the AIC or F-test, to determine ti
metance, for the ith subsystem, i €{1,m], ﬂmmmmﬁﬂ
by (6.14) through (8.18), the loss functions of the 1st order model through sth
order models are contained in the ith diagonal elements of blocks AM;, My up to M,
respectively of D as shown in Figure 6.2,

Mﬂmnﬁ“hﬂmhtﬁm

ARer the mode! order of each of the m-subsystems (Le., the structural indices) are
determined, the difference equation model can be established by selecting the cosre-
sponding parameter blocks from the parameter matrix &. I the state-space model s
explained in Section 6.2.

In summary, wmmwmmmmm
form, the parameter estimates from order 1 to » for each of the m-o SIS are (n-
mm-ﬂwummmnmu ¥ not known
a priort, the appropriats structural indices of this multivariable system can also be easlly
determined from the M-blocks of the loss function matrix Sustrated i Figure 6.2,




6.3.3 Recursive AlDX Algorithm

Mmmm&mmwnmmﬂmmmmmmm
SISO system in Chapter 3 except that the data vector is con cted in a different manner
uﬂthepiﬁﬁieterlmmmuﬂnmﬂemﬂjnﬂeddmw The compiete
algorithm s outlined tn Table 6.1. Details can be found tn Chapter 3 with related
discussion in Bierman (1977) or Ljung & S8derstrom (1983). The algortthm s initialized
as C(0) =U(0) D(0) UT(0) =821 where § s a lurge integer.

M@(t) mmﬁ.!ﬂi and do
JeUT (= 1) (1), g=D(t - 1) £, fo=A(1) : iInnovation sequence

for j=1 te d, do

Bj=By-1 + fy9

Dy (t) =Dy;(t = 1) B;_1 /B /A (1) : loss function update

#i==Ji/Bj-1, vi=g;

for i=] to j - 1, do (skip for j=1)
Uiy () =Uiy (¢ = 1) ¢ vy : parameter update
visy + Uiy (L - 1) vy : Kalman gains

“UsU(t), D=D-'(1) i ) : result matrices )

The following comments can be made about the AUDI algorithms.

1. The most significant advantage of the AUDI algorithm fs that # is stmultaneously
order and time recursive, and can produce multiple models of different -
at every time interva!, m“mmﬁImmumw

investigating the corresponding loss functions provided in the loss function matrix
(Niu et al. 1992).

z.ﬁgumﬁ' actorization

mmbmmm is very stable and
. hmﬂmt, Antd'unﬁb
mﬁb@ﬂ&@lﬁhﬂﬁnlﬁnmywmﬁmm

mmﬁnmmmmmvEmyup

nﬁhIthlhem
rde parsm . Iﬂﬂﬁmﬂﬁmdmmm
models. mmmmimmm-ﬂmumﬂ
m-mummmﬁ_mmmmmh
m“mﬁlﬁﬁ o ‘l'hihndlﬂn:”; tage of the ALY

ghiﬁmmmmmﬁwmm
of the diagonal loss fumction matrix being too large or too small. A simple matrix
reguiarisation technique such as that suggested by Ljung & Siderstrim (1983
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can keep the augmented covariance matrix well-conditioned. The only cost s lower
aﬁuﬁcymthemrpﬂﬂmﬂmmﬂthemﬂdeh:ﬁmemlym&paﬂm

i zation can be easily done with the AUDI algorithm by
applymgmuppcrmdalnwerbnundtutheelemenud'ummmnnhnmalﬁx
This requires very little extra computation and thus is always recommended (Ntu
& Fisher 1994),

o 1 | 0 o’
-01 065 | 0 o0
A = |- o (6.26)
o o0 | 0o 1
! -3 1 -025 1
| 2 ]
B . | 2208 c:[49199] 627
2 o 00| 10]
05 4

Mmmmmnﬂ m=*2, »12=0 and 1 =1. From equations (6.12)

and (6.13), the corres | difference equation model can be uniquely determined as
P(2)s() =Q(s)u(t) + v(t)
. [ 12-065:+0.1 0 ]
(2) = 5 1
| 35!5 f‘—!"‘o-gs
[1-04 2:-08
) = |, 2 1
L7 3 3
There are two MISO subsystems corresponding to s; and 5. In difference equation form
1 ' . | 0686 0O : 0.1
[0 l s(t) + 0.83 _1]:(¢=1)+ -033 0.35] s(t-=2)=

[' ’]-a-m o ;"5:,3 wW-2ev() (638

where s(t) =[5 (t) , (1) 1" 18 the output vector, u(t) =[u;(t) ,us(t) )’ is the mput vec-

tor. mm-ﬂl)nﬂ-mmm“ﬁﬂmﬁﬁym

'm-c-.m.-.mr where »; (t) and v (¢) are two uncorrelated white nolee sequences
pit) = (-n(t-3),-(t-3),4(t-3),%u(t-3),




“n=-2),-25(t-2),u)(t - 2),u3(t-2),
—n(t=1),-20-1),uy(t=1),ult-1),
-n(),-n()]"

The coeflicient matrix in the form of (6.20) ta

- O -04 05 -065 0 1 210
—033 025 -067 567 083 -1 2 0 0 1

which corresponds to the M; block in the parameter matrix shown tn Figure 6.1. Note
that the structure of the data and parameter vector are a stmple extension of the SISO
case (Niu et al. 1992) and constructed directly from (6.28).

Using the multivariable AUDI algorithm to identify this process, with a forgetting
factor A=0.99, produces the loss function matrix at step 1000 given in Table 6.2 along
with the identifiers A(;, R;,i=1,2,3 that links i to Figure 6.2.

Now cxamine the M-blocks and R-blocks shown in Table 6.2. The first diagonal ele-
mmghmm.-ﬂuam:hgh-ﬁmmﬁmmmEmQ

(6.29)

ctions hmmmmomaﬁmz Far
se loss function values are rearranged and shown in Table 6.8, mm&
mﬁnun_ﬂmmmlmzmmmmugmmh
increased from 1 to 2, and become flat for model orders higher than 2. This suggests
an estimated order of 2 for both subsystems, which is consistent with the structural
indices of the true system, Le., 1y =1a=2.

Tuble 6.2: Loss Function Matrix of the 2x2 Multivariable System (Compare Figure 2)

.. N

T}
iﬁga,.;.-’._-"“_!!!“_g__.
ise.59 !
.“’!;__ll; ,,,,

o.081
0.946

e g!!gi!;iil

#8.11 H




mm@dmmuummmem It has the same form
as (6.24) and is partitioned into blocks corresponding to Figure 6.1,

mdm&muieu!bhnhdmepimﬂerm“m@rdmdmwum
Table 6.5 in a form corresponding to (6.14). Since the estimated structural indices are
vi=ige2, mmmghmmmnmmwmmupm
M;-block in the parameter matrix, which from (6.20) fs:

é = :&D&i’l!!s!!&j?
. [ 0107 0003 -0400 -0456 -0633 -0004 0907 1900 1o)
| -0.328 0250 -0656 5661 0810 -1.000 1946 -0070 -0046 1 |

P(s) =

2 omuolov -0.004: + 0.003

0.810: - 2 -340285 |
1-04 lssszec.iss’

| 1.946: - 0.658 5.661 |

Q(z) =

mmszs whk:hght;

[ o ) I 0 0
-0.107 0633 | -0.003 0.004
A = giii—i!g—ﬁi:uai__ggg-g
0 o | 0 1
0328 0810 | -0285 100

0997 1.909
| 0239 0.800 11000
B=f-ro====—1 ©loo010
1946 -0079 '

0481 3.964

m thbgmimﬁﬂ.Hiﬂmﬂ

. hmnmmﬂh”f’;;, from
MIilhelrhhzkhmml ﬁr eter estimates for the second order
DT ';;ZGH&MQHHM

The augmented UD identification algorithm fs extended from single-input, single-output
systems to multiverinble systems. mpﬁg;mhmm—
hi&ﬂmuhmdtﬁlﬂ’ boystama) and the parameters

pigorithm hﬁﬁm“um-ﬂb
os 88. The MIMO ALDI aigorithm can also be
';mmﬁqu . or the

ﬁ-nﬁd’*_hm*m
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Chapter 7

IDENTIFICATION
OF TIME VARYING PROCESS

be mechanism of information forgetting for recursive identification is investigated
I and discussed from a very general point of view, based on the augmented UD
nformation pertinent to identification is contained in the the augmented covariance ma-

7.1 Iatroduction

Tracking the time varying dynamics of a process is a fundamental problem in control
and signal processing. Since most real processes are nonlinear in nature, Mnear process
MMmmmdhmmmlynﬂ:m

Many different information forgetting schemes exist in the Merature, inchuding
exponential forgetting (EF) (Astrom, Boreson, ljung & Wittenmark 1977, Ljung
1981, Cordero & Mayne 1981), directional forgetting (Sachid & Foss 1983, Higghund

1A version of Ghis chapter has besn published as : 8. Wu and D, Grant Pisher, 1903, information Pargatting
sovised version s cubmuitiod for publication as: 8. Niu and D. Grant Pisher, Recursive Information Porgetiing
Based en AUDI Algestihun, intsrnational Jounal of Csntrel




1983, Kulhivy & Kimy 1964), covartance resetting (Goodwin & Teoh 1963, Vogel &
Edgar 1982) and the constant trace method (m&ﬁhﬁlm Irving 1979).
However, with the AUDI notation, all these methods can be conveniently classified into
two categories: relative forgetting and absolute forgetting. mi«mm
use a forgetting factor to scale the augmented covariance matrix to proportionally farget
old information. mmmmmmwm
M&mmﬁmmﬂmm F‘ﬁ'
wmmm&wnm&mm uses a
constant forgetting factor to scale the ACM at every time step, Le., the new ACM is a
scalar multiple of the previous ACM. On the other hand, the covartance resetting algo-
rithm, which s an absolute forgetting method, simply resets all or part of the ACM to a
value, which is not necessarily reiated to the previous ACM.

In this chapter, mmhManmmd‘m
based on the AUDI algorithms. Deeper tnsight into the information forgetting principle
hWh;hkﬁ(Mdlhemm Byugﬂgmd'rﬁ
tive forgetting and absohule forgetting, information forgetting tn recursive ident
ummmmmﬂmmmmm&emmm
m the updated augmented covariance matrix. Simpler and more convenient guidelines
mMﬁMﬂmmmwm An im-
mmmmumgm;,,, lementation example and

(t)eaps(t—1)¢ - vapns(t—n)sbyu(t=1)+:.. ¢ hyu(t — n) + v(¢) (7.1)
Define the augmented data vector as
p(t)s[—s(t=n),u(t=n),-..,—2(t-1),u(t=1),-2(1)]" (72)

As shown by the AUDX structure in Chapter 2, all the information on the process pa-
m:ﬂmﬁm&ﬂmmmlmnmﬁmm
number » are contatned, smplicitly, in the augmented covariance matrix

1=1
C(l)ngip(j) p'u)] 73)
S(0) -i,‘pu) ¢ (j)eC-1 (1) (7.4)
mmﬂﬁ:hﬂmmum—_ﬁ-ﬁ
tancously to construct the augme.. od covariance matrix or the augmented information

matrix. In recursive algorithme, the now information from the mput/output data f»
accumulated tn the ACM/AIM as &t fs cbiained, thet is at thme ¢,

S(=SU-1)ep()p’(t) o C(O=C'(t-1)+pt) p"(t) (78)



In the AUDI aigorithm, the concept of recursive identification becomes the recursive ac-
cumulation of process infor ation into the augmented covariance matrix using (7.5). As
will be shown later, this stmplifies the interpretation and implementation of the existing
mmmm and also makes #t easter to design new infor mation
forgetting methods.

