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ABSTRACT

Theadoption of a safe system approach is seen by many as a critical element to achieving the aims
of vision zero Ke., eliminating fatalities and serious injuries on roads). Unlike in traditional
approaches, in a safe system approach it is acknowledgeddgatisers are humans who are
proneto make errors and that thesultof those errors should nbe aserious injuryor fatality.
Accordingly, a safe system approach adopts a htowatric design philosophy whereby human
fallibility and human vulnerability must be understood and integrated into the design of all

elements of road infrastructure.

Despite it being introduced more thawo decades ago, efforts to integrate the safe system
philosophy into national highway design guides have been limited. In fact, there is no information
in design guides on the extent to which a road designed to meet minimum design requirements is
able o handle driver demand. Furthermore, the safety impacts of meeting or deviating from
recommended design standaagisalso unknownDespite this lack of information, roads are still

built to meet standards recommended in design guides. Safety problemsrotdoose roads and

are often addressed by introducing certain countermeasures, which sometimes include geometric
changes to a roadodéds alignments. Although thos
safety on the existing highways, they do adtiress the root cause of the problem. In other words,

the fact that deficiencies rrcommendedesign standards might have contributecki@ainsafety
problems on the existing highways is often negleethdn new roads are designeceviNroads
areusualy designed to meet the same standasdsxisting roads, which results in the same safety
problems This contradicts the core principles of a safe system approach whereguiiedthat

safety problems anthe systems failure taccommodatedriver demad are understood and

integrated into the design process.

To address this problem, this thesis proposes the adoption of a perfoimagededesign (PBD)
approach whereby links between driver capabilities, safety performance, and geometric design
elementson existing roads are first establishetden formulatingdesign requirements for new
facilities. One obstacle to the adoption of such an approach is the challenges associated with
surveying information abowgeometric design elements of roads on a largiesd herefore, the

first phase of this thesis focuses on the developmemi\adl algorithmghat facilitatelarge scale

extraction and assessment of different geometric elements on highways scanned using mobile



Light Detection and Ranging (LIDAR) techmajy. In particular, he first phase focuses on the
development, testing, and validation of algorithms fpextraction and slope estimation of road
crosssections(ii) the detection and the extraction of attributes of horizontal alignments, (iii) the
inventory and clearance assessment of overhead assets, and (iv) the assessment of sight distances
The developed algorithms are fully automated and facilitate assessment of the aforementioned

features along entire highway corridors in an efficient and atcoranner.

The second phase of the thesis focuses on conducting a perfoiinasedeassessment of stopping

sight distance (SSD) requirementsloghways The performancéased assessment is conducted
deterministically and probabilistically with the aim& (9 developing an understandirgj the
underlying links between demand for sight distance, geometric integnitysafety performance

on existing highways, and (ii) developing a framework for future studies interested in conducting
a performancdased assessment of other geometric design elements. The assessment is conducted
on over 40km of crash prone highwagsAlberta where available sight distance is first quantified

and then assessed against deterministically defined, and stochastically simulated driver demand.
Among other findings, the assessment revealed that a significant proportion arfalyeed
highways did not satisfy the SSD requirements of up to 70% of the driving population. These
finding indicate the importance of adopting a probabilistic performaased approaghvhich
integratesdriver capabilities and anticipated safety performanben desiging new highway

facilities.

In addition to facilitating performandeased assessment of highway geometric elements
algorithms developed in this thesis can be used for efficient netexsek asset management as

well as for the assessment of structunggrity of geometric elements on roads.
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1 INTRODUCTION

1.1 BACKGROUND & MOTIVATION

1.1.1 THE SAFE SYSTEMAPPROACH

The past decade has segrsignificantnumberof transportation agencieshift their strategy
towardsadoptingVision Zera. Vision Zerooriginated in Sweden two decades ago withaimes
of completelyeliminatingfatalities and serious injuries on road$e vision is an expression of
the ethical imperative th#éte cost of mobility should not be the loss of life or serious injuanto
roaduser[1].

Despite thosaspirationakimsandcontinuous efforts to improvead safetycollision statistics

in manydeveloped countries show that the downward trend in fatalities observed in the late 1970s
and 80slue to major legislative changes including the introduction of seastited to level out

in the past two decades, illastrated inFigurel. This indicates that, while effective in reducing

a significant proportion of serious collisioimsthe pastconventional couermeasures including

the introduction of seatbelt legislatiomust be supplemented with more innovative and informed
techniques to maximize the chances of completely eliminating fatalities and serious injuries on
roads.
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Many researchers and road safety experts abedea critical elementto achieving the aims of

Vision Zero is the adoption of @afe SystemApproach3-5]. In a Safe SystemApproachthe key

principle of designing any roadway facilitis to take human fallibility and vulnerability into
account[4,6]. Al t hough effective management of traffi
traffic safety (Engineering, Enforcement, and Educati@xpertshave recently shifted the

attention from blaming drivergor safety problems, to designing systems thare able to
accommodate driver limitation$o that endroadsaredesigned in a manner that catersitiver
capabilitiesandonethatis more forgivingof human errarContrary to the conventional design
approachwhere highvays are designed based on predefmgdelineshat have been set several

decades ago, a safe system approaciprinciple,would require understanding limitations of

drivers and formulating design standards to accommodate those limi{éfions

Although the Safe System Approactvas introduced more than two decades agfmrts to
integrate its principlesnto nationalroadwaydesign guidesiave been limited The next few
sections describe the current highway design process andetires through whicht could be
transformed intaa performancebased process that is consistent with the principles of the safe

system approach.

1.1.2 TRADITIONALGEOMETRICDESIGN

In current practice, @pmetric design of highways is regulated by a sebb€ies, standardsnd
provisionsrecommended n nat i onal design gui des. Il n the L
Policy on Geometr i c De ssipuplisheddy théedlAngricanagssciatom d St
of State Highway and Transportation Offils (AASHTO)[7]. Simi |l arl 'y, the fAGe
Guide for Canadian Roadso0 by t@AC)gbverandesgo r t at i
on Canadiarhighways[8]. In fact, many jurisdictions across North America and the world have
developed local design guides to regulate the design process on local highways. The province of
Alberta, for instance, published the first version of its local guide for the design of Albertan
Highways in 19999]. The value of local design guidiss in their ability tosupplemenhational

guideswith informationthat takes local conditions into consideration.

Design guides consist ofecommendations specifications and mathematical procedures
developed to assist Engineers in selecting design values for different geometric etameents

highway[7-9]. Whether it is for the construction of new facilities, reconstruction, resurfacing or
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rehabilitation of existing facilities, design guides represent a valuable resous®ioees and
designers Such guides are essential to the uniformity and consistency of highway design.
Moreover,the recommended standagate also set to helgromotesafe and efficient operation of

traffic onroads.

Although, design guides are developed witms consideration to safety, the guidelines do not
provide muchinformation on the anticipated safety performanogoads designed to mettte
recommendedtandards. Consequently, it is unclear how safmdthat meetsninimum design
guidelinesmight be Moreover, there is also a lack of information in design guides on whether a
road designed to mestcommendedtandards satisfies the demahadfthe driving populatio.

This is extremely concerning, particularly when considering potential changes thaomp

demographics that may affect the capabilities of the averageglipapulation.

The lack of such informatiois, in part, due to the meattsroughwhich content is added &nd
removed from nationajjuides According toHauer [10] some of the content added tcsidgm
guides is based on successful practice, common ,senske expert judgment. Despite the
importance of such factors, they do a&plicitly account foroad user capabilities, neither do they
accounfor safetyperformance on roadAs a resultHauer [11]concludes that the safety on roads

designed to megjuideliness unpremeditated.

In an atempt to distinguish the difference between the presumable level of safety achieved by
meetingrecommendationg designguidesand the actual level of safety measured using data
observed on roadsjauer [12]defines two types of safety in highway desigamely, Nominal

and Substantive safety. Nominal safetydefined asa measure of whether a roadway, design
alternative, or design element, meets minimum desidearier. In contrastSubstantivesafety

provides a statistically reliable assessment of safety performance.

It is worth noting here thdhe recent edition of the AASHTO design guide does refer users to the
Highway Safety Manual[HSM) as a source of informaticon the Substantiveafety impacts of
design. Similarly, the TAC design guide contains some information about Safety Performance
Functions for some geometric elememtstact, snce its introduction in 2010, the HSM has been

a valuable resource fangineers interested in comparing the safety performance of design

1 fiDriver Demand is used to refer to driver capabilities and limitations as opposed to their desires.
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alternatives. However, the HSM doest provide much information on the ability of different
design alternatives tccommodate the capabilitiestbe driving population. Moreover, the HSM
does not account fgrotential interactions between design elementhe relationship between
meeting complex design requirements and s§i&tly For instance, while the HSM might be used

to compare the safety performance of changing lane width on a road from 11 to 12ft, information
on the safetympactsof meeting, or deviating fromstandards recommended for otlugsign

elementsuchasstopping sight distance requirememdimited [13].

Despite the introduction of the HSM, there remains a clear disconnect beitvieenation
documented in geometric design guides and the actual safety performance of design. Design guides
still fail to reveal the safety consequencesnaéeting or even deviating from, standards
recommended theguideg[14]. Furthermore, there does not seem to be a framew@process

for updating desigmecommendation® accout for research onafety performance on roads
potentialchanges irroad useicapabilities which are elementsritical to the adoption of a safe

system approach

In a recenteport by the National Cooperative Highway Research Program (NCl{RB)ingthe

design criteria for Passing Sight Distance (PSD) onltwone hi ghways i n AASH
policy, Harwood ad Sun [15jwriteAiThese é. <criteria have remaine
they were incorporated in the 1954 version of the policy. The 1954 policy used criteria based on

a summary report of extensive field observations of passing maneuvers mads Hd€18& and

1941. Surveys conducted in 1971 and 1978 found that AASHTO values for PSD were conservative,
except at passing vehicle speeds above 105 km/h (65 mph). While the vehicle fleet has changed

dramatically over the past 50 years, the PSD valuesantitGr een Book remain un.

Similar to PSD,information inthe 4" Edition of A A S H T @adsidedesign guidepublished in

2011, on clear zones was added to the guide in 1977 and has not changetiVhiaces more
concerning is that hen referring to recommendations on clear zone design the guide
acknowledges that the informatiamdthe recommendatiofsé ar e based on | i mit
data that were extrapolated to provilde i nfo
Unfortunately, thigssue is not limited t®SD and clearzone design alone but something common

in design guides.



In summary, existing desigyuideslack information on(i) the extent to whichroadsdesigredto
meetrecommended desigtandards are able &mcommodate road users and their abilizesl
(ii) thesafetyimpacts offailure toaccommodatéhose capabilitied his lack of information means
thataccounting for human fallibility when designing new facilities is not posditdéead newly
constructed facilities are often designed to meet the saommmendationss existing roads

which often result in the same safety problems.

1.1.3 EVIDENCEBASEDDESIGN APPROACH

The shift towards designing forgiving highways that account for human fallibility hinges on
adopting aperformancebaseddesignapproach whetgy links betweer oad user 6s anc
capabilities substantivesafety and design elements a@xisting highwaysare establishedand

integrated into initial stages dfie design proces®erformancd3ased Design (PBDis often

describedas an approach wherdesign criteria are expressed in terms of achieving a set of
performance objectivgd6]. In highway designthe ultimate objective isiinimizing failure(i.e.,,

minimizing collision frequency and severity). This &hievedby understanding road user

capabilities andheir limitations and designing roads that are able account for those limgation

One way in which PBD differs from conventional design is that, instead of designing different
elements of a highway using preset standards, desigirementsre first linked to performance
metrics Design standards are then updated basdteanability toservethe existing population
atthe desired level of performance. In other worlls, dtandards used in a particular design are

formulated based on the anticipated demand and the chances of failure under thaf tigynand

Adopting such arapproachdependseavily on the existence dhreepiecesof information: (i)
observations of driver behavior, (8afety performanceecords on highways, andijiinformation

on the geometric attributes and roadside asseixmting highwayinfrastrudure. Over the past

few years, transportation agenceawlpolice departments hawmen successfiuh creating a rich
databasef collision informationthataccurately reflect the level of safety on roadw&ysnilarly,
attributes of driver behavior such as speeds on a road segment could be collected by monitoring
traffic dynamics on highways$n contrastto collisionrecordsand driver behavioyinformation

about highway infrastructugnd the geometric aitiutes ofdifferentroad featuress very sparsge

and rarely reflects existing conditionBhis is particularly true inthe case of complex design

elements such as available sight distance on a higamdiyicroscopic elements such as attributes
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of horizontal curves or road slopesong a highway corridoSurveyinghesegeometric attributes

requires extended site visits where the presence of crew on the road is necessary. This is a tedious
and time consuming process that exposes crew to serious rigiks)lpdy at locations oboth

high traffic volume and speefls/]. Considering the size of highway networks in North America,

it is extremely challenging tmanually survey and inventory attributes of roads using conventional

tools

This lack of informatioron geometric attributes of roatlas placed constraints on researchers
looking to perform safety assessments of different roadway infrastructure eleffwentstance,

in their workassessing the impactsrofidsidedesign on safefy.ee and Mannering [1&]escribe

the lack of information onoadside assets @ fichr oni ¢ | ack of dat ao
obstacle tattempts to develogtatistical models relating roadside featuresollision frequency

and severityAccording toHauer [10] the lack of information about design elements and the high
costs asociated with making adjustments to those elemesmise reason why, when investigating

the causes of safety problems, focus is often placed on events that happémedcene and

the build up to the collisions instead of design attributes. Eveatsotcur in the buildup to a
collision are seen as causes preventable by human adhiten design problemsare seen as
secondary causes since they happened in the distant past and changing them would be extremely
costly[10].

One tool which has the potential help overcome the challengeassociated with conventional
surveying practice, if properly utilized, mobile Light Detection and Ranging (LiIDAR) remote
sensing technologyJnlike traditional surveyingmobile LIDAR scanningoroducesan accurate

3D pointcloud ofa oad 6 s etwhilé trageling at highway speeds. This causes minimal
disruption to traffic and significantly reduces data collection time. Moreover, since a 3D point
cloud of the entire highway is captured, the same dataset can béouserlrately measure
multiple geometric elements on a highw&onsequently, given the appropriate processing tools,
mobile LIDAR datasets could be used to creat®mprehensive provineeide dataset where all

details abougeometric elementsn highwaysarestoredin a single databas

1.1.4 USINGLIDARFORINFRASTRUCTURBASSESSMENT
The recent surge in computing power and the high accuracy of datasets collected using LIDAR

technology (a form of Remote Sensing) has led many agencies to consider using the technology
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for assessing differenteanents of transportation infrastruct|f®,20]. In a recent review on the
potential of LiDAR in transportation by the National Cooperative Highway Research Program
(NCHRP), LIDAR wasdescribed as a technology that hasithé promise oftransforming the

way in which transportation agencies plan, design, construct and maintain their highway
network® [21].

LiDAR data is collected using scanning systems that are equipped with laser scanners, sensors,
Global Navigation Satellite Systef@NSS) receiversaand inertial measurement units (IMU). The

laser scanners constantly emit light beams at surrounding objectsased on the properties of

the reflected beamspmputethe exact position of the point off which each beam refl&@xdnstan
scanning of objects around the scanners creates a 3D point cloud of known positional coordinates

such as that seenkiigure2. In Mobile Laser Scanng (MLS), scanners are mounted on vehicles,

which travel along the highway of interest capturing highly detailed positional information of the
roadway[22].

ire 2 iDAR Highay
According to many experts, the ability to use LIDAR as an alternative to traditional surveying
tools depends on the development of new applications that facilitate the extraction of information
from LIDAR point cloud dataset® an efficient mannef23]. In arecentstudy comparingthe

efficiency of using differet techniques including field inventory, phdtms, aerial photograph



and laser scanning (aerial, mob#aad terrestrial) for surveying data required fort&Mssafety
prediction modelsjalayer, et al. [24¢oncluded that mobile LiDAR had the potential to replace
all other extraction techniques if more efficient processing and feature extraction methods were

developed.

Although many agencies have been considering using LIDAR for transportation applications,
research in this area has been fairly limited. Based on the results of a review conducted by the
NCHRP in 2013, It was concluded that there wa
extracted from LiDAR[21]. The r epoGenerallytnmdt iefsrmatidm selatedito MLS

use is from presentations at conferences or short web articles that do not go into detail regarding

the work performead.

In the past few years research in this area has gainedmomentumwith particular focus on
utilizing LIDAR for the inventory oftraffic sigrns and otherpolelike objects[25-32]; however,

less focus has been placed on the extraction and assessment of geomettesaifribad. Even

studies that do exist in this capacity suffer from many limitatinokuding thelarge amount of
manual inputequired when processing the datag@8s35]. Manual processing demonstrates the
feasibility of extracting information from LiDAR while also eliminatitige safety risks associated

with traditional suveying however, such procedures are still tedious and time consuming,
particularly when network level assessment of microscopic design elements is desired. This failure
to fully utilize LIDAR datasets for transportation applications has been primatrilyuaéd to the

lack of expertisg21].

In fact, despite entire PhD dissertations being dedicated to feature extraction from LiDAR in the
past, not much of that work has focused on the extraction of geometric design elements from
LiDAR. Instead, the focus has been on the extraction of on r@dorés such as lane markings

and road edge§or instanceHaiyan [36]focuses on the extraction of road edges, lane markings,
and pavement crackeom mobile LIDAR data Similarly, Kumar [37] also dedicated his PhD

work to the extraction of road edges, lane markings, and road roughness from LiDAR. In another
PhD dissertation Ai [38] focused his efforts on the extraction of traffic sign information from
MLS while also assessing their conditions asthblishindinks betweernntensity neasurements

and sign retroreflectivity. Huang [39] combined LIDAR information with other sensing

technology to develop algorithms for lane detection as part his PhD dissertation, although the
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appication was developed to assist lane keeping technology within autonomous vehicles, as
opposed to mapping elements of road infrastructurg40] also developa an algorithm for lane
marking detection for Autonomous vehicles by combining information extracted from LIDAR and

other sensors.

