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Abstract

Water scarcities are becoming serious issues worldwide primarily due to population growth,

climate change, and increasing pollution. Since a large portion of freshwater is consumed

in agricultural activities, with the main consumer being irrigation, increasing the water-

use efficiency in irrigation through precision irrigation is a critical step toward reducing the

freshwater shortage. Precision irrigation can be achieved by forming a closed-loop irrigation

system that closes the irrigation decision loop. To implement the closed-loop irrigation,

soil moisture information that is required for feedback control must be provided. In order to

obtain the soil moisture information of the entire field, the soil moisture estimation techniques

based on the measurements of a small number of sensors are proposed. While soil moisture

estimation in agricultural fields is possible, a few main challenges yet exist. Firstly, because

of the limited number of available sensors in the agricultural fields, a major challenge is to

identify the optimal location of the sensors in the soil so that improved state estimation

can be achieved. Additionally, accurate quantification of soil hydraulic parameters, which

are crucial for developing an agro-hydrological model and affect its accuracy, is essential

for estimating soil moisture. Another challenge associated with soil moisture estimation is

converting the remote sensing data into soil moisture that can provide the soil moisture

measurements for a large region of the agricultural field. The purpose of this thesis is to

find solutions to the aforementioned challenges, resulting in a comprehensive soil moisture

estimation method that can be used for closed-loop irrigation.

Firstly, we describe an actual agricultural field in Lethbridge, Canada studied in this
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thesis. A three-dimensional agro-hydrological framework is then developed to model the

actual field. We specifically use the cylindrical coordinates version of the Richards equation to

model a field equipped with a center pivot irrigation system. The heterogeneous distribution

of the soil parameters is considered in the Richards model. The modal degree of observability

is then applied to the 3D field model to determine the optimal sensor locations in the actual

field. The extended Kalman filter is also employed to estimate the soil moisture content of

the actual field using the real measurements obtained from the point sensors. The estimation

results are then analyzed to investigate the effects of sensor placement on the performance

of soil moisture estimation in the actual applications.

To address the second challenge, we propose a systematic estimation approach to simulta-

neously estimate the soil moisture and soil hydraulic parameters in the 3D agro-hydrological

systems with spatially heterogeneous soil parameters. In this part, microwave remote sensors

that are mounted on the center pivots are considered to provide the rotating measurements.

The sensitivity analysis is employed to determine the most important subset of soil hydraulic

parameters for estimation. Another feature of the proposed method is using the Kriging in-

terpolation method for updating the rest parameters that are not estimated. The proposed

method is applied to two different simulated three-dimensional fields, and the simulation re-

sults of the considered agro-hydrological systems illustrate the applicability and effectiveness

of the proposed method on the performance of soil moisture estimation.

Further, the algorithm for surface soil moisture estimation using the thermal and opti-

cal remote sensing images is proposed. The machine learning-based Multilayer Perceptron

(MLP) model is developed to convert the multispectral images to soil moisture. The de-

veloped model is applied to the real agricultural field in Lethbridge and is trained using

the experimental data collected in the summer of 2019. The results demonstrate a strong

agreement between the measured soil moisture and predicted soil moisture from the MLP

model. Throughout this thesis, we demonstrate how the proposed solutions can be used to

effectively address the challenges discussed earlier.
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Chapter 1

Introduction

1.1 Motivation

Water and food scarcities are becoming serious issues worldwide primarily due to population

growth, climate change, and increasing pollution. According to United Nations’ statistics [6],

of the total amount of freshwater, approximately 70 percent is consumed in the agricultural

activities, with the main consumer being irrigation. Currently, the average water-use effi-

ciency in irrigation worldwide is about 60 percent as reported in Fischer et al. [7]. That

means a significant portion of the water used in irrigation is wasted due to inefficient ir-

rigation strategies. Therefore, it is of vital importance to improve the water-use efficiency

in agriculture irrigation, in order to mitigate the freshwater supply crisis. In the current

irrigation practice, irrigation in general is determined in an open-loop fashion in which little

real-time feedback from the field such as soil moisture is considered. The amount and time of

irrigation are typically determined by the farmer based on their experience, which often leads

to excessive or insufficient irrigation [8]. One promising solution to address this issue and

improve the water-use efficiency is to use a closed-loop irrigation system where a controller

uses real-time field conditions to make the best irrigation decisions [9, 10]. Although using

the closed-loop irrigation system can lead to optimized irrigation and increased crop yield
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and profit, its implementation can be challenging. In the development of such a closed-loop

irrigation system, the soil moisture information of the entire field which should be fed back

to the controller is required. On the other hand, the agriculture fields usually are of very

large scale and installing the sensors in the whole field is impractical. Therefore, one of

the main barrier in implementing the closed-loop irrigation system is the lack of field-wide

soil moisture measurements. To address this issue, soil moisture estimation techniques that

reconstruct full soil moisture information based on the measurements of a small number of

sensors have been proposed [11, 1, 12, 13].

However, due to the limited number of available sensors in the agricultural fields, it is

an important problem to determine the optimal locations to install the sensors in the soil

such that improved soil moisture estimation can be obtained. Furthermore, in soil moisture

estimation, an agro-hydrological model is employed to predict the dynamics of the soil mois-

ture content. One of the main important inputs in the agro-hydrological models is the soil

hydraulic parameters. These parameters which characterize the properties of the soil, affect

the model’s accuracy. Thus, the accurate quantification of the soil hydraulic parameters

can improve the accuracy of modeling of the agro-hydrological system which leads to more

accurate estimates of soil moisture. Therefore, estimating the soil hydraulic parameters is

very essential for soil moisture estimation. Estimating the soil hydraulic parameters experi-

mentally in a soil lab is time consuming and expensive especially for large-scale fields with

heterogeneous soils. In addition, these parameters may change over time and it would be

expensive to take frequent soil samples for lab analysis. An alternative solution is to estimate

the soil hydraulic parameters along with the soil moisture at the same time [13]. Further,

since it is very expensive to obtain a thorough water distribution of a large-scale field us-

ing point sensors, remote sensing techniques typically are employed to obtain soil moisture

measurements of the entire field. Converting the remote sensing images to soil moisture is an-

other challenge associated with soil moisture estimation. The above considerations motivate

this thesis.
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1.2 Literature Review

The literature review consists of three subsections. The first subsection provides a summary

of the literature on soil moisture estimation strategies and a detailed discussion of optimal

sensor placement. In the second subsection, different approaches to soil hydraulic param-

eters estimation and the effect of sensitivity analysis on simultaneous state and parameter

estimation are discussed. The last subsection discusses remote sensing techniques which are

used to provide the soil moisture measurements for a large region of the agricultural field.

1.2.1 Soil Moisture Estimation and Sensor Placement

To address the problem of soil moisture estimation in the agricultural fields, one commonly

used type of approach is sequential data assimilation. This approach integrates an agro-

hydrological model with small number of soil moisture measurements to estimate the soil

moisture of the entire field. In general, in the sequential data assimilation approach, the

first step is to use a dynamical system model to describe a real process. In this work, we

model the agro-hydrological system using the Richards equation. The Richards equation is

a partial differential equation (PDE) that describes the flow of water through unsaturated

porous media under the action of gravity and capillarity. However, due to the limited

process knowledge and simplifications, the Richards model is unable to predict the soil

moisture accurately. Then, in the second step, an algorithm is designed to determine how

to correct the predicted soil moisture, based on the field measurements and the Richards

model. Moreover, sequential data assimilation has the ability to deal with uncertainties in

the measurements and the model.

Popular methods for the sequential assimilation of soil moisture observations include

the extended Kalman filter (EKF) [1, 14, 15], the ensemble Kalman filter (EnKF) [16, 17],

and the particle filter (PF) [18, 19]. In [14] various assimilation techniques derived from

the Kalman Filter were studied. Reichle et al. [15] compared the performance of the EKF
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and EnKF methods in the soil moisture estimation of a land surface model, known as the

Catchment Model. Based on their study, although the performance of both filters was

satisfactory, they had some drawbacks. EKF was computationally expensive due to the

Jacobian matrix calculation during linearization, and EnKF required a large number of

ensembles for good estimation performance. Walker et al. [20] estimated the soil moisture

of the simplified soil moisture model which was the linear version of the Darcy–Buckingham

equation, by employing the linear Kalman filter and using real soil moisture measurements.

Not considering the root water uptake term, using the simplified soil moisture model instead

of Richards’ equation which limits its applicability under extreme weather conditions, and

investigating the soil moisture estimation for the only one-dimensional system were some

shortcomings in their work. De Lannoy et al. [16] used EnKF with real field data to performed

bias and regular soil moisture estimation. Although their approach could improve the overall

performance of estimation, bias estimation in layers for which no observations were available

was impossible. Since the main assumption of Kalman based filters is Gaussian distribution

for sensor noise and disturbances, the filter efficiency may drop in the presence of non-

Gaussian distribution. To address this problem, some studies used the particle filter in

which non-Gaussian distribution in soil data assimilation was considered [19]. Although

this approach makes filtering independent on the Gaussian distribution assumption, it may

have some problems in updating especially when the realizations are far from the original

states [18].

In the above studies, the optimal sensor placement has not been considered. Because of

the limited number of available sensors in the agricultural fields, it is an important problem

to find the optimal location of the sensors in the soil such that improved state estimation can

be obtained. In [21], the problem of optimal sensor placement has been considered. Nahar

et al. [21] proposed to use the observability analysis to find the optimal sensor locations.

However, the applicability of this method was restricted to one-dimensional systems. In [11],

the optimal sensor placement problem has been addressed by employing the modal degree
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of observability. It was found that optimally placed sensors can lead to much-improved soil

moisture estimation performance. However, it is unclear whether the significantly improved

estimation performance can still be observed in the actual applications.

1.2.2 Soil Hydraulic Parameter Estimation and Sensitivity Anal-

ysis

The parameters of Richards equation characterize the properties of the soil. As has already

been mentioned, the soil hydraulic parameters need to be estimated along with the soil

moisture. In this work, we continue using the sequential data assimilation approach to

estimate the soil hydraulic parameters. Specifically, we employ this approach to estimate the

soil moisture and soil hydraulic parameters simultaneously by augmenting the soil hydraulic

parameters as extra states of the dynamic model. In the literature, different studies have

been performed to estimate the soil parameters based on the sequential data assimilation

approach such as EKF [13, 22], EnKF [23, 24, 25, 26], and PF [27].

In [26], EnKF was used to estimate the soil parameters which were augmented as extra

states. In addition, they studied the effective factors on the performance of EnKF. Medina

et al. [23] used a dual ensemble Kalman filter (DEnKF) to first estimate the soil moisture

by a standard Kalman filter, and then to estimate the soil hydraulic parameters using an

unscented Kalman filter. The dual estimation was performed by assimilating near-surface

soil moisture observations into the one dimensional Richards equation. In [25], the authors

compared three ensemble-based simultaneous state and parameter estimation methods, si-

multaneous optimization and data assimilation (SODA), augmented EnKF, and dual EnKF

to improve the soil moisture estimation accuracy. they demonstrated that the augmented

EnKF was the most robust method for general conditions, while SODA was appropriate in

addressing the complex situations. Moradkhani et al. [24] employed two EnKFs to sepa-

rately estimate the soil hydraulic parameters and soil moisture, by assimilating soil moisture

measurements into a predictive hydrological model.
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One limitation of the above studies is that the observability of the augmented system

has not been considered and it is assumed that all parameters are identifiable and estimable.

While, because of augmenting the parameters as the extra states, the entire augmented

system may not be fully observable which means all parameters may not be estimable.

Thus, investigating the observability of the entire system to determine which parameters

are identifiable and estimable is an important problem. In [13, 28], this issue has been

addressed by performing the sensitivity analysis. Liu et al. [28] showed that the sensitivity

analysis plays a key role in simultaneous state and parameter estimation. They demonstrated

the sensitivity analysis is able to determine which parameters are identifiable and can be

estimated with the states simultaneously. Bo et al. [13] proposed an estimation approach

to estimate the soil moisture and soil hydraulic parameters of the one dimensional (1D)

agro-hydrological system simultaneously. In this approach, parameter identifiability and

sensitivity analysis were used to determine the most important parameters for simultaneous

estimation. However, in [13], only 1D agro-hydrological systems with fixed measurements

were investigated. Moreover, in all the above studies, homogeneous soil parameters or simple

arrangements of different soil types have been considered.

1.2.3 Remote Sensing Techniques For Agriculture

Although in-situ moisture probes (point sensors) are the most reliable soil moisture sensing

technique and can provide continuous measurements at various depths of the field, it is very

challenging to install point sensors everywhere in the field for obtaining a thorough water

distribution [29, 30, 31]. Remote sensing technique is an alternative solution that provides

a more practical approach to capturing the spatial variability of soil moisture. The remote

sensing images can cover a large region of the agricultural field. The estimation of surface

soil moisture using remote sensing methods has been considered in many studies.

Optical remote sensing can be used to determine surface soil moisture. An optical re-

mote sensing-based method examines how soil moisture is related to spectral reflectance.
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Angstrom [32] found that the soil moisture increased as reflectance decreased. Weidong et

al. [33], studied the relationship between relative reflectance and soil moisture. They demon-

strated that at low soil moisture levels, the reflectance was inversely proportional to the soil

moisture, whereas it became directly proportional after a certain critical point. In [34], it

was indicated that the soil moisture was an exponential function of reflectance. Liu et al. [35]

estimated soil moisture by using different methods, including relative reflectance method,

derivative method, and difference between absorbance and reflectance method. It has been

shown that soil moisture is a nonlinear function of reflectance. In [36], inverted Gaussian

function was used to estimate the soil moisture by measuring the reflectance in near-infrared

and shortwave infrared wavelengths.

The thermal remote sensing can be also used to estimate the surface soil moisture typically

based on the thermal inertia method or temperature index method [37]. For bare soil,

land surface temperature represents soil surface temperature, but for cover vegetation, it

represents vegetation canopy temperature. In [38], to obtain the soil moisture the normalized

difference temperature index method (NDTI) was used. In many studies, optical and thermal

infrared remote sensing data have been combined to estimate surface soil moisture. In [39],

the temperature-vegetation dryness index (TVDI) was defined as:

TDV I =
Ts − Ts,min

Ts,max − Ts,min

where Ts is the observed land surface temperature at the given pixel, Ts,min is the minimum

surface temperature, and Ts,max is the maximum surface temperature which can be expressed

as follows in the triangular method:

Ts,max = a+ bNDV I

where NDVI is normalized difference vegetation index, a and b are parameters to fit the data

of the dry edge. The TVDI of value 1 represents the dry edge, and value 0 represents the
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wet edge.