Nﬁgemnthem:bmmudmeﬁnkmmmﬂng (1) are always non-
mﬂlﬂdﬂe theaupented’i mhﬁﬂﬂb:hm:mnﬂmenhg.

muhtedmthemlﬂhm:ﬂythemewegm Aﬂtﬁlegnesmugl\mmﬂ
eventually go to infinity, and the new information will be “buried” in the AIM, Le.,

hS(ﬂH l!'l’lS(!-s 1) =00

m&mwﬂmmmmmmnpmp mmd
effectively shuts iteel off. This is the main reason that an tnformation forge

nism fs noeded for tracking time varying process. Tahepthemﬁmmmmy
(or, in other words, to keep the ACM from going to zero), the updating formula (7.5) must
be modified. A general formula is given as follows

SW)=FX(S(t=1),¢()) (7.8)
where F represents a particular relationship or function. All existing information. forget-
ting methods are based on this principie and they differ only in the choice of the function
F. In eseence, information forgetting is sinply a problem of controlling the weight that
thgnﬁmmﬂt)ﬁ’(!)ﬂhhhthemlﬂﬂm In other words, the
mechanism for information forgetting is to appropriately control the relative importance
iﬁemmv(t)p'(l)gmpﬁedﬂthmmnmg
augmented covariance matrix. A less general formula deduced from (7.6) s

{Sm = SUt=1)¢p(t)p" (D)
S(t) = F(3(t))
Mﬂwmdmmm:;nmﬂm The numerous
techmiques for information forgetting in recursive ident jon differ only in the criteria
mﬂmm&iﬂliﬁﬁMﬂl)f(tlﬂdﬂhﬁmﬁd
mﬂhﬁsﬁdﬂfﬁuﬁﬂﬁﬁﬁﬂ ﬁp&.

gﬁ:’,,;:’smtgsa) l.e..

(1.7)

S(t) =3(¢)

An @cuseed earlier, with no information forgetting mechaniam, all the data go
gﬁmﬂmmﬂnmmmﬁ—emﬁ
fmportance). S5(¢) eventually goes to infinily and loses the ability to track time
varying parameters.

2. BromeNTIAL FOROETTING METHOD. A constant forgeiting factor ) fs introduced to
exponentially forget old information, and put more emphasis on newly obtained
ﬁﬁlﬁ&hﬁ.hhmlbﬂﬁm#lﬂ
have in the au t matric. The information accumulation formula

for the m ﬁm method can be represented as
S()=A3(t) or C(t)oC(0) /A




Exponential forgetting incorporates the tmportant idea of tnformation forgetting.
However, this method does not work well in practice since complications such as
“covartance windup® or “bursting” may occur (Shah & Cluett 1991, Sripada &
Fisher 1987, Astrdm & Wittenmark 1980, Morris et al. 1989).

. VARIABLE FORGETTING METHOD. This category includes the vartable forgetting factor
method (Fortescue et al. 1961), the constant trace/determinant method (Rogers
1989), the directional forgetting method (Higglund 1983, Kulhdvy 1967), etc. All
of them use a variable forgetting factor A(t) instead of a fixed value to discard
obeolete information. The more information the matrix ¢(t) ¢'(t) contains, the
bigger the weight f#t is given when #t is accumulated into the AIM. The information
accumulation formula is given by

S =A(t) S(t) or C(t)=C(t) /A(t) (7.8)

The main problem with this ciass of methods is that # fs usually difficult to deter-
mine how much information s contained in the new information matrix ¢(t) ¢ (t)
relative to the current AIM. There s no clear answer to this question. The methods
commonly used to judge the inforraation content of the ¢(t) ¢’ (¢) matrix involve
maintaining a selected information criterion of the AIM/ACM at a constant value,
as new information from the process is accumulated. All algorithms n this category
differ only tn how this information criterion is chosen. For example, the constant
trace method keeps the trace of the ACM at a constant while the constant determt-
nant method maintains the determinant of the ACM at an appropriate value. All
these algorithms are quite ad hoc. However, ff an appropriate information criterion
can be found, this type of method can give very good results in real applications.

matrix matrix and thereby changes the relative weight of the new information in the
updated augmented covariance matrix. The two most commonly used covartance
resetting schemes are

Ct)=C(1)+Q or C()eQ 7.9
where Q is a constant (usually diagonal) matrix. Again, the difficulty with covart-
ance resetting method #s deciding when and how much the covariance should be

reset in order for the new information to have an appropriate weight in the aug-
mented covariance matrtx.

Based on the above discussion, it is seen that the information forgetting problem ac-
tually reduces to the problem of appropriately constructing the augmented covastance
matrix with (7.0) or (7.7). A general information forgetting method requires some moans
of determining the information content of the new matrix p(t) ¢’ (¢) relative to that
contained i the current ABM/ACM. This §» the key step towards a good information
forgetting mechaniam and is discussed below.

7.3 Infermation Fergetting with AIIX

From the last soction, & 1 seen that information forgeiting is basically a problem of ap-
propriately updating the sugnented covertance matrix or sugmented informetion me-
tix. In this section, the concept of taformation forgetting s further stmphified based en
the augmented UD identification algorithm.
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Using AUDI notation and noting that C(¢) =U (¢) D(t) U7 (t). the recursive information
accumulation formula (7.5) can be rewritten as

W@ DU s[Ut-1) DU =D U (2t - DI ol " () (7.10)

MHanhﬂmthemaﬁmu-vmmmnm
stant matrix, and the tnverse of the loss function matrix D(t) sD-! converges to a zero
%wm D)YU (1) }=0, = 'Egﬂ(t)ﬂ
portance of the “old” tnforniation stored in the UDUT term of (7.10) compared to the -
'm’mmthep(t)p'(t)tﬁm)mb:emmwmﬂtm
hMMPWImmmﬁﬁuﬁﬁrm

{[‘mn DWOUTO]™ Ut - 1) DU- 1)U~ DI ¢ p() " (1) 71D
D(t)=G(D(t))
where ¢ i a function analogous to ¥ in (7.7). Since D is diagonal, &t I8 much easter to

mmmmﬁmmhmmmmmmm
forgetting methods discuseed above. The main idea is to scale the loss function matrix
with a diagonal matrix A(t)

D(t) =D(t) A(¢) (7.12)

where the key question i the selection of the A(() matrix. A special case of (7.12) ts

oyl . e
AQt) im’ (7.13)
CU) = Ut) D) U™ () sU(t) % U
U t) D€ UT(4) 3 /AC1) »C(t = 1) /A (0)

or in terme of AIM

S()=At) St~ 1)
that fs, scaling the matrix D(t), which s a simple diagonal matrix with clear physical
mesnings, has the same efiect as scaling the augmented covartance matrix C(1). The
new loss function matrix fs stmply & multiple of the previous loss function matrix and
a forgetting factor A(¢) as in (7.19) . The AUDI-LS algorithm with a vartable forgetting
factor A(t) ts shown in Table 7.1,



Table 7.1: The Recursive AUDI Algorithm

P sl-20-n),8ll-n), U1 8ll=1) —2(©O : data vector

IsUT(t~1) (1), g=D(t - 1) £, fo=A(t) ! innovations

for j=1 to d, do 7
Bi=Bj-1 + [ig; : scaling factor
Dy; () =Dy (¢ — 1) B;_1/B; /M) : loss functions

#i==Ii/Bj-1, vi=g; ,
for i=1 to j — 1, do (skip for j=1)

Uy(t) sUy(t-1) ¢ Viphs : Pﬂl’m&ﬂf update
V"W’”“('—l)yj . mm
UsU(t), DsD-'(1) _ _: result matrices

where # is seen that the loss function is updated by
Dy4(2) =Dyt — 1) By /851 /M (1) (7.14)

or after rearrangement
Dy;(t) =Dy;(0) /A(1), and  Dyy(t) =Dyy(t - 1) B2 /8y

which is exactly the same as formula (7.12) or (7.13). The relative forgetting method fs

a generalization of the variable forgetting methods. Since the forgetting factor A(f) 1s
Mb-eamuuwm)nmmhsmmmgmmcmnnm

them/wumam
Consider the following properties of the AIM/ACM that are affected by the introdue-
tion of a forgetting factor defined by (7.13)

1. DETERMINANT. Without information forgetting, the determinant of the augmented
covariance matrix C(t) would converge to sero. Note that the determinant of the
parameter matrix U(t) is always unity, thus the determinant of the ACM equals
mwammomm-:wmm

det{C(¢) }=det{U (¢) D(¢) UT(¢) }=det{D(¢) )

Introducing a forgetting factor is equivalent to
Csh » aticwpBCO) o o e

The constant determinant method maintains the determinant of the ACM at a con-
mwum.wmmx.vﬁnmn“
the determinant of the D(t) metrix constant. From the ALIDI structure, 1t is known
that the D(t) matrix contains the Joss functions for all models, and thus the de-
terminant of the loss function matrix s the product of all the loss hmctions of all
models. Clearly, there 1 no solid theoretical basts for using this product as the
tnformation criterion.



2. TRACE. mrmamgmmuzumzdummwm by a factor of A(1),
that is
u-(c:m)

tr(C(1) }= o O US@O)matr(se-1))

the constant trace method tries to matntain the trace of the ACM at a constant by
using a forgetting factor. However. for least-squares estimators, ¥ the process noine
is white with zero mean and variance o2, then 02C (1) i the covariance matrix of the
parameter estimates, which implies that the trace of the C(t) motrix equals to the
sum of the variance of the parameter estimates of all the n models. Clearly, the trace
can be affected by many factors such as the noise level and model order. Using
the trace of C(t) as the information criterion is therefore ad hoc and a great deal
of experience would be required to select an appropriate value for this criterion.

3. ConDimon NUMBER. The condition mmhernfthemﬁhmnely;hﬂ
function of the condition number of the loss function matrix since the parmmeter
matrix converges {0 a constant matrix, that s

cond{C(t) }=cond(U (t) D(t) U’ (1) } = « -cond{D(t) }

where « is a constant positive number determined by the condition number of U/(t).
In another words, the condition number of the ACM fs mainly determtned by the
condition of the loss function matrix. Eﬁmﬂzhfmmnm
its condition number can be conveniently caiculated as

mﬁ(Dﬂ“)}

lsisd‘D““”

Introducing a forgetting factor by C(t) =C/)(t) is equivalent to acaling D(¢) by
D(t) =D(t) /A(t), and since

cond{D(t) }=

cond{D(t) }scond{ 22 “’

. introdu 'imﬁﬁﬁnmmnmmem
mamm/mnmu the forgetting factor can prevent the ACM from
going to sero, thus round-off errors are less serious, and hence gives the impres-
sion that introducing a forgetting factor makes the identification numerically more
stable.