Based on a thorough review of literatemnducted as paof thisthesis it was identified thaonly

a handful of studies were found on using LIDAR to perform sight distance assesgtgtty

extract attributes of horizontal cury84], and extract road cross section informaf@s 43]from

LIDAR. Furthermore, these studies suffer from many limitationghéncase of cross section
extraction, for instance, even the few studies that do exist in the literature are limited to
extraction of cross slopes. Similarly, work on sight distance assessments suffer from a number of
limitations including the inability to account for overhanging objegtsch biases the assessment
results.Furtherdiscussion of the existing studiesdaheir limitations is provided in Chapter 2 of

thethesis

Research conducted in this thesis aims to overcome the aforementioned limitations by developing
algorithms that would help automatically assess and extriéical geometric design elements of

highway from LiDAR. Specifically, théirst phase of thishesis focuses on extracting elements of

a roadds vertical and h oandclkarandmtoimatiad Thigindorent s a ¢
with the aim of providing tools that can bglized to conduct goerformancebasedassessment of

critical design elementss demonstrated in the second phaghethesis

1.2 PROBLEM STATEMENT

In conventional design, a road is built to meet design standecdsnmendedh design guides
despite the lack of information evhether or not such requirements satisfy the needs of the driving
population andvithout any information omsafetyconsequences of the failure to do $be road
goes into operation and safety problems arise. Addredsisg safety problems is often achieved
by introducing certain countermeasures on the highway as illustratBayune 3. Although
countermeasures ardéfextive in addressing the problems on the existing highway, they do not
address the issue on ngwlesignedoads In other wordsdespite the fact that design deficiencies
might have contributed to safety problems that occurred on the existing highevayoads are

still designed to meet the same standards, which results in similar safety problems.
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Figure 3: Proposed Desigirramework

This is similar to a physician treating the symptoms of a diseaisaot theactual rootcause.
While treating the symptoms might provide temporary relief,6ddress the problems on existing
roads), lessons are not learned from previous experiencedesegning new facilities due to the
disconnect between safety performance medmmendedesign standardsas illustrated by the
dashed line irfFigure 3. This naive approach resultsdesigners constantly faily into the same

pitfalls every time.

"A believer should not be stung (by something) out of the same hole iwRregghet Mohammed
PBUH?

Despitethe lack of a direct connection between performance on existing roads and design
standardsand despite the failure to learn from past experiemrastic improvements in safety

are expectedn fact, the failure tainderstand the demandtthe driving poplations(i.e., their
abilities) and the consequent failure to integrate those demands into the design of new facilities
completelycontradictsthe core principle ofthe safe system approacthere it is requiredhat

roads are designed to accommodate test fallibility and human vulnerability.

To overcome such a probleris thesis proposes the adoptionagferformancebased design

(PBD) approachin PBD, design standards are formulatedaccommodatéhe anticipatedoad

2 PBUH: Peace Be Upon Him
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user demandhe ability ofexisting road infrastructut® handle that demanstheninvestigated

and the impacts of this on safety performance are underdtbsensures that standards used to
design nevhighwaysaccount for the issues experiedam existing highwayslt is worth noting

here that adopting such an approach will not completely eliminate all collisions since poor design
is not the only cause of collisions, many collisions are caused by simple driver negligence.

Nonethelesspoor design is definitely one major caohtting factor that is often ignored.

Il n fact, the 2011 version of AASHTOG6s Design
based desigPDB)approachwhichindicates that even entities responsible for developing design
guidesacknowledge the imptance of migrating towardsuch an approactdoptinga PBD
approach would help create a framework whereby lessons learned framtetiaetion between

road users and thexisting roadway infrastructurean be fed back into the design process as

illustrated inFigure3.

Before PBD can be adoptdubwever,an efficient method that facilitates large scale assessment
of thegeometricattributeson existingroad infrastructures required. One way in which this could

be achieved is usingiobile LIDAR technology. LIDAR datasets collected in mobile laser scans
consist of rich point clouds that can be utilized for efficient netviewkl assessment ocoad
infrastructure,neverthelessthis requires the development of algorithms and processes that

facilitate such practice, which is the aim of the first phase of this thesis.

1.3 OBJECTIVES

The ultimate goal of this thesis is to facilitate the adoptianpErformancdased design approach
whereby a sound connectiooad user demandubstantivesafety and design elementd road
infrastructure could be established. Meeting such a goal requires meeting multiple objectives
which are detailed in the nexwigoaragraphs. In additiothe workflow of the researatonducted

in this thesigs also summarized iRigure4.

1.3.1 PHASEI (ALGORITHMDEVELOPMENT AND/ALIDATION)

1 Assessing the performance of geometric design elements on existing highways hinges on
the development of tools that can be used to efficiently survey those attributes
Accordingly, Phase bof this thesisocuses ordevelopng algorithms for that caus@he

research utilize tools of linear algebraplanimetry, machinelearning, and statistical
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scienceto develop a set of novel algorithms tHatilitate automatedextraction and
assessment cfitical road desigrelenentsonhighways scanned using LiDAR technology
Novel automated algorithms are developed for

0 The extraction ofoad cross sectionat regular intervals along a highway corridor
and the estimation of their slop@$e limited research that exists on the extraction
of cross sections from LIiDAR datasets suffers from multiple limitations, including
the dependence on lane marking informatiordefine the extents of the road and
the inability to assess side slopd@$ie novel algorithm proposed in this thesis
adoptsk-means clustering ardultivariate Adaptive Regression Splin@dARS)
to account fordetecting end point of cross sectipndich facilitates automated
estimation of cross and side slageng an entire highay corridor

0 The detection ohorizontal alignments(simple curves) along a highway corridor
and the measurements of their attributgslike the single study that attempted
extraction of horizontal curve attributes from LiDAR in the literature, the oteth
proposed in this thesis is fullgutomated and does not require manual input
Moreover, the proposed method is developed to extnawitiple attributes
including curve endpointsgeflection angle, curve length, and tangent length
opposed to focusing oourve radij which has been the case for most existing
studies.

o The detection, classification offerhead assetsnd clearance assessment at those
assetsResearch in this arediimited to assessing clearance at isolatedda&iscans
obtained using static LIDAR scanninghich, despite increasing the accuracy of
the assessments, does not help increase the efficieimegovelmethod proposed
in this thesiautilizes machine learning search algorithms to detect overhead assets
and assess their clearanddoreover, fatistical kurtosisbalancingis usedto
classifydetectedassets, whicliacilitates large scalmventory, classificationand
clearanceassessmerdat bridges and nehridgeson an entire highway corridor

0 The extraction and assessmenddilable sight distancalong a highway corridor
under different observer and target orientatidhdike existingwork in this area,
the algorithms proposed in this thesigilize mobile LIDAR datasets for the

assessmentf sight distanceMoreover, the algorithmis fully automated and
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accounts fotthe existence obverhanging objestthrough applying voxebased
ground segmentation of the daf his ensures thavailablesight distancalong an
entire corridor could bestimatedn an efficient and accurate manner.

1 Once the extraction and assessment algoritivexe developed,the algorithms were
validated Thiswasdone by testing the algorithna$ LIDAR data collected on multiple
highway segmentsn Alberta, Canada. The airherewasto assess the accuracy and the
repeatability of the developed algorithmsdto ensure that they could be used for large
scale assessment of road geometric attributes

1 To further assessthe robustness of the proposed algorithrasd to develop an
understanding diow point cloud density could impact the quality of informagatraced
from LIDAR, sensitivity analysis ofmpacts of point cloud density on the quality of the
informationextractedvasalsoconductedor all four applicationsDespite the importance
of such informationto the best of the auth@rknowledgeno studyto datehas assessed
the impacts ofeducingpoint density on the quality of information extracted from LiDAR
point clouds for transportation applicats. This is true even for features where a
significant amount of research exists in the literature such as the extraction of traffic signs
from LiDAR.
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Figure 4: Thesis Workflow

1.3.2 PHASEIl (PERFORMANCEBASEDASSESSMENT

1 After thealgorithmsweredevelopedtested and validated, the next objective of the thesis
was to investigate the means by which the information extracted from the developed
algorithms could be utilized to conduct a performabasedassessmentf geometric

elements For this purpose, the focwgas placed on a single design element, namely,
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stopping sight distancdwo different approache®r conducting aperformancebased

assessment wepeojected

0 The first type of assessment wadederminisic multi-level assessment, whereby
different levels of driver demand fetopping sight distancgere defined based on
the outputs of previous research. Bight distance assessment algoritas used
to quantifysight distancavailable alongver 40kmof crashprone rural highways
in Albertaand the performance of the highways under different levels of demand
wasassessed
o0 The second type of assessment was a probabilistic assessment whereby, demand
for stopping sight distancé€SSD was modelledstochastically One significant
limitation of existing design guides is the assumption that driver behavior is
deterministic. Unfortunately, this assumption is inaccurate and results in roads
being designed to accommodate the neédsertain class of tierswithout much
information on the proportion of drivers who fall under that cl@issovercome this
issue Monte Carlo Simulation modglveredeveloped to model driver demand for
stopping sight distanceon each of the test highway# performancebased
assessmenwasthenconductedon a similar set of highwaye those assessed in
the deterministic assessmeihibwever,in the probabilistic assessment it was
possible to identify the proportion of drivers impacted by limitatiorSSD
1 The aim of thgerformanceéasedassessments conducted in this phase of this thesis was
twofold: (i) develop arunderstanding the underlying links between demangttpping
sight distance, geometric integritgnd safety performance on existing highways, and (ii)
devebp a framework for future studies interested in conductingedormancebased
assessment of other geometric elememiBile highlighting the differences between

conducting a deterministic and a probabilistic assessment.
1.4 THESIS STRUCTURE

The remainder dahisthesisis divided intoelevendifferent chapters. Details of the topics covered

in each chapter are descridsslow.
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Chapter 2 provides a thorough literature review of the applications of LIDAR data in
transportation. This includes details of the eli#ntalgorithmsthat have been developed to date,

the main limitations of research in this area, and the gaps that need to be filled by more research.

1 A version of this chaptdras been submitted for a potential journal publication under the
following title:
Gargoum & El-Basyouny (2017)3A Literature Synthesis of LIDAR Applications in
Transportation: Feature Extracti,tdmerand Geo

Review

Chapter 3introduces the reader to LIDAR data. This includes information ab®@AR data
collection mechanism, the different scanners used to collect data, the accuracy of data acquired
using LIDAR technology and the cost effectiveness of using LIDAR for transportation
applications The chapter also provides details of the scansystem used to collect data for this

thesis and describes properties of the dataset compiled for usergstasch effort

Chapter 4, 56, and7 provide details of the four different algorithms thegre developed to
perform geometric feature extramti on LIDAR highways. Each chapter includes a detailed
description of the extraction pipelinéthe proposed algorithm, the results of testing the proposed
method on a selection of highways segments, and a thorough discussion of the strengths and

weaknes®f the proposed method.

1 Chapter4 is dedicated to the extraction of road cross sections along LIDAR highways.
Furthermore, the chapter also includes information onatgerithm proposed for the
measurement of theross slopeand sideslopes at thosecrass sections

o A version of Chapter 7 has bepnblishedn thelEEE Journal of Transactions on
Intelligent Transportation Systems
Gargoumet al.,( 2 0 1A ylly Automated Approach to Extract and Assess Road
Cross Sections from Mobile DAR D a t #&E&E Transactionsin Intelligent

Transportation Systemaccepted December 2017

1 Chaptersis dedicated to the detection and the extraction of features of horizontal curves
on LIDAR highways.
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o0 A version of this Chapter hgsublishedin Transportation Resech Record the
Journal of Transportation Research Board
Gargoum et al.,( 2 0 1 Aujomated Extraction of Horizontal Curve Attributes
UsingLiDARDatab Tr ansportation Research Record
Research Boardhccepted October 2017

1 Chapter 6 is dedicated to the inventory, mapping, and clearance assessment of overhead
objects along LIiDAR highways.
o0 A version of this Chapter has been published inJbernal of Automation in
Construction
Gargoum et al.,, ( 2 0 1 Butomated Assessment WYkertical Clearance on
HighwaysScanned Using Mobile LIDAR Technolagyournal of Automation in
Construction Accepted August 2018

1 Chapter7 is dedicated to the extraction and assessment of available sight distance on
LiDAR highways.
o A version of this Chpter has begoublishedn theASCEJournal of Computing in
Civil Engineering
Gargoum et al., (2018 Ad$essment of Stoppiagd Passing Sight Distance on
Highways Using Mobile LiDARata0 Jour nal of Computing i
Accepted October 2017

Chapter 8explores the impacts of reducing the point cloud density on the quality and accuracy of
information extracted from LIDAR using the algorithms prosed in Chapters 4 through 7. The
LiDAR point cloud density is first reduced to several differauels using stratified random
sampling. Information is then extracted at different levels of point density and the results obtained

at the different levels are compared and discussed.

o A version of this Chaptes being reviewed for a potential journal pugltion under
the following title

Gargoum & ElI-B a s y 0 u n yimga@sOofl Pdint Cldud Density Reductions on
Extracting Road Geometric Features from LIDAR daténder Review

Chapter9 is dedicated to conducting a determinigberformancebasedassessment afight

distance The chapter utilizes the sight distance assessment algorithm proposed in Chapter
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evaluate the sight distance available on the test highways. The performance of the test highway
segments under different levels of demargdthen evaluateaind the results and their implications
are discussed

o0 A version of this Chaptenaspublishedin the Journal of Accident Analysis and
Prevention
Gargoumetal.,( 2 0 1A3ilable 8ight Distance on Existing Highways: Meeting
Stopping Sjht Distance Requirements of an Ageing Populatigtident Analysis
and PreventionAccepted January 2017

Chapter 10s dedicated to the stochagterformanceébasedassessment of sight distan€le first

part of the chapteincludes details of the M@ Carlo simulation and the process of modelling
stopping sight distance demand&e consequent sections include an assessment abittg of
testsegments to handkhe demandandthe safety performancexpectedat different levels of
demandTheclosingsectiors of the chapter include a discussion of the results, their implications,

and a framework that summarizes the performdrased design approach proposed in this thesis

o A version of this Chapter is being reviewed for a potential journdiqation
under the following title:
Gargoum and ElBasyouny 2019 . Anaiysing the Ability of Crash Prone
Highways to Handle Stochastically Modelled Driver Demand for Stopping Sight
Distance® Under Review

Chapter 11 includes a summary of the reseadducted in this thesis, a discussion of the
contributiors of this work to the state of the art, and a discussion of avenues through which future

research could extemndork presented in this thesis
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2 LITERATURE REVIEW

2.1 DEVIATING FROM RECOMMENDED DESIGN STANDARDS

Despite the lack of information between recommended standards and safety existing design guides

do require following a thorough process in cases where deviating from design standards is

required. Such cases are referred to as design exceptionsuthia¢ dnitiated at any stage of a

project. The TAC design guide recommends that in cases where deviations from recommended

standards are desired the deviations are supported with appropriate engineering judgment,

guantitative analysis, and good, consistEr@umentation of the reason for the decision. The guide

also requires that mitigating strategies are considered and implerf@nted

TAC guidelines describes the process summariesdegme 5 as afi g 0 o0 d

design

eXxec

pr oc 8k ¥hken evaluating the impacts of deviating from design requirements the guide

requires that impacts from all perspectives are considered. This includes safety, economic,

environmetal, societal, operational, and cultural impacts. The guide also recommend a set of

mitigation strategies that may be considered in cases where deviations are necessary. For instance,

if deviations from stopping sight distance standards are required tlde gecommends

considering speed advisory plaques,

elements.

mor e

determine costs

; develop and
I?'ir;it!ir:g ?:lfssi;:l evaluate evaluate risk
iternativ
parameters alt es
monitor and document,
evaluate review evaluate
in-service and decide mitigation
erformance (approve measures
P or reject)

Figure 5: Design Exception Procel$}
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The TAC guide acknowledges that conducting a comprehensive assessment for deviations in any
design elements may not be practical and, as a result, it only requires that such assessment is
conducted for 12 critical design elements including Stopping Sigtiize, Vertical Clearances,

Cross Slopes, and Superelevations. While such recommendations are valuable, the assumption that
recommended design standards yield safe design and that evaluations are only required when

deviating from those standardsuisreaonable.

2.2 PERFORMANCE BASED DESIGN

2.2.1 DEFINITION ANDADOPTION

The concept oPerformance Basddesign (PBD) dates to the 1980s when it was first introduced

in Seismic DesignThe literature includes many different definitidios PBD with manystudies
defining it as a general philosophy in which design criteria are expressed in terms of achieving
stated performanaogebjectiveswhen the designed structure is subject to a certain level of demand
[16,44] PBD has also been defined as a method that relates strymui@mance talesign

process by eliminating intrinsic uncertaint[é$s)].

Despite the differences in definitions, theramsagreement that PBD encompasses a wider design
scope that results in more predictable performance over a full range of demand. The unique
features of PBD allow designers to consider different hazard levels along with different functional
classificationd46]. In seismic design, the field where PBD was first introdu@®l) made it
possible for designers to relate pestthquak structural performance to engineering design
standards and parameters. In other waldsign requirements wei@mulated based ahe level

of damage (performance&cceptedafter an earthquakerhis made it possible for engineers to
design structurehiait could sustain a certain level of damage (known to designers) without losing

serviceability.

Since its adoption, a substantial amount of research hasdbaenn the means through which
PBD couldbe adopted in seismic desifv-49]. Most of the seismic PBD approaches available

in literature adopt the displacement based design (DBD) method developeddiley, et al. [50]
where a structure is designed for a target maximum displacement under a sksford
earthquakdg47]. However, other approaches also exist and vary in terms of the performance
metrics they use, the different hazard levels they consaddrthe means by which performance

is predictedAs a resultleelataviwat, et al. [51describePBD as not a single design method but
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an actual framework fooptimal designThe Pacific Earthquake Engineering ReseareBER)
Center developeda probabilistic methodology for seismic PBD which the performance
assessment and design processagbroken down into elements that can be studied in a rigorous

and consistent mannfs2].

2.2.2 PBDIN HIGHWAYENGINEERING

In the past few years, transportation and highway engiggernitities such as the Transportation
Research Boar(lf'RB) and the Federal Highway Administration (FHWA) hab®wninterestin
adopting the concept of PBD in highway geometric defi8rb4] Ray, et al[53] definesPBD

as a principlegocused approach that examines the outcomes of design decisions as the primary
measure ofhier effectiveness. It is also viewed as an approach that provides the means to support
flexible design solutions or elementsadapt to unique project needs. PBD is seen as a tool that
would providedesigners withthe flexibility to deviate from design standards in cases where
fidesigning to full standards is not feasib(ge., not economically feasible) and where deviation
does not have any impacta safety Unfortunately, as already noted in this the#igre is no
evidence that designiragroad taneetrecommendedtandards is the most effective way to achieve

a specific level of performanceWhether it results in standards that are more stringent or less
stringent there is an agreement that PBD is an approach thapreithoteinformed decision

making.
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Figure 6: Framework[53]
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As part of efforts to promote the adoption of PBD, the NCHRP recpaotiished a report that
provides a general framework for entities interested in adopting the design ap@®adrhe

report does not demonstrate how the relationship between design elements and performance
metrics can be established, however, it does provide a general strategy of the entiparcessgn

The report defines three different stages in the design process illustr&igdne6, namely; (i)
identifying intended outcomes, (ii) ebtshing geometric design decisions, and (iii) evaluating

performance outcomes.