In Literature, TVDI is widely used to estimate the soil moisture. In [40, 41], a linear

function was used to estimate the soil moisture from TVDI. However, in [42, 43], soil moisture

was estimated by the nonlinear function of TVDI and fractional vegetation cover. The

dry and wet edge theoretically was derived in place of the regression in [43]. In [44], the

TVDI method was used to derived the soil moisture and crop yield. The regression results

represented the strong correlation between soil moisture and TVDI with the coefficient of

determination of R2 = 0.61 to 0.83. In [45], for estimating surface soil moisture, an index

called the Temperature Rising Rate Vegetation Index (TRRVDI) was used. This index was

derived from the triangular method that utilized the mid-morning land surface temperature

rate with the vegetation index. In [46], evaporation fraction (EF) was calculated from the

difference between air and surface temperatures vs. the vegetation index triangular plot

method. The EF was then used to estimate the soil moisture. Liu et al. [47] estimated the

surface soil moisture based on the TVDI method for the heterogeneous regions.

There are some drawbacks in the above studies such as lacking sufficient data for the

estimation of model parameters, requiring a large number of pixels to estimate the extreme

boundary of a wet and dry region, difficult to validate with the ground soil moisture data due

to low resolution, difficult to incorporate uncertainties in the soil moisture models. Esfahani

et al. [48] developed artificial neural networks to estimate the soil moisture. They used

the high resolution thermal and optical images, different types of vegetation index, and field

capacity as inputs to the system. However, their model could not provide enough information

for real-time irrigation management due to the low temporal resolution. This issue has been

address in [3] by employing long short-term memory recurrent neural networks (LSTM-

RNNs) model which is mainly used to handle the sequential data. In [3], the time-varying

soil moisture estimation was proposed. In this work, we propose a machine learning based

model to estimate surface soil moisture using the high resolution remote sensing images.
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1.3 Thesis Outline and Contributions

This thesis is presented in 5 chapters, including this introductory chapter. The thesis is

arranged as follows:

Chapter 2 investigates the impact of sensor placement in soil water estimation perfor-

mance for an actual agricultural field in Lethbridge, Alberta, Canada. First, a description of

the actual field and an explanation of the experiments carried out on the field are outlined.

The Richards equation is then employed to develop a three-dimensional agro-hydrological

model. Heterogeneous distribution of the soil parameters obtained from the interpolation

of the soil samples of the studied field is considered in the Richards model. A finite differ-

ence (FD) scheme is employed to solve the Richards equation numerically. Subsequently,

the modal degree of observability is applied to the 3D field model in order to determine the

optimal sensor locations. The Extended Kalman filter (EKF) estimation algorithm is also

introduced to estimate the soil moisture content of the studied field. Soil moisture estima-

tion results for different scenarios are obtained and analyzed. The chapter demonstrates the

performance of the soil moisture estimation with optimally sensor placement is significantly

improved in the actual applications.

In Chapter 3, we propose a systematic estimation approach to estimate the soil moisture

and soil hydraulic parameters of the 3D agro-hydrological systems with spatially heteroge-

neous soil parameters and changing measurements. First, an agro-hydrological system that

is equipped with a center pivot irrigation system and microwave soil moisture sensors is in-

troduced. The three dimensional cylindrical coordinates version of the Richards equation is

used to model the field equipped with a center pivot irrigation system. This is followed by the

construction of the augmented system, which is achieved by augmenting the parameters at

the end of the state vector. The sensitivity analysis is then applied to the augmented model

to determine the most important parameter set for estimation while the measurements are

changing. Next, the EKF estimation algorithm is chosen to simultaneously estimate the soil

moisture and the soil hydraulic parameter set determined before. Finally, in order to improve
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the performance of estimation, the Kriging interpolation method is employed for updating

the unestimated parameters. In the end, soil moisture estimation results are obtained and

analyzed to investigate the effectiveness of the proposed method on the performance of soil

moisture estimation in the agro-hydrological systems. The chapter demonstrates the pro-

posed approach is able to significantly improve the performance of soil moisture estimation

and provide soil moisture estimates with high accuracy and consistency.

In Chapter 4, a supervised estimation of surface soil moisture using a multilayer percep-

tron (MLP) neural network model is developed. The MLP model is developed to convert the

thermal and optical images to soil moisture. A detailed description of how the real data set is

created from experimental remote sensing images collected in summer 2019 at Lethbridge is

provided. The MLP model is trained using the real data set and the soil moisture estimation

results show the effectiveness of the proposed approach.

Chapter 5 provides a conclusion and suggestions for future work.
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Chapter 2

Impact of Sensor Placement in Soil

Water Estimation: A Real-Case Study

In this chapter, we demonstrate the effectiveness of the optimal sensor placement on the

performance of soil moisture estimation in an actual application. We first provide a descrip-

tion of the study area and the experiments carried out on the field in Section 2.1. Then,

we develop a mathematical model that is suitable for predicting the dynamics of the soil

moisture in the studied field in Section 2.2. Section 2.3 includes the modal degree of observ-

ability as a tool to determine the optimal sensor locations and the sensor placement results

of the studied field. In Section 2.4, we provide a detailed description of the EKF algorithm

adopted for estimating the soil water content of the studied field. A simulation case study

is described in Section 2.5 and the effect of the optimal sensor placement on soil moisture

estimation is extensively studied based on the simulations. In Section 2.6, real measure-

ments provided by probe sensors are considered. Two different scenarios are constructed to

investigate the impact of sensor placement in soil water estimation for the actual application.

This is followed by concluding remarks in Section 2.7.

11



2.1 Description of the Studied Field

This section describes the actual agricultural field studied in this thesis and discusses the

experiment conducted on the field in summer 2019. Two main steps of the experiment

include: 1) Soil sample collection for texture analysis; 2) Soil moisture data collection for

ground truth. First, we describe the details of the study area. The soil sample collection

procedure is then discussed and finally, we discuss the soil moisture data collection procedure.

2.1.1 Study Area

(a) The center pivot irrigation system of the field. (b) Location of the sensors in the studied field.

Figure 2.1: Illustration of the studied field in Lethbridge.

The agricultural field studied in this work is located in Lethbridge, Alberta, Canada (Lon:

-112.7385 : -112.7365, Lat: 49.6896 : 49.6908). The field is a circular one with a radius

of about 50 meters. The depth of the field is 75 cm in the simulations of this work. One

weather station is located near the agricultural studied field managed by Lethbridge Demo

Farm Irrigation Management Climate Information Network (IMCIN). The weather station’s

data including the precipitation, wind speed, and air temperature can be obtained from the
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Alberta Climate Information Service (ACIS) website (https://agriculture.alberta.ca/acis/).

The soil texture consists of three types of soil: clay, silt, and sand. Each area of the field

has a different percentage of the soil types that makes the soil profile heterogeneous. Thus,

the soil profile of the field has different properties at various zones. For example, on the left

side of the field where the percentage of the clay in the soil is higher than other areas of the

field, the water infiltration to the root zone is slower compared to other areas. In the studied

field, a centre pivot is used as the irrigation implementing system as shown in Figure 2.1(a).

In irrigation time, the center pivot rotates at a speed of 0.011 m/s, which means, the central

pivot usually takes 8 hours to irrigate the whole field.

2.1.2 Soil Texture and Moisture Data Collection

The soil parameters of the field model depend upon the properties of soil existing in the field.

In this thesis, we obtain the soil parameters of the model from the soil texture experiment.

The soil profiles at 60 points of the studied field (20 points from surface to depth 25 cm,

20 points at 25 cm to 50 cm, and 20 points at 50 cm to 75 cm) were sampled using augers

(Figure 2.2(a)). After collecting the soil sample, the soil properties of the sampling points

including the wilting point, the electrical conductivity of the water, and the percentage of

the clay, silt, and sand existing in the soil samples were estimated in the soil lab. The soil

profile data will be used in Section 2.2.2 to interpolate the soil parameters of the entire field.

The interpolated soil parameters will be used as the field model parameters.
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(a) Soil sample collection. (b) Data logger, Multiplexer, Solar panel and
Sensors.

Figure 2.2: Sensing instruments used in the experiment.

Moreover, 42 sensors [49] were installed in the field at different depths (14 sensors at the

depth of 25 cm, 14 sensors at the depth of 50 cm, and 14 sensors at the depth of 75 cm,

below the surface) to measure the soil water tension of these locations. The measurements

were collected every 60 minutes from June 19 to August 13, 2019. Figure 2.1(b) shows the

location of the sensors in the studied field. During the experiment, a data logger was used to

collect the data from the sensor. Since the data logger did not have enough ports to connect

all forty-two sensors, a multiplexer was used to connect the sensors to a single data logger.

In the whole field, we employed two data loggers and two multiplexers for data collection.

Two solar panels were also installed to charge the data loggers. The data logger, multiplexer

and solar panel are shown in Figure 2.2(b). Some irregular features in the collected data set

were observed, which increase the model plant mismatch and cause the overall soil moisture

estimation more challenging. The collected data will be used in Section 2.6 to estimate the

soil moisture of the entire field through a state estimator.
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Figure 2.3: Daily precipitation data of the studied field during the period under investigation.

The precipitation data of the studied field obtained from ACIS is illustrated in Figure 2.3

on a daily basis for the period under investigation. According to statistics, there was a

substantial amount of rain on July 20.

2.2 Modeling of the Water Dynamics of the Studied

Field

2.2.1 Agro-hydrological System Description

An agro-hydrological system characterizes the hydrological cycle between the soil, the water,

the atmosphere, and the crop. In this work, the three dimensional agro-hydrological model

is considered in which the water inflows to the system are rainfall and irrigation, and the

system outflows are evaporation, transpiration, run-off, and drainage. Figure 2.4 provides an

illustration of an agro-hydrological system, from [1]. Depending on the water condition in the

soil, rain or irrigation water may enter the soil at its surface. When the soil is unsaturated,

water infiltrates into the soil and this continues until the soil becomes saturated. Under

saturated conditions, the infiltration tends to cease and ponding starts to occur. After a

15



certain ponding height, the water level breaks and run-off sets in. A portion of the rain or

irrigated water may not reach the soil surface and be intercepted by the crop canopy. The

roots of crops act as water sinks that extract water from the soil.

Figure 2.4: An agro-hydrological system [1].

In this work, we focus on soil that is above the water table, known as the vadose zone.

Within the vadose zone, the water movement is mainly driven by capillary and gravitational

forces and the water dynamics can be modeled using Richards equation [50] as follows:

∂θ

∂t
= C(h)

∂h

∂t
= ∇ · (K(h)∇(h+ z))− S (2.1)

where h (m) is the pressure head, θ (m3m−3) is the volumetric water content, t (s) is time,

z (m) is the spatial coordinate, K(h) (ms−1) is the unsaturated hydraulic water conductivity,

C(h) (m−1) is the capillary capacity, and S (m3m−3s−1) denotes the sink term, representing

the root water extraction rate.
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In Equation (2.1), the soil hydraulic functions θ(h), K(h), and C(h) can be obtained by

the Mualem-van Genucthen model [51]:

θ(h) = θr + (θs − θr)

[
1

1 + (−αh)n

]1− 1
n

(2.2)

K(h) = Ks

[
(1 + (−αh)n)−(

n−1
n )
] 1

2

×

[
1−

[
1−

[
(1 + (−αh)n)−(

n−1
n )
] n

n−1

]n−1
n

]2
(2.3)

C(h) = (θs − θr) αn (1− 1

n
) (−αh)n−1

[
1 + (−αh)n

]−(2− 1
n)

(2.4)

where θs (m3m−3), θr (m3m−3), Ks (ms−1) are the saturated volumetric moisture content,

residual moisture content and saturated hydraulic conductivity, respectively. n and α are

curve-fitting soil hyrdraulic properties. The parameters θs, θr, Ks, α, and n form a set of soil

hydraulic parameters that determine the soil properties of the field.

2.2.2 Interpolation of Soil Parameters

Saturated hydraulic conductivity Ks (
m
s
), saturated soil moisture θs (

m3

m3 ), residual soil mois-

ture θr (
m3

m3 ), and curve-fitting soil hydraulic properties α ( 1
m
) and n are the soil parameters of

the model. Each type of the soil has its own set of soil parameters. Due to the heterogeneity

of the soil in the studied field, the soil parameters are different at different points of the field.

In fact, each point in the field which corresponds to a node in the discretized model has its

own set of soil parameters. These soil parameters are unknown and need to be obtained. In

this work, we use the Kriging interpolation method to estimate the soil parameters of the

entire field. The Kriging interpolation method is an advanced geostatistical method that

produces an estimated surface from a small number of scattered measurements. The Kriging
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formula is formed as a weighted sum of the data [52]:

Ẑ(so) =
N∑
i=1

λiZ(si) (2.5)

where Ẑ(so) is the Kriging predicted value at the prediction location, Z(si) denotes the

measured value at the measured ith location, N is the total number of measurements, and

λi is a weight between the measured value at ith location and the predicted value at the

prediction location.

Both the distance between the measured locations and the prediction location, and the

overall spatial positioning of the measured locations may affect the weights. The weights

(λi, i = 1, 2, ...N) can be obtained from the following matrix equation [53]:



a11 a12 . . . a1n

a21 a22 . . . a2n
...

. . .
...

an1 an2 . . . ann


.



λ1

λ2

...

λn


=



b1

b2
...

bn


(2.6)

where aij is the semivariance value between the measured points i and j, λi is the weight

between the measured point i and the prediction location, and bi is the semivariance value

between the measured point i and the prediction location. All the semivariance values are

obtained from the semivariogram graph in which the x-axis is the distance between the

points and the y-axis is the semivariance. The procedure to obtain the semivariogram graph

consists of the following steps:

(1) Measure some specific points of the field. Each measurement includes two compart-

ments; the coordinate of the point and the measured value of the point.

(2) Calculate the distances of each pair for all the measured points.

(3) Perform variogram calculations based on the same distances obtained in step 2, using
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the following formula; where hij is the distance between the measured ith and jth points,

Z(si) and Z(sj) are the measured values at the ith and jth locations, respectively, and

µ(h) is the semivariance for each same distance [53].

µ(h) =

∑
hij=h[Z(si)− Z(sj)]

2

2N
(2.7)

(4) Fit a model to the points whose x element is the distances calculated in step 2 and

y element is the semivariances obtained in step 3. Four main functions (spherical,

exponential, gaussian, and linear) can be used to model the points. In this work,

we use the spherical function, Equation (2.8), to fit the points. In Equation (2.8) µ0

(nugget) is the value of the semvariance when the distance is zero, µss (sill) is the value

of the semivariance when it remains constant, and α (range) is a certain distance where

the semivariance values will stop changing.

