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Abstract

Image textures, which are properties that can describe the pixel intensities of an im-

age, have been analyzed in order to perform a variety of tasks, including segmentation

and classification. Features derived from textures which are invariant to changes such

as contrast and transformations are of particular interest, due to their comparabil-

ity across different images with related content. Hence, even early methods such as

Gray-Level Co-occurrence Matrices (GLCM) have sought to describe textures using

invariant features which proved to be effective in classification experiments. With the

development of gradient based methods such as Histograms of Oriented Gradients

(HOG) and derivatives including Co-occurrence Histograms of Oriented Gradients

(CoHOG), an increasing variety of texture analysis methods have been applied to

various domains, including medical imaging. When tasked with the classification

of medical patients and healthy controls, methods such as Modified Co-occurrence

Histograms of Oriented Gradients (M-CoHOG), which was applied to datasets of

the neurodegenerative disorder Amyotrophic Lateral Sclerosis (ALS), have attained

leading performance metrics. However, in the case of ALS, which can be difficult to

diagnose, the lack of known biological imaging markers which could streamline the

selection process of a region of interest (ROI), necessitates the contribution of an ex-

pert to segment the region of interest for M-CoHOG. Additionally, the consideration

of only 2D imaging slices results in features with decreased spatial descriptiveness

compared to volumetric approaches. In this thesis, a volumetric feature extraction

method called V-CoHOG, extended on M-CoHOG, with automated ROI extraction

is proposed. To reduce the feature vector size resulting from V-CoHOG, a feature
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selection method based on ReliefF is applied before classification using an ensemble

model classifier with 5 base classifiers. The Canadian ALS Neuroimaging Consor-

tium 1 (CALSNIC-1) and, for the first time, CALSNIC-2 ALS datasets are used

for evaluation and comparison with four 3-dimensional convolutional neural network

(CNN) methods, with the additional Alzheimer’s Disease Neuroimaging Initiative

(ADNI) Alzheimer’s disease dataset used to demonstrate the versatility of the pro-

posed method. Analysis of the results demonstrates that the proposed method is

able to consistently outperform the 3D CNN approaches on ALS datasets, while ap-

proaching and sometimes outperforming M-CoHOG performance on the CALSNIC-1

datasets. Furthermore, a CUDA-accelerated implementation of M-CoHOG with sig-

nificantly improved runtime performance on higher-resolution images is proposed.

Finally, segmentation maps of selected features for ALS classification are overlaid

onto the original imaging volumes. These maps allowed for the investigation of po-

tential ALS imaging biomarkers, specifically their localization to brain regions present

in the ROI.
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Chapter 1

Introduction

As one of the five senses, vision has an irreplaceable role in allowing humans to per-

ceive their environment and to effectively interact with it. It is no surprise, therefore,

that many early approaches to add visual recognition capabilities to computers and

automated systems sought to mimic various aspects of human eyesight, potentially

enabling them to compute statistics or act on such information in a desired manner.

Because modern computers are digital, computer vision tasks normally rely on digital

images, consisting of pixel matrices, as input information. There are various proper-

ties in digital images which a human may quantify in order to perform a recognition

task, including colour, shape and brightness. Another such property is textures, which

vary from fine, when considering smooth surfaces, to coarse, like a rough stone wall.

Further texture properties, such as their spatial appearance, allow for classification

as structured or stochastic types: A brick wall with a regular pattern displays a clear

structure in contrast to the stochastic and uneven nature of a marble design. In radar

imagery, fine texture can be indicative of fine-grained sedimentary rocks [1] allowing

for aerial surveying. This is but one example of how different textures can provide

valuable insight into objects captured in a photograph.
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(a) (b)

(c) (d)

Figure 1.1: Photograph of a wooden table under two different lighting conditions.
The top row presents the original colour image while the bottom row has been de-
saturated such that the gray levels are more apparent. The texture of the surface
remains consistent across all images. Photograph courtesy of Evan Martens.

1.1 Image Textures

In digital images, textures can be expressed as the statistical distribution of gray

levels, or intensities, in an image [1]. Hence, textures and the intensities of image

pixels cannot be separated when considering image properties. Nevertheless, changes

in intensities do not indicate a change in textures: For example, two photographs

taken of the same wooden table inside a room with a light turned on and off, respec-

tively. When the light is turned on, the image pixels will have a greater intensity, or
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brightness, than when the light is turned off. This effect will also be present in the

pixels corresponding to the table in the image. However, the texture of the wood will

remain the same between the images (Figure 1.1). This phenomenon illustrates why

textures have a significant potential as an informative property in images, even when

other characteristics, such as the brightness, colour or even orientation change.

1.2 Texture Features

Computer vision relies on such properties, referred to as features, to perform tasks

such as object recognition [1] and image classification [2]. A variety of approaches have

been developed to analyze texture in images and it is invariant methods in particular

that appear to show the most promise as features for downstream tasks. Invariant

texture analysis methods can generally be categorized as either structural, model, or

statistical [3], however, they all share a resistance to translations, rotations, as well as

affine and perspective transformations. This attribute is essential when considering

texture features for classification tasks where images of a target class or object may

differ due to the aforementioned image transformations. Statistical methods describe

texture via statistics of selected features. Examples include a variety of high order

statistics as well as polar plots and harmonic expansion [4]. Model methods attempt

to describe texture in terms of probability models or linear combinations of basis

function sets and include wavelet transform operations [5] and Markov models [6].

Lastly, structure methods arrange texture elements according to placement rules and

include such methods as invariant histograms [3] and morphological decomposition

[7].

1.3 Motivation

Given the presence of image textures in digital images with extensively different

characteristics, texture analysis has seen applications in a variety of domains, with
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tasks such as object recognition and image classification. In medical imaging, texture

analysis has allowed for advances in the classification of subjects with conditions

such as Alzheimer’s Disease (AD) and Amyotrophic Lateral Sclerosis (ALS) which

affect the brain and can be difficult to diagnose. Modified Co-occurrence Histograms

of Oriented Gradients (M-CoHOG) [8], a method that relies on texture analysis to

generate classification features of ALS patients, has previously allowed for state-of-

the-art classification performance of the CALSNIC-1 ALS dataset. However, M-

CoHOG can only be applied to Magnetic Resonance Imaging (MRI) image slices,

even though MRI systems generate volumetric imaging data. This limitation requires

an expert to manually select and segment image slices for processing, significantly

increasing the method’s data preparation requirements. Hence, an approach which

could match or exceed M-CoHOG’s classification performance without requiring the

contributions of an expert could prove to be a substantial advancement.

1.4 Contribution Summary

In the process of attempting to address the limitations of the M-CoHOG method, a

number of developments and observations were made with the main contributions of

this thesis being:

• GPU Accelerated M-CoHOG: The M-CoHOG algorithm was examined and

the two costliest, in terms of runtime, components were identified to be the

determination of the gradient orientation as well as the co-occurrence matrix

calculation. Hence, this thesis introduces a graphics processing unit (GPU)

implementation on the Nvidia CUDA platform for these sections of the M-

CoHOG, which was able to significantly speed-up the feature generation process

on high resolution images. Due to the steady resolution increases of image

acquisition devices such as digital cameras or medical scanners, an accelerated

approach as is proposed is expected to become increasingly necessary for this
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type of gradient based feature extraction.

• Classification of ALS using HOG-derived features on ALS 3D volumetric data:

This thesis proposes a gradient-based texture feature extraction method that is

able operate on volumetric imaging data in order to extract features based on

Histograms of Oriented Gradients (HOG). Specifically, the proposed approach,

Volumetric Co-occurrence Histograms of Oriented Gradients (V-CoHOG) devel-

ops the concepts introduced by Co-occurrence Histograms of Oriented Gradients

(CoHOG) and expanded upon via M-CoHOG into a method capable of gener-

ating features for volumes derived from MRI systems. After a reduced feature

set is selected and used for the evaluation with the proposed ensemble classi-

fier model, superior classification performance compared to 4 3D Convolutional

Neural Network (CNN) approaches can be achieved.

• Automation of ROI selection based on segmentation masks generated by Brain

Extraction Tool (BET): Rather than rely on registration and normalization,

which can cause significant changes to the original imaging data, or individ-

ual segmentations by an expert, which can be laborious and time-consuming,

this thesis proposes an automated ROI selection process that does not alter

the imaging data beyond the utilization of a cubic scaling factor. The Brain

Extraction Tool (BET) is used to generate brain segmentation masks which

are then used in conjunction with offset parameters in order to facilitate com-

parable ROI cropping across samples. Furthermore, the experimental results

demonstrate that the proposed method is able to approach and even surpass,

depending on the data subset, the classification results achieved by M-CoHOG

using manually selected ROIs.

• First application of the CALSNIC-2 dataset in a classification study: While the

multi-centre CALSNIC-1 dataset has been used for ALS classification experi-

ments before, the presently larger CALSNIC-2 dataset has not yet been subject

5



of such studies. The classification results attained on the CALSNIC-2 dataset

using the method proposed by this thesis can, therefore, act as a baseline for

studies going forward. We expect future research into ALS to make use of con-

tinually larger datasets, which is why the CALSNIC-2 results presented could

act as a baseline for future classification approaches.

• Feature segmentation maps detailing the region of interest of selected features:

Using the optimal subset of features selected for classification, segmentation

maps of the corresponding voxels in the computed gradient orientation (GO) are

scaled up and overlayed onto the input image volume. The resulting heatmaps,

which indicate regions acting as the origin of multiple features with an increased

intensity, provide insight into the discernability, via texture features, of ALS pa-

tient and controls allowed for by these regions. Hence, the feature segmentation

results presented in this thesis can act as a tool in the search for biological

imaging markers of ALS, which could facilitate accelerated patient assessment

and diagnosis.

1.5 Outline

The thesis is structured into 5 main chapters as follows:

In Chapter 2, we discuss a variety of literature in order to establish premises

regarding methods for texture analysis, accelerated image processing and Magnetic

Resonance Imaging (MRI) with a focus on Amyotrophic Lateral Sclerosis (ALS).

Chapter 3 discusses the methods applied in the experiments conducted as part of

this thesis, including parallel algorithm implementations, feature extraction, feature

selection and classification.

In Chapter 4, we present and discuss our results and how they compare to alter-

native methods.

Finally, in Chapter 5, a summary of the significant results is provided along with
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the conclusion of the thesis.
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Chapter 2

Background

2.1 Invariant Texture Features

2.1.1 Gray Level Co-occurrence Matrix

Not long after the advent of digital imaging, Haralick discovered that a number of sta-

tistical texture features could be derived from 4 angular nearest-neighbour gray-tone

spatial-dependence matrices computed from an image [1]. Since then, these matrices

have come to be known as the Gray-Level Co-occurrence Matrices (GLCM), with the

term “gray-level” being used to describe pixel intensities, while the features them-

selves are now often referred to as Haralick features. Using resolution cells, of which

each non-edge nearest-neighbour cell has 8 neighbours, a total of 28 textural features

were suggested. Of particular interest are features such as entropy and maximal-

correlation which proved to be invariant under monotonic gray-tone transformations.

Hence, GLCM features involve counting the number of pixel pairs that share certain

relationships or values in order to create a matrix that is able to represent an image’s

texture. The specifics of the pixel pairs depend on the feature, for example, entropy

f is calculated as

f = −
∑︂
i

∑︂
j

p(i, j)log(p(i, j)), (2.1)

where p(i, j) is the (i, j)th entry in the normalized co-occurrence matrix.
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2.1.2 Gray Level Run Lengths

Expanding on the Haralick texture features computed using gray-levels, a related

set of features calculated using Gray-Level Run Lengths (GLRL) were developed [1].

Gray-Level Runs refer to collinear picture points that share a gray level value and are

located in succession. A matrix, computed using GLRL for a particular direction, can

then be used with 5 proposed functions in order to compute a set of measures useful

for classification. Specifically, the 5 functions suggested are Short Runs Emphasis,

Log Runs Emphasis, Gray Level Nonuniformity, Run Length Nonuniformity, and Run

Percentage. The Run Percentage refers to the ratio of total runs to total possible runs,

assuming every run has length equal to 1.

2.1.3 Wavelets and Scale Invariant Feature Transform

While texture features based on GLCM and GLRL continue to be applied, newer

methods have given rise to descriptors such as wavelets [9] and Scale Invariant Feature

Transform (SIFT) [10]. Using a decomposition in order to transform a 1-D signal

onto a basis of wavelet functions, wavelet image analysis allows for the calculation

of features that have found numerous applications in the study of medical images,

particularly in segmentation i.e. sectioning tasks [11]. Instead, SIFT descriptors

use operations to assign location, scale and orientation measurements to keypoints

derived from an image. These measurements are then used in tandem to create a 2D

coordinate system to describe a local image region that is invariant to location, scale

and orientation parameters.

2.1.4 Histograms of Oriented Gradients

Histograms of Oriented Gradients (HOG) is a result of further developments in tex-

ture analysis based on using gradient orientations [12]. A locally normalized imple-

mentation allows for clear classification performance advantages over approaches that

use feature sets such as wavelets. The traditional HOG method involves a localized
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approach in which an image, whose gradient orientations have been quantized into

N bins, is divided into cells with a histogram computed for each cell. Calculation

of the histogram requires only the tallying of different orientation groups within the

cell. Finally, to obtain the feature set representing the whole picture or region of

interest (ROI), the computed histograms are concatenated into a single vector. To

counterbalance the localized nature of the approach, rectangular (R-HOG) and cir-

cular (C-HOG) descriptor blocks consisting of grouped cells are subjected to local

contrast normalization. An overlap in the blocks also increases performance with the

circular descriptors having a slight edge.

Table 2.1: Parameters used for the circular descriptor blocks in C-HOG [12].