-}=cond{D(¢) }

7.3.2 Absciute Porgetting

As mentioned carfier, the information forgetting problem i simply a problem of deter-
mining the relative weight givea to the new information ¢(() ¢” (¢) when # fs accumulsted
to the ACM fn (7.10). Relative forgetting schemes scale the ACM i order to give the
new information an appropriate weight. The absolute forgetting schemes, however, sim-
ply reassign the augmented covariance matrix or sugmented information matrix to a
value, which can be completely unrelated to its previous values. The covariance re-
sotting method (Goodwin & Sin 1964, Xie & Evans 1984, Vogel & Edgar 1982) s an
exampls of the abscluts forgutting approaches.

The main idea behind abechste resctting method is to regularly reset the sugmented
informetion matrix/augmontod covariance matrix to appropriate values, in accordance




formula as . 7
[C@]) 7 sCtt =11 ¢ (1) o' (1)
usually the absolute forgetting schemes take one of the two forms tn (7.9), Le.,

C(t)=C(t)+ Q, eg. Q=ol (7.19)
or
cit) = Q, eg. Qe=el (7.19)

how much the ACM should be reset. This §s the major problem with the covariance
resetting methods in the Mterature. Many approaches exist but they are more or less
based on trial and ervor or application-specific results.

Another problem with ACM resetting is that the parameters exhibit a drift towards
the origin (Ljung & Gunnarseon 1900), Le., ACM resetting can also produce unexpected

parameter resetting. This is made clear by the following stmple example.
Consider the ACM updating formula (7.15), and rewrite & in UDUT form as

Ut) DY UT () sU(t) D) 07 (t) + o1

where ¢/ is the resetting term. Assuming the augmented covariance matrix at time ¢,
which is after being updated and before being reset, is given by

C@) = O@)Dw)0' (1)

1IN ]

[+ 2]

Then resetting C(t) with ¢/ by using (7.18) leads to
hodfPee 04 ]

C(t) = C'Och[ 0ds “so
. [l ‘&*;][ind;ﬁ(l- )t 111 #; ’
o 1 ’ hee]lO 1
0dy/(dg ¢+ ¢). ARer the parametars conwerge, ds. the inverse of a loss function term,
I the reseiting of the second kind (7.16) s used., then

Cl) = ol 7h§!ﬂﬂh£‘(m
Bt M [ FR1)
This resets the parameters to 0. This fs cbvicusly not desirabls for the general case.



mmmm!ﬁMmuhmmmﬂmﬂhmwﬂz
,,,,mwmmmmmmhmhymﬁmﬂmm
resetting. This has obvious advantages over ACM resetting. The resetting, from C'(¢) to
C (1), is accomplished by setting

U =U(t) and D(t)=D(..+Q (7.17)

cwy [; :][a. a,][é. :]
co - [3 1]+ o4 1]

In this way, C(t) fs prevented from approaching zero, and at the same time, the tracking
ability is effectively restored and parameter drift s avoided.

-ﬂgﬁlwumimm)mmumﬂmmm
the loss function matrix

!ne:ﬂywﬂ;ht:neﬂepttlmn
Jm D' () s} (¢ - Ro) =00

where Ro is a constant diagonal matrix. The first element of the D-! (1) matrix
equals to the sum of squared process outputs (Niu & Fisher 1904),

t=n
hm ) etm 3 A EAO) (7.18)
1= ja1mn
where B stands for expectation. The last element, which is the loss function of the
nth order model, s the squared sum of the residuals

Jam 7 () = larm Z"(ﬂ -lm Z{;m -0 (D) et}
=®
where ¢(t) represents the residual at time ¢ and ¢ s the variance of the process

2. With a constant forgetting factor 0 < A < 1, the loss function matrtx DsD~(¢)

o D~ (1) -L&

Here Nogly is calied the “asymptotic memory length®, or the “asympiotic data win-
dow”. R tndicates thet the tnformation diss away with a thme constant of apprens-
“Nﬂ“ﬁpﬂh_h“hﬂw
factors, where A(¢) means thet at time interval ¢, the ide tion algorithm
*q-ﬁﬁﬂ-mhﬁﬂ-l[(l = A(1) ). The fisst
eloment, J(%) (1), of the loss function matrix becomes

= 7@ ) -Eﬁim sNBA(1) (7.19)




and the last elment. J() (1), becomes
m J(‘)(l)i-ﬁh’(!)-NE(!)

3. From (7.18) and (7.19), & s seen that a forgetting factor is directly related to the
muﬂd‘memﬁmmm Equation (7.18) can provide an estimate of the
fon value of outputs, which is Es*(t). Setting the first element of D! (¢)
mmnmé(nuwmmmmﬁmmmmnm
in turn is equivalent to setting the current forgetting factor value to A(t) =1 - 1/N,
@md‘nmm This leads to remark 4.
(a) introducing a forgetting factor A(2).
[®) sctting the “asymptotic memory length® to N=1/(1 - A(t) ).

Matrix re ization is a way to keep the augmented covariance matrix C (1) well con-
dittoned MQMIM This ts done by specifying an upper and a lower
bound on the ACM

Oew I SC(1) < Oman | (7.20)
where [ fs the identity matrix and auie 80d G, &re positive constants, with 0 <
Omin < Omee < 00. The lower bound maintains the algorithm's ability to track thme-
mmﬁtﬁsmmmmm Normally the objective

of matrix arization is to improve numerical performance. For RLS algorithme,
matrix regularisation results in boundedness of the estimation errors. I the fnput
ﬂﬂi)immﬂmﬁﬂﬂiﬁmmdﬁ
parameter estimates o guaranteed and the convergence rate s at least exponentially
mmm&mimmmm-m:um
and hence the above results also apply.

In the AUDX algorithm, with the decomposition of C(t) sU(8) D(t) U(¢), only the
diagonal loss function matrix needs to be reguiarised. The parameter matrix ¥/=U(f) s
an upper triangular matrix with all the diagonal clements being unity. Rs determinant
is always unity and thus does not noed to be regularined. Matrix regulartsation of D(¢)

is very trivial

Oatn SDuU(t) Sogee for ésl,....d (721)
Actually, matrix reguls ;,,,d‘ﬁlb(l)m_hq-—ﬂﬁmmﬂ
w&g“niﬁriﬂbrﬁﬂ:: sont of the loss function matrix and

a lower bound to the smaliest nt. Per ARMA medehs, the largest clement of the
loss function matrix &8 J(®) ar L), depending on whether T, 55() 1 larger them
Tje1¥°(J). The smaliest cloment ts usually the last clement tn the loss function matri,
te. J‘ﬂm Ot & Pisher 1904,

Al formulntion/enclyets shows that the upper and lower bounds on the less
hﬂmmbnﬁw ﬁlmﬁiﬂ—-ﬂ-




exceeded, the algorithm resets the memory length to the upper/lower bounds which has
the same effect as the loss function resetting discuseed in Section 7.3.2 and thus matrtx
wmmnmmgnmmmﬁumm
memory length of the ident algorithm.
mwwmwmmmmeﬁ:i of the loss function
mm;mmmmmmmmmmungm
number of the loss function matrix which in turn determines the maxtimum conditio
number of the augmented covariance matrix. ltﬂgmbymmnugm
number of the augmented covariance matrix is always smaller than that specified by

mm-ﬂmmmmumnmmm
deeper insight into the infors ; nmm Indor-
WMHmmﬂnmi P mmﬁi@
of the new information
information matrix. mmﬂhmmmummﬂhm
tually control the information assin The above analysis and disc
aaﬂaﬁﬁﬁmﬂmimmﬂmmm
schemes. In this section, the principles discussed in the last two sections are used to
improve the existing variable forgetting factor method.

7.4.1 The Algerithm

muymmmw-ummnm
contained in the new inform matrix p(t) ¢’ (¢), by comparing it with the accumu-
wmmmammmmnhm
use different criteria. However, one of the widely used, also the most cbvious, criterion
is based on the prediction errors and loss functions, Note that the loss function of the
nth order process model is defined as

L _
IO W (%) T00))
i
with ;
pu. e I 2w
jey
The recursive form of this formula is given by Pang & Xiao (1008) or S3derstrém & Stoica
(1900) as
J® ) « ) IV (0= 1) 4 et0) 5O 729

e(t) = K1) /A ()
where ¢(t) =5(t) —p"#(¢) 1» the residual and #(t) =5(t) —p(t) #(¢ - 1) 1o the nmovation.



nmmummm&mmﬂmmm
is to be kept at N sampling intervals, which indicates
IOV (1) el . gBuy(n=1) (q) (7.23)
then from (7.22), ,
£(1)
Ba-1(t)

. ()

A(i)il!m (7.24)
mnmmmnﬁmmhmmmmhym
et al. (196]1). That s, the variable forgetting factor method by Fortescue et al. (1961)
m«ﬁdmmm‘ﬁaﬂsﬁﬁﬁmw
alert (0 thne varying processes. mn-mﬁntﬂ'mm
An fmpro ment which uses a vartable memory length fs proposed as follows. When the
mﬂﬂi(l)ﬂ:ﬁmmmmm“mn esented by
mmmdm-mmﬁhimmmm-mb
the new information The variable memory length fs chosen as

N.o2=N.A(1) o2+

which leads to
Aﬁ)!!-ﬁ (728) -
Anﬂhdhﬁhnﬂghﬂaﬁm—hhﬁgmswm&m
(1909).
Agﬁﬁﬂk:lﬂvﬁi“bnﬂnm‘
memory length® of 100, or maxtmum forgetting factor 0.90.

ﬁﬁlm-m&mﬁiﬁ“ﬂmlﬁmmﬁ
1980, Shah & Cluctt 1001, Morrts ot al. 1900). Therefore, a logioal procodure 15 to shat

(iﬁhﬁih-ﬂﬁhﬂhnnﬂmmi
-ﬁﬂﬂﬂ-w_bhm-!_ﬂ.



When the predic mbmhhntheﬂxﬂmﬂdwﬂﬂdhmm
or

2()<a?
to prevent “covariance windup®. From (7.25), & s seen that :2(¢) =¢2 is equivalent to a
Stopping Rule. The identification algorithm in Table 7.1 should be stopped for the
1- y)—.

74.3 Regularization
calculated as , .
w13 2nt 3G
= =
%t s assumed to be known. An upper bound on the first element, J¢°)(¢), which s
usually the largest clement in the loss function matrix (Ntu & Fisher 1994), is imposed
as ,

IO ()exa2(t), when s ()> KP) (7.28)
where K 18 & positive integer and specifies the “asym otic memory length” of the algo-
rithm. The same value of K as in formula (7.25) can be used.