µ(h) =


µ0 + µss[

3h
2α

− 1
2
( h
α
)3] h ≤ α

µss α ≤ h

(2.8)

(5) Find all the semivariance values are required in the Equation (2.6), using the semivar-

iogram graph obtained in step 4.

The following paragraph explains how the Kriging interpolation method that was de-

scribed earlier was used to calculate the heterogeneous distribution of soil parameters in the

studied field based on the soil samples taken from the study area. We first used the 60 soil

samples of the studied field and determined the soil texture type of the sampled points by

measuring the percentage of the clay, silt, and sand soils existing in the samples. Next, we

obtained the set of soil parameters for these sampling points based on the composition of the

soil types [54]. Subsequently, we used the soil parameters of these 60 sampled points as the

measurements in the Kriging interpolation method to interpolate the soil parameters of the

19



entire field. Figure 2.5 shows the interpolated soil parameters of the surface of the studied

field. The results show that the soil parameters of the field are heterogeneous.

(a) Saturated volumetric moisture content
(θs (m3m−3))

(b) Residual moisture content (θr (m3m−3))

(c) Saturated hydraulic conductivity
(Ks (cmhr−1)

(d) Curve fitting parameter (α (m−1))

(e) Curve fitting parameter (n)

Figure 2.5: Heterogeneous distribution of soil parameters on the surface of the studied field
obtained from the Kriging interpolation.
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2.2.3 Polar Form of Richards Equation

In [1], it was demonstrated that the cylindrical coordinate version of the Richards equation is

very suitable for the modeling of an agricultural field equipped with a center pivot irrigation

system due to its ability to account for the circular movement of the center pivot. Therefore,

since the center pivot is used as the irrigation implementing system in the studied field,

we will use the cylindrical coordinate of the Richards equation in this work. Cylindrical

coordinate representation of the Richards equation is expressed as follows [1]:

C(h)
∂h

∂t
=

1

r

∂

∂r

[
rK(h)

∂h

∂r

]
+

1

r

∂

∂θ

[
K(h)

r

∂h

∂θ

]
+

∂

∂z

[
K(h)

(
∂h

∂z
+ 1

)]
− S (2.9)

where r (m) represents the radial direction which denotes the radius of the field, θ represents

the azimuthal direction which denotes the angle of rotation of the center pivot, and z (m)

is the axial direction which represents the depth of soil under consideration. Equation (2.9)

is a nonlinear parabolic-elliptical partial differential equation (PDE) with respect to the

temporal (t) and the spatial variables (r, θ, z).

2.2.4 Model Discretization

Obtaining an analytical solution to Equation (2.9) is difficult due to its nonlinearity, thus

numerical solutions are needed to solve this equation. In [1], the method of lines (MOL) ap-

proach was used to solve the Richards equation numerically and discretize the Equation (2.9)

with respect to its spatial variables. The same numerical model development and discretiza-

tion scheme is used in this work. In the following, we summarize the model development.

Firstly the two point central finite difference scheme is employed to approximate the

derivatives of Equation (2.9) with respect to the spatial variables (r, θ, z). This converts

the PDE into a set of ordinary differential equations (ODEs) in terms of the temporal vari-

able (t), which can then be solved using well established numerical methods for ODEs. The

detailed approximation procedure in the r, θ, and z directions is described in [1]. Once
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the discretization in the radial (r), azimuthal (θ), and axial (z) directions are obtained, the

resulting ODE, in terms of the temporal variable, can be obtained by substituting discretiza-

tion equations into the Equation (2.9) as follows:

dh

dt
=

1

Cer,eθ,k(h)

[(
1

rer,eθ,k∆ri

[
rer+ 1

2
,eθ,k

Ker+
1
2
,eθ,k

(h)

(
her+1,eθ,k − her,eθ,k

∆rE

)
−

rer− 1
2
,eθ,k

Ker− 1
2
,eθ,k

(h)

(
her,eθ,k − her−1,eθ,k

∆rW

)])
+(

1

rer,eθ,k∆θj

[
Ker,eθ+

1
2
,k(h)

rer,eθ+ 1
2
,k

(
her,eθ+1,k − her,eθ,k

∆θT

)
−

Ker,eθ− 1
2
,k(h)

rer,eθ− 1
2
,k

(
her,eθ,k − her,eθ−1,k

∆θD

)])
+(

1

∆zk

[
Ker,eθ,k+

1
2
(h)

(
her,eθ,k+1 − her,eθ,k

∆zN
+ 1

)

−Ker,eθ,k− 1
2
(h)

(
her,eθ,k − her,eθ,k−1

∆zS
+ 1

)])
− S(h, z)

]
(2.10)

To solve the resulting ODE, the left side of Equation (2.10) needs to be approximated. In this

work, we use the Backward Differentiation Formulas (BDFs) methods to approximate the

time derivative in Equation (2.10). To implement the BDFs methods, the ‘cvodes’ integrator

in CasAdi (version 3.5.1) is used.

Specifically, in this chapter, we discretize the field into 6, 40 and 22 nodes in the radial,

azimuthal and axial directions, respectively. The head pressure of the soil at these discretized

nodes are the states of the system. Furthermore, Equation (2.9) is solved numerically for

the following initial and boundary equations which apply to fields equipped with a center

pivot irrigation system:
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h(r, θ, z, t = 0) = hinitial (2.11)

∂h (r, θ, z, t)

∂r

∣∣∣∣
(r=0, θ, z)

= 0 (2.12)

∂h (r, θ, z, t)

∂r

∣∣∣∣
(r=Hr, θ, z)

= 0 (2.13)

∂h (r, θ, z, t)

∂θ

∣∣∣∣
(r=0, θ, z)

= 0 (2.14)

∂h (r, θ, z, t)

∂z

∣∣∣∣
(r, θ, z=0)

= 0 (2.15)

∂h (r, θ, z, t)

∂z

∣∣∣∣
(r, θ, z=Hz)

= −1− uirr

K(h)
(2.16)

h(r, θ = 0, z, t) = h(r, θ = 2π, z, t) (2.17)

where Hr in Equation (2.13) is the total radius of the field, Hz in Equation (2.16) is the

length of the soil column and uirr (m/s) represents the irrigation rate which is considered

as the input in this work. The zero gradient boundary condition is imposed at r = 0 and

r = Hr as shown in Equations (2.12) and (2.13). After one rotation of the center pivot, the

starting point coincides with the ending point and this is represented by Equation (2.17).

Equation (2.15) represents the free drainage boundary condition that is applied at the bottom

of the field (z = 0). The Nuemann boundary condition, shown by Equation (2.16), is used

at the top of the field (z = Hz) to incorporate the irrigation rate into the Richards equation.

2.2.5 State-space Representation of the Field Model

By combining (Nr + 1)× (Nθ + 1)× (Nz + 1) of Equation (2.10) for all the spatial nodes

and boundary conditions, Equations (2.11) - (2.17), a compact form of the field model can

be obtained. Thus, the state-space representation of the field model is expressed as:
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ẋ(t) = F (x(t), u(t)) + ω(t) (2.18)

where x(t) ∈ RNx represents the state vector containing Nx = 5, 280 pressure head values for

the corresponding spatial nodes. u(t) ∈ RNu and ω(t) ∈ RNx represent the input vector and

the model disturbances respectively. Specifically, in this work, the sensors directly measure

the states of the system and the output vector y(k) is the head pressure (h) at the measured

nodes of the field. Thus, the output equation simply represents a matrix (C) indicating

which states are measured by the sensors:

y(t) = Cx(t) + v(t) (2.19)

where y(t) ∈ RNy and v(t) ∈ RNy respectively denote the measurement vector and the

measurement noise. The matrix C is determined by the sensor placement algorithm.

2.3 Optimal Sensor Placement

In order to determine the best locations to install the sensors in the agricultural fields, Sahoo

et al. [11] proposed to use the modal degree of observability. They demonstrated that the

degree of observability tells us how strongly or weakly observable a system is and it can be

used as a measure of the optimality of sensor placement. In this work, we use the algorithm

presented in [11]. In the following, we summarize the algorithm.

Modal degree of observability inspired by the PBH test analyzes the ability of a sensor

node to estimate other nodes of the system. In the PBH test, if the entry of the right

eigenvector vij is zero, then the jth node is not observable by measuring the ith node. Based

on the extension of this test, Gu et al. [55] proposed that the node j is weakly observable

from the sensor node i, if the entry of vij is small. Thus, this approach is able to find the
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nodes that are difficult to estimate from a sensor node and subsequently helps us to find the

optimal sensor locations. For a node i at a specific time k, the normalized measure of the

modal degree of observability can be calculated as [56]:

O
(k)
i =

n∑
j=1

(1− λ2
j(A

(k)
d ))v2ij (2.20)

where A
(k)
d is the discretized model Jacobian matrix at time k that can be obtained from

A
(k)
d = eA(k)T when T is the sampling time, and λj(j = 1, . . . , n) are the eigenvalues of matrix

A
(k)
d . Based on the definition in [11], the degree of observability of the system is the highest

when the sensors are located at nodes with the highest degree of observability. Thus, the

determination of the optimal sensor placement which is based on the maximization of the

degree of observability, consists of three steps:

1. At a time instant k, calculate the normalized measure of the modal degree of observ-

ability O
(k)
i for all the system nodes i, i = 1, . . . , n, where n is the total number of the

states.

2. Compute the final modal degree of observability (Oi) for each node as the average

value of the modal degree of observability over all the time instants.

3. Order the measures Oi, i = 1, . . . , n, according to their values. The optimal locations

to place the sensors are the nodes with the highest Oi values.

Since in this method it is not required to consider all the combinations of the sensors and in

order to determine the optimal sensor placement we only have to calculate the Oi values for all

the states, order them, and find the biggest Oi value, this approach is computationally very

efficient especially for large-scale systems such as the three-dimensional agro-hydrological

system. In the following, we describe how the above sensor placement algorithm can be

applied to the system considered in this work.

Firstly, the system in Equation (2.18) is simulated numerically and the state trajectory
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(x(t)) of the system is obtained during the simulation. Then, a symbolic approach using

CasAdi [57] is employed to calculate the Jacobian matrix (A) which is required in imple-

mentation of the optimal sensor placement algorithm. In calculation of Jacobian matrix,

the state trajectory obtained from the previous step is required at each operating point (k).

Next, we calculate the discretized model Jacobian matrix from Ad(k) = eA(k)T and use it in

Equation (2.20) to obtain the degree of observability for all nodes of the system at a specific

operating point. Eventually, the final modal degree of observability for each node is the

average of the modal degree of observability values obtained at the operating points.
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Figure 2.6: Average modal degree of observability for different nodes of the system.

Figure 2.6 represents the modal degree of observability for different nodes of the system

considered in this work. From Figure 2.6, it can be seen that nodes between 240 and 480,

located at 65 cm below the surface layer, have relatively higher values of the modal degree

of observability around 0.0574, while placing sensors on the surface corresponding to nodes

5040 to 5280 gives the lowest modal degree of observability about 0.0075. Furthermore,

the location of the optimal sensor placement is node 244 which has the highest degree of

observability value, 0.148.
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2.4 Soil Moisture Estimator Design

Once the system observability is checked and the optimal sensor placement is found, state

estimation can be performed. The nonlinear state estimators should be used to estimate

the states of the agro-hydrological model due to its nonlinearity. In this work, we choose

the discrete-time extended Kalman filter (EKF) to estimate the states. The EKF algorithm

consists of two steps, the prediction step, and the update step. In the prediction step, the

state x and its covariance matrix P are predicted using the model of the system. In the

update step, the prediction values x and P are updated using the actual measurements. The

detail steps are described as follows:

Initialisation

1. The continuous-time system, Equations (2.18) and (2.19), is discretized to obtain its

discrete-time equivalent. The discrete-time version can be expressed as:

xk+1 = f(xk, uk) + ωk

yk = Cxk + vk

and the filter is initialized with x̂0 and P0|0.

Prediction

1. The new state of the system is predicted at time tk+1, using the previous state estimate

x̂k|k and its covariance matrix Pk|k, and the new input uk to the system:

x̂k+1|k = f(x̂k|k, uk)

2. The state covariance matrix is obtained by

Pk+1|k = AkPk|kA
T
k +Q
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where Ak =
∂f
∂x
|x̂k|k, uk

and Q is the covariance matrix of the process disturbance ω. In

this work, we use a symbolic approach using CasAdi to calculate the Jacobian matrix

(A).

Filtering

1. We use the observation yk+1 at time tk+1 to update the state and its covariance matrix.

The observation vector includes the states are measured by the sensors. The location

of the sensors is determined by the optimal sensor placement algorithm. Kalman gain

matrix, Gk+1 can be calculated as

Gk+1 = Pk+1|kC
T [CPk+1|kC

T +R]−1

where R is the covariance matrix of the measurement noise v.

2. Once the updated Kalman gain is obtained, the state is updated:

x̂k+1|k+1 = x̂k+1|k +Gk+1[yk+1 − Cx̂k+1|k]

3. The state covariance matrix is updated as follows

Pk+1|k+1 = [I −Gk+1C]Pk+1|k

In this work, we rely on extensive simulations to determine the appropriate tuning EKF

parameters (matrices P,Q and R). We examine the estimated state trajectories and es-

timation error for different tuning parameters and choose tuning matrices that improve

significantly the estimation performance and result in a smaller estimation error. In the

tuning matrix P , it is notable to mention that since our knowledge of the initial estimate of

the state x̂0 is limited in the real case study, a high initial covariance matrix (P0|0 = ∞I)

must be chosen.
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2.5 Initial Simulation Study

In this section, we evaluate the modal degree of observability results for large-scale three-

dimensional agro-hydrological systems using state estimation with simulated data. The

three-dimensional agro-hydrological system obtained in Section 2.2, is used to simulate the

model and obtain the head pressure of the actual system and is further used in the prediction

step of the estimator. In the agro-hydrological model, the interpolated soil parameters

obtained in Section 2.2.2 are used as the parameters of the model. Thus, heterogeneous

soil parameters are considered in the simulations. In addition to the soil parameters, the

initial condition of the head pressure (x0) is also non-uniform and each state of the system

has a different initial condition. In this study case, the initial condition of the states in the

actual system is a random variable between -0.95 m and -0.8 m. The irrigation amount is a

constant rate of 3.6 mm/day which is applied to the farm in the first 8 hours of each day,

between 0:00 AM to 8:00 AM.