C-HOG Layout Parameter Default

Number of Angular Bins At least 4

Number of Radial Bins At least 2

Radius of Central Bin (pixels) -

Expansion Factor for Subsequent Radii -

2.1.5 Co-occurrence Histograms of Oriented Gradients

As a way to further enhance the generalizability of HOG features across image regions,

Co-occurrence Histograms of Oriented Gradients (CoHOG), which involve histograms

computed using gradient orientation pairs, were proposed [13]. Specifically, a co-

occurrence matrix (CM) is used to describe the distribution of gradient orientations

at a particular offset, creating a sliding-window algorithm. Hence, as with classic

HOG, the gradient orientations of the image must initially be determined, after which

the image can be split into cells. Watanabe et al. used both the Sobel and Roberts

filter for this;

Θ = arctan

(︃
Gv

Gh

)︃
, (2.2)

10



where Θ is the gradient orientation, Gv the vertical gradient and Gh the horizontal

gradient. Each pixel is then labelled as having no gradient, as it was below a certain

threshold, or belonging to one of 8 orientation bins. To cover a total of 360 degrees,

each orientation bin spans 45 degrees. The co-occurrence matrices for every cell are

determined by considering all pixels in the cell as well as the number of offsets dic-

tating the number of orientation pairs (Figure 2.1). The number of offsets, which can

be described as the neighbourhood size in terms of radius R resulting in a particular

number of pixels B surrounding a pixel of interest A, can describe shapes that are

both more local or global relative to the current pixel A, depending on R. When ap-

plied to a pedestrian detection task, CoHOG performs superior to the original HOG

method, even with human detection being the primary task used to test HOG, pos-

sibly because of the enhanced ability to capture more local and global information

with offsets. Nevertheless, the method retains the use of cells which may still limit

performance for cell boundary areas.

Figure 2.1: Generation of the feature vector in CoHOG [13]. After the gradient
orientation is determined using the Sobel or Roberts filter, the co-occurrence matrices
are computed by counting the number of orientation pairs and adding them to the
respective bins. Finally, the CMs are vectorized and concatenated into the feature
vector.
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2.1.6 Other HOG Extensions

Although CoHOG presents an interesting development over the original HOG, a num-

ber of other modifications on the original method have seen various degrees of success

in a variety of applications. These include examples such as a pedestrian detec-

tion method which uses HOG in quaternion space [14] and moving human detection

in real-time using not only HOG but also Fourier descriptors [15]. Additionally,

extensions of the CoHOG method have also been investigated: Weighted CoHOG

adds magnitude values to the feature vector using a weight function for improved

human detection [16] while Multiresolution CoHOG (MRCoHOG) uses multiple low-

resolution versions of the same image to generate a feature vector [17]. Various

adaptations of the HOG descriptor have also been applied to detect tremors in hand-

written drawings of Parkinson’s disease patients [2] as well as for the recognition of

places with changing environments, including hindrances from varying viewpoints,

conditions and low-informative scenes [18]. HOG features have also been extended

to the third dimension [19] for application in a road user classification system where

spatial modelling allowed for improved feature extraction. Therefore, it is apparent

that variations on the HOG descriptor for texture features are broadly applicable to

a wide range of image datasets from which texture information can be derived.

2.2 Hardware Accelerated Image Processing

Digital images are constructed of a matrix of pixels, with each pixel potentially having

multiple associated numerical values according to the number of channels present in

the image. While a gray-scale image may consist of only one channel with each pixel’s

value corresponding to the intensity, or brightness, a colour image typically has three

channels with each pixel encompassing a separate red, green and blue (RGB) value for

the RGB channels. Depending on the data type, digital images are often thousands

if not millions of pixels (megapixels) in size. Additionally, the standard approach for
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computational tasks is to perform them sequentially, referred to as serial processing.

Hence, an unmodified texture analysis approach that is applied to every pixel in the

image will need to be executed thousands or millions of times, potentially resulting in

an operation that is rather expensive in terms of computational time. This also makes

such methods rather unfeasible for applications where any feature descriptors need

to be determined within milliseconds, as in video object tracking. This is because a

30 frame-per-second video will display a single image (frame) for approximately 33

milliseconds until the next frame in the sequence is presented. Hence, for a tracking

method to keep pace with video playback and be considered real-time, it must perform

all processing operations in real-time.

2.2.1 Parallelization Requirements

The differences between Graphics Processing Units (GPUs) and Central Processing

Units (CPUs) prevent the execution of standard texture analysis methods on graph-

ics cards without modifications. However, segments of various algorithms including

those used for GLCM and HOG can be successfully accelerated using GPUs [20–22].

This is because these algorithms fulfill an important requirement of parallelization:

The operations that should be performed simultaneously are not dependent on the

result of one another. Operations like the histogram computation using the gradient

orientations in HOG rely on a sliding-window style algorithm where the orientation

values within the value do not depend on orientations outside the window. Hence, all

windows can be executed in parallel without affecting each other [22]. As the require-

ments for parallel execution are met, the portions of the algorithm which should be

executed in parallel using a GPU can then be implemented using the C language along

with an interface such as Nvidia’s Compute Unified Device Architecture (CUDA) to

allow for execution on Nvidia GPUs.
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Figure 2.2: Abstract comparison of CPU and CPU architecture [23]. Note the signif-
icantly greater core count present on the GPU.

2.2.2 GPU Performance Benefits

While parallel implementations of texture analysis methods such as HOG are not

strictly limited to GPUs, as is exemplified by a human detection system using an

adaptation of CoHOG for field programmable gate arrays (FPGAs) [24], graphics

cards are one of the most prevalent hardware components designed for some form of

parallel computing. Hence, GPUs make an attractive execution platform for these ac-

celerated approaches and have been used to successfully decrease the execution time

requirements for a number of datasets. Execution speed improvements are highly

dependent on various factors. However, a CUDA-accelerated version of HOG named

fastHOG was able to increase execution speed by up to 67x on a single GPU [22],

demonstrating the potential of such approaches. Particularly, the use of CUDA in-

volves writing functions, referred to as kernels, which perform a certain task. A single

kernel is mapped to a single execution thread on the GPU, with threads grouped into

blocks and blocks grouped into grids [25]. In the case of fastHOG, a HOG pixel block

was mapped to a CUDA thread block. Since modern GPUs may have thousands of

CUDA cores, they can execute many threads at once, which also means that their
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ability to access the memory which stores the information needed for processing will

have big implications on the execution speed.

2.3 Magnetic Resonance Imaging

Until the development of computed tomography (CT) and magnetic resonance imag-

ing (MRI) in the 1970s, no methods to properly scan and image the brain were

available [26]. While CT makes use of x-rays for imaging, the MRI approach which

relies on magnetic fields has shown to be superior for imaging many types of soft tis-

sue [26]. More specifically, the MRI procedure begins with a superconducting magnet

that creates a uniform magnetic field. Next, resistive electromagnets inside a bore

are activated to create magnetic field gradients along three axes while coils, which

transmit and receive radio waves, cause protons to resonate at certain magnetic field

strengths. Subsequently, hydrogen nuclei positions along the axes are deduced by

separating the radio signals using a Fourier transform. Hence, areas with more pro-

tons (hydrogen nuclei) cause an increase in signal amplitude, allowing for the gray

levels in the image to indicate different signal intensities that correspond to tissue

differences.

2.3.1 MRI Types

While the MRI scanner image acquisition technique has a degree of stability affected

by parameters such as the magnetic field strength, the imaging type may have a

drastic effect on the resultant picture data. There is a considerable difference between

functional MRI (fMRI) and structural MRI (sMRI), for example, with functional MRI

measuring intensity signals over time in order to record changes in blood flow, while

sMRI attempts to capture tissue structure at a single point in time. sMRI can be

further partitioned into types such as T1-weighted, T2-weighted and diffusion tensor

imaging (DTI). T1 refers to the longitudinal relaxation time, or the time that it takes

for spinning protons to realign with the scanner’s external magnetic field [27]. In
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contrast, T2 involves the transverse relaxation time; the time required for protons

perpendicular to the magnetic field to lose phase coherence. The difference between

these weightings allows for the visualization of tissue types with disparate contrast

levels because of the water content nonuniformity in human tissues [28].

2.3.2 Post-processing of MRI Data

Since MRI images are constructed of signal intensity measurements, they typically

consist of a single grayscale channel. As a way to accentuate areas of the image,

gray-level (GL) transformations can be applied [29]. These transformations involve

functions that alter the brightness (gray-level) of each pixel in an image. If a pixel

A is brighter than another pixel B prior to a GL transformation, the relation will

hold true after the function has been applied. However, the magnitude of difference,

or contrast, may be affected. Therefore, GL transformation may increase contrast in

certain image areas, but potentially at the expense of other regions. The intention

of applying such operations to medical images is often to aid in the identification of

biomarkers which are features of an image that are relevant to diagnosis. Specifically,

contrast enhancement techniques such as S-curve gray-level transformation [30] can

increase the perceptibility of edges between adjacent tissues, allowing for improved

segmentation and classification performance in some cases.

2.3.3 MRI Dataset Limitations

There are a multitude of conditions where image biomarkers can not be easily dis-

cerned by visual or computational inspection of raw and GL transformed imaging

data. It is in such cases that texture analysis can provide valuable insight via the

calculation of novel biomarkers that are applicable to patient diagnosis. Nevertheless,

there is a considerable lack of standardization which is impacting scanner acquisition

methodology involving differences in parameters as well as intrinsic scanner charac-

teristics. Acquisition parameters can be standardized across systems, particularly
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when data collection is coordinated. However, differences in scanner characteristics

cannot be standardized. Even for a single scanner, the state of system components

such as coil loading may change from one scanning session to the next. In T1 and

T2-weighted imaging, for example, the signal intensity depends on factors such as

the radio frequency and coil sensitivity that will all vary with the hardware used [31].

Additionally, while it may be possible to attain a certain degree of standardization

with data acquired from a single imaging centre, the variance problems described

are even more prevalent in datasets that attempt to combine images from multiple

centres. Multicentre datasets are often the only way to achieve sample sizes larger

than a few dozen scans for conditions such as amyotrophic lateral sclerosis (ALS).

This highlights a dilemma present throughout the medical imaging domain where, for

many cases, datasets containing thousands of samples do not exist. Attempts at data

augmentation using synthetic data have been proposed to combat this deficiency [32,

33]. However, while generated data may be correlated with the other samples in the

source dataset, this correlation may not accurately reflect the states of pathological

biomarkers in the wild. Additionally, synthetic data may act as a source of data

leakage if the derivation of the generated data is not restricted to the training set.

2.3.4 Data Normalization

Detailed differences in image characteristics such as voxel size are not always clear

to the naked eye, but can have a significant impact on computed texture features

including those derived from GLRLM and GLCM [34]. In many current models

designed for medical images, such dataset inconsistencies are often addressed using

normalization: A process involving various methods that alter the data to fit within

a set of property criteria. Gray-level discretization, an example of a normalization

method, clusters pixels based on their intensity, assigning them to one of a set number

of gray-level bins [35]. This ensures that all images in a dataset have an equivalent

number of intensity levels. After a degree of normalization is performed, many models
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appear to achieve increased classification accuracy using the normalized data. Addi-

tional benefits from normalization may arise depending on the stage of the process

where it is applied: When using a combination of non-texture and gray-level texture

features from multicentre datasets, intra-institutional normalization seems to allow

for increased performance when compared to normalization of an already combined

dataset [36].

(a) (b)

Figure 2.3: The original MRI volume (a) is pre-processed using the FreeSurfer neu-
roimaging analysis software package with autorecon1 (b). Note the effect of the nor-
malization on structural features: While macro structures are more pronounced (b)
there is a decrease in fine texture detail in the grey matter regions when compared to
the original. Altogether, the processing involves: 1. Motion correction and conform,
2. NU (Non-Uniform intensity normalization), 3. Talairach transform computation,
4. Intensity Normalization 1

2.3.5 Normalization Concerns

Despite the advantages that normalization methods may bring, they can also intro-

duce additional considerations that decrease the effectiveness of a system relying on

texture analysis. The method used for gray-level discretization, for example, has a

direct impact on the reproducibility of GLCM texture features [35]. Other normaliza-

tion techniques may alter image voxels in ways that can cause details present in the

original texture to be lost, potentially causing a decrease in the maximum potential

of a classification system. In the case of contrast or intensity normalization, image
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structure may be enhanced in certain areas to achieve a greater degree of compara-

bility between images. However, this comes inevitably at the cost of structural detail

in other areas (Figure 2.3). Image smoothing can also hurt classification performance

when using HOG-based methods as a significant portion of image information present

in these features derives from abrupt edges at fine scales [12]. Hence, relying on an

invariant texture analysis method that is resistant to image differences introduced by

scanning discrepancies may achieve superior performance compared to using normal-

ized data with an arbitrary feature extraction method.

2.4 Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis is a neurological disorder with a prevalence of approx-

imately 2.7 cases per 100 000 individuals in Europe and North America [37], and

whose patients have survival times varying from over 20 years to a few months [38].

The mean age of offset is between 55 and 66 years of age in the US, Europe and Japan

[37, 39], and juvenile cases are seldom observed [38]. However, reversals in disease

progression where some motor function is regained are also rare [40]. The illness is

also sometimes referred to as Charcot or Lou Gehrig’s disease and while usually spo-

radic, ALS can also be familial-type with a dominant inheritance factor [37]. After

onset, a number of symptoms may arise, including involuntary muscle movement,

weakness, cramps and function degradation, as well as shortness of breath (dyspnea)

and a difficulty swallowing (dysphagia).

2.4.1 The Nervous System

ALS impacts a number of tissues in the brain, which contains both gray and white

matter. The brain is a core organ in the central nervous system (CNS) while the

overall nervous system is composed of both the CNS and peripheral nervous system

(PNS). Regions of the brain are responsible for a variety of functions, for instance,

motor components allow for muscle (skeletal, cardiac, smooth) and glandular secretion
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control [41]. ALS appears to affect both motor regions, including the motor cortex,

and non-motor areas, such as the frontotemporal regions [42]. Degeneration of the

white matter, the tissue responsible for signal communication, is most pronounced in

the corticospinal tract (CST) and frontal lobes [43].

Figure 2.4: Anatomy of a nerve cell (neuron) [44].

2.4.2 Neurons

A basic component of the nervous tissue in these brain sections is nerve cells, also

referred to as neurons (Figure 2.4). Neurons allow for signals to travel both to and
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from various brain centres, specifically, afferent, or sensory, nerves carry signals to

brain while efferent, or motor, neurons innervate muscles and glands or secretory

cells. Motor neurons can be further divided into somatic and autonomic, with the

first being responsible for movements and the latter for the maintenance of respiration

and blood pressure. Another classification for certain motor neurons present in both

somatic and autonomic systems, is based on their location. These are known as

upper and lower motor neurons, or UMN and LMN, respectively [45]. Upper motor

neurons, whose cell bodies are located in the pre-motor and primary motor region of

the cerebral cortex, connect to LMNs located in the CNS. If subjected to damage,

or lesions, UMNs may cause uncontrolled movement and lower the sensitivity to

reflex stimulation. Additionally, increased muscle tightness due to prolonged muscle

contraction, or spasticity, may arise. Lower motor neurons, whose cell bodies are

located in the brainstem as well as the spinal cord’s ventral horn, have their axons

extend out of the CNS. Grouped into branchial, visceral, and somatic types, LMNs

receive incoming signals from upper motor neurons, interneurons or sensory neurons.