According to the report, in the first stage, the aim is to define the piejesitobjectives and

clarify the key performance measures, including transportation performagasures (e.g.,

improving safety and mobility). The second stage involves defining quantitative performance
measures that act as a ;theseomeasurésare relathdeto geametijice ct 6
design elements by performing iterative geomedgasitivity tests and selecting an alternative

based on the results of the tests. The ability of the proposed design in achieving project objectives

is evaluated in the third stage.

Geometric sensitivity used in the second stage of the desapessis ddined as the process
whereby the impacts of deviations freecommendedeometric design standards on performance
measures are studied. Despite this step being the most critical step to the whole PBD process, the
report acknowledges that, in many casegnggric design sensitivity is expected but is not

supported by any research to date.
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Segment Geometric Quality of
Elements/Characteristics Accessibility Mobility Service Reliability Safety

SI'muIde_r_width(s} and R o o’ ot o
composition

Shoulder type(s) . o' . o o
Lane & shoulder cross slopes —_— —_— —_— o o
Superelevation — o o o o
Roadside design features 0 o 'y o o
Roadside barriers o® o 'y o o
Minimum horizontal clearances o o . o® .
Minimum sight distance °" o o o* o
Maximum grade(s) o o o' o® o
Minimum vertical clearances T 0" o* o o
Vertical alignment(s) -_ » . o o
Bridge cross section . . o o o
Bridge length/termini — — —_— o® o
Rumble strips o — — o* o

¢ = expected direct effect
o = expected indirect effect

— = expected not to have an effect

* = relationship can be directly estimated by existing performance prediction tools
¢ = relationship can be indirectly estimated using more than one existing tool

¥ = relationship cannot be estimated by existing tools

Figure 7: Geometric Sensitivit}p3]

The report provides a list of different geometric elements and the potential relationships between
those elements and a set of performance measures. Timeatit;m, seen ifigure?, also includes
information on whether or not a relationship could be studied using existingTtb@gimportant
elements that the report highlights as elements which cannot be linkeddomaace metrics
using existing tools ar@) sight distancg (ii) vertical clearancesnd(iii) crosssectionalklopes.
As a result, research in the first phase of thisighiexuses developing efficieaktraction tools

that can be used in the assesat of those critical features

In summary, although the concept of PBD in transportation engineering has been promoted in
recent years, research to facilitate the implementation of such a caregmsearch on he means

by which geometric elementsuld be surveyed and work addressing the relationships between
design elements and performance metrics) has been limited. Apart from the NCHRP report, where

the focus is on developing a projevel framework for PBD in highway engineering, to date,
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therehas been hardly any research in this area. Although this is reasonable considering the FHWA
only started promoting the ideatime past fouyears, more research is clearly requirethis area

This includes research developing toolsléoge scaleas®ssment of geometric elements on road
infrastructureto facilitate the assessment, as welresearch to establish a connection between

design elements and performamceHighways

2.3 APPLICATIONS OF LIDAR IN TRANSPORTATION & HIGHWAY ENGINEERING

One technobgy that has hugepotential in facilitating efficient assessment of highway
infrastructure is LIDAR remote sensing technology. Data collected LgdAR scannersonsists

of closely spaced poistwith known positional data and intensity informati@as illustrated in
Figure8. In Mobile Laser Scanning, data collection equipment is mounted on ahatttavels
through a highway creating a 3D pbicloud image of the entire road segment. The high point

density of such datasets enalilesextractionand the assessmesftmultiple geometricfeatures

on highwaysat a high level of accuracy without the need to conlidungj site visits.

Figure 8: LiDAR point cloud highwaycolour-coded by elevation, varying vertical alignment)

The next few sections provide a thorough review of the previous attempts to extract information
about transportation infrastructufeom LIDAR dataset The challenges associated with the

extraction processes and the gaps that exist in the literature are all highliivestudies
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reviewed include research using LIiDAR to extradi) onrroad information, (ii) roadside

information and(ii) geometic features

2.3.1 ON-ROADINFORMATION(LANEMARKINGS EDGES AND CURBS)

Extracting lane markings, curbs and road edges from LIDAR data has been heavily explored in
previous researctZhou and Deng [55proposed a threstep procedure to detect curbstones in
airborne LIDAR datasets. The first step involves identifying points where there is an abrupt change
in height. The maximum height difference (MHD) within the neighborhodtiea computed
between midpoints of high and low points on either ends of the height jump. These points are
arranged into a sequence to obtain a polygonal chain describing the approximate curbstone location
and all points near the chain are then fitted ®igmoidal function to increase the accuracy. The

final step involves closing gaps between nearby and collinear segments. The authors compared the
results obtained from Aerial Laser Scanning (ALS) to information obtained using GPS and Mobile
Laser Scannig (MLS). The results revealed that completehessied between 53% and 92%

from ALS on the different test segments. Accuracy for ALS was slightly higher than that of MLS
(54% to 83%). The failure to achieve 100% rates was attributed partially to parkdalazking

curbs.

Zhang [56]attempted readlime extraction of a road surface and edges from LIDAR datde

data was first decomposed into elevation signals and signals projected on the ground plane.
Elevationbased filtering was then performed to identify a road candidate regnohpattern
recognition technigues were used to determine whether the candidate region was a road segment.
After that, line representation of the projected signals on the ground plane were identified and
compared to a simple road model in the-digpvn view to determine mether the candidate region

is a road segment with its edges. The authors state that the algorithm detects most road points,
roadcurb points, and roaddge points correctly with false positive and false negative rates of
0.83% and 0.55% respectively.

Serna and Marcotegui [5@ttempted curb extraction by mapping point clouds into range images.
Groundnon ground segmentation was then performed usingdites zonesalgorithm. Finally,

the height and elongation criteria were used to select curb candidates and Bézier curves were used

3 Defined in Section 6.3.4 of the thesis
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to reconnect close curbs. The proposed method was tested using datasets collected in France and
the Netherlands with results showing cdeteness rates ranging from 54 to 65% and correétness
ranging from 91 to 95%. In another algorithmNdgEIhinney, et al. [58toad edges were extracted

in two stages. The first stage involved extracting the cross sections of the data. These cross sections
were then fitted to 2D cubic splines and those lines meatyzedased on intensity, pulse width,

slope and proximity to \ecle to identify road edges. The algorithm was tested on two urban road
segments. The paper did not include discussion afethdts;however, the authors acknowledge

that their algorithm requires further refinement and improvements.

Jaakkola, et al. [5%ttempted detecting road markings and curbstone information from LiDAR
with the aid of image processing techniques. The authors first modelled tliesoads ur f ac e
triangulated irregular network (TIN). Classification of the road into curbs and markings involved
segmentation using thresholding combined with morphological operations applied to elevation and
intensity images. Success rates of around 8@%e reported for the classification of curbstones,

zebra crossings, and parking space lines.

Kumar, et al. [60Rhlso attempted extraction of road edges using image segmentation techniques.
The authors used a combination of Gradient \feEtow (GVF) and Balloon Parametric Active
Contour models to perform the extraction. The algorithm involved converting the LIDAR images
into 2D raster surfacdsased on elevation, reflectance, and pulse width attributes. Edge boundaries
of the raster surfaes were then formed using hierarchical thresholding (limits noise) and canny
edge detection (determines boundaries). A snake curve was then used to construct road segments
that would intersect with LIDAR road data points. The developed technique wak dasteree

50m road sections. The road sections were segmented into multipecidns and the edge
extraction was accurate in all but two instances. Inaccuracy was attributed to a low point density
on one edge of the road compared to the other. ImanstudyKumar, et al. [61pxtended thie

work on road edge extraction to extract lane markings. The authors performed range dependent
thresholding to the LIDAR intensity values and used binary morphological operations to obtain
lane marking information. Similar to edge extraction, the autsiarded by converting the data

into 2D range and intensity raster surfaces bdboth thresholding and applying morphological

operations. For incomplete road markings.(locations where markings had rubbed off), linear

4 Defined in section 6.3.4 of the thesis
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dilation was used to fill in thgaps. Markings were extracted over seven road sections covering
150m. Of 93 road markings, 80 markings were correctly detected. The undetected markings were
attributed to low point density and low intensity. In addition to the false negatives, 13 false
positives were detected. These false positives were on road sections where the road edges were

inaccurately identified.

Guan, et al. [62]also developd an algorithm to extract lane markings using range dependent
thresholding and the application of morphological operations. Therauiinst proposed a cub

based procedure to extract the roads surface by slicing the LIDAR data into blocks perpendicular
to the roads trajectory. Within each block, differences in elevation are used to classify points into
layers and to identify road gds (curbs). Once the road surface was extractediefe@nced
intensity images of the LIDAR points were generated using ImRiganceWeighted
interpolation (IDW). The IDW rasterizes the road surface based on the reflectivity of points and
their proxmity to the central point on the road. The final step of the extraction procedure involved
using densitydependent mukihreshold segmentation to filter out lane markings and the
application of closingnorphological operations to remove noise and fiiggaithin extracted lane
markings. The algorithm was applied on two datasets covering 168m of roadway length. Three
subsegments of those two roadways were used to assess the accuracy of the algorithms. This was
done by manually comparing the results a¢ gubsegments to the ground truth. The authors
reported success rates of 0.96 and 0.83 for completeness and correctness, respectively.

In Thuy and Leodn [63]the lane detection ptess started by plotting the Probability Density
Function (PDF) for the reflectivity observations of all data points. Since most points fall on the
roaddés surface, the maxi mum observation in PD
the roadwayOnce that was identified, a dynamic threshold was calculated based on the maximum
of the reflectivity PDF to distinguish and improve the contrast between the road surface points and
lane markings. A threshold value was chosen based on the standarddeVialiies estimated

for the road surface were subtracted from the histogram within-gigma interval. The mean

value was recalculated and used as the threshold for image binarization. A Canny filter (edge
detection algorithm) was applied to the binamage for better lane detection. Although the
developed algorithm was tested, not much discussion is provided on the results of the lane

detection.
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Yan, et al. [64]proposed a scanlideased method to extract road markings from LIDAR. After
processing the data and removing outlying observations, the proposed algorithm involved ordering
LiDAR points sequentially by timestamp. Points were tbeganizedinto scan lines based on
scanner angle with the aim of increasing the efficiency of data processing. Seed road points were
extracted based on Height Difference (HD) between trajectory data and the road surface. Seed
points were used to extract thél road points. This was done by fitting a line through the seed
point and all other points along the scan line using moving least squares and only retaining points
which fall within a certain threshold of the line. Road points were then classifieddraseensity

into asphalt points and road marking points. Intensity values were smoothed by a dynamic window
median filter to reduce noise and road markings were extracted using the Edge Detection and Edge
Constraints (EDEC) method, which measures almfugaiges in intensity along a scan line. Testing

was conducted on 3 segments in Beiji@ding ranging in length from 70 to 100m.vArage

completeness and correctness rates of 0.96 and 0.93, respectively were achieved.

2.3.2 ROADSIDEINFORMATION

2.3.2.1 TRAFFICSGNS

Traffic signinventoryhas been the most common applicationdbich LIDAR dataset have been
utilized in the past few year§he extraction pipelinesproposedvary among different studigs

however, in general, success rates have bagsfactory

In one of the earliest studies that dealt with traffic sign inventory from LiD&tn, et al. [65]
attemptedautomated extractioof signs along a 600m road segment in Chicago. The technique
used in the study involved filtering the data based osesdefined distance from the sensor, a
certain sensor angle interyandintensity. Data clustering was then perfornvdterebypoints

were placedntoa grid, and a threshold was defined to retain grids with a higher point density
only; the grids were ab subject togometric filteringof the different clusters. The authors provide
no information about the percentage of signs accurately extracted, howeyetid stat¢hat the

detection rates were satisfactory

In more recent workyu, et al. [66]attemptedeal timeidentification and classification of traffic

sigrs (i.e., detection and classification of signs while the probe vetiavels along the road

5 A pipelinein computer science is a term used to describe a satagirocessing elements connected such that the output of one element is the
input of the next one
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collecting LIDAR data). The authors used onboard sensors including a sensor platform equipped
with GPS/IMU, 3D LiDAR, and a vision sensor. Data points were first filtbesied onntensity

after projecting the LIDAR data onto imegjto obtain what the authors call a Virtual Scaade.

The rangdetweerhigh intensityplanes was checked and only planes with a spacing of more than
1m were retained. Principle Component Analysis (PCA) was then used to detalignneentof

planes, ad only planes aligned along the road were retained. The main limitation of this study was
that the extraction procedure was only applied cordrolledtest track; hence, its performance in

a dynamic environment is unknowReattime traffic sign detection was also attempted58].

In this study, LIDAR point cloud data was converted into camera pixel images. The regions of
interest were then identified and classified usidgur characteristics of the images. Success rates
ranging from 84 to 96% were reported depending on whether the sign was in the range of the data

collection vehicle.

Weng, et al. [67Uised mobile LIDAR data collected on Huandao road in Xiamen, Cloiketect

and classify traffic signs. The detection procedure involved filtering the point cloindemgity,

hit count,elevation, and height. A minimum of 70 points was chosen as a threshold for hit count,
a minimum elevation of 2m, and a minimum sign height of Guéme also predefinedhe success

rate of detectiomvasnot discussed, but it is mentioned that some fads#tives such as billboard

signs were detected.

Ai and Tsai [68]alsofiltered their data based on intensity and hit count when extratraffoe

signs from LiDAR.In addition, he authors used elevation and offset values specified in the
Manual for Uniform Traffic Control Devicefor further filtering of the point cloudTo find the
optimal threshold value for each parameter, an initieilesgas chosen, then a sensitivity sweeping
procedure was used to optimize the thresholds, minimizing-felgatives and falsgositives.
Trimble T3D analyst software was used for automatic sign detection. The algorithm was tested on
road segments in Ingiha with a 94% detection rate achieved and 6 -fadsdives for 195
highway, and a 91.4% success rate with 7 fptssitives on 3% street. There were also four cases

of falsenegatives which were attributed to either poor retiftectivity, insufficient heightandbr

a signbeing obstructed by other objects.

The algorithm proposed dyanda and Prochazka [68lso employed intensity filters to the point
cloud data when extracting traffic signs. kdean distance was used for preliminary clustering.
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Further filtering of clusters was achieved basegaint per cluster density, elevatioand height.

A 93 success rate was reported in the study with the authors attributing missed signs to low point
density. In a different studyWu, et al. [70jcombined intensity filters with PCA to tet vertical

planes where traffic signs exist in a LIDAR point cloud of a highwayin@age sign area detection

was implemented by projecting the 3D points of each traffic sign onto a 2D image region that

represents the traffic sign. Success rates werdisoussed in the study.

Soilan, et al. [32%tarted their dection process by removing points more than 20m away from the
laser scanner. The ground surface was converted to a raster gndove ground point from the
dataset. Anntensity filteringbased on a Gaussian mixture model was #pgried to removéow
intensitypointsthat remained in the datasBensity basedlustering was used to group signs into
different sets and a PCA filter was used to distinguish sign clusters from posts. The method was
applied to an urban road and a highway segment in Spehireving success rates of 86.1% and
92.8% for the urban road and highway, respectively. The study attributed false positives to planar

metallic surfaces and pedestrians dressed in reflective clothing.

Riveiro, et al. [25followed a similar procedure t8oilan, ¢ al. [32] applyingintensity filters to

the point cloud while also using Gaussian mixture models to further filter the data. A similar
procedure was also used for the clustering and PCA was used to remove false positive clusters
(clusters with curvat@). The methodology was tested in Brazil, SpanmdPortugal with success

rates ranging from 80% to 90% depending on the road type and the type of sign extracted.

2.3.2.2 OTHERROADSIDEOBJECTS

Previous studies have attempted to extract roadside objects incladip posts, trees, and utility
poles from LIDAR Such objectsan have huge effects on the severity of runoff the road crashes.
In fact, polelike fixed objectsare associated with the highg&rcenageof severe accidentsn
highways[71]. Thus, their existence and proximity to the road must be identified for effective

roadside management.

The purpose of poleke objectextraction in the literature ranged framventory of roadside
furniture andanalyzingthe placement of objects for roadside designmproving the positional

information forautonomous driving application
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Recent work byZheng, et al. [72proposed a technique to automatically extract street lighting

poles from mobile LiDAR. The authors first usa piecewise elevation histogram segmentation

method to remove ground pointfter that a new grapltut-based segmentation method was
introduced to extract the street lighting poles from each cluster obtained through a Euclidean
distance clustering algoi t h m. I n addition to the spatial i n
and the pointdés intensity information were al ¢
a Gaussiamixturemodetbased method was introduced to recognize thetdigiding poles

from the candidate clusters. The proposed approach was tested on several point clouds collected

by different mobile LIDAR systems. Experimental results showed that the proposed method

achieved detection rates of up to 90%.

Teo and Chiu [26proposed the use gbarseto-fine approacho extract polelike objects from
mobile LIDAR. Specifically, the extraction framework involved (i) data processumgre data
trajectories weree-organisednto different road elements and building facadesefiltered out
of the point cloud, (ii) coarst-fine segmentatiorwhereby poldike objectsweredetected at an
aggregate voxel scale before detecting them at the poinfecéteal inventory. Testing revealed
that the proposed method was effectivel@tecting poldike objects with at a rate of 90%. The

authors attributed false negatives to object occlusion and false posito@appéex environment

Lehtomaki, et al. [30jproposed ascanline-basedalgorithm to extract polike objects from

mobile LIDAR. In scanline LIiDAR data, poles will exist as sweejss, Curvedgroupof points)

in each scanline. Point groymeghich are on top of each other in adjacent scan, meseclustered

and dusters that constitutethe same polereremerged using PCA. A cluster was defined as part

of a polelike object if it met specific geometrjgroperties. The algorithm was tested on amd50
straight and flat section and the authors reported a 77.7% detection rate and 81.0% correctness
rate. False positives included pillars in buildings and different wall structures. Lampmeosts

found to be the easiest to detect vdttietection ratef 93% as compared to traffic signs and tree
trunks with 73.3% and 76.1% detection rates, respectively. For objects that were not detected, the
authors attributed this to an insufficient numbgdata points or objects being obstructed from the

view of the scanner.

