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Abstract

In this study we consider methodological and applied issues in geographic disease 

cluster detection. In the early chapters of our study, we discuss rationale for using 

cluster detection methods. In Chapter 2, we outline features of geographic health 

surveillance, and suggest that some cluster detection methods offer important 

advantages over other methods of spatial analysis when used in surveillance 

applications. In Chapter 3, we present a normative rationale for using cluster 

detection methods in the context of chronic disease prevention. In the last two 

chapters, we describe and evaluate an approach to cluster detection that is able to 

find clusters of irregular shape. In Chapter 4, we present the method in detail and 

evaluate it in the context of simulated data. In Chapter 5, we observe the 

method’s performance with respect to real disease data. We conclude the study 

by arguing that our new approach may be of use when applied in conjunction with 

more traditional techniques of disease cluster detection.
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CHAPTER 1: Introduction

1.1. Philosophical setting: methodoloev and pragmatic context

Traditional notions of scientific objectivity have been subject to considerable 

scrutiny over the last 50 years. Critical discussion of how comparative 

methodological studies are undertaken has received much of the attention. Some 

of the best known modem criticism comes from Kuhn (1962), who offers a 

critical view of how science perceives the advancement of new methodology. 

Small changes can occur within an accepted scientific paradigm, but 

methodological breakthroughs are not based on the accumulation of evidence 

towards better methodology, but occur in a framework of scientific crisis 

management. When a breakthrough does occur, the new method is chosen based 

on its elegance and ‘neatness’ as much as its ability to solve problems or answer 

questions.

Though these ideas continue to fuel epistemological debates in the philosophy 

of science, the most lasting observe that science is influenced by the 

participants—the scientists—in their choices of standards, subjects of study, 

methods of comparison and modes of communication. In the social sciences, this 

observation is particularly important. For example, many social scientists use 

language to acquire, analyze and describe information on human behaviour and 

human institutions. However, language is laden with uncertainties, complicating 

both the analysis and communication of certain types of social scientific research. 

This has led some to question the validity of the social sciences as sciences; to 

Popper, a notable portion of social theorizing is not testable (and more 

particularly, not falsifiable) and therefore, is not scientific or fruitful (Popper 

1993). Winch (1958) comes to a similar conclusion, seeing the study of human 

society as a philosophical, rather than scientific exercise. Thinkers in ‘critical 

social science’ often put aside questions of truth and validity altogether, and 

instead, ask questions about power and motivation. Ambitiously, this often 

involves notions of ethics, and a suggestion that the scientific establishment must 

be challenged to meet particular normative goals.

As a result of these perspectives, methodological work in the social sciences is

- 1 -
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especially sensitive to the challenges of post-modernism and critical science.

There are many tools available to measure, evaluate and interpret information 

across research disciplines. Competing methods result in different research 

paradigms, and disagreements of approach; for example, interpretivists often 

dispute the numeric quantifications of positivists and holists often dispute the 

reductionism of individualists. Similar disagreements occur within particular 

intellectual domains. This is particularly well illustrated in the health sciences. 

Some define diseases based on descriptions of behaviour, while others analyze 

physiology, chemistry and genetics. Some research focuses on finding clinical 

causes of illness, other research focuses on finding causes in the social 

environment. Some methods conform to strict standards of experimentation (like 

randomized control trials) and others consist of interpretive theorizing. These 

differences of method have obvious effects on how states of health are identified, 

treated, prioritized and understood. Sometimes these differences in method 

translate into important differences in theory, and disputes of fact.

According to some, disagreements of approach present an intractable 

challenge; science has no capacity to rule on what methods should be used to 

approach a problem, even within a particular scientific paradigm. For Kuhn, 

different methods are often ‘incommensurable’; there is no neutral standard to 

which practitioners of different methodologies can compare their respective 

approaches. This is because the selection of the standard of measurement is itself 

part of a scientist’s methodological perspective or paradigm. For Quine, debates 

of approach are not formed accidentally; he argues that scientists are selective 

about the hypotheses they are willing to test, and careful about which 

methodologies they scrutinize. Scientists often behave in a manner that 

‘minimally mutilates’ their theories; they preferentially reject methods and 

evidence that are least important to upholding their theories (Quine 1991 pp. 14).

One way to manage these criticisms and still engage in systematic 

methodological study is to accept a pragmatic approach, which uses application, 

rather than ‘truth’, as a framework of evaluation. Though pragmatism (sometimes 

referred to as instrumentalism) comes in many forms, most pragmatists hold a

- 2 -
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view that ideas and methods should be judged based on suitability to human 

affairs and fulfillment of human needs (subjective though they may be). Lewis, 

for example, argues that there are many conceivable systems of mathematics and 

logic, and that the justification of the current system is not based on a formal 

evaluation of its properties, but based on “intellectual convenience.” (Lewis 

1923). Similarly, James defines scientific truth as “what is good in way of 

belief’; that is, whatever is satisfying or in agreement with things that are 

considered important is true (Rorty 1982). Some natural scientists accept a 

pragmatic interpretation of scientific methodology. Hawking writes:

I take the positivist viewpoint that a physical theory is just a mathematical model and that it is 
meaningless to ask whether it corresponds to reality. All that one can ask is that its predictions 
should be in agreement with observation. (Hawking and Penrose 1996 pp.4)

Hawking’s position is clearly pragmatic (in spite of his probable misuse of the 

word ‘positivist’). Theory is validated based on performance (in this case, the 

ability to predict observations) not a correspondence with truth. Theories that 

result in less error between observations and reality and that offer useful 

predictions are favoured, whatever their connection to the real world. This view 

does not represent a denial of the physical world, or even scientific truths, but 

acknowledges the difficulty of measuring such truths in a meaningful way 

independent of application and context. For the pragmatist, decisions are made 

within a chosen framework of ‘normal science’, and are evaluated with respect to 

applications within this paradigm.

1.2 Rationale and Outline

The broad purpose of this project is to investigate a methodology of disease 

cluster detection within two contexts of application. The next two chapters are a 

discussion of these contexts. In Chapter 2 ,1 review various well-known methods 

of spatial analysis of disease in the context of geographic disease surveillance. 

The best geographic disease surveillance methods can simultaneously inform 

decision makers, the public and the academic community in a manner that is 

systematic, and relatively easy both to understand and explain. Recently,

- 3 -
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researchers have acknowledged a role for geographic cluster detection in health 

surveillance. For example, public health systems have a duty to provide rapid 

response to serious infectious disease (and bioterrorism) and require tools to 

inform decision makers about the current and changing states of population 

health. In these applications, clusters help us identify where changes are 

occurring, and help inform decision makers in a timely and efficient manner.

In Chapter 3 ,1 discuss how geographic cluster detection can be justified for use in 

chronic disease prevention. I argue that from a particular standpoint of health 

equity (as opposed to health efficiency) chronic disease prevention resources 

should, at times, be distributed unequally to ensure that persons with the highest 

burden of illness are treated fairly. Cluster detection methods that identify worst- 

off spatial sets provide information that can be used in geographically specific 

disease prevention strategies, such as environmental modification and service 

facility allocation.

Following these conceptual chapters, I narrow my focus on issues related to 

cluster detection methodology. In Chapter 4 ,1 present a simple approach 

designed to find geographic clusters of disease. This approach is based on the 

spatial scan statistic (Kulldorff and Nagarwalla 1995; Kulldorff 1997) but is 

constrained by adjacency, rather than circular geometry and is able to find clusters 

of disease with irregular shapes. I compare this adaptation to the spatial scan 

method with several simulated disease scenarios, and evaluate the power of the 

methods to find and precisely describe the shape of several simulated disease 

cluster patterns.

In Chapter 5 ,1 evaluate these two methods on real disease data. My 

evaluation compares ten different diseases at a single resolution of observation, 

and observes how results differ between these two methods. I interpret the results 

in terms of statistical inference and geographical analysis. Based on these 

findings, I recommend the integration of these methods into a system of 

geographic cluster detection analysis.

In my concluding chapter, I briefly review the proceeding chapters, and 

comment on approaches to cluster detection methodology with respect to their

- 4 -
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applications in geographic surveillance and geographic chronic disease 

prevention. Finally, I make four recommendations for future research related to 

the topics covered in this dissertation.

- 5 -
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CHAPTER 2: A review of geographic health surveillance 

methodology

2.1 Introduction

In spite of modem critiques of scientific objectivity, most health research aspires 

to follow a traditional process of scientific discovery—a refutation or 

confirmation of theory based on empirical evidence. In many of the social 

sciences, including fields of health research, experiments are often used to 

develop explanatory models based on observations of real-world phenomena. 

These explanatory models are the basis of both exploratory research and theory 

building. The merits of the experimental approach to theory building are 

frequently debated amongst philosophers, but even its harshest critics accept that 

empirical experimentation in the medical sciences has some instrumental value 

(whatever the ‘truth’ may be) in prolonging the length and quality of human lives.

In the field of public health administration, explanation and theory building 

are not of primary importance. Analytical work is required, but it most often 

deals with decision making issues—such as feasibility, cost effectiveness and 

priority setting. Although these analytical exercises are often informed by 

explanatory research based on experimentation, they require methodologies that 

support efficient, ethical and timely decision making. Within the health sciences, 

considerably more effort has been put into the development and examination of 

research methods that support the explanation paradigm rather than the decision 

making paradigm. Consequentially, decision makers are often forced to use the 

tools of the explanatory analyst when other, more specialised tools might be more 

appropriate.

Health surveillance is an important component of decision support and policy 

application in public health. The goals of surveillance are to collect data, monitor 

data systems and provide feedback that informs policy, the public, and the 

research community. The goals of geographic surveillance—to routinely monitor 

geographic data and disseminate geographic information—require a unique 

methodological perspective. In this review we discuss characteristics of

- 7 -
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geographic health surveillance that distinguish it from spatial epidemiology, 

geography and most fields of quantitative explanatory study concerned with 

health and space. We then review a selection of methods in terms of their 

application to geographic health surveillance. In doing so, we hope to contribute 

to the understanding of methodology in geographic surveillance, and secondarily, 

illustrate the general importance of linking methodology to application.

2.1.1 Public health surveillance and explanatory research

The practice of public health surveillance goes back to the 17th century. Early 

examples involved routine collection and reporting on the health of the public, 

and the environment in which they lived (Thacker and Berkelman 1988). These 

monitoring systems differed fundamentally from John Snow’s well known study 

of cholera in London. Snow was responding to evidence of an outbreak, whereas 

the contemporary surveillance activities in England, Germany and the United 

States were ongoing, and concerned with a large number of outcomes 

simultaneously rather than specific disease concerns (Declich and Carter 1994). 

The modem definition of health surveillance emphasizes the routine “collection, 

analysis and interpretation of outcome-specific data, closely integrated with the 

timely dissemination [...] to those responsible” (Thacker and Stroup, 1994).

Public health surveillance is motivated by different goals than other 

disciplines in the health sciences. Surveillance is most often dedicated to the 

identification and exploration of patterns rather than to the identification of causes 

and provisional explanations—which are of more concern in epidemiological and 

clinical research. As such, most health surveillance conforms to an exploratory 

and descriptive model of analysis. For surveillance purposes, understanding 

causes and processes is of secondary importance. Public health surveillance is 

concerned with detecting and describing changes in patterns of disease, and 

providing information useful for timely decision making. For example, where 

explanatory research may seek to understand why E. coli occurs in periodic local 

outbreaks, surveillance is concerned with where, when and if  these outbreaks are 

occurring. Where explanatory research seeks to understand the relationship 

between ethnicity and health, surveillance is concerned with identifying deprived

- 8 -
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or at-risk ethnic groups. Both approaches are important to managing public 

health, but surveillance is more directly connected to policy application and 

decision support.

There is a considerable literature describing surveillance programs (e.g. 

Lazarus et al., 2002; Beckett et al., 2004) and surveillance information systems 

(e.g. Nobre et al., 1997; Tsui et al., 2003; Wang, Ramoni, Mandl and Sebastiani 

2005), however methodological literature has evolved more slowly. This may be 

explained by a belief that surveillance is a subdiscipline of epidemiology. 

Although there may be considerable overlap between these disciplines, many 

quantitative epidemiological tools are not well suited to the health surveillance 

paradigm. One of the goals of epidemiology, for example, is to study causality 

(or at least association) between determinants and health. One of the prerequisites 

of medical causality is biological plausibility (Hennekens and Buring 1987 pp.

40). To have a credible causal explanation that exposure to asbestos causes 

asbestosis, there must be a plausible explanation of how properties of exposure 

cause the symptoms of illness. In this case, small asbestos fibres build up in the 

lung causing scarring and a chronic restriction of lung capacity. In order to make 

a causal connection between poor lung functioning and asbestos exposure, it is 

important that disease definitions are as precise and specific as possible. This is 

particularly true when it is possible to identify a necessary cause—in this case, 

prolonged exposure to a respiratory irritant.

In surveillance, disease reporting is often more general. Rapid changes in 

disease patterns cannot always wait for laboratory testing or other clinical 

verification. More general indicators of change—such as an unusual incidence of 

similar symptoms presenting to a local emergency room—will provide more 

timely information even though causality may not be clear. For example, acute 

respiratory infections, bronchitis, influenza and pneumonia present similar clinical 

symptoms. Outside of laboratory tests, it is often difficult to separate one from 

the other—even though the aetiologies of these diseases are quite different. By 

restricting disease diagnoses to influenza (which can only be verified in the 

laboratory setting) the sample of outcomes may be precise, but it may also be too

- 9 -
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small to make observations about important trends in illness, especially when data 

are reported over multiple dimensions—such as age, sex and geography. This is 

particularly true when the speed of response to an outbreak is important. By 

‘rolling-up’ diseases into sensible symptomatically or causally similar groups, 

patterns are more visible, and furthermore, observations are less likely to be 

affected by diagnostic inconsistency (Yiannakoulias, Svenson and Schopflocher 

2005). New research in syndromic surveillance even expands health monitoring 

beyond disease itself—using drug prescriptions, employee absenteeism and other 

indirect sources of information as indicators of changes in disease patterns (e.g. 

Tsui et al. 2003).

Another important difference between epidemiology and surveillance 

methodology relates to reporting. Many epidemiological studies report risks in 

terms of magnitude of effect, emphasizing measures such as odds ratios and 

regression model coefficients. These indicators can provide important evidence 

of the relationship between exposures and disease. Often surveillance is more 

concerned with incidence—over time, space, demographic and socioeconomic 

dimensions. Changes in rates of disease, patterns of variation that exceed 

expectations, and clusters of outcomes are all important in surveillance reporting. 

Surveillance systems must be able to offer information that is robust, and 

depending on the recipients of information, relatively easy to understand. The 

development and study of methods for distributing information that meet the 

needs of surveillance activities are unlikely to be inspired strictly by clinical or 

epidemiological research, whose audiences are often health care professionals and 

academics.

2.1.2 Public health surveillance and data mining

Many sources of data can be used for public health surveillance. Notifiable 

disease reporting systems, field investigations, routine laboratory testing and 

administrative health data are all useful resources (Declich and Carter 1994).

Since surveillance data must be collected in an ongoing fashion, the quantity of 

data collected per person tends to be small (Thacker and Berkelman 1988) and the 

cost of obtaining them is usually inexpensive (Virnig and McBean 2001). The

- 10 -
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type of data involved is usually related to the outcome under study; infectious 

disease surveillance often relies on notifiable disease reporting systems (Nelsen 

2001) and chronic disease surveillance frequently relies on administrative health 

data (Thacker et al. 1995). Administrative data resources can offer a rich supply 

of health-related data. When updated in a timely manner, these large systems 

satisfy many of the requirements of population-wide public health surveillance. 

They are inexpensive, unobtrusive, reasonably comprehensive and readily 

accessible.

Within such large systems of data, observations of importance can be 

obscured by data that have little or no informative value. This problem is 

commonly discussed in the data mining literature (Fayyad, Piatetsky-Shapiro and 

Smyth 1996). In general terms, data mining is an automated process that searches 

through large systems of data for patterns of similarity and association. Data 

mining is often necessary when the data are too numerous for purely human- 

directed analysis. Usually, data mining does not presume to search for 

explanations of phenomena or offer direct support of theory, but rather, aims to 

automate processes that are beyond the capacity of (and have no need for) 

immediate human intervention (Fayyad, Piatetsky-Shapiro and Smyth 1996). The 

information gleaned from such processes provides the basis for a secondary 

analysis that informs decision makers and identifies new research questions. Data 

mining approaches are found in business (Bose and Mahapatra 2001), 

telecommunications (Cox et al. 1997), intelligence analysis (Xu and Chen, 2003), 

bioinformatics (Luscombe, Greenbaum and Gerstein 2001), astronomy (Voisin 

2001) and even text analysis (Losiewicz, Oard and Kostoff 2000). Recently, data 

mining has become an important component of public health surveillance (Liao 

and Lee 2002; Obenshain 2004).

In several important ways, however, health surveillance is also different from 

traditional data mining. The operational issues that dominate methodological 

developments in data mining are often secondary to policy issues in health 

surveillance applications. Ethical concerns are of particular importance in health 

surveillance (Fairchild and Bayer 2004; Middaugh, Hodge and Cartter, 2004). In
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addition to matters related to privacy, one must consider the social and ethical 

consequences of policy decisions made in the spirit of public health surveillance. 

What kinds of changes should motivate action? At what point are routinely 

identified inequalities of health considered deserving of formal concern? What 

diseases should be part of the routine surveillance processes? Answers to these 

questions have an impact on the economics of health care, and on the well being 

of society in general.

Another difference is the relationship between surveillance systems and the 

public, and in particular, the challenges of public dissemination. Traditional data 

mining is often centralised—outputs are in the hands of analysts and managers. 

Public health is often faced with accusations of paternalism (Beauchamp 1980; 

Hawks 1997; Bayer and Fairchild 2004), and is increasingly unable to engage in 

top-down decision processes without incurring political criticism. Public 

involvement is crucial to building credibility and trust in disease prevention and 

health promotion (Reed 1994). As a result, the challenge of surveillance is to 

extract and disseminate information that satisfies the needs of all stakeholders: 

managers, advocacy groups, the media and perhaps most importantly, the public.

Surveillance methods must be flexible enough to meet the operational and 

ethical requirements of public health. These requirements are not strictly 

epidemiological, nor entirely in the domain of data mining and knowledge 

discovery. Though recent work has significantly advanced the field of public 

health surveillance (e.g., Brookmeyer and Stroup 2003; Lawson and Kleinman 

2005), further work is required to develop new, and refine existing, methods that 

meet the complex methodological and ethical demands of public health 

surveillance. The shortage of literature directly addressing health surveillance 

methods, particularly in chronic disease, continues to limit the advancement of 

surveillance applications in many areas. The remainder of this discussion narrows 

focus to the study of geographic health surveillance methodology.

2.2 Geosravhic health surveillance

2.2.1 General applications of geographic health surveillance

Like public health surveillance in general, geographic surveillance involves
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routine collection, analysis and dissemination of health data, but specifically, 

health data in geographic space. A growing literature has developed methods 

useful for geographic surveillance (e.g. Rogerson 1997; Lawson, Clark and Vival- 

Rodeiro 2004; Kuldorff et al. 2005; Lawson 2005; Rogerson 2005).

Unfortunately, little literature has formally evaluated these methods in terms of 

the particular goals of geographic surveillance.

There are at least four applications of geographic disease surveillance that are 

relevant to public health activities: identification of new potential risks, policy 

decision support, community support and alarm detection. Thacker and Stroup 

(1994) recommend an application not discussed here, that of building 

‘surveillance archives’. These archives are collections of historical surveillance 

data, and can be used in secondary research or in monitoring historical disease 

trends. For the most part, these archives are a composite of the other surveillance 

activities, and require no further discussion here.

2.2.2. Identifying new potential risks

Information obtained from geographic surveillance can help identify the 

presence of otherwise unknown risk factors in the physical or social environment. 

Notable geographic variation in disease and injury could indicate an abundance of 

hazards or shortage of protective factors. Structured research activities outside 

the scope of surveillance are required to more carefully investigate these 

observations when they occur. Clearly, feedback between surveillance systems 

and the research community is critical; surveillance systems can identify curious 

patterns or changes in disease, which experts can investigate more thoroughly. 

Information based on these investigations is then used to alter the focus of 

surveillance activities.

Considerable applied research in the social sciences explores the relationship 

between health and the environment. Examples include studies of air pollution 

and mortality (Jerrett et al. 2005), heat waves and various health-related outcomes 

(Smoyer-Tomic, Kuhn and Hudson 2003), insect-related illness (Mawby and 

Lovett 1998; Kazmi and Pandit 2001) and social determinants of disease (Mohan, 

Twigg, Barnard and Jones 2005). For such activities to constitute surveillance,
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they must be part of an ongoing system of collection, analysis and dissemination. 

Some methods used in the study of health and the environment may not migrate to 

the surveillance setting. For example, some researchers have identified cancer 

clusters around sites of industry (Waller et al., 1994; Roberts, Steward and John 

2003; Parodi et al. 2003) but these examples employ a cross-sectional design, and 

were not developed for ongoing observation. This is noteworthy since methods 

developed to answer isolated research questions may face multiple testing 

problems when used in routine reporting systems common to surveillance 

(Kulldorff 2001).

2.2.3. Information for public health policy decisions (decision support^

Routinely reported descriptive information on health and disease, independent

of the factors that cause patterns to occur, are important in many different public 

health settings. This is particularly true for publicly administered health care 

systems in which resources are allocated based on demographic and health 

characteristics. Patterns of resource allocation and intervention may need to 

reflect patterns of disease, particularly when policy makers are concerned with 

equity issues. Geographic surveillance may also help inform resource allocation 

activities at more local levels. Mobile health resources (like needle exchanges, 

outpatient screening and immunization services) are likely to be more efficient 

when responsive to the geographic distribution of sick or at-risk populations, 

which may change over time.

Adjusting policy to accommodate change in public priorities also requires 

routine health information. The health of particular subgroups of the 

population—such as children and the aged—may receive more or less policy and 

public emphasis over time. Certain diseases may also receive more or less 

emphasis over time. In either case, shifting resources to a new priority area is 

more timely when important information on the disease is already part of a routine 

system of data collection and dissemination.

2.2.4. Information for communities (community support)

Modem discussion of the relationship between technology and society has 

considered a revitalised role for communities and citizen action in public decision
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making (Guthrie and Dutton 1992; Morrow 1999). Providing the data and 

analytical resources to communities has been an important feature of public 

participation geographic information systems (PPGIS) (Aberley and Sieber 2005). 

A well designed surveillance system ensures that information is disseminated in a 

form that is accessible to the public and that the information is provided in an 

maimer that facilitates fair comparisons between communities. For some 

communities, information about risk may be less influential than a general 

mistrust of public officials (Freudenburg and Rursch 1994). In addition to 

providing resources for community action, routinely collected information may 

help build public trust.

Protocols for responding to local health concerns must strike a balance 

between community and broader social interests; public health interventions must 

manage competing interests of different communities. False alarms can be 

wasteful, and a drain on communities where genuine need is greater. On the other 

hand, it is irresponsible to ignore community concerns altogether (Center for 

Disease Control 1990; Bender et al. 1990; Wartenberg and Greenberg 1992). A 

mature and well examined system of routine geographic surveillance could 

provide critical information to permit open and timely communication between 

government and stakeholders.

2.2.5 Geographic alarm system for infectious disease outbreaks and bioterrorism

Routine geographic surveillance is an important component of communicable 

disease control. Localised outbreaks of infectious illness may require immediate 

intervention measures to prevent spread of disease to the population as a whole. 

Recently, this has included the development of methods for prospective 

geographic disease surveillance (Kulldorff 2001; Mostashari et al. 2003) and the 

application of temporal surveillance tools in the spatial setting (Rogerson 2005).

In these and similar applications, the emphasis has been on outbreak detection— 

with a particular emphasis on bioterrorism, and new disease outbreaks (such as 

West Nile virus and new strains of influenza).

These surveillance methods are not always as useful for detecting where 

future infectious disease outbreaks will occur over longer periods of time,
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however. For spatially dependent processes, prediction requires understanding of 

spatial diffusion—which is difficult to account for in many surveillance 

activities—and predicting where a seminal event will occur—which is often 

impossible. Alternative approaches, such as those being developed in the field of 

cellular automata, may offer important opportunities for predicting trends in 

infectious disease and other dependent spatial processes.

2.3 Geoeravhic health surveillance methodology

Much of the following discussion concentrates on methods that apply to 

discrete aggregate (polygon-based or centroid) rather than disaggregate atomic 

(point) geographic representations of data (see Cressie 1993 pp. 10-13 for a 

discussion of spatial data types). In the study of disease, atomic point data usually 

represent the locations of persons with and without a condition of interest. In the 

case of aggregate data, the representation usually consists of a geographic 

boundary (in the case of polygons) or an average of locations (in the case of 

centroids), of more than a single individual. By concentrating on geographically 

aggregate data, some important methodological developments in the spatial 

analysis of disease (e.g., Cuzick and Edwards 1990; Diggle 1990; Diggle and 

Chetwynd 1991) will not be covered in this discussion. We justify our emphasis 

on aggregate methods on the grounds that this is the form in which a large 

quantity of health data are collected and stored, particularly in passive 

surveillance systems. Though some information administrators may have access 

to data at the level of individuals, privacy concerns often prohibit release of such 

detail outside the control of data custodians—even within a governmental agency.

2.3.1 Geographic surveillance methods: disease mapping

Disease maps convey visual information about how disease varies over space. 

The earliest known maps of disease come from the 18th and 19th century, and 

consisted of dots representing locations of infectious diseases like cholera and 

yellow fever (Walter 2001). Disease mapping literature has grown considerably 

in recent years. Marshall (1991a) provides a review of statistical and other 

methodological concerns. More up to date discussion can be found as well 

(Lawson et al. 2000; Bithell 2000; Lawson 2001a; Rushton 2003). Several
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recently published books have been dedicated in part or entirely to describing and 

reviewing disease mapping techniques (Lawson et al. 1999; Elliott et al. 2001; 

Lawson 2001b; Waller and Gotway 2004).

2.3.1.1. Rate maps

Next to dot maps, one of the simplest methods of representing disease 

occurrence involves mapping disease rates. Some of the earliest rate maps 

reported mortality statistics, particularly of cancer (see Walter 2001 for a review). 

The simplest approach to rate estimation is to divide cases of disease by a 

population at risk. Age and sex standardisation is common in rate mapping— 

particularly in epidemiology (Hennekens and Buring 1987 pp. 54-98). 

Standardisation allows one to factor-out known (typically demographic) 

characteristics that could obscure more interesting geographic variations in the 

disease rate. Direct standardization is preferred when stratum specific rates are 

large enough (and available), otherwise the indirect method can be appropriate. 

Estimating standard errors of standardized rates can be complicated and 

traditional methods tend to produce standard error estimates that are artificially 

small (Carriere and Roos 1994).

Rate maps remain one of the most popular methods of representing the 

geographic characteristics of disease, especially for public consumption (for a 

current example, see http://dsol-smed.phac-aspc.gc.ca/dsol- 

smed/cancer/n prov e.phtmO. Though rates only report historical information 

(what has happened) they are frequently used as informal tools for anticipating 

where disease is likely to occur in the future. Unfortunately, rates can be very 

unreliable indicators of underlying patterns, especially when a disease is rare.

This unreliability is often a function of stochasticity observed in Poisson 

distributed data; when a disease is rare, small changes in the number of cases can 

result in large changes in rates. This is often referred to as the ‘small numbers 

problem’.

2.3.1.2. Probability Maps

In response to the small numbers problem, Choynowski introduced the 

probability map (Choynowski, 1959). His method uses the Poisson distribution to
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obtain probability estimates for disease counts (corrected for variations in 

population) for each area on a map. Maps of probability can be an improvement 

on maps of rates when inferential certainty is more important than difference in 

magnitude. A similar method is employed by Alberta Health and Wellness 

(Alberta Health and Wellness 2003). Alberta Health often reports data at numbers 

sufficiently high to assume underlying disease frequencies follow the normal 

distribution. By using the normal standard deviations as categorical cut-offs, the 

method simplifies presentation by eliminating the subtle (and generally not 

meaningful) variations that may be visible from location to location. This is 

particularly important when routine data are being reported to the public.