The last element, J () (¢), which is usually the smaliest element tn the loss function
mairix, is bounded by

FLOTO «Kd2, when J*) ()< K L

The following first order SISC difierence oquation model is used as the representation

5(0) ¢ as(t = 1) sbu(t —- 1) + v(t)
the parameters are time varying

. {ﬁo.l 0<t5100
- =04 t>100
b= 10 120

This 15 the same cxample a8 i Parkum ot al. (1902). Using a random binasy sequence
the taput/cutput data wes chtatned and plotted tn Figure 7.1. The magnitude of w(¢)
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s 1.0. The ALDX forgetting aigorithm (7.26) and the ordinary loast-squares algorithm
apenenttal forgetting aigorthm are used to identily the same process and the resulls
were shown ta Figares 7.2 and 7.3. From Figure 7.3 1t §s seen that ordinasy LS with &
forgetitng factor A=0.90 gives approximaetely the same tracking ability as the AUDI alge-
sithm, but the parameter estimates are very noise sensitive and blow up when o faput
aiiatien f» present. The ALLX algortthm, on the other hand, tracks the parameters
very quichly and hoeps & smesth trajeciery. When there §5 no encitation present, the
sigeritiun Just shute fisell down to prevent blow wp. The exponential forgetting method
with 10.98 gves a amesther trajoctory, but respends very slowly to parameter changee.
Nets that the furgeiting factors caloulated by (7.25) are smesthened by a first order filter
to aveid fhise alarme cassed by nolee apiiee.

7.5 Coenclusions

The AKX frmulstion showe that nformetion forgeiting in recursive Mdentification re-
ﬁbﬁﬂﬂd:ﬁb*iﬁmmm
wintive to that aleady aciuded ia the augnented nfrmation metrix or auguented
ﬂ* ﬁ—hﬁl” -ﬂh*_
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Figure 7.2: Parameter Estimates with AUDI (solid) and EF (dashed) for A«0.90
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Figare 7.5: Pesameter Estinates with ALXX (selid) and EF (dashed) for 1=0.98
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Chapter 8

mmmﬁmm&ﬂﬂdmmmmmem

algorithm developed in previous chap 'i’,m-ﬁﬁmhmm
most parameter cotimetion algorithams but is particulasly appropriate for the augments
UD identification algorithm. The on-line estimates of the variance, SNR and parameters
can be used directly in applications such as filkering and adaptive control.

mmmmmﬂﬂnvﬁgudnmmmm
tertatics of & process (leermann 1981). Many app ons fn process identificat
mmmi&lmmhgﬂﬂEm—ﬁmgmﬂ-
ways svelisbie. For cxample, the variable forgetiing identtication method (Fortescue et
al lﬂnﬁm&mmmmhﬁm-ﬂm-!ﬁ
of the parameter estimates, but assumes that the nolse variance is constant and known
apriort. _ﬁﬁﬂmmmuﬁnm“
statistics and assume they are provided by the user.

In this chapter, a convenient and efficient method fo developed for on-lne estima-
hihﬂiﬁmmhmm:imﬁ The
approach used can be lacorporated iato most sdenttfication algorsthme, but &t §s pastic-
mmhﬁﬂmmw The AN algorithm

maly provides the loss Amctions as well as the paramseter estimates for all
mﬁ_uﬁlhlﬂiﬂ—-ﬁm With only a hitls extra calcu-
lation, the neise vestance and signal-to-ncise ratio can alse be esttmated simullansously
ﬁinﬂ“hm-ﬁﬂﬁdm

'A—iﬁﬁnhﬁ-ﬁihpﬁg—g 8. Fiu and D. Orant Pisher, 1908, Stannl-
=“iﬁ-—_&“-ﬂm&_m—




Assume the process to be investigated can be re ed by the following ARMA model
(W)tarz(t=1)+ . vapz{t=n)shu(t=1)¢...¢ byu(t — n) + v(t) (8.1)

where u(t) and :(t) are the process mput and output, respectively; v(1) is assumed to
be white noise and n is the model order.
Model (8.1) can be rewritten tn the least-squares format as

2(t) =AT () 0(t) + v(t) (8.2)

where A(t) is the data vector and #(t) §s the parameter vector
At) = [-z(t—m),u(t=n), .., ~s(t=1),u(t-1)) 6.3
.(i) = [-l .-i l-‘l.lj (E-",

I3 G Y [« -w i) (85)
™ m

where ¢(-) s the residual of the estimation and #(¢t) is the model parameter estimate
at time ¢. The least-squares estimate #(¢) is given by (2.9) in Chapter 2. When least-
thﬂ.ﬁnmﬂuﬂ;mmmmlm“

' ~J(e) ‘® A

F(t) ] (8.8)
inmmﬂmmm Here dim/ stands for the dimension of
the parameter vector and ¢ is the data length. For a proof see Ljung (1967) or lscrmann
(1981).

For ident me-varying procesees, a forgetting factor is often introduced to
Hhmhﬂhﬂﬂgmm For example, the exponential
forgetting algorithm uses a constant forgetting factor and some other algorithme use a
variable forgetting factor, see Chapter 7. When a constant forgetting factor, ), is used,
the loss function is redefined as

J0) ‘Z*"’""J’ -):A'-J [ -s ] (8.7)
= = .
b ]
E{J()) = B { p 3¢ Sl V)] }
%1 .
_¢ . )
« Y A-Ip{dh)
”~
L}
o Var(e(t)) 3° a*-
%1



1-A
s l—_x-Var(c(t))
where E stands for expectation. For infinite data length, Le., ¢t — oo, we have
1
1-2

E{J(t) )= Var(e(t) )

or
o n(1-2)J(t) for large t

The above results can be summartzed as follows

Summaery. For process (8.1) with zero-mean white noise, using a least-squares estimator
for identification

1. With no data forgetting, an unbiased estimates of the noise variance s given
by (8.6). In other words, the loss function converges to a Minear function of the
noise variance, Le.,

J(t)=(t—dims) &* oc ¢
2. With a constant forgetting factor 0 < A < 1, the estimate of the nolse variance s
given by
Pu(1-2)J() forlarge ¢ (8.8)

In other words, the loss function converges to a constant, which is determined by
the noise vartance and the forgetting factor. That s

U]

J(t)~ -l-:-xm
3. With a variable forgetting factor, the loss function is indefinite and the estimation of
the noise variance fs much more complicated. However, an approximate method fs
developed in Section 8.3.1 for use with the augmented UD identification algorithm,

”MMMWMMNMMW
different notee levels and forgetting factors. Assume the process is represented by the
following difference equation model ‘

5(t) ~1.8s(¢ - 1)+ 0.73(t - 2) *u(t - 1) + 0.8u(t —- 3) ¢ v(?) 8.9)

where v(t) is sero-mean white nolse with vastance ¢3. A data sequence of 1000 points
is used. For different noise levels, using a least-squares-type estimator (such as the
recursive loast-equares algorithm or the AUDI-LS algorithm), the estimated nolss vert-
ance, calculated using the equation (5.6) and (5.6), are shown i Tubis 8.1 (with no
data forgetting and Tabls 8.3 (with data forgetting. From the tables, &t 15 clear thet the
estimated nolse vartancs is closs to its true valus.

Since the noise variancs s closely related to the loss fumctions, the trajectory of the
loss functtons for A=1.0 and 1=0.98 with noiss variance 0.9° are plotted i Figure 8.3,
R ts clear that when =10, the loss Aimoiien converges to a Mnser functton of time,
mammumwmwmm-m

- In beth cane, an asympiotic esttmats of the noise variance can be ebtained
by applying 5.0) and (5.8). The esttmated standard deviation of the nelss fthe square
rost of the noise vertance) 1 shown i Figure 8.1 for both cases. R 13 found that they
are quite cless to the trus value 0.9° when A+1.0 but s nolsier when A=0.90. However,

beth estimates are satisfactiory for most applications.
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Table 8.2; mmmmmmm,\iﬂm

S (true value) ] 0.0]  O.1) 03] 08| 10] 20
Y=(1-2) J(t)_| 0.0 00880 | 0.1760% | 0.4400 ommf 1.7500
J() =3 ,\if??m 0.0 ﬂgs 1.5488 sssxs 38.728 | 184.86

8.3 Estimation of Signal-to-Noise Ratio
Al () =B(g™") w(t) ¢ e(0)
or in output error form

(o=l
B(q ).m t(l)

(1) =0
(1) A ) j(

ii(l) + (1) (8.10)

AY) o Leag oo vag gt
Bie?) = gt eoebgt

process output (without nolse) and the estimated process nolse are
#(1) « B -mmw) ]“'—’m The signal-to-nolse-ratio fs then given

w(z{l;l-m)
e (24t55)

To evaluste the SNR, we need to first caloulate Var(§(¢) ) and Var(i(¢)). Suppose
vmmnnmmmummmn—nmhm
of (1), as

Var(§(1))
Var(¢(t))

(8.11)

e(t)
A
Qebgg=t ehgg=3¢...)elt)
e()ebe(t=1)+Age(t—=2)e...

é(1)



With unbiased estimates of #(t), ¢(t) ts zero-mean white noise, which fe identically,
Var(é(t)) = Var(e(t)+ Me(t=1)+hge(t—2)+-.)
= Var(e(t) )+ Var(hye(t — 1)) + Var(hge(t - 2) )+ - --
« (1M +Adohe...)Vare()) (8.12)

This gives an estimate of Var(é(t) ). Now consider Var(j(t) ). From (8.10), and according

mﬁm@ﬂmdhﬂmm (Ljung & Siderstrim 1983), it ts

known that ¢(t) s orthogonal to A”(t) #(i,, Le., the residuals of the parameter estimates

mmmmmm Therefore é(¢) and §(t) can be treated as being
pendent of each other, which gives

Var(x(t) )

Var(§(t) + é(t))
Var(j(t) ) + Var(é(t) )

Var(§(t) ) sVar(z(t) ) =Var(é(t) ) (8.13)
And combining (8.12) and (8.13), the desired estimate of the signal-to-noise ratio is given

[VarGs(6))
e I (T
where
Var(é(t)) = (1erl+AeAde...)Varce())
'\ J(t) .
var(e()) = O
Var(s(1)) = l‘i‘:”

mmmamm&mmmmmd
1/A(g=") o1 ¢ Ayg=? + Myg™3 ¢+ ... Actually, ﬂﬁthemw the A(g~")
W&Htehpnmﬁmnﬁeml*b} A ¢+ ... s approxi-
“mﬂMthmEMﬂmmm Aller-

ﬁ:mn&emmmmumm gnificantly s given by
idd — 1 useful for process monitoring and fault detection,

: Istimation of SNR Consider the estimation of the SNR of the same
m-nMI mmz;i,r‘mndﬂghgﬁm
T06) *Fiay ) Thoy [1) -4 (11 4(1)]| are provided. The calculated SRR vakses, for
“mm—iwm-e“mmuu-mmmu
(:=0.98). The estimated vartance # and $NRs are satisfactortly close to their true values
in all cases.