Pu, et al. [7Bpresented a method to classifp AR point clouds into three categories: ground

surface, objects on the ground, and objects off the ground. Additionally, objects on the ground are
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classified into detailed groups such as traffic signs, trees, buidihg, barriersand utility poles.

A surface growing algorithm taken frowbsselman, et al. [74vasemployed to determine the

points representing the ground surface. To detect poles, the common feature of a vertical principal
axis was used. Objectsvere divided into qudiles based on their height and the third quartile
(measured from the lowest elevation point of a given cluster) is chosen for further analysis. This
helps omit objects such as bushes and trees when classifying on ground objects into poles and non
poles. The authors reported an 87% success rate for detectingik®lebjects using their

procedure. Lower detection rates were reported for traffic signs (61%) and trees (64%).

The procedure proposed By-Halawany and Lichti [28{o extract polestarted byorganizing the

point cloud using &D tree data structure. A 2D densligsed segmentation was performed using

a densitybased clustering algorithm (DB3®!), which finds clusters of high density in local
neighbourhoodsThe proximity threshold in the DBSCAN search was defined based on utility
pole radius of 25cm. The output of the clustering was then used in a vertical region growing
procedure to extractpuight objects starting from the lowest elevation object detected in the
previous step as the seed for the vertical regions. To merge different vertical segments that were
close enough to be considered part of the same object, segment merging was hbihged on
horizontal distance between centroids of the vertical regions grown in the previous step. Objects
were then classified using several criteria including object height range, the surface normal
direction andthe largest normalized eigenvalue. The alfponiwas tested using data collected on
three urban streets ranging in length from 103 andnA8Bh a reported processing time o064

hours. The average detection rate was 86% for the three segments and the accuracy was 97%.

Yan, et al. [64]proposd a fourstep procedure to extract poles and towers from LIiDAR. The
method involved ground filtering, unsupervised clustering, classification, ani d#&eaning.
Filtering the ground surface from the LIiDAR point clougs done based on the statistical
distribution of the points (assuming normality of ground points). This allows for a statistical
skewness balancing algorititmbeapplied to the height attribute to differentiate ground and non
ground points. The paper then uses DBSCAN to cluster the heghitalized norground points.
Each clustewasthenclassified into one of five types of poles based on a set of definedatecisi
rules. The final stage involdeusing least square circle fitting algorithms on the lower 10 to 20

percenfortion of the pole structure to eliminate ground points from the extracted pole object. The
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proposed algorithm was tested on an urban site inrifoy Ontarigresulting in a 91% detection

rate for five types of light poles and towers.

Wu, et al. [75]proposea voxetbased method for identification of street trees from LIDAR. The
method involved voxelization, calculating values of voxels, searching and marking
neighbourhoodsextracting potential treeand using morphological paramettrliminake pole-

like objects other than trees. It is worth noting that the voxel layer that fell.4rRabove the
groundwas used to begin tmeighbourhoodnarking and searching to extract trees. The proposed
algorithm was tested on two 3@0long flat urban street segments with less tbaemeter
difference in elevation, hence, height normalization with respect to grauface was not

required. This resulted in a completeness and correctness of over 98% in detection.

Cabo, et al. [27hlso proposed an automatic vokelsed extraction of polé&ke objects from
mobileLiDAR. The datawvasfirst voxelized to reduce data size for processing eaclnorizontal

layer of the voxel gridwas analyzed and segmented separaiéig segments were then merged

to form the selected 3D features. The 2D analysis was carried out to identHikpalandidates

in three stages: segmentation of connected horizontal elements, seleetements greater than
maximum area criteria, and selection of elements by isolation criteria. Both the second and third
stages were based on the assumptions that poles have a relatively smakctiosal area and

are isolated. The results provideat ef segments associated witZ aoordinate of a candidate

part of a pole. The third step involved connecting all voxel elements that share a face, edge or
vertex among all elevation layers. A minimum vertical height was set for connected groups to
differentiate poldike objects. The algorithm was successfully testetbansites with an average

completeness of 92.3% and a correctness of 83.8%.

Lehtomak, et al. [76]proposed an automated voxesed method for detection and classification

of roadside objects inraobile LIDAR point cloud. The proposed methotolvedisolating nor

ground points from the point cloud, object segmentation, segmentficktgm, and object
location estimation. The authors dseonnected componenabelling to perform object
segmentation. Feature descriptors calculated from voxels making up a segmented object include
local descriptor histograms (LDHS), spin images, and general siagb@oint distribution
attributes in order to apply machine learning techegjfor object classificatio.he paper was

successful in extracting and classifying trees, lamp posts, traffic signs, cars, pedestdans
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advertising boards. The authors tested their algorithna 800-m-long stretchof road in a
suburban area in EsppFinland. In general, the authors report between 66.7% and 94.3% recall

for the six defined object classes.

2.3.3 GEOMETRICDATAEXTRACTION ANDASSESSMENTS

In general, the use of LIDAR in the assessment of geometric features and elements of roads has
receivedess attention by researchers than traffic signs, lane maykingstherroadsideobjects.

In this section a thoroughreviewis conductedf the work that has been domethis areaThe

review focuses on design elements that have standszdsimendedor them in design guides.

These include sight distance, superelevation, grades, horizontal and vertical alignments, and other

elements of geometric design.

2.3.3.1 RoADCROSSSECTIONINFORMATION
Design guides are full stecommendationgoverning the design crosectional elements, due to
their importance in the safe and efficient operation of roBdspite thata limited numberof

studieshaveattempted extracting such features from LiDAR.

Tsali, et al. [35developed an algorithm which can be used to extract cross slopes of roads from
mobile LIDAR data.First, the laser scannewas orientedat a specific beam angle and beam
distance. Cross section informatiovas then extracted forthe region of intere$ (ROI) that
perpendiculdy bisectsthe roads trajectory. Ttaepthof theROI is userdefinedand bounded by

lane markings onhe edges. The authors recommend that lane markings are extracted from the
LiDAR datasetusing an algorithm proposed in a different study. Once the desiredwROI
extracted, its cross slopegreestimated using linear regression. To identify the appriepdiepth

for the ROI, the authomrana sensitivityanalysison the dataThe analysis revealed that length of
ROI should be 2ft to achieve adequate cross ®epmatesin addition to the sensitivity analysis,

the authors tested the proposed algorithra controlled environment to assess its accuracy and
repeatability. The authors found that the proposed algorithm yielded results within 0.28% of the

digital level measurements.

In another recent pap#ratconsidered extracting roadoss sectionalemeits Hol gado Bar cc
et al. [43]propose an algorithnthatcan be used to determine slopes, lane widths and number of

lanes on a segment from mobile LIDAR images. The algorithm indobad segmentation where
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the road surfacewere extracted using an adaptive height threshold and scanner Afigle.
extracting the road surfacetensitybaseddatafiltering was employedo obtain lane marking
information A geometric filtewasapplied to lane markings to remove false positaedPCA

was used to connect discontinuous lines. Distances betwees were then usedas a proxy
measure fotane widthand shoulder widths.|&e differencesvere also measured based on the
difference in elevation between lind$e proposed technique was tested on two motorways (400m
and 1km) in Spain. Comparing ntiple extractions on each motorway, the authors found that only
slight variations in the extracted information existed. Variations in shoulder width along the same

segmentvereattributed to the existence of vehigledich obstructed the view of the scann

Although not with the intention of extractimgadslopes, Lato, et al. [77Jused mobile LiDAR to

assess ctilopes along transportation corridors. The sfudy a i toetaceosk hazardfalling

off slopes along road corridors. Multiple mobile laser seagise compared to identify potential

rock movement. The measurements wexteacted using 3D metrology software PolyWorks. The
authors concluded thétte assessment was effectimethe detection of small rock block release

(sub 15cm)Embankment slopastability was also assessed Miller, et al. [78] however, the

authors usedtaticterrestrial laser scans to test for slope failure and extract slope fedtuees.

slope deformation and failureereexamined at two locations. The study found that, for both,site

the detection of minor changes, such as soil creep and surface runoff was possible using the laser
scans, however, vegetation was found to be a confounding factor to detection. The authors used a
least squares surface matching algorithm to filter aut/ggetation, which resulted in detection of

change at a centimetric precision level.

2.3.3.2 ALIGNMENTINFORMATION

The design of vertical and horizontalignments onroadways is also governed by multiple
guidelines This includes thstandardsecommendedor thelength ofthe vetrtical crest and sag
curves, vertical grades, the radii of horizontal cunageréevations and spiral transitions.
Obtaining such information about design eleméntn extremely tedious process that requires
long site visits as a result, transportation agencies limit surveying such information to locations
where the information is desperately needed to apply changfesdesign of the roadrhe next

few paragraphs review the research that has been done to explore thelpotenxtract such

information from LiDAR point clouds.
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Vertical Alignments

Oneof the earliest studiethatworked on the collection of vertical alignment information from
LiDAR datawasapr oj ect | [egpartinent ofl ToamspodDOT) just over adecade ago

[79]. The authors used least squares regressialysis to estimate the elevation of points along

the centerline of a highway. The boundaries of the 100ft road segments (road edges) were first
manually defined in ArcGIS by drawing polygons around the location of interest. The midpoints
of the edges werased as the centerlines of the road segments and multiple linear regression
analysiswvas used to estimate the elevation of points along the proposed centerline. The predictors
of the regression model were (i) the lateral distance of a LIDAR point frogetiterline and (ii)

the longitudinal distance along the segment from its origin. The regression coefficients of the two
independent variables (lateral distance to the centerline and longitudinal distance to the centerline)
represented the cross slope #@mel grade of the segment, respectively. The study found that the
estimated grade and slope attributes both deviated significantly from field survey measurements,
particularly forcross slopesrThis led the authors to conclude that collecting LIDAR dat#hiose

purposes alone was not cost effective.

In otherwork, Zhang and Frey [8Qused a similar technique to thmbposed irf79] to estinmate

vertical gradenformation One difference between the two studeshatZhang ad Frey [80]

used road width information to define road edges and a map of the road to estimate the location of
the centerline. The paper also used regression analysis to estimate the grade of the road with the
authors reporting a level of accuracy pfto 5%. One major limitation of this study and the one

by Souleyrette, et al. [79% that the segments for which grade estimation is attempted need to be
straight segmentg.€., estimation was not possible for segments with great deviations in the
horizontal alignment of the aal). This led authors to select segmehét were short enough so

that the curvature was not significant. The segments, however, beldtgto have enough points

for the regression analysis and meet the normality assumption.

Dawkins [81]used LIDAR data to validate road profile extractedhgsa vehicle suspension
model, although the author does not proviteny details on how the profile was estimated using
LiDAR. It is likely that the paper traced the path of the data collection vehicle and used the
elevations of the point cloud points afpthat line to produce the profile. However, this is not

explicitly discussed in the paper.
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Wu, et al. [82Jused LIiDAR data to compute the elevation of the road surfat¢kislprocess3D

cloud point data was projected onto vertical planes defined by the trajectory of the vehicle
collecting the LIDAR data. The points along the profile were segmented using the Douglas
Peucker algorithm, which connects points within the vertical planes to produce a line segment
representing one portion of o a prdiile. Since the aim of the analysis was not to extract the
vertical profile of the road segment, the authors do not provide any discussion of the level of

accuracy achieved.

Han, et al. [83lused a photogrammetric approaclextract information aboubad profiles. The
authors used a laser module to measure the distance betweambtdardsensorsn the data
collection vehtle and the road surface. This information was linked to the image coordinates. To
identify the profile at a certain location, image coordinates corresponding to the real space

coordinates of that location were identified along with the elevation infaymati

In a recent papeHiguera de Frutos and Castro [§#bposed a method for the reconstruction of

road vertical profiles using GNSSdat col | ect ed al ong a roadds cen
was to automatically acquire information aboli
including grades and parabolic curve details using the points collected along its centreline. The

first step of the procedure involved classification of points along the profile into grade points,
parabolic curve pointsor border pointsand clustering points based on their type. Analytic
expressionsverethen estimated for the set of points between &@refore calculating integrals

of thoseexpressions to obtain tineodels forthe elements of the longitudinal profilehe proposed

method was tested on rural highways in Spain with the authors reporting a mean error of less than

8cm when estimatingttpe omet r i ¢ el ements of a roadodos vert

Although notautomated procedurei Mascio, et al. [85hndBaass and Vouland [8@]soused

GNSS data to extract vertigadofile information on road$n Baass and Vouland [8@he authors
classified segments of the profile into tangents or parabolic curves based on the rate of change in
slope.To ensure that &ferentcomponentsf roadprofileswerealigned to one anothghe authors

used special constrained regression procedures. The proposed method was tested on rural roads in
Quebe¢ Canadawith authors reportingn average error of 15 cm and a maximum error of 1.5 m.

It is worth noting that, although GNSS data is not necessarily collected as part of a LIDAR scan,
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such information is acquired @&l MLS systems. Therefore, procedures proposed imlloge

listed pgpers do apply to datasetsllected using LIDAR scanning systems
Horizontal Alignments

Previous research on the extraction of horizontal curve attributefoll@sed three different
directions. The extraction using Graphical Information Systems (B¥$38], GPS dat489,90],
and photogrammetric techniquggd]. Despite the high accuracy of LIDAR datasetsempts to

use them in the extraction of horizontal curve attributes have been limited.

Hol gado Bar dsoone oka fewastdies that3atemptethe extractionof horizontal
alignment informatiorirom LIiDAR. The semiautomatic metht proposed in the paper involved
segmenting, parametrizingnd filtering the point cloud. In the segmentation stage, points tracing

t he r oextdrp Ganetmarlingsyvere filtered out. These pointaere then classified into

curved and straight segments based on changes in azimuth and curvature between consecutive
points.The outputs werelassified into three segment types straight segmentsr@farvature is
detected), circular arcs (in case of constant curvatureglatiabids (if curvature varies across
consecutive points). After detecting the curves, radii and the transition |evegessstimated. The
proposed algorithm was tested on siatetl data and data collected on a Spanish highway.
Comparing results obtained from the algorithm to those estimated by an experienced topographer,
errors in length of up to 308 (2.0%) for circular arcs and 516(0.4%) for circular radius were
reported. Wkn testing on the simulated segment the errors weme(0.3%) and 0.81 (1.1%) for

arc radius and length, respectively.

Kim, et al. [92] explored the measurement of several geometric features from LIDAR data
including horizontal curves andertical profiles. The paper does not providdads of the
extraction procedure; however, it is claimed that the extraction of horizontal and vertical
alignments as well asross sectionadlopes was achieved. According to the authors, horizontal
alignment extraction involved splitting the data intoaght and curved segments using the
Douglas and Peucker simplification algorithm whil®ss sectionaihformation was estimated
using the least squares method. Test data was colleci@dkonlong highway in China. When
comparing between finally extred elements and ground truth the authors claim that the

extraction procedure yielded almost the same values as ground truth when considering
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construction errors. The paper concludes that the extraction of road information from LIDAR

images is more efficig than traditional manual methods.
Sight Distance Assessment

In recent years, reseam3 have realized the value ofsing LIDAR data in sight distance
assessmentélthoughin theory, designing curves based on the minimum stopping sight distance
requirenents ensures that this distance is available at any point along thetberassumptions
associated with the estimation procedure and certain pragestraints (financial or practical)
mean that there may be locations along a highway where minimurineraguats are not met.
Moreover, scheduledmaintenance activitiesuch as road resurfacirpuld affect theoriginal
alignmentof the highway causing potentianitations in sight distancd he addition of roadside
structures such as buildings or treesiay also limit the available sight distance in thpost

constructiorstage.

In early work,Khattak and Shamaylel33] explored the feasibility of assessing iy and
passing sight distance on highwaysng aerial LIDAR data. Aerial LIDAR data was collected
along lowa Highway 1. The data wiagported intoArcGIS to create a TIN surfacé the highway
The surice waghen visuallyinspectecandpotentialy problematic locations.g., locations with
potentiallimitations insight distancejvere markedThe Line of Sight tool (in ArcView) was then
used to verify limitations isight distance§D) at the set lodeonsidentifiedin the previous step.
The authors foundO locations where sight distance was limjtadesultthatwas validated using

data from the field.

Castro, et al. [42hdopted a slightly differergpproactto their assessmenthe methodnvolved

the creation of a Digital Terrain Model (DTM) rastdithe point cloud. This DTM was comlad
observer inpuinformation for thecomputation of Viewsheds. Viewsheds denote areas on the
rasterthat arevisible to the observer. All visible areas are converted into polygons and then
intersected with a vehicle trajectory obtained from GPS. Thendstaetween the observer and

the closest intersectidmetween the trajectory and the viewshed ta&ken as the available sight
distance. The sight distances obtained were compared to values given by highway design software,
Trivium. Although statistical aalysis showed no significant difference betwé®nresultsthere

were locations where the design softwagparted shorter sight distances. This was attributed to
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the Trivium softwarebeing more effective that the proposed algorithm in detectosgructons

on vertical curves

In a moveto improvethe efficiencyof sight distance assessmeotsLiDAR highways Castro et

al. [41] attempted to increase the level of automation in the assessanegtArcGIS tools. The
first step involved usingerial LIDAR data to create a DTl the highway The visibility of
multiple target points from a single obserweasthen assessed using ArcGIS todBnce an
obstruction was detectethe available sight distanaeasrecordedas the distance between the
observer point and the last visible point. The obtained sight distareressompared to those
found inother work[42] using KolmogorovSmirnov and Wilcoxon tests revealed no significant

differences.

In a different studyCastro, et al. [93&ttempted to show differences in accuracy between DTM
(bare ground) and the Digital Surface Model (DSM) also known as TIN surfaces when extracting
sight distance informatiofrom LIiDAR. The paper used both mobile and aerial data for two DSMs.
Kolmogorov Smirnov and Manni Whitneyi Wilcoxon tests wereemployed to assess the
differences in sight distance outputs using the two surface models. The resultd alsogvaficant
difference between all three surfaces. Specifically, DSMs were found to have shorter sight
distances than DTMs, whidkad the authors to conclutteat more obstructions can betected

using the DSMComparisons between the aerial and nedb5Ms showed that mobile DSMs had

a greater densitywhich allows for a higher DSM resolution, leading to a more accurate

representation of the environment.