One problem with probability maps is that large population areas obtain 

greater significance than small population areas (which may have higher rates of 

disease) by virtue of statistical stability. In this way, probability maps tend to 

over-emphasize the relative importance of large population areas (Kennedy- 

Kalafatis 1995) and make local comparisons difficult. This has been referred to 

as the Targe numbers problem’.

2.3.1.3 Topological smoothing

Topological smoothing refers to methods in which geographic locations 

borrow statistical strength from each other based on some measure of geographic 

closeness—such as proximity or adjacency. These approaches are conceptually 

similar to smoothing approaches applied to time series data—like moving average 

filters. Neighbouring areas are combined to build statistical stability without 

losing important local variations. Methods that use uniform filters (such as circles 

or squares) to define topological relationships are typically referred to as ‘spatial 

filter’ approaches. These filtering approaches are based on the idea that proximal 

areas are the most sensible from which to borrow statistical strength. We use the 

phrase ‘topological smoothing’ to emphasize that definitions of closeness can be 

more flexible than a fixed geometry, and may occasionally need to depart from 

smoothing approaches defined by strict geographic proximity.

Rushton and Lolonis (1996) use a method that smoothes high-resolution 

spatial data in order to better represent estimates of incidence. The original study
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data were street addresses, but the method has been used with polygon centroids 

(Nelson 1999). The first step is to overlay a uniform series of points over the 

original data. Each one of these points is the centre of a circle with a radius 

smaller than the distance between each point in the lattice. This ensures that 

circles overlap, but that each circle does not include more than one grid point.

The degree of overlap between circles is chosen based on the degree of smoothing 

required—larger circle radii produce greater smoothing, smaller radii produce 

less. Case and population data are aggregated to each node in the lattice based on 

whether or not they fall in a circle. Mungiole, Pickle and Simonson (1999) use a 

distance and directional threshold to select local neighbouring areas to be used in 

a weighted smoothing approach. Their method smoothes localised noise while 

preserving other spatial characteristics of visual importance—such as edges and 

clusters. When area data are of sufficiently high resolution, median polish 

smoothing (Cressie 1993 pp. 184-193) is able to extract simple patterns or 

‘signals’. This method is performed by iteratively subtracting row and column 

medians from data aggregated into grid cells overlying the original data.

Generally speaking, topological smoothing methods are more aggregation 

invariant (and less affected by the modifiable areal unit problem) than methods 

that rely on single discrete aggregate units for analysis. This is particularly true 

when data are available at high resolution. However, results from a topological 

smoothing exercise can be strongly influenced by prior analytical decisions. For 

instance, the median polish approach can only capture row and column effects 

(such as patterns in the North and South directions), and is highly sensitive to the 

alignment of the overlying grid; different alignment can result in different signals 

of trend. Topological smoothing methods can also be sensitive to large variations 

in population density. In study areas where population density varies 

considerably, fixed window smoothing approaches will either over-smooth 

densely populated areas or under-smooth sparsely populated areas depending on 

window size. This can be offset by varying the filter size so that the smoothing 

kernel is not of fixed radius, but of fixed population size (Talbot et al., 2000).

This technique could also benefit from additional constraints that ensure that
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certain areas are not ‘windowed’ together—such as the suburbs of large urban 

centres and neighbouring rural regions. Otherwise, rural and semi-rural areas near 

cities may be forced to share data characteristics with neighbouring urban areas, 

ignoring important geographic differences between urban and rural physical and 

social environments.

2.3.1.4 Empirical Bayes methods o f disease mapping

In a response to both the large and small numbers problems, some have 

advocated the use of empirical Bayes estimates. Most generally, these methods 

combine observed rates with prior information in order to smooth out variability 

resulting from small numbers. Clayton and Kaldor (1987) offer a global 

adjustment method which uses the Gamma distribution as a prior model, and an 

iterative method of arriving at the distribution parameters from the entirety of data 

available. These distributional parameters are then used to ‘shrink’ local rates. 

Their approach has the advantage of allowing covariates and spatial 

autocorrelation to be added directly into the estimation procedure (Waller and 

Gotway 2004 pp.95). Marshall (1991b) offers global or local shrinkage—local 

methods restrict smoothing influence to neighbouring areas rather than an entire 

study region. This has the appeal of preserving more local variations, though it 

leaves more decision making for the analyst.

Although these methods have been criticised for over-smoothing the tails of 

distributions of regional rates (Cressie, Stem and Wright 2000) and for 

underestimating uncertainty (Mollie 2001), they are reasonably effective for 

exploratory purposes (Leyland and Davies 2005). These methods are practical 

and relatively easy to apply; most can be implemented in existing statistical 

software environments (such as R, SAS and Stata). Fully Bayesian approaches 

are also available, but are considerably more difficult to implement since they 

require specifications of prior distributions rather than using estimates of the 

priors based on the data (as is the case in empirical Bayes methods). Among 

other complicating issues, these methods require a way to sample from a prior 

distribution, usually performed with specialised software that may be 

insufficiently generalisable for certain tasks in spatial modelling—such as the
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specification of spatial covariance (Lawson 2005).

2.3.1.5 Spatial models

Many statistical modelling methods are available for understanding the 

geographic patterns of disease. When observations are likely to be non-normal 

(as is often the case in health applications), generalized linear models—such as 

Poisson regression—have been used (Lovett, Bentham and Flowerdew 1986; 

Luyao et al. 1993; Reynolds et al. 2002). Spatial models are distinguished from 

other statistical models by their explicit consideration of spatial 

autocorrelation/spatial dependence. In general, these methods involve the direct 

inclusion of the relationship between proximity and similarity into the modelling 

process. When unaccounted for, spatial autocorrelation adversely affects a 

number of regression modelling diagnostics (Anselin and Griffith 1988) and is 

well known to result in variance estimates that are too small.

Fortunately, the increased availability and understanding of spatial modelling 

methods has enabled their use in a wide variety of applications. Iterative re­

weighted regression—where spatial autocorrelation in residual error is iteratively 

re-worked into the modelling procedure—offers one of the simplest approaches. 

This involves solving a model, identifying a theoretical semivariogram that 

characterises autocorrelation in the model residuals, and then iteratively re- 

incorporating the parameters of the semivariogram back into the model until the 

parameter estimates converge (Waller and Gotway 2004 pp. 337-338).

Generalized linear mixed models offer a similar method of adjusting for spatial 

autocorrelation in normal and non-normally distributed data. The adjustment 

occurs through introducing the structure of a theoretical semivariogram as a 

random effect (Littell et al. 1996 pp. 303-330; Waller and Gotway 2004 pp. 380- 

409). The SAS™ implementations of mixed models (PROC MIXED and PROC 

GLIMMIX) provide an estimate of the semivariogram range (the furthest distance 

at which spatial autocorrelation exists) which gives an indication of the magnitude 

of spatial autocorrelation (Littell et al. 1996). The recent inclusion of generalized 

linear mixed models in standard software packages has enabled a number of 

studies to employ these methods (e.g. Mendell et al., 1996; Witte, Greenland, Kim
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and Arab 2000; Kleinschmidt et al. 2001; Kleinman, Lazarus and Platt 2004; 

Yiannakoulias, Svenson and Schopflocher 2006).

Simultaneous autoregressive models offer a different approach to the same 

problem, though are generally constrained to linearly dependent variables (or a 

linearization through data transformation). Rather than requiring a parametric 

structure a priori (as is the case in the spatial mixed model approach), 

simultaneous autoregressive methods include nearby observations as covariates in 

the model, and define spatial covariance empirically. Griffith et al. (1998) use 

simultaneous autoregressive modelling to identify risk factors associated with lead 

poisoning in children. Antunes and Waldman (2001) use a similar method to 

identify predictors of tuberculosis in Brazil. Lorant et al. (2001) compare a 

simultaneous autoregressive to a non-spatial regression model in the prediction of 

premature mortality. A thorough discussion of simultaneous autoregressive 

methods can be found in Griffith and Layne (1999).

Spatial modelling methods are the backbone of theory building in much of 

quantitative human geography. Information from such models can indicate the 

degree of autocorrelation present, the possibility of missing covariates, and an 

indication of the presence of a contagious process. The success of these methods 

is contingent on proper model specification. Failure to include appropriate 

variables is almost guaranteed to bias the resulting model (in addition to affecting 

the power of statistical inferences), and in turn, the theory extrapolated from it.

As a result, such methods require considerable intellectual participation and 

content expertise. This is not an unmanageable burden in a research process; well 

informed researchers using spatial models to understand geographic features of 

disease will be able to specify and interpret these models properly. However, 

these models are not as useful within an automated and/or routine decision 

support system. Furthermore, the results of such models are not easily digested 

by lay consumers of information—like policy makers and the public—and may be 

limited in their role as components of routine disease surveillance system. Further 

consideration of this matter is reserved for the discussion below.
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2.3.2 Geographic surveillance methods: cluster detection

Non-random clusters of spatial phenomena can occur as a result of trend 

(where an intermediate causal mechanism with a clustered pattern influences the 

distribution of events) or dependence (an event at one location causes additional 

identical events to occur at or nearby this location). To assign one of these causal 

mechanisms to an observed cluster of phenomena is difficult for two reasons.

First, there is no way to distinguish dependence from trend with a cross-section of 

observations (Bartlett 1964). Second, many apparently non-random trend effects 

are actually latent dependence effects. Variables that influence disease trends are 

very often the product of spatially dependent processes. For example, people of 

similar income status tend to live together and to have offspring of similar 

socioeconomic status. A non-infectious disease correlating with income may 

exhibit a clustered pattern that is influenced by income, thereby exhibiting an 

intermediate dependence effect, even though there is no direct causal path 

between two nearby disease events. To avoid these pitfalls, this discussion treats 

cluster detection as a problem of classification (as discussed by Diggle 2000) 

regardless of spatial processes influencing the distribution of observations.

There are two conceptual subdivisions within the cluster detection literature 

(Besag and Newell 1991). The first considers focus. Focused tests examine 

whether or not a cluster of events have occurred around specific locations (such as 

power plants, pulp mills, etc.). General tests make no prior specifications about 

sites. Focused tests are useful when it is important to monitor disease phenomena 

around sites of concern, and general tests are more exploratory. The second 

subdivision refers to scope. Methods with global scope test for the presence of a 

clusters without specifying the location or structure of the cluster pattern.

Methods with local scope identify the locations of clusters of observations that 

meet some (usually statistical) threshold of interest. The former method is easier 

to apply, but less informative; the identification of an anomalous pattern of 

clustering at a global scope does not give an indication of structure or location, 

but simply tells us that it exists in some form. The latter method is much more 

difficult to apply since it presents an inferential challenge—test the statistical
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significance of a pattern without knowing about its presence or location ahead of 

time. Most methods of cluster detection can be classified using these 

subdivisions. A focused test indicates whether or not a disease clusters around 

particular locales. A global general test indicates whether or not there is 

clustering of disease somewhere in a study region. A local general test indicates 

whether or not there is clustering of disease in a particular region. A local 

focused tests indicates that there is clustering around one or more particular 

known locations.

The methods and applications of geographic cluster detection have evolved 

considerably in the last few decades. Most of the early methods were general 

tests of global scope. Some methods were based on cell occupancy tests; clusters 

were detected when cases occurred in pre-determined temporal and/or spatial 

categories more often than what was expected by chance alone. Modem methods 

of cluster detection are generally distance-based or quadrat-based (Ripley 1977).

2.3.2.1 Distance-based approaches

Most distance-based methods are formed from the idea that short distances 

between events must indicate an interesting spatial process. As such, most 

distance-based methods use individual event or person data, rather than spatial or 

temporally aggregate data. However, there are some exceptions. Though 

conceptually, Knox (1964) uses inter-event distances as part of his test statistic, 

his method requires that one aggregates data into near and far groups, and 

therefore, precise inter-event distance data is not really required beyond knowing 

whether observations are ‘near’ or ‘far’ from each other. Whittemore et al. (1987) 

employ a distance-based method that accommodates data aggregated to areal 

centroids and takes into account inhomogenous population density. Tango (1995) 

presents a test statistic based on the pairwise distances between observed and 

expected numbers of regional cases. This method incorporates a scaling factor on 

distance so that regions very distant from each other have a reduced role on the 

evaluation procedure. An adaptation of this technique (Tango 2000) makes it 

robust to the choice of the scale parameter. This method has been found to be 

particularly well suited to find global patterns of clustering (Kulldorff, Tango and
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Park 2003).

Most distance based approaches are global tests for the presence of clustering 

rather than local tests that identify the location of clusters. One possible 

exception comes from Anselin (1995) in the form of local indicators of spatial 

association (LISAs). The method is a general framework for finding local 

geographic groups of systematically similar (or dissimilar) values. The method 

reports structure and patterns of clustering in phenomena, and not necessarily 

anomalies of concern. Similar methods were also explored by Getis and Ord 

(1996) and Munasinghe and Morris (1996). A number of global indicators of 

clustering can be decomposed into LISAs—such as traditional measures of spatial 

autocorrelation as well as other distance-based methods of detecting the presence 

of clustering. LISA methods suffer from some inferential challenges, in 

particular, the multiple testing of significance of local clusters when the 

observations under study are stochastic (like disease events) (Waller and Gotway 

2004 pp. 238).

2.3.2.2 Quadrat approaches

Although some new methods of cluster detection still employ distance 

measures (e.g. Forsberg et al. 2005) many of the most recently developed 

approaches are based on searching study regions with a moving ‘window’. In 

general, these methods search and evaluate the significance of clusters by 

observing groups of geographically compact observations and then comparing 

these groups to their complement or the study region as a whole. Since the focus 

is on local groups of observations these techniques are well suited for identifying 

local disease clusters of the focused or unfocussed variety. In large heterogeneous 

study regions (such as Canadian provinces) these kinds of tests provide important 

information about local patterns.

One of the first implementations was by Openshaw et al. (1987). The original 

method was described as an automated point pattern detection system, though 

practical applications (e.g., Openshaw et al. 1988) involved a form of aggregate 

health data. Cases are aggregated into a uniform grid tessellation with population 

estimates based on census data. The intersection points of the grid cells are the
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centres of a finite number of circular windows ranging from a small to large 

radius. Case and population data are grouped into each of these circles at each of 

the grid locations. Monte Carlo simulations are then used to test the significance 

of each circle independently. This is done as follows. For each simulation, each 

individual in the study area is randomly assigned case/non-case status, with risk 

determined by the overall rate. Then the same set of circular filters are applied to 

each simulated data set. At each location, a circular cluster is identified as 

‘significant’ if the real number of cases exceeds the simulated number of cases 

over a pre-selected threshold (e.g., 500 times). The original geographical analysis 

machine (or GAM) method was computationally costly for large data sets, and 

was frequently criticised for its tendency to falsely reject null hypotheses of 

constant risk (e.g., Besag and Newell 1991).

The Besag and Newell (1991) approach to detecting clusters was originally 

developed to detect focused clusters of very rare disease but can be applied more 

generally, and for unfocused tests. For each centroid in a study region, a table of 

ordered nearest neighbours (from closest to farthest) is calculated. A pre­

determined case threshold (K) is set, and for each centroid, neighbouring 

centroids are accumulated (in order of nearest to farthest) up to the case threshold 

size. The number of centroids aggregated forms the basis of the test of 

significance, which is the probability of having attained the observed number of 

cases by accumulating fewer centroids. The success of the approach is dependent 

on the value of K. Le, Petkau and Rosychuk (1996) developed a modification of 

this method to deal with the difficulty of choosing the appropriate value of K. A 

testing algorithm is undertaken to determine significance of a centroid using a 

small set of increasing Ks, depending on the underlying population of the centroid 

and its neighbours. If significant at a particular K, no further tests are done at 

higher Ks. If insignificant, larger Ks are used in sequence until the centroid is 

significant or the set is exhausted. Once the testing for a centroid is complete, the 

algorithm continues to the next centroid.

The challenge of formulating sensible experiments to identify and test the 

significance of local clusters without performing a large number of statistical
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inferences (which necessarily increases the risk of false rejecting true null 

hypotheses) encouraged some to develop cluster detection methods that find the 

location of a single most-likely cluster. Most of these methods share a similar 

null hypothesis: the rate of illness among people living in the most-likely cluster 

is no different from the rate of illness among those living in the complement (non­

cluster areas) of the most-likely cluster. The inferential simplicity of these 

methods make them particularly well-suited to automated disease surveillance, 

and will be given a more detailed review here.

The cluster evaluation permutation procedure (Turnbull et al. 1990) 

determines the location and significance of a most-likely cluster. This method 

sequentially adds the nearest neighbours j  to a cluster i (so called since it starts at 

centroid i) until a critical population threshold (R) is reached. The total number of 

cases in cluster i is recorded, and then the same procedure is conducted at a new 

centroid. When all clusters i have obtained a case count, the cluster i with the 

largest case count is selected as the most- likely cluster. A Monte Carlo 

simulation procedure is then used to test the likelihood of this most-likely cluster 

occurring by chance alone. Data are simulated similar to Openshaw et al. (1987) 

however, for each simulation, the case count of the most-likely cluster is retained. 

If the case count of the real most-likely cluster exceeds the case counts of a large 

number of the simulated most-likely clusters, the real cluster is considered 

significant. Thus unlike Openshaw et al. (1987) a single test of significance (of 

the most-likely cluster) is performed, rather than a large number of local tests. 

Generally speaking, the larger the size of R, the greater the sharing of 

observations between seed locations, and the more stable the underlying rates. 

Selecting an excessively large value of R will shrink variation unnecessarily; a 

value of R that is too small will leave the patterns obscured by stochasticity in the 

data.

The spatial scan (Kulldorff 1997) method of cluster detection is widely used, 

and has been implemented in a variety of disciplines (see Kulldorff (2005) for a 

review of applications). The method was developed for use on atomic or 

aggregate data; our focus is on the latter. The approach is capable of detecting
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spatial, temporal and/or spatial-temporal clusters without the threshold 

specifications of some other methods. Similar to Turnbull et al. (1990) the spatial 

scan uses a circular window of varying sizes to aggregate neighbouring centroids 

to a seed centroid. However, rather than deriving an evaluation statistic based on 

windows of a particular population size, the spatial scan evaluates each window 

with a likelihood ratio test. Once the window increments to a size that includes 

all centroids the search starts over at a new centroid, and continues until all 

centroids have been searched. Since every centroid is the seed of a varying 

window search, the spatial scan statistic is an exhaustive search of clusters based 

on a nearest neighbour aggregation process (though typically, the algorithm is 

prevented for searching for new clusters once the sequence reaches 50% of the 

population). A most-likely cluster is chosen based on the highest likelihood ratio 

of all circular windows at all centroids. The likelihood ratio associated with the 

most-likely cluster is used to test the significance of the most-likely cluster as a 

true local anomaly of disease. Significance is tested using a Monte Carlo 

simulation where case locations are randomized (through random labelling) and 

the same likelihood ratio statistics are determined for each simulated disease 

scenario (Kulldorff and Nagarwalla 1995). The likelihood ratios associated with 

most-likely simulated clusters are saved, and then compared to the likelihood ratio 

associated with the true most-likely cluster. If the likelihood ratio of the true 

most-likely cluster is larger than a large proportion of the likelihood ratios 

associated with the simulated most-likely clusters, then the detected cluster is 

considered significant.

Recently, new methods have expanded the search process to allow for clusters 

of non-circular and unusual shapes. Tango and Takahashi (2005) developed a 

more complete scan technique able to find clusters of any shape constrained to 

relatively small size. Other approaches use heuristic strategies to solve larger 

problems without the burden of full enumeration. Conley, Gahegan and Macgill 

(2005) use a genetic approach to find clusters of circular or elliptical shape. 

Potential clusters that exhibit a desirable trait (high fitness to the data) are 

preferentially combined (or ‘mated’), generating offspring clusters which (may)
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mutate to further improve the search process. Duczmal and Assun9ao (2004) use 

a circular most-likely cluster as a starting point for a more complete search of 

clusters without assuming a pre-defined shape. They use a simulated annealing 

strategy to ensure that different and (in the long-term) suitable zones will be 

added and/or removed from the most-likely cluster. The genetic and simulated 

annealing approaches balance the need for high quality solutions with the need for 

efficiency, while still allowing for interesting shapes to be detected.

The nature of simulated annealing, genetic searches and other heuristic 

strategies can make inferences (and interpretation) complicated, however. For 

heuristic approaches to return good solutions to a cluster detection problem, they 

often require proper specification—or tuning—to the problem at hand. 

Evolutionary approaches require decisions about the probability of mutation; tabu 

search methods require decisions about tabu list sizes and the duration of tabu list 

membership; simulated annealing strategies require decisions about the ‘cooling 

off rate and various other parameters. Other times methods require additional 

rules of thumb or ‘meta-heuristics’ to ensure good solutions. For example, the 

Duczmal and Assun9ao (2004) approach includes a procedure to ensure that the 

search process is able to find ‘interesting’ clusters (and in particular, clusters that 

are not compact) by preferential selecting areas in the neighbourhood of recently 

added zones. The decision to tune and/or employ meta-heuristics must be 

established ahead of time—through cross-validation methods (tuning the problem 

on a sub-set of data first), underlying theory or guesswork. When this tuning 

process is done with knowledge of the data (or in conjunction with it) then the 

objectivity of the inferences may be called into question; that is, the method is 

being customized to find something that an analyst expects to see. Although this 

is not an uncommon or necessarily terminal problem, it does suggest that such 

methods must be employed with care, and perhaps a large degree of supervision.

Others have concentrated on adapting the evaluation procedures underlying 

the spatial scan. One of the challenges of the maximum likelihood ratio approach 

is that estimates of relative risk within clusters are only an informal 

approximation of the highest risk area (since the maximization is on the likelihood
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ratio, not magnitude of risk). Gangnon and Clayton (2000) adapt a Bayesian 

cluster detection method able to obtain estimates of risk within detected clusters. 

The authors suggest that their method is fairly robust, and the difficulty of 

selecting an appropriate prior model can be mitigated by performing a sensitivity 

analysis. Their experiments include tests for compact and linear clusters, but not 

any more non-circular shapes. The effort of choosing a prior model does not 

impose an undue challenge for epidemiological purposes, but such approaches 

may be too complex for many routine surveillance applications. This is 

particularly true when the prior model includes constraints on cluster shape. 

Gangnon and Clayton (2001) also offer several weighted average likelihood 

statistics as an alternative to the maximum likelihood ratio. When the weights are 

properly specified, these methods can offset the tendency of the traditional scan 

statistic to preferentially find clusters in areas of higher resolution (Gangnon and 

Clayton 2001). More recent developments in outbreak surveillance have 

incorporated Bayesian models in anomalous pattern detection (e.g. Lawson, Clark 

and Rodeiro 2004; Lawson and Kleinman 2005).

2.4 Discussion

Table 2.1 offers a simple taxonomy relating the four dimensions of geographic 

surveillance to the methodological approaches described above. The final column 

includes selected references to applications of these methods. In cases where 

literature was originally applied or discussed in terms of public health 

surveillance, the reference is in bold font. Each cell contains a brief summary of 

some strengths and weaknesses of each methodological category that pertains to 

the tasks of geographic surveillance.

Much recent emphasis in geographic surveillance methodology has been on 

developing methods suitable for rapid response to outbreaks of disease and 

bioterrorism. These contributions have resulted in an increased ability to 

implement systems to detect sudden changes in spatial disease patterns. Many of 

these tools are also available for the monitoring and study of new risks. These 

methods are shared with more explanatory research in the social and health 

sciences, and not surprisingly, have been applied in numerous settings.
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Unfortunately, discussion of information dissemination has been missing from 

many of the most recent developments of geographic health surveillance 

methodology. Disease mapping methods will continue to have many important 

applications in health research. Methodological advancements in these fields will 

always be important to the study of health and disease—including public health 

surveillance. However, the chief disadvantage of most disease mapping 

approaches is that they are not easy to convert from abstract research findings into 

information usable in the public health setting. A local estimate of disease is 

composed of a measure of magnitude (the rate estimate or population count) and, 

in some form, a measure of uncertainty (a p-value, shrinkage factor, or sampling 

distribution, for example). Spatial models add to this complexity by including 

spatial dependence and covariates into the process. Collectively, local rate 

estimates can never be interpreted outside a detailed discussion of methodology. 

Estimates are subject to a large number of caveats that are difficult for non­

experts to understand (like the correct specification of the model, proper 

distributional assumptions, etc.).

Furthermore, disease maps require analytical processing in order to be 

represented on a map. Formal categorization offered by a common geographic 

information system can be used to classify the range of local estimates into 

discrete colour categories. The choice and method of classification can have a 

dramatic effect on the appearance of a map. Figure 2.1 shows how different 

categorization schemes can influence the appearance of mapped rates. For 

epidemiological purposes, these variations do not obscure the general 

observations—for example, that the pattern of Parkinson’s disease is low in 

Northern and South-western areas and higher in the populated rural areas of the 

South-east. However, several areas shift one and some even two shade positions 

simply based on the type of categorization scheme used. For residents in these 

areas, such changes could represent a considerable difference in perception, and 

one is obliged to ask whether methods so influenced by the choice of 

categorization are suitable for reporting information to the public. These 

observations about disease maps are not new to the cartography, medical
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geography or spatial statistical community, but the implications are particularly 

important in the public health setting when information is being communicated 

for public, media or political consumption. The appearance of high rates may 

spawn a public outcry, media attention and extra-governmental investigation.

The complexity of spatial modelling also inhibits its use in some surveillance 

applications. For one, direct human supervision is required in the modelling 

process to ensure that the procedures operate properly. For some methods, one 

must decide on the structure of spatial dependence—which requires prior 

analytical work. Decisions must be made as to model specification—not only in 

the choice of variables, but in their mathematical form (for example, as interaction 

and/or polynomial terms). Spatial models have great power to build theory and 

understanding from empirical data and are central to explanatory research. 

However, their complexity—in implementation and in explanation—may inhibit 

their use in many true geographic surveillance applications.

Most cluster detection methods offer considerably less information than 

disease maps. Cluster detection methods do not typically portray trends, and 

many do not even offer accurate estimates of local risk. Like data mining 

applications in general, cluster detection methods answer simple questions subject 

to various input constraints. The inferential simplicity of these methods is gained 

by restricting their inferential breadth. Global unfocussed cluster tests—like 

Knox’s (1964) space-time method—have a relatively simple null hypotheses: 

distances between cases in space are independent of distance between cases in 

time. The information provided is very restricted—it does not indicate where the 

cluster is, and it assumes that the distance categories are properly specified. 

Nonetheless, given the relatively simple inputs (the choice of distances metric and 

categories) the presence or absence of a cluster can be determined.

Other cluster detection methods offer more information, but with a trade-off in 

inferential simplicity. Openshaw et al. (1987) do not test a single global 

hypothesis, but explore patterns of clusters for which local statistical testing was 

performed. Similarly, LISA methods provide information about the geographic 

structure of autocorrelation without a simple inferential objective. On the other
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hand, several cluster detection methods do offer discrete, repeatable and relatively 

simple answers to questions about variation of health. Methods that follow the 

example of Turnbull et al. (1990)—by focussing on a most-likely cluster— 

combine the inferential simplicity of historical cluster detection methods with 

details about the geographic location of clusters.

The benefits of such inferential simplicity arise in routine alarm detection and 

in information dissemination. In the former case, methods that can operate 

without constant human supervision are easier (and cheaper) to implement in 

routine surveillance settings. They are able to mine the increasingly large health 

data warehouses at very low cost, and return information that would otherwise 

have never been discovered. Decision makers can evaluate the success and 

validity of these outputs much easier than they can engage in the searches first­

hand. In the latter case, inferential simplicity provides discrete information that 

can be communicated to the public and to policy makers—a significant cluster 

was found or not found (subject to the parameters of the search method).

Some general methodological challenges that present themselves in 

explanatory research applications are also important to geographic surveillance 

and are worthy of brief mention.