As we discussed in Section 2.2.4, the studied field is discretized into 5280 nodes (states)

with 6 nodes in the radial direction, 40 nodes in the azimuthal direction, and 22 nodes in the

axial direction. The first reason to choose these number of nodes for discretizing the field is

to produce the nodes in the model that are matched with the actual measurement locations

in the actual field. In fact, the number of nodes in the radial and azimuthal directions and

hence ∆r and ∆θ were selected based on the location of the forty-two sensors in the studied

field. In addition, it was observed that further mesh refinement in any of the three directions

did not result in a significant change in the state trajectories. Thus, it is considered that

an accurate numerical approximation of Equation (2.9) can be achieved with 5,280 states.

Figure 2.7 shows a schematic diagram of the studied field with its mesh structure, from [1].

Additionally, based on the fact that the center pivot of the studied field takes about 8 hours

to fully traverse the whole field and we divided the whole field in the azimuthal direction

into 40 compartments, the appropriate time step size for the temporal discretization is about

12 minutes.
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Figure 2.7: A schematic diagram of the studied field [1].

In EKF design, 20% mismatch in the initial condition of each state is considered. Twelve

head pressure measurements at fixed locations in the field are used to correct the prediction

in the update step of the EKF at each sampling time. Process noise and measurement

noise are considered in the simulations and they have zero mean and standard deviations

of 1 × 10−6 and 6 × 10−2, respectively. In the following simulations, we will compare the

trajectories of the actual states and EKF estimated states for some selected nodes in order

to observe the ability of the EKF for tracking the actual states and investigate the effect

of sensor placement on the performance of state estimation. Additionally, the root mean

square error (RMSE) at a time instant and the average RMSE will be calculated to assess

the estimation performance:

RMSEx(k) =

√∑nx

i=1(x̂i(k)− xi(k))2

nx

(2.21)

RMSEx =

∑Nsim−1
k=0 RMSEx(k)

Nsim

(2.22)

where RMSEx(k) with k = 0, · · · , Nsim − 1 shows the evolution of the RMSE value over

time and RMSEx shows the average value. In order to fairly compare the performance of

state estimation between different scenarios we use the normalized RMSE (NRMES = RMSE
ȳ )

which facilitates the comparison between datasets or models with different scales.
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To verify the effectiveness of the proposed method, two different cases are considered. In

the first case, the sensors are placed at 12 nodes with a higher degree of observability, around

1.8056, and the second case is where 12 sensors correspond to nodes with a lower degree of

observability, about 0.2937. Figure 2.8 represents the trajectories of the actual states and

estimated states for cases 1 and 2 at some testing nodes.

(a) State trajectory at depth = 5 cm (b) State trajectory at depth = 15 cm

(c) State trajectory at depth = 30 cm (d) Total estimation error trajectory

Figure 2.8: Estimation results using simulated data. (a)-(c) Trajectories of the actual states
(red lines), estimated states in case 1 (blue lines), and estimated states in case 2 (green lines)
at depth of (a) 5 cm, (b) 15 cm, and (c) 30 cm, below the surface. (d) Evolution of the
RMSE of the original state vector during the simulation time in case 1 (blue lines) and case
2 (green lines).

From Figure 2.8, firstly it can be seen that the EKF (blue, green dash-dot) estimates are

able to track the actual process states (red dash-dot) very well. Secondly, it can be observed

that the estimates by placing the sensors with higher degree of observability converge faster

to the actual states. Figure 2.8(d) compares the total estimation error between case 1 and
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case 2 and it demonstrates that the root mean square error (RMSE) in case 1 is smaller

than case 2 over the simulations. Also, the average NRMSE over 6 days simulations in

case 1 is 15.95% while in case 2 is 28.70%. Thus, optimally placed sensors can improve

the soil moisture estimation performance for the three-dimensional agro-hydrological system

with heterogeneous soil parameters and initial conditions when the simulated data is used.

As a further analysis, we construct the actual and estimated soil water content maps to

examine the performance of state estimation for a large number of states. We also construct

the absolute error maps by computing the absolute error (ek) between the actual soil water

content and the estimated soil water content.

ek = xk − x̂k (2.23)

Figures 2.9-2.12 represent the soil water content maps constructed at selected times during

the simulation period for the surface of the field in case 1 where the optimal sensor placement

is considered. From the Figures, it is observable that the agreement between the estimated

maps and the actual maps is significantly strengthened as the simulation time proceeds.

Specifically, based on the Figures 2.9 and 2.12, the range of the absolute error on the second

day is between 0.005 and 0.02, while on the fifth day it decreases to the range of 0.001 and

0.005.

(a) Actual map (b) Estimated map (c) Absolute error map

Figure 2.9: Surface soil water content maps at 02:24 HRS on Day 2 in case 1.
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(a) Actual map (b) Estimated map (c) Absolute error map

Figure 2.10: Surface soil water content maps at 04:24 HRS on Day 3 in case 1.

(a) Actual map (b) Estimated map (c) Absolute error map

Figure 2.11: Surface soil water content maps at 06:00 HRS on Day 4 in case 1.

(a) Actual map (b) Estimated map (c) Absolute error map

Figure 2.12: Surface soil water content maps at 07:24 HRS on Day 5 in case 1.

(a) Actual map (b) Estimated map (c) Absolute error map

Figure 2.13: Surface soil water content maps at 02:24 HRS on Day 2 in case 2.
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(a) Actual map (b) Estimated map (c) Absolute error map

Figure 2.14: Surface soil water content maps at 04:24 HRS on Day 3 in case 2.

(a) Actual map (b) Estimated map (c) Absolute error map

Figure 2.15: Surface soil water content maps at 06:00 HRS on Day 4 in case 2.

(a) Actual map (b) Estimated map (c) Absolute error map

Figure 2.16: Surface soil water content maps at 07:24 HRS on Day 5 in case 2.

In addition, Figures 2.13-2.16 indicate the soil water content maps at the same times for

the surface of the field in case 2. By comparison Figures 2.9-2.12 to Figures 2.13-2.16, it can

be seen that the absolute error maps in case 1 have smaller values compared to the absolute

error maps in case 2 at the same times. Thus the EKF estimation with optimally sensor

placement is able to provide more accurate soil water content maps.
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2.6 Validation of Sensor Placement Using Real Data

In this section, we investigate the impact of optimal sensor placement in soil water estimation

of the studied field using real collected data under different scenarios. The collected data

includes the soil water tension of 14 locations at depth of 25 cm, 14 locations at depth of 50

cm, and 14 locations at depth of 75 cm. Before using the collected data as the measurements

in the EKF, we have performed some preprocessing steps. First, we converted the soil water

tension (Kpa) into the soil head pressure (m). Then, we normalized data using min-max

normalization and transformed data between zero and one. It should be pointed out that

normalized values are not allowed to be used in the model of the system, Equation (2.18).

Thus in Richards’ equation, we use the non-normalized values so that the model realizes how

really dry or wet the field is. In addition, we analyzed the data set to determine which areas

of the field have been irrigated over the time period of the experiment. Table 2.1 shows the

amount and time of irrigation applied to the studied field over the time period.

Table 2.1: Irrigation amount and scheduling of the studied field.

Date July 4 July 18 July 26 July 30 August 6

Amount (mm) 1.81 1.58 1.58 1.51 3.16

Within the simulation period at the sampling time without measurements, the soil mois-

ture predictions are only provided by the field model. When the measurements are available,

the head pressure measurements are assimilated into the field model using the EKF. Thus in

the presence of the measurements, the soil moisture predictions provided by the field model

are updated using the new measurements in the EKF. Because of the poor knowledge of

the initial state values in the actual application, a wider range of the initial conditions is

selected in the real data case. Thus in the following simulation, the initial guess of the state

is considered as a random value between -6 m and -5 m. Two scenarios are constructed

based on the availability of the number of actual measurements in the studied field.
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2.6.1 Scenario 1: In Presence of Two Measurements

In the first scenario, we consider only two sensors in the field. Thus in the update step

of EKF, there are only two measurements to correct the prediction values. To observe the

effect of sensor placement on the performance of state estimation, we construct two cases. In

case 1, the location of the sensor is determined based on the optimal sensor placement result

while in case 2, the sensor position is selected randomly. Thus, in the first case, x2 and x213

with the highest degree of observability among the measurement nodes are selected as the

location of the sensors and in the second case, the sensors are placed at x3393 and x3542 with

a lower degree of observability.

(a) (b)

(c) (d)

Figure 2.17: Estimation results using real data in Scenario 1. (a)-(c) Trajectories of the real
states (red lines), estimated states in case 1 (blue lines), and estimated states in case 2 (green
lines) at depth of (a) 25 cm, (b) 50 cm, and (c) 50 cm, below the surface. (d) Evolution of
the RMSE of the original state vector during the simulation time in case 1 (blue lines) and
case 2 (green lines).
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Figure 2.17 shows the trajectories of the real states (red dash-dot) and estimated states

(blue, green dash-dot) at some validation points. From Figures 2.17, it can be seen that the

estimates by placing the sensors with higher degree of observability (case 1) converge faster

to the actual states. Figure 2.17(d) compares the total estimation error between case 1 and

case 2 and it demonstrates the RMSE in case 1 is smaller than case 2 over the simulations.

Also, the average NRMSE over 50 days simulation in case 1, 30.75%, is much smaller than

case 2, 44.56%.

2.6.2 Scenario 2: In Presence of a Few Measurements

In the second scenario, we consider a few sensors in the studied field. Thus there are

more measurements in the EKF to update the soil moisture predictions. To verify the

effectiveness of the proposed method, two cases are constructed. In case 1, of 42 data points,

15 measured nodes with a higher degree of observability, around 0.8607, are considered

as the measurements in EKF. While, in case 2, another 15 measured nodes with a lower

degree of observability, about 0.3734, are used as the training points. Also, the rest of the

measurements are treated as validation points to compare the real states with estimated

states in cases 1 and 2. Figure 2.18 represents the trajectories of the real states and EKF

estimated states at some validation points. From Figure 2.18, firstly it can be seen that,

by increasing the number of measurements in the second scenario, the performance of state

estimation is improved. In addition, based on Figure 2.18, the performance of the state

estimation is significantly improved in case 1 where there are measurements with a higher

degree of observability, compared to case 2 that the measurements have a lower degree of

observability. Figure 2.18(d) compares the total estimation error between case 1 and case 2

and it demonstrates the RMSE in case 1 is smaller than case 2 over the simulations. Also,

the average NRMSE over 50 days simulation in case 1, 17.11%, is much smaller than case

2, 27.65%. Therefore, state estimation with optimally sensor placement is able to provide

more accurate estimates in the actual application.
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(a) State trajectory at depth = 25 cm (b) State trajectory at depth = 50 cm

(c) State trajectory at depth = 75 cm (d) Total estimation error trajectory

Figure 2.18: Estimation results using real data in Scenario 2. (a)-(c) Trajectories of the real
states (red lines), estimated states in case 1 (blue lines), and estimated states in case 2 (green
lines) at depth of (a) 25 cm, (b) 50 cm, and (c) 75 cm, below the surface. (d) Evolution of
the RMSE of the original state vector during the simulation time in case 1 (blue lines) and
case 2 (green lines).

In the end, we compare the simulation case study and real data case over the same

simulation days using the average normalized RMSE. The NRMSE in the simulation study

for case 1 (optimally placed sensors) and case 2 (sensors with a lower degree of observability)

over 10 days simulation is about 13.69% and 25.70% respectively, while NRMSE in the real

data study for cases 1 and 2 is respectively 17.36% and 26.12%, over the same simulation days.

These comparisons demonstrate that optimal sensor placement can significantly improve the

performance of state estimation in the actual application and the amount of improvement

in the real data case study is very similar to the simulation study case.
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2.7 Summary

In this chapter, the impact of optimal sensor placement in soil water estimation of an ac-

tual field was investigated. The agricultural field studied in this work was described and

information on experiments and collected real data was provided. The three-dimensional

agro-hydrological system with heterogeneous soils was developed to model the studied field.

The Kriging interpolation method was implemented to obtain the heterogeneous soil pa-

rameters of the studied field. The modal degree of observability was applied to the field to

determine the optimal sensor placement. The EKF was employed to estimate the soil water

content of the studied field. The results obtained in the simulated case study confirmed that

the estimates by placing the sensors with higher degree of observability converge faster to

the actual states. The real case study demonstrated the performance of state estimation

with optimally sensor placement is significantly improved in the actual applications.
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Chapter 3

Simultaneous Soil Moisture and Soil

Hydraulic Parameters Estimation

In this chapter, we propose a systematic procedure to simultaneously estimate the soil mois-

ture and soil hydraulic parameters for large-scale three dimensional agro-hydrological systems

with heterogeneous soils and changing measurements. We first introduce the investigated

system and the formulation of the mathematical model in Section 3.1. Section 3.2 proposes

the simultaneous estimation procedure. The key steps of the proposed procedure include

augmented system construction, sensitivity analysis, variable selection, simultaneous state

and parameter estimator, and parameters interpolation. The proposed method is applied to

a simulated three dimensional field with heterogeneous soils under two different scenarios in

Section 3.3. The simulation results of the considered agro-hydrological system illustrate the

applicability and effectiveness of the proposed method on the performance of soil moisture

estimation. Section 3.4 provides a summary of the work covered in this chapter.
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3.1 System Description and Problem Formulation

Similar to Chapter 2, the 3D agro-hydrological system which has spatially heterogeneous soil

parameters, is considered as the investigated system in Chapter 3. Essentially, the modeling

described in Chapter 2 is used in this chapter. While some features of the investigated

system are different in this chapter.

In Chapter 2, once the interpolated soil hydraulic parameters of the entire field are

obtained from the soil texture analysis, the soil parameters of the model are considered to

be constant during simulations. Thus, the model soil parameters at each step of simulation

are the same as the initial guess ones. However, the soil hydraulic parameters may change

over time and consequently, considering the soil hydraulic parameters constant during long-

term simulations is not consistent with reality. Therefore, in this chapter, we propose to

estimate the soil hydraulic parameters online and along with the soil moisture at the same

time.

Figure 3.1: Microwave remote sensors on a central pivot.
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In Chapter 2, the ground point sensors are used to provide the soil water content infor-

mation of the field. The location of the measurements in this type of sensor is fixed. While

in Chapter 3, the microwave soil moisture sensors are considered. Microwave remote sensors

are mounted on the center pivots as shown in Figure 3.1. The center pivot system irrigates

the field in a circular pattern around a central pivot. As the center pivot rotates, microwave

sensors measure the surface soil moisture content of the irrigated locations. Thus, as the

center pivot irrigates the field, the surface soil moisture at different locations are measured.

Consequently, in this type of sensor, the measurements are changing. This is the second

difference between this chapter and Chapter 2. More information about microwave remote

sensors is provided in [1].