Tsai, et al. [94] was one of few studigbat attempted analyzing sight distance at intersections

from LiDAR data. Although th authors do not assess sight dista®rese they propose a manual
methodthatcan be used to detect obstructions at an intersection by analyzing aerial LIDAR data.

The first step in the procedureinvotMe f f set ti ng GPS poi mdntselinese pr es et
that they trace the centerlines of the travel lanes on the major and minor roads. Based on the type

of controlat the intersection and posted speeds on the intersecting tloadsithors determide

the dimensions and the edges sight trignglich must be kept clear of any obstructomhe
trianglewasoverlaidonto aDSM created using the LIDAR data and LiDAR market softwaas

used to perform a plane of sight analysis between the observer and all target points. This process

yeildeda raser grid of visible and nonvisible celiehich areoverlaidon the sight triangleand
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sight distance was computed based on the outcofesauthors highlighted the importance of
removing overhanging objects such as cables from the LIiDAR data befomnuag the
assessment since those objects result in false obstructions when creating surface models. The
obstruction information obtained using the proposed method was compared to field data collected
at an intersectiamhe authors concludehat the propsed technique was effective in determining

92% of obstructions. This outperformed normalsite line of sight assessment which was only
effective in detecting 64% of obstructions. Missed obstructions were often ottjatisere

present between conseagtilines of sight.

2.3.3.3 VERTICAL& LATERALCLEARANCE

Another application for LIDAR intransportatiorengineering is for the assessment of clearances,
particularly vertical clearance. Various techniques have been used to conduct vertical clearance
assessment on highways, one of which is through using LIDAR data. Although some
municipalities still use maral methods such as theodolites and total stations, other digitized
devices have recently been adopted. For instance, many DOTs use digital measuring rods and
electronic measuring devicgg5], similarly, clearance assessment using photolog data has also
been previously attempt¢@o].

Liu, et al. [97] proposed a method to assess clearance at bridges using static terrestrial LIDAR
scans of a bridge. The authors developed an algorithm where scanned ground points are
automatically matched to bridge deck poithistfall within a certain margin of the vigzal plane
perpendicular to the ground surface. The algorithm loops through all points until all points on the
ground surface are matched to points on the bridge dditiough this technique increases the
likelihood of determining the actual minimum alaace beneath a bridge, static LIDAR scanning
means that disruptions to traffic and safety concerns still exist. Moreover, network level analysis
is still not possible since the technique involves conducting site visits and scanning each bridge on

the netvork individually.

Puente, et al. [98)sed mobile LIDAR data in the assessment of vertical clearance in tunnels. The
authors propose a seiutomated algorithm where cross sections along the trajectory of the tunnel
are first extracted and used to measure the clearance. The methoddgatgelane markings to
define the edges of the travel lanes at which the clearance must be evaluated. Tiverediges

matched with the pointsnthe roof of the tunnel and tleoss sectionf the tunnewasdefined
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using convex hull before measuritige clearance. Although the results weasitive with a
relative error between ground truth and detected clearance not excee@ngprl most cross
sections, the algorithm was only used to assess a portion of the point clowditloldite authors

citing loading time as the maneason testing was not conducted on the full point cloud.

It is worth noting that a few studies have also attempted utilizing LiDAR point cloud data for

structural assessment of bridg8se, for examplg99-102].

2.3.4 DISCUSSION ANLLIMITATIONS

As evident from the review, there seems to be a growing appreciation for the potential value of
LiDAR in transportation. However, the majority of existing research has focused on using LIDAR
in the inventory ofoadsideobjects such as poles and sigrasd on-roadfeaturessuch as lane
markings and road edges. One reason these applications have attractetenesthan others is
thatmapping such features is important for autonomous vehicle applications. Momaogeof
theresearch conducted in stirea has be@onductedy experts in the fields of computer science

and geomatigswho are not particularly concerned with design elements of transportation

infrastructure.

The review clearly highlights the need for more resegralticularlyon the &traction of road
geometric elements from LIDAR. There is currently a lack of studies attempting the extraction of
crosssectional elements, horizontal and vertical alignment data and clearance informdtot).

despite the high quality and accuracyL@AR data, particularly that obtained using mobile laser
scanning, there is also a lack of studies attempting geometric and safety assessment of highways

using LIDAR point clouds.

With regards to the geometric design elements considered thekis the review shows thajust

like other geometric elements, there is a lack of studies proposing the extraction and assessment
of those elements. Moreover, even studies that do exist suffer deverallimitations. For
instance, ight distance assessmerdshbeen attempted on LIiDAR highwaysa few studies
however methods proposed previousstudies ardéimited in many aspect©ne major limitation
commonin all studies that havexploredsight distance assessment on LIiDAR is that they do not
account fo the existence of overhanging objects. This results in biased estiviaa creating

the digital surface modebfthe highwaywhich, in turn, bias thsight distancassessment results

[103]. Another common issue with sight distance assessment in previous studies is that almost all

42



those studies used aerial LIDARhen developing their assessment metiH88s41] Although

useful for urban planning applications, tiog-down nature oberial LIDAR scanandthe low

point densityof thosescans compared to mobitiatasetsmeans that not all obstructions are
accurately represented the point cloud This also affects the accuracy of the sight distance
assessmenMoreover, the lower point density in aerial scans results in datasets where the sizes
are manageable fno a processing perspective, hence, using mobile scans represents a unique set
of challengesncluding potentially longer processing timégs also worth noting thahiprevious

studies, testing was mostly conducted on a single segment, which raisesosoemas about the
repeatability of the extraction proceduréhe manual element in some of tlegtraction
procedures is alsmconcerrsince itrestrains the ability to perform largeale assessmemif sight

distance on a highway network.

Attempts to extractross sectionatlements and profile information from LIDAR data are also
limited. Just like sight distance assessmentgngtsthat do exist suffer from some common
limitations. The majority othe algorithms that do exists for th&teaction of cross slopes from
LIDAR assume prior knowledge of lane marking information. While using lane marking
information might be helpful, extracting such information requires prepossesding dditasets
moreover, the quality of lane markings onalroads might be poor and undetectalndact, lane
markings might not even exist on some rural highwalfgch makes the procedure limited to a
specific set of highways where lane markings are sharply def#wexther commorimitation of

the two studes that have exploredoss sectiomxtraction from LIDAR is that thegnly attempt
the extraction of cross slope information. To the best bfe  a knbwledge,ns study to date
has attempted the extractionside slopesrom LiDAR. This has often been attributed to the high
vegetationtypically presentn the ditchesposinghuge challenges to the extraction process.

Extraction ofhorizontalcurveattributes from LIiDAR data has also been lacking in the literature.

In the oy paperthatexists in this capacifythe extractionprocess isot fully automatedand it

also involves extraction of lane marking information. Moreover, the focus in the paper is on curve
length and radius without any attempts to extract other feattioesves such as deflection angle,

end points of curves and chord lengihfact,the focus on radii and curve lenggtalso a limitation

of studies that use ndrnDAR techniquesto extract horizontal curve attribute©ther
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disadvantage®f nonLiDAR methods include the low point densityhich results inthe

inaccurateestimation of curve attributes.

Anotherapplication developeth thisthesisfor whichresearch has beextremelylimited is the
detection and clearances assessrotaterhead objectd o the best of the authsrknowledge,

no study, to date, has attempted the automated detecéqgmngentory) of overhead assets on
highways. h the few studies thalo exist in this areaclearance assessmentonducted on static
LiDAR scansof bridges.Although such techniques might help minimize human exssociated
with conventional toolsvhile alsoreduang the length of site visits, they do not hahgreasehe
efficiency of theassessment process, since each bridgestilisgie scanned individually. In fact,
road closuras still required to perform sucécans since the LIDAR equipment is often placed on
tripods to collect data at a specific bridge. Another limitatibresearch in this aresithat, despite
the ability of LIDAR scans to capture different overhead objects including power lines and
overhead signs, previous research seems limited to t&nigchnologyor assessing clearance at

bridges only.

In summary, despite thgrowing interest in research on thdrextion of different features from
LiDAR in recent years, threviewshows that morgvork is still requiredto fully utilize the true
value ofthe technology Thereview shows that potential for more research exists regardless of
the applicationhowever there is a clear lack of reseamhutilizing LIDAR for the extraction

and assessment of geometric design elements.
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3 LIGHT DETECTION AND RANGING (L IDAR)

3.1 LiIDAR TECHNOLOGY

Light Detection and Ranging (LIDAR) is an optical remote sensing techntilaglyses light rays

to collect positional information abostirrounding objectd.iDAR scanning can be airborne or
terrestrial.Terrestrial LIDARscans can be eithstatic, where scanning equipment is mounted on

a tripod or mobile where scanning equipmeistmounted on a data collection trudihe most
common approach to collect LiDAR for transportation applicatioLS, since road features

can be captured with a high level of detaing this methodR2]. In fact, the ability of MLS to

capture a highly detailed representation of the entire roadway environment in a single survey pass
gives it the edge over other remote sensing techniques such as photogrammetry and satellite
imaging. Although such sensors often prevatcurate scans of a r@adnvironment, the level of

detail capturear thearea covered bgensors is often low. This means that the scans can only be
used to extract or assess some featmmeaot otherdor instance, whilgé may be possible to use

a low density ALS0 assess sight distances, uding same datas#t extract information about

road cross sections would not be possible.

Figure 9: LiDAR point cloud data collected in Alberta
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As already noted, iMLS vehiclesmounted with laser scanning equipmerstvel along the
highway of interest while constantly scanning the surrounding tethasmesults in a dense cloud
of closely spaced points representing the surrounding infrastruasutieistrated ifrigure9. This
section describes the differecdmponentof a typical laser scanning system while providing a
detailed description of the data collection proagéssugh whicha 3D point cloud of LIDAR is
assembledThe section also includes a bragscriptionof the RIEGL VMX-450, which is the

laserscaning systemused to collect data for this thesis.

3.2 SYSTEM ARCHITECTURE AND LIDAR WORKING PRINCIPLES

3.2.1 SCANNINGSYSTEMCOMPONENTS

The system architecture of a basic laser scanning system consists of a dual frequeimog real
kinematic GNSS, amertialMeasuremeiiJnit (IMU), and a laser scann@&iostscanningystems

are also equippeavith wheetmounted Distance Measurement Indicat¢pMI) and digital
camerasln addition to the sensors and the cameras, the system is also equippathtatiogging
computerand a control system that integrates all sensots a single systerandfacilitates data
storagelt is worth noting here that, althoughany scanning systems used todae equipped

digital cameras to supplement the LIDAR point clouds, datasets uses ihebis only consist of

point cloud data with no images. Accordingly, the procedures developed in this thesis depend

solely on the point clouds to extract the geometric attributes and perform the assessments.

Each componentf the scanning system serves a specific purpbgeGNSS and IMU sensors
provide accurate positional informatiaf the scanning system as th&AR scanning truck
travelsalonga highway corridorSpecifically, the GNSS system provides information relabed
the position(latitude, longitude)time and velocity of the scanning system. The IMU, on the other
hand, is equipped with a microcomputer unit and a module of accelerometers and gyroscopes. The
IMU records altitude information.¢., heading, rolland pitch) of thedata collection vehicle as it
travelsalongthe highway corridor of interest. THEMI acts as a tracking system measuring the
distanceravelledto supplemeninformation obtained bthe GNSSand the IMUin cass where
there isa lapsein the satellite signal. In addition, since the DMI is wheel moyrntethn sense
positions when then data collection truck is static and, hdreps reduce duplication in the
LiDAR point cloudin those situationfL7]. Figure10 shows a typical laser scanning system and
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the data collection truck on which it is mounttds important to point out here that the scanning

system can be mounted on any vehioleonducthe surveys.

Figure 10: Multi-Function Pavement Surface Profiling Vehicle (Left), VB0 MLS System (Right).

3.2.2 DATACOLLECTIONPROCESS

A laser scanning system collects data through the laser scanners emittingpelaghs at
surrounding objectsThe light pulse emitted from the sensor, hits the target object and then gets
reflected back to thecanner, &sed on the properties of the reflected beam and the position of the
laser scanning system (obtained from@NSS, IMU and DMI), the relative position of point off

which the laser beam was reflected is computed. In addition, based on the amount of energy in the
reflected beam, the scanning system also stores information abmietisty of the target point.

The intensity reading is a measure of the stren§thereflected laser pulsevhich is calculated

based on the pulse wavelengthe strength of the retusraries depending on theflectivity and

thecomposition of the surface object reflecting lderpulse

The data collection mechanism varies depending on whether the laser scanners are Time of Flight
(TOF) or Phas®ased Scannefd04]. In case of TOF scanners such as the RIEGL VAB0

used in thigesearchthe scanner computes the position based on the reflection timeimdét

takes for theemitted beam to hit the target point and reflect lacthe scannealong the same
trajectoryis measured and, given the speed of light, the distance between the scanner and the target

object is computedsing the timeof-flight principle calculation shown iBquationl.

Dt3 c

d= (1)

whered denoteghe distance from the scanning system to the target poitite scanned object

Yois the difference in time between the time the beam is emitted and the time of acquisition, and
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c is the speed of light.lfe time difference must be divided bysihce helight beamtravek the
measured distance twice

In case of phasbased scanners, distance is computed based on the change in wavelength of the
reflected beam as opposed to the time of flight.

During the scanning process, thousands of beams per sesndhsmitted from the laser
scanner, with the aid of rotating mirrors, this resuitsnillions or, in some cases, billions of
distance measurements to surrounding surfd€&g. Relative position information of trecanned

object can then be determined based on the distance between the object and thedgcander (

the positional information of the scanner obtained from the GNSS equipsiseén ifrigure 11

The position of each poinp) in the mapping coordinate systé¢) is computed as follows:
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where

Px; Pv; Pz denotes the Location of the target P in the mapping frame.

XeNss Yonssg Zenssdenote thdocation of GNSS antenna in the mapping frame.

RMimu denotes theotationmatrix between the mapping frartid) and the IMU

1 b Al representhe roll, pitch and ya anglesrespectively measured by the IMU.

RMUsdenotes theotation matrix between the laser scanner (S) and IMU,

r(ad) is the relative position vector of Point P in the laser scanner coordinate sgstechd
denote scan angle and range measured, respectively.

Lx, Ly, Lzdenotethe leverarm offsets from th@avigation and IMU origin to the laser scanner
origin determined by system calibration or measurement

07,07,07 denote levearm offsets from the IMU origin to the GNSS origin determined by

system calibration or measurement
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Figure 11 LIDAR Scanning104]

3.3 RIEGL VMX -450SCANNING SYSTEM

3.3.1 SYSTEMSPECIFICATIONS

The laser scanning system used to collect data for this tbesisnercially known as the RIEGL
VMX -450, is depicted inFigure12. The VMX-450 is eqipped with two VQ450 scanners that

are symmetrically configured on the left and right sides, pointing toward the rear of the vehicle at
a heading angle of approximately 145°. The-¥&D scanner has a sciaquencyof up t0550

Hz, which means a singlsurvey pass is sufficient to yield a higldensepoint cloud of the
surrounding environmeL04]. The scan speed of V@50 is 400 lines per send resulting in a
scan rate of 1.1 million points per secdiod two laser scanners precision of 5mm and an
accuracy of 8mnfi106]. It is worth noting here that the relative and the absolute accuracy of the
IMU/GNSS unit are 10mm and ZBDmm, respectivelyThe density of the points on a scanned
object depends on the range, and the spkEt@ data collection trikghowever, povincialsurveys
conducted at 90n/h result in LIDAR point densities on the pavement surfacging from150

to 1000 points/rh[107]°.

6 Average point density and the factors impacting point density are discussed in Chapter Besfishe t
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Data collected along a given highway is savednutiple files in .LAS format with each file

representing a certain segment along the highway. Data used in this thesis was segmented every

4km (.e.,each LASfile contains the point cloud of a 4km section of a specific highway coyridor
Due to the high point density of the datae size of the 4km segment file could reach over 500

MB, hence, the segmentation is done to ensure that the file size is manageable.

VQ-450 #1 -

GNSS5 anfenna
VQ-450 #2

Cameras

/

Inerfial N
Navigation ({ I
System | \
inside |

(g -

L =— L

\

Distance Measuremepf \Optical Cameras

Figure 12 RIEGL VMX450 Scanner Components

3.3.2 EQUIPMENTCOST
Similar to most higkend mobile LIDAR scanning systems, the REIGL VMX 450 is costly
equipment to acquire. In general, an MLS system could amgivhere between $80,000 and
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$700,000, depending on the specifications and the hardware included in thg y&leDespite

those high costs, LIDAR equipment is extremely cost effective when properly utilized.

In a recent studyyen, et al. [17FLonducted a comprehensive cbshefit analysis of using mobile
LiDAR technology in the management of Highway infrastructure. The authors only considered
three applications in their assessment, namely, roadside feature inventory program (RFIP), bridge
clearance measurement, and Americans with Disabilities Act (ARA&jure inventory. The
authors used information on the historical and current expenditures associated with these three
applications at two western state DOTs (Washington State Department spdmation and the
California Department of Transportation) and compared that to the costs of using mobile LIDAR

technology for the same applications.

The authors concluded thdatt he benef it s and c-olsatancesopearationg s f r C
alonecanout wei ghs the higher ¢ o[d47A. The stddy founcbtdal,c e hi
although savings might not be apparent in the first cycle of data collaciibinspections, savings

could range from $1.nillion to $6.1million after as low as three datallection cycles. These
conclusions are reached while only considering three applications for the technology. Moreover,

the assessment did not include thdinect (intangible) benefits from using the technology such as

the safety benefits, the higher datalection speedandhigher data accuracy associated with using

MLS.

I n fact, even in the NCHRP review ofeyddioDAR ap
the top factors delaying the adoption of the technology, the majority of DOTs were more concerned
about the lack of technical expertise requit@@rocess the datasets and the size and complexity

of datasets as opposed to the cost of the equipf2&htFunding rankedifth on the list of 11

factors included in the survey.

Finally, the fact that LIDAR has become a critical sensor in most Autonomous Vehicle (AV)
systems means that in the future data could be collected passively by AV asutgagentheir

way through the highway infrastructure, which could significantly reduce the data collection costs.
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4 CROSS SECTION EXTRACTION AND SLOPE ESTIMATION

4.1 BACKGROUND

A r oaods8estionaklementsre integral to the safe operation of a highwayact, an entire
chapter (Chapter C) i n Al ber t a oreconthengldtiang y De s
governing the design of roadoss sectionalements. Similarly, Chapter 4 of the AASHTO design

guideis also entirely dedicated twosssection design

Cross and side slopes are criticedsssectionalkelements that have a significant role in highway
design.Reducing the risks of safety hazardsach as hydroplaning;ross slopegnsure speedy
water drainage off roads. Similarly, designin
that errart vehicles involved inpotential run-off-theroad collisions, which account for
approximately a third of all fatal crashes on high®fd09,110] have a higher chance of recovery.

| nformati on about sl opes is al so crdetesignal t o
and vertical clearances. Identifying locations of ineffective slopes in order to be able to take

corrective action in a timely manner is important to the safety and efficiency of highway operation.