2.4.1 Modifiable Areal Unit Problem (MAUPI

Although much of the literature on MAUP indicates that means and rates are 

not systematically biased by different aggregation arrangements (when properly 

weighted), means and rates are still affected by the arrangement of boundaries and 

scale of observation. A local estimate of disease in a high incidence 

neighbourhood can be obscured by combining it with neighbouring low-incidence 

areas. This may be somewhat rectifiable when the units of aggregation are well 

chosen. Some work in this area has been done in this area (Huel, Petiot and Lazar 

1986; Morris and Munasinghe 1993; Haining, Wise and Blake 1994) but these 

approaches do not concern themselves with reporting issues relevant to 

surveillance. Future research on health region districting may be an important 

component of developing better routine reporting systems.

2.4.2 Diagnostic inconsistency over time and space
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Some recent research suggests that factors unrelated to disease may explain 

some apparent disease patterns, particularly from administrative data. Historical 

changes in diagnostic methods and technology sometimes account for apparent 

temporal changes in disease patterns, amounting to ‘diagnostic inconsistency’ 

over time (Bumand and Feinstein, 1992). Similar observations have been made 

about geographic variation in diagnostic methods (Forand et al. 2002; 

Yiannakoulias et al. 2003; Yiannakoulias et al. 2004). The problem of diagnostic 

inconsistency is an important reminder of the need for careful clinical research 

following a surveillance exercise, particularly when an illness is likely to gamer 

public or policy concern. Diagnoses used in surveillance activities are suited to 

detecting potential changes in disease, but still require considerable groundwork 

to validate the changes in precise terms before definitive conclusions can be 

made.

2.4.3. Clinical versus statistical significance

When data are numerous, and observations have marginal sampling error, 

traditional statistical techniques often identify patterns that are of statistical but 

not clinical significance. These patterns are genuinely non-random, but effect 

sizes are so small as to be beyond any level of explanatory, predictive or decision 

making importance. Under these circumstances, there is a need to ensure that the 

observations of certainty and magnitude are not confused, or perhaps that effect 

size is incorporated directly into the surveillance process. Some relatively simple 

modifications of traditional cluster detection techniques would accomplish this— 

for example, requiring that all significant clusters exceed a certain minimum 

magnitude threshold in order to be reported. However, such an adjustment (or 

more accurately, constraint) complicates the detection procedure, and traditional 

methods would need adaptation to ensure their effectiveness.

2.4 Conclusion
Population-wide administrative health systems provide some of the most 

important data required for comparative analysis of disease and injury frequency 

between communities. Although these systems continue to be used for 

explanatory research in epidemiology and the social sciences, this captures only

- 3 4 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



part of their potential. As quantities of data increase, policy makers are 

challenged to find the resources to monitor health and disease within these 

systems. Automated surveillance methods may be able to fill in some of the 

analytical gaps that more supervised analytical procedures will inevitably leave. 

However, these methods must be mindful of the limitations of various analytical 

techniques, and must be designed to suit the needs of the users.

Choice of methodology influences perceptions of spatial information. Cluster 

detection methods, which are generally less informative about disease patterns 

than disease maps, offer relatively simple information to users. They indicate 

where disease is anomalously high or low. This kind of information is important 

for policy makers, the public and the research community. Policy makers can use 

this information to identify areas where intervention may be important. The 

public can use this information to assess whether or not their community is at 

particularly high risk, or has a particularly high burden of disease. Researchers 

can use this information to build new theories, develop new experiments, and 

offer explanatory information back to the policy makers and the public. It is 

important that methods of spatial analysis that are developed in the future are also 

evaluated in terms of application. Methods that aspire to be used in the 

geographic surveillance setting must be assessed with regard to the needs and 

applications of geographic surveillance.
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Table 2.1 A schematic table of geographic surveillance methods and application

Identifying new 
risks

Information for 
public health 

decision support

Information for 
communities Alarm system References

Rate
mapping

Exploratory
information

Can control for 
known risk 
factors

Results are simple to understand

Easy to derive and present

Small numbers problem can exaggerate 
variation

Greatest potential 
when effect size is 
large

Do not typically 
provide discrete 
information 
indicating whether 
or not an alarm has 
been set off

Multiple
comparisons
problem

Probability
maps

Exploratory
information

Results are relatively simple to 
understand

Large numbers problem can over­
emphasize large population areas

Choynowski (1959)

Topological
smoothing

Exploratory
information

Can control for 
known risk 
factors

General patterns 
with information 
about trend

Simple output

May provide 
unrealistic or 
inaccurate local 
information

Simple output

Rushton and 
Lolonis (1996); 
Mungiole, Pickle 
and Simonson 
(1999); Ali, Emch 
and Donnay 
(2002); Trooskin et 
al. (2005)

Empirical
Bayes

smoothing

Exploratory
information

Can control for 
known risk 
factors

General patterns 
with information 
about trend

Output is not easy 
to describe

May provide 
unrealistic or 
inaccurate local 
information

Output is not easy 
to describe

Clayton and Kaldor 
(1987); Marshall 
(1991); Langford 
(1994); Kennedy- 
Kalafatis (1995); 
Leyland and 
Davies (2005)

Spatial
models

Informative o f 
ecological-level 
associations

Can control for 
known risk 
factors

Directly model 
spatial
autocorrelation

Informative o f ecological-level 
associations

Can identify areas o f concern while 
controlling for known risks or risks that 
cannot be specifically addressed

Method and output are not easy to 
describe

Most require 
input, supervision 
and decision 
making from a 
knowledgeable 
user

May be too 
complex for 
ongoing 
automated 
analysis

Griffith, Doyle, 
Wheeler and 
Johnson (1998); 
Kleinschmidt et al. 
(2001); Kieinman, 
Lazarus and Platt 
(2004);
Lawson (2005)

Cluster
detection
(Distance)

Exploratory
information

Some methods 
can control for 
known risk 
factors

Global or local 
information

Discrete results that are relatively simple 
to understand

Operationally
efficient

Discrete output 
available

Multiple 
comparisons 
problem when 
used for local 
surveillance

Tango (1995); 
Anselin (1995); 
Forsberg et al. 
(2005)

Cluster
detection
(Quadrat)

Exploratory
information

Some methods 
can control for 
known risk 
factors

Typically local 
information

Discrete results that are relatively simple 
to understand

When a noteworthy cluster is found, its 
location is identifiable

Operationally
efficient

Discrete output 
available

Local alarm 
monitoring

Openshaw et al. 
(1987); Kuldorff 
and Nagarawalla 
(1995); Kuldorff 
(2001); Motashari 
et al. (2003); Neill 
and Moore (2005)
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(Jenk’s)

Figure 2.1 Crude rates of prevalent Parkinson’s disease using three common 

classification systems.
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CHAPTER 3: Clusters as unfairness: geographical analysis in 

chronic disease prevention

3.1 Introduction

A large part of modem public health policy is concerned with the purposeful planning 

and implementation of disease prevention strategies.1 Although treatment of disease 

often involves an interaction between individuals (usually clinicians and patients) 

disease prevention and health promotion are frequently a matter of public health. 

These forms of public health intervention are meant to benefit general welfare by 

providing services, information and other resources that reduce the risk and mitigate 

the severity of undesirable health outcomes.2 Inevitably, intervention strategies are 

influenced by philosophical issues—such as weighing public good against individual 

rights (Kass 2001) balancing differences in preference, and resolving competing 

claims of resource entitlement. Debates underlying these issues are historically 

complex, responding to trends in human epidemiology (such as the shift from 

infectious to chronic disease as the primary cause of human illness) but also to 

changes in beliefs and social norms (Karhausen 1987).

These philosophical issues are connected to practical constraints; given the 

scarcity of resources, where and how should they be allocated? Such questions 

require information about public priorities, assessments of intervention efficacy and 

assessments of consequences of both action and inaction. Often these questions are 

resolved through the analysis of empirical data. The transformation of these data into 

information that policy makers can use is an analytical exercise, and can involve a 

variety of methods and perspectives.

Analysis informs public health intervention in at least three ways. First, it 

provides evidence of outcomes, and their patterns in the population. Many 

approaches to managing public health care are at least partly dependent on 

understanding the current state of affairs—how healthy is the population? How much 

variation in health is there? How many people live below the threshold of reasonable

1 Our use o f the term ‘prevention’ includes secondary prevention (shortening the duration of illness), tertiary prevention (reducing 
complications associated with illness) in addition to primary prevention (preventing illness from occurring) (Blaney 1987).

2 We use the term ‘outcomes’ as a catch-all for disease, injury and other typically negative states o f interest in health research.
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opportunities for good health? Second, analysis is important for identifying the 

feasibility and predicting the effectiveness of different intervention options.

Analytical work can help anticipate the relative costs and benefits of different 

strategic activities. Once this information has been compiled, it can then be 

compared to the goals and/or needs of the public. Finally, analysis can be important 

for resolving disputes once a strategy is in place. Analytical information may indicate 

gaps between stated policy, actual policy and the expressed interests of the public. It 

may also be important for the ongoing revision of intervention policies; ‘empirical 

ethics’, for example, involves an iteration between information on outcomes and 

policy decisions (Richardson and McKie 2005).

The present discussion aims to position a particular quantitative analytical 

approach—disease cluster detection—into a framework of public health intervention, 

and in particular, chronic disease prevention. Since disease prevention resources are 

subject to the constraints of economic scarcity, we propose that strategic decisions 

fall under questions of distributive justice—what is the ethical way to distribute a 

finite quantity of prevention resources? Chronic diseases present a unique challenge 

to public health. They have permanency, cause sufferers long-term pain, negatively 

affect personal relationships and employment, and many are associated with co- 

morbid conditions that further reduce quality of life. However, clusters of chronic 

disease—and in particular, geographic clusters of chronic disease—often constitute 

small heterogeneous groups. Unlike infectious disease prevention (for which isolated 

interventions can be widely beneficial) small-scale chronic disease prevention has no 

immediately obvious impact on the health of society at large. According to some 

definitions of fairness (and many definitions of efficiency) allocating disproportionate 

resources to clusters of the chronically ill could represent bad policy, especially if the 

benefits are enjoyed only by a small minority of the population. In order to justify 

cluster detection methods as tools for assisting chronic disease prevention, these 

issues require specific attention.

We introduce this discussion by briefly describing disease cluster detection 

methods, and then outlining an historical dispute between disease prevention policy 

advocates that parallels an important dispute in the philosophy of the social sciences.
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We then consider the relevance of cluster detection with respect to two well-known, 

but historically complex, positions of distributive justice: utilitarianism and the 

difference principle. Although there have been some attempts to review the ability of 

particular analytical approaches to answer questions of health ethics (e.g., Wagstaff, 

Paci and Doorslaer 1991; Asada 2005), the critical study of how different quantitative 

strategies can inform public health intervention has been largely ignored. Most 

modem work in disease prevention conforms to a model of resource allocation 

associated with utilitarianism—the maximization of an objective over the whole of 

the population. As an alternative framework, the difference principle, emphasizes the 

importance of directing prevention efforts to those who are ‘worst-off. Following 

this, we discuss the idea of chronic disease cluster detection within these contexts— 

covering points of agreement and disagreement between method and moral context. 

Finally, we present some ideas and examples that illustrate how systematic cluster 

detection methodology might inform geographic chronic disease prevention.

3.2 Disease vrevention in public health

3.2.1 Disease cluster detection

The methods and applications of geographic cluster detection have evolved 

considerably in the last few decades. Some of the earliest methods were based on cell 

occupancy tests; clusters were detected when cases occurred in pre-determined 

temporal and/or spatial categories more often than what was expected by chance 

alone (Ederer, Myers and Mantel 1964). Other early applications involved detecting 

the interaction of events in time and space (Knox 1964). Another approach was to 

compare the spatial distribution of cases with the spatial distribution of controls 

(Diggle 1990; Cuzick and Edwards 1990). Considerable work has been concerned 

with searching for clusters defined by a pre-specified spatial structure, including 

circles and nearest neighbour distance (Openshaw, Charlton, Wymer and Craft 1987; 

Turnbull et al. 1990; Besag and Newell 199; Kulldorff and Nagarawalla 1995) 

connected graphs (Duczmal and Assuncao 2004) and ellipses (Conley, Gahegan and 

Macgill 2005; Kulldorff et al. 2006). What almost all approaches to geographic 

cluster detection seek to do is identify spatial arrangements of disease that are
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anomalously high. These arrangements or ‘systems’ exhibit a structure that is 

meaningful in various contexts of health research.

The traditional explanatory research model sees cluster detection as a tool to 

identify (usually environmental) causes of disease that were otherwise unknown. 

Concerns about nuclear power generating facilities, pulp mills and other industry 

motivated much of the work on cancer clusters, for example. In these cases, cluster 

detection is part of a research process that often requires one to ‘control for’ known 

risk factors as much as possible. Many modem cluster detection techniques easily 

allow researchers to adjust for known factors in the detection process, thereby ruling 

out important (but uninteresting) covariates that could explain how a disease varies 

geographically. Age, sex and socioeconomic status are common examples. 

Conceptually, this approach is similar to devising a spatial model and mapping 

residuals; notable spatial variability in what is left unexplained by our model tells us 

that our model is missing something that could be of causal importance. This 

framework also has predictive value when spatial dependence is either absent, 

controlled for, or modelled directly.

Cluster detection also has applications in public health surveillance. Some cluster 

detection methods are designed as automated surveillance tools—to search for 

patterns of clustering in large sets of data is daunting for human directed 

methodology. For surveillance applications, explanation is not as important as 

description, especially in the case of rapidly developing disease outbreaks. In this 

case, knowing where an outbreak is occurring now (regardless of where it may be 

next month, or next year) is of immediate administrative importance. It could 

indicate the location of contaminated water sources, poorly ventilated housing, ill 

effects from airborne pollution, or even acts of bioterrorism.

An alternative application of disease cluster methods is for strategic planning and 

implementation of disease prevention programs. In this context, cluster detection 

supports decision makers who must decide where certain public health interventions 

should take place. Disease clusters are not informative in all areas of disease 

prevention; acute diseases and injury, for example, cannot be prevented once they 

have occurred, so a cluster indicating the presence of incident illness is not as useful
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as some alternative methods (like the spatial modelling of disease and related risk 

factors). Hazard clusters—locations where the density of known risk factors is 

high—may offer this kind of information, but only if the causal relationship between 

hazard and illness is strong, and well understood. However, prevention of some 

chronic medical conditions can benefit from knowledge generated through the study 

of disease clusters in at least two ways. First, some chronic conditions are risk factors 

for a number of other serious illnesses. Clusters of hypertension inform public health 

officials where the burden of hypertension is high, but also, where a variety of related 

illnesses—such as cerebrovascular and heart disease—may be more likely to occur. 

Similarly, diabetes clusters provide information on prevalence of a relatively serious 

chronic disease and also indicate where burdens of future disease (like blindness, 

neuropathy and cardiovascular illness) may also be high. Second, sometimes disease 

burden has a causal connection with non-disease related outcomes—such as the 

relationship between AIDS and homelessness (Culhane et al. 2001) and the 

relationship between mental illness and unemployment (Dooley, Fielding and Levi 

1996). Similarly, spinal cord and brain injuries are known to increase risk of mental 

illness (Dryden et al. 2005) but also unemployment (Doctor et al. 2005), education 

and personality changes (Klonoff, Clark and Klonoff 1993).

For both of these reasons, a notable geographic cluster of disease may be a 

practical focal point of health promotion, disease prevention and other types of health 

intervention. Clusters are indicators of high disease burden, but also an indicator of 

where future co-morbid illness and life challenges (unemployment, poverty and 

homelessness) may occur, particularly when causes of disease are poorly understood. 

When risk factors are well understood, clusters of hazard (or hazard clusters) may 

provide important information as well. Directing disease prevention efforts to places 

where clusters of disease and/or hazards are highest focuses attention on places where 

the burdens of these diseases are likely to be highest. In cases where the intervention 

is geographical, this may offer opportunities for efficient service provision to those in 

greatest need.
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3.2.2 Population-based disease prevention and the problem of scope

Durkheim’s well known observations about changes in patterns of suicide (as a 

product of society, and not strictly the characteristics of individuals) have been 

important inspiration to the study of health and the social environment (Marmot 

1998). In recent decades, a large literature has emerged which is focused on 

identifying the ‘social causes’ of disease—such as those related to neighbourhood 

effects (Pickett and Pearl 2001) social capital (Kawachi, Kennedy and Glass 1999) 

and social inequality (Marmot 2005). This research often incorporates definitions of 

causation that support a broader perspective of influences on health (Susser 1991; 

Kaufman and Poole 2000). In the field of disease prevention, many of these ideas 

were first discussed by Rose (Rose 1985; Rose 1992). Rose’s work was a critical 

response to the traditional biomedical approach to disease prevention which was 

based on isolated interactions between clinicians and patients. This approach aims to 

change the behaviour of individuals that fit the clinical indicators of high-risk, and 

has several well-discussed advantages. It is cost effective, maximizes the ratio of 

prevention benefits to prevention risks, and fits within the operation of existing 

medical systems. However, individual-level prevention strategies do not address the 

social causes of disease, and come with some adverse social consequences—like 

sickness labelling and negative social conformity (Rose 1985).

As an alternative, Rose advocates an approach that “shift[s] the whole distribution 

of exposure in a favourable direction.” This involves making a small uniform change 

in the entire population (such as decreasing the average daily serving of saturated fats 

by 50 grams) that results in a population-wide benefit in the reduction of disease, 

injury and/or mortality. Rose’s ‘shift’ is beneficial when small reductions in risk to 

the whole population can reduce the entire burden of disease. When the strategy 

works, persons with low and high risk both experience the shift, and under the 

assumption of a roughly linear relationship between exposure and outcome, even a 

small overall shift will result in a notable reduction in overall illness. Rose advocates 

the population-based approach partly because he believes in the notion of social 

causes of disease—risk is something that a society shares, and is a product of 

complex social, cultural and historical mechanisms. Prevention, therefore, should be

- 5 8 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



about large-scale social change, rather than attempts to change the behaviour or habits 

of individuals in isolation.

The most substantive examples of successful population-based interventions are 

seen in the reduced rates of cigarette smoking in Western countries (Pierce 1989) and 

the successes o f HIV prevention programs (Rietmeijer et al., 1996). Smaller scale 

successes have also been observed (e.g. Buchbinder and Jolley 2004; Laaser, 

Breckenkamp, Ullrich and Hoffmann 2001; Gortmaker et al., 1999). Nevertheless, 

there are some practical criticisms of the population-based approach. Without 

adequate research directed at individuals and the ‘necessary causes’ of disease in 

those individuals, we can never have the intellectual certainty required for prevention 

of any form (Charlton 1995). Some empirical evidence also questions the merits of 

the population-based approach. In spite of some successes, many attempts at 

population-based prevention (and in particular, health promotion) have had 

unsatisfying results (Merzel and D’Afflitti 2003). Finally, the ethics of the 

population-based approach have come into question; evidence of “J-shaped” 

relationships between exposure and outcomes suggests that some people can be 

adversely affected by population-based approaches (Adams and White 2004). 

Preventative strategies that are good for the majority may sometimes adversely affect 

the health of a minority. For example, although health promotion programs that 

encourage lower fat intake may be an important message for much of North 

American society (given the increasing rates of obesity) a minority do not benefit 

from this particular message (e.g., those with naturally low levels of body fat), and 

some may even be harmed by it—such as those for which dieting culture is a risk 

factor for eating disorders (Austin 2001).

In response, advocates of population-based prevention have argued that the real 

benefit of a population-based approach is an indirect product of policy. By 

implementing population-wide change, there is a potential to permanently modify 

social norms, and encourage healthier behaviour in the future, independent of active, 

health promoting interventions (Rose, 1985; Rose 1992 pp.73-94). Proponents argue 

that this not only results in a healthier society, but also reduces the effort and costs 

associated with prevention in the long term. Second, the biomedical model does not
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provide a complete picture of causation, and is not always the most logical point of 

intervention. Individual-level lifestyle factors have often shown weak predictive 

power for common health outcomes (Ericsson 1997). This may be related to the 

functional distance between the adverse outcome and its causes. Society has 

characteristics that are indirectly causal to disease, but are accessible and efficient 

foci of intervention (Schwartz and Diez-Roux 2001). When more immediate causes 

of disease are inaccessible, then the most important causes (from the standpoint of 

disease prevention) are those that can be points of intervention, regardless of their 

position or strength in the chain of causality (Rose 1992 pp. 98-100; Schwartz and 

Diez-Roux 2001).

Much of the dispute between population-based and biomedical philosophies of 

prevention is chiefly a matter of approach, since both advocate a similar general 

goal—that is, good health, and the prevention of illness. On the one side, there is an 

emphasis on the notion of public health—to seek improvements in the well being of 

society as a whole. On the other side, the emphasis is on treating and preventing 

disease in individuals, which often includes a mistrust for patronizing (and usually 

centralised) intervention on the part of government or society. The division runs 

parallel to an old, yet recurring debate in the social sciences (and more generally, 

philosophy) between methodological holism (e.g., Kincaid 1996; Mooney 2005), and 

methodological individualism (e.g. Popper 1993; Elster 1989).1 Methodological 

holists argue that the structures of social relationships, should be studied independent 

of the individuals that comprise them. Communities, groups, classes, sexes and other 

organized relationships do not sum to the total of individuals within them, and require 

their own methodological approaches, and dedicated research. Methodological 

individualists, on the other hand, argue that all human relations can be understood 

from the disaggregate constituents, and that there are no ‘group-facts’ that cannot be 

attributed to individuals. From this perspective, the study of group-facts and social 

institutions is just “shorthand for talk about individuals who interact with one another 

and with people outside the institutions” (Elster 1989 p. 158).

1 Excellent reviews o f this debate, including historical the roles o f  Weber and Durkheim, can be found in Hollis (1994) and 
Braybrooke (1987).
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In addition to this debate about the proper scope of preventative intervention 

(whether interventions should focus on individuals, communities, genders, classes, 

etc.) there is a further challenge of defining a fair or just distribution of resources.

The population-based strategy of prevention implies a goal of maximizing health 

improvement, that at least in its traditional form, seems clearly a matter of efficiency 

and ultimately, a measurement of utility; i.e., a preventative strategy is justified in 

terms of its costs and benefits. There is a history of philosophical alternatives, 

however, going as far back as Platonic idealism, to the moral philosophy of Kant, to 

modem feminist ethics of care. Rather than taking on the ambitious task of reviewing 

disease prevention policy with respect to all frameworks of moral philosophy, we 

discuss prevention policy in the context of two specific theories of distributive justice 

popular in modem Western democracies: utilitarianism and the difference principle.

3.3 Population-based utilitarianism

The ethical justification for the population-based strategy of disease prevention 

appears to be tied to some form of utilitarian philosophy. Utilitarianism takes many 

forms, but in its simplest terms, is a decision system that attempts to explicitly 

maximize some overall measure of social good. The 18th century English philosopher 

Jeremy Bentham was the first to develop a ‘calculus’ to measure the pleasures 

associated with a particular act. The utility of an act (individual or collective) equals 

the product of intensity, duration and number of people involved. Among a possible 

set of acts, the act that results in the greatest utility is the most just. John Stuart Mill 

developed a more sympathetic form of utilitarianism which observes that some 

measures of utility are of greater value than others, and that personal utility is often 

connected to (or dependent on) the utility of others (Mill 1979). Mill is often 

regarded as a proponent of ‘rule utilitarianism’, in which competing rules (as opposed 

to acts) are compared against overall measures of utility, with the utility maximizing 

rule codified as the best (and most just) choice. ‘Preference utilitarianism’ represents 

a more modem perspective in which the satisfaction of preferences is maximised 

rather than ‘pleasure’ or ‘the good’ which are difficult to quantify (Gandjour and 

Lauterbach 2003). In public health applications, a utility objective could be general 

welfare, length or quality of life, preferences for care, or even a combination of

-61 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



various measures. Typically, utilitarians define moral policy as that which maximizes 

utility (and sometimes the weighted utility) summed over all individuals. When 

different acts, rules or policy options are compared, they are judged based on their 

consequences (when known) or an expectation of consequences (when unknown) to 

the individuals involved. Given the option of vaccinating or not vaccinating children 

against chicken pox, the right policy is determined by comparing the sum of 

outcomes under both scenarios, and then choosing the option which results in the 

greatest total utility.

The consequence-weighing (or ‘consequentialist’) practice common to 

utilitarianism has been the basis of considerable discussion among philosophers and 

social scientists. Most classical criticism has come from two directions. First, critics 

suggest that it is inconsistent with the kinds of decisions humans are inclined to make 

in the real world. If a majority of the population saw value in the enslavement of a 

minority, classical utilitarianism would offer a formal mechanism to justify it. More 

modestly, this criticism suggests that utility maximising functions are not sufficiently 

sensitive to issues of distribution; very unequal distributions of goods and 

opportunities are indistinguishable from equitable distributions of the same goods and 

opportunities that result in the same total utility. Critics consider this to be in conflict 

with the conventions that most human societies are likely to accept; all else being 

equal, extreme differences in distributions are generally undesirable. The second, and 

more abstract criticism challenges the teleological nature of all consequentialism. 

Morality, critics have argued, is not a function of ends, but has (or should have) 

intrinsic value; rules should be followed for their own sake, not some opportunistic 

assessment of consequences. This position was held by Kant, who argued that 

obligatory moral behaviour was determined by discovering universal rules rather than 

measuring consequences (Johnson 2004). Murder is always wrong because it fails to 

survive a test of universality—if everyone murdered all the time (i.e., universally), 

everyone would be dead. Not-murdering survives the test (since it can be applied 

universally) therefore it is an incontrovertible moral rule, or ‘categorical imperative’.

In spite of this and other historical alternatives, utilitarian, and more generally, 

consequentialist reasoning is an important idea in many areas of public health policy.
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Thinking in modem public health has been strongly influenced by Rose, whose 

arguments seem to flow from a fairly strict form of utilitarianism: the best 

preventative intervention is often that which maximizes health over the whole of the 

population. Many health economists also remain committed to consequentialist 

ideas—such as quality adjusted life-years (or QALYs) (McKie et al. 1998) fair- 

innings (Williams 1997) as well as ‘softer’ measures such maximizing the fulfilment 

of reasoned claims to care (Savulescu 1998).

Although the population-based strategy is consequentialist (since its chief concern 

is effectiveness of prevention) it is not always a utility maximizing perspective. If it 

were, then the preventative focus might be on economic definitions of efficiency— 

getting the greatest reduction in disease for the least cost. As noted above, a classical 

utilitarian may advocate that prevention resources are distributed to specific 

subgroups of the population—such as the middle of the bell curve, or the people who 

are most likely to respond to prevention advice. In these examples, the allocation of 

prevention resources may be efficient, but would ignore broader responsibilities to the 

public as a whole. The very notion of public health suggests a concern for the health 

of the entire population, even at some costs of efficiency. Furthermore, efficient 

distribution does not guarantee changes in social norms, and the population-based 

strategy may also find this insufficient. What the population-based approach does 

inherit from utilitarianism is its global perspective—that each individual is part of the 

decision formula. Information is gathered on the status of the population as a whole, 

and a strategy is implemented based on the policy that best meets the goals of disease 

prevention and health promotion.

3.4 The difference principle in disease prevention

Disease and injury vary between and within human societies. In some cases, 

human intervention plays a direct role in the differential allocation of disease and 

injury—such as in the distribution of violent conflict. In other instances, there are 

important social and cultural realities which constitute an indirect, and often 

unanticipated, effect on the distribution of disease and injury. For example, 

inadequate nutrition (Levy et al. 2005) and inadequate housing (Konradsen et al.

2003) have associations with adverse health status. Income shows relatively
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consistent regional, national and international associations with many forms of 

disease, injury and mortality. Fair access to these and similar resources is an issue of 

distributive justice. Whatever the mechanisms that actively distribute disease, notable 

variation persists in many of the causal factors attached to social issues (Woodward 

and Kawachi 2000; Braveman and Gruskin 2003).

Definitions of equality can take many forms: equality of capabilities, equality of 

rules, equality of freedom from constraint, and equality of goods just to name a few 

(Marchand, Wikler and Landesman 1998). Most, if  not all theories of ethics are 

concerned with some notion of equality—in the applicability of rules or the 

distribution of goods, opportunities or capabilities (Rice 2002). These same theories 

recognize that inequality is permissible as long as it is in some sense fair, and in some 

way morally justified. From this idea, ethicists and social theorists derive the term 

‘equity’—equality in some sort of moral context.