As has already been mentioned, in order to describe the dynamics of the water in the

soil in an agro–hydrological system that is equipped with a center pivot irrigation system,

we use the three-dimensional cylindrical coordinates version of the Richards equation due to

its ability to account for the circular movement of the center pivot as follows [1]:

C(h)
∂h

∂t
=

1

r

∂

∂r

[
rK(h)

∂h

∂r

]
+

1

r

∂

∂θ

[
K(h)

r

∂h

∂θ

]
+

∂

∂z

[
K(h)

(
∂h

∂z
+ 1

)]
− S (3.1)

In the Richards equation, the soil hydraulic parameters are the saturated hydraulic conduc-

tivityKs (
m
s
), saturated soil moisture θs (

m3

m3 ), residual soil moisture θr (
m3

m3 ), and curve-fitting

soil hydraulic properties α ( 1
m
) and n. For one type of soil, the parameter set (Ks, θs, θr, α, n)

characterizes the properties of the soil. Each type of soil has its own set of soil parameters. In

this study, a field with heterogeneous soils is considered such that the set of soil parameters

at each node of the field varies.

To solve Equation (3.1) numerically, the same model development, spatial discretization,

and ODEs integration considered in Chapter 2, are used in this chapter. The continuous-time
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state-space representation of the field model can be expressed as:

ẋ(t) = f (x(t), u(t), p) + ω(t)

y(t) = h (x(t), t, p) + v(t)

(3.2)

where x(t) ∈ RNx represents the state vector containing Nx pressure head values for the

corresponding spatial nodes. u(t) ∈ RNu and p ∈ RNp represent the input vector which is

a collection of irrigation rates at all the nodes of the top surface and the parameter vector,

respectively. Specifically, the parameter vector p represents the collection of the soil hydraulic

parameters [Ks, θs, θr, α, n] of each spatial node. y(t) ∈ RNy denotes the measurement vector

which is the volumetric soil moisture observation obtained from the microwave sensors.

ω(t) ∈ RNx and v(t) ∈ RNy represent the model disturbances and measurement noise. As

outlined earlier, as the center pivot irrigates the field, the microwave radiometers measure

the soil moisture content. Thus, during the rotation cycle of the center pivot, the irrigated

locations and subsequently, the measured states are changing. This explains the explicit

dependence of the output function h(·) on time.

3.2 Proposed Simultaneous State and Parameter Esti-

mation Procedure

In this section, we propose the systematic method to estimate the soil moisture and soil

hydraulic parameters of 3D agro-hydrological models simultaneously. Firstly, we create an

augmented model with all the parameters augmented as additional states. In this global

augmented model, the augmented states include both the original states and all the soil

hydraulic parameters. Due to the unobservability of the augmented model, all elements of

the augmented states can not be estimated at the same time. Thus in the proposed method,

at a sampling time, only a subset of parameters are estimated along with original states
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simultaneously based on the available measurements at the sampling time. Note that in

the proposed method, the rest of the soil hydraulic parameters which are required in the

augmented model, are interpolated using the estimated parameters at the sampling time.

To determine the subset of the parameters for simultaneous estimation, sensitivity anal-

ysis is employed in the proposed method. For simplification, we perform the sensitivity

analysis offline. By applying the sensitivity analysis to the augmented model, the subset

of the parameters that can be estimated at each sampling time is determined based on the

available measurements at the sampling time. Since in this work, we assume the measuring

locations are known at each sampling time prior to the estimation, it is possible to do the

sensitivity analysis offline. Thus in this work, for each sampling time during estimation, the

subset of parameters that can be estimated has been already specified prior to performing

the estimation. While in actual applications when the measurements or their locations are

available online, the sensitivity analysis needs to be performed online.

In the last step, based on the sensitivity analysis results, only the estimable parameters

and the original states are updated in the EKF to perform state and parameter estimation.

After updating the original states and the subset of parameters, we use the Kriging interpo-

lation method to update the rest parameters that are not estimated at the sampling time.

This procedure will be performed at each sampling time. The key steps of the proposed

procedure are explained below.

3.2.1 Augmented System Construction

The first step for simultaneous state and parameter estimation of the system (3.2) is to

augment the parameters as extra states and add the parameter vector to the end of the

state vector in order to create an augmented state vector, xa = [xT , pT ]T . This method is a

rather standard approach to estimate state and parameter at the same time [13, 28]. The
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parameter dynamics function is defined as:

ṗ(t) = 0 (3.3)

By augmenting the system of equations in (3.2) with the parameter equation in (3.3),

the following augmented system can be obtained:

ẋa(t) = fa(xa(t), u(t)) + ωa(t)

y(t) = ha(xa(t), t) + v(t)

(3.4)

where xa(k) ∈ RNx+Np , wa(k) ∈ RNx+Np denote the augmented state and model disturbance

vectors, respectively. fa(·) and ha(·) denote the augmented state and output equations,

respectively. An estimation of the augmented state xa results in estimating the states and

parameters of the original system at the same time.

3.2.2 Sensitivity Analysis

According to [11], the original nonlinear system (3.2) is observable and all original states

can be estimated using a few measurements. However, after augmenting the original system

with all parameters, the entire system may not be observable which leads to the issue that all

states and all parameters can not be estimated at the same time. Since the unobservability

of the augmented system is due to the augmentation of the parameters into the state vector,

it is necessary to determine which parameters are identifiable and can be estimated with the

states simultaneously. In [28], this issue has been addressed by performing the sensitivity

analysis. It was demonstrated that the sensitivity analysis tells us how many parameters

and which subset of parameters can be estimated with the states simultaneously. Thus, the

sensitivity analysis plays a key role in the simultaneous state and parameter estimation and

we will use this approach in this study.

The sensitivity analysis measures how the initial state x(0) and the parameters p of the
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system influence the outputs of the system. The sensitivity matrix, at time instant k, shown

below contains the sensitivity of the outputs with respect to the initial states, Sy,x0(k) =
∂y(k)
∂x(0)

and the sensitivity of the outputs with respect to the parameters, Sy,p(k) =
∂y(k)
∂p

.

Sy(k) =



∂y1
∂xa,1(0)

∂y1
∂xa,2(0)

· · · ∂y1
∂xa,Nx (0)

∂y1
∂xa,Nx+1(0)

· · · ∂y1
∂xa,Nx+Np (0)

∂y2
∂xa,1(0)

∂y2
∂xa,2(0)

· · · ∂y2
∂xa,Nx (0)

∂y2
∂xa,Nx+1(0)

· · · ∂y2
∂xa,Nx+Np (0)

...
...

...
...

...
...

...

∂yNy

∂xa,1(0)

∂yNy

∂xa,2(0)
· · · ∂yNy

∂xa,Nx (0)

∂yNy

∂xa,Nx+1(0)
· · · ∂yNy

∂xa,Nx+Np (0)



∣∣∣∣∣∣∣∣∣∣∣∣∣
k

The detailed steps to derive the sensitivity matrix are explained in [13]. The sensitivity

matrix Sy(k) is obtained based on the available measurements at time instant k. In fact,

the sensitivity matrix Sy(k) contains the information of the available measurements at the

sampling time k. If the measured states change in the next sampling time k + 1 then the

information inside the sensitivity matrix will also change and consequently, information inside

Sy(k + 1) will be different from the information of the matrix Sy(k). Thus, the sensitivity

matrices with the same measured states contain similar information. In the proposed method

we consider two types of measurements and explain how the sensitivity analysis should be

performed in each case.

3.2.2.1 Fixed Measured States

In the first case, we consider the systems in which the measured states are fixed. A field with

ground point sensors is an example of this case in which the sensor positions and subsequently

the measuring locations are fixed. Thus all sensitivity matrices obtained during simulation

contain similar information. This case has already been studied in [28]. Based on [28], in

this type of system, after obtaining the sensitivity matrix at each sampling time, we collect

all Sy(k) from time t0 to time tn to obtain the following sensitivity matrix:
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Sy(t0, . . . , tn, xa) =



∂y1(t0)
∂xa,1(0)

· · · ∂y1(t0)
∂xa,Nx+Np (0)

...
...

∂yNy (t0)

∂xa,1(0)
· · · ∂yNy (t0)

∂xa,Nx+Np (0)

...
...

∂y1(tn)
∂xa,1(0)

· · · ∂y1(tn)
∂xa,Nx+Np (0)

...
...

∂yNy (tn)

∂xa,1(0)
· · · ∂yNy (tn)

∂xa,Nx+Np (0)


In [28, 58], it is shown that the sensitivity and observability of the system are related

to each other and a full rank sensitivity matrix with a low condition number is a sufficient

condition for full observability and simultaneous all states and parameters estimation. In

case the sensitivity matrix is not full rank, the augmented system is not fully observable and

all elements of the augmented state vector xa can not be estimated simultaneously. Thus,

calculating the rank of the matrix Sy(t0, . . . , tn, xa) represents how many elements of xa can

be estimated at the same time. Specifically in the proposed method, to calculate the rank

of the sensitivity matrix, we use the singular value decomposition (SVD) tool which is a

well-known method to calculate the rank of large-scale matrices with high accuracy. SVD

writes the matrix as a sum of equally sized matrices that decrease in dominance (or singular

value σi) as

Sy(t0, . . . , tn, xa) = u1σ1v
T
1 + · · ·+ uqσqv

T
q (3.5)

Once the decomposition of the sensitivity matrix Sy(t0, . . . , tn, xa) is obtained, determining

the rank of the sensitivity matrix is equivalent to determine the number of non-zero singular

values. In fact, if for some k ≤ q, σk = · · · = σq = 0, then the sensitivity matrix is

rank deficient and k value is the matrix rank [58]. To determine zero singular values more

precisely, plotting the singular values with respect to the parameter index in a logarithmic

scale is suggested. The biggest gap in this plot represents the rank of the given matrix [58].

Note that in systems with fixed measured states, obtaining the rank of Sy(t0, . . . , tn, xa)
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is sufficient to represent how many elements of xa can be estimated simultaneously at all

sampling times. In fact, the number of elements of xa that can be estimated at each sam-

pling time is the same. In case of a rank deficient sensitivity matrix Sy(t0, . . . , tn, xa), we

need to determine which elements of the augmented state have the most important effect on

the outputs and should be selected for estimation. To achieve this objective, Liu et al. [28]

proposed to use the orthogonalization method. They demonstrated the orthogonalization

method is able to select the most appropriate variables for simultaneous estimation by max-

imally extracting the information contained in the measured outputs. In this work, we use

the orthogonalization algorithm presented in [28] to choose the most important parameter

set for simultaneous state and parameter estimation. In the following, we summarize the

algorithm.

The orthogonalization method specifies elements of xa that have most impact on the

output y by finding the strongly linearly independent columns in the sensitivity matrix

Sy(t0, . . . , tn, xa) in which each column corresponds to an element in xa. Before conducting

the variable selection, we should normalize the matrix Sy(t0, . . . , tn, xa) with respect to the

magnitudes of the different elements in xa and form the normalized sensitivity matrix SN .

To detect the strongly linearly independent columns, we need to first find the column of

SN that has the biggest norm. Then, we estimate the information in the matrix SN that

can be expressed by the selected column and obtain the residual matrix by removing this

information from the matrix SN . Next, we select the column with the largest norm in the

residual matrix and add it to the previously selected column in order to form a set of linearly

independent columns. We repeat these steps to detect all the strongly linearly independent

columns of the normalized sensitivity matrix which leads to the most important elements of

augmented state vector for simultaneous estimation. More details on the orthogonalization

method are explained in [28].

As has already been discussed, original states are observable and unobservability of the

augmented model is due to the parameters augmentation. Thus in this work, we estimate
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all original states at each sampling time and perform the variable selection only among the

parameters. Consequently, once the sensitivity matrix Sy(t0, . . . , tn, xa) is obtained, we first

remove the information that can be expressed by all original states from the sensitivity matrix

and then use the residual matrix which contains only the information of the parameters for

rank calculation and determination of significant parameters.

3.2.2.2 Changing Measured States

In the second case, we consider systems in which the measured states are changing. A field

that is equipped with center pivot and microwave remote sensors is such a case with changing

measurements. Figure 3.2 shows a schematic representation of center pivots equipped with

microwave sensors. In this field, during the rotation cycle of the center pivot, the irrigated

locations and subsequently, the measuring locations are changing.

Anti-clockwise direction

Irrigated nodes = Measured nodes

 K = 1

 K = 2

Figure 3.2: A schematic representation of center pivots equipped with microwave sensors.

For example, in the first sampling time, k = 1, when the center pivot irrigates the first

sector of field, the measuring locations are the presently irrigated nodes (represented with the

red dots at k = 1 in Figure 3.2). In the next sampling time, k = 2, as the center pivot moves

to the second sector for irrigation, the measuring locations also change (red dots at k = 2
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in Figure 3.2). In this type of systems, collecting all sensitivity matrices in one matrix is

not appropriate. Because in this case, the sensitivity matrix computed at sampling time

k contains the information of the available measurements at this step and by changing the

measured states in the next sampling time, information of the sensitivity matrix will also

change. Thus, only those sensitivity matrices which have the same measured states contain

similar information and can be considered together. As a result, contrary to the fixed

measurement case that we collect all sensitivity matrices in one matrix Sy(t0, . . . , tn, xa)

and investigate it, in the system with changing measured states, we propose to place all

the sensitivity matrices of the same measured states together in one matrix and apply the

variable selection to that matrix.

Let us take an example to explain the above procedure. Consider a field with changing

measurements as an example. As the center pivot rotates and irrigates the field, the presently

irrigated locations are considered as the measured nodes (represented with the red dots in

Figure 3.2). Suppose that the whole field in the azimuthal direction is divided into 40

compartments. Figure 3.3 represents how we collect the sensitivity matrices in this field

with rotating measurements. For example, for the first sector, the calculated sensitivity

matrices of the first sector at the consecutive rotations are Sy(1), Sy(41), Sy(81), · · ·. All the

sensitivity matrices of the first sector are collected in one matrix to form an overall sensitivity

matrix of the first sector, S1
y . Then, by calculating the rank of matrix S1

y and applying the

variable selection to S1
y , the estimable parameters for the case the measuring locations are

in the first sector will be determined. The same procedure will be performed for all other

sectors of the field to determine the most important parameters for simultaneous estimation

at each sector. Therefore in a system with changing measurements, the subset of parameters

for simultaneous estimation at each sampling time varies. Note that similar to the fixed

measurement case, the SVD analysis and orthogonalization method respectively are used in

this case to calculate the rank of the sensitivity matrices of each sector and determine the

subset of parameters for estimation at each sector.
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Figure 3.3: A schematic representation of how to collect sensitivity matrices when the mea-
sured states are changing.