Due to LMNs’ mediary function in various pathways, lesion symptoms usually involve

some form of paralysis [45].

2.4.3 ALS Pathology

Degradation of UMNs and LMNs as well as the degeneration of frontotemporal regions

are typical in ALS. While a minority of ALS cases are familial and can be caused by

mutations in genes such as C9orf72 [46] or the gene which encodes the antioxidant su-

peroxide dismutase 1 (SOD1) [37, 38], more than 90% of ALS cases are sporadic [47].

Symptoms emerge once axon connections fail and while some neurons are more resis-

tant to the degenerative effects and can even compensate, cell bodies will eventually

begin to die once the disease has sufficiently progressed [48]. Clinically, ALS pro-

gression is often measured using the ALS Functional Rating Scale, ALSFRS-Revised

[49]. This scale is based on a questionnaire used to measure a patient’s ability to
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perform conventional tasks such as speaking, walking, breathing and salivation with

the weighting differing between breathing and activities involving motor functions.

Hence, ALSFRS-R has even been adapted for survival modelling [50]. However, the

use of the scale relies on an established diagnosis [51], which can be challenging to

establish in the first place [52], and may result in the delay of therapeutic intervention.

2.4.4 ALS Treatment

Although the medications Riluzole and Edaravone have been approved by the U.S.

Food and Drug Administration for the treatment of ALS, the medications have side

effects and generally only slow symptom progression [53]. Nevertheless, there does

appear to be an increase in the survival time of some patients, with 49-86% of patients

in the US, Europe and Japan receiving Riluzole [39]. Thus, improvements to the

duration and accuracy of the diagnostic process, possibly through the introduction

of supporting classification systems, may have a significant impact on the survival of

ALS patients.

2.4.5 ALS Biomarkers

Currently, prompt diagnosis of patients is hampered by a lack of clear and reliable

biological markers (biomarkers) [52], or measures of cell and tissue properties, shift-

ing a substantial portion of the process onto the results of physical examinations [39].

Partially, this can be explained by the uncertainty surrounding how ALS spreads

throughout the CNS, with both a focal instantiation point [52, 54] and a multiple hit

hypothesis [54] being proposed. Disease progression rate, illustrated through tech-

niques like muscle MRI [55], shows some promise as a biomarker [56] but cannot be

used for initial diagnosis. Clinical brain MRI, including T1-weighted, T2-weighted

and fluid-attenuated inversion recovery (FLAIR), of ALS patients appears largely

normal and there is no biomarker which can be used to evaluate neurodegeneration.

Hence, due to the absence of diagnostic evaluations capable of establishing the pres-
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Figure 2.5: ALS patient vs control whole-brain spatial statistics for cross-sectional
comparison of fractional anisotropy maps [43]. White matter degeneration appears
to occur mostly in the corticospinal tract and frontal lobes.

ence of ALS, various tests are used to rule out other diseases instead. Atrophy of the

motor cortex [57] and signal changes in the CST [58] have been observed in T1 and

T2/FLAIR images, respectively. However, these observations are of limited sensitiv-

ity and specificity, preventing them from being applied clinically. Therefore, texture

analysis of these images is required to extract signals of degeneration which are not

visible otherwise. Degenerative changes in upper motor neuron function [59] and the

CST [60] have already been linked with textures, while further insights derived from a

form of brain MRI termed diffusion tensor imaging (DTI) [61] may also be applicable

in earlier stages of ALS (Figure 2.5). Possible markers derived from DTI images in-

clude detectable changes to motor capabilities in frontotemporal regions of the brain
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[62] and more pronounced changes in white matter that composes motor tracts [61]

such as the CST [43].

2.4.6 ALS MRI Datasets

One impediment to the investigation of biomarkers in ALS is the relative lack of

imaging datasets spanning multiple centres with a degree of coherence in protocol

[63]. This causes various studies to use small, single-centre datasets which are prone

to biases, resulting in findings that can lack generalizability. With the intention

of addressing these concerns, a clinical research platform spanning multiple centres

called the Canadian ALS Neuroimaging Consortium (CALSNIC) was created in 2014

[64]. By using a multi-faceted approach including both T1 and T2-weighted MRI

sequences, the study aimed to create a more robust and generally representative

dataset not subject to as many biases as single centre studies. The first iteration,

CALSNIC-1, included 87 ALS patients and 65 healthy subjects from six sites in

Canada. CALSNIC-2, the second iteration of the study, now uses an increased sample

size and introduces additional sites from Canada and the United States.

2.5 Texture Analysis for ALS Data

Datasamples from the CALSNIC dataset have been applied to evaluate the reliability

of 3D texture analysis for MR images of ALS patients. 3D ROI-based extensions of

GLCM features, such as VGLCM-3D [65], appear to have the potential to be highly

reliable across multiple centres [66]. However, the reliability seems to be strongly

dependent on multiple factors, particularly the feature type, region analyzed and

whether a method performed an ROI or voxelwise analysis. Specifically, analysis

using regions of interest appears to have increased reliability when compared to con-

sidering all voxels in a volume, with brain regions included in an ROI impacting

intersite reliability. However, ROI based analysis often relies on manual selection

or expert input, significantly increasing the involvement of such a study and makes
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these methods unattractive for clinical deployment. Additionally, differences to the

dataset may be introduced due to contouring variability in manual segmentations.

Hence, methods such as VGLCM-TOP-3D, which extend GLCM to define features

for 3D voxels instead of 2D pixels, are attractive for usage but can be outperformed

by methods that rely on specific ROIs, such as Modified Co-occurrence Histograms

of Oriented Gradients (M-CoHOG) [8].

2.5.1 Modified CoHOG

M-CoHOG is a modification of the traditional Co-occurence Histograms of Oriented

Gradients feature extraction method that makes a number of changes and adds a

feature normalization technique prior to the classification step [8]. A coronal slice

from a subject in the CALSNIC-1 dataset is selected by an expert and segmented

to create an ROI mask (pre-processing). Additional coronal slices adjacent to the

selected slice, specifically 5 in either direction, are also used in conjunction with the

segmentation mask.

Gx =

⎡⎢⎢⎢⎣
−1 0 1

−2 0 2

−1 0 1

⎤⎥⎥⎥⎦ , Gy =

⎡⎢⎢⎢⎣
−1 −2 −1

0 0 0

1 2 1

⎤⎥⎥⎥⎦ , (2.3)

The selected ROI is then scaled, by a factor of 0.33, for example, after which each

pixel’s gradient orientation is calculated using the Sobel kernel (Equation 2.3) to

determine the horizontal and vertical gradient operators. The gradient orientation

(GO) is then determined by

GO = arctan
Gy

Gx

, (2.4)

after which the GO pixels can be quantized into the closest bin. In the case of 12

bins, each bin covers a span of 30 degrees in order to cover the full 360 degrees for

all directions. Extraction of the texture features is performed using the quantized

gradient orientation image as data. Instead of computing co-occurrence matrices

(CMs) for image subregions, M-CoHOG calculates a single matrix per offset resulting
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in a number of histograms equivalent to the number of offsets, which, in turn, is

determined by the radius of the neighbourhood . Therefore, the CM is calculated for

each offset x,y, of each pixel p,q, such that T = [GO(p, q) = i and GO(p+x, q+ y) =

j and GM(p, q) ≥ τ and GM(p+ x, q + y) ≥ τ ] and

CMx,y(i, j) =
P∑︂

p=1

Q∑︂
q=1

{︄
1 if T is True

0 Otherwise
, (2.5)

where for pixel (p, q), GO(p, q) is the gradient orientation, GM(p, q) is the gradient

magnitude and τ is a threshold for the co-occurrence count used to reduce the effect

of noise. Next, the matrix is normalized: first, a co-occurrence matrix CMV is

calculated using Equation 2.5 but with τ = 0. The normalized matrix CM ′ is then

determined by

CM ′
x,y(i, j) =

CMx,y(i, j)∑︁O
g=1

∑︁O
h=1CMVx,y(g, h)

, (2.6)

Finally, the CM ′ results are concatenated to form the overall 1D feature vector for

the whole slice. An overview is provided in Figure 2.6.

Figure 2.6: Overview of the CM calculation using the GO image as well as the
concatenation into the feature vector [8].
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2.5.2 Modified CoHOG Classifier

For the classification step, M-CoHOG uses an ensemble classifier that accepts the re-

sults of 5 base classifiers as input for an intermediate layer of fully convolutional neural

networks (FCNNs), with a final predictor layer receiving the results of all the inter-

mediate classifiers. Two support vector machines (SVMs), with a linear and radial

basis function (RBF) kernel, respectively, a K-nearest neighbour (KNN) classifier, a

convolutional neural network (CNN), and a random forest classifier compose the base

classifier layer. When applied to a multicentre ALS dataset derived from CALSNIC-

1, M-CoHOG outperforms both GLCM based and neural network approaches such as

VGG16 and ResNet50, suggesting that an ROI-based, CoHOG method is a relatively

effective approach for the classification of ALS sMRI images.

Because M-CoHOG requires ROIs that are manually selected and segmented by an

expert, the pre-processing requirements of the method are non-trivial. Additionally,

some spatial information cannot be captured by the extracted features due to the

slice-wise selection of ROIs. Hence, in this thesis we present a volumetric feature

extraction method based on M-CoHOG which does not require an expert to select

ROIs and is able to function on volume imaging data.
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Chapter 3

Methodology

3.1 Accelerating M-CoHOG with CUDA

The original M-CoHOG implementation performs feature extraction using a single

CPU thread, making it inefficient for imaging data. However, because the opera-

tions involved in the CoHOG method are not dependent on each other’s intermediate

results, the process can be performed in parallel. We use three CUDA kernels to

perform the steps with the highest performance cost on a GPU with support for the

CUDA language. Specifically, we use CUDA to accelerate the computation of the

gradient orientation image with a Sobel kernel, the calculation of valid pairs for every

offset, as well as the calculation of the co-occurrence matrices (Figure 3.1). Calling

the compiled kernels is enabled by the mexcuda [67] extension of the Matlab mex

function, which is designed to allow for the calling of C/C++ programs or Fortran

subroutines from within Matlab.

3.1.1 Gradient Parallel Implementation

To allow for parallel execution of the Sobel operations and gradient calculation, first,

the number of threads per block, T , is set to be the image height - 2. The - 2 offset is

necessary as the Sobel kernel cannot be applied to boundary pixels. The blocks per

grid, B, are then determined by B = N+T
T

, where N is the total number of elements

in the gradient orientation image. The Sobel function is then called for B blocks,
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each composed of T threads. Hence, within each thread, the current pixel in the 1D

data grid is determined using the x dimension of the block in conjunction with the

indices of the current block and thread.

3.1.2 Co-occurrence Matrix Parallel Implementation

For the valid pair count and CM calculation functions, the steps necessary for parallel

execution are equivalent to those described for the Sobel and gradient orientation

calculation with the exception that T is set to be the full gradient orientation height.

A notable point about the implementation of the pair count and CM functions is that

they require the use of an atomic addition operation when a value must be added to

the result arrays. The reason for this is that a race condition can arise where multiple

threads attempt to write to the same location in memory. Because the operations are

simultaneous, the result of each thread is likely to be out of order, causing the last

value written not to be equal to the total sum expected.

3.2 Extending M-CoHOG to support Volume Data

The volumetric texture analysis method we propose, referred to as Volumetric Co-

occurence Histograms of Oriented Gradients (V-CoHOG), is based on CUDA-accelerated

M-CoHOG and still shares many similarities with the original method; most additions

and alterations directly relate to facilitating the processing of volume information, as

opposed to individual slices. We leverage runtime improvements provided by GPU

acceleration to allow volume data with substantially more voxels than individual

slices to be processed with large neighbourhood sizes. However, CUDA acceleration

is only implemented for the valid pair count, co-occurrence matrix and feature vector

generation steps as these sections see the greatest performance gain because of paral-

lelization in the M-CoHOG implementation. Specifically, blocks per grid, B, is altered

to be a 2D vector consisting of the GO axial size and GO coronal size to improve the

facilitation of 3D data while threads per block, T , remains as being equivalent to the
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Figure 3.1: Overview of the CUDA-accelerated implementation of M-CoHOG. GO
and CM describe the gradient orientation and co-occurrence matrix, respectively.
The M-CoHOG method is described in Section 2.5.1. Initial pre-processing of the
input data is not GPU-accelerated but once complete, the processed ROI is used to
calculate the gradient orientation as well as the quantization of gradient angles in
bins. After the result is returned, another CUDA kernel calculates the total number
of valid pairs for an offset. Next, the co-occurrence matrix is calculated using another
CUDA kernel. Normalization of the co-occurrence matrix occurs in Matlab. Finally,
the co-occurrence matrices for all offsets are concatenated into the feature vector. De-
tails pertaining to the CUDA adaptation for the gradient orientation calculation and
quantization are described in Section 3.1.1. The valid pair count, co-occurrence ma-
trix calculation and feature vector generation CUDA details are explained in Section
3.1.2.
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GO sagittal size.

3.2.1 General Preprocessing

Rather than rely exclusively on manual segmentation masks, we use Brain Extraction

Tool (BET) [68] to generate skull-stripped versions of scans in the dataset in con-

junction with the corresponding segmentation masks. For the preprocessing step, the

original sMRI volume and the BET segmentation mask are scaled by a factor such

as 0.33 before the volume is cropped to the size of the minimum bounding box of the

mask volume. Hence, once preprocessing is complete, the image and mask volumes

are equivalent in size.