Issues of equality and equity, independent of absolute levels of wealth and 

prosperity, have received considerable attention from health researchers in the last 

two decades. Some have argued that social inequalities (in income, education and 

social class, for example) spawn a chain connecting the psychosocial effects of low 

social class, low social capital and low public participation to poorer health 

(Wilkinson 1997; Kawachi et al. 1997; Wilkinson 1999). Some have also argued that 

reducing the overall inequality of illness may even have a more immediate positive 

impact on health than a widespread growth in resources and wealth (Daniels,

Kennedy and Kawachi 1999). Research has supported (Kahn et al. 2000; Koch and 

Denike 2001; Cooper 2001; Hou and Myles 2005) and challenged (Sturm and 

Gresenz 2002; Deaton 2003) this theory, but public support for the idea of equity, in 

some sense, is relatively persistent (Andersson and Lyttkens 1999).

The suggestion that a social phenomenon like inequality could affect the health of 

individuals is not inconsistent with Rose’s theory of population-based prevention. 

Social determinants of disease are well accepted components of Rose’s vision of 

population-based public health. However, research has suggested that such broad 

consequential assessments of health care resource distribution do not satisfy public 

senses of fairness (Wailoo and Anand 2005). Some basic human intuition seems to
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include a desire to help those who are particularly sick and vulnerable, even if there is 

a net cost to the well-being of society as a whole (McKie and Richardson 2003). Any 

goal to maximise the health of the population does not take into account that some 

people are in the tail of the distribution, and may need more than an ‘equal’ share of 

preventative and even treatment resources. Thus, in spite of the appeal of population- 

based approaches to disease prevention, they may be criticised as insufficient to 

ensure that equitable resources are distributed to cultural, social or geographical 

subgroups of the population that are in particularly high need.

In 1971, John Rawls first published^! Theory o f  Justice, a treatise in which he 

offered a framework of social interaction focused on issues of fairness (rather than 

consequences), and with a basis in the beliefs common to citizens of modem Western 

democracies (Rawls 1971). His theory is often regarded as coming from the social 

contract tradition, where social participation is rationalized from an asocial ‘original 

position’. Social contract theorists use the idea of an original position as an 

hypothetical starting point of political reasoning; in order to decide on how political 

society should be structured, one must determine if political society has value in the 

first place. This is done by transcending existing political arrangements, and 

imagining a state in which competing rational agents are not protected (or regulated) 

by enforced political order. One of the earliest social contractarians, the 17th century 

thinker Thomas Hobbes, argued that persons in this position accept the structures of 

government because life outside government-enforced social order is ‘solitary, poor, 

nasty, brutish and short’ and above all, painful (Hobbes, 1991). Although no real 

negotiations take place between the agents in this state of nature, the simple thought 

experiment leads to certain conclusions, namely, that sacrificing some of the personal 

freedom afforded in the ‘state of nature’ is sensible given the dangers of apolitical 

existence. Other early social contractarians emphasized the importance of liberty 

(Jean-Jacques Rousseau (1997)) and personal ownership of labour (John Locke 

(1980)), but similarly regard social participation (and in general, government) as a 

means to achieve the personal goals of rational individuals. For social contract 

theorists, the agreement between individuals and society, though formed
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conceptually, represents a critical starting point for resolving ethical and political 

questions.

Rawls proposes a social contract negotiated from a position of impartiality— 

behind what he refers to as a ‘veil of ignorance’—where participants are ignorant of 

their own attributes (e.g. race, sex, natural abilities), personal life objectives, and who 

are ‘mutually disinterested’ in other persons. Since the veil of ignorance enforces a 

personal neutrality, Rawls argues that decisions about the rule of law and social 

structures will not be biased by historical personal objectives or status. Furthermore, 

the moral importance of individuals (an important theme in Rawls’ framework) is 

preserved since it is individuals (or their representatives) that adjudicate morality. 

Rules are not determined by measuring consequences for society, but through the 

negotiations of self-interested agents behind the veil. Rawls goes on to argue that 

such impartial agents would choose to live in a society that:

1) maximizes equal basic civil liberties and

2) a) permits unequal distribution of social and economic goods when such 

inequality benefits the worst-off most, and b) ensures positions of social 

opportunity (like employment, political leadership, etc.) are equally accessible 

to all

Condition 2a is often referred to as the ‘difference principle’ or ‘maxmin’ (maximize 

the minimum). It stresses the importance of equality in the application and design of 

rules in spite of the potential for inequality in ends. In this way, his ideas are about 

procedural equality, not about the equality of outcomes; some inequality is acceptable 

so long as the procedures are fair, and in particular, the worst-off most benefit from 

inequality.

Rawls’ original work paid little attention to the implications of the difference 

principle on public health and health policy (Arrow 1973). However, other thinkers 

have extrapolated from his original theory to include the distribution of health 

resources. Daniels adopts the “fair and equal opportunity” approach to justifying 

equitable health resource allocation in a Rawlsian framework (Daniels 1997; 2001). 

His argument rests on the assumption that a social contractarian behind the veil of 

ignorance would view health in the same way she would view fair access to
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opportunities. In order to participate in the important institutions of society (such as 

political participation and employment), she would want to be secured of a 

“reasonable range to opportunity”. This includes the liberties and sufficient health 

status required to occupy important social positions. In this way, health is viewed as 

more than just a material good, but as something of normative value, and as a 

prerequisite for participation in society. As such, it is equitable to preferentially 

favour those who suffer from the most debilitating health outcomes, and in particular, 

outcomes that inhibit their ability to participate in politics or the economy. Part of 

Daniels’ argument rests on research which emphasizes social causes of disease; social 

inequality in health causes bad health in individuals. As a result, it is practical, as 

well as ethical, to view poor health as an obstacle to fairness, and to seek equality of 

outcomes and care as much as reasonable.

Green disagrees with Daniels’ position, and argues that health care should be 

treated as a social/economic primary good subject to the procedures of the difference 

principle (Green 1976; 2001). Impartial actors would view access to health care as an 

entitlement (subject to resource constraints) within a framework ensuring that 

inequalities most benefit the worst-off. Access to health care resources is not a right 

(in the way freedom of speech may be) but it is just to ensure that persons who are 

disproportionately worse-off are secured of disproportionately greater resources. 

Where Daniels’ view interprets health care resources in a similar manner as civil 

liberties (and subject to either tenet 1 or 2b), Green sees health care resources as a 

good to be allocated subject to the difference principle (2a). The remainder of our 

discussion assumes position 2a; that is, health care resources (and specifically, 

prevention resources) are considered a primary social good subject to the difference 

principle.

In many ways, the Rawlsian view represents a modest compromise; it is an 

individual-based, procedural framework that supports the concept of equal liberties, 

and relative equality of primary social goods. Though based on traditions of Western 

liberalism and individualism, in practice, Rawls’ theory is equality seeking since he 

believes that neutral rational agents are likely to limit inequality in the distribution of 

resources. Although it is not clear how (or if) Rawls intended the difference principle
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to apply to matters of health resource allocation, it seems reasonable that a definition 

of social goods should include resources designed to promote health and prevent 

disease whether or not health is itself considered a social good. The administration of 

disease prevention strategies, under the difference principle could be justified as 

equitably unequal; for example, persons who suffer a high burden of disease and/or 

risk of disease are entitled to a larger proportion of treatment and prevention 

resources.

Research has suggested that people, when asked to imagine themselves in an self- 

interested position behind Rawls’ veil of ignorance, do not readily accept the maxmin 

strategy (Frohlich, Openheimer and Eavey 1987; Miller 1992) although this may be 

culturally specific (Bond and Park 1991). Others argue that the difference principle is 

exceedingly conservative, and ignores the human tendency to take risks; some people 

may be willing to sacrifice the security of relative equality if  there is a chance (and in 

some cases, even a small chance) of great reward. There is also evidence that equal 

outcomes are not favoured when variation is the result of natural ability or even good 

fortune (Bukszar and Knetsch 1997).

Others have questioned the efficiency of the difference principle. In response to the 

difference principle in the context of disease treatment practices, Arrow writes:

“[...] there can easily exist medical procedures which serve to keep people barely alive but with 
little satisfaction and which are yet so expensive as to reduce the rest of the population to poverty.
A maxmin principle would apparently imply that such procedures be adopted.” (Arrow 1973, 
pp.251).”

Provision of resources to worst-off individuals is inefficient since it provides scarce

resources to people who are likely to consume them at little individual benefit. A

terminally ill, brain-dead patient may possess the worst-off health status, but

investing massive efforts to extend his life (or marginally improve the quality of his

life) seems wasteful, especially since the resources could prevent the less intense

suffering of other people with a much greater chance of success. Some medical

technology offers treatment that is very expensive, and that provides only marginal

benefits to health (in years lived and/or quality of life). In societies where rights to

treatment are guaranteed (however small the chance of survival or miniscule the

reduction of pain and suffering), individuals will be inclined to exploit these rights to
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consume expensive ‘low-yield’ treatment options, and in doing so, eventually 

overburden public resources (Dworkin 1993). The continuous re-allocation of health 

care to the worst-off would not only cripple the system of health care, but also 

unjustly move resources from the majority to the minority.

There is, however, research that supports the idea of the difference principle in 

practice, though it is not explicitly used as justification. Recent work in housing 

policy suggests that the homeless can be classified into three groups: transitionally 

homeless (who make up the majority of homeless persons), episodically homeless and 

chronic homeless (Kuhn and Culhane 1998). Most current systems for treating the 

homeless are homogenous, and population-based. Resources are pooled together— 

into institutions like homeless shelters and detox programs—and the homeless have 

equal access to these resources to help move from homeless into non-homeless 

lifestyles. Critics have argued that although a shelter and resettlement system may be 

sufficient for the majority of homeless (who are not chronic), it is inadequate for 

chronically homeless, who would benefit from long-term care, and permanent 

housing assistance (Kuhn and Culhane 1998). The chronically homeless are high cost 

and repeat users of police, health treatment and other public services. Passive 

interventions—such as those found in the traditional homeless shelter system—do 

nothing to deal with persons in the extremes of the distribution of homelessness. 

However, a massive investment in harm-reduction targeted at the high-risk, 

chronically homeless could actually save more money and more lives in the long-term 

(Culhane 1992; Culhane et al. 2001). From the perspective of the difference 

principle, it would also better meet notions of fairness since the worst-off homeless 

may have a moral claim to disproportionate prevention, treatment and aid.

Similar to criticisms made earlier, this strategy of resource allocation may be seen 

as wasteful. Elster captures this line of reasoning clearly: “The welfare state [...] is 

like a circus: acrobats fall more frequently when they perform with a safety net.” 

(Elster 1991). There are also questions about effectiveness, particularly in the case of 

disease prevention. Individuals in the worst conditions of health may often be least 

able to respond to prevention efforts that require their active participation. In some 

cases, the burden of adopting changes in lifestyle meant to reduce the risk or burden
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of disease may be more trouble than the symptoms of disease themselves. 

Furthermore, groups with the highest prevalence of chronic illness are likely to be 

heterogeneous. Even if  a high-risk group suffers high burdens of disease on average, 

some individuals within the group will not—because of genetics, behaviour or good 

luck. After all, though hypertension is a fairly strong predictor of various 

cardiovascular illnesses, it does not guarantee that a given individual will suffer 

strokes and heart attacks in the future. Like the population-based strategy, a worst-off 

disease prevention strategy paints with a broad brush, offering prevention to worst-off 

groups, which, depending on how the groups were formed, could often include 

individuals that may not be in particular need of intervention.

3.5 A geographic contribution to chronic disease prevention methodology

3.5.1 Comparison of theory to methodology

The two views discussed above do not exhaust the perspectives from which one 

may approach the ethics of disease prevention, but do offer strongly contrasting 

opinions on process, if not outcome. Consequentialism generally, and utilitarianism 

specifically, build notions of distributive justice on consequences. Utilitarianism 

supports justice defined in terms of overall measures of public good, but in most 

forms, also accommodates concerns of equity, civil liberties and protection of 

minority rights (e.g., Mill 1984). The difference principle is based on the idea that a 

fair procedure of adjudicating justice should benefit the worst-off the most, even if at 

times inequalities (usually thought of in terms of the distribution of resources) result. 

We now turn to the task of contrasting these theories with cluster detection 

methodology.

It is clear that cluster detection methods do not provide sufficient information for 

utilitarian, or any form of ethical reasoning in which an objective is calculated over 

the whole of the population. Since cluster detection is concerned with finding subsets 

that are anomalously high, most of the data on health outcomes (including the large 

number of people who hover around the average) are ignored. From a 

methodological standpoint, this points to a non-trivial disconnect between the tool of 

analysis and the method of decision making. Clearly, population-based strategies
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require methodologies that describe the distribution of illness over the whole of the 

population in order to anticipate and observe the shifts in the population curve.

This is not to suggest that cluster detection methods have no value in population- 

based public health. In some cases, clusters may indicate a pattern of widespread 

importance—such as infectious disease outbreaks, or rapid changes in the spatial 

distribution of disease. Preventing the spread of infectious disease to the population 

as a whole sometimes requires prevention directed at high-risk individuals. For 

example, close contacts of a person diagnosed with smallpox are likely to receive 

considerable intervention from public health officials for the sake of greater public 

safety and disease containment. Such efforts are often referred to as ‘herd 

protection’; to keep the population free from infection, interventions need to be 

directed at vectors, which are sometimes people, and these people sometimes cluster 

(geographically or otherwise). However, it is less easy to associate cluster detection 

methods to population-based chronic disease prevention. Cluster detection methods 

simply do not offer the information required to introduce or monitor a population- 

wide health promotion or disease prevention effort. If the policy goal is to change 

population-wide social norms, and make small widespread reductions in disease risk, 

then an overall measure of outcomes is required.

On the other hand, there are some obvious parallels between the language of the 

difference principle and the methodology of cluster detection. Disease cluster 

methodology is concerned with the extremes of the distribution, and usually, negative 

states—like high disease burden or high concentration of hazards. The difference 

principle is concerned with the worst-off groups—the tail of the distribution of 

disease burden (or risk of illness)—which, since they depart from the mean, can be 

thought of as noteworthy subsets of the population. These subsets, or clusters, could 

represent failures to meet the basic criteria of the difference principle; that is, 

ensuring that the worst-off benefit the most within a process of goods transfer (in this 

case, distribution of disease prevention resources). A vision of distributive justice 

concerned with fairness considers these clusters unfair, which may entitle their 

constituent population to disproportionately more resources than the rest of the 

population. Cluster detection does not provide information about the entire range of

-71 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



variation but it does offer insight into the groups that are worst-off—in terms of 

health outcomes, disease burdens, and in some circumstances, disease risks. The 

difference principle requires this kind of information to formulate a response to 

distributive options; in other words, who are the worst-off groups, and how worse-off 

are they?

In the context of disease prevention, the difference principle may demand that 

some preventative resources be distributed unequally when the inequality most 

benefits the worst-off. Many geographic cluster detection methods provide a 

relatively simple answer to the problem of identifying who the worst-off actually are. 

Such methods (such as Turnbull et al., 1990 and Kulldorff 1997) determine whether 

or not a cluster of disease exists, but also identifies its approximate location.

However, the difference principle is not specific about the dimension in which it 

operates; worst-off groups often (and probably most often) exist in non-geographical 

spaces—such as gender, ethnicity, income and age. For example, chronic diseases 

like Alzheimer’s and Parkinson’s typically ‘cluster’ in older age groups; persons of 

older ages suffer the highest incidence and highest burden of these diseases. Other 

illnesses cluster in gender space (like breast and prostate cancer) and others yet in 

ethnic, cultural and income space. We may also expect complex multi-dimensional 

clusters—such as motor vehicle related deaths among men 18-25 years of age. This 

points to a noteworthy challenge, however, since it appears that the choice of 

dimension somewhat trivializes the cluster detection exercise. By choosing to search 

for chronic disease clusters in a particular dimension, we may have ruled out other 

important dimensions within which other noteworthy clusters occur.

There are two ways of responding to this challenge. First, a search for worst-off 

clusters could involve a simultaneous investigation of all important dimensions (age, 

sex, geography, income etc.) and the selection of a worst-off cluster across all these 

dimensions as the point of preventative intervention. In this case, the most 

noteworthy cluster of all the dimensions requires the most attention. This is already 

implicit in many public health activities—some disease prevention concentrates on 

ethnic differences, some on gender differences and some on age differences.

However, this approach does not totally resolve this challenge since a large number of
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complex associations between the dimensions (for example, between age and sex or 

between ethnicity and income) are likely to exist. An alternative perspective is to 

explicitly link the mode of prevention with the dimension of interest. Geographic 

prevention efforts—such as environmental modification and facility location—should 

be informed, at least in part, by cluster detection in geographic space. Even if the 

process governing the spatial distribution of disease is governed by the spatial 

distribution of age (which correlates strongly with disease risk) a geographic cluster is 

still informative when the intervention is geographical. After all, treatment facilities 

cannot be allocated to age space, and environmental modification is not usually 

gender specific.

Geographic cluster detection methods can find geographic communities of high 

disease burden, and can reveal important information about community equity. Such 

ideas about equity and geographic community are not new. In Social Justice and the 

City, David Harvey describes one form o f ‘territorial social justice’ in Rawlsian terms 

(Harvey 1973 chapter 3). A just distribution ensures that “[the] mechanisms 

(institutional, organizational, political and economic) should be such that the 

prospects of the least advantaged territory are as great as they possibly can be” 

(Harvey 1973 pp. 116-117). However, finding the boundaries of such territories is not 

straightforward; social neighbourhoods are dynamic, complex and do not form 

mutually exclusive sets (Kawachi and Berkman 2003 pp. 1-17). Research that 

attempts to understand the effects of geographic communities on individuals reports a 

contrast of findings that could be explained by these complexities (Ecob and 

Macintyre 2000). Furthermore, this invokes the debates of methodological scope 

mentioned above. While methodological holists try to identify which geographic 

groups require study, methodological individualists advocate reduction to the 

individuals who make up these groups.

The worst-off communities identified by geographic cluster detection techniques 

may be logical starting points for certain types of community-based chronic disease 

prevention programs, and in some sense, offer a compromise between the holists- 

individualist debate. Geographic clusters are locations where incidence and/or 

prevalence is anomalously high. These locations may understood as groups of
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individuals, communities, or groups of several communities in geographic space. 

Within the constraints of the available data and the design of the cluster detection 

algorithm, geographic cluster detection offers a method for identifying groups of high 

disease burden or risk without first imposing a definition of scope. These groups, 

what we will refer to as cluster-communities, are synthetic geographic subsets of the 

population designed by a cluster-detection algorithm to meet a threshold of concern. 

Agents within a cluster-community (whether viewed as individuals, households, 

neighbourhoods or communities) may be different in all respects except that they all 

persist within an area of high disease burden. This commonality—though only an 

artifact of the algorithm creating the cluster-community—binds the agents to 

prevention policy in a way that is indifferent to epistemological debates of scope.

3.5.2 Example applications

The focus of this discussion has been on chronic disease prevention, largely 

because the case for using clusters to inform infectious disease prevention is fairly 

easily made. From a biomedical, population-based, or equity-based standpoint, 

preventing the spread of these diseases is of widespread interest. A cluster of serious 

infectious disease—such as smallpox—necessitates interventions that are in the 

interest of the population as a whole. The final task of this exercise is to discuss 

applications in which knowing about worst-off geographic groups—cluster 

communities—could be applied to chronic disease prevention.

3.5.2.1 Cluster-communities as proxy geographies

Disease cluster-communities may be sensible groups for intervention when cost or 

privacy issues make collecting certain types of individual-level data difficult. For 

example, it would be time consuming, expensive and intrusive to identify where all 

the long-term intravenous drug users reside in a large urban centre. When health data 

from disease registers or other administrative data are available, this information 

could be used as a proxy for identifying the location(s) of this high-risk community.

If related diseases form a noteworthy cluster, then this information can be used to 

guide local interventions—like needle exchanges and community outreach activities. 

The actual distribution of intravenous drug users remains unknown, but this
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information is indirectly informative. Its real value is not in the prevention of high- 

risk behaviour, but in helping to manage associated problems.

A cluster-community based approach may also offer a practical method for 

applying the difference principle that escapes the inefficiencies described earlier. 

Some may argue that individuals with the greatest burden of disease are typically less 

able (and often incapable) of responding to prevention or health promoting 

interventions. Directing disease prevention strategies to worst-off individuals may 

consume considerable resources with little personal or social benefit. However, 

health statistics are averaged or summarized at the cluster-community level.

Although individuals may be ‘inefficient’ objects of intervention when guided by the 

difference principle, it is certainly possible to dedicate resources to worst-off cluster- 

communities without incurring this form of inefficiency. Environmental 

modification, for example, does not require active allocation of resources to specific 

individuals in a community, but passively allocates resources to everyone exposed to 

that environment. Bringing a worst-off cluster-community towards a regional 

average through such interventions may be costly, but it is not individually inefficient, 

even if some individuals in that community are not at risk. Furthermore, it offers a 

tangible and measurable reward—shifting the average disease burden of persons in 

worst-off cluster-communities to a healthier location on the outcome distribution 

curve.

Advocates of population-based disease prevention could point out that such 

changes positively alter social norms; there is a ‘value-added’ utility gained by 

implementing population-based strategies since they perpetuate healthier lifestyles, 

which will require less intervention in the future. Like population-based strategies, 

cluster-community based prevention strategies can also benefit from changes in social 

norms, particularly when the cluster-communities form some sort of natural group of 

interaction. As in the population-based strategy, community-specific interventions 

could be developed and implemented in order to alter local norms of health behaviour 

in the long run. Cluster-community based interventions may also help build positive 

social capital, and even increase the trust and credibility community members have 

for public health interventions in general.
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3.5.2.2 Cluster-communities as formal geographies

‘Area-based initiatives’ emphasize the geographic community as a focal point of 

intervention, and have been of interest for several decades, particularly in the United 

Kingdom. Historically, the ethical justification of area-based initiatives comes from 

concerns about social inequality, but in particular, the status of the most deprived 

communities (Smith, Noble and Wright 2001). Communities with large numbers of 

unemployed adults, lower levels of education, poorer health and higher crime are 

provided various resources, usually with local participation, with the hope of 

improving the local social and environmental infrastructure. Examples include: new 

immigrant outreach programmes, the creation of healthy living centres (such as 

recreational facilities and affordable homes for the elderly) and neighbourhood 

renewal (Regional Coordination Unit, 2006).

One issue that poses a regular challenge to area-based initiatives is the difficulty 

in defining the areas of intervention. When the definition of an area suited for 

intervention is not formalized, it could lead to questions of legitimacy—why is one 

area receiving attention and not another? Formal methods, like those used in cluster 

detection, allow us to link these program decisions to decisions about methodology. 

Choices about statistical significance, magnitude of difference, search strategy, and 

statistical controls can all be debated and defined ahead of time. Once these terms are 

negotiated, methods can define cluster-communities that meet standards of rigour and 

repeatability, and make decisions easier to defend. This formalized approach also 

makes evaluation easier. For example, formally defined cluster-communities from a 

single city can be assigned two different intervention programs, and the effectiveness 

of these strategies can be evaluated by comparing the relative change of the cluster- 

communities with respect to each other and to other communities in the same city.

Some critics doubt the ability of area-based initiatives to efficiently target those in 

need—neighbourhoods are too heterogeneous to make neighbourhood-level programs 

efficient (Joshi 2001). However, even detractors agree that in cases of highly 

concentrated deprivation, area-level intervention may be sufficiently efficient 

(McCulloch 2001). Furthermore, the practical value of area-based initiatives may 

only be realized when the interventions are inherently spatial—as is the case in
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housing issues, and changes to the physical environment (Tunstall and Lupton, 2003). 

On these occasions, area-based initiatives can influence the manner in which such 

spatially referenced interventions are provided without making the intervention 

process systematically inefficient.

3.5.2.3 Cluster-communities in facility location

Another area of possible application of cluster-community intervention may be in 

facility location and accessibility problems related to disease prevention. Some 

disease prevention/health promotion services are offered at local (and sometimes 

mobile) service centres—two noteworthy examples can be found in cancer screening 

(O’Malley et al. 2002) and needle exchange programs (Wood et al. 2004). In most 

instances, budgetary constraints force planners to limit the number of facilities 

provided while also ensuring some sort of fair service. A common approach to 

public-facility location is to locate facilities in such a way as to minimize the average 

distance that consumers travel to the closest facility. Some equity-based (rather than 

efficiency-based) models have been proposed in the past, particularly in the case of 

public facilities (e.g., Francis 1967; Toregas and ReVelle 1972). In these instances, 

problems either seek to ensure that either the distance between a facilities and their 

clients is no greater than a certain threshold, or seek to minimize the farthest distance 

that any consumers would have to travel.

In chronic disease prevention, cluster-communities offer information that could 

influence these kinds of facility location decisions. Under the difference principle, 

some ‘consumers’ should be identified as ‘high-entitlement’, and with a particular 

right (and need) to a nearby facility. This can be incorporated in several ways. 

Facilities could simply be located within cluster-communities. Efficiency 

calculations could even be made within these areas to ensure that persons within the 

cluster community are served efficiently. However, when multiple facilities need to 

be located, this approach seems somewhat unreasonable, and could lead to highly 

inefficient resource allocation. As an alternative, individuals within cluster- 

communities could receive disproportionate weighting within a traditional efficiency- 

based location model. In this case, travel distance minimizing functions could still be
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employed, but not all individuals would receive equal weight; persons living in a 

cluster-community would receive a weight greater than the rest of the population.

3.6 Conclusion

The application of cluster detection methods to public health intervention policy 

has an ethical justification based in the difference principle. Cluster detection 

methods can identify cluster-communities—discrete and systematic answers to the 

question of where (in geographic space) the burden of a chronic disease is highest. 

Unlike many area-based initiatives, which use administrative areas based on the 

census to administer geographic interventions, cluster detection methods form cluster- 

communities based on instrumental goals that can be set (and modified) based on 

specific strategic public health goals. For some diseases, worst-off cluster- 

communities may not suffer noteworthy burdens of illness; community-specific 

programs may not be necessary, and population-based strategies meant to shift the 

entire distribution of illness downward are both ethically and practically justified.

Geography has a role in understanding and mitigating health inequalities (Curtis 

and Jones 1998). The difference principle, when applied at the level of geographic 

communities, describes a model of distributive justice ensuring that geographic 

inequalities benefit worst-off communities the most. Under the difference principle, 

an unequal geographic distribution of prevention resources is justifiable, and 

equitable, when it benefits the worst-off. Unfortunately, the definition of geographic 

community is dynamic, both operationally (as we know from studies of the 

modifiable areal unit problem) and philosophically. As a response, some advocate 

that we ignore the notion of geographic community altogether, and instead adopt 

methods that are ‘aggregation invariant’ and resistant to different and seemingly 

arbitrary definitions of community (King 1996). Methodological individualists would 

recommend that all analysis should be conducted at the level of individuals, ignoring 

the specific study of community and society altogether. This would link disease and 

injury to the simplest object of risk—the human person. However, both of these 

alternatives ignore the role of society on the individual, and assume that ‘social 

facts’—including geographic communities—can be reduced to their constituent parts 

without losing important information. Social and physical environments seem to

- 7 8 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



affect people—through historical and social contexts, environmental influences, and 

personal interaction.

We have emphasized an application of cluster detection that may be useful for 

certain types of chronic disease prevention. In these applications, cluster detection 

methods can be used to identify cluster-communities of high disease. Subject to the 

constraints of the particular cluster detection algorithm, some methods are able to 

identify areas where disease burdens are anomalously high, and more specifically, 

most-anomalously high. In geographic space, these methods identify worst-off 

spatial sets, and offer inferential and systematic information useful for the application 

of the difference principle in geographic space. When applied to chronic disease, 

these worst-off clusters represent usually contiguous geographic groups that are 

suffering high disease burden. These methods may not always identify areas where 

an overabundance of hazards is present, but still give an indication where prevention 

and intervention may be needed the most, particularly for chronic conditions 

associated with serious co-morbid illness. These cluster-communities may have no 

meaning outside the scope of specific and local health interventions, but they have a 

clear instrumental purpose; they can provide information about where chronic 

outcomes are common, and a sense of where the burden of chronic disease is high.