Settlement, cracking, rutting due to trafficath and soil movement are all environmental
phenomenon that cause slopes to become ineffective. Therefore, regular assessment of slope
conditions is requiredAccordingly, mostransportation agenciesquire thatross slopeandside
slopesare constanyl reviewed for compliance with current design standafdansportation
agenciesequire that field verification of such attributes is conducted, particularly if suspicion of
deficiencies in road slopes exj$fL1]. Nonetheless, collecting such information on highways can

be extremely challenging.

The manual procedures used to measumoss slopesre unsafe, time consuming, and labor
intensive. Despite that, total stations and manual dilgitals such as those shownHigure13

are still commonly used by DOTs for slope measurenjétfs113] These methods require field
engineers to physically place equipment on the pavement surface to obtain the measurements.
Furthermore, such procedures also require that traffic control is placed at locations where the
assessment is intended causing major dismpo traffic in fact on most highways lane closures

are only permitted during early morning hoyitd44], which means that authorities only have

limited time to carry out their measurements. All these issues make highway stweeypred
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measurements afross sectional attributegithin travel lanes almost impossible, especially on
highways with heavyraffic volumes and high speefsl4]. These problems are aggravated when
cross section assessmenteguired on multiple locations along a highway or when netierél
assessment alopeson multiple highways is requiredAlthough cross slope information could

be obtained using IMU, side slope information could not be captured using such systenfst Even
cross slopes, larggcale extraction of slopes on multiple lanes is more effective using a MLS
system since, in a single pass, the system is able to capture a range of up to 800m which covers
multiple lanes. Moreover, data collected in MLS could beluse the extraction for multiple
roadway features limiting the number of site visits required even for other features and roadway

design elements.

Figure 13 Road Slope Measurements Using Digital Level

For slope evaluationmoa long road segment, mdsansportation agenciegquire that a Full
Digital Terrain Model (DTM) of the roadwaybo6s
visits or photogrammetric tools. The DTM is then used to estimate cross sectional inforaatio

100t intervals. If generating a DTM from the entire roadway is not practical, some guidelines
recommend that the roadway limits whem®@ss slopes arpotentially out of tolerancei.¢.,

locations where there is suspicion of ineffective slopes)iestedietermined and DTMs are only
generated for these limif11]. While differenttransportation agencidsllow slightly different
procedures for slope assessments, most procedures are not practical when assessment is required
on a long segment or when a netwdakel assessment is required. Although the use of
photogrammetric techniques and GPS data are efticient compared to the use of manual digital

levels, these techniques also suffer from certain limitations. Using GPS data to estimate slope
information on roads requires collecting multiple observations to achieve higher accuracy, which
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is time consming. Similarly, the accuracy of data obtained from photogrammetric techngques
oftenlimited bythe quality of the images, which can be impacte@myironmental factors such
sun anglg115].

The burden associated with such assessnoenidsl be alleviated i& procedure is developed to
extract cross sections and their slojpes LIDAR point clouds Unlike other mapping techniques,
LiDAR creates a highly accurate 3@nse point cloud of a highway such as that se&igimre

14, whichmeans thamillimeter-level accuracy in slameasurements on roads could be achieved.

Figure 14: LIiDAR 3D Point Cloud Data
As already highlighted in Chapt2rnot many studies have attempted extractirass sectional

slopesrom LIDAR. Even the few studies that do exist in this ar@acentrate on extractirmgjoss
slopesof roads with almost no attention sade slope$35,43] In terms of the actual extraction
procedure, most studies require prior knowledge of lane markingsasuine cases, lane widths

in order to define the end points of slop@&s,43] While thismight not bea major issu@n most
roads extracting lane marking information extends the duration of the extraction process,
moreover, the quality of lane mkdngs on some rural roads might have degraded limiting the

extraction capabilities.

The novel algorithmproposed in this chaptesvercomes the aforementioned limitations to
facilitate automatedross sectioextractionfrom LIiDAR point cloud datan a hghly efficient and
accurate manneiThe proposed algorithm involves defining vectbisi nt er sect t he
Points within proximity of the vectors are then extracted from the point cloud representing the

roads cross sectioMultivariate AdaptiveRegression Splines ateimeans clusteringre used to
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identify points of change in slope on the extracted cross seatidninear regression is used to

estimate the slopes.

The extraction algorithm is tested on different highway segnietiie province of Alberta where
multiple cross sections were extracted along each highway and the slope information was
estimated. For validatiopurposesthe slope estimates were compared to slope information

obtained by Alberta Transportati¢AT) in se@rate surveys.

4.2 EXTRACTION ALGORITHM

This section includes a detailed description of the extraeigorithmdeveloped in this chapter

for the extraction of cross sections.

The crosssection extraction algorithm starts with defining position vectods wsing them to
create equally spaced trajectory vectors al on
are then constructed and the points within certain distance of a plane parallel to the normal vectors
are extracted. These points represeite r oadds cross section at th
The cross section is rotated and cleaned up, removing erroneous observations including outlying
points and roadside vegetation. After thkameans clustering and MARS are used to identify&not

(i.e., points of inflection or change in slope). Finally, linear regression is used to estimate the slopes
between the knots, which represent the cross slopes and side slopes of the extracted cross section.

Details of each step in the algorithm are pded in the next few paragraphs.
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Position Vector Definition

Points tracing the trajectory are used to represent position vectors along the roads axis.
Moving average technique is used to ensure accuracy

Y

Trajectory Vector Estimation &

Involves estimating vectors tracing the roads axis using information about the position vectors / £

Y

Normal Vector Estimation

Involves estimating the vector normal to the trajectory at the point
where extracting the cross section is desired

Y

Cross Section Point Extraction 3 =

Points within close proximity of the normal vector are retained < » |
(i.e., points representing the roads cross section at that location) |

r v

Cross Section Rotation

cosf) —sind 0]

Rotates extracted cross section so that it is perfectly aligned with the N-S direction. «————» R =|sin0 cos@ 0
This ensures that the code is effective even when the road is not perfectly . 0 0 |

aligned to the N-§ direction in the Universal Transverse Mercator coordinate system. 4

| |

Cross Section Cleaning

Removes erronous points from the extracted cross section
(i.e., point that do not represent the cross section and its slopes)

7 v

Inflection Point Identification & Slope Estimation

Identifies points of change in slope and uses linear regression < >

to estimate cross and side slopes

Figure 15: Cross Section Extraction Pipelihe
4.2.1 TRAJECTORDEFINITION & TRAJECTORWECTORCREATION

The first step of the extraction involves defining points parallel ta tleea ckidtreline which

trace the roads trajectory and cover the entire segfkeoivn as the position vectorg)o obtain

7 More information about the extraction algorithm is provided in the next few paragraphs
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theposition vectorsthe point cloudvas filtered based on scanner angle. Points that fell within the
Nadir planeof thelaserscanneri(e., pointsthat lie right below the scannesjerefiltered outto

representhe position vectors

Although the position vectorar e a very good representation
deviation in points exist due to the changes in the yaw angle of the dlatiao vehicle. To

ensure that these deviations did not imphet accuracy of the extractiothe moving average
technique was used to estimate the new position vagdrdsed on the positions of a set of three

consecutiveosition vectorsi(= 1 tom) as follows:

5 B

3)

The average position of three points is used to define the position vectors representing the end

points of each trajectory vector.

Figure 16: Position Vectors

Let ||-1 be the position vector defining the stpdint of the trajectory vector. Similarly Ieﬂtz
represent the position vector representing thepemdt of the trajectory vector. In that case, the

trajectory vector (E) at a poini alongthe road can be defined as follows:

VE= T - (@)
€0 &%, 0 - .
Where, i — €, U and & - €, U, hence\F can be rewritten as follows:
1= @y 2= @Y !
ez H et
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=Gyl = - ng (5)

&H &l &-zH
Multiple trajectory vectorsi(= 1 ton) are defined between each pair of consecutive position
vectors. The number of trajectory vectors defined depends dentidn of each and tHength of
the segment analyzed, which is predefined by the E&sercross section extractioBm long
trajectory vectorare recommende(l.e., the set of position vectors representfigand P2 are
chosen to be 5m apart). Although this parameter can be altered by the user, the vectors should not
be too long since thiwill create a poor representation of the roads profile on curved segments. To
ensure that 5m vectors were sufficient to replicate tleea rdjile, sensitivity analysis was run
on the data. The results of the analysis are preseng&stiion 43 of this Chapter
4.2.2 NORMALVECTORDEFINITION
Once the trajectory vectors are defined the next step is to estimate the normal vector of the point
at which the desired cross section is to be extracted. The normal Wefor €ach trajectory\)
can be estimatl as follows:

N; = [vy - Vy VZ] (6)

where,vx, W, andv; are the components of the trajectory vectoy.

After estimating the normal vector eterypointi along the roadthesevectorarethen shifted to
the midpoint of the trajectory vector using a translation ve€t®o that the cross section is

extracted at the midpoint ebchtrajectory vectow..

4.2.3 CROSSSECTIONPOINT EXTRACTION ANCROTATION

The aoss section extraction process ilwas extracting pointhatare within acceptable proximity

of a plane that is parallel the normal vectoandperpendicularlyinterceptsroads centerlin@s

seen irFigurel?. The dimensions of the plane are predefined by thehasezver, in caseshere

the algorithm is to be applied to a thane undivided highway a width in the region of 24m should

be sufficien for capturing allcross slopeandside slopesAs for the depth of the cross section
(le.,thedi mensi on of the pl ane t hat,thisdepends pnatheal | el
density of theLiDAR point cloud. If the point cloud density is higihcross section depth of 0.2m

was found to beusficient to obtain accuratestimats of road slopes previous worl{35]. In

fact, the sensitivity analysi®f the depth parameter conduciadhis thesis $ection 43 of this
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chapter) reveals that even a depth of 0.05m is sufficient. Similarly, using a depth of up to 0.4m
does not seem to add mucHueato the accuracy of the slope estimates.

Figure 17: Cross Section Plane

The distance between each point and the normal plane is calculated using the cross product. The
process involves looping through all points in the LIDAR point cloud and measuring their
proximity to the normal plane. Points that satisfy proximity requirésnare saved and exported

as acsv.

To ensure that the extraction is applicable regardless of the orientation of the road, rotation of the
extracted cross secti@mound the global-axiswasessential. The rotation matriR;) in Equation

7 is used to tansform all points in the extracted cross section to a+south orientationln other

words, the road centerline for all segmeistsotated to ruralong the yaxis of the Universal
Transverse Mercator (UTM) gridrhis rotationhelps avoid distortion wdn plotting the cross
sections andensuresthat filters used in the cross section cleanup stage (section 4.2.4) are
applicableregardless ofner oads pr of i dné¢hé YTMaridiTke mataton alsw helps
distinguish the side of the road for which slope estimates are obtained.

€0y - sing Og
R, = gsinq cosy OH (7)
g0 0 1y
where,—is the rotation angle which depends on the azimuth of the trajectory W&gtor (

4.2.4 CROSSSECTIONCLEANUP
Although cross section extraction is achieved at this stage, the extracted cross sections typically
contain erroneous points and outlying observattbasimpact the accuy of slope estimates.

Therefore, the extracted cross sections had to be cleanedhich is achieved in two stages. An
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intensitybasedfilter is first applied to the cross section and any remaining outliers are omitted

using a statistically defined buffer region.

For most crossectionsthe majority oferroneous points represented vegetation on the side of
the road (such as graseees and shrubs Vegetation is highly reflective to light rays, hence,
pointsrepresenting vegetatiagpically have high intensity values. Consequently, cross section
points with the highest intensigre removed. Only 10% of the data is removed since excluding

more points coulgotentiallycause the elimination of pointsontheo ad 6 s. sur f ace

Intensity based filtering removes a significant portion of the noise, however, other outliers with
low intersity might still exist. These low intensity points could be clusters of dust, vehicles or even
point clusters due to multipath errors. To remove those points a buffer zone is used to outline areas
where it is impossible for cross section points to exisé fight and left most bounds of the buffer
zone are defined as follows:

if x, >X+1.255; andz >z+0.1s;,

then(x; , z) isanoutlier
Similarly,

if x <X-1.254andz >z+0.1s,

then(x;, z) isanoutlier
where x andz denote the-coordinate and-coordinate of the cross section point fespectively;
afandaldenote theveragex-coordinate and-coordinate of all cross section points, respectively;
and, rand, rrepresent the standard deviation of xheoordinate and-coordinate of all cross

section points, respectively.

Figure 18 shows the cross section before and after cleaning. The figure shows that the clean up
process is effective in removing a large portion of the vegetation on the sides whileggiainis

on t he r olaisiwogh netingrhératltaethe regions further down the side slopes were not
included in the buffer zone filter since there was a high risk of losing point on the bare ground at

those locations.
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(@) Before Clean Up (b) AfterClean Up
Figure 18: Cross Section Clean Up

4.2.5 KNOTIDENTIFICATION

Since the proposed method is fully automated, it is assumed that the lane dimensions are unknown.
Thus, points of inflection (change in slope) must be determined automatidaliyo-step
procedure is proposed for this cau@g Cross section clusteringsing kmeans, and (ii) break

point estimatiorusing MARS.

4.2.5.1 K-MEANS CLUSTERING

k-means is amnsupervised learning algorithnsed for clustering datét. works on assigningn
datapoints tok clusters whereby each observation is assigned to the clusteéhevitbarest mean.
Mathematically, the algorithm works on minimizing a squared error objective function. The

algorithm aims to minimize the following objective function

k n ) 2
144K o ®

j=1i=1
Where, |x' - ¢, Hz is a distance measubetween observation and the centroid of the clustgr

This is an indication of the distance of n points from their cluster centres.

In this Chapter Euclidian Distance was used as the measure to cluster different parts of the cross

section. Four diffeent clustersk = 4) are specified since it is desired to break the cross section

into two parts either s icrdssslopdsand tivepartsmehdditch cr ow

of the road (to estimatade slopes
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(b) ChangePoint detected using MARS
Figure 19: Inaccurate Assignmentieans

Although thek-meansis effective in accurately breaking up the cross section into four portions
that accurately represented the crown and the sides of the road in most@zssenal inaccurate
assignments of point on the side slope to the cross slope and viceaddsaccur as illustrated

in Figure19a. To overcome this, MAR® used to identify any break points where changes in
slope between points in the same cluster were detected. It is worth noting here that using the MARS
regression whout clustering is possible, however, MARS is extremely sensitive to the existence
of outlying points, hence, developing a MARS model for the entire cross section reduces the

likelihood of accurately detecting the break points.

62



4.2.5.2 MARSREGRESSION
MARS is a form of piecewise linear regression introduced~bgdman [116] MARS extends
product spline basis functions such that the basis functions and their parameters, including knot
locations, are determined automatically. In other wort$\RS is anonparametric
regressiortechnique that automatically detects and modelslinearity in data.The general

notation for the MARS model is denoted as follows
f(x)=acB(x) 9
i=1
where,B(x)is a basis function that can take the form of a constant or a hingsfunc

A hinge function takes one of the following functional forms
maxQ, X- C) (10
maxQ,c- X) (11)

wherex is the independent variable ant a constant which is also known as the knot.

It is worth noting that MARS uses modified recursive partitioning to adjust the coefficient values
to best fit the data. This enables the automated selection of values for the knot variables of the
hinge functions. These knots are the points of changepe, svhich are required to estimate the

slopes of the cross section.

4.2.6 S OPEESTIMATION

After identifying the knots on the cross secti@ngss slopesind side slopescould then be
estimated. Points between each pair of consecutive knotmeaely regressed to estimate the
slopes Although cleaning up the cross sections removes a high portion of the noise, for some

segments where high vegetation exists on the side of roads, some outliers may still exist.

The cross section and slope estimation dlgar detailed in the past few paragraphs were coded
entirely in MATLAB. The coddhatutilizesthe earth packagen in R statistical software v3.3.1
was used to run the MARS regressjbh7]. To ensure full automatiohé R code was embedde
into MATLAB.
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4.3 SENSITIVITY ANALYSIS

Before testing the proposed algorithm, it was important to perform sensitivity arwdlifssuser
defined parameters in the extractagorithm The parameters discussed in this section are cross

section depth anddjectory vector length.

4.3.1 CROSSSECTIONDEPTH

To understand the impacts of theosssectiondepth on slope estimate®) differentslopes
(including cross and side slopeggre estimatedt the same statiomhile changing the depth of

the extracted cross section on one of the test highwaysre 20 a and b show the results of the
sersitivity analysis forcross slopeandside slopesrespectively. As seen in the figures, changing

the depth of the cross sectioadhlimited effects on the slope estimatesfact, there are also no
common trends in the relationship between depth amk gdstimates, which indicates that the
minor differences are due to random error in the observati®dhgs observation is reasonable
considering the high point density on the road surface. The high point density means that even
with a depth of 5cm, enougtoints are extracted along the roads cross sections, which ensures
accurate slope estimates.
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Figure 20: Sensitivity Analysis of Cross Section Depth

4.3.2 LENGTH OFTRAJECTORWECTORS

As already indicated, the length of trajectory vectors (or the spacing between the two position
vectors used to estimate the trajectory vector) is user defined. Howleedength should be
specifiedwhile ensuring that the vectors are shortteigoh t o accur ately replic
yet not too shorto avoid capturinggsci | | ati ons in the vehiclebs
alignment. To identify whether the 5m length for the trajectory vectors was sufficient, sensitivity
analysis vas run on a LIiDAR highway segment with a curve. This was done by estimating the
change in azimuth between consecutive vectors at different vector lengths. The outputs of the
analysis, as illustrated Figure21, show that 5m vectomsereindeed the most effective since the

change in azimuth between consecutive vectors is minimized at a leng8mof 4
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Figure 21: Sensitivity Analysifor Trajectory Vector Length

4.4 TEST DATA

4.4.1 DATACOLLECTION

As previously discussedath used in thithesiswas collected by AT using the RIEGL VM50
laserscanning systenMore informationon the capabilities of the REIGL VMA5S0 are presented
in Chapte of this thesislt is worth noting here thathe impacts of point density on the extraction
of cross sections and their sloee discussed iGhapter8 of this thesisvhere a comprehensive

assessment is performed

Cross slopes estimated using tireposed methodiere compared to slopata stored irATO s
DatabaseThe information collected by AT was obtained in GPS surudgfortunately, detailed
information about he the slope information was collected by &vasnot available, howeveAT

did provide information about the accuracy of a typical GPS surveytypical GPSurveythe

latitude and longitude coordinates are measured in degrees expressed as a minirdaoinoél

real value in reference to the North American Datum 1983 Canadian Spatial Reference System
(NAD83 CSRS) using the GSD95 Canadian geoid model for orthometric heights. Although
measuring slopes on a road segment is not affected by absolute aceraitye global accuracy

of the points is not an issue when measuring slopes as long as they are accurate relative to one
another),absolute accuracy of GPS dasaalso relatively high with horizontal errors being
bounded by a circle of 0.625m rad®E% of the time. Similarly, the vertical coordinate is accurate

to within 0.87%n radius 95% of the time. Unlike GPS, digital level data was not available within
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ATO6 s dand ddneesitevas not possible to compare the extracted information to digatal |

data.