3.2.2 Gradient Orientation Calculation

Similar to M-CoHOG, gradient orientations of the input data are calculated using a

Sobel operation. Specifically, for every voxel p in image volume V where p = V (i, j, k),

Axial (GA), Sagittal (GS) and Coronal (GC) gradients are calculated using 3D Sobel

kernels Sa, Ss, Sc, respectively (example Figure 3.5). For example, for GA:

Sa[−1] =

⎡⎢⎢⎢⎣
−1 −2 −1

−2 −4 −2

−1 −2 −1

⎤⎥⎥⎥⎦Sa[0] =

⎡⎢⎢⎢⎣
0 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎦Sa[+1] =

⎡⎢⎢⎢⎣
+1 +2 +1

+2 +4 +2

+1 +2 +1

⎤⎥⎥⎥⎦ (3.1)
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Figure 3.2: Overview of the CUDA-accelerated implementation of V-CoHOG. GO
and CM describe the gradient orientation and co-occurrence matrix, respectively.
Pre-processing is described in Section 3.2.1. The calculation and quantization of the
gradient orientation is described in Section 3.2.2. Calculation of the co-occurrence
matrices is described in Section 3.2.3. Finally, the normalization and concatenation
steps are explained in Section 3.2.4.
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(a) Axial (b) Sagittal (c) Coronal

Figure 3.3: Region of interest extracted from the CALSNIC1 Centre 1 dataset for the
single-centre experiments.

with which we can determine L, M , N using the Hadamard product ◦ :

L = Sa[−1] ◦

⎡⎢⎢⎢⎣
V (i− 1, j − 1, k − 1) V (i− 1, j, k − 1) V (i− 1, j + 1, k − 1)

V (i− 1, j − 1, k) V (i− 1, j, k) V (i− 1, j + 1, k)

V (i− 1, j − 1, k + 1) V (i− 1, j, k + 1) V (i− 1, j + 1, k + 1)

⎤⎥⎥⎥⎦

M = Sa[0] ◦

⎡⎢⎢⎢⎣
V (i, j − 1, k − 1) V (i, j, k − 1) V (i, j + 1, k − 1)

V (i, j − 1, k) V (i, j, k) V (i, j + 1, k)

V (i, j − 1, k + 1) V (i, j, k + 1) V (i, j + 1, k + 1)

⎤⎥⎥⎥⎦

N = Sa[+1] ◦

⎡⎢⎢⎢⎣
V (i+ 1, j − 1, k − 1) V (i+ 1, j, k − 1) V (i+ 1, j + 1, k − 1)

V (i+ 1, j − 1, k) V (i+ 1, j, k) V (i+ 1, j + 1, k)

V (i+ 1, j − 1, k + 1) V (i+ 1, j, k + 1) V (i+ 1, j + 1, k + 1)

⎤⎥⎥⎥⎦
(3.2)

such that, GA of pixel p at V (i, j, k) is determined by

GA =

∑︁3
i=1 L(i, j) +M(i, j) +N(i, j)

b
(3.3)

where b is the number of angle bins. The Hadamard product of two matrices A and B

with equivalent dimensions can be described as: (A◦B)ij = (A)ij(B)ij. The gradient

value G of p is then determined as

G =
√︂
G2

A +G2
S +G2

C (3.4)

After which G is compared to a threshold τ where

G =

{︄
G, if G ≥ τ

0, if G < τ
(3.5)
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Figure 3.4: V-CoHOG: Illustration of the quantization of the angle 286° into the bin
of 300° when given a number of bins parameter equal to 12.

and the optimal value for the threshold τ is determined using a grid search. Hence,

if G > 0, the gradient orientation GOx−y with x− y corresponding to Axial-Sagittal

(A-S), Axial-Coronal (A-C) and Sagittal-Coronal (S-C), is calculated:

GOx−y = CalculateOrientation(
180× arctan(Gx, Gy)

π
, b) (3.6)

In CalculateOrientation, the orientation of GOx−y is determined by quantizing the

first function parameter in Equation 3.6 into the nearest of b bins (example Figure

3.4).

3.2.3 Co-occurrence Matrix Calculation

Prior to the CM calculation, the total valid pairs (CMV ), where pairs are for every

voxel and its corresponding offsets within a radius, are calculated per offset using a

threshold τ = 0. The co-occurrence matrix CM is determined as per Algorithm 1
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Figure 3.5: V-CoHOG: Graphical representation of the result of the gradient orien-
tation calculation and quantization steps. The resulting orientations are displayed
using a color map corresponding to the range 0 - 360°
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where the CM calculation follows the plane p+x,q,s+y. The other two planes are

shown in Figure 3.6. In Algorithm 1, H is used to denote a matrix containing all

CMs, specifically, for a given offset x and all i and j, H(i, j, x) corresponds to the

CM for offset x.

Algorithm 1 V-CoHOG: calculation of CMs.

for p← 1 to sizeof(GOAxial) do
for q ← 1 to sizeof(GOSagittal) do

for s← 1 to sizeof(GOCoronal) do
if GO(p, q, s) ≥ τ then

i← 1+idivide(GO(p, q, s),round(360
b
))

OffsetNumber ← 1
for x← OffsetRadius to 0 by -1 do

if x = 0 then
r ← 1
e← OffsetRadius

else
r ← OffsetMask(x, 1)
e← OffsetMask(x, 2)

end if
for y ← r to e do

if (p + x ≤ sizeof(GOSagittal)&p + x > 0)&(s + y ≤
sizeof(GOCoronal)&s+ y > 0) then

▷ Check whether the second voxel is inside the image
if GO(p+ x, q, s+ y) ≥ τ then

j ← 1+idivide(GO(p+ x, q, s+ y), round(360
b
))

H(i, j, OffsetNumber)← H(i, j, OffsetNumber)+ 1
end if

end if
OffsetNumber ← OffsetNumber + 1

end for
end for

end if
end for

end for
end for

3.2.4 Co-occurrence Matrix Normalization

Normalization of the Co-occurrence matrix using the total number of valid pairs

for each offset (x, y) is performed in accordance with the M-CoHOG method [8] in
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Figure 3.6: V-CoHOG: The three planes along which the co-occurrence matrix can
be calculated.

order to increase the stability of features in light of noise and illumination changes.

Hence, the normalized co-occurrence matrix CM ′ is determined by Equation 2.6

where CMV is a co-occurrence matrix calculated using Algorithm 1 with a threshold

τ = 0. Furthermore, CMV has a dimensionality that is one less than CM as the

pairs are summated per offset without consideration for any orientation bins. After

all CMs are normalized they are concatenated into the final feature vector (Figure

3.7) whose size is determined by

sizeof(Feature Vector) = N × sizeof(CM ′) (3.7)

where N is the number of offsets.

3.3 Feature Selection

While features derived from texture analysis have proven to be an effective tool for

various computer vision tasks and GPUs are practical for the acceleration of their

derivation, the quantity of features computed from a single image may be overwhelm-
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Figure 3.7: V-CoHOG: Overview of the normalization and concatenation of the CMs
into the final feature vector.
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ing for certain applications. The number of features used to represent a single dataset,

or feature dimensionality, is usually reduced through two common methods: Feature

projection and feature selection. Projection is often performed using Principal Com-

ponent Analysis as well as related methods. Feature selection methods can be grouped

into a handful of general categories including filter, wrapper, embedded, and struc-

tured methods [69]. Filter methods base their selection criteria on a performance

measure and include methods such as information gain, chi-square, minimum redun-

dancy maximum relevance (mRmR) [70] and Relief [71]. On the other hand, wrapper

methods select features based on their performance on a modelling algorithm used as

a black box evaluator and embedded methods select features during execution of the

modelling algorithm. Finally, structured methods involve specific algorithms tailored

towards selecting features with a considerable amount of independence.

3.3.1 Relief

Relief [71] is a filter method for feature selection that was developed to address some

of the shortfalls of inductive, or observational, learning. Specifically, older methods

relying on metrics such as information gain assume that features are conditionally in-

dependent; hence, the features are expected to be in domains with strong conditional

dependencies between each other [21]. On the other hand, Relief is not as sensitive

to being misled by feature interaction and is more noise-tolerant [71]. This is due to

how Relief estimates attributes according to how well their values distinguish between

instances that are in proximity to each other.

3.3.2 ReliefF

Relief estimates feature weights based on their ability to distinguish between dataset

instances that are in proximity to each other [63]. The Relief filter method has

since been extended via ReliefF [72] to allow the method to be applied to incomplete

datasets as well as problems with more than two classes. ReliefF estimates probabil-
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ities with greater reliability than Relief using a parameter K to refer to the number

of neighbours involved with the scoring update process [73].

Because increases in the radius size or number of bins used by V-CoHOG cause an

increase in the total number of features, the feature set used for classification needs

to be optimized to remove features which have no discriminate characteristics for

the classification task. Hence we utilize ReliefF with Matlab to generate a feature

ranking of the V-CoHOG feature vector. Specifically, we use a random subset of

the training and testing data equal to 80% of the total dataset size and split the

subset into five folds. ReliefF is then used to generate five feature rankings for the

subset with a different fold excluded for each ranking computation. Finally, the top N

features from every fold are selected after which any features not ubiquitous to all five

feature ranking subsets are removed. Furthermore, in some of the ALS experiments,

the selected features are also used to generate segmentation maps of the gradient

orientation volume to indicate which areas of the ROI are used for the classification

task.

3.4 Classifier

A stacking ensemble classifier with 3 levels based on M-CoHOG [8] is used for clas-

sification of the feature vectors generated using the V-CoHOG methodology (Figure

3.8). The results of each layer are used as input for the next, with the intermediate

and predictor layers being composed solely of FCNN nodes.

3.4.1 Support Vector Machines

Support vector machines (SVMs) are a type of learning machine, or classifier, orig-

inally intended for two-group, or binary, classification problems [74]. As input, the

classifier takes input vectors of sample features and maps them non-linearly to a high

dimensional space via a kernel function. Within the same high dimensional space, a

decision surface that separates the data into two classes is determined. This optimal
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Figure 3.8: Ensemble stacking model used for the classification of the feature vectors.

hyperplane discriminates the training data with a maximal margin. The decision rule

used by SVMs, which involves solving a quadratic optimization problem, also relies on

the elements of the training set as well as a function which determines the convolution

of dot-products. This function is referred to as a kernel, K(u, v), and can be altered

to allow for non-linear decision surfaces, such as with a radial basis function (RBF).

Because SVMs yield good classification performance when compared to other convex

optimization methods [75], they are a popular method outside of ensemble models.

3.4.2 K-Nearest Neighbour

K-nearest neighbour (KNN) is a non-parametric classification technique, which in-

volves assigning class membership to a data instance based on a vote of its K nearest

neighbours [76]. Hence, K is a parameter for whom the best value depends on the

dataset. To determine the nearest neighbours, distance metrics such as Mahalanobis,
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Minkowski distance exponent or Euclidean distance can be used.

3.4.3 Fully Convolutional Neural Network

Fully convolutional neural networks (FCNNs) are a classifier composed of layers that

attempts to mimic the approximate function of visual cortices in animals [77]. In

particular, the network has an input layer, one or more hidden layers, and an output

layer and is a type of convolutional neural network (CNN) in which all layers are

learning filters and there are no fully connected layers; i.e. layers where every neuron

in one layer is connected to a neuron in another layer. The convolution operations

are performed in the hidden layers and generally involve the calculation of the dot

product of the incoming matrix and a convolution kernel.

3.4.4 Logistic Regression Kernel Machine

While SVMs are the most well-known example of kernel machines, a variety of dif-

ferent learning methods may be combined with the dimensionality expansion imple-

mented by kernel functions [78]. Logistic regression is a statistical method to model

an equation by fitting the output values between 0 and 1 via the logistic function [79]:

f(x) =
1

1 + e−x
(3.8)

Hence, after mapping the features of a dataset to a higher dimensional feature space,

a logistic regression classifier can be trained and then applied to a testing dataset for

a binary classification task.

3.4.5 Ensemble

Classification methods relying on the output of multiple systems often outperform

individual classifiers [80]. This is because individual classification systems may have

comparable training performance but divergent generalization performance. Hence,

considering the results of multiple classifiers can reduce the risk of relying on a single

method that happens to be ill-suited for a given dataset. While there are different
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ways in which an ensemble system can arrive at a consensus, a stacking architecture

was selected: Stacking ensembles involve a meta-learning algorithm that optimizes

the predictions from a set of base classifiers into a single prediction.
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Chapter 4

Experimental Results

In this chapter, we discuss the results obtained using the previously described methods

for a variety of datasets, with a particular focus on MRI imaging data of ALS patients.

While most techniques were implemented in Matlab, GPU acceleration was performed

via calls to execute CUDA kernels. Specifically, any runtime-performance measuring

tests were performed on a system with a Broadwell Intel Xeon 6 Core CPU, 16GB

RAM and two Nvidia Quadro M4000 graphics cards. Nevertheless, CUDA operations

were executed on a single GPU.

While we use imaging data from CALSNIC-1 and CALSNIC-2 for both runtime and

classification experiments, we also used two other datasets in order to demonstrate

that our methods are not strictly applicable to ALS imaging data. We generated a

number of feature maps that provide insight into the origin of selected features used

for classification in addition to the classification results themselves. As a comparison,

we consider the classification results of 4 3D CNN based methods for the MRI imaging

data. This also provides us with a reference point for the CALSNIC-2 dataset for

which no previous classification results have been published.

4.1 Accelerating M-CoHOG with CUDA

In this section, we discuss the results obtained with our GPU-accelerated implemen-

tation of M-CoHOG in terms of a comparison between execution using only the CPU,
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as is the case in the original method, and with the use of CUDA kernels for the main

sections of the algorithm. The comparison involved a single parameter variation for

both datasets in order to demonstrate the potential impact a single parameter may

have on the runtime requirements and how the impact differs when the method is

executed wholly on the CPU or not.

4.1.1 Datasets

In order to evaluate the runtime improvements yielded by the CUDA-accelerated

implementation of M-CoHOG, we used the Edmonton Centre (Centre 1) subset of

the CALSNIC-1 dataset, which included 38 MRI volumes, as well as a subset of the

DIV2K dataset [81, 82], which included a selection of 400 2K resolution images. For

the MRI data, individual coronal slices were extracted from the volume and processed

as the M-CoHOG method does not support the generation of feature descriptors for

volume data. While the ALS data was homogenous in terms of subject matter, the

DIV2K dataset included images of various places and objects (4.1).

4.1.2 Runtime

Table 4.1: CUDA-Accelerated M-CoHOG runtimes using slices sourced from CAL-
SNIC MRI data. Values are reported as averages over 10 runs.