Cluster detection methods have an established tradition in various areas of health 

research, and are of growing interest in the field of public health surveillance. This 

discussion has tried to show that cluster detection methods may have practical and 

ethical relevance to chronic disease prevention. Historically, prevention programs 

aim to reduce sickness, disability and death in human populations. Focus on high- 

risk individuals has been criticized for ignoring the social dimensions of health. 

Population-based prevention has been criticized for being inefficient and patronizing. 

Cluster detection methods can be viewed as a geographic application of the difference 

principle that can inform resource allocation when high-risk groups are spatially 

concentrated. The application of cluster detection to chronic disease interventions 

may make most sense when the interventions are of spatial form—like environmental 

modification, community-level education, and the location of health 

promoting/disease preventing service facilities.
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CHAPTER 4: Comparison of a structured and data-directed cluster

search strategy

4.1 Introduction

Clusters of disease have been of interest since at least as far back as John Snow’s 

19th century investigation of cholera deaths in London. Over time, methods used to 

detect such clusters have evolved considerably. The earliest could detect the presence 

of clustering in a study area without providing information as to where specific 

clusters were located (e.g. Ederer, Myers and Mantel 1964; Whittemore et al. 1987; 

Cuzick and Edwards 1990). Kernel filtering methods were developed to model 

patterns of variation that offer visual clues to the presence and location of local 

clusters (e.g Diggle 1990; Rushton et al. 1996). A different approach to the problem 

of finding spatial disease clusters concerned finding local autocorrelation in patterns 

of disease, putting aside the explicit goal of identifying anomalous clusters (Anselin 

1995; Getis and Ord 1996). Methods also evolved to identify the location of clusters 

and to then make statistical inferences about their significance (Openshaw et al.,

1988; Turnbull et al. 1990; Besag and Newell 1991).

The spatial scan (Kulldorff and Nagarwallal995; Kulldorff 1997) method of 

cluster detection has received considerable applied and methodological research 

attention over the last ten years. The spatial scan uses moving circular windows to 

scan a surface for high (or low) rates of disease, identifying the presence and 

significance of local clusters. With the release of SaTScan™ (Kulldorff and 

Information Management Services 2004), a freely available program enabling 

searches of time, space and space-time clusters, applications of this method have 

become increasingly common and varied. Research has expanded from various fields 

of human health into the areas of veterinary medicine, plant biology, criminology, 

and history (Kulldorff 2005).

Recent methodological research has sought to improve upon the original spatial 

scan by expanding the search process beyond the circular window and nearest- 

neighbour paradigms. We propose an approach to detecting clusters of disease based 

on some of these more recent ideas in disease cluster detection. By employing some 

simple graph theory concepts, our method can find clusters of irregular shapes and
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sizes within data aggregated to tessellations of polygons. The presentation and 

evaluation of this approach serves two purposes. First, it offers an alternative method 

of cluster detection that may be suitable for applications in geography, epidemiology 

and public health. Second, it reveals some geographic observations about the 

properties of different approaches to cluster detection methodology.

4.2 Backeround

4.2.1 Clusters and cluster detection

Waller and Gotway (2004 pp. 155) offer three questions involved in most disease 

cluster activities:

1) Are cases of disease near each other?

2) Does some area in a study region have a disproportionate collection of cases?

3) Where are the ‘most unusual’ collections of cases located?

For each of these questions, clusters are defined by some indicator of geographic 

closeness in the occurrence of disease. These questions also suggest that closeness is 

noteworthy only when it could not have occurred ‘by chance’. However, there are 

also non-statistical definitions of clusters. Knox (1988) defines clusters as 

geographically ‘bounded’ systems that are similar in character or genesis. This 

conforms more closely to the definitions of cluster analysis and data classification. It 

is not always simple to distinguish cluster detection as an anomaly finding exercise 

from cluster detection as a spatial classification exercise, but these differences are 

usually related to application and data. When diseases are acute and harmful, the 

rapid detection of anomalies is important; the quicker an infectious disease outbreak 

is identified, the quicker an intervention can be implemented that reduces its further 

spread. When there is little or no stochasticity in the phenomena under study—such 

as when diseases are relatively common, or the phenomena of interest are nominal, 

classification can be more important. For example, a geographic cluster of children 

living in houses more than 75 years old may be informative for public health officials 

worried about health risks associated with lead paint.

Even within these definitions of clusters, applications can influence details in 

approach. Research in epidemiology often emphasizes detecting clusters of residual 

risk, rather than raw observations about excess disease rates (Marshall 1991;
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Wakefield, Kelsall and Morris 2000). In these instances, it is often important to 

control for known factors that influence the spatial distribution of disease—such as 

geographic variation in age or sex—so that unknown risk factors can be discovered. 

Applications related to disease surveillance and alarm evaluation have a different 

purpose, applying cluster detection to decision-making tasks (Lawson and Kulldorff 

1999). In these instances, controlling for known risk factors is not always important; 

mitigating a current cluster of events (for example, by quarantine or inoculation) does 

not always require knowledge of the processes or causal mechanisms behind it.

4.2.2 The spatial scan approach to cluster detection

Cost, privacy issues and computational constraints limit most modem applications 

of cluster detection to working with aggregate representations of disease risk. These 

representations usually consist of disease frequency data (the numerator in the 

calculation of a rate) and at-risk data (the denominator in the calculation of a rate). In 

discrete geographic aggregation systems, these data are commonly defined by the 

boundaries of a polygon tessellation formed by administrative census areas—such as 

census tracts. Population or geometrically weighted centroids are often used to 

represent the locations of polygons in these tessellations. Attributes (such as 

population and case counts) and topological features (such as adjacency) associated 

with these polygons are projected onto the centroids they enclose. For some 

applications, it may be useful to conceive of these systems of centroids as graphs.

All graphs consist of two sets: a vertex set and an edge set. A graph is an object 

composed of both these set types, of which the vertex set is nonempty, and the edge 

set may be either empty, or composed of paired subsets of the vertex set (Trudeau 

1993). In Figure 4.1, the vertex set has 5 elements {1,2,3,4,5} and the edge set has 8 

elements {{1,2},{1,4},{ 1,5},{2,4},{2,3},{3,4},{3,5},{4,5}}. In cluster detection 

applications, the centroids constitute the vertex set, and adjacency characteristics 

constitute the edge set.

When working with tessellated data, the geometric or population-weighted 

centroids of the polygons can be treated as the vertex set, and the edges can be 

defined by some measure of adjacency or proximity. Typically, two centroids are 

connected by edges when the polygons enclosing them are adjacent to one another.
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The graph representation can easily contain the information critical to cluster 

detection—such as the disease information and the topology—but not the often 

extraneous information related to the shape or area of the polygons. In general terms, 

a detected cluster is a subgraph within this graph that exhibits a pattern of disease that 

is in some way interesting.

In disease cluster detection, it is most common to search for groups of 

observations that exhibit an unusually high rate of disease. In its most unconstrained 

and unstructured form, and even without concern for how ‘high rates’ should be 

evaluated, the scope of this problem is enormous: evaluate all possible subgraphs 

within a graph. This is a combinatorial problem based on k  selections from n 

centroids of a size determined by:

A search of a 40 centroid graph would require over one-thousand billion 

combinations to fully enumerate the search space. A simple heuristic can be used to 

find the subgraphs with the highest rates of disease in this unconstrained formulation. 

This is simply a matter of sorting the centroids from highest to lowest rate of disease, 

and then choosing the ordered set of centroids with the highest rate. Unfortunately, 

this method gives no indication of spatial clustering, since spatial relationships are 

ignored. Almost all spatial clustering methods are concerned, in some form, with 

proximity. Some methods use moving windows, some use nearest neighbours and 

some use adjacency. By constraining the problem these ways, many evaluations are 

eliminated from the formulation above, making the problem more tractable and more 

meaningful to the task at hand.

The spatial scan cluster detection method (Kulldorff and Nagarawalla 1995; 

Kulldorff 1997) borrows from the mechanics of several earlier approaches, and in 

particular Turnbull et al. (1990). The spatial scan approach has been implemented in 

a variety of disciplines over the last decade (see Kulldorff 2005 for a review of 

applications). Conceptually, the spatial scan uses a circular window of increasing 

size to progressively group neighbouring centroids, evaluating the anomalousness of 

the window at each step (Figure 4.2). Once all window sizes are exhausted for one
95
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centroid, the scan moves to a new centroid, and continues in the manner above until 

all centroids have spawned a series of searches. Though often easier to describe in 

terms of circular windows, the problem can also be conceived as a nearest-neighbour 

ordered search in a graph of centroids (Figure 4.3). Centroids are sequentially 

grouped to a ‘seed’ centroid (in order of closest to farthest) until all neighbours have 

been added, at which point, the scanning process moves to a new centroid location. 

Since every centroid is a unique starting point of a search, the spatial scan is a fully 

enumerative search of sequentially aggregated nearest-neighbour centroids. An 

ordered search of neighbours is suitable for inhomogeneous population distributions 

and has a manageable computational burden so long as the number of centroids is not 

very large (Kulldorff 1999).

There are two models for evaluating the noteworthiness of clusters: a Bernoulli 

model and a Poisson model (Kulldorff 1997). The Bernoulli model assumes that the 

data consist of individuals with and without disease. Our focus is on the Poisson 

model, which is appropriate for the analysis of aggregate disease data. In most real- 

world situations, the spatial distribution of cases will have a similar spatial 

distribution as the population. As a result, the Poisson model assumes a null 

hypothesis of constant risk rather than a null hypothesis of random distribution of 

cases. Under the null hypothesis that risk is constant over a study area, persons inside 

a cluster have a probability of disease equal to persons outside a cluster. If clusters of 

higher risk are of most interest, the alternative hypothesis is that persons inside a 

cluster have a higher probability of disease than persons outside the circular window. 

The following formula

f  \
c

c

f  C _ c  1U m J { C - E [ c \ )

serves as the test statistic calculated for each circular window under the Poisson 

model. C is the total number of cases, c is the observed number of cases and E[c] is 

the expected number of cases within the current window under the null hypothesis of 

constant risk. For simple applications, E[c] is derived by multiplying the population 

within a circular window by the overall rate of disease. The ratio of alternative 

hypothesis to null hypothesis is proportional to this test statistic when c is larger than
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E[c], and otherwise equal to 1 (Kulldorff 1997). To avoid numerical overflow 

problems, it is safer to calculate the log transformed test statistic

c(log(c) -  log(£[c])) + (C -  c) log((C -  c) -  (C -  £[c])).

A thorough description of the likelihood ratio test statistic and its statistical properties 

can be found in Kulldorff (1997).

Once the test statistic has been derived for all circular windows (potential 

clusters), a most-likely cluster is chosen based on the highest calculated test statistic 

of all potential clusters. The value associated with this most-likely cluster (called the 

maximum likelihood estimator) is the test statistic for the spatial scan. Under the null 

hypothesis of constant risk, significance can be determined through a Monte Carlo 

sampling of all possible permutations of how cases could be allocated in the 

population (Turnbull et al. 1990; Kulldorff and Nagarawalla 1995). Cases are 

simulated by randomly assigning ‘disease’ and ‘non-disease’ status to all persons in 

the population based on the actual number of true cases. For example, if there are 

200 true cases in a population, these 200 cases are randomly re-assigned to the 

population such that each person has an equal chance of being a case. Then the 

spatial scan algorithm is run on this simulated data set, a most-likely cluster is found, 

and the associated largest likelihood ratio is saved. This process is repeated—for 

example, 999 times—with each simulated largest likelihood ratio saved. The 

maximum likelihood estimator for the real data is compared to the distribution of 

simulated maximum likelihood estimators; if the real maximum likelihood estimator 

is larger than most of the simulated maximum likelihood estimators (99.9% of them, 

for example), then the found cluster is considered significant.

There have been a number of recent developments since the spatial scan’s original 

publication. Gangnon and Clayton (2001) observed that the spatial scan method 

preferentially detects clusters in areas that are nearer to each other in space. In most 

cases, this would involve areas o f higher population density. They recommend the 

use of a penalty that mitigates this tendency. A more recent challenge to the spatial 

scan comes from the observation that the method is less able to detect clusters of non­

circular shape (Patil and Taille 2003; Patil and Taille 2004). Some innovations have 

attempted to deal with this limitation. A recent addition to the literature uses ideas
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found in evolutionary programming to efficiently search elliptical and circular cluster 

shapes (Conley, Gahegan and Macgill 2005). This method reports relatively fast 

solution times, and the ability to detect a large range of cluster shapes with high 

resolution point data. Duczmal and Assun9ao (2004) use the results of a spatial scan 

of circular windows as a starting point for a search of connected but potentially 

irregularly shaped clusters. They add new and/or remove old centroids to an existing 

solution in order to further increase the maximum likelihood ratio using a simulated 

annealing algorithm to ensure that the search is not confined to local optima. Since 

there is no geometric constraint, the search strategy permits clusters of any shape.

Tango and Takahashi (2005) also build on the capability of the traditional spatial 

scan to identify clusters of ‘flexible’ shape. Rather than employing a complex 

heuristic, they enumerate all connected subgraphs within a distance from each 

centroid. Thus, for each centroid, their method scans all sets of connected subgraphs 

within a certain distance. This expansion allows them to observe more potential 

clusters without the complexity of tuning a heuristic to their data. However, in order 

to keep the problem manageable, they must constrain the search to clusters of 

relatively small size. For some applications, this may not be a serious drawback, 

since many clusters are relatively small. It is worth mentioning that although Tango 

and Takahashi (2005) found that the Duczmal and Assunfao (2004) approach has 

lower power then their method, their observation may not be broadly generalisable 

since the effectiveness of this and other heuristic approaches is dependent on the 

nature of the data, and the effectiveness of heuristic tuning.

The Duczmal and Assun9ao (2004) and Tango and Takahashi (2005) approaches 

illustrate two general methods for dealing with large combinatorial problems. In the 

first case, the search method is intelligent—a clever algorithm designed to search a 

large space efficiently. In the second case, the scope of the problem is scaled down, 

and a complete enumeration is undertaken within the smaller search space. 

Unfortunately, it is difficult to assess which technique is more appropriate in the 

general case, since this will be dependent on the study area, and subtle details 

involved in the set up of the algorithms—in these particular cases, the heuristic
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settings (Duczmal and Assun9ao 2004), and the distance threshold (Tango and 

Takahashi 2005).

4.2.3 Structural and data-directed searches

The traditional spatial scan and many contemporary methods use a particular 

structural form—a circular window of varying size—to search for clusters. It is a 

structural search method since it imposes a geometric structure (circularity or 

isotropic compactness) on the problem. This is sensible because many diseases 

probably do manifest themselves in compact, roughly circular form. Evidence of the 

behaviour of environmental pollution, recent work in cellular automata (e.g., Batty 

2005), and the first law of geography that “everything is related to everything else, 

but near things are more related” (Tobler 1970) all make it reasonable to expect 

clusters of disease to be approximately circular in shape. When a disease is 

particularly rare, the imposition of the correct structure could help find the location of 

a true disease cluster; the structural knowledge of disease may help improve power to 

detect true clusters. Prior knowledge about a disease’s spatial properties—whether it 

exhibits a circular, elliptical or triangular shape, for example—could make up for 

excessive variance in the data.

Another option is to constrain the search process to adjacency. In a simple case, 

centroids are treated as adjacent when the polygons that enclose them share a 

boundary. This first-order adjacency can be extended by ‘powering-up’ an adjacency 

matrix such that second, third and additional orders of connectedness can also be 

used1. In fact, a geographically unconstrained cluster detection problem uses a fully 

powered-up adjacency matrix where all centroids are treated as neighbours of all 

other centroids. When using adjacency as a constraint, all neighbours usually receive 

equal topological weight—all are equally near—and another variable can be used to 

resolve the ties that occur. This permits opportunities to use other measures to 

‘motivate’ the procedure, an idea sometimes referred to as a data-directed search, 

discussed by Patil and Taille (2003; 2004) and first implemented in disease cluster 

detection (as far as the authors are aware) by Duczmal and Assungao (2004). Such

1 Two step adjacency can be tabulated by squaring a simple adjacency matrix. Combined with the original adjacency matrix, this 
expands the definition o f neighbour to include centroids that are one and two steps away from each other. Further power operations 
can extend the definition of adjacency further.
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searches could maximise some attribute within the confines of a graph—such as 

trying to form subgraphs that have rates of disease that are as high as possible. 

Alternatively, proximity can simply be described by different variables—such as 

similarity of rate or some secondary attribute (like area, features of the landscape, or 

socioeconomic status).

A data-directed search with an explicit adjacency constraint allows centroids to be 

added to a subgraph to maximize an evaluation criterion while adjacency retains the 

geographic nature of the search. In a similar problem, political districting, all 

polygons (such as census tracts or other bounded shapes) in a study region must be 

classified into a predetermined number of larger polygons that have certain desirable 

characteristics—such as similar populations, homogenous demographic 

characteristics or relatively compact shape. The objective (for example, minimizing 

population variance) is met through a process in which steps in the algorithm often 

interact with one another. When a small polygon is exchanged between two larger 

polygons, this may simultaneously improve one part of the problem (bringing its 

population towards the mean), and negatively affect another part of the problem 

(pulling its population away from the mean). This can make finding global optima 

(in this case, the smallest possible variance in population among districts) difficult to 

find. Bozkaya, Erkut and Laporte (2003) developed a method to find optimal and 

near optimal solutions to political districting problem relatively efficiently. They use 

a tabu search heuristic to ensure that their algorithm escapes poor locally optimal 

solutions. Simulated annealing approaches have been used in a similar fashion in 

automated zoning research (Openshaw and Rao 1995). When a single most-likely 

cluster is of most interest, the search process is similar to a political districting 

problem with only two sets (a cluster and non-cluster set). The interaction between 

these two sets is straightforward—any change that improves the local properties of a 

potential cluster is very likely (if not guaranteed) to benefit the global objective— 

finding the cluster with the highest evaluation criterion (the likelihood ratio test in the 

case of the spatial scan). The relative simplicity of finding a single most-likely 

cluster suggests that simple methods are likely to find very good solutions.
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We propose a greedy approach to the problem of finding disease clusters of 

irregular shape. We refer to this search approach as the hot-graph method. This 

approach is data-directed, and actively searches for clusters in a similar fashion to 

Duczmal and Assunfao (2004). However, unlike the Duczmal and Assxm?ao (2004) 

method, our approach searches from all centroids, like the method proposed by Tango 

and Takahashi (2005). In this way, our technique is a new hybrid of these two ideas. 

However, unlike these methods, (but like the original spatial scan), our technique 

requires no sophisticated prior decision making—such as setting a maximum cluster 

size, or setting heuristic parameters. The method we propose does not assume a 

single neighbour structure, but obtains it from topological information defined by the 

specific problem. Using simulated data, we present and compare the performance of 

this method to the performance of the spatial scan. In addition to offering a new 

method for detecting disease clusters of any shape, our findings should offer a fair 

appraisal of the potential of a wide range of data-directed search techniques. We will 

discuss the strengths and weaknesses of this proposed approach, and suggest 

opportunities for its use in conjunction with the circular spatial scan.

4.3 Methods

4.3.1 A greedy hot-graph search

Greedy approaches to problem solving work by choosing the best currently 

available step in a decision process. The approach is both straightforward, and short­

sighted; for many problems, seemingly good short-term decisions often come with 

worse long-term consequences. Good chess players are often willing to sacrifice a 

piece early in the game in order to arrive at a stronger strategic position later in the 

game. When presented with an opportunity to take an intentionally sacrificed piece 

(called a ‘gambit’ at early stages of a chess game), a greedy response is to take the 

piece. Although this may meet the short term goal of taking pieces from an opponent, 

this can often result in a significantly weaker position in the long term. In this case, 

the sacrifice of material expresses a willingness to lose something (a chess piece) in 

exchange for a positional advantage that will bring one closer to victory at a later 

time. The greedy response is to capitalize on the immediate opportunity, and to take
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the piece at the possible expense of the global objective—i.e., winning the chess 

game.

Interestingly, some problems can be solved successfully through a greedy 

approach. A minimum spanning tree is the smallest distance-cost set of edges that 

connect all vertices in a graph. One of the methods for finding a minimum spanning 

tree, the Prim/Dijkstra algorithm (Prim 1957), uses a greedy approach. Defining any 

node in the graph as the starting subgraph g, the node with the lowest-cost edge 

connecting to g  is added to g. This process continues until all nodes have been 

connected to g. Subgraph g  is guaranteed to be a minimum spanning tree (Winston 

and Venkatarmanan 2003).

The algorithmic structure of the hot-graph approach comes from the Prim/Dijkstra 

algorithm to solve minimum spanning trees. As with the spatial scan, we treat each 

centroid in the graph as a starting point of a unique search. The hot-graph method 

adopts the same statistical theory as the likelihood ratio test used in the spatial scan. 

However, instead of adding centroids in sequence of nearest to farthest neighbour, the 

hot-graph method sequentially adds the centroids that results in the highest likelihood 

ratio at a particular step in the search process. Figure 4.4 demonstrates the hot-graph 

procedure in a very simple graph with only six centroids. Thin lines indicate 

adjacency, and thick lines indicate which centroids have been added to the current 

subgraph. Centroids with edges connected to any centroid within the current 

subgraph are feasible. At each stage, the feasible centroid that results in the highest 

subgraph objective (for simplicity, the rate of disease in this example) is added to the 

current subgraph and then stored. At each step, the algorithm adds a centroid until 

the new graph is fully connected (or until a population or other pre-set threshold is 

met). In this example, the last three centroids added cause the rate to drop. It is 

important to note that the algorithm is forced to add the best currently feasible 

centroid, even though newly added centroids may actually result in new subgraphs 

with lower objectives (in this case, the rate). The same search process is conducted 

from each centroid in the graph. For the hot-graph method, the centroid which 

maximizes the likelihood function is added (rather than the centroid that maximizes
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the rate as presented in this example). The subgraph with the highest likelihood 

function of all the stored subgraphs is considered the most-likely cluster.

Adjacency information determines the feasibility of search moves, and can be 

defined any number of ways. In the typical case, neighbours are defined as 

immediate neighbours, or within a specific distance threshold. By squaring, cubing 

or performing higher-order power operations on an adjacency matrix, this can expand 

the definition of adjacency to include nodes that are normally two, three or more steps 

away from each other as neighbours as well. This would allow the algorithm to leap 

over nearer neighbours.

The statistical significance of a hot-graph identified cluster is similar to that of the 

spatial scan; simulated data are generated by randomly re-assigning case/non-case 

status to individuals in the study population. Unfortunately, this process is more time 

consuming for the hot-graph approach since the search process is influenced by the 

location of cases; since the location of cases changes with each simulation, the whole 

search process must be run on each simulated data set. This search process is more 

time consuming than that of the spatial scan, which has a fixed topology, regardless 

of the location of cases.

Pseudo-code for the hot-graph search algorithm can be found in Appendix I.

4.3.2 The experiment

The purpose of our experiment is to evaluate the effectiveness of the spatial scan 

and hot-graph methods by a) comparing their respective abilities to detect the 

presence and approximate location of simulated clusters of different shapes (circle, 

line, ring and network), and b) comparing their abilities to define the precise 

boundaries of clusters of regular (circle) and irregular (line, ring, network) shapes.

The experiment is conducted on simulated data. These simulated data are a 

simplified representation of disease patterns in the real world, but give a suitable 

baseline for understanding the general behaviour of these two methods. The 

algorithms for solving and testing the hot-graph and spatial scan methods were 

programmed in the SAS™ language (SAS Institute, 1999).
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We use an approximately square tessellation of 81 hexagons (or ‘zones’) to derive 

a graph of our study region (Figure 4.5).1 The use of an hexagonal tessellation makes 

adjacency easy to calculate since the queen’s and rook’s case adjacency rules are 

identical. Any two zones that share one or more line segment are considered 

adjacent. In order to ensure that the simulated clusters are reasonably symmetrical 

and in the centre of the tessellation, odd numbers of row/columns were required. We 

chose a 9 x 9 tessellation since it resulted in a number close to the number of zones 

used in Chapter 5. The geometric centres of the zones are used in distance 

calculations for the spatial scan, and the edge set is defined by immediate 

neighbours—hexagons that share line segments. For all simulations, each zone 

receives a population count. If all zones were assigned small populations, the 

between-zone variability in disease counts would be larger than if  all the zones were 

assigned large populations. In order to observe how the methods behave with 

different underlying populations, we increment the base population of the scenarios 

from 1 000 people to 10 000 people in 1 000 person steps. In order to further increase 

the realism of the simulation scenarios, we introduce random variation into 

population counts rather than assigning each area the exact same population. Each 

zone receives a population derived from a normal distribution number generating 

function with a mean equal to the base population (for the first step, this is equal to 1 

000), and a standard deviation equal to 1/10th the base population. Though the 

population variations are somewhat arbitrary, they better reflect the heterogeneous 

population characteristics found in the real world than uniform populations across all 

zones.

We examine four cluster patterns: circle, ring, line and network (Figure 4.6). In 

each experiment, the cluster pattern is located in the middle of the tessellation. We 

do this in order to neutralize edge effects as much as possible. Though edge effects 

are an important concern in most spatial problems, we do not consider them here for 

the sake of parsimony. In all our experiments we simulate the number of cases in 

each zone in the same manner. This is done by assigning an equal risk of disease to 

all ‘individuals’ in a zone, and then using a random number generating function to

1 In the context o f our experiment, we use the term “zone” in place of “centroid” . We prefer this term here for descriptive purposes as
the maps we present later in the chapter are o f polygons rather than points.
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determine whether or not a person is a case based on this risk level. The risk of 

disease is assigned based on whether or not a person is inside or outside a cluster 

pattern (or more precisely, whether or not the zone to which they are assigned is 

inside or outside the cluster pattern). In all our experiments, individuals inside a 

cluster pattern are assigned a higher risk of incurring disease than persons outside a 

cluster pattern. Though the cluster analyses treat zones as the units of analysis, the 

‘individuals’ within them form the sampling framework for the simulation of disease 

rates.

For each experiment, the hot-graph and spatial scan methods both search for a 

most-likely cluster of disease. We evaluate the methods in three ways.

4.3.2.1 Power estimation

In order to estimate the power of both methods to detect a cluster, our first 

experiment observes the number of times each method identifies at least part of a 

cluster pattern as significant. For these experiments, persons in zones that are part of 

a cluster pattern have a risk of disease equal to 0.005 and persons in zones that are not 

part of a cluster pattern have a risk of disease equal to 0.0025. For both methods 

significance is determined by the Monte Carlo simulation process described above. If 

a detected cluster is significant at the 0.001 level and at least one zone from the 

cluster pattern is part of the detected cluster, the method is considered successful. We 

do this for each population increment (from 1 000 to 10 000) in order to observe 

changes with increasing population. For each population increment, and for each of 

the four cluster shapes, the experiment is repeated 100 times, and successfully 

detected cluster patterns are tallied for each iteration. The proportion of successful 

runs for both methods and for all four cluster patterns are presented graphically. A 

polynomial regression line is fitted to these graphs to help visualize apparent patterns.

4.3.2.2 Geographic precision: graphs

We also assess the ability of both methods to find clusters that correctly identify 

whether zones are part of cluster patterns or part of their complement. We classify 

each zone within a solution found by a cluster algorithm into one of four potential 

categories: true positive, true negative, false positive and false negative. When a zone 

is correctly identified as part of a cluster pattern, we call this a true positive. A true
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negative is a zone which is correctly identified as part of the complement of a cluster 

pattern. False positives are zones that identified as part of a cluster pattern but are 

actually part of the complement of a cluster pattern. False negatives are zones which 

are identified as part of the complement of a cluster pattern that are in fact part of a 

cluster pattern.