Figare 8.3 shows the trajectory of ths estimated SNR. Again, it converges to the trus
SNR value but fs nolsy for A < 1. In many applications &t would be desirable to smooth
the SNR by heavy filtering or averaging.
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mﬂhmﬂmmmmeag,, - m lﬂdﬂmﬁrm
m&emdﬁmmhﬁmMﬁdﬁmﬂmm
outputs would have to be caiculated at the same time. mmmmm
i the recursive least-squares algorithm (Ljung & S3derstrom 1983, S5¢
1mhmmuewupmmmmyh
extra calculations to include estimation of the nolse variance and SNR.
mwmmmmmzman-ﬁm
plm | i'i: mmmmgmmmumun
ﬂhmﬂ&huﬁlﬁumﬁﬂ&mﬁr-hnﬂgﬂem
mmmmﬁgmﬁmmmwwn

hMEﬁShMMmkm algort
mnmmmmmmﬁmhm—m

¢ The process parumeter estimates of all model orders from 1 to » are contained in
the parammeter matrix I/ and can be found in cohunne 3,5,7 up (o 2» + 1. Le., the
mmktﬁ:d“mmﬂmﬁmﬂﬁﬂgﬂh 1)** column of
the U matrix, with i €[1,].

-mhﬁmhmmmlh-nmwm element
3,5,7 up to 2= ¢+ 1 of the matrix D, Le., the loss function of the ith order mode! ts
the (2i + 1)st diagonal element of the matrix D,

o The first clement in D, Le., J("(t),:ﬂgniithgm;mggmilp
tothme .

mmﬁmmuﬂmhm J(“)(t)nﬂﬂgnﬁdtﬁe
squared ocutputs J(°) (t) are given by the expressions tn Table 8.5. The loss function

O 3IY)] J(')m-zeu)
1% , i
I ()Y M1 ) IO -Zr-!:’m

jil i S— —




matrix D provides all the values required for estimation of the noise variance and signal-
First, reconsider the signal-to-nolse ratio in Section 8.3

SRy [ i:'\ﬁﬂs(z)ix.l
{ VarG@) ~ Y TR e R e Varte)

Var(s(1)) _ J©) (1) L
VarGe(n) "~ Jarqy  OF lange!
Therefore, for all values of the forgetting factor A, an approximate estimate of the signal-
to-noise ratio fs conveniently given by

) _y (8.18)

In situations where only a rough oxtmation of the signal-to-nolse ratio is needed
or where the objective i to detect changes tn the signal-to-nolse ratio, the following
spproximation can be used _

(8.16)

Now consider estimation of the noise variance as discuseed in Section 8.2. For a
forgetting factor A=1 and constant forgetting factor 0 < A < 1, equation (3.6) and (8.8)
can stil be used and the loss function J®) (1) ts the appropriate loes fumction obtatned
from the loss function matrix D. For identification with variable forgetting factors A(t),
the calculation is more complicated but an approxtmation can be calculated as follows,
mhmmnmmmmm

PFor large data length ¢, from Table 8.5,

¢t [ /1 '
el} ACi) :’m
JO¢ }-:n'( ) )
J(=) () ‘ T -1
:(): (Hm))s'(;)

var(e(t)) Y | T A9
Il A

H;(ﬂ )
Var(e(0))

O ) 8.17)

Var(e(t) ) ?Gyﬁ



Hﬂemﬂﬁ(;m)mhzmmﬂiehmuh =

ma;:’msmmm algork

mmmmuheﬂlﬂﬁd(ﬂlﬂmmdbugmmm

estimate the nolse variance and signal-to-noise ratio, With no data forgetting, or with
constant and variable forgetting factors close to 1.0, the two formulae give accurate
m:mbmmmamalmmn For small forgetting
factors, the two formulace provide only an approximation to the noise level.

This chapter presents a simple but general method for adding the shnultancous esti-
mﬂmm-ﬂﬂ&mmh:mmm
Very Mttle extra ¢ Lation is required ff the AUDI algorithm fs used and the method
is useful for on-line identificats ,mmﬂmﬁmmmﬁ-
nmﬂﬁm-ﬂsmmmmummwf; »
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Chapter 9

PRACTICAL CONSIDERATIONS

A khough the theory of process identtfication fs becoming more and more mature,
Mmﬂmdﬂaﬁumﬂaﬁhnmmmﬂm

cesses. This chapter provides an overview of some practical considerations and
two application examples are presented.

9.1 Practical Coasiderations

As defined tn Chapter 1, the objective of process identification is to construct, based
on input/output deta from the system, a mathematical mode! which reproduces the
external characteristics of the true process. The general procedure for implementing
mmmwmumnmw-m 1.2.
After sultable plant 1/0 data has been obtained, #t is possible to use an identtfication
algorithm such as AUIX to produce estimates of the model parasncters. model order
etc. As mdicated by the discussion in this thesis, the conversion of plant 1/0 data
into a plant model is non-trivial. Fortunately, however, for the engineers in the plant,
the detafls of the identtfication algorthm can be “hidden” i a well defined software
package. Given the avallabiiity of & suitable identification package, the role of the
pumﬂahuuuau-budmmnaum*
experimental design and tmplementation, deta analysis and model vertfication. A partial
udwmxmmuu-.wnmum
the actual process identtfication, s attached in Appendix C. In general, factors such as
the following require careful consideration.

1. Pusross or DENTICATION. The purpose determines which model set should be
used, how accurate the model should be and what type of identtfication algorithm

fs required. A brief summary for some common applications is given tn Tabls 9.1.

3. KNOWLEDOR OF THE PROCESS. A priort knowledge is very helphul in the design of
Mdenttication expertments. Knowledge of the process may chade exact or approx-
imate values (or bounda) for: the steady-state gain, tntegral components, dominant
time constant, the cut-off frequency, time delay, time-to-steady-state and so on. In

1Seme of the matestal tn (s chapter hos boen tnsluded tn & paper: P. Banerjee, 8. Shoh, 8. Miu and

D. Gount Pisher, idontiisntion of Procsss Dynamies for the Shell Benshmark Problom, 1008 8hell Waslnlup
on Prosses Montffoathn.







hgmmnmm-mhgtthﬂmmmmm
data length, on-line or off-Mne, open-loop or closed-loop, elmination of bad-data.
data storage.

It is not difficukt to identify a process under “ideal” (textbook) conditions especially in
MMMHEMW

¢ No measurement errors or biases.
fatics. The m-ﬂ:mmmmmmm

how difficult a problem # can handle. hﬂh’m how robust & is in the presence
of non-idealities such as nolse and nonlineartty.

9.1.1 Model Set

Choosing the appropriste model set §s an tmportant decision. In practice, mode! set
selection fs quite application specific and there fs no generally applicable approach.
m-mjﬂhgnﬁmgh

bilt 'd‘lmimmntﬁe-ﬂ
ummwn

2. oy, m-ﬁﬂﬂ“hlﬂh“hhﬁhumﬁ
system dynasmics over the required range of operating conditions. The flexibility
of a model set s olten related to the mumber of model perameters and how the
parameters enter the model. For example, the following FIR model

2(2) =B(s~") u(t) ¢ v(¢)

fs not sultsbls for systems with slow dynamics because of the large mumber of
parameters required , Le., &t 5 not a flexibie model set for slow precessss.

. The model set should be sslected in such a way that an encessive

3 0N
iﬂid’miﬁnﬁd A;i-hm; fﬁm.
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corresponding loss functions, then more parameters are not justified. In another
mmmmmiwmmmhmmnnm
ﬂmmmmﬁmdmtumm

4. ALOORITHM COMPLEXITY. Generally speaking, ident mﬁrmﬂq@i
mma&mmm&m& pplicat!
Thgmﬁyithm&&mmjmﬂhm?m
a simple mm;mmmﬁnn-mmm
simplicity and model accuracy.

For single-input single-output systems, a general linear, df
o ovenby BG:-Y) D(s-?)
1(s=") 2(t) = 1 ] ¥ - 1
A7) (D) ﬁ (l)iﬁ (1) 9.1)

where u(t) and s(t) are the system mnput and output respectively, and v(t) is sero-mean
white nolse. The polynomials are defined as

A(s™Y)
B(s™))
C(s™))
D(s-Y)
| F(z~')

sm&-m-ﬂﬂﬁmmummd&mf‘). B(s™Y),
C(s“) D(:~') and F(s~') polynomisls should be used. For exampie, the famous
Jenkins model (Box & Jenking 1970) s

=1 =]
s(t) %m*gfg'% (1) 92)

1eays~t o ..o gy g™

halecady o™
leaz e ..oy o™
1edis~Ve...od, 1™
1efis oo fo o™

A(s™?) 5(2) sB(s~") u(t) + w(t) 9.3)

'ﬁ:hﬁliﬂiﬁnﬂnﬂl&-ﬂ:ji cularly appropriste when the
process nolse tevm i small. In & R to model parsimony, this model set also
h“ﬁtdﬁ*nﬁ-m* fast and global con-
vergance. When the system notse is large, the medel order can be tncseased to
compensats for the effect of process noise. This f» alse the model thet was used
hﬁiﬁmmhwﬂ.hﬁ-ﬂdhm
the medel structure (delay and erder) can be és aed uaing the AULN aigorithm.
mmmmbﬂhmgmnﬂmh‘
represent the process dynamics, including the compensation of nolse dynamioe,
flor precessss with either largs or small nolne components.

2 (s-!
:(o-;-‘“’;,%-mum 04




mgmmtﬁ“gﬁmﬂﬁmmhﬁis
long as the nolse is uncorrelated with the system input, the identtfication of B(s~?)
and F(z~!) §s not affected by the nolse »(t).

3. In control applications, the following CARMA model (See Chapter 4)
A=) 2(1) sB(2~") w(t) ¢ D(z~1) v(2) (9.5)

AGz"Y) Az() =B(z~") Au(t) + D(z~1) u(t) (9.8)
is very popular since this model set has more flexibility, e.g., to represent different

process disturbances. In addition, the order of the polynomial D(:-') does not
ﬂhmiﬁmdﬂr‘)ﬁs(:")

xaem ,:;ﬁﬂmmmﬁﬂmﬁmMmmﬁm:ﬂﬂﬂh
ﬂhmgp&mmﬂmnmﬂ) Usually, the initial
values of the variables are unknown. In this case, the initial conditions are chosen as

(00) = ¢ |
{ﬂm .y ©.7)
C(0) =*! ©8)

in*: ’;m:bm m:oﬁ-:-imﬁn.mmmmm

mﬂnmﬁw
The mitialisation of the AUDI algorithes in (9.8) s oquivalent to choosing

U)=l, D(O)=e*I

which means thet the initial values of all the model parameters from order 1 to » are
taken as seros and the initial loss fimctions very small values. An interpretation fs as
follows: a larger valus of ¢ tmplies less confidence fn the tnittal parsmneter esttmate $(0),
which causes the aligorthm 10 put more weight on the incoming input/cutput data when
updating the parameter esttnates. In terms of Information forgeiting as disoussed in
Chapter 7, increasing ¢ (which determines the valus of D(0)) tmplies that the aigorithm
forgets old nformation (ncluding #(0)) quickly and updates the parameter esttmate
“hﬂnh_gﬂhﬂpﬂﬁ.
&lmdﬁ“ h-.hmihﬁﬂm
slguttions ichapter 5) &5 very sensitive to tafttal conditte e (0 prastive, the
Hﬁm-ﬂﬂ;:ﬂ—iﬁhhm—ﬂ“hﬁj -
nitial values for NIV or ALIDI-1V.