Centre Scaling Sobel & GO CM Std Dev. Avg. Runtime (ms)

1 0.33 CPU CPU 71.9 9227

1 0.33 CUDA CPU 57.6 8763

1 0.33 CPU CUDA 48.1 6139

1 0.33 CUDA CUDA 39.3 5647

1 1.00 CPU CPU 106.6 39446

1 1.00 CUDA CPU 52.2 34732

1 1.00 CPU CUDA 82.7 11420

1 1.00 CUDA CUDA 58.4 6476
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Figure 4.1: A selection of images from the DIV2K dataset. In total, 400 pictures were
selected in order to evaluate runtime performance of the M-CoHOG feature descriptor
generation method.

Table 4.2: CUDA-Accelerated M-CoHOG runtimes using images from the DIV2K
dataset. A scaling factor of 0.25 was applied to all images during the pre-processing
step. Values are reported as averages over 10 runs.

Dataset Radius Sobel & GO CM Std Dev. Avg. Runtime (ms)

DIV2K 1 CPU CPU 346.7 165290

DIV2K 1 CUDA CPU 333.0 140581

DIV2K 1 CPU CUDA 93.2 40570

DIV2K 1 CUDA CUDA 42.5 16069

DIV2K 2 CPU CPU 5470.7 321678

DIV2K 2 CUDA CPU 930.3 295830

DIV2K 2 CPU CUDA 80.3 40726

DIV2K 2 CUDA CUDA 35.1 16150
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We observed a decrease in overall runtime in all cases where CUDA kernels were

used in order to execute sections of the M-CoHOG algorithm (Table 4.1, 4.2). While

the improvements were less extensive for the MRI data (Table 4.1), the DIV2K data

could be processed up to 19.9× as quickly when using a neighbourhood radius of

2 (Table 4.2). Unfortunately, the further acceleration of the runtime would likely

benefit the most from a reduction in pre-processing time, which cannot be improved

as trivially due to the reliance on a multitude of imaging functions. Overall, the

performance benefits of the GPU accelerated implementation were less pronounced

when using smaller images and neighbourhood sizes where the advantages of GPU

thread count cannot be fully utilized.

The performance improvements we observed seem to be similar to those achieved by

other attempts to parallelize the generation of HOG features such as [15] who found

their GPU method to allow 16.8× faster execution in a real-time moving human

detection system. Another method which saw the use of GLCM feature descriptors

instead of HOG for abnormality detection in mammograms found a GPU accelerated

approach to allow for up to 19.22× faster runtimes depending on the block size used

[21]. Hence, GPU acceleration continues to be a valid approach to decreasing the

runtime requirements of HOG-derived feature generation methods.

4.2 ALS Patient Classification

In this section, we discuss the results obtained when classifying various subsets of

the CALSNIC-1, as well the CALSNIC-2 datasets, using the proposed methodology

for V-CoHOG. We use four centres from the CALSNIC-1 dataset in both single and

multicentre combinations while the CALSNIC-2 dataset is used without partitioning.

The effects of various parameters on the classification results are discussed for the

Edmonton (Centre 1) dataset. All V-CoHOG features are calculated using a threshold

τ = 3 (Algorithm 1) and features are selected using ReliefF with K = 6 (Section

3.3.2). In addition to the classification results, we generated feature maps to help
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identify selected features’ areas of origin and used 3D CNN methods in order to

obtain baseline results for comparison.

4.2.1 Evaluation Metrics

In addition to accuracy (Acc), standard deviation (Std Dev) and variance (Var) met-

rics, we report the sensitivity (Sens), specificity (Spec) and F-score as averages over

1000 runs. Sensitivity is defined as

Sensitivity =
TP

TP + FN
(4.1)

where TP is the number of true positives and FN is the number of false negatives.

Specificity is defined as

Specificity =
TN

TN + FP
(4.2)

where TN is the number of true negatives and FP is the number of false positives. The

F-Score used is the harmonic mean of the sensitivity and specificity, and is defined as

F-Score =
2× Sensitivity× Specificity

Sensitivity + Specificity
(4.3)

For every iteration, a random 80-20 train-test split was used and the number of

features reported corresponds to the amount used for classification post selection.

When discussing the results for particular data samples, the number of correct clas-

sifications compared to the total appearances of that particular data sample in the

test set were recorded. Results reported for CNN methods used as a comparison were

obtained by averaging the metrics achieved across 5 folds in 1 run per fold.

4.2.2 Datasets

The CALSNIC-1 and CALSNIC-2 datasets (Table 4.3) both saw the implementa-

tion of four directives aimed at optimizing the comparability of the collected MRI

data across sites [64]. These included the exclusive use of 3 T MRI systems; the

use of only vendor-supplied sequences on these systems; sequence parameter adjust-

ments with assessments of image properties, such as signal-to-noise ratio, for improved
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comparability; and the use of fixed spatial parameters across vendors when viable.

Nevertheless, there remain certain inter-vendor differences, as some subjects would

not fit into the preferred 64-channel coil and required the use of alternate coil ar-

rays. For CALSNIC-1, centres 1 and 4, and centres 2 and 3, shared the MRI system

vendors Siemens and GE, respectively. Only T1-weighted scans were considered for

classification as previous applications of texture analysis to T1-weighted images have

provided evidence of cerebral degeneration [60, 83].

Subjects labeled as patients underwent evaluation with a more robust set of clinical

assessments than is typically recommended, including the use of the revised ALS

functional rating scale (ALSFRS-R), forced vital capacity (FVC), UMN and LMN

function examination, as well as cognitive and behavioural tests [64]. Generally, the

included patients needed to be diagnosed with either sporadic or familial ALS and

meet the revised El Escorial research criteria [84].

Table 4.3: Patient and control numbers in the various centres of the CALSNIC-1 and
CALSNIC-2 datasets as well as the MRI acquisition properties used for classification
experiments. The CALSNIC-2 dataset was not divided into centres. Total, Res and
Plane correspond to the total subjects, resolution and acquisition plane, respectively.

Centre Patients Controls Total Type Res (mm) Plane

Edmonton (1) 23 15 38 T1-weighted 1x1x1 Axial

Toronto (2) 22 12 34 T1-weighted 1x1x1 Axial

Calgary (3) 11 8 19 T1-weighted 1x1x1 Axial

Montreal (4) 13 7 20 T1-weighted 1x1x1 Axial

CALSNIC-1 69 42 111 T1-weighted 1x1x1 Axial

CALSNIC-2 113 112 225 T1-weighted 1x1x1 Sagittal

4.3 Single Centre

In this section we discuss the impact of various parameters on the classification per-

formance of V-CoHOG as well as the classification results for the four centres in
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Table 4.4: Parameters found to yield the optimal classification results for the ALS
datasets after a parameter search. A centroid computation was used to determine the
axial offset for the Centre 1-4 combined and CALSNIC-2 datasets. GO types A-S, A-
C, S-C correspond to Axial-Sagittal, Axial-Coronal and Sagittal-Coronal, respectively.

Centre 1 2 3 4 1 - 4 CALSNIC-2

Scaling 0.33 0.33 0.33 0.33 0.33 0.33

Coronal Offset 0.52 0.56 0.52 0.53 0.48 0.44

Coronal Slices 15 15 15 15 11 13

Axial Slices 18 18 18 18 Centr+9 Centr+5

Radius 3 3 3 3 3 3

Bins 12 12 12 12 12 12

GO Type A-C A-C A-C A-C A-C S-C

CM Plane Sagittal Sagittal Sagittal Sagittal Axial Axial

Features 258 174 186 164 268 71

Table 4.5: Ensemble classifier results for the ALS datasets. Results from M-CoHOG
are included for comparison. Note that while a 80-20 train-test split was used for the
proposed method, M-CoHOG used a split of 70-30, respectively. The accuracy (Acc),
sensitivity (Sens), specificity (Spec), standard deviation (Std Dev) and variance (Var)
have been abbreviated.

Centre Method Acc Sens Spec Std Dev Var F-Score

1 M-CoHOG 0.795 0.775 0.814 - - 0.794

1 V-CoHOG 0.860 0.889 0.812 0.118 0.014 0.848

2 M-CoHOG 0.766 0.726 0.804 - - 0.763

2 V-CoHOG 0.792 0.874 0.627 0.147 0.022 0.730

3 M-CoHOG 0.732 0.686 0.785 - - 0.732

3 V-CoHOG 0.791 0.868 0.715 0.209 0.044 0.784

4 M-CoHOG 0.716 0.695 0.737 - - 0.715

4 V-CoHOG 0.870 0.895 0.792 0.167 0.028 0.841

1 - 4 M-CoHOG 0.745 - - - - -

1 - 4 V-CoHOG 0.770 0.820 0.684 0.075 0.006 0.746
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the CALSNIC-1 dataset. Generally, the single centre experiments have dataset sizes

which are in line with those used by many other studies that propose ALS classifica-

tion methods, often not exceeding a few dozen samples.

4.3.1 Centre 1

Centre 1 contained the most samples from the CALSNIC-1 dataset and was, therefore,

selected for the initial parameter search. As shown in Table 4.4, 9 of 10 parameters

effectuated the generation of the feature descriptors while the number of selected

features was determined later during the feature selection step. In all the parameter

search experiments, only the parameter in question was altered while the remainder

was set to the value reported in Table 4.4. The cases where no feature selection

occurred are an exception to this with the corresponding number of features described

in the respective section.

For most of the parameters shared by the original M-CoHOG method as well as V-

CoHOG, the values resulting in the greatest classification performance were the same.

Specifically, this was the case for the scaling factor and number of quantization bins.

This finding increased our expectancy that V-CoHOG’s classification performance on

the CALSNIC-1 dataset, including individual centres, should be comparable to the

state-of-the-art achieved by M-CoHOG [8]. While M-CoHOG used a 70-30 train-test

split as opposed to our 80-20, the latter split was selected to increase the comparability

of our method with the 5-fold evaluation used for the 3D CNN approaches that also

do not involve ROI selection by an expert. We found that our method outperforms

M-CoHOG for Centre 1 with a classification accuracy of 86.0% (Table 4.5) as opposed

to the latter’s 79.5%.

ROI Cropping

We attempted to use a number of coronal offsets from the posterior edge of brain

segmentations (Table 4.6), beginning with those which would place the ROI in the
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vicinity of the cerebrospinal tract: This was also the approximate location of the

slices selected by an expert in previous work using the CALSNIC-1 dataset [8]. For

centre 1, it was discovered that the ROI which allowed for the greatest classification

performance was located slightly anterior to the expected position surrounding the

CST (see Figures 3.3 and 2.5). Nevertheless, there appears to be some overlap in

the posterior areas of the ROI, while the anterior regions appear to include parts of

the frontal lobes. Additionally, the ROI seems to overlap with the precentral gyrus,

which is another motor region that appears to be impacted by the presence of ALS.

Table 4.6: Comparison of offsets from the brain posterior for the coronal slices. Note
that feature selection was not applied due to the differences in ROIs. The number
of features (Feat), accuracy (Acc), sensitivity (Sens), specificity (Spec), standard
deviation (Std Dev) and variance (Var) have been abbreviated.

Offset Feat Acc Sens Spec Std Dev Var F-Score

0.42 2592 0.575 0.698 0.369 0.147 0.022 0.483

0.47 2592 0.643 0.747 0.471 0.140 0.020 0.578

0.52 2592 0.811 0.911 0.643 0.126 0.016 0.754

0.57 2592 0.702 0.847 0.460 0.144 0.021 0.596

0.62 2592 0.629 0.774 0.386 0.144 0.021 0.515

Similarly, we varied the number of coronal slices to determine the optimal size for

the ROI. The minimum number of slices in any particular dimension must be at least

3, to account for the GO calculation. Depending on the neighbourhood size and CM

calculation plane, the minimum number of slices increases. As seen in Table 4.7,

using a large number of slices also resulted in decreased classification performance,

suggesting that full brain classification without ROI selection is less effective. Hence,

there seems to be an optimal length for the ROI that varies with the dataset.

Furthermore, we attempted to crop the ROI axially by adjusting the number of

axial slices starting from the top of the brain mask (Table 4.8). Our results resembled

those of the coronal slice experiments in that there is a certain maximum, above
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Table 4.7: Comparison of coronal slice amounts. Note that feature selection was not
applied due to the differences in ROIs. The number of features (Feat), accuracy (Acc),
sensitivity (Sens), specificity (Spec), standard deviation (Std Dev) and variance (Var)
have been abbreviated.

Coronal Slices Feat Acc Sens Spec Std Dev Var F-Score

11 2592 0.706 0.818 0.518 0.141 0.020 0.634

13 2592 0.748 0.860 0.562 0.140 0.019 0.680

15 2592 0.811 0.911 0.643 0.126 0.016 0.754

17 2592 0.765 0.866 0.598 0.136 0.018 0.707

19 2592 0.777 0.884 0.597 0.127 0.016 0.713

or below which there is a decrease in classification performance. Interestingly, the

extension of the ROI beyond 18 slices caused a significant decrease in the F-score,

which is correlated with the inclusion of a considerable portion of the corpus callosum

across data samples in the centre.

Table 4.8: Comparison of axial slice amounts. Note that feature selection was not
applied due to the differences in ROIs. The number of features (Feat), accuracy (Acc),
sensitivity (Sens), specificity (Spec), standard deviation (Std Dev) and variance (Var)
have been abbreviated.

Axial Slices Feat Acc Sens Spec Std Dev Var F-Score

14 2592 0.738 0.849 0.552 0.142 0.020 0.669

16 2592 0.801 0.894 0.646 0.127 0.016 0.750

18 2592 0.811 0.911 0.643 0.126 0.016 0.754

20 2592 0.740 0.854 0.551 0.135 0.018 0.670

22 2592 0.700 0.825 0.492 0.134 0.018 0.617

Scaling

The scaling of the image volume during pre-processing is a parameter also present in

M-CoHOG. Nevertheless, instead of scaling individual slices, V-CoHOG uses cubic

interpolation in order to scale the entire brain volume along 3 dimensions. A factor
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of 0.33 was found to perform the best, which is the same magnitude used for scal-

ing in M-CoHOG (Table 4.9). Using the image volume without scaling resulted in

comparatively good specificity but very poor sensitivity and overall accuracy.

Table 4.9: Comparison of scaling factors. Note that feature selection was not applied
due to the differences in ROIs. The number of features (Feat), accuracy (Acc),
sensitivity (Sens), specificity (Spec), standard deviation (Std Dev) and variance (Var)
have been abbreviated.