We generate scenarios for all four cluster patterns & population increments from 

1 000 to 10 000. In addition, we run these scenarios for 7 different inside- 

cluster/outside- probabilities of disease risk: 0.003:0.0025, 0.0035:0.0025, 

0.004:0.0025, 0.0045:0.0025,0.005:0.0025,0.0055:0.0025 and 0.006:0.0025. In 

total, 28 000 scenarios are generated (4 cluster patterns * 10 population increments * 

7 ratios of disease risk * 100 iterations). Both methods are tested on the same 

scenario once. For both methods, a tally of false positives, true positives, false 

negatives and true negatives are kept for each scenario. From these tallies, sensitivity 

and positive predictive values are calculated. Sensitivity equals the number of zones 

correctly identified as part of a cluster (true positives) divided by the total number 

zones in the cluster pattern (true positives + false negatives). Positive predictive 

value equals the number of zones correctly identified as part of a cluster (true 

positives) divided by the total number of zones detected as part of a cluster (true 

positives + false positives). Mean sensitivity and mean positive predictive values are 

calculated over the 100 iterations. Results from the 0.005:0.0025 ratio of disease 

probability are presented graphically. A polynomial regression line is fitted to these 

graphs in order to help visualize apparent patterns. The results from all inside- 

cluster/outside-cluster ratios of disease probability are presented in Appendix II.

4.3.2.3 Geographic precision: maps

We map the proportion of true positives and false positives for the 0.005:0.0025 

inside-cluster/outside-cluster pairings generated in the section above. The number of 

times each zone is identified as part a cluster is divided by 1 0 0  (since there are 1 0 0  

iterations) and this proportion is reported on the map. For zones that are part of a 

cluster pattern, this is the proportion of true positives. For zones that are part of the 

complement of the cluster pattern, this is the proportion of false positives. These 

proportions are represented on the map and colour coded for easier visualization. A
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perfectly performing method will have values of 1 .0 0  for zones within a cluster 

pattern, and values of 0 .0 0  for zones outside a cluster pattern.

4.4 Results

4.4.1 Detection of significant clusters

The findings reported in Figures 4.7a-4.7d report the proportion of significant true 

clusters found over the 10 population increments and the 4 different cluster patterns. 

When population is low, and disease frequencies are unstable, the spatial scan appears 

better at identifying a cluster as significant. This is true for all four cluster patterns. 

As population increases, the difference between the methods appears to shrink, 

though the shape of the curve varies somewhat across the different cluster patterns. 

For the network and ring shaped clusters, the estimates of power appear relatively 

similar for both methods. For the circular clusters, the difference between the 

methods appears fairly large. For the line-shaped cluster, the spatial scan appears to 

perform better, though compared to the other cluster shapes, both methods do 

comparatively worse.

4.4.2 Sensitivity and Positive Predictive Value

For the ring and circular clusters the mean sensitivity of the spatial scan is quite 

high once population levels reach 4-5 000 (Figure 4.8a and 4.8b). The mean 

sensitivity of the hot-graph method appears lower, but similar for both circle and ring 

clusters. For the network and line clusters, the spatial scan method has considerably 

lower mean sensitivity than the hot-graph method (Figure 4.8c and 4.8d). For 

network and line clusters patterns, the mean sensitivity of the spatial scan does not 

appear to improve with increasing population size, and is at or near 0.5 for all 

population levels. The hot-graph method exhibits roughly the same pattern of mean 

sensitivity for all four types of simulated clusters, approaching reasonably high levels 

of mean sensitivity at population levels around 10  0 0 0 .

Positive predictive value takes into account the ability of a method to find true 

cluster zones without also capturing false positive zones. When clusters are circular, 

the spatial scan has a higher mean positive predictive value than the hot-graph 

method (Figure 4.9a). With the exception of the 1 000 and 2 000 population levels, 

the method has mean positive predictive values above 0.5, and at all population levels
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this method appears superior to the hot-graph method. The hot-graph method appears 

to often include false positives within the identified cluster; the mean positive 

predictive value does not appear to approach the results of the spatial scan even at 

population levels of 10 000. For ring and network cluster patterns, the mean positive 

predictive value for the spatial scan and hot-graph methods is lower, but the hot-graph 

method appears to have slightly higher mean positive predictive values when 

population levels are high (Figure 4.9b, 4.9c). For line clusters, the spatial scan has 

higher mean positive predictive values than the hot-graph method, though both 

methods have relatively low mean positive predictive values for all but the largest 

population levels (Figure 4.9d).

4.4.3 Maps of true positives and false positives

Maps of the hexagon tessellation illustrate the spatial variation of true positives 

and false positives for both detection methods (Figure 4.10a-d). For zones included 

in a cluster pattern (refer to figure 6  as a reference) the values in black font represent 

the proportion of false positives for a particular zone. For the non-cluster zones, 

values in green font indicate the proportion of false positives. Zones are shaded into 

equal interval classes of 0 .2 0  units in size to help illustrate the patterns indicated by 

the numbers.

Consistent with observations made above, the spatial scan is very effective at 

identifying zones which are part of a circular cluster pattern (Figure 4.10a). Even at 

low population levels (where statistical variability is high) the method has relatively a 

large proportion of detected true positives. Proportions of false positives are higher in 

zones closest to the cluster pattern, and fall off to low levels near the edges of the 

tessellation. The hot-graph method illustrates a similar pattern, although the 

proportions of true and false positives are higher. Not surprisingly, as population 

increases, both methods perform better in both respects, though the spatial scan more 

so. At population levels of 10 000, the proportion of true positives detected by the 

spatial scan’s reaches 0.90 in all seven zones inside the cluster pattern. At the same 

time, the proportion of false positives is at or below 0 .0  for almost all zones outside 

the cluster pattern. The trend is similar for the hot-graph method, though again, the 

magnitudes are less promising. Most importantly, even at population levels at and
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above 1 0  0 0 0 , the proportion of false positives should be of concern; many areas 

continue to be falsely identified as part of a cluster.

The topology of the ring cluster differs from the other simulated clusters since the 

cluster divides the non-cluster areas into two discontiguous groups—one inside the 

ring, and one outside the ring (Figure 4.10b). The spatial scan method has a tendency 

to falsely identify zones inside the ring as part of a cluster. The spatial scan has very 

high proportion of false positives for zones inside the ring, even when the population 

level is high. Indeed, the proportion of false positives (for zones inside the ring) and 

true positives are similar, confirming the intuitive; that the spatial scan method treats 

ring shaped clusters as circles. The hot-graph method offers greater precision, 

though as observed, still has a tendency to detect a large proportion of false positives. 

Still, as the population increases, the method is increasingly able to separate true from 

false cluster zones, and at the largest population levels, exhibits lower proportions of 

false positives.

Although able to detect parts of a line cluster pattern, the spatial scan cannot 

detect clusters encompassing the whole line (Figure 4.10c). The hot-graph method, 

on the other hand, is able to define the boundaries of the line cluster once the 

population level is large enough. By the time population level reaches 5 000, most 

proportions of true positives exceed 0.90, though the proportion of false positives 

remains over 0 .1 0  for many zones.

The network cluster has more zones than the three other cluster patterns (Figure 

4.10d). The spatial scan has particularly high proportions of false positives for this 

cluster type, particularly in the zones adjacent to the cluster pattern. Even for large 

population levels, some proportions of false positives are over 0.40. The effect is 

similar to that of the ring and line; the scanning window increases in size to 

incorporate a larger number of cluster zones, but in the process, includes several non­

cluster zones as well. The hot-graph method has relatively higher proportions of true 

positives, and lower proportions of false positives as observed for the line and ring 

clusters. The proportions of true positives are highest in zones near the centre of the 

cluster network, and decrease with distance from this point.

4.5 Discussion
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4.5.1 General findings

Based on these results, the spatial scan seems more likely to detect the 

approximate location of a cluster, regardless of its true shape, than the hot-graph 

method. However, the spatial scan approach worked particularly well for circular 

cluster patterns, even at low population levels. In this sense, imposing the correct 

circular geometric constraint on the search process seems to make up for variability in 

the underlying data. If all disease clusters could be classified into a finite number of 

discrete geometric shapes, then the spatial scan could be expanded to include these 

shapes in the search process. The method could then maximize the likelihood ratio 

test over all shapes of all sizes, and return well defined, and precise cluster 

information. Recent work has taken on this challenge (e.g. Kulldorff et al. 2006) by 

incorporating ellipses within spatial scan search. This increases the range of shapes 

that the spatial scan is able to detect with precision similar to the circular spatial scan.

The traditional spatial scan is less able to define the precise geometry of linear, 

ring and network clusters. This is not surprising given the structure of the search 

process. In order to encompass an entire line, the circular window would need a 

diameter equal to the cluster length. Unfortunately, this would include a large 

number of non-cluster zones. On average, the method is likely to identify zones in 

the middle of the line, and ignore the more peripheral zones. This is illustrated on our 

maps of proportions of true and false positives. This observation is somewhat 

dependent on the size of the cluster pattern relative to the whole study area, however. 

If our tessellation were larger, the spatial scan would be more sensitive to detecting 

an entire line or network cluster, though the number of false positives would certainly 

increase as well. The spatial scan is sensitive enough to identify the approximate 

location of ring-shaped clusters, but is guaranteed to identify a large number of false 

positives in the middle of the cluster area (the centre of the ring). Whether or not this 

represents a genuine failing of the spatial scan is dependent on whether or not such 

structures exist in the real world, and to what degree detecting them may be 

important.

The hot-graph method exhibits fairly similar performance for all simulated cluster 

shapes. The mean sensitivity curves express relatively similar trends with increasing
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population levels. The mean positive predictive value curves vary somewhat 

depending on the shape—for line and circular cluster patterns, the mean positive 

predicted value is quite low at all population levels. But for the most part, apparent 

differences between the hot-graph method and the spatial scan seem to be accounted 

for by the varying performance of the spatial scan. The hot-graph method does not 

concern itself with structure, and should behave in a roughly similar manner, 

regardless of shape. Some variation can be accounted for by the fact that the four 

simulated clusters are of different relative size. For larger cluster patterns (like the 

ring and network) the hot-graph method has larger mean positive predictive values. 

This makes sense; as the cluster pattern gets larger, its complement shrinks, and as a 

result, there are fewer zones to identify as false positive.

4.5.2 Operational issues related to the hot-graph method

The hot-graph method has two notable limitations independent of its performance 

with respect to the traditional spatial scan. The first is concerned with the greedy 

structure of the search process. The method prefers immediately ‘best’ moves at the 

cost of ignoring immediately bad moves that may lead to globally better solutions (in 

particular, finding the true most-likely cluster). One might envision this happening 

when a zone of low disease rate separates two zones with high disease rates. It could 

be argued that a greedy search is a poor approach because it is unlikely to connect 

these two high-rate zones as part of a single cluster. We argue, however, that this 

may not be likely to occur very often. Since the method sequentially searches from 

every zone, at some point a search is certain be spawned from this low-frequency 

zone, and is likely to link the two neighbouring zones into part of a single cluster. 

Nonetheless, to allay this concern, the adjacency matrix can be redefined to ensure 

that the algorithm will ‘hop’ over low-rate zones to connect zones that have high 

rates. Of course, this would create clusters that are not contiguous, and one may 

argue that this somewhat defeats the purpose of spatial cluster detection in the first 

place. Under these circumstance, the low disease rate zones may represent a true 

separation between two clusters of different origin and different value. As such, it 

may be important that the areas are not compressed into a single most-likely cluster, 

and are detected as separate clusters.
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A second limitation of the method is related to its computational complexity.

Patil and Taille (2004) suggest that that the primary limitation of data-directed 

searches is not in their ability to identify clusters efficiently, but their need to re-build 

the topology for significance testing. For the spatial scan, the search is based on 

geographic distance between centroids, which is fixed for all data at these locations, 

and for the Monte Carlo simulations within a specific problem. A well designed 

spatial scan algorithm can use key indexing to quickly assign simulated data to the 

correct location in a topology file, and efficiently extract simulated maximum 

likelihoods. The hot-graph method uses a search method based on the arrangement of 

the attributes of the zones, and therefore, needs to re-calculate topology for each 

random iteration. This can be a major time burden.

For routine cluster detection tasks, the most important requirement is that the time 

to solve a problem is as fast or faster than the rate data are acquired. In jurisdictions 

with the capacity for large-scale routine disease surveillance, times to acquire, 

digitize and upload data may take days, weeks and months. A surveillance system 

that takes 10  hours to find a solution does not represent an insurmountable challenge 

to the system, especially since most of the time is in the Monte Carlo simulations, the 

number of which can be reduced in cases of an anticipated emergency (from 999 

simulations to 99, for example). Simple alterations—like abandoning searches that 

have a low likelihood ratio after a certain number of moves—may help the hot-graph 

method operate efficiently for larger problems. Zones that are near each other are 

likely to spawn similar (and often identical) hot-graphs. The algorithm can also be 

sped up by ignoring searches spawned from certain zones—for example, those with a 

very low rates—with little risk of missing interesting clusters.

A final limitation worth mentioning is that the adjacency constraints could 

sometimes limit the ability of the hot-graph approach to find clusters in certain 

regions of a real world study area. Based on the algorithm as presented, zones with 

fewer neighbours will be less frequently included in a search. This may lead to slight 

under-inclusion of zones along edges, comers, or in more isolated areas of a 

tessellation (such as peninsulas). There may be ways to estimate this problem by 

summarizing information on connectedness, or classifying the structure of the
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adjacency matrix. This information could then be used to weight the search 

process—similar to an approach discussed by Gangnon and Clayton (2001).

However, since the hot-graph method is fairly exhaustive—each zone is used as a 

starting point of a sequence of searches—this problem may not occur except in cases 

of very complex topology.

4.5.3 Comparison of the methods

The elegance of the original spatial scan method—its speed, flexibility to detect 

clusters in time and space, and simplicity—make it a good all-around choice for 

cluster detection, in spite of some weaknesses. Precise identification of a cluster’s 

shape may not be of critical importance when monitoring for infectious disease 

outbreaks or environmental hazards, for example. Preliminary exploratory 

information about clusters near sources of pollutants may only require a general 

indication of the location of high disease rates. Furthermore, its ability to detect more 

than one cluster may make up for its inability to precisely define the shape of a most- 

likely cluster. A linear chain of detected secondary and tertiary clusters could provide 

good indirect evidence of a linear-shaped cluster of disease. However, in some 

instances, more precise definitions of cluster areas may be important. Resource 

allocation based on information obtained from cluster detection sometimes requires 

precise definitions of cluster areas. Knowing where an outbreak of disease is 

occurring may be key to applying the proper interventions. Compared to the spatial 

scan, the hot-graph method is better able to detect the geometry of an irregular cluster 

pattern, though not without costs of its own. For one, at smaller population levels, 

this method has a tendency to include false positive zones in the detected cluster.

This may direct attention to zones that do not require it, and reduce the effectiveness 

and efficiency of interventions informed by this method. The high proportion of false 

positives found in some zones tell us that the hot-graph method tends to find clusters 

of irregular shapes that in some sense ‘over-represent’ true patterns of disease, 

irrespective o f inferential questions about clustering. Though this is not surprising, 

the illustration here is especially compelling since we know it is not based on ad hoc 

decisions about the search process, or heuristic tuning, and we should expect similar 

issues to arise for other data-directed searches.
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Fortunately, the weaknesses of the spatial scan and the hot-graph approach are to 

some degree countervailing. When clusters are of a non-circular shape, the circular 

spatial scan may miss some areas, and may under-predict the size of the actual 

cluster. On the other hand, the hot-graph method is more likely to over-predict the 

number of zones in a cluster. When a disease is rare the hot-graph approach may be 

especially likely to identify irregularly shaped structures that may include several 

zones that are not part of a true disease cluster. Therefore, it may be sensible to 

combine these two methods into a single analytical process.

The key to interpreting such a combined analysis is to understand that the two 

methods are communicating different information. The traditional spatial scan 

imposes a single geometric structure and then searches for it; the hot-graph approach 

explicitly searches for clusters of high disease rates subject to adjacency constraints. 

The former may be of more importance for certain types of decision making since it 

meets traditional standards for statistical inductive inference—either identifying or 

failing to identify an anomalous cluster of observations. The latter informs us more 

generally about the disease as a spatial system. In this sense, the hot-graph approach 

tells us which geometry, and in the real world, geography, of disease stands out. This 

can be very informative when used in conjunction with the spatial scan. When the 

hot-graph approach finds a circular-shaped cluster, for example, it means that in spite 

of a large number of possible geometric shapes, a circular pattern of high disease 

incidence exists in the data. This adds supporting information to the spatial scan; not 

only is the cluster significant, the geometric/geographic circularity constraint seems 

to be sensible. On the other hand, when a cluster found by the hot-graph method is 

not circular, this may indicate that there is a non-circular geographic structure of 

disease. This has to be interpreted with caution, since the non-circular shape may 

simply be an accident of over-fitting. Nonetheless, since the methods provide 

different information, we argue that it may not be fruitful to consider one approach as 

a replacement of the other.

4.5.4 Study Limitations

There are a few limitations in our experiments that are worthy of note. First, we 

did not consider the impact of edge effects. Zones along the edges are guaranteed to
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have fewer neighbours on average. We expect that the hot-graph method may have a 

slight bias against identifying zones along the boundary of a study area as part of a 

cluster. To some degree this problem can be mitigated by making changes to the 

adjacency information; zones along edges could be linked to two step neighbours to 

ensure they are more likely to be included. This could easily introduce a bias in 

favour of edge zones if not done with care. Since the spatial scan does not rely on a 

topology based on adjacency, it may be less affected by the edges in the search 

process. Future work should consider testing the performance of both methods with 

respect to clusters along the edges of study areas.

Second, the experiments we used were fairly restrictive, particularly in the 

experiments used to estimate differences in statistical power. We did not vary the 

size of the simulated clusters, or the difference in size between the study area and the 

cluster patterns. Further, we classified all cluster scenarios into two groups (inside 

and outside cluster), ignoring that other local variations are likely to exist in the real 

world. This generous assumption of internal and external homogeneity probably 

makes both methods appear more effective than they would be in the real world. 

Similarly, we ignored the role of secondary, tertiary and additional clusters on the 

process of detection. These assumptions limit the relevance of our findings in the real 

world, though this is not (in general) uncommon in simulated experiments. In the real 

world, patterns of disease variation usually too complex and too varied to perfectly 

duplicate in a simulated setting, and therefore all generalizations from the simulated 

to the real world must be undertaken with caution, particularly when the simulation is 

small in scope.

Finally, our observations about our experimental results are not formally 

evaluated—for example by hypothesis testing, structured classification or other 

procedures. Instead, we assess the performance of the hot-graph and spatial scan 

methods by observing tendencies on graphs and maps. From a traditional scientific 

perspective, this limits our ability to claim ‘true’ differences between methods.

Where we point out differences between the two methods, we do so based on strongly 

apparent trends and common sense. As such, we refrain, as much as possible, from 

using language that implies certainty, and qualify our observations with phrases like
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‘appear to be different’ rather than ‘are different’. Though this may not satisfy all 

measures of scientific reasoning, we would point out that hypothetical-statistical 

models are not without their own philosophical shortcomings.

4.6 Conclusion

Based on the results of our experiments, we have observed differences in 

performance between the spatial scan and the hot-graph approaches to cluster 

detection. We believe that our observations are consistent with general observations 

about structured and data-directed searches. Structured searches work well when the 

structure is realised in the data; methods that search circular windows are very likely 

to find clusters if  they exist, and accurately define the boundaries of clusters when 

they are circular in shape. Data-directed searches do not consider geometry 

explicitly, and are able to identify clusters of any shape. The hot-graph method had 

lower power, but was better able to describe the shape of irregular clusters.

It is doubtful that data-directed methods will ever replace the elegance or 

functionality of the traditional spatial scan. If Tobler is right, then most clusters of 

disease are likely to be approximately circular in the real world. Furthermore, the 

spatial scan is simple to apply, efficient, and unlikely to identify clusters with a large 

number of false positive zones. However, there seem to be instances where a cluster 

detection system would benefit from (and would not be harmed by) data-directed 

searches. Depending on the size of the search space, heuristic modifications may be 

required to reduce computing time. Alternatively, the hot-graph method could be 

applied as an exploratory back-up; when results of the two methods are similar, it 

provides validating evidence of the presence and shape of clusters. When a data- 

directed method finds a circular cluster in the same location as the traditional spatial 

scan, there is especially good reason to think that the data exhibit an anomalous 

cluster of disease of a circular form.

This study also gives evidence of the upper limit of data-directed methods for 

disease cluster detection. Faster methods exist—such as that proposed by Duczmal 

and Assunfao 2004— but generalised comparisons of this method and the spatial scan 

are difficult since the performance is at least partly dependent on the data and the 

settings of the heuristic. The hot-graph method is slower, but still likely to find the
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most-likely cluster, regardless of shape, and without heuristic tuning. Our results 

suggest that when (and if) clusters have irregular shapes, the spatial scan may not be 

as successful as the hot-graph method at defining the shapes of a true cluster. As a 

result, the applicability of either of these methods will depend on the expected shape 

of a disease cluster, as well as the consequences of finding false positives. If false 

positives are not of concern, the hot-graph method can be trusted to identify clusters 

fairly successfully. If false positives are of concern, and only general information is 

required about a cluster’s location, the spatial scan is a preferred approach.

Although tests on simulated data allow us to offer general observations about how 

these two methods perform, they give little indication of how the methods would 

differ in the real world. Given the various distributions of risk factors in space—like 

plumes of pollution, the distribution of income in an urban areas, and the complex 

variations of geological and weather systems—future work should examine the 

performance of these techniques with real data. Though the conclusions of such 

analysis may not build our general understanding of cluster detection, it would offer 

important information of what we may expect to see in the real world.
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Figure 4.1 A graph representation of a corresponding polygon tessellation

Polygon boundary Edge Centroid
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Edge set={{l,2},{1,4},{1,5},{2,4},{2,3},{3,4},{3,5},{4,5}}
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Figure 4.2 A conceptual illustration of the spatial scan
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Figure 4.3 An operational illustration of the spatial scan
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Figure 4.4 An illustration of the hot-graph method
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Figure 4.5 The simulated study area
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Figure 4.6 The four cluster patterns
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Figure 4.7a Proportion of tests correctly identifying the presence of a simulated

circular cluster
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Figure 4.7b Proportion of tests correctly identifying the presence of a simulated ‘ring’

cluster
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Figure 4.7c Proportion of tests correctly identifying the presence of a simulated ‘line’

cluster
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Figure 4.7d Proportion of tests correctly identifying the presence of a simulated

‘network’ cluster
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Figure 4.8a Mean sensitivity for circle cluster pattern
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Figure 4.8b Sensitivity for ring cluster pattern

1.000

0.800

• f  0.600
CO
C<D

C /D

|  0.400 -

•  Spatial Scan 

O Hot Graph
0.200  -

 OLS (2nd order poly.)
Hot Graph

 OLS (2nd order poly.)
Spatial Scan

0 .0 0 0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Population

- 129-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.8c Sensitivity for simulated ‘network’ cluster
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Figure 4.8d Sensitivity for line cluster pattern
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Figure 4.9a Positive predictive values for circle cluster pattern
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Figure 4.9b Positive predictive values for ring cluster pattern
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Figure 4.9c Positive predictive values for network cluster pattern
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Figure 4.9d Positive predictive values for line cluster pattern
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Figure 4.10a Circle cluster pattern: proportion of true positives (black font) and

proportion of false positives (green font)

Circle, HG method Population^ 000 Circle, SS method Population^ 000

Circle, HG method Population=5 000 Circle, SS method Population=5 000

Circle, HG method Population=10 000 Circle, SS method Population=10 000

- 136 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.10b Ring cluster pattern: proportion of true positives (black font) and

proportion of false positives (green font)
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Figure 4.10c Line cluster pattern: proportion of true positives (black font) and

proportion of false positives (green font)
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Figure 4.10d Network cluster pattern: proportion of true positives (black font) and 

proportion of false positives (green font)
Network, HG method Population=l 000

Network, HG method Population=5 000

Network, HG method Population10 000

Network, SS method Population! 000

0.6 0.71

1 ::011II11JI

Network, SS method Population=5 000

Network, SS method Population 10 000

- 139 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.7 References

Anselin (1995). Local indicators of spatial association—LISA. Geographical 

Analysis 27:93-115.

Batty M. (2005). Cities and Complexity: Understanding Cities with Cellular 

Automata, Agent-Based Models and Fractals. MIT: Cambridge.

Besag, J, Newell J (1991) The detection of clusters in rare diseases. Journal o f the 

Royal Statistical Society Series A 154: 143-155.

Bozkaya B, Erkut E, Laporte G (2003) A tabu search heuristic and adaptive 

memory procedure for political districting. European Journal o f  Operational 

Research 144:12 -  26.

Conley J, Gahegan M, Macgill J (2005) A genetic approach to detecting clusters 

in point data sets. Geographical Analysis 37:286-314.

Cuzick J, Edwards R (1990) Spatial clustering for inhomogenous populations. 

Journal o f  the Royal Statistical Society B 52:73-104.

Diggle P (1990). A point process modelling approach to raised incidence of a rare 

phenomenon in the vicinity of a prespecified point. Journal o f  the Royal 

Statistical Society A 153:349-362.

Duczmal L, Assun9ao R (2004) A simulated annealing strategy for the detection 

of arbitrarily shaped spatial clusters. Computational Statistics and Data Analysis 

45:269-286.

Ederer F., Myers M. H., Mantel N. (1964) A statistical problem in space and time: 

do leukemia cases come in clusters? Biometrics 20:626-638.

-140 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Gangnon R E, Clayton M K (2001) A weighted average likelihood ratio test for 

spatial clustering of disease. Statistics in Medicine 20:2977-2987.

Getis A, Ord J K (1996) Local spatial statistics: an overview. Spatial Analysis: 

Modelling in a GIS Environment. P Longley, M Batty (eds.) Geoinformational 

International: Cambridge.

Knox E G  (1988) Detection of clusters. In Methodology o f  Enquiries into 

Disease Clustering. London School of Hygiene and Tropical Medicine: London.

Kulldorff M, Nagarwalla N. (1995) Spatial Disease Clusters: Detection and 

Inference. Statistics in Medicine 14:799-810.

Kulldorff M (1997) A spatial scan statistic. Communications in Statistics: Theory 

and Methods 26:1481-1496.

Kulldorff M (1999) Spatial scan statistics: models, calculations and applications. 

In Scan Statistics and Applications. Glaz J, Balakrishnan N (eds.) Birkhauser: 

Boston.

TM
Kulldorff M, Information Management Services, Inc. (2004) SaTScan v5.0: 

Software for the spatial and space-time scan statistics, http://www.satscan.org/.

Kulldorff M (2005) Scan statistics for geographical disease surveillance: an 

overview. In Spatial and Syndromic Surveillance for Public Health. Lawson A B, 

Kleinman K (eds.) Wiley: West Sussex.

Kulldorff M, Huang L, Pickle L, Duczmal L (2006) An elliptic spatial scan 

statistic. Statistics in Medicine In Press

-141 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.satscan.org/


Lawson A B, Kulldorff M (1999) A review of cluster detection methods. In

Disease Mapping and Risk Assessment for Public Health. L Lawson A B, Biggeri

A, Bohning D, Lesaffre E, Viel J F, Bertollini R (eds.) Wiley: Chichester.

Le N D, Petkau A J, Rosychuk R (1996) Surveillance of clustering near point 

sources. Statistics in Medicine 15:727-40.

Marshall R J (1991) A review of methods for the statistical analysis of spatial 

patterns of disease. Journal o f the Royal Statistical Society 154:421-441.

Neill D B, Moore A W (2005) Efficient scan statistic computations. Spatial and 

Syndromic Surveillance for Public Health. Lawson A B, Kleinman A B (eds.) 

Wiley: West Sussex.

Openshaw S, Craft A, Charlton M, Birch J (1988) Investigation of leukemia 

clusters by use of a geographical analysis machine. Lancet 331:272-273.

Openshaw S, Rao L (1995) Algorithms for reengineering 1991 Census geography 

Environment and Planning A 27:425-446

Patil G P, Taille C (2003) Geographic and network surveillance via scan statistics 

for critical area detection. Statistical Science 18:457-465.

Patil G P, Taille C (2004) Upper level set scan statistic for detecting arbitrary 

shaped hotspots. Environmental and Ecological Statistics 11:183-197.

Prim R C  (1957) Shortest connection networks and some generalizations. Bell 

Systems Technology Journal 36:1389-1401.

-142 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Rushton G, Krishnamurthy R, Kirshnamurti D, Lolonis P, Song H (1996). The 

spatial relationship between infant mortality and birth defect rates in a U.S. city. 

Statistics in Medicine 15:1907-1919.