9.1.3 Model Conversion

mmmwmmgmmmﬁuhm.mm
it is sometimes necessary to convert the discrete-time model into #ts continuous-time
equivaient and vice versa. This conversion is usually done using a bi-Mnear transforma-
tion and can be carried out easily on a computer (Fang & Xiao 1988).
1. DISCRETE-TIME TO CONTINUOUS-TIME.
-1 ebe_sg=(m=1) o3 ,-m
Gats-tyadothi ¢ thnoaa” 77 (e bas™ (9.9)
l1eaz 4. vay 15-(n-1) ¢ g gn
and use the bi-kinear transformation
e 2-Tos
* 2+m

A-l"*ﬂaill""* tPhaefo - N
Geo)= ™ tan 1T 4. tagatog " (9.10)

where r=dT) and Tp is the sampling interval. The coefficients are given by
(p._, = %EW‘ j0,1,..-.»
i

Quj = %i.ﬂg, §o1,2,--.n

{ " =0 S (9.11)
Qn = s:'ﬁ!’ﬂ
a
| @ s ]

where the w; terms are calculated as follows

[
2( DY, i je0,1,-
{ 7). Q>PoxrQ<0
c8 ¢ ) o Q=P or Q=0
| P-1 ' Q<P

model o
0.0060226 + 0.000040775~! - 0.0800728s~*

Gt T 50007 + OATOOON T —
and the sampling interval 73+0.1 second. Then using equation (9.11), the
continuous-time transfer function s

9.64794 x 10-°* +2.00 ¢ 2.0
0.(0) - y R—

which 15 very closs 0 the true contimsous-tim

Ej(.) i;g%
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2. CONTINUOUS-TIME TO DISCRETE-TIME
Assume that the continuous-time transfer function model s

N W17 WY YRRV VIV O
¢ P eagy*-le...0a5¢a9

With the following bi-linear transformation

”31—:"
Tol¢z-]

the discrete-time transfer function model is

~ls... '(I‘l) -n
Gahyan it thent e ba (9.13)
1 ’.l’-l * ”'0.-_"-(.-‘, ¢ @n2"

y (m<n) (9.12)

marmmnnmmmmMmmb’
¢ L) 2 [ . .
‘u-j s kgﬁ(;o)‘ﬂu. j*0,1,---,n
= 2
- ® — i J°0,1,---,m-1
- f;"‘z(@) “ipr I "
Yo ()

1

a9

"

\ G

J
(.[" s E(-l)".qjcf. ‘ijotlozo“'o.
L)

{cﬁ = same as above.
An example of the conversion from continuous-time to discrete-time is as follows.

Example Model Conversion From Continuous to Discrete Assume the continuous-
time model is given by

~0.156325¢* — 6.284 + 187.5

G.(s)= Y .
and set the sampling interval to 75+0.1 second. The corresponding discrete-time
model is
Gals~1)«1:49012x 10°0+ 1.0s~! +0.85s-2

1-18:sT1¢0.753
The exact discrete-time mode! is

5~} + 0858

G 1=-1 +0.7s

From the above two cxampies, &t 1 seen that the bi-lincar transformetion of medels from
MbM.‘h&.w.‘wM The
convession ¢an be cnnfly tnplimented tn & compuier and thus both continucus-tine
model and discrete-time medel can ensfly be mads avatiabie If cither one of them b
kmown. -



9.2 Identification of a Distillation Column

This example s from the 1992 Canadian Society of Chemical Engineering (CSChE) model
identtfication workshop which focused on the identification of the distillation column as

depicted in Figure 9.1. The problem was prepared by industrial personnel and s based
on an actual industrial process.

~le-
iz 4 L cmtow _%é"

o B
"5
Danotasss veratios O Convetes Ve

Figure 9.1: Diagram of A Distillation Column

The main purpose of the distiliation unit s to remove a Mght key smpurity from the
food stream 00 that it does not reach the reaction system downstream of the column.
The controlied variables are

1. Impurity level in bottoms X. Since the purpose of the column s to remove the
impurily in the feed, &t s necessary to maintain the tmpurity level at a value ac-
ceptable by the downstream reactor. An on-line analyser s avaflable to provide
X(t) at every control interval.

2. Column pressure P. The condenser heat removal rate is lmited due to cooling water
temperature constraints. The column pressure wil float with changing cooling
water temperature and supply pressure. If the column pressure is higher than
3300, a pressure relisf system will kick in and dump the column contents to a flase
oystem. To prevent this undestrabls ewunt from heppentng, the cokmmn pressure
should be maintained below this relesiie pressure.

To achieve the desired control objective, the following two variabies can be menipulated
1. The re-beller duty, Q. Heat naput to the cokmun 3 provided by a steam-heated
vebotlier, and t» controlied by a sebofler heat-duty controlier which menipulates the
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the steam.

2. The overhead vapor flow-rate D. Heat removal from the column is provided by a
partial overhead condenser, which uses process cooling water te remove the heat.

Typical operating conditions are Q=2500, D=20 and P+2800, X=500. Constraints on D
and Q are 2000 - 3000 and 10 - 30, and the typical setpoint range of P and X are 2700
- 2900 and 250 - 1000.

9.3.1 Preliminary Analysis

The problem is formulated as a two-input two-output multivariable system. The pur-
pose of identification is to provide a mathematical model for model-based control of
this system or for tuning of controlier parameters. Therefore the main purpose of the
identification is to find a stable model that can adequately represents the process in-
put/output relationship. The internal mechanics of the process are not of interest for
this control application. The order of the actual industrial process might be very high,
but i is not necessary that the model be the same order as the process. An appropriate
model order must be obtained by identffication, eg.. by mvestigating the loss functions
of models with difierent model order. Since AUDI can stmultaneously identtfy the model
parameters and determine the model order, & s especially convenient for use in this
example.

A MIMO process s usually broken into several MISO processes for convenience of
identffication and thus the following model can be used for this application.

[ n(t) ].[ Ay(z~") (] ]-l [ Bz ') s~ Big(s~t)s~dn ] [ ult)
(1) Ag(s™)) By (s~')s7% PByg(s-')s~% || w(t)

(0.14)
where z3(t) =P, 5(t) =X, u;(t) =D and ws(t) »Q. A;(s~!) is the common denommnator of
By (s~!) and By (z7}), Ag(s~?) is the common denominator of By, (s=!) and B (s-!).
‘This MISO model! is equivalent to the following true MIMO model

-1 -1
— "*l — "‘l.
lx(t) ] [ gu(t T) gu(t ] ] [tn(l) ] . [ e1 (0) ] (9.18)
'l“) -] -1 w(t) es(t) )
%:.(_rl' -t E‘!_‘). —de
TR N TRIN

if the following is assumed

{ Ai(s=V) oAy (s7?) Ayg(s~Y)
Ax(s~") o Agy (s7?) Ags(s~Y)

{ By (s~ oBy 1 (s-2) Aya(s=?), Bug(s~?)=Bye(s~!) Ay (s~Y)
Bai (s~)) oBy1 (7)) Aga(s™"), Baa(s~')sBpa(s~!) Agi(s~")
Clearly, the orders of the denominators and the mumerators are all increased when the
MIMO process fs broken into MISO precesses. The rationals behind this is:

o most real processes have essentially infinite order, thus any model with finite order
only approximates the real process. For control pusposes, the best model is the cne
that gives the best cutput prediction, or equivalently the smaliest loss function.



m.gmmmmhmmmmm
' - . by increasing the orders of the transfer

e the AUDI algorithm simultaneously identifies n different models with mode! orders
from 1 up to n, so the most appropriate model can be easily selected.

9.2.2 ldeatification of Parameters
flowrate D and rebofler duty Q, the input/output data were recorded and a portion of
the data plotted in Figure 9.2,

Figure 9.2: Input/output Data of the Distiiation Column
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[ -0818s-! + 0.8375" 0.108:-! - 0.103,-* ][I](ﬂ
| =0.00808:-! - 0.00722:~% -0.0906s-7 +0.0578:~° | | w(?)

The correspending step respenses ase piotted in Figure 0.3, where the solid lines are
the idontified stop responses and the dashed lines are the true step respomses. Due

hﬁmmhmnmmﬂh_-ﬁh“
BOPOR sopecially for the first channel finput 1 to cutput 1). The process output
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predictions shown in Figure 9.4 show that the predicted process outputs (solid ¥nes)
using the identified model are very close to the nolse-free process outputs (the dashed
lines) simulated using the true process model (see next section). However, the mea-
sured (nolse-contaminated) outputs (dotted Iines) show large deviations from both the
predicted output and the noise-free output due to noise.

Data pretreatment fs a very important consideration in system identification and
typically includes filtering of the input/output data. The process noise was investigated
by running the process at steady state and recording the process output. Analysis of
this output, which consists of mainly the noise dynamics, shows that there is a first
order autoregressive term with the disturbance dynamics. This suggests the use of a
first order filter to pretreat the data prior to identtfication. The process input/output
data were therefore differenced and the AUDI sdentification algorithm is applied to the
differenced data. The identified parameteric model is

n(l)]. 1-0.600;-! 0 ]" -0801:~'  0.108:-! ][-.(n
a0 0 1-0804:"' | | -00088:-! —0.0398:~7 | | wa(t)

The identified step responses are shown in Figure 9.5 and comparison with Figure 9.3
shows that they are closer to the true step responses. However, the first channel (input
1 to cutput 1) still has a large mismatch in the steady state gain. The predicted process
output (solid Mines) using the identified model, the noise-free process output (dashed
lnes) simulated using the true model and the measured process output are plotted in
Figure 9.6 and can be compared with Figure 9.4. This comparison shows that the output
prediction of the cohunn pressure {output 1) has tmproved slightly, while the prediction
of the tmpurity level remains about the same. Using different parameters for the first
order data filter resulls in approxtmately the same model as before.

The AUDI program also produces other information that is heipful tn the analysts of
the process. For example, the loss functions corresponding to these two data sets are
listed tn Table 9.2 and Table 9.3 respectively and show that the identifiod mode! using
the original data has smaller loss finctions flor the converged orders) than the model
using the differenced data. The variance of the prediction error shown in Teble 0.4

Table 9.2: mmumm

_Order o 1 2 3 )
Subsystem #1_B.817E04.837E4_1.030K3 1.750K3 1.714ES

Subsysiom #2_6.63158 4.560ES 5.33583 837082 5.10583

shows that the variance estimated using the original data fs closer to the trus nolss
vartance (which §» the mintmums pesaibls value for the vastance of predictien erver) then
the vestance esttmated weing diferenced data. This sugiests that diferencing of the
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cation package developed for commercial use in industry by a third party
mtbm:pphdmthemeﬂdm The identification results are as follows:
without any data pretreatment, the step responses shown in Figure 9.7 were obtained.
mmﬂmmmmﬁemﬁgmmmmm
measured output (dotted Mne) are plotted tn Figure 9.8. Compared with Figure 9.3 and
Figure 9.5, the identified step responses using the commercial package are less accurate
mmmmmmmmmmmem
mmwmmmmmm m&u@
of the steady state gains are wrong in the first two channels as shown i Figure 9.9,
m-mugﬁmﬁm; etreatment and the selection of an approprist

923

. &guﬁi:mmthgnnmﬂm&:mmﬂmb
known. Assuming that P is the column pressure, D fs the overheads flowrate, Q is the
reboller duty and X fs the tmpurity level in the bottom stream, the process models are
Pven as follows.