4.4.2 TESTSEGMENTS
The extraction algorithm proposed in tlkaptemwas tested on two different highway segments
in Alberta. The two highways (Highway 53 and Highway 36) are showigure22 andFigure

23, respectively.

Highway 53 is a twdane undivided highway in central#drta. The highway intersects Highway

2 just north of the City of Red Deer. The analyzed segment on Highway 53 lies slightly east of
Highway 2 and extends a length of 4km. The segment falls between Highway 2 and Highway 21.
Some variations in the o aréical alignment exist along the analyzed segment. In contrast, no
variations in horizontal alignment exist. Vegetation in the roadside area is moderate to high, with
trees planted on the roadside at some locations. No interchanges or major intersastionglee

analyzed segment, however, access to local roads is provided.

' igure22 est Set nHihy
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Figure 23 t t . ighwa 36
Highway 36 is a twdane undivided highway in Alb&. The analyzed segmeat Highway 36

was a 2km segment northeast of Drumheller. In general, vegetation is relatively low on this
segment and the roadside area is relatively clear. The vertical alignment along the segment varies
slightly and the speed limit on the road is X@@h. No major ntersection®r interchangesxist

on the segment; however, the segment is accessible through local service roads.

45 RESULTS AND DISCUSSION

To test the algorithm proposed in this chapter, it was used to extract cross sections and estimate
slopes omultiple highwaysegments in Albertd.esting was conducted by importing a laser scan
on of the test highway into thegorithm, whichthen outputted a set of pointspresenting the
cross sectioras well as slope estimates at a predefined station, or setiohstdhe results

presented in this section are those obtained from testing the algorithm on Highways 53 and 36.

Table 1 and Table 2 show slope information extracted at multiple stations along the LIDAR
highways. Furthermoresigure 24 andFigure 25 show LIDAR points representing the extracted
cross sections at a selection of stations along the two highways. Slopes showreinleieand
Table2 are shown in decimal degrees while the slopes showigire24 andFigure25 are in
percent The Figures show that the developed algorithms were extremely effective in extracting
ther o aato8sssections. The knot locations are also highlighted on the figures with the end points,
midpoint and the points of change in slope all estimated at anaasdevel of accuracy. The next

few paragraphs discuss the slope estimates obtained on the two test highways.
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4.5.1 CROSSS.OPES

Cross sections were extracted every 100m for a 1km stretch on each test higiinedy
demonstrates the value of the proposedrélgua in performing network level assessment of slopes
on a highway segmenThe cross slopes fell around the expected range of 1% to 2% on both
segments (se€Bablel andTable2). This range is the standard used in the Alberta Highway design
guide for Asphalt Concrete Pavement highwdys3].

Tablel: Slope Estimates Highway 53

Station (m) SS Left (WB) CS Left (WBJ CS Right (EB) SS Right(EB)
21700 0.216 0.010 -0.032 -0.157
21800 0.201 0.010 -0.026 -0.135
21900 0.180 0.010 -0.023 -0.140
22000 0.222 0.011 -0.024 -0.149
22100 0.199 0.013 -0.022 -0.163
22200 0.244 0.011 -0.024 -0.173
22300 0.216 0.015 -0.025 -0.197
22400 0.237 0.014 -0.025 -0.156
22500 0.179 0.010 -0.026 -0.177
22600 0.217 0.014 -0.020 -0.203
22700 0.215 0.020 -0.019 -0.209
Mean 0.211 0.013 -0.024 -0.169
SD 0.020 0.003 0.003 0.025

Table2: Slope Estimates Highw&6

Station (m) SS Left (SB) CS Left(SB)  CS Right (NB) SS Right (NB)
25200 0.177 0.024 -0.025 -0.277
25300 0.162 0.018 -0.026 -0.309
25400 0.206 0.026 -0.027 -0.278
25500 0.176 0.019 -0.026 -0.152
25600 0.129 0.019 -0.026 -0.151
25700 0.128 0.019 -0.027 -0.252
25800 0.105 0.015 -0.028 -0.129
25900 0.137 0.018 -0.028 -0.183
Mean 0.153 0.020 -0.027 -0.217
SD 0.033 0.003 0.001 0.070

“Units are in decimal degrees, negative denotes opposite direction
CS: Cross Slope, SS: Side Slope
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Figure 24: Extracted Cross Sectiomtighway 53(axes are in meters, slopes are in %)
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Figure 25: Extracted Cross Sections Highway 36 (axes are in meters, slopes are in %)

Although slopes are not expected to be constant along a highway segment, significant variation in
slopes is not expectesither,unless that was intended in the design stageeidre, the fact that
therewasno major variation in cross slopes along the corridor is poditiding. The standard
deviation ofcross slopeslong the 1km stretch for both travel approaches on both segments did
not exceed 0.3%. These slight variatians expected given imperfections during the construction
stage. In fact, it is worth noting that thestrumentprecisionfor a digital level ranges between
0.05% and 0.2% depending on the slope afidl®], hence, it is unlikely that a digital level would
capturehe difference in cross slopelstained from the LiDAR assessmentother words a digital

level (due to the low présion of the instrument) would not be able to capture the slope differences

at different points along the segment obtained using the MLS.
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Al bertads design guide doesnot provide a ran

corrective actionln cantrast to thatthe TAC design guide expects cross slopaangebetween
1.5 and3% for slopes that are not superelevatechd®Okn/h highway[120]. If the cross slopes
are not within the acceptableaange, corrective actiorwhich often includeseplacing the full
pavement layer at the defected region, mightdmpiired121]. If the aforementionedriterion
were to be applied to the test segments presented itagesstudyno corrective action would be

required since altross slopefall within the acceptable range on both test segments.

As already pted in section 4.1.1, theoss slopes extracted using the propadgdrithm from

mobile LIDAR scansvere compared to data estimatedtinersurveysand stored iAT s database

to ensure both estimates were within range of one anokhgure 26 shows bar chast
demonstrating the comparison whergycslight variations in the slope exists. For eastbound (EB)
direction on Highway 53Kigure 26d) theaverage difference between slopes obtained from the
LIDAR and the GPS is <0.001 decimal degrees (0.097%). Similarly, for the westbound (WB)
direction Figure26c) the average difference was 0.0022 (0.22%). For Highway 36 the northbound
(NB) direction Eigure26b), the average difference was <0.001 (0.08%) while for the Southbound
(SB) direction Figure 26a) the difference was 0.0017 (0.17%). Although differences in slope
between LIDAR and GPS exist at individual stations, the aggregate results are consistent.
Differences at individual stations could be attributed to LIDAR detecting pavement degradation at
those locations due to its high precision. Overall, depending on the location and the slope, percent
differences ranged from 0.0001% to 0.4% for the 38 cross slopes estimated (19 stations, 2 travel
approaches). These numbers are in line with findings efigus studies that performed cross
slope extraction from LIiDAR. In work bysai, et al. [35] the percentdifference ranged from

0.01% to 0.3% for the 15 cross slopes extracted. In the papéolggdeBarco, et al. [122]the

percent difference ranged from 0.024% to 0.094% for the 12 cross slopes extdastédg a d o
Barco, et al. [43did not compare their results to aggound truth measurements. Despite the
numbers being consistent, it is important to emphasize that different studies were conducted under
different circumstances, using different tools and on different roads. Hence, the numbers reported
here are only meato provide the reader with a sense of what the percentages looked like in other

studies. The intens not to perform an absolute comparison between the different methods since
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this is not possible unless the algorithms are tested on the same highments@dnat being said,

the proposed algorithm does improve on previous studies through (i) full automation of the
extraction process, which has significant impacts on the efficiency of performing nééwerk
cross sectiomssessments (ii) the extractiohside slopesn addition tocross slopgssomething

that has not been achieved to date in the literature, and (iii) the extraction of slope information

independent of lane marking information, which helps increase the efficiency and the robustness
of theextraction process.
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Figure 26: Cross Slope ComparisqhiDAR vs GPS)

One important observation on both segments is thartss slopeare flatter on the WB direction
(Highway 53) and the SB direction (Highway 36). On averagess slopesn the WB direction

of Highway 53 is 1.3% while theross slopesn the EB direction is 2.4%. Likewise, the average
cross slopesn the SB direction of Highway 36 was 2% while it was 2.7% for the NB direction.

Similar observations were reached when comparing the GPS data from the two sides.

4.5.2 SDE S.OPES

The proposed gbrithm was also effective in estimating SS. In case of SS, the Alberta Design

Guide requires that slope are not steeper than a 4:1(23%]) The steepeside slopesstimated
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on the Highway 53 segment was 4.1:1 at station 22200. All stderslopealong the segment
were flatter than 4:1i.e.,recoverable slopes). This implies that, in case a vehicle runs off the road,
the slopes are forgiving enough to allow the driver to regain comgqlrécover). Therefore, if

an assessment were to be conducted on Highway 58idinalopevould not rejuire corrective
action since they satisfy minimum safety requirements. It is worth noting that high vegetation on
Highway 53 did not impadide slopesstimates. Unlike Highway 53, Highway 36 rede slope

that were as steep as 3.5:1. This was obserm®deln stations 25200 and 25400. Hence, further
investigation and possible corrective action might be required in this region. In contrastrtsthe
slopes theside slopeon Highway 53 were flatter on the EB travel direction. §ide slopesthe

WB direction averages a 4.7:1 slope while the EB direction the aveidgslopas 5.9:1.

4.5.3 PROCESSING TIMECHALLENGES AND RECOMMENDATIONS

In addition to théhigh accuracy obtained using the proposed method, efficiency is also high. For
Highway 53, a 4km Li[AR segment containingl.7 million points, the entire procedure including

knot identification, sl ope esti mati algosithmrand pl
on Highway 36which contained 15.5 millionpointe n1 y t oo k 3 Lktior® he lpighr cr o ¢
efficiency of the proposed algorithm helps overcome challenges associated with fetwgbrk

estimation and assessment of slopes.

Despite the high accuracy amigh efficiency achieved, some challenges did exist. firtaen
challenge is thathe MARS regression used to identify knots on the cross section is extremely
sensitive to the density of the LIDAR points. More noise in the extracted cross section result in the
MARS regressions identifying knots which do not correspond to actual chemglepe (€.,

false positives). Cleaning up the cross section using the intditgtyand splitting different
portions of the cross section using tameans algorithnsignificantly reduces the likelihood of

such an issue, hence the importance & stage. Inlte assessment conducted in this thebis
maximum number of false positives identified on a single cross section was two false positives
(i.e., only two inaccurate knots). In factpme of thosd&nots are identified in the middle of a
slope thus the only impact they have on the results is that two accurate estimates are obtained for

the same slope.

Another observation worth noting is that, the density of the points on one side of the road is always

higher than the othef his is expected when LiDAR is collected in a single survey pass since the

74



density of LIDAR points is a function of the proximity of objects to the scanner. Thus, point density
for the slope closer to the travelled approach is higki#rough, tis hadno impact on the results
obtained in this thesigt could be a source of concern if lower density scanners are used. Another
source of variation in point density is the type of scanning system used. The higher the scan rate
and point density, the highdnd reliability of the slope estimatdeaders interested how the

algorithm would perfornatlower point densityare referred to Chapter 8 of this thesis

4.6 SUMMARY & CONCLUSIONS

ThisChapter of the thesproposes a novel algorithm for teetraction ofcrosssectionaklements

of roads scanned using LIDAR. The algorithm is highly efficient and fully automated, which
facilitates timely assessment of slopes of highways on a netexgk This helps officials identify
locations of ineffectiveslopes and take corrective action in a proactive mameey lpefore any

safety problems occur). The proposed algorithm was tested on two different highway segments in
Alberta, Canadavhere 38 different cross slope and side slope measurements wéneathe

results show that the algorithm is effective in estimating cross and side slopes of roads at a high
level of precision and accuracy. Although cross slope extraction has been explored in previous
research, most procedures require the use of laniimg information to perform such extraction.

This makes the extraction difficult on road where lane markings have degraded or where markings
do not exist. This study also demonstrates the possibility of extracting side slope from LIDAR at
a high level ofaccuracy and at regions of high vegetation. To the beéstoke a knowledge,b s

no paper has considered the extraction of side slope information from LiDAR data, batflore

most studies citing high roadside vegetation as the reason why such extimaxiremely

challenging.

75



5 HORIZONTAL CURVE DETECTION AND ATTRIB UTE ESTIMATION

5.1 BACKGROUND

Horizontal alignments on highways are designed to ensure that drivers travelling at the speed limit

of the road can safely negotiate the curve. Curves with shdiipor inadequate superelevations

could result in drivers losing control of their vehicles increasing the risk of overturrsikglding

off the highway. In fact, statistics show tladproximately ondourth of fatalities on highways

occur on horizonfacurves[123]. As a result, design guidelines dictate that curve radius and other
attributes on a curve meet specific requirement. Minimum curve radius is estimated as a function

of the roaddés design speed, the supaevhighisevati o
used as a proxy of the amount of friction the pavement provides. If the radius on a curve drops
below the minimum radius estimated in design equations, the likelihood of a driver safely

negotiating the curve reduces significantly.

Despite all efbrts to construct road alignments in accordance with degiggtelines budget

limitations site imperfectionsas well as maintenance and resurfaciaan that deviations from

design plan®ften occur. Hence, it is essential to survey horizontal curvestlagir geometric

attributes after construction and throughout the service life of a road to ensure that they meet design
requirements. Obtaining such information in an efficient manner helps authorities take timely
corrective action in cases where degignitations exist. Obtaining information about attributes of
horizontal curves is also essential to the development of operating speeds models. These models
are often used to predict operating speeds on
then used to set a safe speed I imit that i's ¢
connected vehicle technology and vehicle to infrastructure (V2I) communications, curve warning
systems also require that curve informati@readily availableandgetefficiently communicated

to drivers in reatime, ergag the importance of having an efficient method to obtain such
information in an accurate mannefhe knowledge of curve geometry is also essential for
autonomous driving at locations where |lan&rking information might not be sufficient to guide

the vehicle through a curve.

Regardless of the reason, surveying the attributes of horizontal alignments on roads is an integral

step to efficient management of road infrastructure. Nonetheless, manual methods to collect such
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information such as the chord offset method and compadsdere time consuming, labour
intensive angrone to human errg24]. As a result, transportation agencies have been looking
for more efficient alternatives to obtain such informatiwhichinclude the use of GPS data. The
literature shows that there have been multiple attempts to extract curve attributes using GIS
platforms, with the majority of the work focusing on using GPS data specifically to estimate such
attributes [87,88,90,125,126] Although using GPS data has helped overcome the burden
associated with site visits and manual data collection methods, the low density of points collected
in GPS surveys and the low accuracy sometimes result in poor estimates of the horizontal

alignment gemetry. Furthermore most studies that have attempted using GPS data to estimate

curve attributes focus on estimating curve radii alone without rmfohmation on how other
attributescould be extractdf8,126]

Figure 27: LIDAR Point Claid hin Horizontal Curve
This Chapteraddresses some of the limitations of using GPS data for estimating curve attributes
by proposng a novelalgorithm to extract horizontal alignment attributes on highwsngsned

using mobile LiDARtechnology In addition to overcoming the limitations associated with using

GPS data, the high point density of LIDAR datasets helps use the same dataset to measure other
geometric attributes of curves such as sight distance and allowable horizontal sight offset.
Furthermore, LIDAR also allows for the estimation of curve geometry at different approaches on

a roadway or different lanes on an approach, somethatg not possible using single path GPS

data. Despite being rich in the information they carry {(Sgere27), the review conducted in

Chapter2 of this thesis revealed that only a single study had attempted the extraction of horizontal
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alignment informéon from LIDAR[34]. Furthermore, the method proposed it tstudy was not

fully automated.

The method proposed in this Chapter wdrksautomaticallydetectingand measung attributes

of horizontal curves ohiDAR highways The proposed algorithm uses changes in azimuth of
vectors aligned along thie o a akisé te estimate the locations of horizontal curves. Once the points

of curvature (PC) and tangency (PT) are defined for a particular curve, the algorithm uses linear
regression of the tangents connecting the curve to locate the point of intersectiohéMPYL and

PT are then restimated. The final step involves locating the centre of the curve. Once this is
identi fied, the curveds radius, defl ection ar
proposed algorithm was tested on two mobile LiDddRasets. Moreover, to verify the accuracy

of the proposed algorithm, it was also tested on a simulated data generated using AutoCAD Civil

3D.
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5.2 EXTRACTION ALGORITHM

The algorithm proposed in this study is divided into multiple stagebkich are summared in

Figure28 and detailed in the next few subsections.

Position Vector Definition

Points tracing the trajectory are used to represent position vectors along the road's axis.
Moving average technique isused to ensure accuracy

Y

Trajectory Vector Estimation

Involves estimating vectors tracing the road's axis using information about the position vectors

v

Changein Azimuth Estimation

Involves estimating the change in azimuth between consecutive vectors
while normalising the change in azimuth accross the entire segment

Aw=aV,-aVa
%

Atnorm = A/ Alimax

Y

Curve Detection

Start and end of curves are estimated at locations where change in azumith
exceeds the predefined threshold.

v

Curve Attribute Estimation

Linear regression is used to locate the point of intersection (PI) and the deflection angle.
True point of curvature (PC) and point of tangency (PT) are also estimated based on
point proximity to trajectory points to regression line

v

Curve Radius Estimation

Involves estimating the curve radius by intersecting the lines normal to the tangent at either
end ofthe curve. The tangent (T), and Chord length (C) are also estimated

v

Spiral Transition Length

Involves estimating the length of the spiral transition region by re-estimating the
true origin ofthe curve based on the drcular region.