SAS Institute (1999) SAS 8.2. SAS Institute Incorporated: Cary

Tango T, Takahashi K (2005) A flexibly shaped spatial scan statistic for detecting 

clusters. International Journal o f Health Geographies 4:1-15

Tobler W R (1970) A computer movie simulating urban growth in the Detroit 

region. Economic Geography 46:234-240.

Trudeau R J (1993). Introduction to Graph Theory. Dover: New York.

Turnbull B W, Iwano E J, Burnett W S, Howe H L, Clark L C. (1990)

Monitoring for clusters o f disease: application to leukemia incidence in upstate 

New York. American Journal o f Epidemiology 132:S136-S143.

Wakefield J c, Kelsall J E, Morris S E (2000) Clustering, cluster detection, and 

spatial variation in risk. In Spatial Epidemiology: Methods and Applications. 

Elliot P, Wakefield J, Best N, Briggs D (eds.). Oxford University Press: Oxford.

Waller L A, Gotway C A (2004) Applied Spatial Statistics fo r  Public Health 

Data. Wiley: Hoboken

Whittemore A S, Friend N, Brown B W, Holly E A (1987). A test to detect 

clusters of disease. Biometrika 74:631-635.

Winston W L, Venkataramanan M (2003) Introduction to Mathematical 

Programming, fourth edition, Thomson Brooks/Cole: Pacific Grove.

-143 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5: Geographic discovery through cluster detection

5.1 Introduction

The spatial scan (Kulldorff and Nagarwalla 1995; Kulldorff 1997) method of 

geographic cluster detection has received considerable applied and 

methodological research attention over the last ten years. The original spatial 

scan uses moving ‘circular windows’ to scan a surface for high rates of disease, 

identifying the approximate location and statistical significance of local clusters. 

Recent developments have sought to improve upon cluster detection methodology 

by expanding the search process to include shapes other than circles (e.g. Conley, 

Gahegan and Macgill 2005; Kulldorff et al. 2006). Other methods have further 

restructured how the problem is formulated, using adjacency rather than geometry 

to constrain the search (e.g., Duczmal and Assunfao 2004; Tango and Takahashi 

2005; Chapter 4).

Many studies of cluster detection methodology offer evidence about the 

performance o f different methods based on simulated data (e.g. Rogerson 1997; 

Tango 2000; Gangnon and Clayton 2001; Kulldorff, Tango and Park 2003; Song 

and Kulldorff 2003; Tango and Takahashi 2005; Conley, Gahegan and Macgill 

2005; Puett et al. 2005; Aamodt, Samuelsen and Skrondal 2006). Simulated data 

studies are an important starting point for methodological innovation, but may be 

limited in their generalisability. For example, obtaining power estimates for 

cluster detection methods is complicated by topology, scale and variations in 

population density (Waller and Gotway 2004 pp. 260-261). As a result, the 

ability of a method to detect a cluster may vary depending on where the cluster 

occurs in a study region, even with other parameters—like shape, magnitude and 

size of clusters—held equal.

There are also interesting features of real world problems that are hard to 

recreate in a simulated computer environment. In the real world, many interacting 

processes can operate simultaneously, and produce complex spatial structures. 

Autocorrelation, trend, aggregation effects and edge effects are reasonably simple 

to simulate independently, but in combination, present a large number of 

parameters to control in a simulated setting. Indeed, it is probably impossible to
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simulate and interpret how a method performs with respect to all of these 

processes simultaneously. Eventually, most methods of spatial analysis must be 

explored with real world data. This is particularly true when such methods are 

designed for the study of health and disease. Good methods inform applied 

researchers in ways that better enable them to contribute to improvements in 

human health and well being. Bad methods can fail to inform, provide false 

information, and may even cause harm.

Many studies of cluster detection methodology include tests that compare new 

approaches using real data sets. This has frequently involved the study of cancer 

(e.g. Whittemore et al. 1987; Cuzick and Edwards 1990; Le, Petkau and 

Rosychuk 1996; Goovaerts and Jacquez 2004) though studies have used other 

data on occasion, including West Nile virus (Mostashari et al. 2003), syndromic 

surveillance data (Kulldorff et al. 2005), birth defects (Hill, Ding and Waller 

2000) and homicide (Duczmal, Assun<?ao 2004). One data set of New York of 

childhood leukaemia has been used in several methodological studies (e.g. 

Turnbull et al. 1990; Waller and Turnbull 1993; Kulldorff and Nagarwalla 1995; 

Gangnon and Clayton 2001; 2003; 2004) to facilitate comparisons between 

methodologies. Although such applied work has obvious value in illustrating the 

ability of a method to identify apparent patterns, like simulated experiments, it is 

hard to generalize to a larger scope. In this case, the data may be real, but it is 

difficult to apply an instance (as opposed to a universe) of observations to a 

broader range of situations. Furthermore, since there is no benchmark for 

comparison (in the real world we have no control or knowledge about a cluster’s 

true location or magnitude), differences that are observed have no obvious point 

of reference. As a result, isolated analyses of real data remain fairly limited in 

their ability to generalize observations about performance to different places, 

different diseases, or even different scales of study.

The purpose of this study is to compare results from the spatial scan 

(Kulldorff 1997) and hot-graph approach described in Chapter 4. By exploring 

these methods on ten sets of real disease data, we can gain an understanding of 

how similar (or different) the results of these two approaches are for some real
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disease cluster detection tasks. Since we select a number of diseases—both 

chronic and communicable—of varying case frequency, our analysis provides 

some perspective on the variability we may expect to see in other applications in 

similar settings.

5.2 Methods

5.2.1 Data

The province of Alberta has a population of over 3.2 million people and is 

located in Western Canada (Figure 5.1). The majority of the population is located 

in the South-east quadrant of the province. Including nearby suburban 

municipalities, the populations of both Edmonton and Calgary are near one 

million people. Over 95% of Alberta’s population is insured by a provincial 

health insurance plan. Most persons not covered are members o f the military or 

R.C.M.P. who receive insurance coverage directly from the Federal government. 

At present, the province pays for most services offered by physicians, and 

maintains an administrative database of services and population data to facilitate 

the payment system. The bulk of this system is made up of a fee-for-service 

database (or “claims”) that includes diagnostic information as well as service 

codes necessary for payment decisions.

We use this database as a source of information for ten different disease 

conditions presenting in the 2003 calendar year (Table 5.1). These conditions 

were chosen to include both infectious and chronic illness of varying rate of 

occurrence. Considerable work has gone into reviewing the accuracy of disease 

definitions based on claims data (Roos, Sharp and Cohen 1991; Roos et al. 1993; 

Muhajarine et al. 1997). We assume several caveats with the use of such data. 

First, we cannot make a distinction between incident and prevalent diagnoses. 

Although data correspond to unique individuals (rather than services), we cannot 

know if a diagnosis represents a follow-up visit for a persistent (prevalent) illness, 

or the first presentation of a new (incident) illness. Second, there is a possible 

rural-urban bias in the diagnosis of some diseases. Differences in physician 

training, the availability of equipment and practice style can complicate 

standardized disease definitions across different geographies, even at the intra-
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provincial scale (Yiannakoulias, Svenson and Schopflocher 2005). Third, 

influenza, gonorrhoea, giardiasis, and food poisoning are typically confirmed 

through laboratory testing. Since we rely on claims diagnoses (which are 

infrequently validated by laboratory tests), some of our disease data may have 

poor diagnostic precision.

The denominator used in the analysis is based on a population registry file 

maintained by the provincial health ministry. For all diseases but asthma and 

Parkinson’s, the at-risk populations were assumed to be the entire population. For 

asthma, cases and population data were restricted to persons less than or equal to 

20 years of age. For Parkinson’s, case and population data were restricted to 

persons 65 years of age and older. Both of these age restrictions were used to 

improve the precision of diagnoses—asthma is typically associated with younger 

ages, Parkinson’s is typically associated with older ages.

For each disease, case and population data were aggregated to a polygon 

tessellation covering the province. The tessellation consists of the Alberta ‘sub- 

rha’ administrative health boundaries defined by Alberta Health and Wellness 

(Alberta Health and Wellness 2004). The 6 8  sub-rhas (or ‘zones’) were designed 

based on regional consultation, and a desire to create areas of roughly equal 

population. The area of each sub-rha is relatively small in regions where 

population density is high, and larger where population density is low. Geometric 

centroids of these zones were derived for the spatial scan method (Figure 5.2). 

Each centroid is calculated based on the centre of the smallest possible rectangle 

that encloses each zone. An adjacency matrix was built from the tessellation 

based on the queen’s case; zones touching at one or more points (or lines) are 

considered connected. All programming of the hot-graph method was performed 

in SAS 8.2 (SAS Institute, 1999). SaTScan™ (Kulldorff and Information 

Management Services 2004) was used to find the spatial scan clusters.

5.2.2 Approach

We compare the results of two cluster detection approaches (the spatial scan 

and the hot-graph) with respect to the 10 diseases represented in Alberta sub-rhas. 

When working with aggregate disease data, the spatial scan uses a circular
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window of varying size to progressively aggregate neighbouring centroids to a 

seed centroid, and calculates a likelihood ratio statistic at each window size 

(Kulldorff 1997). Once all window sizes are exhausted for one seed, the scan 

moves to a new seed until all seeds have spawned a series of searches. A most- 

likely cluster is chosen based on the highest likelihood ratio statistic of all 

windows at all centroids. Under the null hypothesis that the rate within a detected 

cluster is not different from the rate outside the cluster, significance is usually 

determined through 999 Monte Carlo simulations (Kulldorff 2004). For each 

simulation, case and non-case status is randomly re-assigned to all the individuals 

in the entire study area (through random labelling). A search for a most-likely 

cluster is performed for each simulated data set, and the 999 simulated most-likely 

clusters are compared to the real cluster to obtain a measure of statistical 

significance.

Inspired by the ideas of Patil and Taille (2003; 2004) and particularly 

Duczmal and Assun9ao (2004), the hot-graph cluster detection method is 

constrained by adjacency rather than fixed geometric structures (such as circular 

windows, ellipses or nearest neighbour distance). The procedure starts at a seed 

zone (which is itself treated as a potential cluster), and adds the adjacent zone that 

increases the likelihood ratio the most. These two zones are now a new potential 

cluster set, and neighbours of both zones are new feasible choices. Zones 

continue to be added to the potential cluster set until a large number of zones have 

been added to the current search (for example, once the potential cluster has a 

total population equal to 50% of the study area’s population). At this point, the 

search moves to a new zone and starts over. The likelihood ratio test for each 

potential cluster is stored, and the potential cluster with the highest likelihood 

ratio is considered the most-likely cluster. Significance of the most-likely hot- 

graph is determined similar to the Monte Carlo methods described above, except a 

new topology must be derived for each simulated data set.

For each data set, both methods are used to identify the location and significance 

of a single most-likely cluster. Both methods are capable of identifying and 

locating secondary clusters. These additional clusters make evaluations of
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performance more complicated, require consideration within the context of their 

use, and are therefore not examined here. Results of the two methods are 

tabulated and mapped so that comparative assessments can be made. We also 

map crude (i.e., not age-sex standardized) rates of disease (Appendix III) to 

compare the degree to which the different approaches correspond to simple 

disease maps.

5.3 Results

Table 5.2 reports the information comparing the results of both cluster 

detection methods. The p-value reported corresponds to the likelihood ratio test; 

if p is sufficiently small, we reject the null hypothesis that risk the inside and 

outside the cluster is not different. If we choose p<=0.001 as a cut-off of 

statistical significance, both methods identify significant clusters for most 

diseases. For the spatial scan, the null hypothesis is rejected in all cases except 

for giardia. The hot-graph method fails to reject the null hypothesis for three of 

the diseases: giardia, salmonella food poisoning and bacterial food poisoning. In 

every case, the two methods locate clusters that overlap by at least one sub-rha.

In all but one case, the hot-graph clusters include more zones, but cluster size 

appears to correlate somewhat between the two methods. The relative risk (RR) 

estimates the ratio of observed to expected number of cases within a most-likely 

cluster. Since the experiment was set up to search for high clusters, the numbers 

are all greater than one. As numbers increase from one, risk is proportionally 

higher in cluster areas. When close to one, the number of cases inside a cluster is 

not different from the expected number of cases. The size of the clusters (N) 

varies between methods, with the hot-graph approach finding larger clusters of all 

diseases except for asthma. Except in the case of asthma and giardia, estimates of 

relative risk in clusters found by the spatial scan are larger than those found by the 

hot-graph approach.

Agreement between the methods is summarized in the four right-most 

columns of Table 2. The methods differ considerably with respect to the sub-rhas 

included as part of detected clusters. Most of these differences result from the 

hot-graph’s tendency to define clusters with a larger number of sub-rhas than the
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spatial scan. Maps help illustrate these differences (Figures 5.3 to 5.12). The 

colours of the polygons denote the differences noted in Table 2. Yellow identifies 

sub-rhas that are identified as part of a cluster by both methods. Blue identifies 

sub-rhas that are only part of a hot-graph identified cluster. Red identifies sub- 

rhas that are only part of a spatial scan identified cluster. White sub-rhas are not 

part of any detected cluster.

For all diseases examined here, the hot-graph and spatial scan methods 

identify most-likely clusters in the same general region of the province. For most 

of the maps, the hot-graph method identifies clusters with a large number of sub- 

rhas. In some cases, the hot-graph clusters also include a significant amount of 

the province’s area. For example, in the case of alcohol and drug related illnesses, 

the cluster includes roughly two-thirds of the province’s total area (Figure 5.9). In 

several other cases, the clusters include nearly half of the province’s area. In most 

of these instances, both methods report fairly low relative risk estimates. The 

highest reported relative risk estimates are associated with clusters found by the 

spatial scan, and in these cases, the number of sub-rhas in the cluster is small. In 

the case of gonorrhoea, both methods find clusters with a small number of sub- 

rhas and with high relative risk estimates (Figure 5.12). The relative risk 

estimates for the asthma clusters are relatively low for the hot-graph (1.23) and 

spatial scan (1.19) methods, and perhaps not above the threshold of clinical 

importance. However, the map does illustrate differences in the geography of 

detected clusters (Figure 5.3). The spatial scan cluster includes two more sub- 

rhas than the hot-graph method. The hot-graph cluster has a more complex 

geometry, consisting of a half-ring shape that does not include two central sub- 

rhas found by the spatial scan. Rate maps (see Appendix III) support this 

observation; the two central sub-rhas have comparatively lower rates of disease 

than the other sub-rhas included in the cluster.

5.4 Discussion

5.4.1 Differences between methods

The great challenge of most methodological studies is to derive general, 

broadly applicable conclusions from specific experimental or theoretical work.
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One way to resolve this challenge is to compare methods using simulated data. 

Simulated data are easy to control, and offer information about how methods 

perform under idealized conditions. This is not unusual, and in fact adopts a 

strategy common in the social sciences—how do methods perform under certain 

experimental conditions, all else being equal? Another option is to make 

comparisons with real data, and in particular, data that have been studied before. 

Disagreement with other research could reveal a breakthrough, or a need for 

further scrutiny. However, in both cases, these approaches probably fail to cover 

a sufficient range of scenarios that would enable comment on the breadth of real- 

world situations. Though our study does not exhaust all real world data, it covers 

a diverse range of disease outcomes, and illustrates some interesting, and possibly 

general, observations.

Geographic cluster detection methods are usually constrained geographically 

such that the cluster and non-cluster sets are contiguous, relatively compact, or 

limited to a pre-specified shape (like a circle, ellipse, square, etc.). Historically, 

the most common structures were based on geographic neighbours either 

explicitly (by searching for adjacent or nearby areas) or implicitly (by searching 

compact geometric shapes). Until recently, little work considered whether or not 

these approaches were sufficient in real world applications of disease cluster 

detection. In our study, the spatial scan method found (in most cases) clusters 

smaller in size and with larger relative risk estimates than the hot-graph method. 

The spatial scan also identified more significant clusters than the hot-graph 

method and in the general case, appears more able to approximate the location of 

anomalously high clusters of disease.

The hot-graph method identified statistically significant clusters, many of 

which were irregularly shaped. This result can be interpreted in at least two ways. 

First, it could reflect an over-fitting of data. In simulated experiments, the hot- 

graph method has a tendency to include false-positive areas (Chapter 4). The hot- 

graph search algorithm always adds the ‘best’ (that is, most likelihood ratio 

maximizing) of all the zones adjacent to the current potential cluster. As the 

search proceeds, the number of available neighbours increases as does the
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potential for one of these zones to have a high rate by chance alone. This can 

result in the inclusion of zones that are not actually part of a ‘true’ cluster, but 

have a relatively high disease frequency by chance. The detected clusters may 

include true positives and false positives, but unfortunately, it is impossible to 

distinguish between the two. Under the assumption that clusters in the real world 

are usually circular in shape, this seems like a sensible explanation—since 

clusters should be circular, and the shapes observed here are not, the hot-graph 

method seems prone to sending us on ‘wild goose chases’, identifying some zones 

as part of a cluster that do not truly deviate from the average.

Alternatively, we may interpret these observations as a true reflection of 

geographic structure. Several of the irregular clusters were found in diseases with 

high baseline rates, and low local standard error. As such, it is unlikely that more 

than a few of the sub-rhas in any of the clusters are a result of chance over-fitting. 

For more common diseases, these patterns may simply illustrate larger-scale 

trends of spatial variation. When there are broad patterns of spatial variation in 

disease—for example, a North-South gradient—we should expect the hot-graph to 

identify a statistically significant cluster that divides the study region into North 

and South halves. In this case, the ‘cluster’ is really just a simplification of spatial 

trend. In other instances, the method may be characterizing the landscape of 

disease by identifying regions with common social and physical environments 

that influence disease patterns. For example, the hot-graph cluster of diseases 

related to alcohol and drugs (Figure 5.9) closely coincides with low-population 

density non-farming areas of Alberta. Hypertension (Figure 5.6) and Parkinson’s 

(Figure 5.7) both exhibit clusters in rural farming areas of Alberta. Several of the 

diseases explicitly exclude Edmonton and Calgary, forming irregular shapes 

around one or both of these cities. In these cases, the hot-graph approach is 

similar to an exercise in exploratory classification—grouping high-rate areas at a 

large regional scale, rather than identifying anomalies of local concern.

5.4.2 Hot-graph searches in cluster detection and geographical analysis

There may be a few instances in which the hot-graph or other data-directed 

methods find a cluster that is not detected by a circular spatial scan, particularly

-152-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



when the distribution of disease anomalies express irregular patterns. However, 

evidence from experiments in Chapter 4 and advances of the spatial scan to 

include other geometric shapes makes this seem unlikely in all but a few settings. 

Nonetheless, the hot-graph method offers some interesting information about 

detected clusters. When a spatial scan cluster includes zones that a hot-graph 

cluster does not include, it is possible that these zones are included because the 

pre-specified geometry is imprecise. This appears to occur in the case of asthma; 

the spatial scan method includes two sub-rhas with moderate to low disease rates. 

On the other hand, agreement between methods offers verification of the spatial 

scan’s results; when the hot-graph approach finds a cluster with a shape similar to 

that found by the spatial scan, this represents important confirmatory evidence 

about the detected cluster’s shape. Finally, when the spatial scan and a hot-graph 

approach simultaneously fail to find a statistically significant cluster, it is 

reasonable to assume that the circular (or other) constraint applied in the spatial 

scan was not prohibitive.

The hot-graph method also seems to work as a spatial classification and 

visualization tool. Zones with higher disease rates are grouped into contiguous 

geographic groups that reflect a large regional pattern of disease variation. In this 

application other evaluation methods may be more suitable. When working with 

geographically aggregate disease data, the likelihood ratio is based on a Poisson 

distribution model, but there may be better alternatives in situations where the 

disease is common. For example, one could consider maximizing relative risk 

subject to a minimum population threshold. The hot-graph approach may also 

provide some interesting information about scale and resolution of study. When 

one of these methods finds large irregular clusters, it may indicate that the scale of 

clustering is not local, but of a larger, more regional scale. In these instances 

there may be important spatial variation in illness that is uniquely informative at 

lower resolutions or at larger geographic scales.

In light of the applications and limitations of data-directed methods generally, 

we recommend that the hot-graph method be used as an exploration and 

validation tool in conjunction with the spatial scan. Though formal integration is
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possible, it may be simpler and more effective to employ these approaches 

independently; first use a spatial scan method to identify the existence and 

approximate location of a diseases cluster, then apply the hot-graph method. To 

save time, one could forgo a statistical evaluation of the hot-graph cluster, and 

simply use it as an informal guide to understanding a cluster’s geographical shape. 

The intersect (shared) zones of the two found cluster sets could be used for formal 

reporting. This would drop the zones not reported by both methods, and assume 

that they were errors due to over fitting, disagreement between geometry and 

disease variation, or other causes. However, this process is still reasonably 

systematic and can be incorporated into a routine analytical activities. Rather than 

changing any of the reported statistics (like the p-value or relative risk estimate), a 

second ‘adjusted’ relative risk estimate could be derived from the intersecting 

zones. This way analysts could ignore the contribution of the hot-graph approach 

if so desired.

Data-directed searches like the hot-graph method are assured of finding 

noteworthy patterns of diseases when local sampling error is low or non-existent. 

Under these circumstances, however, cluster-detection methods may not be 

necessary—a visual inspection of a map of rates would often be sufficient. In 

fact, when variance is small enough, finding the most-likely cluster is somewhat 

trivial—it is simply the region with the highest rate of disease. Under these 

circumstances, cluster detection problems could be re-formulated as more 

general-purpose aids to geographical analysis and spatial classification. In these 

situations, it may also be necessary to add additional constraints. For example, 

when working with large amounts of data or common diseases, it may be 

worthwhile to add an effect-size or population size constraint. These and similar 

kinds of constraints can add considerable complexity to the cluster detection 

process. In the future, these problems may be best viewed as having either more 

than one objective or a series of offsetting constraints. For example, methods 

could search for the most-likely clusters while simultaneously maximizing 

population. Alternatively, the population and effect size constraints could be 

added directly to the cluster search process. These kinds of formulations bring
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cluster detection methodology closer to political districting/zoning problems, and 

may represent an important area of future research.

5.5 Conclusion

Ultimately, the decision to use a circular spatial scan or a data-directed search 

cannot be resolved by the isolated exploration of simulated or real data. The 

decision requires an understanding of methodological consequences, purpose 

(epidemiology, surveillance or resource allocation, for example) and clinical 

information. The original spatial scan constrains searches to pre-set geometric 

shapes. Ongoing research continues to expand the geometry that the spatial scan 

is able to employ. Data-directed methods in general, and the hot-graph method in 

particular, may, on occasion, identify distinct clusters that the traditional spatial 

scan misses.

One of the other benefits of applying both methods to cluster detection 

problems is that the comparison provides information on the robustness of the 

results. Ideally, a single series of simulations are undertaken to test the hypothesis 

that risk is elevated in the most-likely cluster. Alternatively, one could focus on 

the inferential information of the spatial scan, and use the hot-graph approach as 

an informal indicator that a structured (circular, elliptical, square, linear) process 

may best define the distribution of disease. When there is agreement between the 

methods, this is a strong indication that the disease follows the pre-determined 

structural pattern. When the patterns differ significantly, it may be a clue that the 

geography of the disease is more complex—that several adjacent (but 

independent) clusters may be present, or that the underlying factors causing 

spatial variation in disease have an interesting geographic form.
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Table 5.1 Selected diseases

Disease ICD-9 Codes Crude 
Rate/10 000

Age at 
Risk

Asthma

salmonella)
criai)

Giardiasis
onorrhel

007.1
098

629.78 0 - 20

Hypertension 981.96 All401-405
to alcohol/drugs

43.19 65+
111.62 A

0.75 All

Parkinson's

0.43 All
1.81 All

Table 5.2 Tabulation of cluster detection results

Hot-Graph Circular Spatial Scan HG & HG not SSuot notHG
N  RR P(<=) N  RR P(<=) SS SS HG norSS

Asthma 7 1.23 0.001 9 1.19 0.001 7 0 2 59

to Alcohol/dtugs
Parkinson's 24 1.23 0.001 9 1.34 0.001 8 16 1 43

[salmonella)

Giardiasis
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pigure 5.1 Province of Alberta and major communities
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Rgure 5.2 Bounding-box centroids and sub-rha boundaries
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Figure 5.3 Maps of identified clusters: asthma
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Figure 5.4 Maps of identified clusters: food poisoning (other, bacterial)
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Figure 5.5 Maps of identified clusters: diabetes
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Figure 5.6 Maps of identified clusters: hypertension
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Figure 5.7 Maps of identified clusters: Parkinson’s

Both m ethods

H ot-graph only

Spatial scan only

N either

- 163-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



Figure 5.8 Maps of identified clusters: influenza
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Figure 5.9 Maps of identified clusters: illness related to alcohol/drug use
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Figure 5.10 Maps of identified clusters: food poisoning (salmonella)
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Figure 5.11 Maps of identified clusters: giardiasis
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Figure 5.12 Maps of identified clusters: gonorrhoea
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CHAPTER 6: Conclusion

6.1 Summary of chapters

6.1.1 A review of geographic health surveillance methodology (Chapter 2)

Though much modem quantitative geographic health research is concerned

with theory building and explanation, geographic methodology is important in the 

growing field of health surveillance. I review a number of analytical methods in 

the context of four dimensions of geographic health surveillance: identifying new 

risks, providing information for public health policy decisions, providing 

information to communities, and acting as an alarm system to detect rapid change 

in disease patterns. Many methods are available to analyse geographic health 

data, but not all apply to these surveillance goals. In particular, there is a shortage 

of discussion about how different methods contribute to policy and community 

support in public health surveillance. I argue that cluster detection methods are 

particularly valuable for timely and routine information dissemination to policy 

makers and the public.

6.1.2 Clusters as unfairness: geographic analysis in chronic disease prevention (Chapter

3)

In this chapter, I argue that geographic cluster detection methods have value in 

the formulation and implementation of chronic disease prevention strategies. 

Geoffrey Rose’s thesis—that population-wide strategies maximise the 

effectiveness of disease prevention programs—assumes that decision-makers 

operate in a utilitarian decision framework. I argue that cluster detection methods 

are more applicable to policies concerned with ‘worst-off geographic groups, a 

practice which conforms more closely to the ‘difference principle’ discussed by 

John Rawls. When applied to some chronic diseases, cluster detection methods 

can be used to guide prevention and intervention efforts to areas at high risk and 

with high burdens of illness. Geographic ‘cluster-communities’ of worst-off 

health outcomes represent a potential focus of geographic health interventions— 

like environmental modification, service facility location and community 

building.

6.1.3 Structured and data-directed cluster search strategies (Chapter 41
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This chapter considers how two different cluster search methods perform for a 

single method of statistical evaluation. Historically, most search methods employ 

a fixed structural constraint—such as a search of nearest neighbours or a search 

for clusters of a pre-specified shape—to find clusters of disease. Some of the 

most recently developed methods—termed ‘data-directed’ approaches—use 

search strategies led by attributes of the data. In these cases, search algorithms 

are bound by adjacency constraints, and hunt for clusters that best meet criteria 

related to properties of the data. I present an approach I call the ‘hot-graph 

method’ and compare it with the moving circular window strategy used by the 

traditional spatial scan method. I evaluate these methods two different ways.

First, I test their power to detect the existence of simulated clusters. Second, I 

compare the methods’ abilities to correctly identify the constituent areas of these 

simulated clusters. Results suggest a similar ability to detect the presence and 

approximate location of a cluster, but that the spatial scan performs better for all 

cluster patterns under study. However, the hot-graph method is better able to 

precisely define the shape of a cluster when the cluster is of an irregular shape 

(such as a ring, line or network). For surveillance purposes, I recommend 

incorporating both of these methods into a cluster detection system. I suggest that 

differences related to resolution, scale, relative risk, population size and frequency 

of disease impose a significant challenge to developing a single multi-purpose 

cluster detection strategy.

6.1.4 Geographic discovery through cluster detection (Chapter 5)

In this chapter I compare the performance of the traditional spatial scan and 

the hot-graph approach on ten different illnesses in the province of Alberta. 