Scaling Feat Acc Sens Spec Std Dev Var F-Score

1 2592 0.577 0.516 0.679 0.155 0.024 0.587

0.5 2592 0.737 0.852 0.545 0.138 0.019 0.665

0.4 2592 0.716 0.811 0.557 0.136 0.018 0.660

0.33 2592 0.811 0.911 0.643 0.126 0.016 0.754

0.25 2592 0.572 0.703 0.353 0.144 0.021 0.470

Co-occurrence Matrix Calculation Parameters

While the previous parameters were utilized in the pre-processing step of V-CoHOG,

the remaining parameters, which play a role prior to feature selection, impact the

co-occurrence matrices. Both the neighbourhood size and number of orientation bins

affect the number of features, while the gradient orientation type and co-occurrence

matrix calculation plane do not. Only one direction was considered for the CM

plane, resulting in 3 possible parameter settings, as opposed to 6. The maximum

neighbourhood radius tested was 3 as values of 4 or greater resulted in a feature

vector size that was too large for the logistic regression kernel machine base classifier.

The results for neighbourhood radii of sizes 2 and 3 were comparable (Table 4.10),

with size 2 achieving a greater F-score while size 3 allowed for better accuracy. We

chose to proceed with a value of 3 because it allowed for a greater feature size,

increasing the selection pool of the feature selection step. Interestingly, a radius

of size 1, which performed the best in the M-CoHOG method, yielded less optimal

results, suggesting that V-CoHOG appears to be more effective with CoHOG features
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that are more global in nature compared to the more localized features used for the

Centre 1 dataset with M-CoHOG.

As was the case for M-CoHOG, 12 orientation bins allowed for the greatest classi-

fication performance (Table 4.11), with other bin numbers resulting in comparatively

low specificities. Finally, the Axial-Coronal GO allowed for the greatest classifier

performance with all three CM calculation planes (Table 4.12), although the Sagittal

plane achieved the greatest accuracy overall.

Table 4.10: Comparison of neighbourhood size radii used for the CM calculation. Note
that feature selection was not applied due to the differences in the feature vector sizes.
The number of features (Feat), accuracy (Acc), sensitivity (Sens), specificity (Spec),
standard deviation (Std Dev) and variance (Var) have been abbreviated.

Radius Feat Acc Sens Spec Std Dev Var F-Score

1 576 0.734 0.819 0.592 0.140 0.020 0.687

2 1440 0.807 0.897 0.658 0.130 0.017 0.759

3 2592 0.811 0.911 0.643 0.126 0.016 0.754

Table 4.11: Comparison of orientation bins for the calculation of the gradient orien-
tations and co-occurrence matrices. Note that feature selection was not applied due
to the differences in the feature vector sizes. The number of features (Feat), accu-
racy (Acc), sensitivity (Sens), specificity (Spec), standard deviation (Std Dev) and
variance (Var) have been abbreviated.

Bins Feat Acc Sens Spec Std Dev Var F-Score

6 648 0.677 0.789 0.490 0.147 0.022 0.604

8 1152 0.708 0.871 0.436 0.146 0.021 0.581

10 1800 0.678 0.797 0.479 0.144 0.021 0.599

12 2592 0.811 0.911 0.643 0.126 0.016 0.754

14 3528 0.722 0.860 0.491 0.135 0.018 0.625

Feature Selection

Using our feature selection approach, we were able to reduce our feature vector size

from 2592 to only 258, while improving both the accuracy and F-Score (Table 4.13).
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Table 4.12: Comparison of gradient orientation types and the planes along which
the co-occurrence matrix is calculated. A-S refers to Axial-Sagittal, A-C refers to
Axial-Coronal, and S-C refers to Sagittal-Coronal. Note that feature selection was
not applied due to the differences in GO and CM. The number of features (Feat),
accuracy (Acc), sensitivity (Sens), specificity (Spec), standard deviation (Std Dev)
and variance (Var) have been abbreviated.

GO Type CM Plane Feat Acc Sens Spec Std Dev Var F-Score

A-S Coronal 2592 0.649 0.762 0.459 0.149 0.022 0.573

A-S Sagittal 2592 0.638 0.774 0.412 0.146 0.021 0.538

A-S Axial 2592 0.547 0.684 0.320 0.143 0.020 0.436

A-C Coronal 2592 0.722 0.855 0.500 0.139 0.019 0.631

A-C Sagittal 2592 0.811 0.911 0.643 0.126 0.016 0.754

A-C Axial 2592 0.748 0.865 0.554 0.139 0.019 0.676

S-C Coronal 2592 0.606 0.786 0.306 0.134 0.018 0.441

S-C Sagittal 2592 0.677 0.827 0.428 0.136 0.019 0.564

S-C Axial 2592 0.621 0.807 0.309 0.134 0.018 0.447

As is visible in our results, the classification performance was generally inversely

proportional to the number of features until fewer than 258 features were selected.

While feature numbers slightly larger than 258 provided slightly superior sensitivity

scores, the specificity was significantly lower, resulting in inferior F-Scores.

Classifier Ablation Study

The results of our classifier ablation study indicate that the ensemble classifier is

able to outperform the individual base classifiers in terms of both accuracy and F-

Score (Table 4.14). Of the base classifiers, the two SVMs achieve the best performance

while the KNN classifier performs the worst. While most of the base classifiers yielded

accuracies and F-Scores within approximately 5% of the ensemble model, KNN results

were significantly worse, with the exception of the sensitivity. Although the SVM and

Logistic Regression Kernel Machine classifiers also achieve greater sensitivity scores

than the ensemble model, all of the base classifiers have specificity scores below 0.79,
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Table 4.13: Comparison of feature vector sizes used for classification based on ReliefF
ranking. The number of features (Feat), accuracy (Acc), sensitivity (Sens), specificity
(Spec), standard deviation (Std Dev) and variance (Var) have been abbreviated.

Feat Acc Sens Spec Std Dev Var F-Score

2592 0.811 0.911 0.643 0.126 0.016 0.754

2300 0.810 0.907 0.649 0.017 0.132 0.756

1896 0.811 0.921 0.628 0.127 0.016 0.747

1394 0.828 0.931 0.656 0.129 0.017 0.770

1043 0.826 0.920 0.668 0.123 0.015 0.774

776 0.851 0.937 0.706 0.120 0.014 0.805

559 0.853 0.926 0.732 0.117 0.014 0.817

396 0.858 0.936 0.727 0.114 0.013 0.819

258 0.860 0.889 0.812 0.118 0.014 0.848

154 0.821 0.826 0.812 0.130 0.017 0.819

which is reflected in their lower respective F-Scores.

Table 4.14: Ablation study of the ensemble classifier for Centre 1. The number
of features (Feat), accuracy (Acc), sensitivity (Sens), specificity (Spec), standard
deviation (Std Dev) and variance (Var) have been abbreviated.

Classifier Feat Acc Sens Spec Std Dev Var F-Score

Ensemble 258 0.860 0.889 0.812 0.118 0.014 0.848

Linear SVM 258 0.851 0.893 0.782 0.116 0.014 0.834

RBF SVM 258 0.850 0.894 0.778 0.117 0.014 0.832

KNN 258 0.690 0.948 0.260 0.104 0.011 0.408

FCNN 258 0.827 0.881 0.735 0.130 0.017 0.802

LogReg KM 258 0.846 0.907 0.744 0.118 0.014 0.817

Comparison with 3D CNNs

In order to compare our results to existing approaches, we used 3D implementations of

ResNet10 [85], MobileNetv2 [86], ShuffleNetv2 [87] and DenseNet121 [88] as baselines.
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The pre-processed ROIs of the dataset were padded with 0 values in order to create

volumes of equal size in all 3 dimensions for the CNN methods after which they could

be split into 5 folds. Therefore, the reported CNN results are the averages across

the five folds where 4 folds were used for training and 1 for testing. In the case

of the Centre 1 dataset, V-CoHOG outperformed all tested CNN approaches (Table

4.15) with the relatively complex DenseNet121 achieving the worst results. As CNN

methods normally rely on an abundance of training data in order to achieve excellent

classification performance, comparatively poor performance seen in our results is not

surprising, considering the small size of the Centre 1 dataset.

Table 4.15: Results of the V-CoHOG ensemble classifier as well as those of the 4 3D
CNN methods for the Centre 1 dataset. The CNN approaches achieve comparably
low accuracies and F-Scores, likely due to the size of the dataset. The accuracy (Acc),
sensitivity (Sens), and specificity (Spec) have been abbreviated.

Classifier Acc Sens Spec F-Score

V-CoHOG 0.860 0.889 0.812 0.848

ResNet10 0.632 0.610 0.667 0.627

MobileNetv2 0.632 0.700 0.533 0.374

ShuffleNetv2 0.632 0.680 0.533 0.335

DenseNet121 0.604 0.650 0.533 0.240

Feature Mapping

Using the 258 features from our selection step which yielded the best classification

performance, we create segmentation maps of the origin voxels in the GO volumes

of select patients and controls. We then overlaid these segmentation maps onto their

original imaging volumes (Figure 4.2). As the segmentation maps are based on the

GO volumes calculated using the pre-processed imaging data, we estimate the overlay

accuracy to be within slightly over 3mm due to the effects of 0.33 factor scaling and

the Sobel operation on the input volume.

While 2 of these 4 samples were usually mis-classified, all four appear to share
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a number of segmented areas for multiple features, as marked by the brightest re-

gions in the segmentation maps. These areas are most visible in the coronal slices

(right column) and appear to be positioned slightly above the corpus callosum, in

the approximate vicinity of the CST’s anterior boundary. Therefore, it appears that

the origins of some of the features generated using the V-CoHOG method localize to

comparable regions of the brain, even without the use of normalization or registration

in the pre-processing stage.

4.3.2 Centre 2

Centre 2 was the second largest in terms of dataset size and involved the use of a GE

MRI scanner for image acquisition as opposed to Centre 1’s Siemens. While most of

the optimal parameter values were shared with Centre 1, a coronal offset of 0.56 for

the ROI was found to allow for better performance than Centre 1’s 0.52 (Table 4.4).

Additionally, only 174 features were required to achieve the optimal results.

The achieved accuracy of 0.792 (Table 4.5) is enough to surpass M-CoHOG’s 0.766

for the same dataset. However, due to the low specificity, M-CoHOG’s F-Score of

0.763 is superior to the proposed method’s 0.730. The ablation result for centre 2

(Table 4.16) is generally similar to that of centre 1. However, the FCNN base classi-

fiers appear to be significantly worse than what was observed previously. Nevertheless,

KNN results remain the lowest while the ensemble classifier once again achieves the

top performance.

Comparison with 3D CNNs

CNN results for the Centre 2 dataset were similar to those of Centre 1 (4.17), with

V-CoHOG again achieving superior classification performance to the 4 deep learning

methods. However, both ResNet10 and MobileNetv2 achieve superior specificity to

our approach, although it is not enough to provide a significant improvement to their

respective F-Scores.
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(a) Patients

(b) Controls

Figure 4.2: Heatmaps of the selected 258 features overlaid onto a selection of patients
and controls from Centre 1 which were predominantly classified either correctly or
incorrectly. Areas with greater intensity correspond to regions which acted as the
origin of a greater number of features. The top 2 rows belong to ALS patient data
samples while the bottom 2 rows were controls. Within each group, the top row
corresponds to a data sample that was correctly classified an overwhelming number
of times while the bottom was usually misclassified. Note that the second row of
the patient section corresponds to a data sample that was determined to be an ALS
mimic rather than a true positive and later removed as part of a quality review.
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Table 4.16: Ablation study of the ensemble classifier for Centre 2. The number
of features (Feat), accuracy (Acc), sensitivity (Sens), specificity (Spec), standard
deviation (Std Dev) and variance (Var) have been abbreviated.

Classifier Feat Acc Sens Spec Std Dev Var F-Score

Ensemble 174 0.792 0.874 0.627 0.147 0.022 0.730

Linear SVM 174 0.781 0.896 0.551 0.145 0.021 0.682

RBF SVM 174 0.782 0.897 0.552 0.145 0.021 0.683

KNN 174 0.665 0.998 0.000 0.015 0.000 0.000

FCNN 174 0.684 0.941 0.170 0.103 0.011 0.288

LogReg KM 174 0.766 0.898 0.501 0.139 0.019 0.643

Table 4.17: Results of the V-CoHOG ensemble classifier as well as those of the 4 3D
CNN methods for the Centre 2 dataset. The accuracy (Acc), sensitivity (Sens) and
specificity (Spec) have been abbreviated.

Classifier Acc Sens Spec F-Score

V-CoHOG 0.792 0.874 0.627 0.730

ResNet10 0.675 0.590 0.833 0.666

MobileNetv2 0.442 0.230 0.833 0.300

ShuffleNetv2 0.500 0.450 0.600 0.080

DenseNet121 0.483 0.400 0.600 0.000

Feature Mapping

The feature segmentation masks for Centre 2 (Figure 4.3) appear more heterogeneous

than those of Centre 1, particularly when comparing patients (top 2 rows) with con-

trols (bottom 2 rows). This observation may be partially explained by the significant

difference in sensitivity and specificity obtained for this dataset (Table 4.5). Due to

the greater ROI offset from the anterior, the features now also seem to be located

mostly outside of CST regions.
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(a) Patients

(b) Controls

Figure 4.3: Heatmaps of the selected 174 features overlaid onto a selection of patients
and controls from Centre 2 which were predominantly classified either correctly or
incorrectly. Areas with greater intensity correspond to regions which acted as the
origin of a greater number of features. The top 2 rows belong to ALS patient data
samples while the bottom 2 rows were controls. Within each group, the top row
corresponds to a data sample that was correctly classified an overwhelming number
of times while the bottom was usually misclassified.
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4.3.3 Centre 3

Even though Centre 3 shared it’s MRI system vendor with Centre 2, we found the

parameters used for Centre 1 to be optimal (Table 4.4). Using a selection of 186

features, we obtained an accuracy of 0.791 (Table 4.5), once again outperforming the

M-CoHOG method’s 0.732. Additionally, both the KNN and FCNN base classifiers

were not able to yield any promising results (Table 4.18), similar to what was seen for

Centre 2. Overall, the results remain in line with those of the previous two centres,

with a sensitivity that is significantly greater than the specificity, possibly impacted

by the imbalance in the number of patients and controls in the training set.