Figure 28: Horizontal Curve Extraction Pipeline
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5.2.1 TRAJECTORWECTORDEFINITION

The first step of the extraction process involves defining trajecteciors. The process used to
obtain the vectors has already been discussé&hapter4, section 4.2.1 of this thesig this

Chapter, 20m long trajectory vectors were ued, the set of position vectors representiig

andP:2 are chosen to be 20m apart). This parameter can be altered by the user depending on the
curve sharpness expected on a particular segment. For detection of smooth curves and higher

spacing is recomnmeled, while for sharp curves even a spacing of less than 5m may be sufficient.

5.2.2 CURVEDETECTION

For curve detection, the algorithm loops through all the trajectory vectors and compares the
difference in the azimuth between consecutive vectors. If thegeham azimuth exceeds a
predefined threshold then this point is assumed to mark the start or the end of a curve. In order to
ensure that the threshold for detecting a curve is effective for all curves on a particular segment,
the difference in azimuth beegn consecutive points is normalizemsed on the local change in
azimuth This is done by dividing change in azimuth for each pair of consecutive trajectory vectors
by the maximum change in azimuth detecigthin a range of 15 vectars L eitan @y UV
represent the azimuth of two consecutive trajectory vectaerand \% respectively, in this case

U, which is the change in azimuth, can be ca
U =-Ww (12

The normal i zed cnbkrpoargbe computechas followst h (U
Pbbm=  @Unax U (13

w h e r exdepates the highest change in azimuth detectédeolocal region within a segment

To distinguish the beginning of a curve from its end the code checks the change in azimuth of the
pervious pair of points, that does not exceed the threshold the point is a start pthietwise it

is the end of the curve. Furthermore, to ensure that the curve does indeed start at a particular point
where a change in azimuth is detected, the code requires that the chpegasienti(e., the

change in azimuth is sustained for a particular length). This is done to minimize the possibility of
detecting short changes in azimuth due to data collection inaccuracies as horizontali.eurves (

minimizefalse positives).
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5.2.3 FEATUREIDENTIFICATION
Once the whereabouts of the curves are identified, its geometric elements eatintzged
however, before that is done it is essential to accurately identify the defining @ioiné curve

including the point of intersection (Pthe point of curvature (PC), and point of tangency (PT).

5.2.3.1 POINT OFINTERSECTION

To estimate PI, the algorithm uses a set of points before reaching the candidate start point of the
curve and another set of points after passing the candidate end pbi@tcofve as indicated in
Figure29 a. Linear regression equations are then developed for the two tangents. The algorithm
then finds PI of the curve hptersecting those equations. The deflection angle is also estimated

by calculating the difference in azimuth between the lines.

5.2.3.2 POINT OFCURVATURE ANDIANGENCY

Although, the code identifies candidate locations for the start and end of each curvpoitisse

are not always accurate. The true PC and PT could be a few points before or ahead of the location
identified based on change in azimuth. Therefore, more accurate estimate for the beginning and
end of the curve are estimated by minimizing the diffeeein northings estimated using the
regression equation and those obtained from the LiD#ifch trace the o a akig.sThe code

starts at Pl and moves towards both PC and PT until the difference in northings drops below a
specific threshold, as illusted inFigure29 b. Once that point is reached the new locations of PC

and PT are defined.

(@) Developing Regression Equations to Locate P (b) LocatingAccurate PC and PT
Figure 29: PI, PC and PT Estimation

5.2.3.3 CURVETANGENT, RADIUS ANDCHORDLENGTH
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The tangent of the curve (T) is estimated by calculating the Euclidean distance between Pl
both PC and PT. It is expected that, for a symmetric curve, the estimates for T obtained from either

side of the curve a@mostequal.

To identify the radius of the curve, the normal line for each of the two tangent lines previously
developed using regssion is estimated. The lines are estimated such that they pass through PC
and PT of the curve. The intersection point of the two lines, which represent the origin of the curve
is then located as evidenthigure30. After locating the origin of the curve, the radius is measured

by finding the Euclidean distance between PC/PT and the origintfe intersection point).
Moreover, the chord length so measured by finding the Euclidean distance between PC and
PT.

Figure 30: Locating the Curveds Origin and Measuring
5.2.4 SPIRALTRANSITIONDETECTION
In an attempt to identify whether the curve includes spirals oarsefyarate procedure is proposed.
Il n this procedure, the first step is to |l ocat
PT, once this point is located, a poogyond (right) and preceding (left) the cergmnt which
fall on the curve andre within 25% of the distance between the centre point and the end points

are located as shown igure31.
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New Origin ’
7

05

Origin
Figure 31: Left and Right Points with®2Percenbf the Centre of the Curve

After identifying the three pointieft, right andcentre the code calculates the @isce between
each of the threesavell agpoints along the linghatconnecthe centre of the curve and its origin

as illustrated irFigure31. The code loops through multiple points along that line timgilradii

are equal in lengthThe ideahere is that spiral curves are detected when estimated radii are

different in length or &timated centers of curvature do not coincide

The code is written such that it would minimize the difference between the three radii. Once the
difference meets an acceptable threshold defined by the user, the codstbetpabrdinates of
proposed origirof the circular curve and provides an estimate for the circular radii in case a spiral

exists. It is worth noting here that the entitgorithmwas coded in MATLAB.

5.3 TesTDATA

The proposed algorithm wassted (i)mobile LIDAR scans of existing highwagsd (ii) curves
generatedh AutoCAD Civil 3D. The next few paragraphs provide information ortwlteLiDAR
segment and th€ivil 3D data More information on théaserscannewused to collect the LIDAR

dataand its capabilities are found in Chapesf this thesis.

5.3.1 TESTSEGMENTS
The two highway segments on which the algorithm was tested are shdvigune 32. Curve
detection is based on changes in azimuth, which are typically high for sharp curves and low for

mild curves. Therefore, to ensure that the algorithm is accurate enough in detectinfesve
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mildest of curves, testing was conducted on segments where existing curves had a very large radius

(i.e.,curves were not sharp).

(a) Highway 36 (b) Highway 32
Figure 32: Point Cloud Data at Test Highways

The first segment usedasa 4km segment on Highway 36. The segment is alame undivided

rural road with a speed limit of 1R@V/h located in the southern region of Alberta, southeast of the

city of Lethbridge. The segment includes a single horizontal curve atattlemost part of

analyzedsection. The roadside area is relatively clear with very low vegetation with only slight

variations in vertical alignment.

The other LIDAR segment was also4km segment;however, this segment was located on
Highway 32. The segment is located in Central Alberta northwest the City of Edmonton. This
segment is also a twlane undivided rural road with a 1@/h speed limit and includes a single
horizontal curve. Unlike Highay 36, vegetation is relatively high on this portion of Highway 32
as evident irFigure32b.

5.3.2 CiviL 3D DATA

In addition to the two LIDAR highway segments, the algorithm was also tested on curved segments
of known geometric featureseatedn AutoCAD Civil 3D. This was done to verify the accuracy

of the proposed algorithm since the attributes of those curveswedrknown and more reliable

than information on abuilts of the LIDAR segments. Information onlagilts was not always up

to date and, in some cases, did not represent existing conditions. Moreover, some information
about the curves was missing frane tasbuilts and had to be calculated based on other attributes.
Two different curves were drawn in Civil 3D one was a simple circular c@wd 8D Curve I)

and the other was a curve with spiral transitions at either@nd 8D Curve Il). After drawing

the curves in Civil 3D, a high density of points was generated along each of the curvebeausing
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AAl ong Line/ Cume & att ®o IP ou m dtebr Tt plsistseveré gemematedu s
such that the point spacing was similar to that of thedi@jg points filtered out of the LiDAR
point cloud (6pts/m)Thesepointswere then used to create the trajectory vectors required for the

curve detection and attribute estimation, as already detait=tiion 52 of this chapter.

5.4 RESULTS AND DISCUSSION

Table3 andTable4 shows the results of nming the algorithm on the segments. The table shows
the information about all curve attributes including Radii, Deflection Angle, Arc Length, and
Tangent Length for each of the test segments. For the LIDAR segih&inles4 shows information
obtained from the aBuilts provided by AT and information estimated using the proposed
algorithm It is worth noting that abuilt information was only availabléor Highway 32.
Similarly, for the Civil 3D segment3.able3 shows the actual attributes used to draw the curves

in Civil 3D and the information obtained from the propoakgbrithm For all three curves, the
tables also show the absolute difference in the two measurements (Actual vs Experimental) for

each of the attributes. Moreover, fhercentifference is also computethd shown in the tables.

In terms of the actual detection, the results show that the algorithm was successful in automatically
detecting all the curves on the four test segments. In fact, the algorithm was also able to detect a
second curve towards the eofithe Highway 36 segment, however, the attributes of this curve
were not measured (not listed in table) since only a portion of the curve was captured on the

analyzed.iDAR segment.

The results also reflect the high accuracy achieved when estimativeg attnibutes using the
proposed algorithm. For the three curves where reference measurements were available, the
averageercentifference between measurements obtained from the code and other measurements

was less than 2.25% for all the attributes.

For Civl 3D Curve I, thepercentdifference between the measured and the actual attributes of the
curve range from 0.33% to 1.2% for each of the attributesCrar3D Curve I, the differences
range from 0.92% to 2.1%. It is worth noting here that theegatibtained from the algorithm and
recorded inTable3 are for the curve including spiral curve transitions. (they are not attributes

of the ciralar portion of the curve).
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In case of the LIDAR highwaywhere agbuilt data was available, the result accuracy was also

high. On Highway 32, the@ercentdifference between the results obtained using the proposed

algorithm and the information read off tagbuilt drawings ranged between 0.7% and 4.6%. The

highest difference of 4.6% (54 m) was recorded when estimating the radius of the curve. In

contrast, the smallest difference 0.7% was for the arc lengtm&2ad the deflection angle of the

curve 0.34. Recall that a 2@ position vector spacing was used, hence, a differencenotédld

be a matter of the code being inaccurate by one or two points when locating the PC and PT of the

curve.

Table3: Test Results o@ivil 3D Curves

Civil 3D Curve Civil 3D Spiral Curve
Actual Detected DIerence o g acal  Detect Difference g
(m) ed (m)
Radius (m) 2000 1976 24 1.20 1000 1009.2 9.2 0.92
Deflection
Angle 20 89.12 0.88 098 90 889 1.1 1.23
(degrees)
Length (m) 31415 3131.0 10.5 033  1570.8 1603.8 33.1 2.10
Tangent 2000 1985 15 0.75 1000 1004.9 4.9 0.49
Length (m)
Table4: Test Results on LiDARetected Curves
Highway 36 Highway 32
As- Detected Difference %Diff As- Detected Difference %Diff
built (m) built (m)
Radius (m) N/A 19553  N/A N/A 11643 12183 54.02 4.6
Deflection Angle \,a 2428  N/A N/A 521 517 0.34 07
(degrees)
Length (m) N/A 8388 N/A N/A 11345 11262 8.27 0.7
(Tmag‘ge”t Lengh  \yo 3085  N/A NA 5792 5712 8 1.4
Chord Length /A g104  N/A N/A 10217 1064.9 432 4.2

(m)

In case of Highway 36, although nclasilt data was available to assess the accuracy of the results,
further analysis on the curve data revealed that the curve was not symmetric and that a spiral
transition existed on one end of the curve. The code wastaldetect this difference when
estimating the tangent (T) of the curve. Two different estimates were obtained either side of the
curve (on all the other curves the estimates either side were very close). To verify the existence on
a spiral transition omne end of the curve the azimuth change diagram seEigumne 33 was

plotted. It is noted on the figure that at one end of the curve (2200m) the change in the azimuth is
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linear while on the other end it is nonlinear (2950m). This proves the existence of a spiral transition

at the nonlinear and not the other.

300

250
2000 2200 2400 2600 2800 3000 3200
Distance Along Segment (m)

Figure 33: Change in Azimuth Along Highway 36 (no change denotes straight segment; linear change denotes curved segment;
nonlinear change denotes spiral transition)

5.4.1 PROCESSINGIME, CHALLENGES AND RECOMMENDATIONS

As demonstrated by theesults, the proposed algorithm is highly accurate in detecting curves and
estimating their attributeg-urthermore, the algorithm is also able to detect curves and measure
their attributes in a highly efficient manner. Running the code on multiple segmegetled that
curve detection and attribute estimation for a 4km LAS file can take anywhere betwvaed 8
130.

One limitation in the proposed algorithm liesitis ability to distinguish spiral transitions from
circular curves depends on the spacingdu® estimate the vectors in the initial stage. As already
mentioned, testing was conducted on segments where existing curves had a very largesradius (
curves were not very sharp). In order for the algorithm to be able to detect curves of very large
radius, sensitivity analysis revealed that a position vector spacing of 20m had to be used. This
ensures that the change in azimuth between consecutive vectors is sharp enough for the curve to
be detected. While this is essential to the detection pratekss not help when the aim is to

detect spiral transitions. Since spiral transitions are often relatively short compared to the total
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| ength of the curveds arc, a | ower point spac

portion of a cave from the radius of the curve including the spirals.

Although the algorithm is effective in estimating attributes of simple horizontal curves, more work
to distinguish simple curves from spirals. Future work could also consider supplementing the

algorithm with a portion that would estimate horizontal sight offset on existing curves.

5.5 SUMMARY & CONCLUSIONS

This Chapter proposes an algorithm whaamn be used to automatically detect and measure the
attributes of horizontal curves on highways sensed using LIiDAR technology. The proposed
algorithm involves assessing changes in the azimuth between consecutive trajectory vectors
aligned to the o a aki$ te detect the presence of horizontal curves on a highway segment. The
PC, PT andPI for each curve are then identified using regression analysis and the origin of the
curve is located to measure its radius. The code also measures the length ofehendutive

length of its chord. The algorithm was tested using LIiDAR data collected on two highway
segments in the Province of Alberta as well as two curkestedn Civil 3D. Testing revealed

that the code was successful in detecting all curves on wéygdegment. Moreover, the attributes

of those curves were estimated with a high degree of accuracy. The proposed algorithm can be
used to survey curves in a more efficient manner. This helps reduce the burden associated with

conventional surveying tools.
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6 OVERHEAD OBJECT EXTR ACTION & CLEARANCE A SSESSMENT

6.1 BACKGROUND

It is common practicéor transportation agenciés keep inventory information about all overhead
assets on a highway, including bridges, polwees and overhead signsloreover, \ertical
clearance information at those objects must also be obtained to ensure that minimum clearance
requirements are met. In fact, currémnidge management practice includes a routine inspection
phase where a diagnosis of the current state of the structure iisedi27-129]. Clearance
information is collected periodically as part of those bridge inspection procesineesstructural
degradation and environmental conditions might cause changes to minimum clearance at overhead
assets on highways. Such problems should be addressed in a timely maawv@d potential

collisions.

Vertical clearance information at bothidges and powelines is also essential to agencies

responsible for issuing overheight permits for oversized vehicles. The efficiency and accuracy in
which such information could be obtained helps significantly improve the effectiveness of routing
oversizd vehicles on a highway network. In contrast, inaccurate clearance information could
result in the risk of collisions or significant delays to the routing program and hectic maintenance

costs in cases of bridge striKés0].

Bridge strikes are a common problem all around the \W8I. In the US, the Federal Highway
Administration ranks damage due to bridg#hicle collision as the third most common cause of
bridge failur¢132]. Similarly, statistics from Bejing, China,®h that 20% of damage to bridges
is caused by bridges being struck by overheight velfid8$ In the UK, national statistics show
that a vehicle strikes a railway bridge every four and a half [i&&§ In California, the rate of
bridge strikes average a single strike per mdath Figure34, generated in work byl 34] shows
bridge strike statistics in the US during the period between 2005 anfiL38D8Although the
number of strikes varies significdynacross different regions, places like Missouri experience, on

average, over 400 strikes a year.
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! CcOLORADO

Figure 34: Bridge Strike Statistics in the US (202608]134]

Although bridge strikes might not represent a significant portion of the total number of callisions
repairing the damage caused by brigggicle collisions can pose a significant financial burden
on transportation agencies. For instance, the T&®@F reports thatachbridge strike incident
costs an average $180,000 USD to r¢pai].

In addition to helping agencies issue overheight permits to oversized vehicles, clearance
information at bridges and powlares is also critical to agencies responsible for designating high
load corrisdbrs where clearance is expected to exceed a certain margin along the entire highway
(9m in Alberta) These corridors have significant impact on freight transportation within and across

different provinces and are critical to economic prosperity.

Unfortunately, in current surveying practice conducting clearance assessment is a time consuming,
labour intensiveand financially demanding exercigatrequiresbothroad closure and surveyors

to be onsite as illustrated irFigure 35. This makes networlwide assessments of all overhead
assets extremely challenging, particularly in places like the Province of Alberta in Canada where
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a large highwayetwork (31,000km) exists with approximately 4,500 bridge structures and tens
of thousands of powdines and overhead sigfis35]. A network of this sizdéorces officials to set
priorities when managing assets on their highways. In case of bridges, this is achieved by
prioritizing structures which are in a critical condition or focgsan structures located on primary

highwayswhen performing structural assessments and inspe¢fid6s

Figure 35: Manual Clearance Assessm¢h?8,137]

Considering the fact that around 40% of the bridges currently in use in Canada and the US were
built over 50 years ag[.38], a significant numbeof these structures are approaching critical
conditions and require timely strengthening, rehabilitation, or replacgi8rit40]
Unfortunately, given the limitations of existing data collection techniques, assessing clearances at
all those #wuctures simultaneously is not feasiblaEcordingly, municipalities have started
considering alternative methods. Although some municipalities still use manual methods, such as
theodolites and total stations, others have shifted to using more digiaisdsuch as digital
measuring rods and electronic measuring de\jiégs Photolog data and static Light Detection

and Ranging (LiDAR) scans have also been considered in recenf9@&% One common issue

with all the aforementioned methods is thaytlare all static tosl Hence, while they could help
improve the accuracy of clearance assessments by minimizing the sources of human error, they
are not able to improve the efficiency of clearance assessments process. As a result, disruptions to
traffic and the safety of personnel on the site are still common concerns. Moreover, detgbrk

analysis e.,assessing a large selection of bridges on the network efficiently) is still a challenge.
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