Although results vary, they are consistent with the observations made with 

simulated data; the spatial scan seems to be the better tool for inferential disease 

cluster detection, particularly for rare diseases. However, the hot-graph method 

provides interesting information about the geography of disease. Analyses that 

combine a structured search of geometric shapes—like circles, ellipses and 

rectangles—still benefit from a comparative analysis with data-directed cluster 

detection methods such as the hot-graph approach.
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6.2 Discussion of the research project

The chief goal of this project was to explore aspects of cluster detection 

methodology with respect to two particular contexts: geographic surveillance and 

chronic disease prevention. The emphasis in Chapters 4 and 5 was on a specific 

methodological issue, and the conclusions apply to two general classes of cluster 

detection methodology—structural methods (which test inferences according to 

pre-specified geometric constraints) and data-directed methods—which actively 

search for high clusters of disease subject to an adjacency constraint. I now 

discuss how these methods may be relevant to geographic disease surveillance 

and chronic disease prevention.

Methods that constrain searches for clusters within pre-specified geometries 

are sensible tools for inferential work, especially when disease is rare, and there is 

no reason to believe that the structural constraints are false. In fact, the geometric 

structures are an important theoretical contribution to the search process that can 

improve statistical power when these geometries approximately reflect the spatial 

characteristics of disease. In the case of very rare diseases, it appears that correct 

structural constraints can make a big difference in the ability of a method to 

correctly identify the presence and approximate location of a true cluster. For 

routine surveillance in infectious and chronic disease, these methods are an 

excellent starting point, especially in light of new work broadening the geometric 

structures under investigation to include ellipses (Conley, Gahegan and Macgill 

2005; Kulldorff et al., 2006). Under these circumstances, failure to identify the 

exact geography of a disease cluster is probably not of major concern. Methods 

that are simple, fast, can manage large amounts of data, and report information 

that is easy to synthesize are effective for most purposes in health research and 

many applications in disease surveillance.

On the other hand, when the purpose of cluster detection is to identify cluster- 

communities that experience a high burden of chronic disease, it may be more 

important to understand geography precisely. For rare diseases, there are limits to 

which such geographies can be defined; based on the experimental results of 

Chapter 4, methods that constrain geometric structure ahead of time probably
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have the best power to detect clusters of rare disease. For diseases that are more 

common, the hot-graph approach appears better able to identify the complete 

geographies of high disease burden areas. In this application, the hot-graph 

method is able to find cluster-communities of highest disease burden, and 

facilitate the allocation of intervention resources that are geographically specific. 

Given the tendency of the hot-graph method to include false-positive areas, the 

cluster-communities detected by this method may be systematically larger than 

they should be. However, this may be a reasonable trade-off, since the harm of 

failing to locate an area with a truly anomalous disease burden is, from a policy 

standpoint, probably greater than the harm of including a few false positive areas. 

When a cluster-community has a rate of disease that is statistically but not 

clinically significant, the cluster-community may take on irregular shapes—as 

seen in Chapter 5. This is itself informative, however. When the hot-graph 

method finds large irregular clusters, it may indicate that spatial variations in 

disease are small, and that perhaps no noteworthy cluster-community exists. It 

may also suggest that a different evaluation procedure is necessary; when 

statistical variability is small or non-existent measures that quantify magnitude of 

difference (like disease rates) or the population at risk may be more suitable 

criteria for the search process. In these cases, the evaluation process becomes an 

operational problem, and mathematical optimization techniques might be 

warranted.

The hot-graph and other data-directed methods can also be used to interpret 

the results of structural methods in a way useful to understanding the geography 

of disease. When there is agreement between the spatial scan and hot-graph 

approaches, analysts should have more faith that the structural constraints 

underlying the inferences are reasonable; for example, we can be more certain that 

a cluster found by the spatial scan is circular when a hot-graph search reports a 

most-likely cluster that is also circular in the same location. For research 

purposes, this may inform us about previously unknown hazards that persist in 

these shapes—such as plumes of environmental pollutants. When the methods 

provide very different results, and in particular, when the hot-graph cluster is
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considerably different in size from a cluster detected using the spatial scan, the 

structural constraint should be scrutinized. In this case, alternative methods may 

be required to build stronger conclusions about the location and shape of the 

cluster.

The spatial scan continues to receive considerable methodological and applied 

research attention. Its relative ease of use, robustness, and recent adaptations (that 

enable the approach to observe new shapes) may keep it the default cluster 

detection tool in the foreseeable future. I believe that data-directed methods like 

the hot-graph approach can be important auxiliary tools to explore disease clusters 

in conjunction with structured approaches. Data-directed methods have three 

noteworthy applications. First, on occasion, they may be able to find irregularly 

shaped clusters that some structured searches are unable to find, or may 

imprecisely locate. It is hard to know how often this would occur in the real 

world, but some non-circular/non-elliptical structures have been observed, 

including core-periphery patterns (Vuorinen 1987), linear shapes (Duczmal and 

Assun9ao 2004) and the shape of the asthma cluster observed in Chapter 5.

Second, any time both a structural search and a data-directed search fail to 

find a significant cluster, we have some assurance that the inability of a structured 

search to find a cluster is not the result of the structural constraints. The search 

process guiding the hot-graph method is not confined to a particular geometric 

shape, and is fairly successful at identifying clusters of irregular shapes when they 

occur (as seen in Chapter 4). When this method also fails to find a cluster, we 

have reasonable assurance that the geometric constraints of the structural 

approach are not to blame. Finally, when a disease is not rare (or spatial 

resolution is low enough), data-directed methods may be helpful in identifying 

and demarcating geographic groups of high disease burden. When public health 

interventions are geographically specific and directed at subsets of worst-off 

groups, data-directed cluster detection methods offer important information about 

where these worst-off geographic groups are.

6.3 Future Research

6.3.1 Detection of severity clusters
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Most applied work in the spatial analysis of disease classifies illness into 

discrete groups—persons with and without illness. For some chronic conditions, 

it may be only the most severe cases that are of notable concern to public health. 

For example, asthma has a prevalence rate of roughly 5-10% among children 

under 20 years of age, but fewer than 25% of these experience serious symptoms 

(Newacheck and Taylor 1992). Similar research of elderly sufferers of chronic 

lung diseases (such as bronchitis, emphysema and asthma) suggest that roughly 

30% suffer serious symptoms (Selim et al. 1997). In these, examples, a large 

proportion of those diagnosed as sick are not seriously burdened by disease; the 

majority of the burden is experienced by a minority of sufferers. Health 

economists observe similar distributions in the expenditure of disease treatment 

and care; the highest per capita (and sometimes absolute) costs of treatment are 

often incurred by a minority of sufferers. For example, 40-95% of treatment 

spending on persons with bipolar disorder is account for by a mere 5% of bipolar 

sufferers (Simon and Unutzer 1999). Similar cost distributions have been 

observed in other chronic conditions, such as type 2 diabetes (Brandle et al.

2003), asthma (Smith et al. 1997) and arthritis (Kobelt et al. 1999).

Often clusters of severity occur in age space—for example, persons over 65 

usually incur the greatest burden of disease and cost of treatment—but variations 

in income and ethnicity may be important to understanding variations in disease 

severity. Geographic analyses that consider disease severity (rather than disease 

incidence and/or prevalence) may also reveal patterns of illness that are both 

important and otherwise unknown. They may offer indirect exploratory evidence 

of ecological associations between covariates like income and severity, but may 

also reveal otherwise unknown geographic processes. Clusters of severity may 

also locate regions in high need of intervention—either in treatment or prevention, 

Administrative health data have been used to define disease severity in the past 

(Deyo, Cherkin and Ciol 1992; Clark et al. 1995) and have the advantage of 

supplying numbers large enough to obtain reasonably robust statistical inferences. 

In Alberta, data on service utilization (in terms of quantity and location), 

medication use (for person 65 and over) and co-morbid conditions are all
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collected and maintained by the provincial ministry of health. Work in 

conjunction with the ministry and health care professionals may not only reveal 

interesting geographic patterns of disease severity, but could offer insight into 

more efficient and even more fair distribution of treatment and prevention 

resources.

6.3.2 Cluster detection within operational constraints

Much of the work in cluster detection methodology has focused on statistical 

power and efficiency. This is consistent with one of the most important 

contributions of statistical methodology in science—based on a sample, provide 

as much information as possible about the population from which the sample was 

drawn. Good methods are able to extract precise information about the location, 

significance and magnitude of clusters even when the data available are highly 

stochastic—as would often be the case in small-area studies of rare disease.

On occasion, there are also operational aspects of public health management 

to which cluster detection methodology can contribute. For example, health 

policy makers often make decisions about resource allocation that may benefit 

from the kind of information that cluster detection methods provide. Geography- 

specific resource planning (such as deciding the location of a support facility or 

modifying the physical environment) can always benefit from knowing where 

disease clusters are located. Clusters represent regions where local intervention 

could offer the greatest benefit. However, policy decisions are often bound by 

practical matters that make some cluster detection algorithms inadequate. For 

example, it may be important to find clusters of disease that are high, but also 

include a sufficiently large population. Population can be seen as a constraint in 

the cluster detection process—all clusters must be of a minimum specified size— 

or as a secondary objective in a multiple objective optimization exercise—a 

search for clusters that have anomalously high rates and large populations 

simultaneously. It may also be important to set a lower limit on any detected 

cluster’s incidence rate; any cluster below a certain threshold of magnitude may 

not be of policy relevance.
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These kinds of criteria can be incorporated into a detection procedure in an ad 

hoc manner. For example, simply ignore all detected clusters that fail to meet a 

particular population threshold. However, this may result in unnecessarily 

inferior solutions. For example, two neighbouring clusters that independently fail 

to meet the population threshold could be combined to meet that same criterion. 

By directly incorporating the population threshold into the search process, it is 

more likely that all the criteria will be met simultaneously, and more likely that 

the cluster identified is truly the most-noteworthy—subject to the various input 

constraints. Future work in this area could blend methods of cluster detection 

with methods of political districting (e.g., Bozkaya, Erkut, Laporte 2003); 

methodology could combine the anomaly finding features of cluster detection 

methods with the constraint management and optimization of political districting.

6.3.3 Cluster detection and the modifiable areal units problem

Decades of research on the modifiable areal unit problem (MAUP)

(Openshaw 1984) have consistently revealed that most methodologies applied to 

spatial data are not robust to how those data are represented geographically. 

Analyses of a single data set aggregated to different ‘levels’ of resolution (for 

example, individual-level, family-level, neighbourhood-level, city-level) are 

likely to produce different results at each of these levels. Even at a single level of 

resolution, different zoning or grouping methods can greatly affect the behaviour 

of aggregate statistics.

Though the ultimate answers to the MAUP may be more philosophical than 

methodological (e.g. Smith and Mark 2001) it is important to explore the effects 

of MAUP on cluster detection algorithms. The behaviour of some statistical 

measures are well discussed with respect to the MAUP (e.g., Fotheringham and 

Wong 1991; Amrhein and Reynolds 1996) but other methodologies, like cluster 

detection, have been neglected. Some work has considered the role of resolution 

on cluster detection algorithms (Waller and Turnbull 1993), but this does not 

incorporate recent progress in methodology, nor does it account for issues of 

zoning. The MAUP is a product of spatially dependent processes like diffusion 

and common local influences (Holt, Steel and Tranmer and Wrigley 1996).
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Cluster detection algorithms search for areas with anomalously high or low 

incidence of disease, which are often caused by the forms of spatial dependence 

underlying the MAUP. Therefore, it seems likely that the MAUP would affect 

cluster detection algorithms, and that not all methods would respond to different 

resolution and zoning schemes in the same way. Future work could reveal 

systematic differences in performance of methodologies with respect to the 

MAUP, and may also describe the degree to which MAUP should be of concern 

in geographic decision support.

6.3.4 Comparing statistical and cognitive heuristic approaches to cluster detection

Recent work in criminology suggests that decision makers can often use 

simple and easy to understand rules to make efficient and informed interpretations 

of spatial phenomena (Snook et al., 2005). For example, when taught basic 

principles of geometry and distance decay, people seem able to predict the 

residences of serial criminals as accurately as formal statistical methods (Snook, 

Canter and Bennell 2002; Snook, Taylor and Bennell 2004). Though systematic 

errors in judgement and judgement biases may persist (Arkes 1991; Arkes and 

Ayton 1999), this kind of research indicates that individuals may be able to 

understand the important features of space and geography without sophisticated 

methodology, or even the assistance of computers.

Most steps in the evolution of cluster detection methodology have involved 

increases in conceptual and computational complexity. Some of these methods 

require specialised training, specialised software, and in extreme cases, a 

methodological rationale that is inaccessible to all but the developers and a few of 

their colleagues. In cases where cluster detection methods are required for 

decision making purposes, small gains in statistical power and/or precision may 

not make up for the costs associated with these complex methodologies. Future 

work in cluster detection methodology should consider comparing the relative 

success of different techniques in conjunction with assessments of complexity. 

Formal experimental methods may be useful. For example, subjects are assigned 

tasks of manually finding clusters of spatial phenomena before and after training, 

and with and without the use of various formal statistical methods. These
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solutions are then compared and evaluated in terms of training time, execution 

time, and solution quality. If application maintenance concerns are an issue (for 

example, in cases where the methodologies are packaged within large software 

systems) then ‘software economics’ might also be evaluated.
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7. APPENDICES

APPENDIX I Pseudo-code for hot-graph search algorithm

centroids = number of centroids in graph 

hotgraph = the list of centroids in the current hot graph 

edges = the list of centroids adjacent to centroids in hot_graph 

objective = the objective function (likelihood ratio test)

do n= 1 to centroids

initialize hot_graphn and edges,, to empty 

current=n

do k=\ to centroids (or until a population threshold is met)

put current into hot_graph„ 

put all neighbours of hot_graph„ into edges,, 

for all j  in edges,, 

objective=like\ihood function applied to hot_graph„ 

keep j  with highest resulting objective 

end

current=j

end

store hot_graph„

end
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APPENDIX II. Mean sensitivity and positive predictive value tables for different 

inside cluster and outside cluster rates

Base rate = 2.5/1000, Cluster rate -  3/1000 
Circle Line Network Ring

Population

Mean Sensitivity

SS HG

Mean

SS

PPV

HG

Mean Sensitivity 

SS HG

Mean PPV 

SS HG

Mean Sensitivity 

SS HG

Mean PPV 

SS HG

Mean Sensitivity 

SS HG

Mean PPV 

SS HG

1000 0.283 0.383 0.175 0.155 0.213 0.369 0.153 0.150 0.270 0.332 0.268 0.255 0.251 0.416 0,273 0.250

2000 0.326 0.477 0.199 0.156 0.166 0.397 0.157 0.132 0.292 0.412 0.275 0.257 0.266 0.468 0.273 0.280

3000 0.389 0.534 0.216 0.170 0.249 0.460 0.167 0.151 0.275 0.482 0.294 0.284 0.332 0,467 0.277 0.276

4000 0.400 0.546 0.228 0.176 0.257 0.526 0.163 0.163 0.312 0.512 0,309 0.300 0.287 0.481 0.312 0.285
5000 0.413 0.564 0.237 0.177 0.326 0.534 0.189 0.167 0.325 0.552 0.336 0.310 0.372 0.513 0.323 0.304

6000 0.439 0.607 0.225 0.189 0.299 0.566 0.182 0.175 0.332 0.528 0.343 0.305 0.433 0.558 0.358 0.333

7000 0.407 0.639 0.247 0.190 0.300 0.559 0.201 0.168 0.345 0.570 0.319 0.322 0.395 0.546 0.334 0.326

8000 0.464 0.640 0.245 0.193 0.331 0.591 0.211 0.180 0.408 0.572 0.342 0.331 0.507 0.607 0.351 0.359

9000 0.543 0.676 0.365 0.204 0.354 0.597 0.218 0.183 0.317 0.571 0,321 0.318 0.453 0.628 0.343 0.374

10000 0.516 0.690 0.315 0.208 0.340 0.620 0.199 0.186 0.359 0.605 0.369 0,335 0.431 0.628 0.377 0.375

Base rate = 2.5/1000, Cluster rate = 3.5/1000 
Circle Line Network Ring

Mean Sensitivity Mean PPV Mean Sensitivity Mean PPV Mean Sensitivity Mean PPV Mean Sensitivity Mean PPV

Population SS HG SS HG SS HG SS HG SS HG SS HG SS HG SS HG

1000 0.401 0.454 0.214 0.178 0.303 0.370 0.180 0.154 0.255 0.396 0.277 0.282 0.356 0.532 0.312 0.316

2000 0.481 0.630 0.259 0.213 0.340 0.519 0.206 0.172 0.377 0.558 0.341 0.343 0.403 0.577 0.343 0.345

3000 0.536 0.641 0.293 0.208 0.343 0.624 0.209 0.198 0.383 0.591 0.341 0.343 0.492 0.618 0.420 0.368

4000 0.607 0.671 0.314 0.210 0.403 0.684 0.251 0.213 0.428 0.644 0.370 0.370 0.588 0.702 0.406 0.420

5000 0.669 0.754 0.403 0.233 0.394 0.726 0.269 0.227 0.435 0.665 0.395 0.381 0.653 0.725 0.462 0.428

6000 0.743 0.753 0.442 0.240 0.421 0.766 0.334 0.232 0.441 0.703 0.394 0.408 0.749 0.774 0.493 0.461

7000 0.789 0.761 0.459 0.240 0.426 0.776 0.337 0.233 0.492 0.739 0.434 0.428 0.726 0.810 0.484 0.490

8000 0.821 0.797 0.519 0.249 0.463 0.781 0.302 0.239 0.553 0.762 0.418 0.436 0.759 0.823 0.497 0.494

9000 0.851 0.817 0.533 0.266 0.417 0.773 0.389 0.226 0,495 0.748 0.453 0.434 0.839 0.842 0.528 0.507

10000 0.797 0.804 0.532 0.262 0.440 0.850 0.372 0.256 0.516 0.793 0.432 0.448 0.859 0.872 0.549 0.533

Base rate -  2.5/1000, Cluster rate = 4/1000 
Circle Line Network Ring

Mean Sensitivity Mean PPV Mean Sensitivity Mean PPV Mean Sensitivity Mean PPV Mean Sensitivity Mean PPV

Population SS HG SS HG SS HG SS HG SS HG SS HG SS HG SS HG

1000 0.501 0.496 0.242 0.203 0.299 0.466 0.241 0.197 0.392 0.481 0.353 0,352 0.462 0.627 0.383 0.375

2000 0.687 0.707 0.364 0.234 0.420 0.644 0.263 0.211 0.430 0.624 0.391 0.384 0.536 0.724 0.439 0.429

3000 0.769 0.754 0.443 0.247 0.439 0.737 0.277 0.235 0.525 0.696 0.396 0.417 0.703 0.786 0.497 0.470

4000 0.804 0.794 0.567 0.262 0.401 0.804 0.399 0.252 0.488 0.720 0.446 0.430 0.873 0.843 0.514 0.498

5000 0.853 0.834 0.571 0.267 0.489 0.830 0.306 0.263 0.510 0.798 0.453 0.465 0.828 0.864 0.553 0.541

6000 0.911 0.876 0.752 0.291 0.460 0.841 0.388 0.273 0.559 0.816 0.452 0.479 0.918 0.888 0.551 0.553

7000 0.913 0.844 0.763 0.286 0.431 0.853 0.462 0.282 0.511 0.838 0.510 0.506 0.953 0.916 0.590 0.568

8000 0.893 0.873 0.757 0.288 0.437 0.887 0.544 0.274 0.522 0.858 0.506 0.506 0.957 0.935 0.577 0.617

9000 0.903 0.894 0.818 0.300 0.430 0.893 0.602 0.296 0.568 0.899 0.464 0.525 0.964 0.944 0.589 0.615

10000 0.950 0.894 0.873 0.315 0.453 0.914 0.555 0.297 0.552 0.883 0.505 0.545 0.984 0.938 0.611 0.668

Base rate = 2.5/1000, Cluster rate = 4.5/1000 
Circle Line Network Ring

^JPogujatKm

Mean Sensitivity 

SS HG

Mean PPV 

SS HG

Mean Sensitivity 

SS HG

Mean PPV 

SS HG

Mean Sensitivity 

SS HG

Mean PPV 

SS HG

Mean Sensitivity 

SS HG

Mean PPV 

SS HG

1000 0.566 0.574 0.325 0.227 0.396 0.513 0.247 0.218 0.414 0.560 0.387 0.384 0.599 0.667 0.404 0.394

2000 0.747 0.749 0.460 0.265 0.436 0.716 0.298 0.239 0.521 0.697 0.403 0.441 0.793 0.796 0.501 0.469

3000 0.786 0.793 0.636 0.266 0.434 0.801 0.389 0.260 0.538 0.745 0.424 0.449 0.896 0.877 0.535 0.527

4000 0.913 0.843 0.799 0.294 0.441 0.849 0.518 0.281 0.561 0.841 0.464 0,500 0.952 0.907 0.580 0.566

5000 0.940 0.889 0.879 0.312 0.420 0.869 0.551 0.292 0.524 0.859 0.503 0.507 0.953 0.935 0.601 0.616

6000 0.944 0.893 0.866 0.356 0.434 0.890 0.585 0.319 0.586 0.883 0.492 0.535 0.972 0.949 0.605 0.672

7000 0.957 0.877 0.879 0.322 0.421 0.901 0.666 0.313 0.553 0.900 0.499 0.557 0.972 0.949 0.617 0.702

8000 0.961 0.910 0.937 0.392 0.429 0.929 0.719 0.356 0.588 0.903 0.495 0.575 0.999 0.964 0.616 0.730

9000 0.981 0.919 0.950 0.412 0.443 0.910 0.680 0.388 0.553 0.916 0.529 0.630 0.998 0.957 0.619 0.786

10000 0.980 0.934 0.961 0.481 0.420 0.943 0.919 0.428 0.611 0.944 0.503 0.660 0.999 0.967 0.621 0.827
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Base rate *  2.5/1000, Cluster rate = 5/1000 
Circle Line Network Ring

Mean Sensitivity Mean PPV Mean Sensitivity Mean PPV Mean Sensitivity Mean PPV Mean Sensitivity Mean PPV

Population SS HG SS HG SS HG SS HG SS HG SS HG SS HG SS HG

1000 0.716 0.659 0.439 0.256 0.451 0.610 0.332 0.237 0.468 0.604 0.391 0.394 0.656 0.594 0.411 0.385

2000 0.849 0.794 0.545 0.271 0.439 0.814 0,396 0.291 0,517 0.749 0.429 0.457 0.724 0.750 0.494 0.442

3000 0.909 0.844 0.872 0.315 0.433 0.851 0.536 0.295 0.558 0.822 0.477 0.493 0.869 0.849 0.564 0.474

4000 0.931 0.890 0.875 0.345 0.454 0.897 0,506 0.302 0.594 0.856 0.482 0,527 0.879 0.871 0.601 0.516

5000 0.937 0.899 0.917 0.368 0,433 0.926 0.725 0.354 0.554 0.895 0.514 0.606 0.935 0.905 0.597 0.569

6000 0.977 0.904 0.951 0.407 0.451 0.931 0.601 0.386 0.585 0.910 0.501 0.604 0.947 0.898 0.610 0.615

7000 0.971 0.904 0.965 0.485 0.441 0.939 0.724 0.412 0.546 0.935 0.540 0.669 0.929 0.921 0.612 0.650

8000 0.979 0.919 0.974 0.509 0.444 0.954 0.751 0.479 0.548 0.915 0.530 0.661 0.957 0.924 0.613 0.691

9000 0.977 0.931 0.973 0.604 0.439 0.937 0.754 0.503 0.601 0.952 0.523 0.715 0.968 0.928 0.618 0.746

10000 0.980 0.926 0.981 0.548 0.440 0.959 0.798 0.568 0.599 0.936 0.514 0.743 0.958 0.938 0.622 0.752

Base rate = 2.5/1000, Cluster rate = 5.5/1000 
Circle Line Network Ring

Mean Sensitivity Mean PPV Mean Sensitivity Mean PPV Mean Sensitivity Mean PPV Mean Sensitivity Mean PPV

Population SS HG SS HG SS HG SS HG SS HG SS HG SS HG SS HG

1000 0.771 0.673 0.497 0.265 0.433 0.660 0.322 0.263 0.498 0.645 0.411 0.441 0.827 0.796 0.489 0.474

2000 0.861 0.821 0.763 0.318 0.479 0.820 0.379 0.276 0.552 0.799 0.459 0.506 0.957 0.911 0.598 0.607

3000 0.939 0.901 0.861 0.337 0.431 0.873 0,564 0.306 0.606 0.845 0.468 0,541 0.983 0.940 0.608 0.669
4000 0.966 0.880 0.911 0.404 0.431 0.919 0.721 0.353 0.561 0.892 0.511 0.575 0.988 0.963 0.620 0.754

5000 0.976 0.900 0.963 0.446 0.439 0.943 0.764 0.414 0.623 0.928 0.484 0.649 0.998 0.958 0.621 0.844
6000 0.967 0.907 0.976 0.518 0.431 0.949 0.827 0.465 0.614 0.931 0.503 0.694 0.993 0.978 0.628 0.885

7000 0.981 0.929 0.976 0.631 0.430 0.953 0.803 0.542 0.565 0.926 0.527 0.721 1.000 0.980 0.627 0.929
8000 0.987 0.924 0.986 0.646 0.427 0.956 0.877 0.577 0.588 0.942 0.541 0.790 1.000 0.988 0.628 0.960

9000 0.987 0.936 0.987 0.693 0.433 0.947 0.899 0.649 0.616 0.962 0.522 0.820 1.000 0.983 0.629 0.963

10000 0.993 0.917 0.983 0.748 0.434 0.950 0.874 0.710 0.611 0.957 0.521 0.812 1.000 0.989 0.629 0.979

Base rate = 2.5/1000, Cluster rate = 6/1000 
Circle Line Network Ring

Mean Sensitivity Mean PPV Mean Sensitivity Mean PPV Mean Sensitivity Mean PPV Mean Sensitivity Mean PPV

Population SS HG SS HG SS HG SS HG SS HG SS HG SS HG SS HG

1000 0.759 0.661 0.517 0.275 0.434 0.640 0.347 0.269 0.492 0.671 0.466 0.453 0.811 0.831 0.542 0.508

2000 0.926 0.834 0.828 0.334 0.443 0.857 0.594 0.309 0.619 0.833 0.459 0,535 0.982 0.940 0.603 0.640

3000 0.953 0.876 0.901 0.416 0.450 0.917 0.625 0.349 0.575 0.898 0.528 0.615 0.984 0.951 0.621 0.738

4000 0.980 0.904 0.984 0.509 0.426 0.946 0.821 0.424 0.609 0.916 0.494 0.646 0.999 0.974 0.622 0.822

5000 0.980 0.903 0.983 0.575 0.423 0.913 0.807 0.477 0.589 0.931 0.511 0.693 1.000 0.978 0.623 0.902

6000 0.986 0.911 0.989 0.658 0.434 0.954 0.864 0.633 0.595 0.938 0.511 0.766 1.000 0.989 0.625 0.945

7000 0.991 0.949 0.986 0.744 0.427 0.964 0.949 0.659 0.591 0.947 0.530 0.797 0.999 0.988 0.628 0.969

8000 0.981 0.940 0.987 0.814 0.431 0.960 0.880 0.716 0.576 0.950 0.541 0.814 1.000 0.993 0.628 0.984

9000 0.994 0.949 0.996 0.847 0.431 0.967 0.896 0.771 0.635 0.958 0.502 0.831 1.000 0.991 0.630 0.988

10000 0.987 0.943 0.997 0.900 0.439 0.967 0.867 0.818 0.628 0.963 0.520 0.865 1.000 0.996 0.630 0.992
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APPENDIX III. Maps of crude rates into quantile (%) groups

A lcohol and D rug related illness Asthm a

Diabetes

r

Influenza

Lowest 20- 40-i 60-80%  Highest 20%

- 189 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pood Bacterial Illness

A -
Giardia

Gonorrhea

Hypertension

1
- 5 %

Low est 20%  2 0 -
■40%  40-60%

V _________
a  □

60-80%  Highest 20%

190

Reproduced with permission of the
copyright owner. Further reproduction

prohibited without permission.



Parkinson’s Salmonella
—  n

Lowest 20% 20-40% 40-60% 60-
I I

Highest 20%

- 191 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