Table 4.18: Ablation study of the ensemble classifier for Centre 3. The number of fea-
tures (Feat), accuracy (Acc), sensitivity (Sens), specificity (Spec), standard deviation
(Std Dev) and variance (Var) have been abbreviated. Due to the comparatively low
classification performance of the KNN and FCNN base classifiers, another ablation
study was performed that did not include these two classifiers in Section 4.3.4.

Classifier Feat Acc Sens Spec Std Dev Var F-Score

Ensemble 186 0.791 0.868 0.715 0.209 0.044 0.784

Linear SVM 186 0.788 0.867 0.709 0.207 0.043 0.780

RBF SVM 186 0.788 0.867 0.710 0.207 0.043 0.780

KNN 186 0.500 1.000 0.000 0.000 0.000 0.000

FCNN 186 0.500 1.000 0.001 0.008 0.000 0.001

LogReg KM 186 0.773 0.834 0.712 0.201 0.041 0.768

Comparison with 3D CNNs

Once again, V-CoHOG outperformed the 3D CNN methods tested (Table 4.19), al-

though there was an increase in the accuracy achieved by some of the deep learn-

ing approaches. Nevertheless, the F-Score remained significantly below that of our

method.
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Table 4.19: Results of the V-CoHOG ensemble classifier as well as those of the 4 3D
CNN methods for the Centre 3 dataset. The accuracy (Acc), sensitivity (Sens) and
specificity (Spec) have been abbreviated.

Classifier Acc Sens Spec F-Score

V-CoHOG 0.791 0.868 0.715 0.784

ResNet10 0.737 0.733 0.700 0.581

MobileNetv2 0.520 0.800 0.200 0.000

ShuffleNetv2 0.730 0.600 0.900 0.633

DenseNet121 0.520 0.533 0.500 0.114

4.3.4 Centre 4

The last of the CALSNIC-1 datasets, Centre 4 also shared most optimal parameters

with Centre 1 with the exception of a slight difference in the coronal offset (Table

4.4). When provided to the ensemble classifier, the 164 features selected allowed

for the highest single accuracy among the centres at 0.870 (Table 4.5), significantly

outperforming M-CoHOG’s result of 0.716. While the KNN base classifier was again

unable to achieve a meaningful result (Table 4.20), the SVM classifier with a linear

kernel obtained an F-Score that was slightly higher than that of the ensemble classifier,

demonstrating that the ensemble classifier may be slightly outperformed by particular

base classifiers in certain cases.

Comparison with 3D CNNs

Centre 4 saw the best performance of a 3D CNN classifier among the single-centre

datasets, with ResNet10 and MobileNetv2 achieving specificities of 1.000 and ResNet10

achieving an F-Score of 0.787. While ShuffleNetv2 managed to obtain an accuracy of

0.813, the F-Score remained lacking. Therefore, our method still attained the greatest

accuracy and F-Score.
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Table 4.20: Ablation study of the ensemble classifier for Centre 4. The number
of features (Feat), accuracy (Acc), sensitivity (Sens), specificity (Spec), standard
deviation (Std Dev) and variance (Var) have been abbreviated.

Classifier Feat Acc Sens Spec Std Dev Var F-Score

Ensemble 164 0.870 0.895 0.792 0.167 0.028 0.841

Linear SVM 164 0.846 0.847 0.845 0.173 0.030 0.846

RBF SVM 164 0.842 0.842 0.842 0.173 0.030 0.842

KNN 164 0.750 1.000 0.000 0.000 0.000 0.000

FCNN 164 0.857 0.892 0.754 0.149 0.022 0.817

LogReg KM 164 0.853 0.872 0.796 0.166 0.028 0.832

Table 4.21: Results of the V-CoHOG ensemble classifier as well as those of the 4 3D
CNN methods for the Centre 4 dataset. The accuracy (Acc), sensitivity (Sens) and
specificity (Spec) have been abbreviated.

Classifier Acc Sens Spec F-Score

V-CoHOG 0.870 0.895 0.792 0.841

ResNet10 0.787 0.667 1.000 0.787

MobileNetv2 0.740 0.600 1.000 0.660

ShuffleNetv2 0.813 0.867 0.700 0.633

DenseNet121 0.557 0.800 0.200 0.000

Removal of KNN and FCNN Base Classifiers

In the single-centre experiments, the KNN base classifier tended to perform signifi-

cantly worse than the other classifiers. The FCNN classifier yielded lower classification

results than the SVM and Logistic Regression Kernel Machine classifiers, especially

for the Centre 2 (Table 4.16) and 3 (Table 4.18) datasets. We investigated the effect

of removing the KNN and FCNN classifiers from the ensemble model (Table 4.22)

but did not observe significant improvements to the classification results.
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Table 4.22: Results of the ensemble classifiers for Centres 1-4. Ensemble Size 5 results
use all 5 base classifiers in the ensemble model while the Ensemble Size 3 results were
generated using an ensemble model with SVM (linear kernel), Logistic Regression
Kernel Machine and another SVM (RBF kernel) base classifiers. The number of fea-
tures (Feat), accuracy (Acc), sensitivity (Sens), specificity (Spec), standard deviation
(Std Dev) and variance (Var) have been abbreviated.

Centre Ensemble Size Acc Sens Spec Std Dev Var F-Score

1 5 0.860 0.889 0.812 0.118 0.014 0.848

1 3 0.848 0.874 0.804 0.120 0.014 0.837

2 5 0.792 0.874 0.627 0.147 0.022 0.730

2 3 0.790 0.884 0.603 0.145 0.021 0.717

3 5 0.791 0.868 0.715 0.209 0.044 0.784

3 3 0.787 0.876 0.698 0.202 0.041 0.777

4 5 0.870 0.895 0.792 0.167 0.028 0.841

4 3 0.851 0.869 0.799 0.175 0.030 0.832

4.4 Multi Centre Datasets

4.4.1 Centre 1 and 4

In order to better understand the impact of multi-centre datasets on the classification

accuracy, we combined the Centre 1 and 4 datasets, as they share MRI scanner ven-

dors and achieved the best classification results (Table 4.5), and performed a feature

selection on the unified dataset. For all the CALSNIC-1 multi-centre experiments,

the 80-20 train-test split was applied to the data on a per centre basis. We observed

a considerable decrease in classification performance, specifically when comparing F-

Scores to those obtained in the two centres separately (Table 4.23). This result, which

bares the hallmarks typical of those for multi-centre classification studies, could sug-

gest that factors which are not consistent due to the use of the scanner vendor, such as

imaging technique, are impacting the texture of the image volumes. Hence, even with

the same MRI system vendor and the CALSNIC directives to enhance comparability,

combining data from centres 1 and 4 results in a significant decrease in classification
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performance.

Table 4.23: Ablation study of the ensemble classifier for the Centre 1 & 4 combined
dataset. The number of features (Feat), accuracy (Acc), sensitivity (Sens), specificity
(Spec), standard deviation (Std Dev) and variance (Var) have been abbreviated.

Classifier Feat Acc Sens Spec Std Dev Var F-Score

Ensemble 195 0.765 0.772 0.752 0.108 0.012 0.762

Linear SVM 195 0.784 0.835 0.683 0.102 0.011 0.751

RBF SVM 195 0.772 0.827 0.662 0.104 0.011 0.735

KNN 195 0.729 0.872 0.443 0.107 0.011 0.587

FCNN 195 0.797 0.835 0.720 0.104 0.011 0.773

LogReg KM 195 0.811 0.873 0.686 0.099 0.010 0.768

4.4.2 Centre 2 and 3

Similarly to the Centre 1 and 4 dataset, we combined the data from Centre 2 and

3 which both used scanners manufactured by GE. Once again there is a decrease

in classification performance, with the various base classifiers achieving relatively

low specificity scores (Table 4.24). Given our results for these combined datasets, it

appears that the comparability enhancing directives laid out by CALSNIC-1 were not

sufficient to prevent a number of the problems introduced by multi-centre datasets.

4.4.3 CALSNIC-1

The combined CALSNIC-1 dataset encompassed all 4 centres and a parameter search

revealed that the optimal parameters were different for both the pre-processing as well

as the CM calculation steps (Table 4.4). While the optimal neighbourhood radius

and number of orientation bins seemed to be consistent across single centres and the

joint dataset, the GO type and CM plane values found to be best for centre 1 were

only optimal for the other individual centres but not for the combined CALSNIC-1

dataset. Furthermore, in order to help keep the ROI more consistent across centres,
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Table 4.24: Ablation study of the ensemble classifier for the Centre 2 & 3 combined
dataset. The number of features (Feat), accuracy (Acc), sensitivity (Sens), specificity
(Spec), standard deviation (Std Dev) and variance (Var) have been abbreviated.

Classifier Feat Acc Sens Spec Std Dev Var F-Score

Ensemble 89 0.719 0.758 0.660 0.126 0.016 0.706

Linear SVM 89 0.750 0.868 0.575 0.117 0.014 0.691

RBF SVM 89 0.751 0.868 0.575 0.014 0.014 0.692

KNN 89 0.729 0.930 0.427 0.099 0.010 0.585

FCNN 89 0.684 0.940 0.301 0.097 0.009 0.456

LogReg KM 89 0.759 0.894 0.556 0.116 0.013 0.685

the number of axial slices was no longer determined starting from the top of the

brain volume mask, but rather from the computed centroid of the mask volume. The

optimal number of selected features was determined to be 268 and when supplied

to the ensemble classifier resulted in an accuracy of 0.770 (Table 4.25). This result

slightly outperforms the 0.745 accuracy score achieved by M-CoHOG without centre-

wise weighting (Table 4.5). Unlike the majority of the single-centre experiments,

the FCNN base classifier outperformed the Logistic Regression Kernel Machine. All

base classifiers achieved comparable sensitivity results while the significantly lower

specificity scores accounted for the differences between accuracy and F-Score metrics.

Table 4.25: Ablation study of ensemble classifier results for the CALSNIC-1 dataset.
The number of features (Feat), accuracy (Acc), sensitivity (Sens), specificity (Spec),
standard deviation (Std Dev) and variance (Var) have been abbreviated.

Classifier Feat Acc Sens Spec Std Dev Var F-Score

Ensemble 268 0.770 0.820 0.684 0.075 0.006 0.746

Linear SVM 268 0.768 0.827 0.666 0.075 0.006 0.738

RBF SVM 268 0.768 0.826 0.665 0.075 0.006 0.737

KNN 268 0.648 0.882 0.237 0.073 0.005 0.374

FCNN 268 0.760 0.837 0.626 0.081 0.007 0.717

LogReg KM 268 0.740 0.875 0.505 0.080 0.006 0.640
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Comparison with 3D CNNs

Compared to the 4 3D CNN methods, our method was able to achieve the highest

accuracy and F-Score results (Table 4.26). Even though the combined CALSNIC-1

dataset was considerably larger than those of the individual centres, the difference

did not appear significant enough to allow the CNN methods to achieve comparable

accuracy or F-Score results to those of V-CoHOG.

Table 4.26: Results of the V-CoHOG ensemble classifier as well as those of the 4 3D
CNN methods for the combined CALSNIC-1 dataset. The accuracy (Acc), sensitivity
(Sens) and specificity (Spec) have been abbreviated.

Classifier Acc Sens Spec F-Score

V-CoHOG 0.770 0.820 0.684 0.746

ResNet10 0.641 0.683 0.567 0.593

MobileNetv2 0.632 0.670 0.572 0.616

ShuffleNetv2 0.590 0.476 0.783 0.527

DenseNet121 0.481 0.400 0.600 0.000

Feature Mapping

While the feature maps generated for the CALSNIC-1 dataset are also less uniform

than those of from Centre 1 (Figure 4.4), there appear to be some regions with greater

feature intensity that are consistent across the samples. Because the image volumes

were derived from different centres, some of the slices shown have different brightness

levels (see row 2) compared with the others.

We also provide a comparison of the same slices from 2 patients with their single

centre and multi-centre maps placed next to each other (Figure 4.5). Overall the

ROI for the combined dataset falls roughly over the area expected to contain the

CST, hence, a close examination of the areas where the posterior features of the

single centre map coincide with those also present in the CALSNIC-1 feature map

could reveal more information regarding potential biomarkers. For example, as can
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be seen in the coronal slice images (right column), the region slightly above the corpus

callosum contains overlapping multi-feature areas for the patient represented in the

top 2 rows.

4.4.4 Post Data Review

After we had generated our results for the CALSNIC-1 dataset, a quality review

of the data revealed that some of the patient samples in the four centres had been

incorrectly labelled and belonged to subjects with conditions that act as ALS mimics,

such as Multiple Sclerosis (MS). Feature maps from one such patient are present in

the second row of the feature maps for Centre 1 (Figure 4.2). This may explain

the poor classification performance for this particular subject which was classified

as a patient only 22 out of 244 runs in the Centre 1 experiment. However, the

same subject was classified as a patient 183 out of 199 runs in experiments with the

combined CALSNIC-1 dataset. Hence, the multi-centre features could be decreasing

the ensemble model’s ability to differentiate between ALS patients and subjects with

a mimic condition.

Nevertheless, removing patient samples which had been identified as problematic,

which reduced the total number of samples in the CALSNIC-1 dataset from 111

to 96 (Table 4.27), did not appear to have any significant effects on most of the

classification results (Table 4.28). In a number of cases, the accuracy and/or F-Score

slightly decreased. The exception was the combined CALSNIC-1 dataset, which saw

an increase in specificity to 0.738, accuracy to 0.781 and F-Score to 0.773, suggesting

that the ALS mimic datasamples in the CALSNIC-1 dataset are contributing to the

ensemble model’s difficulty identifying control samples.

4.5 CALSNIC-2

CALSNIC-2 is a dataset which is still undergoing growth and has not seen use in

ALS classification methods before. With the inclusion of 225 subjects, CALSNIC-2
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(a) Patients

(b) Controls

Figure 4.4: Heatmaps of the selected 268 features overlaid onto a selection of patients
and controls from the combined CALSNIC-1 dataset which were predominantly classi-
fied either correctly or incorrectly. Areas with greater intensity correspond to regions
which acted as the origin of a greater number of features. The top 2 rows belong
to ALS patient data samples while the bottom 2 rows were controls. Within each
group, the top row corresponds to a data sample that was correctly classified an
overwhelming number of times while the bottom was usually misclassified.
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(a) Centre 1 Patient

(b) Centre 2 Patient

Figure 4.5: Heatmap comparison of a patient from Centre 1 (top 2 rows) and Centre
2 (bottom 2 rows). The first row in each section corresponds to the selected features
used when classifying only within the same centre while the second row corresponds
to the features used for classification in the CALSNIC-1 multicentre dataset.
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Table 4.27: Overview of the number of patients and controls in the 4 CALSNIC-1
centres after a quality review. All control samples were retained from the initial round
of experiments.