3.2.3 Simultaneous State and Parameter Estimator

After applying the sensitivity analysis to the augmented model and determining the subset of

parameters for simultaneous estimation, a state estimator is used to estimate the augmented

state vector xa. By estimating the augmented state of the augmented model, the states and

parameters of the original model are estimated at the same time. In this work, we employ

the discrete-time EKF to estimate the states of the augmented model in (3.6). The detailed

steps are described as follows:

The continuous-time model of the augmented system (3.4) is discretized to obtain its

discrete-time equivalent. The discrete-time version can be expressed as:

xa(k + 1) = Fa(xa(k), u(k)) + ωa(k)

y(k) = Ha(xa(k), k) + v(k)

(3.6)

The augmented state vector xa contains the original states x(k) ∈ RNx and all soil parameters

p(k) ∈ RNp . The parameter vector p(k) consists of two different parameter sets: pe(k) and

pr(k). pe(k) is the estimable parameter vector which is determined by the sensitivity analysis
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and its elements will be estimated using EKF. pr(k) is the remaining parameter vector

which includes the rest of the soil hydraulic parameters that are not estimated and will be

constant during EKF estimation. However, the elements of this vector will be updated using

Kriging interpolation at each sampling time after estimating the elements of pe(k). For fixed

measurements, the soil parameters belong to the vectors pe(k) and pr(k) are constant, while

in the case of changing measurements, pe(k) and pr(k) elements change at each sampling

time.

In the first step of EKF, the filter is initialized with a guess of the augmented state xa(0)

and its covariance matrix Pa(0|0). Since all parameters are augmented in the augmented

state vector xa, we initially considered all the parameters in the construction of the covaraince

matrix, Pa ∈ R(Nx+Np)×(Nx+Np). The next step of EKF is prediction. The new augmented

state xa and its covariance matrix Pa are predicted using the nonlinear model at time t(k+1):

x̂a(k + 1|k) = Fa(x̂a(k|k), u(k)) (3.7)

Pa(k + 1|k) = A(k)Pa(k|k)A(k)T +Q (3.8)

where A(k) = ∂Fa

∂xa
|x̂a(k|k), u(k) and Q is the covariance matrix of the process disturbance

ωa. Note that, since we estimate only a subset of parameters at each sampling time and

the values of unestimated parameters are assigned a constant value, the jacobians of the

state and output equations with respect to the unestimated parameters at that sampling

time are set to zero. Thus, the entries of A(k) related to unestimated parameters are set

to zero. Consequently, in Equation (3.8), the elements of the covariance matrix related to

unestimated parameters will not be updated.

The last step of EKF is updating the predicted augmented state and its covariance matrix

using the observation y(k + 1) at time t(k + 1) by:

x̂a(k + 1|k + 1) = x̂a(k + 1|k) +G(k + 1)× [y(k + 1)−Ha(x̂a(k + 1|k))] (3.9)
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Pa(k + 1|k + 1) = [I −G(k + 1)C(k + 1)]Pa(k + 1|k) (3.10)

In the above equations, G(k + 1) is the Kalman gain matrix that can be calculated as:

G(k + 1) = Pa(k + 1|k)CT (k + 1)× [C(k + 1)Pa(k + 1|k)CT (k + 1) + R]−1 (3.11)

where C(k + 1) = ∂Ha

∂xa
|x̂a(k+1|k) and R is the covariance matrix of the measurement noise v.

Similar to the prediction step, due to the constant values of the unestimated parameters, the

entries of C(k+ 1) related to unestimated parameters should set to be zero. x̂a(k+ 1|k+ 1)

is the estimated augmented state which includes the estimated original states and a subset

of parameters. Then, we use the estimated parameters, as the measured values in the

Kriging interpolation method in order to update the unestimated parameters. Thus, the

unestimated parameter vector pr(k) is updated at each sampling time, using the Kriging

interpolation, when the estimated parameter vector pe(k) is obtained. The whole estimated

and interpolated parameter vector p(k) is used in Equation (3.7).

3.3 Results

In this work, two different simulation case studies are constructed based on the various types

of measured nodes and the size of the field in order to extensively study the performance of

the proposed approach. In the following simulations, the root mean square error (RMSE) at

a time instant and the average RMSE will be used to assess the estimation performance:

RMSExa(k) =

√∑nxa
i=1(x̂a,i(k)− xa,i(k))2

nxa

(3.12)

RMSExa =

∑Nsim−1
k=0 RMSExa(k)

Nsim

(3.13)

where RMSExa(k) with k = 0, · · · , Nsim − 1 shows the evolution of the RMSE value over

time and RMSExa shows the average value.
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3.3.1 Scenario 1: A Small Field with Fixed Measurements

A field of radius 50 m and depth of 0.30 m is investigated in the first scenario. We discretize

the field into 6, 40, and 16 nodes in the radial, azimuthal and axial directions, respectively.

The head pressure of the soil at these discretized nodes are the states of the system. A

schematic diagram of the investigated field is shown in Figure 3.4.

Figure 3.4: A schematic diagram of the investigated field [1].

Heterogeneous soils is considered in the investigated field. In fact, the set of soil param-

eters at each node of the surface of the field varies. The distribution of soil parameters on

the surface is shown in Figure 3.5. The distribution of soil parameters at the lower layers

of the field is the same as one on the surface. In addition, the initial condition of the head

pressure (x0) at each state is various and it comes from a random variable between -1.5 m

and -1.35 m. The center pivot rotates at a speed of 0.011 m/s and the irrigation amount is a

constant rate of 3.6 mm/day which is applied to the field surface in the first 8 hours of each

day.
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(a) saturated volumetric moisture
content (θs (m3m−3))

(b) residual moisture content
(θr (m3m−3))

(c) saturated hydraulic conductiv-
ity (Ks (cmhr−1))

(d) curve-fitting soil hydraulic
property (α (m−1))

(e) Water Retention Model Pa-
rameter (n)

Figure 3.5: Heterogeneous distribution of soil parameters on the surface of the investigated
field.

In this scenario, we directly measure the head pressure (h) of the soil which is the state of

the system. Thus, the measurement vector y(k) is the head pressure at the measured nodes

of the field and the general output equation in (3.4) converts to the following equation that

simply represents a matrix (C) indicating which states are measured by the sensors:

y(k) = Cxa(k) + v(k) (3.14)

In this scenario, the measuring locations are fixed. Thus, the matrix C is constant. In the

following, we illustrate how the proposed estimation method may be used to estimate the

head pressure and soil hydraulic parameters simultaneously while the fixed measurements

are used.
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3.3.1.1 Determination of Significant Parameters

The first step is to construct the augmented model. Based on the system discretization,

there are in total 3840 states and 1200 parameters in the model. Specially, the parameter

vector is:

p = [Ks,1, θs,1, θr,1, α1, n1, · · · , Ks,240, θs,240, θr,240, α240, n240] ∈ R1200

and the state vector is:

x = [x1, x2, · · · , x3840]
T ∈ R3840

Thus, the augmented state vector xa which contains 3840 original states and 1200 parameter

states is as follows:

xa = [x1, · · · , x3840, Ks,1, θs,1, θr,1, α1, n1, · · · , Ks,240, θs,240, θr,240, α240, n240]
T ∈ R5040

Six tensiometers are installed at different locations of the depth 30 cm below the surface

in order to measure the head pressure values of the 180th, 181th, 182th, 183th, 184th, 185th

states, respectively. Thus, the output vector is:

y = [x180, x181, x182, x183, x184, x185]
T ∈ R6.

The next step is to perform the sensitivity analysis in order to determine the most impor-

tant parameters for simultaneous estimation. Based on the discussion in Section 3.2.2.1 and

since the measuring locations are fixed in this scenario, we only need to calculate the sensi-

tivity matrix at each sampling time Sy(k) and form the sensitivity matrix Sy(t0, · · · , tn, xa).

The SVD of matrix Sy(t0, · · · , tn, xa) is then computed to explore how many parameters can

be estimated at each sampling time. Since there are 1200 parameters to be determined,

there are 1200 columns in the matrix Sy(t0, · · · , tn, xa). An SVD of this matrix then yields
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1200 singular values σ1, · · · , σ1200. These singular values are presented in Figure 3.6 on a

logarithmic scale. The biggest gap between σ24 and σ25 of approximately 3.5 decades on

the logarithmic scale, indicates a true zero for the 24th singular value and, hence, a possible

lack of observability. Thus, the rank of the sensitivity matrix is 24 which means, only 24

parameters can be simultaneously estimated with the original states at each sampling time.

Figure 3.6: Singular values of the sensitivity matrix in scenario 1.

Afterward, we employ the orthogonalization method to select the most important 24

parameters for estimation. Based on the results of the orthogonalization method, the most

significant parameters are Ks, θs, α, and n at 6 measured nodes (nodes 180th, 181th, · · ·,

185th). Therefore, all original states and Ks, θs, α, and n parameters at 6 measured nodes

should be estimated simultaneously in the EKF at each time instant and the rest of the

parameters should be interpolated using the EKF estimated parameters. The final selected

parameters for simultaneous state and parameter estimation in the first scenario are listed

in Table 3.1.

Table 3.1: Selected parameters for estimation using orthogonalization method.

Ks,180 θs,180 α180 n180 Ks,181 θs,181 α181 n181

Ks,182 θs,182 α182 n182 Ks,183 θs,183 α183 n183

Ks,184 θs,184 α184 n184 Ks,185 θs,185 α185 n185
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3.3.1.2 Estimation Results

The three dimensional agro-hydrological system with nominal soil parameters is used to

simulate the model and obtain the head pressure of the actual system and is further used

in the prediction step of EKF. The six head pressure measurements are used to correct

the prediction state estimates in the update step of EKF at each sampling time. Process

noise and measurement noise are considered in the simulations and they have zero mean

and standard deviations of 1 × 10−6 and 6 × 10−2, respectively. In EKF design, a 10% to

15% mismatch in the initial condition of the states and initial guess of the parameters is

considered.

To verify the effectiveness of the proposed method, three different cases are considered.

In case 1, only the states of the original system are estimated while there is uncertainty

in the soil parameters. In case 2, without considering the sensitivity analysis, all 5040

variables in the augmented state are estimated. In case 3, the proposed method is used for

simultaneous state and parameter estimation. In this case, at each sampling time, firstly

the original states and a set of twenty-four parameters selected from the sensitivity analysis

are estimated simultaneously, and then, the rest of the parameters are interpolated using

twenty-four estimated parameters. The estimation results of the three cases are shown in

Figure 3.7. From Figure 3.7, it can be seen that the estimation performance in case 1 and

case 2 are much poorer compared with case 3. The poor estimation performance of case 1

is due to the uncertainty in all parameters that are not estimated. In case 2, because of

the unobservability of the entire augmented state vector xa, the performance of estimation

is poor. Based on Figure 3.6, the sensitivity matrix is not full rank which implies that the

augmented system is not fully observable and all elements of xa can not be estimated at the

same time. Thus, estimating all elements of xa without considering the observability may

lead to overfitting the outputs and poor state estimation performance as shown in case 2.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: (a)-(e) Trajectories of the actual states (red lines), estimated states in Case 1
(green lines), estimated states in Case 2 (black lines), and estimated states in Case 3 (blue
lines). (f) Evolution of the RMSE of the original state vector during the simulation time in
Case 1 (red lines), Case 2 (blue lines) and Case 3 (black lines).

In case 3, the observability information is taken into account and only a subset of soil

hydraulic parameters that are selected by the sensitivity analysis is estimated along with
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original states simultaneously. Interpolating the unestimated parameters using the estimated

parameters is another feature of this case that improves the performance of estimation. The

improved estimation performance in case 3 can be further seen from Table 3.2, which shows

the average performance indexes for the entire simulation of the three cases. From Table 3.2,

it can be seen that the average RMSE of the state vector, parameter vector, and entire

augmented state vector in case 3 are smaller than case 1 and case 2.

Table 3.2: The average performance indexes for the entire simulation in scenario 1.

RMSEx RMSEp RMSExa

Case 1 24.90%

Case 2 24.19% 17.66% 24.69%

Case 3 14.25% 14.99% 14.27%

3.3.2 Scenario 2: A Larger Field with Rotating Measurements

In the second scenario, we consider a comparatively bigger field than the first scenario. The

radius of the field is 290 m and 0.3 m depth is investigated. The entire system is discretized

into 12000 nodes with 30, 40, and 10 nodes in the radial, azimuthal and axial directions,

respectively. Contrary to the system considered in scenario 1, in the system considered in

scenario 2, we use microwave remote sensors to provide the soil water information of the

field. Microwave remote sensors measure the soil moisture content of the presently irrigated

locations on surface of the field. Thus, the measuring locations are changing in this scenario.

The heterogeneous soil hydraulic parameters values, the rotation speed of the center pivot,

the irrigation scheduling and amount by the center pivot, and other simulation settings are

the same as the one considered in scenario 1.
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3.3.2.1 Determination of Significant Parameters

According to the system discretization, there are in total 12000 states and 6000 parameters

in the model. Thus, the augmented state xa has 18000 elements as follows:

xa = [x1, · · · , x12000, Ks,1, θs,1, θr,1, α1, n1, · · · , Ks,1200, θs,1200, θr,1200, α1200, n1200]
T ∈ R18000

Based on Section 3.2.2.2 and since the rotating measurements are considered in this scenario,

the sensitivity matrices of the sectors with the same measuring locations should be placed

together in order to determine the estimable parameters for that sectors. Since there are

6000 parameters to be determined, there are 6000 columns in the sensitivity matrix. An

SVD of this matrix then yields 6000 singular values σ1, · · · , σ6000.

(a) (b)

(c)

Figure 3.8: Singular values of sensitivity matrix in scenario 2 at (a) 1st sector; (b) 10th sector;
(c) 25th sector.
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The singular values of the overall sensitivity matrices for some selected sectors of the field

are presented in Figure 3.8 on a logarithmic scale. In all subplots of Figure 3.8, a clearly

visible gap between σ150 and σ151 of approximately 5.8 decades on the logarithmic scale,

indicates a true zero for the 150th singular value and, hence, a possible lack of observability.

Thus, in the selected three sectors, the rank of the sensitivity matrix is 150 which means,

of total 6000 parameters, only 150 parameters can be estimated with the states at these

sampling times. The same results are obtained for other sectors of the field. Next, we employ

the orthogonalization method to select the most important 150 parameters for estimation.

Based on the results of the orthogonalization method, at the sampling time k, the estimable

parameters are Ks, θs, θr, α, and n corresponding to the measured nodes in the sampling

time k. Therefore, at each sampling time, all original states and Ks, θs, θr, α, and n at 30

measured nodes should be estimated in the proposed method.