(1) the column pressure, P(t)

[ P'(t) - 1.8298P'(t—1)+0.5740P'(1 -2) =
0.60060/(t - 1) +0.4022D(¢t ~ 1) + 0.1068Q’(¢ - 1) ~0.0018Q’(¢ — 2)
1 5045w (t - 1) —0.5045w(t — 2) ¢+ aw
P(t) + P(O) + w(t)

w(t)
P()

(2) the Impurity level, X(t)
0.9238s(t - 1) + 0.0768¢,, + +(t)

o
{ =(¢)
o(t) 1.8306¢(t - 1) -0.0808¢(¢t —2) + av

Clearly the second chamnel 1o nonlincer tn neture 80 there i no Mnear model thet
corresponds to &t. The identtication purpose is to find a Enear discrete-time model that
Can represent the external charactertatics of the tmpurily, even though it might be enly
valid tn the vicinily of this cperating point. I the crdinary least-equares (ALS) methed
s used to ientily this channel, the medel erder should be determined first. This &6

5.0 x 10°/(Q(t - 7) -1800)
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Figure 9.9: Step Responses from a Commercial identification Package (differenced data)

usually done by fitting the data to different models from a lowest possible order to a
appropriate order is selected by using the order-determination method discussed before.
Obviously this s very tedious. However, using the AUDI algorithm, this procedure is
tmplicitly included tn the calculation and the computation requirement s equivalent to
a single run of RLS (with the highest order).

¥ on-Ene identification 1s required, the inear model that best fits the performance of
the actual process at its cusrent operating point may be time-varying in both parameters
and order. In this case, &t would be very dificult to use RLS for the identification. The
AU sigorithm would have very cbvious advantages over RLS.

From the identification results, &t s scen that the Mnear models produced by ALDI
real applications are nonlincer in nature, a low-order incar model can often be used to
represent the process dynamics near the opersting point.

9.3 ldeatification of a Real Industrial Process

A real application was caszied out fa a local chemical plant (0 1901). Both the ALK
from DMC company s USA) (Cutier & Ramaber 1980, Cutier & Yocum 1990) were
used on the same oots of data talun from actual production units. The DM packags &
ﬂ“h”b*h““mwwﬁg
Matrix Contrel from DMC company) (Cutier & Ramalur 1900). DI ts an of-lne



identification algorsthm. To obtain a reasonably good process model, &t often requires up
muummdmtﬁ;pﬁ-mﬂmmmdmpmmm-
WMNMMﬁm:mﬂﬂf, wiedge and expertence
with the process and process dynamics. An ide '”’mmhﬁﬂm
mwwmmﬁ;mxmmﬁmm
mmmmmmnmmmmmmmﬁm
of saving both manpower and money. The AUDI package took full advantage of the AUDI
algorithm and could be easily extended to handie many practical requirements such as
climinating “bad data”, MMMﬁchﬂHmdhm

mmmmmmmmm;ﬁﬂmmmm
wumm«mmmmwmmm Qned’them
was made based on a set of real plant data taken from a plant, which was assumed to
be a 3-input 2-output MIMO process. The data, which consisted of 3960 points, were
recorded during a 3-day plant test for DMI. The raw data 1s plotted | Figure 9.10,
from which # is scen that the data have many outliers or “bad data points™. With DMI,
mmmummﬂwnmaﬁsmmmm
When the “bad data” was removed, the process 1/0 data were in several slices. These
slices were then fed into DMI for identification. The data after pretreatment by the
control engineer in the plant are plotted in Figure 9.11. Obviously, the lnspection of the
mput/output data for “bad data® requires considerable thme and experience, and the
result §s subjective based on the engineer’s personal judgement. Using the pretreated
M.Dlllwugmit:pmd;:nm&yﬁ:nﬂhah
Figure 9.12.

The AUDI package, which has the ability to automatically detect and climinate the
“bad data”, used the raw data tn Figure 9.10 for identification. The resulls are shown
a8 the dashed iines in Figure 9.12. muﬂgdmm-egﬂeehghﬂ
other. & should be noted that the “true” step responss of the actual process is unknown
20 it is Smposeible to say whether DMI or ALEX is "best” in the sense of mintmum output
emror. However, as some preliminary invostigation showed, the “wiggies” (cacfiations)
hhﬂpm%ﬁ“ﬂbﬂ.ﬂn“d&em
hw-dndm&:mmhd-ym“hmﬂ
package, such as

1. AUX fs on-line algorithm and (hus can be configurated to sstomatically and pe-
riodically update the process model. DM s an off-Mne method and hence the

time-consuming plant tests need to be repeated whenever an updated model
desired.

3. AULX can automatically detect and climinate “bad data” such as "outliers”, and thus
manual data pretreatment is not usually necessary or becomes very stmple. PFor
implementing DML, considerabie expertence is roquired o check the plant data.

3. AIX hes an on/off control mechaniem, and thus the identification ts sutemats-
cally stopped when there s no fresh tnformation contained in the upcoming in-
mmm*uq”mm-mum—m
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Figure §.10: Input/eutput data frem a Real Plant (Raw Data)
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Pigare §.11: Input/output data from a Real Plant (after pretreats







4. AUX can provide more information, such as the process noise variance, signal-to-
nolse ratio, than DMI.

The AU software project is still being carried on for tmproved performance and more
features, mm“m.mﬁpmmmmmmmmmm

Since many industrial control systems are currently being upgraded to more advanced
MHM&HEMMMMMWMW
mhmlﬁlﬁmnmmmj"” cation theory with the
required for real applications. The development of the AUDS
muﬁmmnuﬁmmmmmnm
mmmhmmmmﬂmmmm
m It can also be extended to include many practical requirements such as
ormetion forgetting, on-off control, estimation of signal-to-noise ratfo.
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Chapter 10

CONCLUSIONS AND
RECOMMENDATIONS

10.1 Conclusions

The main contrbution of this thesis is the development of the ALDI family of identifi-
cation algorithms, which are characterised by their efficiency, stmplicity, iehhﬂynﬂ
versatility. The AUDX approach represents a significant advance in process identificats
@mmmﬂmm-memumw

, enting the data vector used in the ordinary least-squares

nente prmation matrix (AIM) or augmented covariance matrix (ACM)

—ﬁ&lﬂ“ﬂﬁﬁﬂﬂiﬁmmm
mmh@mﬁnmmmlm-mw Raximun
order. mm:mﬂuﬂmwmdmmimm
results in a parameter matrix / containing the parameter estim :’lntllnadeb-ﬂl
hMﬁﬂ“ﬂﬁ”"t 08 ,;nn-ﬁmmm ecompose

1. mmmmﬁmmnmmﬁu
tions for all models from 1 (0 a

specifiod value . mmHm—ymmm
ﬁﬁiﬁb—mhhﬁm:ﬂﬁﬁﬂﬁgMiﬂﬂ

ﬁ_th-ﬂgh-nﬂpw&ﬂhﬂn ster matrix. Problems caused by
over- and/or u -pan rizs ”’ﬁmhm This fs very use-
ful for procssess with unkn th mying orders. The simples structure of

mnmmi__mm-mmm
convenient and more theoretically sousd

2. Ermomnt. The AKX algortthm § an officient tmplem jon of the widely-u
loast-aguares estimator. lmi-ﬂﬁh“ihdﬂi“
mately the same amount of computation as recursive least-aquares algorit
identilying cnly an sth order model




3. RosusT. The AUDI structure is a very stable structure. It preserves the positive-
defintieness of the augmented information matrix or augmented covariance matrix
when accumulating process information and thus can achieve high identification
accuracy.

4. SiMPLE. The AUDI structure fs a very compact structure with a clear interpretation.
Process identification with the AUDI approach becomes very stmple: construct the
augmented information matrix or augmented covariance matrix, decompose #t into
factored form. Then all the information about the model parameters are contained
in the parameter matrix & and all the information about the corresponding loss
functions are contained in the loss function matrix D.

8. INTREGRATED. The ALUIDI approach provides a compiete and efficient integration of a
number of important features and extensions required by practical identification.

Because of the featwes discussed above, the augmented UD identification methods are
equal or superior (o the widely used least-sguares methods in all respects, and are there-
Jore recornmended for use in place of the least-squares (ype methods in all applications.

The AUDI algorithm has also been extended to include several extensions of the basic
AUDI-LS algorithm. These extensions include

1. The AUDI-ELS version. This is the AUDI form of the extended least-squares al-
gorithen for identifying processes with colored process noise. The process model
and the noise model are produced simultancously. However, the nolse model is
assumed to have a specific structure.

2. The AUDI-IV version. The instrumental vasiable (IV) version of the ALDI algorithm
can handle a more general form of colored process noise since it is not necessary
to assume any structure for the noise model.

3. The MIMO-AUDI methods. The SISO algorithms are extended to the MIMO domain
and thus stmpiify the identification of multivariable processes.

4. Although not presented in this thesis, extensions to some other forns (eg.. the
Generalised Least-Squares (GLS) form) are also possible and straightforward.

All the above vartants of the AUDI algorithm preserve the properties of efficiency, simplic-
ity. reliability and versatiiity, and thus form a compists set of identification algorithme
which can be used in piace of the RLS-famfly algorithms for all applications.

The informative AUDI structure provides the basis for many very smportant tmple-
mentiations. On-line estimation of noise variance and signal-to-noise-ratio provide use-
ful mformation required for many applications. Desper ineight into the principle of
information accumulation fs gained and thus malscs the solection and/or design of in-
formation forgetting mechanism much casier and more theoretically sound.

10.2 Recemmendations

Medel-based control represents the fiture of iadustrial process control. More and more
ndustrial control systems are changing from the “traditional” PID fesdback leaps to
more advanced model-based contrellers such as DMC and GPC. Obvicusly, an accurate
and reliable dynamic model of the process is essential for model based contrel to be



successful. Therefore the first step (and as &t turns out in most cases, the most important
and difficult) step in developing a model based controller is to identtfy the process model.

mmmmnumﬂnmmmimm
mmmmmwﬂemﬁQMMh; simul-
taneous order and parameter aation, online estimation of the signal-to-nolse ratio)
required for industrial process control. The AUDI algorithms have already provided the
hﬂhhwmhmm mﬂmmme

wmmmmmh ;,,;'-ul;ﬂﬂ‘the
nolse, Mﬂlﬁhﬁﬁﬂ.dﬂmi'ﬁ'mm These are all critical

mmhmmmmmmmd“m

. ;,j,:’:lhﬁhmmm“
mlt-em mm--mnth-mmmh
ementation which is usually not easy to obtamn.

a,mm MQQMMHHHMM
ma:mmﬂmm ) neous identification of the or-
der and parameten dﬂhmmﬂﬂmmm#
m_MﬁﬁBMI*Mﬂmm
for closed-loop identification of industrial systems.