Centre Edmonton (1) Toronto (2) Calgary (3) Montreal (4)

Patients 19 16 8 11

Controls 15 12 8 7

Table 4.28: Ensemble classifier results for the CALSNIC-1 centres after a quality
review. The accuracy (Acc), sensitivity (Sens), specificity (Spec), standard deviation
(Std Dev) and variance (Var) have been abbreviated.

Centre Acc Sens Spec Std Dev Var F-Score

1 0.848 0.930 0.739 0.125 0.016 0.824

2 0.738 0.790 0.659 0.176 0.031 0.719

3 0.824 0.884 0.763 0.190 0.036 0.819

4 0.859 0.883 0.812 0.203 0.041 0.846

1+4 0.796 0.880 0.671 0.103 0.011 0.761

2+3 0.718 0.725 0.709 0.118 0.014 0.717

All 0.781 0.812 0.738 0.089 0.008 0.773

is comparatively large given the sizes of other imaging datasets in the ALS domain.

While the nature of the dataset shares numerous traits with CALSNIC-1 and includes

even more centres, a parameter search yielded slight differences when comparing the

optimal parameter values (Table 4.4). Additionally, a relatively small feature set of

size 71 allowed for the best classification performance (Table 4.29) with the ensemble

classifier achieving better accuracy and F-Score metrics than all of the base classifiers.

4.5.1 Comparison with 3D CNNs

Compared to the four 3D CNN approaches tested, V-CoHOG achieved both the

highest accuracy and F-Score results (Table 4.30). Possibly due to the increased size

of the dataset, ResNet10 was able to achieve results which were superior to those

obtained with the CALSNIC-1 dataset, even if the metrics were not great enough to
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Table 4.29: Ablation study of ensemble classifier results for the CALSNIC-2 dataset.
The number of features (Feat), accuracy (Acc), sensitivity (Sens), specificity (Spec),
standard deviation (Std Dev) and variance (Var) have been abbreviated.

Classifier Feat Acc Sens Spec Std Dev Var F-Score

Ensemble 71 0.752 0.733 0.771 0.058 0.003 0.752

Linear SVM 71 0.743 0.699 0.790 0.058 0.003 0.741

RBF SVM 71 0.743 0.699 0.790 0.058 0.003 0.741

KNN 71 0.702 0.569 0.841 0.063 0.004 0.679

FCNN 71 0.746 0.718 0.774 0.003 0.059 0.745

LogReg KM 71 0.747 0.713 0.782 0.061 0.004 0.746

surpass our method.

Table 4.30: Results of the V-CoHOG ensemble classifier as well as those of the 4 3D
CNN methods for the CALSNIC-2 dataset. The accuracy (Acc), sensitivity (Sens)
and specificity (Spec) have been abbreviated.

Classifier Acc Sens Spec F-Score

V-CoHOG 0.752 0.733 0.771 0.752

ResNet10 0.700 0.698 0.702 0.685

MobileNetv2 0.615 0.558 0.669 0.589

ShuffleNetv2 0.627 0.624 0.631 0.613

DenseNet121 0.532 0.508 0.557 0.398

4.5.2 Feature Mapping

Interestingly, the segmentation maps for the CALSNIC-2 dataset appear more ho-

mogenous than those observed for the CALSNIC-1 dataset (Figure 4.6). Notably,

there appears to be an origin region of multiple selected features located to slightly

below the right side of the corpus callosum (this region appears on the left instead of

right in the coronal slices). Once again, a number of features appear to originate in

regions that could correspond to areas of the CST.
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(a) Patients

(b) Controls

Figure 4.6: Heatmaps of the selected 71 features overlaid onto a selection of patients
and controls from multicentre CALSNIC-2 dataset which were predominantly classi-
fied either correctly or incorrectly. Areas with greater intensity correspond to regions
which acted as the origin of a greater number of features. The top 2 rows belong
to ALS patient data samples while the bottom 2 rows were controls. Within each
group, the top row corresponds to a data sample that was correctly classified an
overwhelming number of times while the bottom was usually misclassified.
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4.6 Application to Alzheimer’s Disease

Another neurodegenerative affliction that is diagnosed using a combination of clinical

presentation and biomarkers is Alzheimer’s Disease (AD), which is responsible for

more dementia cases around the world than any other cause [89]. From 2004 to

2011, AD was specified as the cause of 80,868 deaths in Canada [90]. In order to

demonstrate that our method was applicable to diseases other than ALS, we chose

a subset of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset [91] to

evaluate our methods performance when tasked with classifying between AD patients

and healthy controls.

In this section, we present the results of a preliminary parameter search and clas-

sification using V-CoHOG in conjunction with the ADNI dataset. We selected a

total of 172 AD patients and 229 healthy controls to use for the evaluation of our

method and maintained the same evaluation criteria and approach as was used for

the ALS datasets. The parameter search results suggest that most values used for

the ALS datasets were not necessarily well suited for AD, with the exception of the

quantization bin size (Table 4.31). Another important difference appears to be the

importance of a comparatively large feature number of 1358, rather than the few

hundred features which generally worked best for ALS. We use a threshold tau = 3

(Algorithm 1) to calculate the feature vector and K = 13 for feature selection with

ReliefF using K = 13 (Section 3.3.2).

4.6.1 Comparison with 3D CNNs

When compared with ResNet10, which yielded the best overall CNN results for ALS,

our method achieves a comparable accuracy and F-Score. Of note is that the sensitiv-

ity and specificity scores of our method and ResNet10 appear to be divergent, while

the accuracy and F-Score appear to lie between the two disparate metrics. Hence, our

method appears to be adaptable to a variety of volume classification tasks present in
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Table 4.31: Parameters found to yield the optimal classification results for the ADNI
dataset after a preliminary parameter search.

Parameter Value

Scaling 0.5

Coronal Offset 0.42

Coronal Slices 26

Axial Slices Centroid + 10

Radius 4

Bins 12

GO Type Sagittal-Coronal

CM Calc Plane Axial

Features 1358

Table 4.32: Results of the V-CoHOG ensemble classifier as well as those of ResNet10
for the ADNI dataset. The accuracy (Acc), sensitivity (Sens) and specificity (Spec)
have been abbreviated.

Classifier Acc Sens Spec F-Score

V-CoHOG 0.763 0.708 0.805 0.753

ResNet10 0.758 0.849 0.690 0.757

the medical imaging domain.
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Chapter 5

Conclusion

5.1 Summary

In this chapter, we conclude our thesis by providing a brief overview of the back-

ground, methodology and results discussed previously, and how these concepts can

contribute to the field of texture-based volume classification in medical imaging.

Specifically, we will address the runtime performance of CUDA-Accelerated M-CoHOG

as well as the classification performance and observations of V-CoHOG when applied

to the CALSNIC and ADNI MRI datasets. We will also present some possible direc-

tions for future work which builds upon our proposed method and findings.

First, in Chapter 2, we discussed the use of image textures in order to generate

features which can be applied to statistic or classification tasks. One of the earliest

texture feature approaches, Gray-Level Co-occurrence Matrices, calculated a vari-

ety of statistical features based on pixel intensities, or gray levels, and was followed

by methods such as Gray-Level Run Lengths, wavelets and Scale Invariant Feature

Transform which expanded the domain of invariant texture analysis. The devel-

opment of Histograms of Oriented Gradients allowed for even greater classification

performance than the previous methods in a number of tasks; with the development

of various modifications and additions, such as Co-occurrence Histograms of Oriented

Gradients, expanding upon the original gradient orientation and histogram compu-

tation approach. While CoHOG mainly introduced the concept of calculating the
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CMs based on orientation pairs, most recent applications of HOG and CoHOG have

involved further additions such as the use of multiple input image resolutions as well

as adaptations to three dimensional imaging data.

Next, we introduced the concept of hardware accelerated image processing and dis-

cussed the advantages of using parallel computing in order to analyze digital imaging

data. Notably, we looked at examples of HOG adaptations partially implemented to

run on GPUs, and the runtime performance benefits of such approaches. The dis-

cussion of image processing was then directed towards the medical imaging domain,

where fundamental principles behind magnetic resonance imaging were introduced.

A number of limitations continue to pursue MRI datasets due to factors such as tech-

nique consistency, normalization methods, and relatively small dataset sizes. Many

of these factors are further compounded in multi-centre datasets which attempt to

address the size limitation. Furthermore, post-processing techniques applied to MRI

data, while circumstantially beneficial, can hinder the performance of downstream

tasks, such as classification.

Amyotrophic Lateral Sclerosis, a neurodegenerative disease with only rare cases of

symptom reversion, was the focus of the majority of datasets we applied. After dis-

cussing the neuroanatomical background of the condition, we examined previous work

on imaging biomarkers for ALS and how they may improve patient survival time via

more rapid classification allowing for earlier treatment. Nevertheless, previously ex-

isting ALS MRI datasets involved the same limitations mentioned previously, hence,

initiatives such as the Canadian ALS Neuroimaging Consortium were created in order

to improve the intra-comparability of multi-centre imaging datasets while achieving

an increased dataset size not attainable by a single location. Finally, we concluded

the chapter by introducing Modified Co-occurrence Histograms of Oriented Gradi-

ents which was able to achieve state-of-the-art classification results on a CALSNIC-1

dataset.

Chapter 3 began by detailing our CUDA implementation of the costliest sections of
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the M-CoHOGmethod. We then proceeded to introduce our proposed extension of M-

CoHOG, Volumetric Co-occurence Histograms of Oriented Gradients, and discussed

the changes made to the CUDA utilization when compared with the original method.

Initially, we pre-processed the data by creating brain volume segmentation masks

with Brain Extraction Tool which could then be cropped and scaled for ROI selection.

The feature generation involved the computation of 3 gradient orientation volumes,

one of which was then selected for calculation of the co-occurrence matrices using a

neighbourhood size with a given radius. After the normalization and concatenation

of the feature vector, we applied feature selection via ReliefF in order to choose a

subset of features to be used for classification with our ensemble model classifier.

In Chapter 4 we discussed our results, beginning with an evaluation of the run-

time performance of CUDA-accelerated M-CoHOG on the Centre 1 ALS and DIV2K

datasets. While the speedup achieved was rather marginal when using small images,

generation of features could be performed up to 19.9× as quickly for the DIV2K data

subset. Thereafter, we examined the classification performance of our method on

the ALS datasets CALSNIC-1 and CALSNIC-2, where our method achieved superior

accuracy and F-scores to 4 3D CNN methods. Additionally, our method allowed for

state-of-the-art classification performance on the CALSNIC-1 single-centre datasets

when compared to M-CoHOG. Additionally, our method’s accuracy of 0.770 was able

to surpass the comparable 3D CNN approaches tested as well as the state-of-the-art

for the combined and unweighted CALSNIC-1 dataset without relying on expert seg-

mented ROI masks. For CALSNIC-2, V-CoHOG also achieved the best performance

with an accuracy of 0.752, which could be considered a baseline result for future

classification studies using the still expanding CALSNIC-2 dataset. Finally, applying

our method to the ADNI dataset allowed us to achieve comparable performance to

ResNet10 after a preliminary parameter search, with an accuracy of 0.763. Unfortu-

nately, we were not able to find a fixed set of ROI cropping parameters which yielded

superior results for all ALS datasets, as even slight changes to the ROI could result
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in significant changes to classification performance (see 4.3.1). Nevertheless we ob-

served a trend in that ROIs which were located more anteriorly performed better in

the single-centre datasets, while ROIs more closely aligned with the CST allowed for

better multi-centre metrics.

In addition to patient classification, we also generated segmentation maps for the

selected feature sets, indicating their place of origin in the original imaging volumes.

These maps displayed a number of segmentation clusters which appeared to be shared

across samples. Hence, further investigation of these regions may indicate that they

bear relevance as imaging biomarkers for ALS, particularly if they localize to known

indicator regions such as the CST and precentral gyrus. Furthermore, the comparable

localization of some feature clusters further underline the capabilities of features gen-

erated using V-CoHOG on imaging data which has not been registered or normalized.

5.2 Future Considerations

Additional work could be applied to a number of areas investigated in this thesis.

Areas of interest visible in the feature segmentation maps may warrant further in-

vestigation as they could correspond to imaging biomarkers that could aid in patient

diagnosis. Beyond ALS, there remain additional AD datasets apart from ADNI which

could be considered, in addition to ALS mimics such as multiple Sclerosis. Further-

more, the suggested method is not restricted to brain images and could therefore be

applied to conditions which impact various areas of the body. Because the nature of

the generated features is not strictly suited to describing anatomical properties, but

rather properties of image textures, our method could even be applied to non-medical

classification tasks where volume data is available.

There are also a number of ways in which our method could be refined, including:

• Streamlining the parameter search process: Determining the optimal parame-

ters for V-CoHOG is one of the least well-defined and potentially most prolonged
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steps of the method. Rather than use a grid search on a single parameter basis,

a more sophisticated approach, such as a Bayesian or gradient method, could

allow for the determination of superior local maxima in less time.

• Extending ROI selection capabilities: As the ROI included for classification in-

creases in size, classification performance may both increase or decrease. This

could be due to the inclusion of additional biomarker regions, which would fa-

cilitate increased discrimination capabilities, or due to increases in noise, which

can mislead the classifier model. Using an ROI cropping process which is more

relative could help ensure that the ROIs between subjects are more comparable,

even when there are differences in characteristics such as volume size. Via the

use of more intricate segmentation masks, it may even be possible to crop the

ROI based on neuroanatomical boundaries, as opposed to a cuboid selection.

• Using a combination of features: The feature vector generated by V-CoHOG is

a concatenation of normalized CMs. Additional CMs can be calculated using

a variety of GO types and CM calculation planes and then concatenated to

form a larger feature vector with potential for greater classification capability.

Nevertheless, this approach could also increase the amount of feature noise

which could reduce the method’s performance. Hence, concatenation could

occur after feature selection with only the best features selected for different

parameter combinations being added to the final feature vector.
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