3.3.2.2 Estimation Results

Similar to scenario 1, three different cases are considered to study the effectiveness of the

proposed method on the estimation performance in this scenario. Case 1 is only soil moisture

estimation with uncertainty in the soil hydraulic parameters. Case 2 estimates all soil mois-

ture and soil hydraulic parameters without considering the sensitivity analysis. In case 3,

the proposed method is used for simultaneous soil moisture and soil hydraulic parameter es-

timation. The thirty soil moisture measurements are used to correct the prediction estimates

in the update step of EKF at each sampling time. In EKF design, a 10% to 15% mismatch

in the initial condition of the states and initial guess of the parameters is considered. The

estimation results of the three cases are shown in Figure 3.9. From Figure 3.9, it can be seen

that the estimation performance in case 3 is much improved compared to cases 1 and 2.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: (a)-(e) Trajectories of the actual states (red lines), estimated states in Case 1
(green lines), estimated states in Case 2 (black lines), and estimated states in Case 3 (blue
lines). (f) Evolution of the RMSE of the original state vector during the simulation time in
Case 1 (red lines), Case 2 (blue lines) and Case 3 (black lines).

Table 3.3 shows the average performance indexes for the entire simulation of the three

cases in the second scenario. From Table 3.3, it can be observed that the average RMSE of

the state vector, parameter vector and entire augmented state vector in case 3 are smaller
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than case 1 and case 2, which demonstrates the estimation performance in the proposed

method is significantly improved.

Table 3.3: The average performance indexes for the entire simulation in scenario 2.

RMSEx RMSEp RMSExa

Case 1 26.29%

Case 2 24.19% 14.20% 24.00%

Case 3 16.60% 13.90% 16.44%

3.4 Summary

In this work, a systematic procedure for simultaneous estimation of soil moisture and soil

hydraulic parameters in 3D agro-hydrological systems with heterogeneous soils was proposed.

Sensitivity analysis and orthogonalization were used to explore the degree of observability

of hydraulic parameters every sampling time. Two different simulation case studies were

carried out to illustrate the procedure. It was demonstrated that a significant improvement

in estimation performance could be achieved with the proposed approach.

64



Chapter 4

Surface Soil Moisture Remote Sensing

Through Machine Learning

Point soil moisture sensors used in the previous chapters provide soil moisture measurements

for sparse point locations. It is impractical to install point sensors everywhere in the field for

obtaining a thorough water distribution. Remote sensing provides an affordable and feasible

way to obtain soil moisture measurements of the entire field. In this chapter, we propose to

estimate surface soil moisture using thermal and optical remote sensing images and weather

conditions as the inputs to the system through a machine learning-based Multilayer Percep-

tron (MLP). The MLP is a class of feedforward artificial neural networks (ANNs) that is

widely used for supervised learning. First, the collection procedure of remote sensing images

and soil moisture data from the 2019 demo farm experiment is discussed. The details of

different vegetation indexes and model development are then discussed. Next the surface

soil moisture estimation method using the remote sensing images is proposed. There is a

detailed description of how the real data set is created from the experimental remote sens-

ing images collected in summer 2019 at Lethbridge. In the end, the MLP model is trained

using the real data set to provide surface soil moisture. Soil moisture estimation results are

analyzed to investigate the efficacy of the proposed model.
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4.1 Remote Sensing and Soil Moisture Data Collection

Procedure

This section discusses the last experiment conducted on the actual agricultural field described

in Section 2.1 in summer 2019. In this experiment, the thermal and optical remote sensing

images were obtained by flying a drone, and at the same time, the soil moisture at a few

specific locations on the surface of the field was collected using point soil moisture sensors.

In the rest of this chapter, firstly the collection procedure of remote sensing images from the

drone is discussed and the soil moisture data collection procedure is then explained. The

detailed information on the experiment is provided in [3].

4.1.1 Remote Sensing Image Collection Using Drone

During the experiment, the RGB and thermal images were captured with the DJI Mavic

2 Enterprise Dual [59], and the NIR images and the blue NDVI values were obtained with

the AgroCam NDVI camera [60]. In addition to the thermal camera which was already

integrated with the drone, the Agrocam NDVI camera was also attached to the drone using

the GPS and integration modules. As a result, all three spectral (RGB, NIR, and thermal)

images were obtained simultaneously. The drone and the Agrocam are shown in Figure 4.1

from [59, 60].

(a) (b)

Figure 4.1: a) DJI Mavic 2 Enterprise Dual, (b) AgroCam.
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There are some important flight details such as: 1) flight altitude: 80 ft, 2) front and side

overlap: 80% and 75%, and flight speed: 7 mph. It is notable to mention that the thermal

camera used in this experiment does not provide radiometric thermal images and it only

gives the cold and hot area for the particular image. This issue has been addressed in [3]

by taking the video of the thermal images and converting the thermal images to radiometric

thermal images. The details of conversion and the flight operation checklist are discussed

in [3]. The captured remote sensing images are used in this chapter as the inputs to the

machine learning-based model.

4.1.2 Soil Moisture Data Collection

To train and validate the machine learning-based model, soil moisture collection is required.

In the experiment, hand-held sensors [61] were used to measure the surface soil moisture,

soil temperature and electric conductivity. Figure 4.2 shows the hydrago sensor used in the

experiment.

Figure 4.2: Steven hydrago sensor.
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The surface soil moisture data were collected at specific locations in the field while the

drone was flying and the remote sensing images were captured. The location of the hydrogo

sensors is shown in Figure 2.1(b). The surface soil moisture from the hydrago sensors were

collected from all the 20 locations. In the following, we summarize the procedure of data

collection in this experiment. We first flew the drone between the time 8.00 AM to 10 AM

daily to capture the RGB, thermal, and NIR images. During the flying of the drone, we

collected the soil moisture at some specific locations on the surface of the field using steven

probe sensors. At the same time, the weather data was also recorded from the weather

information website.

4.1.3 Data Pre-processing

The remote sensing images collected from the drone and the soil moisture sensors obtained

from probe sensors are required to be pre-processed before using in the soil moisture esti-

mation. Sahoo [3] performed some pre-processing steps to address the issues existing in the

collected data and prepare them for estimation. Converting thermal images to radiometric

thermal images to provide accurate temperature information, image registration and stitch-

ing to form a completed map of the field, and identifying the sensor locations on the image

are the main pre-processing steps that were performed on the data by Sahoo [3].

In this thesis, we use the pre-processed images and data obtained from [3]. The remote

sensing images and soil moisture data are available from July 2nd, 2019 to July 31st, 2019

on the date {2,4,9,11,15,17,19,22,23,26,29,30,31}. On each day, there are three maps of the

entire field: 1) RED map; 2) NIR map; 3) Thermal map. Note that from RGB images, red,

green, and blue maps can be obtained. But in this work, we focus on using only RED maps.

Based on the maps, RED, NIR, and temperature values of the entire field surface can be

obtained. In addition, the soil moisture data for all 20 locations on the surface of the field

is available for each day. As an example, Figure 4.3 and Table 4.1 respectively represent the

remote sensing maps and soil moisture data on 4th July, 2019.
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(a) RED map (b) NIR map (c) Thermal map

Figure 4.3: Remote sensing maps of the entire field on 4th July, 2019.

Table 4.1: Soil moisture measurements from probe sensors on 4th July, 2019.

Sensor position Point 1 Point 2 Point 3 Point 4 · · · · · · Point 20

Soil moisture 0.17 0.21 0.18 0.19 · · · · · · 0.18

4.2 Methods

In this section, we discuss the different input indexes and model development for the soil

moisture estimation.

4.2.1 Normalized Difference Vegetation Index (NDVI)

Normalized Difference Vegetation Index (NDVI) is a commonly provided index that measures

crop health and photosynthetic activity. The higher the index value the greater the crop

vigor. The NDVI is determined by measuring how much light the plant reflects at specific

frequencies. In healthy plants, the leaves strongly reflect near-infrared light and strongly

absorb red light. Whereas, dehydrated and unhealthy plants lose their spongy layers, which

causes the leaves to absorb more near-infrared light. Thus, NDVI can be calculated as

follows:

NDV I =
NIR−RED

NIR +RED
(4.1)
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where NIR is the near-infrared reflectivity and RED is the red reflectivity. NDVI values

range from -1 to 1; numbers between -1 and 0 represent dead plants or inanimate objects,

0 to 0.33 represent a stressed plant, 0.33 to 0.66 represent a moderately healthy plant, and

0.66 to 1 is a very healthy plant. For example, Figure 4.4 represents the near-infrared and

RGB image of two plants, one is healthy and the other one is unhealthy [2]. From Figure

4.4, we can observe the healthy plant (left image) absorbs a lot of visible light and reflects a

large portion of near-infrared light. Whereas, unhealthy or sparse vegetation (right image)

absorbs more visible light and reflects less near-infrared light. Based on NDVI formulation,

the NDVI value for healthy plant, 0.50−0.08
0.50+0.08

= 0.72, is much bigger than dead plant one

0.40−0.30
0.40+0.30

= 0.14.

Figure 4.4: NDVI analysis of healthy and unhealthy plant from [2]
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4.2.2 Temperature Vegetation Dryness Index (TVDI)

Surface temperature and vegetation index (NDVI) are combined to create the Temperature

Vegetation Dryness Index (TVDI). The TVDI is calculated using the following equation [39]:

TDV I =
Ts − Ts,min

Ts,max − Ts,min

(4.2)

where Ts is the observed land surface temperature at the given pixel; Ts,min is the lowest

surface temperature given the NDVI along the wet edge; Ts,max is the maximum surface

temperature given the NDVI along the dry edge which can be expressed as a function of

NDVI (Ts,max = a+b (NDV I)), a, b are the coefficients of the dry edge. Figure 4.5 represents

the Ts and NDV I feature space which is plotted as a triangular area. Wet edge can be

viewed as a constant bottom line of the triangle, whereas the dry edge is represented as

the diagonal line of the triangle which varies linearly with the NDVI. The ET shows the

evapo-transpiration term. For full cover plant, the ET is maximum and for bare soil the ET

is minimum. More details of the TVDI methods can be found in [39].

Figure 4.5: Ts-NDVI triangle feature space [3].
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4.2.3 Multilayer Perceptron (MLP) Modeling

In this section, we give a brief overview of multilayer perceptron artificial neural networks.

Multilayer perceptron (MLP) is a class of feedforward artificial neural networks (ANNs).

MLPs are designed to approximate any continuous function and can solve problems which are

not linearly separable. The major use cases of MLP are pattern classification, recognition,

prediction and approximation. MLP is based on the supervised procedure which means

the network builds a model based on examples in data with known outputs [62, 63]. The

architecture of the MLP is completely defined by an input layer, one or more hidden layers,

and an output layer. Each layer consists of at least one neuron called perceptron. Figure 4.6

illustrates the configuration of the MLP, from [4]. The input layer receives the input signal

to be processed. The required task such as prediction and classification is performed by the

output layer. An arbitrary number of hidden layers that are placed in between the input

and output layer are the true computational engine of the MLP. In the MLP, the data flows

in the forward direction from input to output layer.

Figure 4.6: General architecture of multilayer perceptron neural network model [4]

The perceptrons in the MLP are trained with the backpropagation learning algorithm.

The backpropagation algorithm is summarised below [64, 65].

1. Initialise network weights
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2. Present first input vector, from training data, to the network

3. Propagate the input vector through the network to obtain an output

4. Calculate an error signal by comparing actual output to the desired (target) output

5. Propagate error signal back through the network

6. Adjust weights to minimise overall error

7. Repeat steps 2-7 with next input vector, until overall error is satisfactorily small

In the following, we describe how a perceptron uses the given inputs to calculate the

corresponding output, i.e., how forwarding propagation (step 3) is accomplished in the above

algorithm. Figure 4.7 shows a general appearance of a neuron with its connections [5].

Each connection from ith to the jth neuron is associated with a quantity called weight or

connection strength (wij).

Figure 4.7: Basic processing element (perceptron) in a network. Each input connection value
(xi) is associated with a weight (Wji). The output value (xj = f(aj)) can fan out to another
unit [5]

A net input (called activation) for each neuron is the sum of all its input values multiplied

by their corresponding connection weights, expressed as [66]

aj =
n∑

i=1

xiwji + θj (4.3)
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where i is the total of neurons in the previous layer and θj is a bias term which influences

the horizontal offset of the function. Once the activation of a perceptron is calculated, the

result of this computation is then passed onto a nonlinear activation function f , which will

produce the output of the perceptron [5]:

xj = f(aj) (4.4)

Many activation functions may be used, for example, a linear function, a threshold function,

a sigmoid function, etc, as shown in Figure 4.8.

Figure 4.8: Three types of nonlinear activation functions commonly used in ANN models [5].

A sigmoid function is often used, because it has nonlinearity, which is given by:

xj = f(aj) =
1

1 + exp(−aj)
(4.5)

The weights play an important role in the propagation of the signal in the network. They

establish a link between input pattern and its associated output pattern, that is, they contain

the knowledge of the neural network about the problem–solution relation. The forward-

propagation step begins with the presentation of an input pattern to the input layer, and

continues as activation-level calculations propagate forward till the output layer through the

hidden layer(s). In each successive layer, every neuron sums its inputs and then applies a

transfer function to compute its output. The output layer of the network then produces the

final response, that is, the estimate of target value.
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4.3 Proposed Soil Moisture Estimation Method

In this section, we propose a supervised estimation of surface soil moisture using a multilayer

perceptron artificial neural network model. Initially, the MLP model is trained by using

surface soil moisture probe measurements at a few sensor locations as the output of the

model, and remote sensing images as the inputs. The trained MLP model can then be used

to calculate the surface soil moisture of the entire field. Mathematically it can be written as

follows:

y = f(u) (4.6)

where y is the surface soil moisture. f is a nonlinear function that maps remote sensing

images to the soil moisture. MLP neural network is used in this section to approximate that

function. u represents the inputs to the system which consist of two main parts: 1) remote

sensing images includes NDVI and TVDI images; 2) irrigation and climate data includes rain

and evapo-transpiration (ET). Note that when we fly the drone, we usually do not obtain

remote sensing images every day, whereas climate data can be obtained every day. Thus in

the proposed method, we consider irrigation and climate data for some specific days that

the remote sensing images are available. Figure 4.9 shows the proposed method for entire

farm’s soil moisture estimation from the remote sensing images. In the following we explain

how the MLP model is trained in the proposed method.