4. Integrated adaptive modeling and control design. 'ﬁemgﬂhimm
much more information than the currently avaliable identification algo
nhmmﬁhthﬁuimm&md‘i
feedback loop. This information can be passed directly to the controller. Thus
modeling and control can be more tightly integrated and control performance can
be expected to improve significantly.

amm mmmmmmmnmm




Appendix A

DERIVATION OF

This appendix shows very briefly how the AUDI structure is derived from the least-
squares estimator, and provides some insight into the least-squares principle.
First, conaider following theorem

Theerem A.1 (LDL-Decempesition of partitioned matriz) Given a postiive-defintie
mmsqm::ium'mgﬁmm

trix s given by 7
] [B’A' 1,] [ ][gvA-n ] (A1)
where A ﬁﬂgbxbgmgg, withO < &k < d, and

A=D-B"A"'B

Progl:  Since S is positive-definite, any submatrix A of S s positive-definite, hence
A~! always exists. Direct multiplication of the right-hand side gives the left hand side
of (A.1).

Represent the nth order sugmented data vector p(¢) (3.12) by p(*) (¢) (the bracketed
superscript s used for the dertvation in this appendix. In the context of this thesis,
R is omitted for stmplicity of notation). A “shit structure” (Ljung et al. 1978, Ljung &
SOderstrOm 1063) then follows as
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Obviously 5{*) () can be partitioned and Theorem A.1 is applied as
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this structure fs often called the “nested structure” (S0derstrém & Stoica 1980) since
R*) (1) 18 “nested” i the S(*) (¢). Equation (A.) ts gven by

) l, =1
pLY) a(-hg;] L)':.t-)m ‘(-)-m]
= o

) -(}v:-:mm“"'"'I""’(ﬂ))il (’)':q.(-mhux)]f




- [

and
=1 .

1 ' ' i

A = Y20 - XA T Ga Gy A Gy
i1 j=i i=) i=1 ]
! 2
E[‘(.)(”]
i®

= J(C)(‘)

where §(*) (¢) contains the parameter estimates of the nth order model at time ¢, and
J -’(c)nmmm&muhmmuthmmnp
Now decompose the nested part R(')(t)mamhrmmrsu we have
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Iaverting the ABM S(*) (1), we cbtain the sugmented covariance matrix (ACM) a8
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where U(*)(t) ts the parameter matrix & in (2.16) and D) (¢) s the loss function

matrix D tn (2.17).




Appendix B

DERIVATION OF
THE AUDI-IV ALGORITHM

B.1 Proof of the AUDI-IV structure

The proof of (5.16) §s simflar to the UDUT decomposition in Appendix A. From the data
vector (5.4) and instrumental variable vector (5.8)
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a(t—l)mdﬁ(lsl)mthem.-mﬁbyl in (5.17) and (5.18).

Repeat the above decom tion with S(t-1), untfl S(t) is in the form of the product
of a series of matrices, mumaumsm produces equation (5.16).
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pdate formula (Ijung & Siderstrim 1983)
C()sC(t-1)-CUt=1) g () " () C(t-1) 5" (1) ®.1)

B(t) =1 + 9" (1) C(t - 1) n(0) ®.2)

{I s U'G-Do), f* = V@-1Dn)
g = Dit-1)/4, g = D-1 S

B(t)el e fTg’sl e g'f*
C(t) = U) D)V (D) )
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Pellowing the derivation 2  Blsrman (1977), the bracketed part of equation (5.9) &
decomposed through a series of tranaformations to obtam
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where U(t) , D(t) and V(1) have a structure similar to U(t — 1), D(t - 1) and V(¢ - 1),
respectively. From (B.3) and (B.4)

Uu@) = v@e-10@)
V() = ve-1)V(t)
D(t) = D(o)

and the final aigorithm then follows as Table 5.1.



. identification ie—ﬂhﬁnmd‘&:mm#hﬂyﬂ
m&&mﬂmnnﬁhm:m“m
Project i industry. This i based on the Merature and the authors’ expertence tn actual
applications of the ALY algorithm to industrial procesees.

mwﬂmmmhiMmmmm
for case of reference. The order of the sections i cssentially chronological but there
considerable variation betweon projects.

C.1 Preject Definition and Planning

| Gﬂdﬂﬂeﬂunﬂhﬁﬁi“d‘ﬂn“nﬂ This
nines the type of model, fis accuracy requirements and identtication method

to be used. Refer to Table 9.1 for guidelines.

3. Prgject speciications. This may iclude performance specifications, acceptance
criteria, elc.

. - h—_—ﬁﬁdhmnmﬁ'
d“im)i,, , #Hﬁi““
overy stage of the project.

4. m&-iﬁﬁaﬂiﬁhhﬁﬁr sntifics
h;h_“ﬂﬁﬂﬁm_bﬁ
0 008 whether £ i sultahls for the prgjest.




5. Determine the hardware platform that is going to be used for process identsf
Bﬁmmmmthﬁmﬂgmﬂm
mm“thgymm&ﬁm

aine the ease, ace r and cost of doing formal or informal '

mmﬁmggmmm!imﬁmmﬂm

tests at short notice which means a more informal, iterative schedule can be used.

For remote or critical plants, a carcfully designed, minimal set of (expensive) plant

tests may be necessary.

1. Determine the input/output/disturbance (feedforward) variables of interest. Check
whether the manber of variabies fs within the Mmits of the capacity of the process
control equipment and the data-acquisition/identification software.

2. m&mrmmﬂ“ﬁ_ﬁim&em—
fication, implementation or assessment of the control/c
3. m&ﬁbmﬁmmﬁﬁﬁﬂw

mm.m@agmmmm

s, €. Integrating dynamics, stabiity,

-mhmﬂnﬂg"ﬂmm&'m
ing the sampling intesval).

o thme-to-steady-stateor settiing time Slor determining the input encitation signal
and the data length).

hﬁlﬁ&nmdmm

¢ approximate process order, ¢.g.. low-order/high-order dynamics. For AL,
ﬁ_ﬂmmhmhﬁhﬁdﬁ
multiple modals.

lﬁhﬂh“ﬁmﬁ“ﬁﬂﬁim
data and/er taformal tests on the process unit, In other cases &t may be desirable
9 carty out & sertes of farmal preliminery process tests and/er develop Guamic
models of parts of the precess.

l_ﬁﬁﬂihiﬁﬁﬁ_ﬁﬁi
enliniion signal and taput/eutput data filler deaign.




6. Mwmmmmandlaunntmbmnwmum
variant.

7. Determine whether the process is non-linear. If non-kinear, whether a linear ap-

handle a variable order and/or delay I the values are known.

8. Determine the relative gain and cost of each input vartable, e.g., 3 units of change
i input #1 is equivalent to 1 unit of change in input #2 in their effect on process
outputs.

9. Determine relative importance of each output, e.g.. 2.5 units of error tn output #1
is as serious as 1.5 units of ervor i output #2 in their influence on process per-
formance/product quality. “Importance™ may be a function of economics, safety,
process operation, product specification, etc.

10. Obtain the constraints/bounds on all mput/output/disturbance variables, tn-
straints and safety constraints.

11. Determine the nolse characteristics (white/colored, mean, variance, signal-to-noise
filters.

C.3 Experimental Design

a priort information about the process,

1. ls on-line recursive identification required or is off-kine batch identification (which
provides more opportunily for manual intervention) sufficient?

3. Open-loop versus close-loop identification. ¢.g.. can the process be safely operated
with the existing control loops open. Is there significant output feedback in the
process fiself which might cause difficulty?

3. The model set to be used (discrete/continuous, state-space/difference oquation,
the best model set.

determine the process sampling time for each vasiabie to be recorded. The selection
of sampling time also depends on the sampiing thme of the final application (s.g.,
mentation?

8. aput signal design.

o seloct the form of tnput signal, ¢g., step changss, random binary sequences,



determine the magnitude of the input signals required to produce a reasonable
signal-to-noise ratio at the process output.

o using the knowledge of the sampling time. time constant of the process and
the cut-off frequency, determine the period and duration of the input signal in
order to stimulate all the frequencies of interest.

¢ for MIMO applications, avoid correlated inputs and include combinations of
inputs (e.g.. a formal or informal factorial design).

6. The duration or data length of identification.

the tdentification package.

8. Is analog anti-alias filkering of measured data required? Is there excessive filtertng
in the existing instrumentation/data acquisition system?

9. Using knowledge of the cut-off frequency of the process, determine whether a (low-
above the process frequencies of interest.

10. Whether a (high-pass) filter, eg., differencing, is needed to clminate trends, drift,
offset or low frequency disturbances such as ambient temperature changes.

11. For closed-loop identffication, should a probing signal be added and what kind of
probing signal be added. Where and when #t should be added?

C.4 Experimental Plant Tests

1. Hardware inspection, which includes the equipment for signal generation, data
the process control unit and the identification computer, etc.

3. identification software configuration. Configure the data acquisition scftware in ac-
mmmmbuwmmmmm
the identification is being carried out, and the requirements of the ident 1
software.

3. Check the media and data format that is used to store mput/output data.

4. Check the span of the instruments for acceptable sensitivity. e.4., avoid trying to
measure +1 when the measurement span is 1000.

8. Check the mass balance (MB) and energy balance (EB) during steady-st
mput/ocutput consistency.

6. Record the normal operating conditions and the normal operating rangs of the
mput/eutput/distuwbence/sundlisry vertables.

7. Check the relative and abechste acouracy of process 1/0 data.
8. Cheok for eutliers and bursts in the input/output data.

e for
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2 xamine this model structure using the rules such as flextbility, parsimony,
13. Selection of parameter estimation method, e.g.. AUDI.
g VMMMGMW

. itification, add probing signals if needed to ensure the identifi-
:bﬂ.?dtheeheﬂhnpm

18. Add an on/off control mechanism for recursive identification and select parame-

20. mﬁmmﬂmwugmmmmmh
mmm::nmi ;ga.,mullnﬂlﬁmdm

A : relations of the residuals at the de-
mmmmmummmnlnmmmm

3. Cross-validation of model. A check of cross correlations of the residuals versus the
mmﬁuummmmﬂmm-:ﬁmmn
in 20 outaide the mit,

4. ¥ an independent estimate of measuren
iﬁﬂhmd’hm

t esTor is avaflable then an F-test can be




C.6 Integrating Model into Application

UMMWthm-hmmWMm
be paseed directly to the application. For example,

o parameter estimates and loss functions of multiple models.
o estimates of the process noise vartance and signal-to-noise ratfo.
o parameter estimates and loss functions of the backward models.
o level of tnput excitation.
o presence of output feedback loops.
Possible applications of process identification include
o model-based process control.
o prediction.
o adaptive filkering.
o real time optimization.
o process monitoring and fault detection.

The integration of the model into the specific application strongly depends on the specific
requirements of the application. This is beyond the scope of this list.

C.7 Maiatenance and Eahancement

¥ off-Mne identification is used, the process model may noed to be updated and tmproved
periodically. The information that has been accumulated since the last identtfication
should be ncorporated into the next identification to give more accurate models and pre-
dictions. (Obviously, there must have been changes in the process or re-identification
would not be necessary! These process changes may justify changes in the new idents-
fication procedures). This is quite application specific and therefore is not discuseed in
detalls.