MLP-ANN Model

NDVI and TVDI Images

Irrigation and Weather Data

Estimated Surface Moisture

Figure 4.9: Flow diagram of proposed soil moisture estimation
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According to Section 4.1.3, the remote sensing images and soil moisture data are available

from July 2nd, 2019 to July 31st, 2019 on the dates {2,4,9,11,15,17,19,22,23,26,29,30,31}. On

each day, there are RED, NIR, and thermal maps of the entire field and soil moisture of 20

locations on the surface. The following is a step-by-step description of how the real data set

is derived from the experimental images conducted in the summer of 2019 at Lethbridge and

how the MLP model is trained using the resulting data set.

1. Choose the first date of data: July 2nd.

2. Collect RED, NIR, and thermal maps of the entire field as well as soil moisture data

at 20 sensor locations for the selected date. For example, Figure 4.10 and Table 4.2

respectively represent the remote sensing maps and soil moisture data on 2nd July,

2019.

(a) RED map (b) NIR map (c) Thermal map

Figure 4.10: Remote sensing maps of the entire field on 2nd July, 2019.

Table 4.2: Soil moisture measurements from probe sensors on 2nd July, 2019.

Sensor position Point 1 Point 2 Point 3 Point 4 · · · · · · Point 20

Soil moisture 0.19 0.22 0.17 0.18 · · · · · · 0.17

3. Obtain climate data including rain and ET for the selected date from the weather

station near the demo farm from website (https://agriculture.alberta.ca/acis/). Irri-
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gation amount and scheduling of the demo farm can be also obtained from Table 2.1

in Section 2.6.

4. Use Equations (4.1,4.2) to respectively obtain NDVI and TVDI maps of the entire

field for the selected date using RED, NIR, and thermal maps obtained from step 2.

Figure 4.11 illustrates the TVDI and NDVI maps obtained on 2nd July, 2019.

(a) NDVI map (b) TVDI map

Figure 4.11: NDVI and TVDI maps of the entire field on 2nd July, 2019.

5. The sensor locations on the image have been identified using the minimum distance

between GPS coordinates of the marked sensor locations and the pixels of the stitched

image [3]. However, the image registration between different NIR, thermal and RGB

images is not always perfect. Thus in the proposed method, in order to address the

misregistration issue, we use the averaging method around the sensor location. We

consider a small rectangle around the sensor pixels and average the values inside the

rectangle. The average value will be used as an input to the MLP instead of only

one selected sensor pixel value. Figure 4.12 shows the identified sensor locations and

averaging rectangle on NIR image of 2nd July, 2019. Hence at this step, we calculate

the average NDVI and TVDI values inside the rectangle surrounding all 20 sensor

pixels.
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Figure 4.12: Identified sensor locations and rectangles around sensor pixels on NIR image of
2nd July, 2019.

6. Place all the information obtained from steps 2 to 5 for the selected date together in

the following table. Table 4.3 summarizes all collected information on 2nd July, 2019.

From Table 4.3, there are 20 samples in the first date.

Table 4.3: Collected information on 2nd July, 2019.

Sample NDVI(X1) TVDI(X2) Irrigation(X3) Rain(X4) ET(X5) Soil moisture(Y )

1 0.18 0.91 0 0 2.7 0.17

2 0.19 0.81 0 0 2.7 0.27
...

...
...

...
...

...
...

19 0.18 0.88 0 0 2.7 0.14

20 0.20 0.83 0 0 2.7 0.14

7. Go back to the first step and set the next date on which data is available and repeat

steps 2 to 6. Add the collected information on the new date to the previous table.

Repeat the same procedure for all 13 dates of July in which data are available in order

to complete the table. Table 4.4 represents all information collected for all days. There

are 20 samples for each date. For example, rows from 1 to 20 represent information

collected on 2nd July, or samples between 21 and 40 include information on 4th July.
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Table 4.4: Data set including inputs and output of the system.

Sample NDVI(X1) TVDI(X2) Irrigation(X3) Rain(X4) ET(X5) Soil moisture(Y )

1 0.18 0.91 0 0 2.70 0.17
...

...
...

...
...

...
...

20 0.20 0.83 0 0 2.70 0.14

21 0.21 0.85 1.81 0.50 1.80 0.17
...

...
...

...
...

...
...

40 0.22 0.98 1.81 0.50 1.80 0.15

...
...

...
...

...
...

...
...

...
...

...
...

...
...

240 0.30 0.65 0 5.30 0 0.29
...

...
...

...
...

...
...

260 0.32 0.54 0 5.30 0 0.41

8. Table 4.4 is the data set used in the proposed method to train the MLP model. Ac-

cording to the obtaining data set, there are 260 samples, 5 main features, and 1 output.

NDVI, TVDI, irrigation, rain, and ET are the 5 main features that are treated as the

inputs to the MLP model. The soil moisture is also the only output of the MLP model.

Note that, in the proposed method we consider only one MLP model for all days, and

train it using the resulting data set which includes information about all days. Thus in

the proposed method, a single MLP neural network is developed to predict the surface

soil moisture on all days. Table 4.5 summarizes the description of data set used for

the MLP neural network simulations.

Table 4.5: Data set statistics.

NDVI TVDI Irrigation (mm) Rain (mm) ET (mm) Soil moisture

Count 260 260 260 260 260 260

Mean 0.304 0.703 0.498 0.262 5.215 0.233

Standard deviation 0.086 0.152 0.752 0.602 1.568 0.089

Minimum 0.116 0.313 0 0 1.8 0.07

Maximum 0.478 1.102 1.81 2.2 8 0.44
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9. Determine the neural network structure. Select the number of MLP neural network lay-

ers, the number of neurons in each layer, the optimizer, activation functions, the batch

size, and epochs for model fit. Note that there are no universal rules for determining

these parameters and they are usually chosen by trial-and-error experimentation.

10. Normalize the data set and split it into training and validation sets. The training data

set is used to fit the MLP model and the validation data set is used to evaluate the

performance of the trained MLP model.

4.4 Results

In this section, the proposed method and the real data set, is used to train a MLP neural

network model. The main purpose of MLP model is to estimate the surface soil moisture

of the entire field using remote sensing images. Data variables in Table 4.4 have different

ranges of values and units. Thus before using the data set in the training process, data

variables need to be standardized. The input data are normalized within the range of 0 and

1 using the following function:

Xij =
xij − Vminj

Vmaxj − Vminj

(4.7)

where Xij is the normalized value of the input xij, Vminj and Vmaxj the minimum and

maximum values of the jth variable in all observations, respectively. The 260 samples are

split into two sets: 208 samples are used to train the model and the other 52 samples for

validation. The validation set which has not been seen in the model training is used to

evaluate the performance of the trained model. To verify the effectiveness of the proposed

method, two different regression models are considered: 1) Linear regression model; 2) MLP

neural network regression model. The root mean squared error (RMSE) and the coefficient of

determination (R2) are used to assess the performance of the trained model in soil moisture

estimation.
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4.4.1 Linear Regression Model

In the first case, a linear regression model is used to describe the relationship between the

soil moisture as the output of the system and remote sensing images and climate data as

the inputs to the system. Mathematically the linear regression model in this work can be

expressed as:

y = θ1x1 + θ2x2 + θ3x3 + θ4x4 + θ5x5 + θ6 (4.8)

where y is the soil moisture, x1 to x5 are the five features of the system (NDVI, TVDI,

Irrigation, Rain, and ET), and θ1 to θ6 are the parameters of the linear model that need to

be estimated. The most common type of approach to train the linear regression equation

from set of data is ordinary least squares (OLS) technique. OLS estimates the coefficients

of linear model by minimizing the residual sum of squares between the observed targets in

the data set, and the targets predicted by the linear approximation. In this work, the real

data set obtained in Table 4.4 is used to fit the coefficients of linear model in Equation (4.8).

Figure 4.13 shows the training and validation measurement points vs. the predicted points

obtained from the fitted linear model at the same location in two different plots.

Figure 4.13: Measured and predicted soil moisture scatter plot in Linear regression.
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Based on the results, RMSE for training points is 6.62% and for validation points is

6.94%. In addition, the R2 for the validation points is 0.34 while for the training points is

0.46. For further analysis, the training and validation results of the predicted and measured

soil moisture are shown respectively in Figures 4.14 and 4.15. We can see that the predicted

values from the linear regression follow the trend of the measured soil moisture.
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Figure 4.14: A comparison of the measured soil moisture (blue dots) with their corresponding
estimates (red dots) for the training set in linear regression.
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Figure 4.15: A comparison of the measured soil moisture (blue dots) with their corresponding
estimates (red dots) for the validation set in linear regression.
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4.4.2 MLP Regression Model

In the second case, a MLP neural network model is used to predict the surface soil moisture

using the remote sensing images and climate data. In the structure of the MLP network, two

hidden layers with 55 neurons are used. The maximum iteration and batch size are 300 and

4, respectively. The ReLU (Rectified Linear Unit) activation function for the hidden layers

is used. In the process of training, the performance function is mean squared error (MSE)

and the solver for weight optimization is adam (a stochastic gradient-based optimizer). The

real data set obtained in Table 4.4 is used to train the described MLP.

Figure 4.16 shows the training and validation measurement points vs. the predicted

points at the same location in two different plots. The results illustrate that most of the

validation and training points are near the 45◦ line. RMSE for training points is 4.07%

and for validation points is 4.56% that are much smaller than linear regression errors. In

addition, the R2 for the training points is 0.80 and for the validation points is 0.71 which

shows the superiority of the proposed algorithm and MLP model.

Figure 4.16: Measured and predicted soil moisture scatter plot in MLP neural network
regression.
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Figures 4.17 and 4.18 respectively represent the training and validation results of the

predicted and measured soil moisture. We can observe that the predicted output from the

MLP model has strong agreement with the measured soil moisture. Thus the performance

of surface soil moisture estimation is significantly improved using the proposed method and

MLP neural network model.
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Figure 4.17: A comparison of the measured soil moisture (blue dots) with their corresponding
estimates (red dots) for the training set in MLP neural network regression.
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Figure 4.18: A comparison of the measured soil moisture (blue dots) with their corresponding
estimates (red dots) for the validation set in MLP neural network regression.
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4.5 Summary

In this chapter, we presented the algorithm to estimate the surface soil moisture from optical

and thermal remote sensing images using the MLP neural network model. The surface soil

moisture was estimated using the drone remote sensing images for a real field. The input to

the MLP model was NDVI and TVDI images, rain, ET, and irrigation amount. The MLP

was trained using the measured surface soil moisture collected from the hydroprobe sensors.

The predicted output from the MLP model at both validation and training points showed a

strong agreement with the measured soil moisture with R2 0.71 and 0.80, respectively.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we addressed major challenges in soil moisture estimation for the application

in large-scale agricultural fields. The impact of sensor placement in soil water estimation

performance for an actual agricultural field and a simultaneous soil moisture and soil hy-

draulic parameter estimation of 3D field models were studied. Further, the remote sensing

soil moisture estimation was discussed using the machine-learning based model.

In Chapter 2, an actual agriculture field was studied to investigate the impact of sensor

placement in soil water estimation in an actual application. Initially, a description of the

study area and the experiments carried out on the field was provided. A 3D agro-hydrological

model was then developed using the cylindrical coordinate version of the Richards equation,

in order to predict the soil moisture dynamics in the studied field and model the circular

movement of the center pivot irrigation system. optimal sensor placement results were then

obtained for the actual field by applying the modal degree of observability to the field model.

It was found that in a field with 75 cm depth, measured states located at 65 cm below the

surface layer, have relatively higher values of the modal degree of observability, while placing

sensors on the surface gives the lowest modal degree of observability. The EKF algorithm
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was then employed to estimate the soil water content of the studied field. According to the

simulated case study results, the estimates converged faster to the actual states when the

sensors were placed with a higher degree of observability. In addition, based on the simulation

results, there was a significantly stronger agreement between the estimated moisture content

maps and the actual moisture content maps in the case of optimal sensor placement. At the

end of this chapter, the real measurements provided by watermark sensors were considered

and two different scenarios were constructed: (i) in presence of two Measurements; (ii) in

presence of a few measurements. In the real case study, two evaluation criteria were used to

study the performance of the estimation. From the results of the performance evaluation,

it was evident that the performance of state estimation with optimally sensor placement is

significantly improved in the actual applications.

In Chapter 3, a systematic procedure was proposed to estimate the soil moisture and

soil hydraulic parameters simultaneously for large-scale 3D agro-hydrological systems with

heterogeneous soils and changing measurements. An agro-hydrological system equipped with

a center pivot irrigation system and microwave soil moisture sensors was considered as the

investigated system. By augmenting parameters at the end of the state vector and treating

them as states, it was possible to estimate the states and parameters simultaneously. Based

on the observability of the augmented system and the sensitivity of the outputs to the

parameters, an algorithm was proposed for determining the appropriate parameter set for

estimation. Next, the EKF estimation algorithm was chosen to simultaneously estimate the

soil moisture and the set of soil hydraulic parameters which was earlier determined from

the sensitivity analysis. In addition, in order to improve the performance of estimation, the

Kriging interpolation method was employed for updating the unestimated parameters. The

proposed method was then studied and evaluated with simulated measurements under the

following scenario: (i) a small field with fixed measured states; (ii) a larger field with changing

measured states. It was demonstrated that the proposed method could significantly improve

the performance of soil moisture estimation and provide soil moisture estimates with high
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accuracy and consistency under all the investigated scenarios.

In Chapter 4, MLP neural network model was proposed to estimate surface soil moisture

using thermal and optical remote sensing images. The data which were collected from

the experiment conducted in the summer of 2019 was used in this chapter. Initially, the

definitions of various vegetation indices were explained. It was then explained in detail how

the real data set was derived using experimental remote sensing images. The MLP was

trained using the collected soil moisture. The estimated soil moisture from the MLP model

at both training and validation points demonstrated a strong agreement with the measured

soil moisture with R2 0.8 and 0.71, respectively.

5.2 Future Work

• State and parameter estimation using real measurements in an actual application As

a further step towards the simultaneous soil moisture and soil hydraulic parameter

estimation, the proposed approach can be applied to a real agriculture field. In this

thesis, it was found that the simultaneous state and parameter estimation based on the

sensitivity analysis can improve the soil moisture estimation performance. However,

it is unclear whether the significantly improved estimation performance can still be

observed in the actual applications.

• State and parameter estimation of completed agro-hydrological systems In this the-

sis, the agro-hydrological system is modeled by Richards equation that only covers

the water dynamics within soil. In the future work, evapo-transpiration model and

crop growth model can be incorporated with Richards equation. The soil hydraulic

parameter and soil moisture estimation problem can be studied on a completed agro-

hydrological system.
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